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A B S T R A C T

Nanoporous gold is emerging as a functional material with potential applications
in many areas, such as actuation, catalysis, and sensing. The material is also a
candidate for studies of mechanics at the nanoscale. This work presents an effort
to investigate the elasticity and plasticity of nanoporous gold by using molecular
dynamics simulations.

First, this work addresses the underlying atomistic mechanisms that govern
the mechanical responses of the material by studying the uni-axial compression
of a realistic nanoporous gold sample created by mimicking spinodal decompo-
sition. In excellent agreement with the experimental data of mm-sized samples,
the simulation results highlight the exceedingly weak and compliant nature of
nanoporous gold. Driven by the capillary forces, the material already experi-
ences plastic deformation prior to the onset of straining. Uniaxial deformation
starts with an extended regime of elastic-plastic transition and an unusually high
compliance. In addition to the material densification, subsequent plastic flow is
accompanied by Taylor work hardening; the dislocation-starvation scenario is
thus not supported. At the same time, the material undergoes substantial stiffen-
ing, yet the values according to the prediction of the relevant Gibson-Ashby law
are never reached.

The attention is then directed to the influences of the disordered topology due
to nodal shift on the behavior of the material. For that purpose, the focus is
put on the behavior of the diamond-like nanoporous gold - a model suggested
and justified recently as a suitable topological representation of the random in-
terconnected network of ligaments in nanoporous metals. Under compression,
both the ordered diamond-lattice sample and its disordered counterparts ex-
hibit a well-defined elasticity with high modulus preceding the yield behavior
at high strength. The current simulation data suggest a transition from stretch-
ing to bending in deformation mode of many ligaments in the network of the
diamond-lattice structures when the nodal shift is introduced; though the struc-
tures are still stretch-dominated. The nodal shift has strong influence on the
elastic modulus, yield strength, elastic-plastic transition, and lateral expansion
of the diamond-lattice structures. Yet, not all aspects of the mechanical behav-
ior of dealloyed nanoporous gold are captured in the diamond-lattice structures,
even with the optimal nodal shift as is suggested in the previous development of
the model.
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Finally, the influence of the ligament connectivity on the elasticity of nanopo-
rous gold is investigated. For that purpose, two different methods are used to
create samples via mimicking spinodal decomposition, namely via Monte Carlo
simulation and via superposition of composition waves. Both techniques lead to
samples that resemble the ligament network of nanoporous gold. Yet, the me-
chanical properties of these samples are substantially different. Although the
simulation data support the influence of ligament connectivity on the elastic
modulus of nanoporous gold, a concrete quantitative relation between measures
of connectivity and the elasticity of nanoporous gold can not be resolved. Thus,
other factors must be taken into account in order to explain the anomalous com-
pliance of nanoporous gold. Among them, surface effects play a crucial role.
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Figure 1.1 Micrograph of a nanoporous gold structure created by
dealloying. This structure has ligament size of 63± 6 nm
and solid fraction of 0.26± 0.01. Note the disordered net-
work of ligaments. Reprinted from N. Huber et al. Acta
Materialia 67 (2014): 252-265, with permission from Elsevier. 1

Figure 1.2 Typical stress strain curve of mm-sized nanoporous gold
samples. This Figure depicts the experimental stress-strain
curve (interspersed with unload segments) of the sample
shown in Figure 1.1. The inset illustrates the calculation of
the effective elastic moduli (as tangent moduli [23]) from
the unload segments. Reprinted from N. Huber et al. Acta
Materialia 67 (2014): 252-265, with permission from Elsevier. 2

Figure 2.1 Two-dimensional square-lattice Ising model. Pair interac-
tion is εAB between A and B, 0 otherwise. Site i has 2
neighbors of type A and 2 neighbors of type B. The en-
ergy associated with i is thus εAB. Since this configuration
has 10 A–B bonds, its energy is 10εAB. . . . . . . . . . . . . 6

Figure 2.2 Example of NPG sample created via mimicking spinodal
decomposition by Monte Carlo simulation. (a) Initial bi-
nary mixture with 32% of A atoms (green) and 68% B of
atoms (red). (b) Phase separation lead to a structure that
consists of two intertwined networks of A atoms and B
atoms. (c) A porous structure with solid fraction of 0.32
was obtained after removing all B atoms. For brevity, sur-
face and bulk atoms in (c) are coded in different colors. . . 7

Figure 2.3 Example of NPG sample created via superposition of com-
position waves. Figure (a) shows the color-coded compo-
sition. This composition was generated from 48 waves. (b)
After imposing a threshold on the composition, we ob-
tained a nanoporous structure with solid fraction of 32%.
Figure (c) shows an example of a textured structure ob-
tained from only 6 composition waves. . . . . . . . . . . . 9

ix



List of Figures
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tion Algorithm (DXA). The top-left figure shows a BCC
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a triangulated interface mesh (bottom-right). Performing
Burgers circuit analysis on this interface mesh reveals a
prismatic dislocation loop, as shown in the bottom-left fig-
ure. Reproduced from Stukowski et al. Modelling Simul.
Mater. Sci. Eng. 20 (2012) 085007 with permission from AIP. 16

Figure 2.7 Illustration of surface reconstruction via the alpha-shape
method (here in 2D). Figure (a) shows a point cloud whose
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hull of the point cloud (Figure (b)). These triangles are
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1
I N T R O D U C T I O N

Nanoporous gold (NPG) has attracted much discussion, thanks to its wide range
of potential applications in actuation [1–6], catalysis [7, 8], and sensing [9, 10].
Usually fabricated by selective dissolution, NPG takes the form of an intercon-
nected network of ligaments (Figure 1.1) whose diameter can be tuned between
few ten nanometers to few microns [11–13] with long-distance crystallographic
coherency [14, 15]. As such, NPG is an excellent candidate for an implementa-
tion of mechanical properties of nanoscale wires and pillars into a bulk system,
thereby allowing probes into mechanics at the nanoscale from the macroscopic
level.

From a mechanical standpoint, bulk NPG is very deformable under compres-
sion load [13, 15–18]: Samples of millimeter sizes can be deformed to very large

Figure 1.1: Micrograph of a nanoporous gold structure created by dealloying. This struc-
ture has ligament size of 63± 6 nm and solid fraction of 0.26± 0.01. Note
the disordered network of ligaments. Reprinted from N. Huber et al. Acta
Materialia 67 (2014): 252-265, with permission from Elsevier.
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Figure 1.2: Typical stress strain curve of mm-sized nanoporous gold samples. This Fig-
ure depicts the experimental stress-strain curve (interspersed with unload
segments) of the sample shown in Figure 1.1. The inset illustrates the calcula-
tion of the effective elastic moduli (as tangent moduli [23]) from the unload
segments. Reprinted from N. Huber et al. Acta Materialia 67 (2014): 252-265,
with permission from Elsevier.

strains without breaking [15, 16]. The material usually exhibits negligible lat-
eral expansion [15, 19], indicating that the deformation is accompanied by mas-
sive densification. The corresponding deformation curve (e.g. Figure 1.2) often
features an extended elastic-plastic transition with ill-defined strength followed
by pronounced strain hardening [15, 20]. The typical high yield strength of
nanoscale wires when considered individually [21, 22], therefore, is not repro-
duced when they are assembled together in bulk NPG.

Several experimental and simulation studies [24–28] reported the elastic mod-
uli of NPG in the range of 2− 3 GPa. Yet, recent studies [20, 29–31], especially
compression tests of mm-sized samples [20, 31], reveal its exceedingly high initial
compliance followed by significant stiffening under load [20, 29–31]. That unique
elastic behavior is usually demonstrated in terms of the failure of Gibson-Ashby
scaling equation [32, 33] in predicting the effective elastic modulus of NPG: The
prediction of the scaling law is often more than one order of magnitude stiffer
than the experimental value. Since this scaling law has been successfully applied
to metal foams [33], its failure when applying to NPG advertises the exotic nature
of the elasticity of NPG.

Many attempts have been made to attribute these observations to processes
at the atomistic scale as well as topological descriptors at the macroscopic net-
work level. Based on their experimental data, Jin et al. [15, 16] promoted lattice

2



introduction

defects and their interaction as carrier of plasticity and strain hardening. This
suggestion thus contradicts the typical strengthening via dislocation-starvation
mechanisms due to limited sources in nanowires [21, 22]. Later works based on
Finite Element Method (FEM) simulations of an idealized NPG model supported
the dislocation-based mechanisms by pointing out that, apart from topological
disorders, the low strength and the subsequent hardening behavior of NPG ob-
served in experiments can only be reproduced if a very high local work harden-
ing is implemented in the constitutive law of the individual ligaments [20, 34].
The analysis therein also connected the topological disorders, specifically nodal
shift, to other mechanical properties of NPG, such as small lateral expansion and
high compliance. These modeling studies, however, did not succeed in recover
the quasi-immediate yielding and deformation-induced stiffening of NPG.

Ligament connectivity is another topological feature that has been emerging in
recent discussions of the relation between mechanical properties of NPG and its
ligament network [35–39]. Mameka et al. [35] and Jin et al. [36], independently,
pointed out that the low strength and high compliance of NPG can be understood
as a consequence of defects in the network topology. One might thus interpret
these unusual behaviors of NPG in terms of an effective solid fraction that takes
into account the contribution of disconnected ligaments [37]. The Gibson-Ashby
scaling equations therefore remain their validity if modifications are made to
accommodate measures of network connectivity [38]. Yet, these modifications
are questionable, as is undoubtedly demonstrated in the work of Hu et al. [39].
There, an almost identical numerical value in the connectivity density of two
NPG systems coexisted with hugely different elastic moduli.

While the reference works in Refs. [35–39] root the origin of the high compli-
ance of NPG in the network-level mechanisms, one issue stands out: Elasticity of
nanowires is strongly size-dependent (see, e.g. [40] and the references therein). It
is therefore to expect that surface-related phenomena also bear their influences
on the elastic behavior of NPG. Yet, thus far, a conclusive evidence for the influ-
ences of surface effects on the elastic behavior of NPG has not been presented.

Following the ongoing discussion that we summarized above, this work presents
our effort to address the mechanical properties of NPG using atomistic simula-
tions.

In Chapter 2, we review the most crucial information concerning simulation
methods, as well as techniques used in analyzing simulation data.

The mechanical behavior of a NPG structure created via mimicking spinodal
decomposition will be investigated in Chapter 3. There, we will see that the spe-
cial features of the behavior of NPG can be excellently reproduced by molecular
dynamics simulations. Then we will go further to assess the atomistic mecha-
nisms that give rise to the early yielding and subsequent strengthening of NPG.
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In Chapter 4, we will depart from the atomistic processes to join the discussion
of the influence of topological disorder on the mechanical responses of NPG. A
diamond-lattice NPG structure and its disordered counterparts will be examined
to test their viability in representing the complex network of NPG.

A study of the influence of network connectivity on the behavior of NPG will
be presented in the greater part of Chapter 5. For that purpose, the mechanics
of samples created via mimicking spinodal decomposition by different methods
will be investigated. Afterwards, we exit the discussion of network topology and
assess the influence of surface-related phenomena on the behavior of NPG.

Finally, main findings of this work and an outlook for future studies will be
laid out in Chapter 6.
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2
M E T H O D S

2.1 sample preparation

In previous MD studies [27, 28, 41, 42], virtual NPG structures were created via
simulating spinodal decomposition with phase field modeling. The structures
therein exhibit visually similar topology as compared to that of experimental
NPG. Following this approach, we also created virtual NPG samples via mim-
icking spinodal decomposition, though, by different methods: On-lattice Monte
Carlo (MC) simulation [43] and superposition of composition waves [44].

2.1.1 Monte Carlo simulation

In the MC simulation, an FCC lattice is created and mapped onto a simulation
box of 〈100〉 edges. All the lattice sites are then randomly assigned to one of the
two atom types A or B. The temperature T is set to 500 K. Periodic boundary
conditions are applied in all three dimensions. We assume an Ising-type interac-
tion between atoms [43]. Only pair interactions between nearest neighbor atoms
are allowed: While the energy of a pair of two A atoms or two B atoms is zero,
the energy of a pair of an A atom and a B atom is εAB = 0.5 eV. Hence, for a site
i, the associated energy is:

Hi =
1
2 ∑

j
δij (2.1)

In Equation 2.1, the sum is taken over all nearest neighbor sites of site i. δij
is equal to εAB if sites i and j are of a same type, 0 otherwise. There is a factor
of 1/2 because the energy δij is divided between two bonded atoms. A sketch
illustrated the Ising model is given in Figure 2.1.

5



methods

Figure 2.1: Two-dimensional square-lattice Ising model. Pair interaction is εAB between
A and B, 0 otherwise. Site i has 2 neighbors of type A and 2 neighbors of
type B. The energy associated with i is thus εAB. Since this configuration has
10 A–B bonds, its energy is 10εAB.

For the whole system, the Ising-type Hamiltonian representing its energy is
the sum of Hi over all sites:

H = ∑
i
Hi = NABεAB, (2.2)

with NAB the number of A-B pairs.
Given a particular configuration sc of the system, a new configuration sn is

obtained via swapping nearest neighbor sites. The probability for a transition
from sc to sn follows the Metropolis algorithm [45]:

P(sc → sn) =


exp

(−∆E
kBT

)
if ∆E > 0

1 if ∆E ≤ 0

(2.3)

where ∆E is the change in the energy and kB is the Boltzmann constant. The
phase separation is thus evolved as the system goes through a series of config-
urations s1 → s2 → s3 → · · · till the end of the simulation procedure. As a
result, the initial random system becomes a structure that consists of two inter-
twining interconnected networks. Each network is made of one type of atom.
After removing one of the two atom types, we get an interconnected network
that resembles the microstructure of real NPG structures created by dealloying.

