
Journal of Physics: Conference Series

PAPER • OPEN ACCESS

Dynamic response of mechanical systems to
impulse process stochastic excitations: Markov
approach
To cite this article: R Iwankiewicz 2016 J. Phys.: Conf. Ser. 721 012010

 

View the article online for updates and enhancements.

Related content
Stochastic resonance at a subharmonic of
a periodic modulation signalin solid-state
lasers
N V Kravtsov, E G Lariontsev and S N
Chekina

-

Four-wave resonant parametric interaction
with signal phase conjugationin a wide-
band pump field
M S Barashkov and N A Iskanderov

-

Quenching of Rydberg states by atoms
with small electron affinities
Ilya I Fabrikant and Vladimir S Lebedev

-

This content was downloaded from IP address 134.28.50.212 on 20/11/2018 at 06:23

https://doi.org/10.1088/1742-6596/721/1/012010
http://iopscience.iop.org/article/10.1070/QE2013v043n10ABEH015069
http://iopscience.iop.org/article/10.1070/QE2013v043n10ABEH015069
http://iopscience.iop.org/article/10.1070/QE2013v043n10ABEH015069
http://iopscience.iop.org/article/10.1070/QE1987v017n08ABEH009677
http://iopscience.iop.org/article/10.1070/QE1987v017n08ABEH009677
http://iopscience.iop.org/article/10.1070/QE1987v017n08ABEH009677
http://iopscience.iop.org/article/10.1088/0953-4075/33/8/304
http://iopscience.iop.org/article/10.1088/0953-4075/33/8/304
https://oasc-eu1.247realmedia.com/5c/iopscience.iop.org/957479029/Middle/IOPP/IOPs-Mid-JPCS-pdf/IOPs-Mid-JPCS-pdf.jpg/1?


Dynamic response of mechanical systems to impulse
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Abstract. Methods for determination of the response of mechanical dynamic systems to
Poisson and non-Poisson impulse process stochastic excitations are presented. Stochastic
differential and integro-differential equations of motion are introduced. For systems driven
by Poisson impulse process the tools of the theory of non-diffusive Markov processes are used.
These are: the generalized Itô’s differential rule which allows to derive the differential equations
for response moments and the forward integro-differential Chapman-Kolmogorov equation from
which the equation governing the probability density of the response is obtained. The relation
of Poisson impulse process problems to the theory of diffusive Markov processes is given. For
systems driven by a class of non-Poisson (Erlang renewal) impulse processes an exact conversion
of the original non-Markov problem into a Markov one is based on the appended Markov chain
corresponding to the introduced auxiliary pure jump stochastic process. The derivation of the set
of integro-differential equations for response probability density and also a moment equations
technique are based on the forward integro-differential Chapman-Kolmogorov equation. An
illustrating numerical example is also included.

1. Introduction
In some problems in structural dynamics the loads may be adequately idealized as discontinuous
stochastic processes: trains of loading pulses, or impulses, occurring at random times and
characterized by random magnitudes. Such models are pertinent e.g. to: behaviour of a
vehicle travelling over a very rough road (impacts or shocks, due to sudden humps or holes)
[1,2], moving loads on a bridge due to highway traffic [3,4], dynamic loading due to wind gusts
[5-7]. It is known that if the excitation is a Poisson impulse process, the state vector of the
dynamic system is non-diffusive (Poisson-driven)a Markov process. However, if the excitation
is a non-Poisson (e.g. renewal) impulse process, the state vector of the dynamic system is
not a Markov process. Conversion of the original non-Markov pulse problem into a Markov
one is in some cases possible owing to the introduction of auxiliary state variables in form
of pure-jump stochastic processes governed by Poisson-driven stochastic differential equations.
Then the original state vector augmented by those auxiliary variables becomes a non-diffusive
Markov process and differential equations for moments may be derived [8-12]. At the same time,
the explicitly introduced, Poisson-driven, pure-jump stochastic processes are characterized by a
chain of Markov states. Consequently the original state variables and the states of the auxiliary
pure-jump stochastic process are jointly Markovian and the problem is characterized by the
set of mixed-type, joint probability density - discrete distribution functions governed by forward
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integro-differential Chapman-Kolmogorov equations. From the forward equation, with the aid of
suitably defined jump probability intensity functions, the explicit integro-differential equations
for the response probability density function are derived [13]. The response statistical moments
are defined as integrals with respect to the mixed-type, joint probability density - discrete
distribution function. Based on the forward integro-differential Chapman-Kolmogorov equation
the differential equations for moments are obtained [14]. An illustrating numerical example is
also included.