Figure 2.2 depicts an illustration of an NPG sample created by MC simulation.
The initial binary mixture of A and B atoms is shown in Figure 2.2a, with the
fraction of 0.32 of A atoms. The final configuration of the mixture after the phase

6



2.1 sample preparation

separation is shown in Figure 2.2b. Removing B-component of this structure
results in an interconnected network of A atoms, as is shown in Figure 2.2c.

(a) (b) (c)

Figure 2.2: Example of NPG sample created via mimicking spinodal decomposition by
Monte Carlo simulation. (a) Initial binary mixture with 32% of A atoms
(green) and 68% B of atoms (red). (b) Phase separation lead to a structure
that consists of two intertwined networks of A atoms and B atoms. (c) A
porous structure with solid fraction of 0.32 was obtained after removing all B
atoms. For brevity, surface and bulk atoms in (c) are coded in different colors.

2.1.2 Superposition of composition waves

Another way to generate NPG structures via spinodal decomposition is to imple-
ment the description of phase separation developed by J. W. Cahn in Ref. [44].
According to this theory, the composition of an inhomogeneous solution with
average composition c0 is perturbed by composition waves:

c(r) = c0 + ∑
all β

exp(R(β)t)
(

A(β) cos(β · r) + B(β) sin(β · r)
)

. (2.4)

Here, r denotes the position vector. The sum is taken over all composition
waves, with fixed wave number β. While A(β) and B(β) are evaluated from the
initial fluctuations, the amplification factor R(β) in the temporal term exp(R(β)t)
determines the growth of fluctuations. Thus, the composition is a superposition
of sinusoidal waves with fixed wavelength and random orientation, phase, and
amplitude. Note that the simulations in Ref. [44] showed that if a threshold is im-
posed on the composition c, one obtains an connected structure (see, e.g., Figure
3 in that reference).
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In practice, to create NPG structures via implementation of Equation 2.4, we
make and impose some conditions. The average composition c is assumed to
be 1/2. No growth of fluctuations is considered. Moreover, the amplitudes of
concentration waves are constant. Thus, we can rewrite Equation 2.4 as:

c(r) =
1
2
+ s ∑

all β
cos(β · r + φ(β)). (2.5)

Here, s is an arbitrary scaling factor and φ(β) is the random phase. Now, we
are left with choosing β. For that purpose, we use Cartesian coordinates:

β = β1e1 + β2e2 + β3e3, (2.6)

where {e1, e2, e3} is the orthogonal basis. Since only one wavelength is allowed,
we have:

β2
1 + β2

2 + β2
3 = constant. (2.7)

Moreover, we are interested in NPG structures which are periodic with spatial
period Ls. That means, for arbitrary integers q1, q2, and q3, we have:

c(r + Ls(q1e1 + q2e2 + q3e3)) = c(r). (2.8)

From the expression of c(r) in Equation 2.5, this obviously means

Ls(β1q1 + β2q2 + β3q3) = 2πm, (2.9)

for some integer m. Since Equation 2.9 holds true for arbitrary integers q1, q2,
and q3, we must have:

β1 = 2π
h
Ls

, β2 = 2π
k
Ls

, β3 = 2π
l

Ls
, (2.10)

for some integers h, k, and l. Because of the condition in Equation 2.7, h, k, and l
must satisfy

h2 + k2 + l2 = H, (2.11)
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where H is an integer constant.
Equations 2.10-2.11 provide the recipe for selecting those β vectors. In our im-

plementation, a uniform distribution is used to generate φ(β). Note that Equa-
tion 2.11 will limit the number of eligible wave vectors, Nev. An illustration of
the wave method is shown in Figure 2.3a-b. Figure 2.3a shows the solution with
composition color-coded. This composition is a result of a superposition of 48
composition waves. Upon imposing a threshold on the composition, we got a
porous network with solid fraction ϕ = 0.32. A snapshot of this porous structure
is shown in Figure 2.3b. We find that if H leads to small number of wave vectors
(say, Nev < 30), the resulting structure is textured and thus not suitable to rep-
resent the random network of NPG. Figure 2.3c gives an example of a textured
structure created with 6 waves.

(a) (b) (c)

Figure 2.3: Example of NPG sample created via superposition of composition waves. Fig-
ure (a) shows the color-coded composition. This composition was generated
from 48 waves. (b) After imposing a threshold on the composition, we ob-
tained a nanoporous structure with solid fraction of 32%. Figure (c) shows an
example of a textured structure obtained from only 6 composition waves.

In Chapter 5, we will see that the ligament network in the NPG samples created
by the wave method has higher connectivity* than that of the samples created by
the MC simulation at the same solid fraction. Besides, close-ups (Figure 2.4) at the
surface of the wave samples also reveal a smoother surface of the wave samples.
Although surface roughness might have influence on the mechanical behavior of
nano-scale objects (see, e.g., [46–48]), its influence on the behavior of NPG will
not be assessed in the present study.

*A measure of the network connectivity will be presented at the end of this Chapter.
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Figure 2.4: Close-ups of the surface of samples shown in Figure 2.2c (left) and Figure 2.3b
(right) reveal different surface roughness. Sample created by superposition of
composition waves exhibits smoother surface.

2.2 molecular dynamics

MD gives a framework to study the dynamics of an ensemble of atoms via solv-
ing the equations of motion through numerical integration.

We first consider the dynamics of a system of N atoms that is isolated from
surrounding. For each atom, let mi, ri, and pi (i = 1 . . . N) denote its mass,
position vector, and momentum, respectively. The equation of motions of the
system read:

dri

dt
=

pi

mi
, (2.12)

dpi

dt
= Fi, (2.13)

in which Fi (i = 1 . . . N) are forces acting on the atoms

Fi = −∇iU (r1, r2, . . . , rN), i = 1 . . . N. (2.14)

Here, U (r1, r2, . . . , rN) is the potential energy of the system and ∇i = ∂/∂ri is
the gradient operator. If the initial conditions r1(0), . . . , rN(0) and ṙ1(0), . . . , ṙN(0)
are given, we can integrate Equations 2.12-2.13 to obtain the trajectories of the
atoms. In implementation, the numerical integration can be done via several
algorithms of which the Verlet algorithm is the most popular scheme:

ri(t + ∆t) ≈ 2ri(t)− ri(t− ∆t) +
Fi(t)
mi

(∆t)2, (2.15)
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with ∆t the time step.
For the Equations 2.12-2.13, the solution will conserve the total energy Hamil-

tonian:

H(r, p) =
N

∑
i=1

p2
i

2mi
+ U . (2.16)

Note that this conservation law 2.16 only holds if the system is isolated from
the surrounding. We now consider situations in which the surrounding acts as
heat reservoir (at temperature T) and the system boundary, while keeping the to-
tal volume invariant, allows heat exchange. In these circumstances, the equations
of motion 2.12 and 2.13 need to be modified to correctly capture the dynamics
of the system. An approach for such modifications was first proposed by Nosé
[49] and subsequently reformulated by Hoover [50] - thus its name Nosé-Hoover
thermostat. There, an additional coordinate ξ, its conjugate momentum pξ , and
a parameter Q were introduced to represent the surrounding heat reservoir. The
corresponding modified equations of motion take the following form:

dri

dt
=

pi

mi
, (2.17)

dpi

dt
= Fi −

pξ

Q
pi, (2.18)

dξ

dt
=

pξ

Q
, (2.19)

dpξ

dt
=

N

∑
i=1

p2
i

mi
− NfkBT, (2.20)

where Nf is the number of degrees of freedom of the system*. As is seen in Equa-
tion 2.18, the momenta of atoms are modified by a friction term with thermody-
namics friction coefficient pξ/Q. Equation 2.20 shows that the rate of change of
pξ is nothing else than the fluctuation in kinetic energy. The Nosé-Hoover ther-
mostat controls this fluctuation to drive the kinetic energy towards the canonical
average. During this process, there is a conservation law:

H′(r, ξ, p, pξ) =
N

∑
i=1

p2
i

2mi
+

p2
ξ

2Q
+ U + NfkBTξ. (2.21)

*Nf = 3N if there are no constraints on the system.
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The Nosé-Hoover thermostat mechanism is the precursor for modifications of
the equations of motion to capture the dynamics of systems that are exposed
to not only constant temperature T but also constant pressure Pext of their sur-
roundings [51–53]. For such a system, its total volume V fluctuates to comply
with pressure exerted on the system. Consider, for example, the case of isotropic
dilatation of volume, we introduce an additional variable ε and its conjugate
momentum pε:

ε =
1
3

ln
(

V
V0

)
, (2.22)

where V0 is the reference volume. The equations of motion now read [53]:

dri

dt
=

pi

mi
+

pε

W
ri, (2.23)

dpi

dt
= Fi −

(
1 +

3
Nf

)
pε

W
ri −

pξ

Q
pi, (2.24)

dε

dt
=

pε

W
, (2.25)

dpε

dt
= 3V(Pint − Pext) +

3
Nf

N

∑
i=1

p2
i

mi
− pξ

Q
pε, (2.26)

dξ

dt
=

pξ

Q
, (2.27)

dpξ

dt
=

N

∑
i=1

p2
i

mi
+

p2
ε

W
− (Nf + 1)kBT, (2.28)

in which W is the mass associated with the barostat and Pint is the internal pres-
sure of the system:

Pint =
1

3V

( N

∑
i=1

p2
i

mi
+

N

∑
i=1

ri · Fi − 3V
∂U
∂V

)
. (2.29)

For the dynamics described by Equations 2.23–2.28, the following quantity is
conserved:

H′′(r, ε, ξ, p, pε, pξ) =
N

∑
i=1

p2
i

2mi
+

p2
ε

2W
+

p2
ξ

2Q
+ U + PextV + (Nf + 1)kBTξ. (2.30)
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We emphasize that Equations 2.23–2.28 were developed for the isotropic vol-
ume fluctuation. Similar development for the case of full flexibility of volume
fluctuations, as well as corresponding adaptation of the Verlet algorithm, can be
found in Refs. [51–53].

2.3 interatomic potential

In this work, an embedded-atom method (EAM) potential is used to describe
the interaction between gold atoms [54–56]. Within this framework, the total
potential energy U is:

U = ∑
i

F(ρi) +
1
2 ∑

i 6=j
φ(rij) (2.31)

ρi = ∑
j 6=i

ρa(rij). (2.32)

In Equations 2.31 and 2.32, rij is the distance between atoms i and j. φ(rij)

is the short-range pairwise interaction between atoms i and j at a distance rij
apart. For each atom i, ρi is the local electron density caused by surrounding
atoms whose individual contributions are ρa(rij) and F(ρi) is the energy needed
to embed this atom into the environment with electron density ρi. This potential
gives following linear elastic properties [56]:

C11 = 183 GPa, C12 = 159 GPa, C44 = 45 GPa. (2.33)

From these elastic constants, we get the Young’s modulus, Ybulk, of massive
non-textured polycrystaline of gold, using Kröner’s formulation [57]:

Ybulk = 78 GPa. (2.34)

2.4 simulation procedure

Monte Carlo and MD simulations were carried out with the open-source codes
Spparks [58] and Lammps [59], respectively. Periodic boundary conditions were
imposed in all three dimensions.

For each NPG sample, simulation procedure started with an energy minimiza-
tion using the conjugate gradient algorithm. The minimization was controlled so
that at convergence, the relative change in energy and the specified force toler-
ance were less than 10−12 and 10−4 eV/Å, respectively. The structure was then
thermally relaxed for 1 ns at desired temperature before the onset of straining.
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Uniaxial compression test was then simulated by scaling the simulation box
length in one dimension at the strain rate of 108/s while keeping stress in other
dimension at 0 bar. Nosé-Hoover thermostat and barostat with Martyna-Klein-
Tuckerman modifications [51–53] (see above) was used to control temperature
and pressure.

The time step in all simulations is 2 fs. While most simulations were carried
out at T = 300 K, for sample studied in Chapter 3, selected runs were done at
T = 0.01 K to assess conceivable role of thermally activated processes.

2.5 analysis of simulation data

During the simulation, the instantaneous configuration of NPG samples were
exported and analyzed to extract their defect structures, free surface, and con-
nectivity.

2.5.1 Defect structures

An atomic pattern matching algorithm [60] based on the adaptive common neigh-
bor analysis (CNA) method [61] was used to detect planar faults, such as stack-
ing faults and twin boundaries. To assign a local crystal structure to an atom
via the conventional CNA method [62, 63], one first looks for N bonded nearest
neighbor atoms within a cutoff distance, rc, from the central atom. Then, three
numbers are calculated, namely the number of common neighbor atoms which
are shared between the central atoms and its bonded atoms, Ncn, the number
of bonds found in these common neighbors, Nb, and the length, i.e. number of
bonds, of the longest chain built with these Nb bonds, Nlb. These numbers form
a characteristic signature (N signatures in total, since there are N nearest neigh-
bors) that helps classify the local crystal structure of the central atom (see Table
2.1 for CNA signatures of FCC, HCP, and BCC crystal structures).

FCC HCP BCC

Number of nearest neighbors 12 12 14

Signature 12× (421) 6× (421) 8× (666)

6× (422) 6× (444)

Table 2.1: Common neighbor analysis signatures of FCC, HCP, and BCC crystal struc-
tures.
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An illustration of the CNA method is given in Figure 2.5. A configuration in
which we want to analyze the local crystal structure of the central atom (blue)
is shown in Figure 2.5a. Bonds between nearest neighbors found in this configu-
ration (within a predefined cutoff radius) are shown in Figure 2.5b. The central
atom has 12 nearest neighbors. Between the central atom and one of its nearest
neighbors (e.g. atom coded in red in Figure 2.5c), there are Ncn = 4 common
neighbors (green). Nb = 2 bonds are found in these common neighbors (red),
with the maximum length of bond chain, Nlb, is 1. From these numbers, the local
crystal structure is determined as FCC.

(a) (b) (c)

Figure 2.5: Illustration of the common neighbor analysis (CNA) method. Figure (a)
shows a configuration in which we want to analyze the local crystal structure
of the central atom (blue). Figure (b) shows bonds between nearest neighbors
found in this configuration (within a predefined cutoff radius). The central
atom has 12 nearest neighbors. Between the central atom and one of its near-
est neighbors (e.g. atom coded in red in Figure (c)), there are Ncn = 4 common
neighbors (green). Nb = 2 bonds are found in these common neighbors (red),
with the maximum length of bond chain, Nlb, is 1. From these numbers, the
local crystal structure is determined as FCC.

The cutoff distance in the conventional CNA is a fixed input parameter [62–64].
In this work, we used a modified version of the CNA method [60] which picks
up a local cutoff distance for each atom – thus the name adaptive CNA. Based on
the assigned local crystal structures, we can detect atom clusters that are stacking
faults or twin boundaries, since the local structure of these atoms is HCP.

Dislocation Extraction Algorithm (DXA) [65, 66] was used to detect and clas-
sify lattice dislocations. Given an input structure, the work flow of this algorithm,
as is illustrated in Figure 2.6, starts with a Delaunay tessellation whose outputs
are triangles for 2D systems and tetrahedra for 3D systems. With the help of
the CNA method, the DXA algorithm then classifies the tessellation into good
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regions and bad regions depending on whether or not they can be mapped to
perfect reference crystals. These regions are separated by triangulated interface
meshes which enclose all defects in the input crystal. Performing Burgers circuit
analysis on the interface meshes will then reveal all dislocations (assorted into
Burgers vectors), as well as their densities in the input structure.

Figure 2.6: Illustration of the work flow of the Dislocation Extraction Algorithm (DXA).
The top-left figure shows a BCC single crystal with lattice defects. From the
point cloud representing the atoms, a Delaunay tessellation was generated,
with constituent tetrahedra classified as ‘good’ or ‘bad’ regions (top-right).
These regions are separated by a triangulated interface mesh (bottom-right).
Performing Burgers circuit analysis on this interface mesh reveals a pris-
matic dislocation loop, as shown in the bottom-left figure. Reproduced from
Stukowski et al. Modelling Simul. Mater. Sci. Eng. 20 (2012) 085007 with per-
mission from AIP.

2.5.2 Surface reconstruction

For an atomistic structure, its surface is constructed by the alpha-shape method
[60, 67]. First, a Delaunay tessellation is generated from the point cloud represent-
ing atoms. The tessellation comprises Delaunay tetrahedra that fill the convex
hull of the point cloud. For each tetrahedron, if its circumsphere does not fit into
a probe sphere with radius Rb, the tetrahedron is considered to be part of the
pore space and thus removed. The union of the remaining elements whose radius
of the circumsphere does not exceed Rb forms the solid region. Extracting the tri-
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angulated surface mesh of this solid region gives us the desired reconstructed
surface mesh of the atomistic structure.

(a) (b) (c)

Figure 2.7: Illustration of surface reconstruction via the alpha-shape method (here in 2D).
Figure (a) shows a point cloud whose surface is to be constructed. A Delaunay
tessellation is generated which comprises triangles that fill the convex hull of
the point cloud (Figure (b)). These triangles are marked as ‘solid’ (grey) if
their radius is less than a given probe radius Rb, and open space (magenta) if
otherwise. Removing the open space region and extracting the surface mesh
of the solid region gives us a reconstructed surface (red) of the point cloud
(Figure (c)).

The surface reconstructed by the alpha-shape method depends on the radius
Rb [60, 67]. The value of Rb is suggested to be the separation distance between
nearest neighbor atoms in the structure [60]. In this work, we choose Rb = 3 Å,
which is a little bit greater than the separation distance of atoms described by
the EAM potential above (2.88 Å).

2.5.3 Analysis of ligament connectivity

In Chapter 5, we will study the influence of ligament connectivity on the elastic
modulus of NPG samples. For that purpose, we follow Refs. [38, 68, 69] and
adopt the “genus”, g, as the measure of network connectivity in NPG. In simple
words, for an object with a connected and oriented surface, its genus g is the
number of handles that it contains. For example, a sphere (Figure 2.8a) has no
handle; its genus is thus g = 0. A 2-ring torus (Figure 2.8b), has two handles; its
genus is therefore g = 2. If one of the two rings of the 2–ring torus is broken
(Figure 2.8c), there is one handle left; the corresponding genus is thus 1.
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(a) (b) (c)

Figure 2.8: Example of genus of some typical shapes. Genus of a sphere (a) is 0 since it
has no handle. A 2-ring torus (b) has two handles and its genus is therefore
2. If one of the two rings of the 2–ring torus is broken (c), there is one handle
left; the corresponding genus is thus 1.

Note that if the surface of the object is closed and triangulated, g can be calcu-
lated via the Euler characteristic χ:

g = 1− χ

2
with χ = #V − #E + #F (2.35)

where #V, #E, and #F are the number of vertexes, edges, and faces of the surface.
From this equation, once the surface mesh of an NPG structure is reconstructed,
the genus of the structure can be immediately calculated, since the alpha-shape
reconstruction method results in a triangulated surface mesh (see above).

Since the boundary surfaces of the simulation box cut through many ligaments
(see, e.g., Figure 2.2c and Figure 2.3b), a direct analysis on the surface mesh recon-
structed from a single representative volume might underestimate the connectiv-
ity. To minimize this artifact, the representative volume is replicated in all three
dimensions before constructing the surface mesh and performing the topological
analysis.

2.5.4 Visualization

The open-source software Ovito [70] was used to visualize the simulation results.
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3
D E F O R M AT I O N O F S P I N O D A L N A N O P O R O U S G O L D

In this chapter, we will look into the mechanical behavior of a virtual NPG sam-
ple that was created by Monte Carlo simulation. The presentation first serves as
a confirmation that simulated computer tests of samples created via mimicking
spinodal decomposition can capture the behavior of experimental NPG samples.
Based on the simulation data, we will then assess the origin of early yielding and
subsequent hardening of NPG.

3.1 initial microstructure

Figure 3.1a depicts the initial microstructure of the NPG sample that we are go-
ing to study in this chapter. This structure was created by mimicking spinodal
decomposition via Monte Carlo simulation on a simulation box of 408 Å (100
lattice spacings) in each dimension. Its reconstructed surface is shown in Fig-
ure 3.1b. In comparison to the micro-graph of experimental NPG samples (such
as the one shown in Figure 1.1), we see that this microstructure resembles the
interconnected network of dealloyed NPG well.

The solid fraction ϕ of the structure showed in Figure 3.1 is 0.297. The alpha-
shape surface reconstruction algorithm puts the specific surface area α, i.e. sur-
face area divided by solid volume, of this structure at 1.05/nm. In order to calcu-
late the characteristic ligament size, d, of this sample, we use the conversion rule
[71]:

d =
1.63(1.25− ϕ)(1.89 + ϕ(0.505 + ϕ))

α
. (3.1)

This conversion rule is obtained from modeling the network of NPG as a pe-
riodic diamond-lattice structure [20] (see Chapter 4 for details of the model). It
thus gives a ligament size of 3.15 nm for this virtual NPG sample. That value is
one order of magnitude less than the simulation box length (∼ 40 nm). Hence
we can rule out the influence of finite-size effects in our simulations.

19



deformation of spinodal nanoporous gold

(a) (b)

Figure 3.1: Initial microstructure (a) and reconstructed surface (b) of the NPG studied in
this Chapter. This structure was created by mimicking spinodal decomposi-
tion via Monte Carlo simulation (see Chapter 2). The sample length is 40.8
nm. Its solid fraction and ligament size are 0.297 and 3.15 nm, respectively.

3.2 relaxation behavior

The relaxation of the initial porous structure at T = 0.01 K and zero external
pressure led to a decrease of 2.96% in the total volume. Thus the solid fraction
increased to 0.306. Though we did not find any dislocations in the relaxed struc-
ture, a very small amount of planar faults was detected: As compared to the
system size of ∼ 1.2 million atoms, there was a negligible number of 120 atoms
in the faulted configurations which corresponds to a density of ∼ 7× 10−5/nm
of planar faults. Hence the shrinkage of the sample volume during the relaxation
at T = 0.01 K is mostly elastic.

There were more structural changes during the thermal relaxation at T =

300 K. The solid fraction ϕ now is 0.308. More importantly, even without any
help of the external load during the relaxation, there was a noticeable amount of
line and planar defects after this thermal relaxation. The corresponding densities
of dislocations, stacking faults, and twin boundaries are 4.8 × 1014 m−2, 3.2 ×
10−3 nm−1, and 1.4× 10−3 nm−1, respectively. Some examples of such defects are
shown in Figure 3.9.

We note that the experimental work in Ref. [14] also revealed ensuing vol-
ume shrinkage and creation of lattice defects during the synthesis of NPG in
fast dealloying; the underlying mechanism was then attributed to the action of
surface stress. This was confirmed later in a simulation study [42]. Indeed, ir-
respective of its size, the boundary surface of a solid exerts forces on the bulk.
Those forces are then compensated by the bulk stress with a shear component
[72]. When the characteristic size of the solid decreases so that the amount of
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fcc

twin boundary

stacking fault

other

Figure 3.2: Examples of lattice defects in the thermally relaxed (at T = 300 K) configu-
ration of the virtual NPG structure shown in Figure 3.1. These pre-existing
defects are due to the action of the capillary forces which lead to plasticity
even without any help from external load.

surface becomes significant (as in the case of NPG), the shear component in the
surface-induced stress becomes pronounced and might thus trigger dislocation
nucleation and spontaneous plastic deformation, even without the help of exter-
nal load. Quantitatively, the surface-induced bulk stress S in a solid is calculated
via the generalized capillary equation [72]:

∫
SdV =

∫
sda, (3.2)

where V, A, and s are the solid volume, surface area, and surface stress tensor,
respectively. Assuming all the ligaments take the shape of cylindrical wires of
diameter d, and approximating the surface stress as isotropic with magnitude f ,
one gets the principal values of the surface-induced stress in the axial direction,
SA, and radial direction, SR, as

SA = −4
f
d

, SR = −2
f
d

. (3.3)

The maximum projected shear stress is found on planes inclined by an angle
of π/4 to the wire axis [73]. Its magnitude τ is:

τ = 2
f
d

. (3.4)

For the EAM potential used in this study, f ≈ 1.1 J/m2 [74]. With a diameter
of d = 3.15 nm, the maximum shear stress τ is thus τ ≈ 0.7 GPa. It is conceivable
that there are many ligaments in the network that have their diameter well be-
low 3.15 nm. Thus, the local surface-induced stresses in these ligaments are well
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beyond the estimated value 0.70 GPa. Consequently, these ligaments might ex-
perience local spontaneous plastic deformation accompanied by creation of the
lattice defects.

It might be then argued that if the surface-induced stresses are significant, one
should be able to detect the local bulk stress concentration even when no plastic
events occur. In fact, a previous simulation study [27] showed that the histogram
of the local stress of an NPG structure changed significantly after the relaxation
under no external load. To examine this situation in our simulation, the variation
of atomistic von Mises stress was kept track during the initial athermal relaxation.
Results for a slice cutting through the NPG sample are shown in Figure 3.3. It
can be seen that, even though no lattice defects were detected in the athermally
relaxed structure, bulk atoms already experienced significant stress concentra-
tion. Moreover, the changes are more pronounced when the atoms are near the
surface or at the thinner part of ligaments.

0 von Mises stress [GPa] ≥ 3

Figure 3.3: Influence of surface stress on local stress distribution. Figure at left and at
right show the local von Mises stress of atoms in the NPG sample before and
after the initial energy minimization, respectively. While no dislocations were
found in the athermally relaxed structure, bulk atoms already experienced
significant stress concentration. Changes are more accentuated where atoms
are near the surface or at the thinner part of ligaments.

3.3 stress-strain behavior

Now we examine the behavior of the structure shown in Figure 3.1 in simulated
compression tests. The corresponding stress–true strain curves are depicted in
Figure 3.4. The behavior at low temperature (T = 0.01 K) and at room tempera-
ture (T = 300K) are shown at left and at right, respectively. While the red curves
correspond to the responses of the material under continuous loading, the green
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3.4 origin of the early yielding

curves are for the behavior in load/unload scenarios. We found that the behavior
of the virtual NPG sample is practically independent of temperature.
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Figure 3.4: Simulated stress–true strain curves (σ− ε) of the virtual NPG sample shown
in Figure 3.1 at T = 300 K (a) and T = 0.01 K (b). Red curves are for continu-
ous uni-axial loading. In blue curves, unload segments were interspersed to
monitor the evolution of effective elastic modulus. Note the extended elastic-
plastic transition followed by pronounced strain hardening.

As is clearly seen, the virtual NPG started out exceedingly weak: The irre-
versible unload strains in the small strain regime testify that the material yields
to the very least external load. Then the quasi-immediate onset of yielding is
followed by an extended elastic-plastic transition and a subsequent pronounced
strain hardening. For example in the case of continuous loading, the flow stress
at ε = 0.1 is only 18.2 MPa, increases to 93.1 MPa at ε = 0.4, and continues rising
to the final value of 591 MPa at the end of the deformation. The simulated behav-
ior of the virtual NPG structure reported here is thus in excellent agreement with
experimental results [20, 31, 37] (e.g. the one shown in Figure 1.2): Both data set
exhibit a very deformable behavior of NPG in response to the applied load.

3.4 origin of the early yielding

While an assessment of the origin of the pronounced hardening observed in the
stress strain curve of NPG requires details of microstructural changes and defect
structures, we can now address the atomistic mechanisms that lead to the quasi-
immediate yielding of the material.

The surface-induced plasticity during the thermal relaxation might have strong
influence on the strength of the material. It has been well-established that the
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mechanical behavior of materials at the nanoscale crucially depends on the pre-
existing defect structures. Specifically, while dislocation-free whiskers can yield
at almost ideal strength, nanoscale pillars containing preexisting dislocations ex-
hibit substantially weaker response [75–77]. Since the thermal relaxation at room
temperature led to the creation of lattice defects, it is conceivable that the ob-
served quasi-immediate yielding was fostered by the noticeable initial dislocation
density. However, the same weak behavior is also observed at low temperature
where no preexisting dislocations were detected. Therefore, the initial dislocation
content is not the only reason that causes the immediate yielding.