2. State-space formulation of the problem: stochastic differential equations of
motion
When the pulse duration is much shorter that the fundamental natural period of the system the
train of short-duration pulses is idealized as an impulse process

F (t) =

N (t)∑
i=1

Piδ(t− ti), (1)

whereN (t) is a stochastic point (random counting) process (e.g. a Poisson or a renewal process.),
ti ∈ [0, t), i.e. excluding the event (impulse) that may occur at t. The impulse magnitudes Pi are
independent random variables, identically distributed as a random variable P and statistically
independent of the random times ti, or of the counting process N (t). The usual differential

Figure 1. Stochastic impulse process

equation of motion of a linear SDOF system is

Ÿ (t) + 2ζωẎ (t) + ω2Y (t) =

N (t)∑
i=1

Piδ(t− ti) (2)

From the impulse-momentum principle it follows that at the impulses occurrence times ti the
velocity response process Ẏ (t) changes by jumps, it is piece-wise continuous (continuous-jump).
Consequently the displacement response process Y (t) is continuous but it is only piece-wise
continuously differentiable. As the jump change in the velocity may occur at any point, the
usual rules of calculus do not apply. The usual notation of the differential equation of motion
is not mathematically meaningful. The stochastic counterparts of the usual differential
equations are the stochastic differential equations

dY (t) = Ẏ (t)dt,

dẎ (t) = −2ζωẎ (t)dt− ω2Y (t)dt+ P (t)dN (t), (3)

where P (t) is the magnitude of the impulse which occurs in the time interval [t, t+ dt).
The impulse process excitation may be also parametric, i.e. multiplicative to the displacement

or to the velocity response process.
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Consider the stochastic impulse process F (t) acting as an axial force on a beam-column
(Figure 2). The governing equation of motion is

EI
∂4w(x, t)

∂x4
+ c

∂w(x, t)

∂t
+ µ

∂2w(x, t)

∂t2
+ F (t)

∂2w(x, t)

∂x2
= 0, F (t) =

N (t)∑
i=1

Piδ(t− ti) (4)

If the normal mode approach is used

w(x, t) =
n∑

j=1

Yj(t)ϕj(x), (5)

where ϕj(x) are the normal modes then the set of usual differential equation of motion is

Ÿj(t) + 2ζjωj Ẏj(t) + ω2
jYj(t) + βjYj(t)

N (t)∑
i=1

Piδ(t− ti) = 0, j = 1, 2, 3, ...n, (6)

where βj =

∫̀
o
ϕ

′′
j (x)ϕj(x)dx

µ
∫̀
o
ϕ2
j (x)dx

and (...)
′′

=
d2

dx2
(...).

The stochastic differential equations of motion are obtained as

dYj(t) = Ẏj(t)dt,

dẎj(t) = −2ζjωj Ẏj(t)dt− ω2
jYj(t)dt− βjYj(t)P (t)dN (t), j = 1, 2, 3, ...n. (7)

hence the impulse process excitation term is multiplicative to the displacement response process.

w(x,t)

EI

F(t)

x

w

Figure 2. Stochastic impulse
process F (t) acting as an axial force
on a beam-column.
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Figure 3. Linear oscillator of mass M subjected
to a random train of impacts with particles of
random masses mi, arriving at random times ti
with random velocities vi.
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Consider now a linear oscillator of mass M is subjected to a random train of impacts with
particles of random masses mi, arriving at random times ti with random velocities vi [15] as
shown in the Figure 3. Before the impact the oscillator has the velocity Ẏ . Random times ti
are assumed to be independent of mi and vi. After the impact the velocities of the oscillator
and of the particle are Ẏ + and v+

i , respectively.
The law of conservation of linear momentum states that

MẎ +mivi = MẎ + +miv
+
i (8)

At the time of impact the jump change in the oscillator velocity equals

Ẏ + − Ẏ =
mi(1 +K)

M +mi
(vi − Ẏ ). (9)

With due account for the impulse of restoring and damping forces during the time interval dt
the stochastic equations of motion are

dY = Ẏ dt,

dẎ = (−2ζωẎ − ω2Y )dt+ (V (t)− Ẏ )P (t)dN (t), (10)

where the random variable equals P (t) =
m(t)(1 +K)

M +m(t)
and m(t) and V (t) denote, respectively,

the mass and the velocity of the particle which impacts in the time interval [t, t + dt) and K
is the coefficient of restitution. Hence the impulse process excitation terms are additive and
multiplicative to the velocity response process.