As the surface-induced pre-stresses are not uniform (see Section 3.3 above),
the resolved surface-induced shear pre-stresses are also expected to vary with
respect to local ligament thickness and orientation. Hence, during the thermal re-
laxation, not all but only some ligaments yield under the action of surface stress.
These ligaments will thicken and thereby reduce their local pre-stresses. It is then
natural to assume that there are ligaments which are pre-stressed to near theo-
retical strength and thus require only little extra external load to undergo plastic
deformation. That is to say, the heterogeneous nature of surface-induced bulk
stresses is instrumental in the local yielding events of ligaments and thus effec-
tively in the early yielding of the whole macroscopic ligament network. Further-
more, when the external load increases, more and more ligaments yield, giving
rise to the extended elastic-plastic transition.

This line of reasoning is fully supported by our simulations data, as well as
reported experimental data from mechanical testing of mm-sized samples [20,
31]. The irreversible strains after unloading in the very small strain regime, while
testifying the quasi-immediate yielding, are in accordance with the fact that some
ligaments suffer significant surface-induced pre-stress. In the same spirit, the
initial increase in the flow stress comes out naturally as a consequence of the
depletion of regions with high surface-induced pre-stress: More applied load is
needed to yield regions where the influence of pre-stress is less pronounced.

The extended elastic-plastic transition in the stress strain curve of NPG finds
its similarity in the deformation curves of massive nanocrystalline metals where
deformation events are confined to individual grains with a distribution of crys-
tal orientation and thus a distribution of local Schmid factor [78]. Yet, the stress
strain curves of these metals start with a preceding and well-defined elastic
regime, which is quite different from the absence of purely elastic deformation
of NPG.

To further support our reasoning in favor of surface-induce stress as the sig-
nificant contributor to the early yielding of NPG in compression, we note that
the above picture implies a tension-compression asymmetry: While external com-
pressive load is assisted by the surface-induced stress, tensile load will be coun-
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3.4 origin of the early yielding

teracted. Thus, the material should exhibit enhanced tensile strength. In order to
check the last conjecture, we studied the behavior of an NPG structure whose lig-
ament size and solid fraction after thermal relaxation at T = 300 K are 3.76 nm
and 0.308, respectively (see Chapter 5 for details). This structure was also cre-
ated via simulating spinodal decomposition. Figure 3.5 depicts the simulated
stress-strain curves of this structure in tension and compression. The asymmet-
ric behavior is clearly demonstrated: The strength (1% offset) in compression is
15 MPa. In tension, the strength is 40 MPa, which is almost 3 times stronger.
Similar observation was reported by Farkas et al. [27] in their simulation study
of NPG. Our present study, along with Ref. [27], thus confirms that the surface-
induced bulk stress is responsible for the early yielding in compression but not
in tension.
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Figure 3.5: Tension-compression asymmetry in behavior of NPG under opposite loading
directions. Here shows the stress, σ, versus true strain, ε, of an NPG sample
with ligament size of 3.76 nm and solid fraction of 0.302 (see Chapter 5 for
details). Tensile strength is 40 MPa, which is almost 3–fold the value of 15
MPa of the strength in compression.

Surface roughness might also contribute to the early yielding of NPG. An ex-
amination of the surface of the virtual NPG sample reveals a large amount of
step edges and corners (see e.g. Figure3.2). These surface defects are at least ge-
ometrically necessary to accommodate the local curvature at the nanoscale. For
nanowires, these surface defects lead to local strain concentration, as is experi-
mentally confirmed by imaging with aberration-corrected TEM [79]. As a result,
the local stress concentration caused by these surface step edges and corners
facilitates dislocation nucleation and therefore reduces the strength of the corre-
sponding nanowires [46, 80, 81]. For NPG, one might expect that these surface
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defects also cause local stress concentration and thereby contribute to the early
yielding of the material - even though the influence must be of minor effect, since
the same behavior is also reported for NPG samples with much larger ligament
size and smooth surface.

3.5 transverse strain and surface area

Figure 3.6 depicts the changes of the true transverse strain of the virtual NPG
during the continuous loading. In line with other experimental and simulation
studies [15, 19], the lateral dimensions of the NPG sample remained almost in-
variant even when the axial direction was compressed to half of its initial length
(i.e. at true strain ε = 0.69). As a result, the change in the axial direction was
directly converted to the decrease in the total volume of the sample. Hence, the
NPG structure experienced pronounced increase in solid fraction under com-
pression. At the end of deformation, when 80% of the axial direction had already
been reduced, the solid fraction increased to ϕ = 0.918 from its initial value
ϕ = 0.308 before the onset of straining.
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Figure 3.6: True transverse strain, εtrans, vs. true axial strain, ε, of the NPG sample de-
picted in Figure 3.1 during the deformation event shown in Figure 3.4a. The
transverse strain remains small for a wide range of the axial strain. Figure
at right shows the sample (reconstructed surface) at ε = 0.69, along with the
simulation box prior to the onset of straining (red frame). Note the negligible
changes in the lateral dimensions.

The specific surface area α is another micro-structural factor that was moni-
tored during the deformation. The results (scaled to the initial value α0 before
straining) are shown in Figure 3.7, along with experimental data of dealloyed
NPG samples with ligament size of 53 nm and 29 nm, and solid fraction of 0.266
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3.6 defect structures and strain hardening

and 0.260, respectively. This plot, while exhibiting good agreement between our
simulation data and experimental ones, reveals a continuous loss of free surface.
Most of the reduction was found in the later stage of deformation. Conceivably,
that loss of surface area is due to the cold coalescence of ligaments: Since com-
pression pushes ligaments towards each other, many of them will come to con-
tact and thus coalesce at surface sites during the deformation. Figure 3.7 gives
an illustration of this cold coalescence process. At true strain ε = 0.073, the two
ligaments in the red circle are still at a distance apart. Deformation brings these
ligaments towards each other and ultimately welds them at the surface, as is
illustrated in the close-up of the surface at ε = 0.094.
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Figure 3.7: Change of specific surface area, α, of the NPG sample depicted in Figure

3.1 during the deformation event shown in Figure 3.4a. Here, α is scaled to
the initial value, α0, prior to the onset of straining. This graph also shows
experimental data of dealloyed NPG samples with ligament size of 53 nm
and 29 nm, and solid fraction of 0.266 and 0.260, respectively. Note the loss of
surface area of (virtual and experimental) NPG samples. Figures outside the
graph illustrate the cold coalescence of ligaments in the virtual NPG sample.
At true strain ε = 0.073, two ligaments in the red circle are still at a distance
apart. Deformation brings these ligaments towards each other and ultimately
welds them at the surface, as is illustrated in the close-up of the surface at ε =
0.094. Experimental data courtesy of Dr. N. Mameka at Helmholtz-Zentrum
Geesthacht.

3.6 defect structures and strain hardening

Figure 3.8 shows the evolution of defect densities during the continuous loading
of the virtual NPG structure. Figures at left and at right correspond to the dislo-
cation density and planar fault density, respectively. It is clear that Shockley par-
tial dislocations were already present in the relaxed structure before any onset of
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straining. Subsequent loading is then accompanied by a massive accumulation of
dislocations. While the density of full dislocations increased continuously, most
contribution to the dislocation density at all deformation stages is from Shockley
partials. As a result, continuous accumulation of planar fault defects, i.e. stack-
ing faults and twin boundaries, was observed, as is shown in Figure 3.9. It is
important to acknowledge that the graphs in Figure 3.8 show that the accumu-
lation of dislocation activities began right after the onset of straining. This is a
demonstration of the immediate yielding discussed above.
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Figure 3.8: Evolution of fault density of the NPG sample depicted in Figure 3.1 during
the deformation event shown in Figure 3.4a. (a) Accumulation of dislocation
density during compression at 300 K. Main contribution comes from Shockley
partials. (b) As a result of dislocation activity, twin boundaries and stacking
faults populate during compression. Dislocations are already present before
the onset of straining, and get their activity immediately upon loading.

Figure 3.9 depicts a typical defect structure of the deformed NPG sample (here
at ε = 0.8). In agreement with previous simulation studies [27, 28], many planar
defects can be detected. Moreover, grain boundaries and Lomer-Cotrell locks
were also found, as is illustrated in the upper and lower magnifications, respec-
tively. While the former conceivably form during the cold coalescence of liga-
ments (see above), the latter is a direct result of the interaction of dislocations.

Our simulation data thus support an atomistic origin of the hardening be-
havior of (virtual and experimental) NPG. It is arguable that the deformation-
induced changes in microstructure, such as the increase of solid fraction, should
be expected to contribute to the hardening of NPG. In fact, suppressing the vol-
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5nm

fcc twin boundary stacking fault other

Figure 3.9: Typical defect structures found in the virtual NPG under compression. Left
plot shows a slice cutting through sample at the true compressive strain of
0.80. Loading direction is perpendicular to the plot plane. Magnifications of
circled regions are shown on the right, depicting examples of grain bound-
aries (top) and Lomer–Cottrell locks (bottom) found in the deformed struc-
ture. Plasticity happens not only at the ligament junctions, but also in the
middle of ligaments.

ume change of NPG during compression by infiltrating the pore space with a
polymer will eliminate the observed strain hardening [13]. Yet, FEM studies of
diamond-lattice NPG structures [20, 34] emphasized that, on top of mere densifi-
cation effects, Taylor work hardening must be taken into account in the material
law for each ligament in order to capture the experimentally observed hardening
of NPG. Moreover, electron back scattering diffraction data of the microstructural
evolution during continuous compression of NPG [15] revealed a gradual evolu-
tion of mosaic spread at a scale much larger than the characteristic ligament size,
thus indicating dislocation storage and dislocation interaction within ligaments.
In that spirit, the massive accumulation of lattice defects and their interaction in
our simulation clearly fall well in line to support and confirm the experimental
observation.

For small-scale plasticity, a dislocation-starvation scenario is usually consid-
ered as the dominant hardening mechanism [21, 22]. In essence, the basic ar-
gumentation for this mechanism is that dislocations in small-scale crystals can
easily escape the bulk and annihilate at the surface, leaving behind dislocation-
starved materials. Further plastic deformation therefore requires nucleation of
new dislocations at high stress. The dislocation densities thus decrease and re-
main low during the deformation; the strength of the materials meanwhile be-
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comes very high (see, for example, [21, 82]) as compared with the strength of
bulk counterparts

The present study, however, shows that the NPG samples are very weak in
response to external load. More importantly, the stress-strain curves exhibit pro-
nounced strain hardening carried out by dislocation activities with continuous
increase of dislocation densities. The application of dislocation-starvation scenar-
ios to NPG, thus, is not promoted by our simulation data.

The strain rate of MD simulation is much higher compared to that of experi-
ments. When there are competing deformation mechanisms with different strain-
rate sensitivity, as in nanocrystalline metals [83–85], the dominant deformation
mechanism depends on the strain rate. Specifically, classical MD simulations may
overestimate the contributions of dislocation slip [86]. In that respect, we empha-
size that our simulation results as well as previous simulation and experimental
studies [15, 27, 28] consistently highlight dislocation slip as the only governing
process in deformation of NPG. We therefore expect this mechanism to domi-
nate independently of the strain rate, supporting a discussion of simulation and
experiment within the same conceptual framework.

3.7 evolution of effective young’s modulus

We now turn into the final quantity that was monitored during the deforma-
tion: Effective Young’s modulus Yeff. The effective modulus of the NPG sample
is calculated as the tangent modulus [23] (see Figure 1.1 for an illustration of the
calculation) from the unloading segments interspersed in the stress-strain curves.
The results at different strain stages are shown in Figure 3.10a. Since the solid
fraction ϕ of NPG increases under compression, we also plotted (Figure 3.10b)
the evolution of Yeff (normalized to Ybulk = 78 GPa) versus the square of solid
fraction, ϕ2, and compared the simulation data with the reference from the rel-
evant Gibson-Ashby scaling law* Yeff/Ybulk = ϕ2 [33], along with experimental
data from compression test of a dealloyed NPG with ligament size of 40 nm and
solid fraction of 0.298 (see Ref. [71] for details)..

The data sets of Figure 3.10 reveal that the (virtual and experimental) NPG
samples started out exceedingly compliant at both temperatures. For example,
the initial data point of the virtual NPG sample gives an effective modulus
Yeff = 542 MPa at room temperature. The corresponding solid fraction is ϕ =

0.321. Gibson-Ashby scaling equation predicts an effective modulus of 7.6 GPa,
which is fourteen times stiffer than the simulation value. Subsequent deforma-

*Note that the Gibson-Ashby scaling law, Yeff/Ybulk = ϕ2, was designed for isotropic foam
structures with low density. Moreover, ϕ in the Gibson-Ashby equation denotes the intial density.
Nonetheless, it is useful and of interest to use it as referential data.
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Figure 3.10: Change of effective Young’s modulus, Yeff, of NPG during compression. Fig-
ure (a) shows the absolute values of Yeff versus true strain, ε. The scaled val-
ues of Yeff (to the Young’s modulus Ybulk of massive polycrystalline gold)
are shown versus the square of solid fraction, ϕ, in Figure (b). Gibson–Ashby
scaling law is also superimposed in (b), along with experimental data from
compression test of a dealloyed NPG with ligament size of 40 nm and solid
fraction of 0.298 (see Ref. [71] for details). Note the agreement between sim-
ulation and experiment. As is clearly seen in this plot, the evolution of Yeff is
characterized by two features: exceptionally high initial compliance and en-
suing stiffening under compression. At any time during compression, NPG
is much more compliant than the prediction of Gibson–Ashby law. Experi-
mental data courtesy of Dr. N. Mameka at Helmholtz-Zentrum Geesthacht.

tion brought in a substantial stiffening of NPG, leading to the last value of 9.03
GPa at ϕ = 0.674, which is about 20–fold stiffer than the value of the initial
data point. Despite this deformation–induced stiffening, the virtual NPG sam-
ple exhibited a consistently softer behavior as compared to the prediction of the
Gibson-Ashby scaling law, as is clearly seen in Figure 3.10b. Remarkably, our
simulation data are in excellent agreement when compared with the experimen-
tal data shown in Figure 3.10b. They are also in agreement with data from other
mechanical tests, such as those from Refs. [19, 20, 31, 37]. The unusually high
compliant behavior is thus of intrinsic nature of NPG.