In general the state vector of the system, Y(t), consisting of the generalized coordinates and
velocities, is governed by the set of stochastic differential equations of motion

dY(t) = c(Y(t), t)dt+ b(Y(t), t))P (t)dN (t), Y(0) = y0, (11)

3. Non-diffusive Markov problem
3.1. Stochastic integro-differential equation of motion
If N (t) is a Poisson counting process N(t) (hence the increments dN(t) are independent), N(t)
and Pi are independent, Pi are mutually independent and both N(t) and Pi are independent
of the initial conditions y0, then the state vector Y(t) is a Markov process. It is then a
non-diffusive (Poisson-driven) Markov process governed by the set of stochastic integro-
differential equations [16, 17]

dY(t) = c(Y(t), t)dt+ b(Y(t), t))

∫
P

pΠ(dt, dp), Y(0) = y0, (12)

where c(Y(t), t) is the drift vector, b(Y(t), t)) is an analogue of the diffusion vector, Π(dt, dp)
is the Poisson random measure, interpreted as the random number of points (impulses) in the
interval [t, t+ dt) with the values of the random impulse magnitude P in (p, p + dp) and P is
the sample space of the random impulse magnitude P .

3.2. Generalized Itô’s differential rule
For a function V [t,Y(t)], bounded for t and Y(t) finite, and once continuously differentiable
with respect to all its arguments, the following generalized Itô’s differential rule is valid for
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a Poisson-driven Markov process [16, 17]

dV (t,Y(t)) =
∂V (t,Y(t))

∂t
dt+

n∑
i=1

∂V (t,Y(t))

∂Yi
ci (Y(t), t) dt

+

∫
P

[
V
[
t,Y(t) + b

(
Y(t), t

)
p
]
− V [t,Y(t)]

]
Π(dt, dp)

(13)

The generating equation for moments is obtained as

d

dt
E [V (Y(t))] =

n∑
i=1

E

[
∂V (Y(t))

∂Yi
ci (Y(t), t)

]

+ν

∫
P

E

[
V
[
Y(t) + b

(
Y(t)

)
p
] ]
fP (p)dp− νE

[
V [Y(t)]

]
,

(14)

where fP (p) is the probability density function of the random impulse magnitude P . Explicit
equations for moments are obtained for V [Y(t)] = Yi(t)Yj(t) , V [Y(t)] = Yi(t)Yj(t)Yk(t),
V [Y(t)] = Yi(t)Yj(t)Yk(t)Yl(t), etc.

The equations for the mean values, the second-, third- and fourth-order joint central moments
of the response, are obtained as

µ̇i(t) = E [ci(Y(t), t)] + ν(t)E[P ]E [bi(Y(t), t)] (15)

κ̇ij(t) = 2
{
E
[
Y 0
i

(
c0
j (Y

0(t), t) + ν(t)bj(Y(t), t)P
)]}

s

+ν(t)E[P 2]E [bi(Y(t), t)bj(Y(t), t)] (16)

κ̇ijk(t) = 3
{
E
[
Y 0
i Y

0
j

(
c0
k(Y0(t), t) + ν(t)bk(Y(t), t)P

)]}
s

+3ν(t)E[P 2]
{
E
[
Y 0
i bj(Y(t), t)bk(Y(t), t)

]}
s

+ν(t)E[P 3]E [bi(Y(t), t)bj(Y(t), t)bk(Y(t), t)] (17)

κ̇ijkl(t) = 4
{
E
[
Y 0
i Y

0
j Y

0
k

(
c0
l (Y

0(t), t) + ν(t)bl(Y(t), t)P
)]}

s

+6ν(t)E[P 2]
{
E
[
Y 0
i Y

0
j bk(Y(t), t)bl(Y(t), t)

]}
s

+4ν(t)E[P 3]
{
E
[
Y 0
i bj(Y(t), t)bk(Y(t), t)bl(Y(t), t)

]}
s

+ν(t)E[P 4]E [bi(Y(t), t)bj(Y(t), t)bk(Y(t), t)bl(Y(t), t)] ,

(18)

where Y 0
i (t) = Yi(t)− µi(t) and c0

j (Y
0(t), t) = cj(Y(t), t)−E [cj(Y(t), t)] denote the zero-mean

(centralized) state variables and drift vector, and {...}s denotes the Stratonovich symmetrizing
operation, e.g.

{YiYjck}s =
1

3
(YiYjck + YiYkcj + YjYkci) (19)

Equations for response moments of a linear system form always a closed set and can be
directly solved numerically.
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However, equations for response moments of a non-linear system with polynomial non-
linearity form an infinite hierarchy. Then special closure approximations (truncation procedures)
must be used, which express higher-order moments (above the level of truncation) in terms
of lower-order moments (up to the level of truncation). For other types of non-linearity the
equations involve unknown expectations of non-linear functions of state variables and some
tentative forms of the joint probability density must be used.

For example if the fifth- and sixth-order cumulants are neglected, the fifth- and sixth-order
central moments are expressed in terms of lower-order moments as

κijklm(t) = 10 {κij(t)κklm(t)}s
κijklmn(t) = 15 {κij(t)κklmn(t)}s + 10 {κijk(t)κlmn(t)}s − 30 {κij(t)κkl(t)κmn(t)}s (20)

The above closure approximations are equivalent to assuming the tentative joint probability
density function of the state variables in the form of the suitable Gram-Charlier expansion,
which is the expansion in terms of generalized Hermite polynomials. The accuracy of the results
obtained with the help of closure approximations depends on whether or not the truncated
pertinent Gram-Charlier expansion is an adequate approximation to the actual density function.

Consider the dynamical system subjected to a random train of impulses, with zero initial
conditions Y(0) = 0. If in the time interval [0, t) no impulse occurred, the system is still at rest
at the time t.

If the train of impulses is driven by a homogeneous Poisson process, the probability P0 of no
impulse occurrence in the time interval [0, t) is expressed as

P0 = Pr{N(t) = 0} = exp(−νt). (21)

The probability P0 may be high, close to the unity, if the length t of the time interval is
small, i.e. at the early transient stage, especially if also the mean arrival rate ν is small.

Joint probability density function of the state vector Y(t) can be represented in form of the
sum of the continuous and discrete parts as (Figure 4) [18]

fY(y, t) = fY(y, t | N(t) = 0) Pr{N(t) = 0}+ fY(y, t | N(t) > 0) Pr{N(t) > 0}

= P0

n∏
i=1

δ
(
yi
)

+ (1− P0)f0
Y(y0, t), (22)

where n is the number of state variables.
In the first, discrete, part the Dirac delta spike δ(yi) represents the finite probability of the

system being at rest, i.e. yi = 0. This probability is, of course, concentrated at the displacement
yi = 0. The second, continuous, part i.e. f0

Y

(
y0, t

)
is the conditional density, given that at least

one impulse occurred.
In the situations when the first, discrete, term in the assumed discrete-continuous density

function is predominant, it can be predicted that the probability density function fY(y, t) will be
difficult to approximate by the truncated Gram-Charlier expansion. The reason is that the Dirac
delta is difficult to approximate in terms of Hermite polynomials. The usual cumulant neglect
closure approximations may be then very inaccurate for the unconditional central moments
κi1···in .

The Gram-Charlier expansion can be used for the continuous part of the discrete-continuous
pdf only, i.e. for the conditional density f0

Y(y0, t). This is equivalent to assuming the closure
approximations for the conditional moments.

With the aid of the relationships (identities) between the unconditional moments and
conditional moments the final modified cumulant neglect closure approximations are obtained.

The use of modified cumulant neglect closure approximations allows to improve the results
for the problems with sparse pulse trains, i.e. with a low mean arrival rate ν [18].
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ability density function of
the Poisson-driven response
process

3.3. Integro-differential equation governing the response process probability density
The Markov process with continuous-jump sample paths is governed by an integro-differential
Chapman-Kolmogorov equation (called master equation in physics) [9,19]

∂

∂t
q{Y}(y, t) = −

∑
i

∂

∂yi
[ci(y, t)q{Y}(y, t)]+

+

∫ [
J{Y}(y|x, t)q{Y}(x, t)− J{Y}(x|y, t)q{Y}(y, t)

]
dx,

(23)

q{Y}(y, t) is the joint probability density of the state vector, ci(y, t) is the drift term of the
equation of motion and

J{Y}(y|x, t) = lim
∆t→0

q{Y}(y, t+ ∆t|x, t)
∆t

. (24)

is the jump probability intensity function, which is non-zero only if the state vector changes
by a finite jump from x at t to y at t+ ∆t as ∆t→ 0.

For a system under an external Poisson impulse process excitation, i.e.
b(Y(t), t) = const. = b, and with a mean arrival rate ν, the insertion of a pertinent jump
probability intensity function into Chapman-Kolmogorov equation, followed by integration with
respect to x results in a Kolmogorov-Feller integro-differential equation [9].