Similar to the quasi-immediate onset of yielding, it is desirable to embark on
a discussion of atomistic processes that might give rise to the anomalous compli-
ance of NPG. On the other hand, for a material with complex microstructure, the
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elasticity of NPG is anticipated to depend very much on its macroscopic, bulk-
level factors. Thus, we will now depart from the atomistic regime to investigate
the influence on the elastic behavior of NPG of the network topology.

3.8 summary

In this Chapter, we have presented a study of the mechanical behavior of a vir-
tual NPG sample created by mimicking spinodal decomposition. Requiring no
external load, the material already yields to the action of the capillary forces
prior to the onset of straining. The simulated compression stress strain curve ex-
hibits quasi-immediate onset of yielding to the smallest applied load, along with
exceedingly high initial compliance. Based on our simulation data, we attribute
the origin of early yielding to the atomistic processes governed by the surface-
induced stress. The origin of the unusually high compliance will be addressed
in next Chapters, from both macroscopic standpoint and atomistic framework.
As the deformation proceeds, the material becomes stronger and substantially
stiffer; though the elastic modulus never approaches the prediction of the rele-
vant Gibson-Ashby scaling equation. Plastic deformation is accompanied by stor-
age of lattice defects and their interaction. Thus, in addition to a mere densifica-
tion effect, the material strengthens via drastic Taylor hardening. The dislocation-
starvation strengthening mechanisms are therefore not supported by our simula-
tion data.
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4
D E F O R M AT I O N O F D I A M O N D - L AT T I C E S T R U C T U R E S

In the last Chapter, we have studied many aspects of the mechanical responses of
a virtual nanoporous gold structure with topology that resembles the topology
of experimental structures. So far, the discussion has been focused on underlying
atomistic mechanisms that are believed to have strong influences on the behavior
of the material, specifically on the early yielding and subsequent strain harden-
ing. In the next two Chapters, we make a detour to assess the role of relevant
topological parameters that might impact the behavior of nanoporous gold. Here,
we look into the impact of topological disorder.

4.1 diamond-lattice structure as a topological representation

of npg

As the Gibson-Ashby scaling laws fail to predict the mechanical behavior of NPG,
one might ask: how can we modify or correct these laws so that they reproduce
the behavior of NPG? One approach is to tune these semi-empirical laws so
that their predictions match experimental data [27, 28, 87]. Another way is to
develop new scaling laws based on other models whose topology is suitable
to represent the network of NPG [88–91]. These models are then vetted to reveal
important parameters which is possibly missing in the Gibson-Ashby laws. Here,
we concentrate on a particular model that emerges from the second approach [20,
34]: The diamond-lattice NPG structures.

Based on their examination of the ligament network of experimental NPG
samples, Huber et al. [20] observed that the ligament-ligament connections in an
NPG network shows similarity with the diamond-lattice structure. They there-
fore suggested to use regular tetrahedra as building blocks of the ligament net-
work (Figure 4.1a). Consequently, the unit cell which defines structural parame-
ters of the system takes the form of a diamond cubic crystal structure with cylin-
drical ligaments meeting at spherical nodes (Figure 4.1b). The whole network is
thus represented by a diamond-lattice structure (Figure 4.1c). The disordered na-
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ture of the NPG network is then captured by randomly displacing the positions
of the ligament nodes (Figure 4.1d).

(a) (b)

(c) (d)

Figure 4.1: Diamond-lattice structure as topological representation of NPG. (a) A micro-
graph of experimental NPG shows typical connections at ligament nodes.
These connections can be represented by a tetrahedron with spherical nodes
at the center and at the vertexes, and ligaments connecting the center with
the vertexes. (b) With tetrahedra as building blocks, the unit cell of the rep-
resentative volume takes the form of a diamond lattice. In this sketch, a, r,
R, and l denote the length of a unit cell, ligament radius, node radius, and
node-to-node distance, respectively. (c) An ordered diamond-lattice structure.
(d) Displacing the node positions of the ordered structure results in a more
realistic disordered structure. Figures (a), (c), and (d) are reprinted from N.
Huber et al. Acta Materialia 67 (2014): 252-265, with permission from Elsevier.

The mechanical properties of the diamond-lattice NPG structures (ordered and
disordered) were then studied via Finite Element Modeling (FEM) and compared
with available experimental and simulation data [20, 34]. As a result, new scal-
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4.2 atomistic diamond-lattice structures

ing laws and their generic revision were proposed. Remarkably, these studies
revealed that many aspects of the mechanical behavior of NPG can be repro-
duced by simply tuning the diamond-lattice model. For example, the nearly zero
lateral expansion of NPG to very large strains can be reproduced in the dia-
mond model by varying the disorder via monitoring the random displacement
of the ligament nodes. The disorder is also responsible for the reduction of the
corresponding elastic modulus and yield strength of the diamond-lattice NPG.
Moreover, the disorder of the network alone is not enough to account for the
pronounced strain hardening in the stress strain curve of NPG; additional work
hardening must be included in the material law of each ligament, on top of a
mere densification effect.

The results of the FEM analysis in Refs. [20, 34] did not come without draw-
backs. While the simulated stress-strain curves show best agreement with exper-
iment for strains between 5% and 15%, the extended elastic-plastic transition of
the experiment is not well reproduced. Moreover, though the diamond-lattice
models exhibit very compliant behavior, the distinctive initial stiffening usually
observed in the experiment did not show up in the simulation.

While the findings in Refs. [20, 34] are promising, especially when considering
the possibility to reduce the complex network of NPG to a much simpler sys-
tem, their drawbacks obviously motivate further study of the viability of these
diamond-lattice models to represent the ligament network of NPG. Here, we
address this concern via atomistic simulations.

4.2 atomistic diamond-lattice structures

For an ordered diamond-lattice NPG structure, geometrical parameters which
define its topology are length of a unit cell, a, ligament radius, r, and node radius,
R (Figure 4.1b). The node-to-node distance, l, of an ordered structure is thus
l = a

√
3/4. To create an ordered diamond-lattice NPG sample, we generated a

topology with 4 diamond unit cells. Each unit cell has 〈100〉 edges with length
of 38 lattice spacings (i.e. 14.69 nm). Thus, the total length of each direction of
the whole topology and the node-to-node distance are 58.75 nm and 6.36 nm,
respectively. The ligament radius was set to 2 nm. The node radius was set to
R = r

√
3/2 to avoid acute connections [20, 34].

An FCC lattice was created and mapped onto the ordered diamond-lattice
topology, resulting in an ordered diamond-lattice NPG sample with solid frac-
tion of ϕ = 0.302. Due to the crystallography of the ordered diamond-lattice
NPG sample, its ligaments are in 〈111〉 directions. A snapshot of this sample is
depicted in Figure 4.2a.
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(a) (b) (c)

Figure 4.2: Atomistic ordered and disordered diamond-lattice structures studied in this
Chapter. Figure (a) shows the ordered diamond-lattice structure created from
4 unit cell. The as-created solid fraction of this structure is 0.302. Figures
(b) and (c) depict disordered diamond-lattice structures with as-created solid
fraction of 0.358 and 0.301, respectively. A random factor of 0.23 was used to
create both samples shown in (b) and (c).

From the topology of an ordered diamond-lattice structure with the length of
a unit cell a, the topology of an disordered diamond-lattice structure is obtained
via randomly displacing the node positions. For each node, we denote di (i =

1, 2, 3) the displacement in the coordinate direction i, and define the disorder
parameter A by the following condition:

−A ≤ di

a
≤ +A. (4.1)

The suggested value of the disorder parameter is A = 0.23 [34]. Using this
value of A and a flat distribution, we generated a disordered topology from the
ordered topology above (i.e. with 4 unit cells and with a = 14.69 nm, r = 2 nm,
and R = r

√
3/2). Matching this disordered topology with an FCC lattice resulted

in a disordered diamond-lattice NPG sample. Since the randomization increases
the average ligament length [34], the solid fraction of this disordered diamond-
lattice NPG sample effectively increased to 0.358. A snapshot of this structure is
shown in Figure 4.2b.

Since it is of interest to compare the behavior of the ordered sample with
the behavior of a disordered sample of the same solid fraction, we created a
disordered diamond-lattice NPG structure (Figure 4.2c) with 4 unit cells and
with a = 16.22 nm, A = 0.23, r = 2 nm, and R = r

√
3/2. The solid fraction of

this disordered structure is 0.301.
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4.3 relaxation behavior

There were slight changes in the solid fraction of the diamond-lattice NPG sam-
ples during the thermal relaxation under no external load at 300 K (Table 5.1).
Though no trace of plasticity was found in the relaxed structure of the perfect
diamond model, small amounts of dislocations were found in the disordered di-
amond structures. Their corresponding dislocation densities are ∼ 3× 1014m−2,
which is about 1.5 times less than the density of preexisting dislocations (4.8×
1014m−2) found in the virtual NPG sample studied in Chapter 3.

Sample Ls [nm] A ϕini ϕrel Yeff [GPa] σy [MPa]

A0
0.303 58.75 0 0.302 0.303 3.26 142

A0.23
0.360 58.75 0.23 0.358 0.360 3.21 96

A0.23
0.303 64.87 0.23 0.301 0.303 2.26 74

Table 4.1: Summary of the mechanical properties of the diamond-lattice structures. Ls, A,
ϕini, ϕrel, Yeff, and σy denote the sample length, nodal shift parameter, initial
(as-created) solid fraction, solid fraction after the thermal relaxation at 300 K,
initial elastic modulus, and 1% offset strength, respectively.

For brevity, the diamond-lattice structures will be referred to as A0
0.303, A0.23

0.303,
and A0.23

0.360 with the superscripts and subscripts denoting the random factor and
the relaxed solid fraction of these samples, respectively.

4.4 stress strain behavior

The stress-strain curves of the diamond-lattice structures in load/unload scenar-
ios are shown in Figure 4.3. For sample A0

0.303, the curve starts out with a well-
defined regime of elasticity before it increases continuously to the maximum
stress σ = 185 MPa at ε ≈ 0.09. Then, the deformation curve manifests softening
behavior before entering its flow stress regime. Apart from increases of the stress
during reloading, the curve exhibits a slightly decreasing trend in this regime.
For example, the flow stress is 146 MPa just before the first unload segment. This
value decreases to σ = 130 MPa before the last unload segment.

Elasticity also shows up in the stress strain curves of the disordered samples
A0.23

0.303 and A0.23
0.360, though the nodal shift smears out the maximum stress ob-

served in the stress-strain curve of the ordered sample A0
0.303. The elastic-plastic

transition region in the deformation curve of the disordered samples is greatly
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Figure 4.3: Simulated stress-true strain (σ-ε) curves of diamond-lattice structures. Un-
loading segments were interspersed to monitor the evolution of effective elas-
tic modulus. All curves exhibit elastic regimes before yielding. Note that the
elastic regimes of the ordered sample A0

0.303 and the disordered sample A0.23
0.360

are visually indistinguishable. These curves were simulated with a strain rate
of 108/s at 300 K.

broadened. Afterwards, the flow stress of the disordered samples almost follows
a plateau at high stress, which is about 130 MPa and 100 MPa for A0.23

0.360 and
A0.23

0.303, respectively.
It is arguable that the maximum stress in the stress-strain curve of the A0

0.303
sample is an overshoot in stress due to the very high strain rate of the simulation
(108/s). However, experimental data on the behavior of macroscopic diamond-
lattice foams made of Ti6Al4V ELI [92] reveal the same trend (c.f. Figure 4 in
Ref. [92]). The maximum stress is thus not a mere effect of the high strain rate,
but rather reflects an intrinsic feature of the deformation curve of highly ordered
diamond-lattice foams. Later on in Section 4.5, we will see that this maximum
stress actually reflects the high stress due to the deformation mode of the liga-
ments in the diamond-lattice structure.

4.5 yield strength and elastic modulus

Following suggestion of Ref. [93], the yield strength σy of the diamond-lattice
samples is defined as 1% offset strength. The stress strain data thus give σy =

142 MPa for sample A0
0.303. Using this value, we can calculate the corresponding
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4.5 yield strength and elastic modulus

yield strength of the solid phase σs with the help of the scaling law for the
strength of the ordered diamond-lattice structures (i.e. A = 0) [20]:

σy

σs = cσy

(
r
l

)3(
1−
√

6cR
r
l

)−1

with
r
l
<

1√
6cR

. (4.2)

In Equation 4.2, cσy ≈ 1.4, rcR/R =
√

2/3, and l is the node-to-node distance.
In our case, cR = 1, σy = 142 MPa, r = 2 nm and l = 6.36 nm for sample
A0

0.303. Equation 4.2 thus puts the yield strength of the solid phase at σs = 749
MPa, which is much greater than the values calculated from the experimental
data using the same equation [34]. The reason is possibly because the system is
highly ordered and all ligaments are aligned along 〈111〉 directions.

For the disordered samples A0.23
0.360 and A0.23

0.303, the values of yield strength are
σy = 96 MPa and σy = 74 MPa, respectively. These numbers reveal that although
sample A0.23

0.360 is denser than sample A0
0.303, it is much weaker. Interestingly, the

ratio between the strength of the disordered samples (96/74 ≈ 1.3) is identical
to the ratio of solid fraction raised to the power of 1.5 as in the classical Gibson-
Ashby law ((0.360/0.303)3/2 ≈ 1.3). Thus, when it comes to the yield behavior
of diamond-lattice NPG, the topological disorder is more relevant than the solid
fraction. It is only when the samples posses a similar degree of disorder/order
that the solid fraction becomes pertinent.

The initial elastic modulus of the sample A0
0.303 is Yeff = 3.26 GPa. As is with

the yield strength, we compare this value to the prediction of the scaling equation
for the perfect diamond-lattice structure [20]:

Yeff

Ys = cE

(
r
l

)4(
1 +

r
l

)−4(
1 +

r
l

)2

with cE = 5.8, (4.3)

where Ys is the elastic modulus of the ligaments. Since all ligaments in the or-
dered sample A0

0.303 are directed along the 〈111〉 directions, the elastic modulus
in that direction must be used as Ys in Equation 4.3 - thus Ys = 124 GPa for the
current EAM potential. With r = 2 nm and l = 6.36 nm, Equation 4.3 predicts an
effective modulus of 4.07 GPa, which is 1.25 times stiffer than the value obtained
above.

As compared with the ordered structure, introducing the nodal shift without
any correction of solid fraction only slightly decreases the effective modulus:
Yeff = 3.21 GPa for sample A0.23

0.360. Indeed, the elastic regimes of samples A0
0.303

and A0.23
0.360 are visually indistinguishable, as is shown in Figure 4.3. When the

correction of solid fraction is taken into account in sample A0.23
0.303, the initial elastic

modulus is greatly reduced to a much softer value of Yeff = 2.26 GPa.
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The comparison between the initial elastic moduli of samples A0
0.303 and A0.23

0.303
testifies that the nodal shift makes diamond-lattice structures significantly softer.
Yet, since sample A0.23

0.360 is as stiff as sample A0
0.303 , it is unclear whether or

not the nodal shift can take over the solid fraction to dictate the initial elastic
behavior. Similarly to the yield strength, the ratio between initial elastic moduli
of samples with identical nodal shift follows the classical Gibson-Ashby scaling
relation (3.21/2.26 ≈ 1.42 for the ratio of Yeff as compared to (0.360/0.303)2 ≈
1.41 for the ratio of squared solid fraction).

Figure 4.4 depicts the elastic moduli of the diamond-lattice structures at dif-
ferent strain states. In contrast to significant stiffening under compression of
dealloyed NPG, the effective modulus of these structures decreases drastically as
the deformation proceeds. For example, the effective modulus of sample A0.23

0.303
calculated from the last unload segments is only 1.5 GPa, which is a reduction
by a factor of 1.5 from its initial modulus of 2.26 GPa.
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Figure 4.4: Evolution of effective elastic modulus, Yeff, of diamond-lattice structures with
stress-strain curves shown in Figure 4.4. ε denotes true strain. All structures
show very high initial stiffness. More remarkably, these structures show dras-
tic decrease in the elastic modulus, irrespective of whether or not the nodal
shift is introduced. Thus, the stiffening behavior usually observed in experi-
mental NPG samples, as well as in the spinodal decomposition NPG sample
reported in Chapter 3, is not reproduced in the diamond-lattice structures.
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4.6 ligament deformation mode

The results shown above reveal that, irrespective of the influence of the nodal
shift, the stress strain curve of the diamond-lattice model always starts with a
well-defined elastic regime. Moreover, yield behavior is always preceded by a
high modulus. Nodal shift broadens the elastic-plastic transition regime, lessens
the yield strength, and enhances the strain hardening. Yet, the low level of flow
stress and, especially, the quasi-immediate yielding of the experimental NPG, as
well as the virtual NPG reported in Chapter 3, is never reached.

In terms of deformation mechanisms, the observed initial elasticity and yield
behavior of the diamond model can be interpreted as an indication of transition
between different deformation modes in many constituent ligaments, namely
from stretching to bending.

The diamond-lattice structure belongs to a larger group of periodic lattice-
structured materials. Thus, similarly to constituent beams in lattice-structured
materials, ligaments in the diamond-lattice structure can be deformed via either
bending or stretching * [95, 96]. While the former changes the length of a ligament
along its axial axis, the latter rotates it about an axis perpendicular to the axial
axis. Since the stretching mode requires very high stress as compared to the
bending-mode, a bending-dominated structure is soft and weak; a stretching-
dominated structure is otherwise strong and stiff [96]. The stress strain curve
of a stretching-dominated structure typically exhibits post-yield softening due
to plastic buckling or brittle collapse [96] (see, e.g. a schematic sketch of typical
stress strain curves of stretching-dominated structures shown in Figure 12 in
Ref. [96])

Indeed, the discussion above reveals the high stiffness and strength as well
as the post-yield softening of the ordered sample A0

0.303, thus promoting it as a
stretching-dominated structure. In fact, the symmetry of the structure requires all
of its ligaments to be deformed by a similar deformation mode. When the nodal
shift is introduced, the structure loses its symmetry and many ligaments become
slender due to their elongation [34]. Hence, the deformation modes of some
ligaments might be switched to bending, leading to the reduction in strength
and stiffness of the whole structure. Evidently, the argument is supported by
our current data, especially when comparing between samples A0

0.303 and A0.23
0.303

where there is no density effect due to nodal shift. Moreover, because the strength
and stiffness of disordered samples remain high, most of the ligaments are still
deformed by stretching.

*Recently, Jiao et al. [94] have shown that a ligament in NPG structure can also be locally
twisted, though the effective deformation of the ligament is still either bending or stretching mode.
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Another observation supports our speculation/assumption is the fact that the
elastic modulus of the diamond-lattice structures decreases drastically during
the deformation, as is documented in Figure 4.4. This loss of modulus can be un-
derstood as a natural consequence of plastic buckling at high stress of ligaments
that are deformed by stretching.

4.7 microstructural changes

One of the key findings of Refs. [20, 34] is that the small lateral expansion of ex-
perimental NPG can be captured in the diamond-lattice model by increasing the
nodal shift parameter A. Moreover, the optimal value of A is A ≈ 0.23 [34] with
which the elastic Poisson’s ratio νE of the disordered structures approaches the
experimental value of dealloyed NPG (νE ≈ 0.2 calculated from unload segments
of stress strain curves [19]). Our simulation data also support the influence of the
nodal shift on the lateral expansion and elastic Poisson’s ratio of the diamond-
lattice structures. Though, the experimental value of νe ≈ 0.2 of NPG is never
reached.

Figure 4.5 depicts the change in transverse strains of the diamond-lattice struc-
tures. It is evident that the lateral expansion of the disordered samples are less
than that of the ordered sample. The transverse strain of sample A0

0.303 at ε = 0.30
is 0.11. For samples A0.23

0.303 and A0.23
0.360, the corresponding values are 0.07 and 0.08,

respectively. As a comparison, at the same axial strain ε = 0.30, the transverse
strain of the spinodal sample studied in the last Chapter is almost zero.

Linear fits in the regime of small strains of the stress-strain curves show that
the νE = 0.42 for sample A0

0.303. The nodal shift reduces that value to νE = 0.35
in the disordered samples. Thus, the elastic Poisson’s ratio of the disordered
samples in atomistic simulation is more than 1.7 times greater than the prediction
of the FEM analysis for diamond structures of identical nodal shift [34].

The fact that all diamond models show more pronounced lateral expansion
than the virtual NPG sample studied in the last chapter means that the deformation-
induced change in the solid fraction will be less significant or even negligible. In-
deed, the ratio of solid fraction ϕ/ϕrelaxed at ε = 0.30 is 1.08 for sample A0

0.303. For
samples A0.23

0.303 and A0.23
0.360, the respective ratios are 1.15 and 1.17, respectively. At

that same strain, that ratio of the virtual NPG sample studied in the last Chapter
is 1.34.

The change of specific surface area (scaled to the corresponding value before
the onset of straining), α/α0, during compression of the diamond-like samples is
shown in Figure 4.6. As is demonstrated, after very small decreases for strains
less than about 10%, the ratio α/α0 of sample A0

0.303 slightly increases. Though,
even at the maximum increase by the end of the deformation, that ratio is only
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Figure 4.5: True transverse strain, εtrans, vs. true axial strain, ε, of the diamond-lattice
structures during the deformation event shown in Figure 4.3. Short line seg-
ments in this plot are from the unload segments during the simulated com-
pression tests. This plot shows that the nodal shift has strong influence on
the evolution of εtrans, though the small lateral expansion observed in experi-
mental NPG is never reproduced.

about 1.01. For the disordered samples, the specific surface area continuously
decreases during the compression. Though the change is minor (at most less than
about 4%), we can say that the nodal shift has strong impact on the evolution of
α.

4.8 dislocation density

The evolution of dislocation density of the diamond-lattice structures is shown in
Figure 4.7. It can be seen that while the initial dislocation density of sample A0

0.303
is zero, the corresponding values for the disordered samples are non-zero, thus
confirming the observation of dislocations in these samples during the initial
thermal relation.

No dislocations were detected in the ordered sample A0
0.303 until ε ≈ 5%. From

there to ε ≈ 0.09, their density increases slightly. Afterwards, more and more
dislocations are nucleated and multiplied, thus leading to the continuous accu-
mulation of dislocation density. We note that ε ≈ 0.09 is about the strain at which
the stress strain curve of sample A0

0.303 attains its maximum and starts entering its
softening regime. The observation therefore supports our previous assumption
on ligament deformation modes.
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Figure 4.6: Change of specific surface area, α, of the diamond-lattice NPG samples dur-
ing the deformation event shown in Figure 4.3. Here, α is scaled to the initial
value, α0, prior to the onset of straining. Short line segments in this plot are
from the unload segments during the simulated compression tests. For the
ordered sample, α decreases in the elastic regime and increases in the plastic
regime. Introducing the nodal shift inverts the behavior of α completely: Both
disordered samples show decreasing α during the deformation process.

For the disordered samples A0.23
0.303 and A0.23

0.360, their dislocation density stays
almost constant for strains up to ε ≈ 0.01. Then, their dislocation density keeps
increasing until the end of deformation. Note that the evolution of dislocation
density in the disordered structures confirms the observation from FEM [20],
as well as from our simulation data (Section 4.3), that nodal shift broadens the
elastic-plastic transition though the initial elasticity never ceases to exist.

Examples of the defect structures of the ordered sample A0
0.303 and the disor-

dered sample A0.23
0.303 at ϕ = 0.2 are shown in Figure 4.8. It can be seen, especially

in the magnifications, that plastic events can happen at practically any sites along
the length of a ligament. Our observation, thus, does not support the results of
Ref. [20] where plasticity is reported to happen solely at the ligament-to-node
transition.

The presentation here confirms that dislocations are the carrier of the plas-
ticity in diamond-lattice structures. Moreover, since the dislocation density of
disordered samples is much higher than that of the ordered sample, it also en-
dorses dislocations and their interactions as the underlying mechanisms for the
improvement of strain hardening in the stress strain curves of the disordered
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Figure 4.7: Evolution of dislocation densities of the ordered diamond-lattice sample and
its disordered counterparts during the deformation event shown in Figure
4.3. No dislocation densities were detected in the ordered for true strains ε .
0.05. Pre-existing dislocation densities were found in the disordered samples
prior to the onset of straining and remains almost constant for ε . 0.01. The
ordinate is broken from 2× 1013 to 1014. Ordinate intervals below and above
this broken range are linear-scale and log-scale, respectively.

samples. The very high Taylor work hardening employed in the FEM analysis in
Refs. [20, 34] is thus also supported by our simulation results.

4.9 summary

The mechanical behavior of an ordered diamond-lattice sample and its disor-
dered counterparts was investigated. Under compression the stress-strain curves
of these samples exhibit a well-defined elasticity with high modulus preceding
the yield behavior at high strength. The present simulation data suggest a tran-
sition from stretching to bending when a nodal shift is introduced; though the
structures are still stretch-dominated. The nodal shift has strong influence on the
elastic modulus, yield strength, elastic-plastic transition, and lateral expansion of
the diamond-lattice structures. Yet, many aspects of the mechanical behavior of
dealloyed NPG is not captured, even with the optimal nodal shift as is suggested
in the previous development of the model.
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Figure 4.8: Examples of lattice defects in the ordered sample A0
0.303 and the disordered

sample A0.23
0.303 at the compressive true strain of 0.2. Loading direction is in

the x direction. The magnifications exemplifies the observation that plasticity
happens not only locally at the transition from the ligaments to the nodes,
but also at the middle of the ligaments. To help visualize the results, only
halves of the simulation boxes (divided by the rectangles made of opposite
edges and face diagonals) are shown.
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5
I N F L U E N C E O F L I G A M E N T C O N N E C T I V I T Y O N E L A S T I C
M O D U L U S

In the previous Chapter, we studied the influence of the first (macroscopic) topo-
logical parameter that might influence the behavior of NPG, namely the topolog-
ical disorder caused by nodal shift. In that context, our attention was put on the
position of the nodes rather than on how the nodes are connected. In the greater
part of this Chapter, we will look into the situation where ligament connectivity
or the lack thereof might influence the elastic behavior of NPG. Afterwards, we
will come back to the discussion of the relevant atomistic processes that might
give rise to the anomalous compliance of NPG.

5.1 a missing brick in the gibson-ashby scaling law : ligament

connectivity

The discussion concerning how the network connectivity might influence the
elastic response of NPG, first raised by Mameka et al. [35], has recently gained
its momentum [35–39]. It was based on a simple observation: If we look at the
Gibson-Ashby equation for the elastic modulus of a metal foam [33],

Yeff = CEYbulkϕ2, (5.1)

we see that, in order to predict Yeff from Ybulk, one just need to know the amount
of materials contained in the total foam volume (CE = 1 for metal foam). Conse-
quently, constituent elements in the foam network are all assumed to contribute
to the effective behavior of foam as a whole. That assumption, however, seems
not to hold when we look at the ligament network of NPG: Many “dangling”
ligaments that are connected to the network via just one end while the other end
is hanging around in the pore space - indeed, some examples of those ligaments
in experimental NPG can be seen in Figure 1.1. Those ligaments, though obvi-
ously contribute to the solid fraction of the structure, are free to move and thus
might not contribute to the macroscopic mechanical behavior of the network.
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Only those ligaments which are fully connected with both ends will form load-
bearing rings which are responsible for reaction to the external load. A sketch of
this situation is shown in Figure 5.1.