In the case of a SDOF oscillator, with b(Y(t), t) = const. = b = [b1, b2]T = [0, b]T , the jump
probability intensity function is determined as

J{Y}(y|x, t) = νδ(y1 − x1)

∫
P

δ(y2 − (x2 + b2p))fP (p)dp (25)

The integration of the Chapman-Kolmogorov equation (23) with respect to x yields a
Kolmogorov-Feller equation

∂

∂t
q{Y}(y, t) = −

∑
i

∂

∂yi
[ci(y, t)q{Y}(y, t)] + ν

∫
P

q{Y}(y − bp, t)fP (p)dp− νq{Y}(y, t) (26)

3.4. Relation to the classical diffusive Markov processes theory
If the impulses mean arrival rate ν →∞ and at the same time the impulses magnitudes tend to
zero, i.e. the impulse process becomes an infinitely dense train of infinitely small impulses, the
velocity response process Ẏ (t) reveals jumps at every infinitesimal time interval dt, hence it is
discontinuous and consequently the displacement response process Y (t) is non-differentiable. If
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the impulses have zero-mean values, i.e. E[P ] = 0, and at the same time their magnitudes tend
to zero in such a way that νE[P 2] is kept constant, the Poisson impulse process

F (t) =

N(t)∑
i=1

Piδ(t− ti) (27)

tends asymptotically to the Gaussian white noise and the equations of motion become Itô’s
stochastic differential equations. In the case of additive excitation

dY(t) = c(Y(t), t)dt+ bdW (t), Y(0) = y0, (28)

where W (t) is the Wiener process.
In the asymptotic case the generalized Itô’s differential rule (13) reduces to the classical Itô’s

differential rule

dV (t,Y(t)) =
∂V (t,Y(t))

∂t
dt

+
n∑

i=1

∂V (t,Y(t))

∂Yi
(ci (Y(t), t) dt+ bidW (t)) +

1

2
νE[P 2]

n∑
i,j=1

bibj
∂2V (t,Y(t))

∂YiYj
dt

(29)

In the asymptotic case the Kolmogorov-Feller integro-differential equation (26) reduces to
the classical Fokker - Planck - Kolmogorov partial differential equation

∂

∂t
q{Y}(y, t) = −

∑
i

∂

∂yi
[ci(y, t)q{Y}(y, t)] +

1

2
νE[P 2]

n∑
i,j=1

bibj
∂2q{Y}(y, t)

∂yiyj
(30)

4. Non-Markov problems
4.1. Exact conversion of a non-Markov problem into a Markov one
Consider a dynamic system under a renewal process impulse process where the occurrence
times of the impulses are driven by a renewal process R(t). The increments dR(t) are not
independent. The state vector Y(t) governed by

dY(t) = c(Y(t), t)dt+ b(Y(t), t))P (t)dR(t), Y(0) = y0, (31)

is not a Markov process. Exact conversion of the original non-Markov problem into a Markov
one is performed by recasting of the original impulse process (replacement valid with probability
1) as [9,11]

R(t)∑
i,R=1

Pi,Rδ(t− ti,R) =

N(t)∑
i=1

ρ(N(ti))Piδ(t− ti), (32)

where ρ(N(ti) is an auxiliary, pure jump, zero-one stochastic process, which selects only
some impulses from the train driven by a Poisson process N(t).

As an auxiliary, pure-jump stochastic process consists of negative-exponential distributed
”phases”, the states of sojourn of the process in these ”phases” are Markov states S(t) =
1, 2, ...,m. The jump process must be defined in such a way: the actual impulse (i.e. the jump
in the velocity response Ẏ (t)) only occurs if there is a transition between some particular Markov
states. Other transitions are not associated with a jump in the velocity response.

Original state variables of the dynamic system and the states of the auxiliary jump process
are jointly Markovian.
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Accordingly, the mixed-type joint probability density-discrete distribution function of the
continuous-jump processes Y (t), Ẏ (t) and of m Markov states S(t) of the pure jump process is
defined as

qj(y, t)dy = Pr{Y(t) ∈ (y + dy) ∧ S(t) = j}, j = 1, 2, ...,m (33)

This function is governed by the set of integro-differential forward Chapman-Kolmogorov
equation

∂

∂t
qj(y, t) = Kj [q(y, t)]

Kj [q(y, t)] = −
n∑

i=1

∂

∂yi

[
ci(y, t)qj(y, t)

]
+

m∑
l=1,l 6=j

∞∫
−∞

∞∫
−∞

[
J{Y}(y, j|x, l, t)ql(x, t)− J{Y}(x, l|y, j, t)qj(y, t)

]
dx,

(34)

where Kj [...] is the forward integro-differential Chapman-Kolmogorov operator, j = 1, 2, ...,m
and ci(y, t) are the drift coefficients of the equation of motion.