Figure 5.1: Influence of ligament connectivity on the effective solid fraction of NPG. Fig-
ure at left illustrates an NPG sample with solid fraction ϕ. Many ligaments
in this sample are broken, resulting in dangling ligaments (grey) which have
one end hanging about in the pore space. These dangling ligaments are not
responsive to the external load applied on the sample. Other unbroken liga-
ments (yellow) form load-bearing rings and thus collectively respond to the
external load. The behavior of the system at left is therefore equivalent to the
behavior of a counterpart system (with effective solid fraction ϕeff) in which
all dangling ligaments are removed (right). Reprinted from Liu et al. Acta
Materialia 118 (2016): 77-87, with permission from Elsevier.

Consequently, the material becomes softer under external load due to the
existence of disconnected ligaments. Any interpretation or modification of the
Gibson-Ashby equation, thus, should be based on an analysis of the connectivity
of the ligament network.

Following that line of argument, there have been several attempts to describe
the connectivity of ligament network and its relation to the elastic modulus of
NPG [37–39] - though their conclusions are not always mutually consistent.

Based on their experimental data for coarse NPG samples (ligament diameter
> 30 nm), Liu et al. [37] suggested a modification to the Gibson-Ashby scaling
equation via replacing the solid fraction ϕ of NPG by an effective solid fraction
ϕeff that reflects the disconnectivity in the ligament network:

Yeff = Ybulkϕ2
eff. (5.2)
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Yet, the corresponding discussion in Ref. [37] did not lead to any quantifiable
measure for the connectivity of the ligament network. It, however, emphasizes
the dependence of the elastic modulus of NPG on the synthesis protocol as well
as heat treatment prior to straining because these two procedures lead to sub-
stantial changes in the network connectivity.

Mangipudi et al. [38] took another route to tackle the problem. They retained
the solid fraction of NPG as an important parameter. Yet, they argued that the
prefactor CE should not necessarily be any constants, but rather a varying param-
eter that depends on a measure of connectivity of the ligament network. Then,
they employed the concept of “scaled genus” [68, 69] to quantify the connectivity
of NPG structures. Remarkably, their analysis revealed a striking linear relation
between the prefactor CE and the scaled genus. This implies that the huge dis-
crepancy in reported elastic modulus of NPG, be them from nanoindentation,
from macroscopic mechanical testing, or from molecular dynamics simulation,
can be reconciled by simply redefining the prefactor CE as a function of network
connectivity. The classical Gibson–Ashby scaling equations thus remain their va-
lidity when taking into account the ligament connectivity.

The later work by Hu et al. [39], however, offered a different perspective. They
suggested that although the ligament connectivity is obviously an important fac-
tor that is needed in describing the elasticity of NPG, it seems not to permeate
into the discussion via simplistic correction of the Gibson-Ashby equation. In
fact, using FEM analysis, they went further to compare the elastic modulus of
the Gibson-Ashby model with that of the reconstructed model of an experimen-
tal NPG structure. While both samples have similar solid fraction and scaled con-
nectivity, the reconstructed model is much more compliant. The Gibson-Ashby
cubic model, thus they argued, is not a viable choice to represent the ligament
network of NPG.

Despite some difference in their results, the studies in Refs. [37–39] all pro-
mote the importance of the ligament connectivity in the discussion of the elastic
modulus of NPG. Motivated by the findings in these works, we will join this
discussion with data from molecular dynamics simulations.

5.2 microstructures and stress-strain behavior

To obtain NPG samples with different connectivity, we used two different meth-
ods to mimic spinodal decomposition, namely via Monte Carlo simulation and
via superposition of 48 composition waves (see Chapter 2 for details). For each
method, three samples at different densities were generated. To rule out the influ-
ence of surface effects, all samples were prepared so that their ligament diameter
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is almost identical (∼ 3.8 nm in accordance with the conversion rule 3.1). Exam-
ples of the microstructures of these samples are shown in Figure 5.2.

(a) (b)

Figure 5.2: Examples of the initial microstructure of samples studied in this Chapter.
These samples were created via mimicking spinodal decomposition by (a)
Monte Carlo simulation and by (b) superposition of 48 composition waves.
For simulation details, see Chapter 2. Both samples have the same as-created
solid fraction ϕini = 0.302. Note the disordered network of both samples. For
brevity, surface atoms and bulk atoms are coded in different colors.

As is discussed in Chapter 3, plasticity due to the action of capillary forces
during the initial thermal relaxation at 300 K leads to dislocation nucleation
during the thermal relaxation and slightly increased the solid fraction of these
structures. Take for example the wave NPG sample with the as-created solid
fraction of 0.340, its solid fraction increased to 0.349 after the initial thermal
relaxation. Thus, for brevity, the NPG samples in this chapter will be denoted
either by MC–ϕrelaxed for Monte Carlo samples or W–ϕrelaxed for wave samples,
with ϕrelaxed denoting the solid fraction after the thermal relaxation.

The stress-true strain curves of the MC and wave samples are shown in Figure
5.3. It is remarkable that, if we compare the behavior of MC and wave samples
with similar initial solid fraction, the wave samples are stronger than the MC
samples: Their flow stress levels are always higher than that of the respective
MC sample with similar initial solid fraction. For example, at ε = 0.1, the flow
stress of sample W–0.349 is σ ≈ 63 MPa, as compared to σ ≈ 21 MPa of sample
MC–0.346.

Both sets of data for the MC and wave samples feature quasi-immediate yield-
ing and pronounced strain hardening. Since this observation is consistent with
the behavior of the sample created by Monte Carlo simulation in Chapter 3, the
detailed discussions concerning early yielding and strengthening mechanisms of
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Sample Ls [nm] ϕini ϕrelaxed α [1/nm] d [nm]

W—0.313 58.75 0.302 0.313 0.890 3.70

W—0.349 56.71 0.340 0.349 0.852 3.79

W—0.388 54.26 0.380 0.388 0.834 3.87

MC–0.308 58.75 0.302 0.308 0.877 3.76

MC–0.346 58.75 0.340 0.346 0.854 3.78

MC–0.386 58.75 0.380 0.386 0.832 3.88

Table 5.1: Summary of microstructural information of samples created via mimicking
spinodal decomposition by different methods. Ls, ϕini, ϕrelaxed, α, and d denote
the sample length, initial (as-created) solid fraction, solid fraction after thermal
relaxation at 300 K, ratio of surface area per solid volume, and characteristic
ligament size, respectively.

the sample in that chapter can be transferred and applied to the set of samples
that we are investigating in this chapter.

5.3 evolution of elastic modulus

Figure 5.4 shows the evolution of the effective elastic modulus, Yeff, calculated
from unload segments of the stress-strain curves plotted in Figure 5.3. The graphs
show that all samples experience substantial stiffening during the compression,
irrespective of how they were created or what their solid fraction is. For example,
the initial value of Yeff of the wave sample W–0.349 is 1.76 GPa. After deforma-
tion, that value increases more than 2 times, to the final value of 3.70 GPa.

Figure 5.4 shows that the effective elastic moduli of the wave samples are way
greater than those of the MC samples of similar initial solid fraction. To give an
instance: As compared to the initial Yeff = 3.70 GPa of the wave sample W–0.349,
the corresponding value of sample MC–0.346 is only 890 MPa, which is about 2
times more compliant.

How are these values compared to the prediction of the Gibson-Ashby equa-
tion? The results of Yeff/Ybulk versus ϕ2 for the initial modulus and solid fraction
are shown in Figure 5.5a, along with the Gibson-Ashby scaling law. The same
plot, but for the values calculated from the unload segments, is shown in Figure
5.5b. Once again, these figures obviously demonstrate systematic failures of the
Gibson-Ashby equation in predicting the elastic moduli of virtual NPG samples:
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Figure 5.3: Simulated stress–true strain (σ–ε) curves of samples created by Monte Carlo
(MC) simulation (green) and wave (W) method (red). Wave samples are much
stronger than MC samples of similar solid fraction. These stress-strain curves
were simulated with a strain rate of 108/s at 300 K.

It fails to predict not only the initial modulus but also the value of Yeff at different
strain stages when the material has already experienced substantial stiffening.

5.4 evolution of connectivity

We now assess the evolution of connectivity during the deformation of the vir-
tual NPG samples. Here, we follow Refs. [38, 68, 69] and adopt the genus, g, as
the measure of network connectivity*. For that purpose, the surface of the vir-
tual NPG samples at different strain states was reconstructed via alpha-shape

*Note that one might also use the so-called connectivity, C, of a system, as in Ref. [39, 97, 98].
g and C are interchangeable, since C = 1− χ, and therefore, C = 2g− 1.
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Figure 5.4: Evolution of effective elastic modulus, Yeff, of samples with simulated stress-

strain curves shown in Figure 5.3. All samples exhibit substantial stiffening as
the deformation proceeds. Wave samples are much stiffer than MC samples
of similar solid fraction.
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Figure 5.5: Comparing simulation data (points) with prediction of the Gibson–Ashby
scaling law for elastic modulus (blue lines). Gibson-Ashby law fails to predict
not only the initial modulus but also the value of Yeff at different strain stages
when the material has already experienced substantial stiffening.

method (see Chapter 2). The obtained reconstructed surface is a triangulated
surface mesh, which allows direct calculation of g via Euler characteristic, χ,

g = 1− χ

2
with χ = #V − #E + #F, (Equation 2.35)
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where #V, #E, and #F are the number of vertexes, edges, and faces of the recon-
structed surface. From here, we also get the genus density, gV, which is define as
genus g divided by the total volume V:

gV =
g
V

. (5.3)

The results for genus density gV of the virtual NPG samples at different de-
formation states are shown in Figure 5.6a. The absolute change of genus, ∆g, is
plotted in Figure 5.6b.
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Figure 5.6: Evolution of connectivity during deformation. Figures (a) and (b) show the
genus density, gV, and absolute change of genus, ∆g, of spinodal decompo-
sition samples during the deformation events shown in Figure 5.3. Note the
substantial increase of gV of all samples during the deformation. This increase
is mostly due to formation of new ligament connections, as quantified in (b),
as well as exemplified in Figure 3.7.

In Figure 5.6a, we see that gV of all samples increases as the deformation pro-
ceeds. The reason for the increase, apart from the ensuing reduction of total
volume, is because of the creation of new connectivity (Figure 5.6b). Indeed, as
is pointed out in Chapter 3, compression of NPG leads to the coalescence of lig-
aments and thus new connectivity is formed where the surface is cold-welded.

Comparing between the data of the MC and wave samples we see that, if the
initial solid fraction ϕ is ∼ 0.30 or ∼ 0.34, then the initial value of gV of the
wave samples are greater than that of the MC samples. Yet, when the initial solid
fraction ϕ is ∼ 0.38, gV of the MC and the wave samples are almost identical
(∼ 2.62× 10−3 nm−3). Note that, by construction, the MC samples were subject
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to coarsening processes during MC simulations. The generation of wave sam-
ples involved only predefined composition waves and thus did not entail any
coarsening. Our observation is therefore consistent with previous studies [68, 69]
where the connectivity in bi-continuous systems were analyzed: For solid frac-
tion ϕ . 0.36, coarsening leads to loss of connectivity.

When discussing the connectivity of bi-continuous systems, an important in-
formation is the scaled genus density gscaled [68, 69]. This parameter is simply
defined as the genus density gV multiplied by a measure of characteristic volume
and, therefore, independent of length scale. If we use a cube with edge length of
1/SV as characteristic volume, then:

gscaled =
gV

S3
V

with SV =
S
V

, (5.4)

in which S and V are the total surface area and total volume of the NPG structure,
respectively. On the other hand, if the specific surface area α, i.e. surface area
divided by the solid volume, is in place of SV, we have :

g̃scaled =
gV

α3 . (5.5)

The results for both definitions of gscaled are plotted in Figure 5.7. As is can
be seen, there is no clear trend in the change of gscaled during the deformation:
While the graphs of sample MC–0.308 and large-strain states of sample MC–
0.346 shows increasing gscaled, all other graphs exhibit decreasing tendency. On
the contrary, g̃scaled increases under compression of all NPG samples.

5.5 elastic modulus vs. scaled connectivity density

Figure 5.4 and Figure 5.6 offers the first glimpse of the relation between the liga-
ment connectivity of NPG samples and the corresponding elastic modulus: The
increase of gV happens at the same time when the effective elastic modulus Yeff of
NPG samples also increases substantially. The influence of connectivity on elastic
behavior of NPG proposed in Refs. [35, 37–39] is thus somewhat backed up by
our data. Yet, the simulation data of samples MC–0.386 and W–0.388 show that
their elastic moduli are substantially different (2.03 GPa vs. 2.83 GPa), despite
the fact that these two samples have almost identical amount of connectivity in
a unit volume (∼ 2.62× (10nm)−3).

For a quantitative relation between the elastic modulus of NPG structure and
its ligament connectivity, we first need to single out the influence of solid fraction.
For that purpose, we take the same approach of Mangipudi et al. [38] and assume
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Figure 5.7: Change of scaled genus density of spinodal decomposition samples during
the deformation events shown in Figure 5.3. Both definitions of scaled con-
nectivity, namely (a) gscaled = gVS−3

V and (b) g̃scaled = gVα−3 (see main text for
details), are shown. Except for sample MC–0.308, gscaled decreases during the
deformation. g̃scaled of all samples, on the other hand, increases substantially
during the deformation.

that the density effect directly goes into the power law ϕ2 as in the Gibson-Ashby
equation. Influence of other factors - including connectivity - therefore goes into
the prefactor CE. On a side note, at any deformed state with the solid fraction ϕ

of the NPG structure, ϕ
√

CE is nothing else than the effective solid fraction ϕeff
in Equation 5.2.

The values of CE calculated from the initial modulus and solid fraction of the
virtual NPG samples are plotted against the corresponding gscaled in Figure 5.8a,
along with the linear relation CE = 5gscaled suggested by Mangipudi et al. [38].
As is clearly seen, our data do not follow the linear relation CE = 5gscaled. In fact,
the current data do not demonstrate any linear relation between CE and gscaled at
all. If we break the data sets down to the samples created by different methods,
we observe a monotonic relation between CE and gscaled of the MC samples. Yet,
that trend does not show up in the data set for the wave samples: There is a
scatter by a factor of almost 1.8 in CE while their gscaled values are almost around
0.095.

If g̃scaled is used instead of gscaled, we get a better relation between the initial
values of CE and scaled genus density, as is plotted in Figure 5.8b. Indeed, for
samples created by the same method, CE increases when g̃scaled increases. Yet,
again, there is no linear relation between CE and g̃scaled if data of all samples are
taken into account.
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Figure 5.8: Pre-factor, CE, in the Gibson-Ashby scaling law versus scaled genus density.
This figures are for data points at zero strain. Results for both definitions of
scaled connectivity, namely (a) gscaled = gVS−3

V and (b) g̃scaled = gVα−3 (see
main text for details), are shown. The linear relation CE = 5gscaled [38] is also
shown in (a). No one-to-one relations between the pre-factor and the scaled
genus density can be recovered from the present data set.

Our simulation data at zero strain therefore do not support a direct connection
between CE and gscaled (both definitions). That situation becomes even worse
when deformation-induced changes are taken into account. For example, Figure
5.9 shows CE vs. g̃scaled calculated at different strain states. It obviously disputes
any expected one-to-one relation between CE and g̃scaled.

Altogether, as opposed to the results of Ref. [38], a quantitative relation be-
tween CE and scaled genus density cannot be established with our simulation
data - for the initial elastic modulus as well as for effective values at deformed
states. A similar conclusion was obtained by Hu et al. on different grounds [39].
This, however, does not rule out the influence of ligament connectivity on the
elastic modulus of NPG. After all, if we look at each sample separately, their
effective modulus increases at the same time when genus density increases. It
might be that we need other means to disentangle the influence of ligament con-
nectivity from the influence of solid fraction.
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Figure 5.9: Pre-factor, CE, in the Gibson-Ashby scaling law versus scaled genus density,
with g̃scaled = gVα−3 (see main text for details), during the deformation events
of Figure 5.3. Similar to Figure 5.8, no one-to-one relations between the pre-
factor and scaled connectivity can be recovered from the data set of this fig-
ure.

5.6 influence of surface effects

Our detour to investigate the influence of network topology on the behavior of
NPG suggested that the anomalous compliance of the material is not a trivial
result and the reason for its unique behavior is indeed a riddle. Attempts to
explain this behavior with the bulk-level topological disorder or ligament con-
nectivity have not yielded a satisfactory and convincing answer. This prompts
us to go back to atomistic level and assess relevant processes that might have an
impact on the elastic response of NPG.

In Chapter 3, we have pointed out that surface-induced stress causes plastic
deformation, and thus dislocation nucleation, of the virtual samples during the
thermal relaxation at 300 K. These samples therefore start out the deformation
process with a significant amount of preexisting dislocations. It has been long-
documented (e.g. see Refs. [99–102]) that cold-worked materials exhibit reduced
effective elastic modulus due to the bow-out of dislocation segments between
their anchor points. Take for example polycrystalline pure iron at room tempera-
ture [101]: The effective elastic modulus decreased from the original mean value
of 210 GPa to a mean value of 196 GPa after deformation to the engineering
strain of 0.06. We thus expected the same influence of preexisting dislocations on
the effective modulus of NPG. Yet, we have seen in Chapter 3 that the behavior of
the NPG sample at T = 0.01 K without any preexisting dislocations is practically
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the same with its behavior at 300 K with preexisting dislocations. The influence
of preexisting dislocations is therefore not a decisive factor.

It is well-established that the elasticity of nanowires is size-dependent and
strongly impacted by high-order elasticity effects (see, e.g., [40, 103–106]). As
an interconnected network of nano-scale filaments, the elastic behavior of NPG,
specifically its anomalous compliance, is thus expected to depend on surface-
related phenomena, such as pre-strained state of the bulk due to the action of
capillary forces [72].

In order to check this argument, we selected several deformed configurations
of sample MC–0.308 at different strain states during the simulated compression
test. The surface of these deformed configurations was then reconstructed and
fed to FEM simulation* to study the elastic behavior. To rule out the influence
of complex nonlinear effects that are intrinsic of the EAM potential used in MD,
the respective FEM simulation used only the linear elastic constants of the EAM
potential. Moreover, the influence of network topology is also ruled out because
the input structures for FEM study were constructed from the atomistic configu-
rations.

Results for the elastic moduli in FEM are shown in Figure 5.10, along with the
values from molecular dynamics. Clearly, the elastic modulus of the NPG struc-
tures exhibits a very much stiffer behavior in FEM than in molecular dynamics
simulation. Take for example the initial data points, while the molecular dynam-
ics simulation gives a value of only 380 MPa, the corresponding FEM value is
1.06 GPa - a factor of 2.8 stiffer.

Since FEM used exclusively the linear elastic constants from the EAM poten-
tial, the difference presented in Figure 5.10 must come from the the nonlinear
effects. We consider this as a decisive evidence of the influence of surface-related
phenomena on the elastic behavior of NPG, particularly its anomalous compli-
ance.

It is unclear which of the surface-related phenomena, or their combination, will
determine the compliant behavior. For example, one might link the observed be-
havior to excess elasticity [106–108], as is backed up by recent experimental study
[31] where the effective modulus of NPG was shown to change in accordance
with changes of surface state. Yet, recent study within the continuum framework
based on calculation of density functional theory [109] demonstrated only a mi-
nor influence of surface elasticity on effective modulus of nanowires.

Based on our simulation data, we now advocate a possible mechanism that
might lead to the anomalous compliance of NPG, namely surface-induced shear
instability.

*The FEM data presented in this Section were kindly provided by the courtesy of Benedikt
Roschning (benedikt.roschning@tuhh.de) at TUHH.
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Figure 5.10: Influence of nonlinear effects. Effective Young’s modulus, Yeff, versus plas-

tic strain, ε. Data from molecular dynamics (MD) and linear-elastic finite
element method (FEM) simulations for sample MC–0.308. Note the substan-
tially stiffer behavior of the linear elastic solid, in spite of identical network
geometry.

In Section 3.2, we pointed out that the surface stress induces shear stresses
which exceed the theoretical shear strength in some ligaments and closely ap-
proach it in others. Since the theoretical shear strength is determined by a point
of inflection in the generalized stacking fault energy curve, it entails a vanishing
shear modulus. This is illustrated schematically in Figure 5.11. In other words,
the surface-induced stress and the concomitant shear will systematically reduce
the shear stiffness of the ligaments in NPG. This is well consistent with the
anomalous compliance of the material in its initial state. Furthermore one ex-
pects that, as the deformation proceeds, more and more of these near-unstable
regions will be pushed over to stable faulted or twinned configurations, relaxing
their stress and reverting back to a configuration of conventional, high shear stiff-
ness. This agrees with the observed stiffening during the early stages of plastic
deformation. Even though the shear instability in this picture seems unusual, it
is well supported by all observations of our work.

5.7 summary

In the greater part of this Chapter, we investigated the influence of the ligament
connectivity on the elasticity of NPG. For that purpose, two different methods
were used to create samples via mimicking spinodal decomposition, namely via
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Figure 5.11: Schematic illustration of shear instability. Graph at left shows the general-
ized stacking fault energy function, γ, versus shear displacement, u, between
adjacent atomic planes. Graph at right shows the associated variation of the
shear modulus, G, which scales with the second derivative of γ(u). The
negative-valued second derivative between the points of inflection of γ(u)
implies instability to shear.

Monte Carlo simulation and via superposition of modulated waves. Both tech-
niques lead to samples that resemble the ligament network of NPG. Yet, the
mechanical properties of these samples are vastly different. Although our simu-
lation data support the influence of ligament connectivity on the elastic modulus
of NPG, a concrete quantitative relation between measures of connectivity and
elasticity has not been resolved.

We then studied the impact of surface-related nonlinear effects on the elastic
modulus. The results confirm the nonlinear effects as the origin of the anomalous
compliance of NPG - though possibly only at very small length scale. To that end,
we attribute the surface-induced shear instability as the underlying process that
gives rise to the observed behavior.

61





6
S U M M A RY A N D O U T L O O K

We have presented a study of elasticity and plasticity of NPG, using molecular
dynamics simulations. The central theme was to explore and explain the un-
usual weak and compliant behavior of dealloyed NPG that has been extensively
reported in experiments. Our attempts have led us to look into possible atom-
istic processes and potential macroscopic structural parameters that might be
relevant.

At the ligament level, we have learned that when it comes to the mechani-
cal response of NPG, surface really matters. It is because of the surface-induced
stress that NPG can yield without any help from external load - thus, we al-
ways observe preexisting lattice defects in thermally relaxed NPG samples. The
heterogeneity of the surface-induced stress - depending on the local geometry
and orientation of ligament segments - is also a significant contributor to the
elastic-plastic transition in NPG. The tension-compression asymmetry previously
reported [27] also roots back to the surface-induced stress: It favors compression
over tension. Finally, when we turn off the influence of surface, NPG becomes
very much stiffer.

We have also learned that although the NPG network is an assembly of nano-
scale ligaments with long-distance lattice coherency, its plasticity bears no simi-
larity to that of the nanowires: While nanoscale wires strengthen via dislocation-
starvation mechanisms due to limited sources, the plasticity of NPG is carried
by dislocations. Massive accumulation of dislocations and their interaction is ob-
served; thus, in addition to a mere densification effect, NPG strengthen via dras-
tic Taylor work hardening. In that respect, our simulation data and the electron
backscattering diffraction data in Ref. [15] mutually support each other.

As for the diamond-lattice structure, our simulation data confirmed the influ-
ence of nodal shift. Both modulus and strength of the ordered diamond-lattice
structure become very much lower if the nodal shift is introduced along with the
correction of solid fraction. The nodal shift also leads to less expansion in the
lateral dimensions and enhanced strain hardening due to lattice defects. More-
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over, introducing nodal shift also broadens the elastic-plastic transition in the
diamond-lattice structure.

The nodal shift, however, cannot remedy the pertinent deformation-induced
loss of modulus of the diamond-lattice structure. In relation to the deformation
mode at the ligament level, that loss of modulus indicates that the diamond-
lattice structure is stretching-dominated. The nodal shift leads to transition from
stretching to bending in some ligaments, yet the majority of them are still de-
formed by stretching. Thus, the initial effective modulus and strength of the
disordered diamond-lattice structures remains high.

Ligament connectivity is another bulk-level topological parameter that has
been investigated in this work. The simulation data, however, result in mixed
messages. It is clear that deformation of virtual NPG (wave and MC) samples
leads to increase in both effective modulus and connectivity. Besides, if we com-
pare the initial modulus of wave and MD samples at similar solid fraction of
∼ 0.30 or ∼ 0.34, respectively, the wave samples have higher connectivity and
stiffer behavior. Yet, that observation does not hold for samples with solid frac-
tion of ∼ 0.34: The wave and the MC samples have identical connectivity density,
albeit the wave sample is much stiffer than the MC sample. Moreover, the lin-
ear relation between the prefactor in the Gibson-Ashby equation and the scaled
genus density cannot be recovered with our simulation data.

Although our investigation has not been able to exclusively identify which of
the surface-related phenomena that is responsible for the anomalous compliance
of NPG, the influence of surface effects is undoubtedly demonstrated in our work.
It is thus a natural step to discriminate different surface-induced mechanisms
that might impact the mechanical behavior of NPG.

Our work clearly states the unsuitability of the Gibson-Ashby model - thus the
sole role of solid fraction - in describing the behavior of NPG. Though we have
observed a strong influence of topology on the mechanical properties of NPG, it
is unclear how to quantitatively connect the topology of NPG to its mechanical
behavior. Care and attention should be paid into this direction.
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Elasticity and Plasticity of Nanoporous Gold:
Implications of Molecular Dynamics Simulations

Summary

Molecular dynamics simulations of compression tests on virtual nanoporous
gold samples created by mimicking spinodal decomposition via Monte Carlo
simulations reveal an anomalously compliant and weak behavior. This behavior,
while in good agreement with experimental data of millimeter-sized dealloyed
nanoporous gold, changes drastically once the network connectivity is varied.
Topological disorder due to nodal shift also impacts the effective behavior of the
material. Yet, on top of the above-mentioned topological descriptors or the solid
fraction, atomistic processes, such as dislocation activity and surface effects, must
be taken into account in order to explain the observed behavior of the material.

Elastizität und Plastizität von nanoporösem Gold:
Implikationen durch molekulardynamische Simulationen

Zusammenfassung

Molekulardynamische Simulationen von Kompressionsprüfungen an virtuellen
nanoporösen Goldproben, die durch Nachahmung spinodaler Entmischung durch
Monte-Carlo-Simulationen erstellt wurden, zeigen ein ungewöhnlich nachgiebi-
ges und weiches Verhalten. Dieses Materialverhalten, welches in guter Überein-
stimmung mit experimentellen Daten an millimetergroßem, entlegiertem nano-
porösem Gold ist, verändert sich drastisch, wenn die Netzwerkkonnektivität ver-
ändert wird. Topologische Unordnung verursacht durch Verschiebung der Netz-
werkknoten nimmt ebenfalls Einfluss auf das effektive Materialverhalten. Den-
noch müssen, zusätzlich zu den oben erwähnten topologischen Beschreibungen
und des Feststoffanteils, Prozesse auf atomistischer Ebene wie Versetzungsakti-
vität und Oberflächeneffekte in Betracht gezogen werden, um das beobachtete
Materialverhalten erklären zu können.
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