The explicit integro-differential equations are obtained after the insertion of the suitably
determined jump probability intensity function J{Y}(y, j|x, l, t) and subsequent integration with
respect to x. The jump probability intensity function defined as

J{Y}(y, j|x, l, t) = lim
∆t→0

Pr{Y(t+ ∆t) = y, S(t+ ∆t) = j, |X(t) = x, S(t) = l}
∆t

(35)

must be determined from the pertinent chain of Markov states.
The non-zero jump probability intensity functions are only defined for j 6= l, such that there

is a transition in a Markov chain (jump in the auxiliary process) from S(t) = l to S(t+ ∆t) = j.
These functions assume two different forms: for the transitions in a Markov chain not associated
by the jump in the velocity process and those associated by the jump in the velocity process.
Let us determine the jump probability intensity function for a single-degree-of-freedom system
(two state variables). If there is a transition from S(t) = l to S(t + ∆t) = j, but no actual
impulse occurs (no jump in the velocity process)

J{Y}(y, j|x, l, t) = π(j|l)δ(y1 − x1)δ(y2 − x2), (36)

where

π(j|l) =
Pj|l(∆t)

∆t
, j 6= l, (37)

and Pj|l(∆t) = Pr{S(t + ∆t) = j
∣∣∣S(t) = l} is the transition probability in a pertinent Markov

chain. If the transition from S(t) = l to S(t + ∆t) = j, is associated with the actual impulse
(the jump in the velocity process Ẏ (t) = Y2(t))

J{Z}(y, j|x, l, t) = π(j|l)δ(y1 − x1)

∫
P

δ

(
y2 −

(
x2 + b(x1, x2)p

))
fP (p)dp (38)

In an Erlang renewal process [20-22] with an integer parameter k the events are every kth
Poisson events, hence it must be assumed that the actual impulse, and hence the jump in the
velocity variable occurs when the jump is from the state k to 1. All other jumps in the auxiliary
process occur from j−1 to j (j = 2, ...k), but there are no corresponding impulses. The auxiliary
pure jump process and the corresponding Markov chain are shown in the figures 5 and 6.
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Figure 5. Auxiliary pure jump process

Figure 6. Corresponding Markov chain

The jump probability intensity function is determined as

JY(y1, y2, j|x1, x2, l, t) =


νδ(y1 − x1)

∫
P

δ(y2 − (x2 + b(x1, x2)p))fP (p)dp,

j = 1, l = k.

νδ(y1 − x1)δ(y2 − x2), j = 2, 3, ..., k, l = j − 1

(39)

If the excitation is purely external (additive), i.e. b(Y(t), t) = const. = b, the integration
with respect to x yields the following equations for the Erlang process with an arbitrary
parameter k

∂

∂t
q1(y, t) = −

n∑
i=1

∂

∂yi

[
ci(y, t)q1(y, t)

]
+ ν

∫
P

qk(y − bp, t)fP (p)dp− νq1(y, t)

...

∂

∂t
qj(y, t) = −

n∑
i=1

∂

∂yi

[
ci(y, t)qj(y, t)

]
+ νqj−1(y, t)− νqj(y, t), j = 2, 3, ...k

(40)

The generating equation for moments is derived for the expectations with respect to the joint
probability density - discrete distribution function qj(y, t)

Ej

[
V (Y(t), t)

]
=

∞∫
−∞

V (y, t)qj(y, t)dy, j = 1, 2, ...,m. (41)

Its time evolution is determined as

d

dt
Ej

[
V (Y(t), t)

]
=

∂

∂t

∞∫
−∞

V (y(t), t)qj(y, t)dy =

Ej

[
∂

∂t
V (Y(t), t)

]
+

∞∫
−∞

V (y(t), t)Kj

[
q(y, t)

]
dy.

(42)
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After the integration by parts, suitable interchange of dummy variables and some
rearrangements the generating equation for moments is arrived at in the form [14]

d

dt
Ej

[
V (Y(t), t)

]
= Ej

[
∂

∂t
V (Y(t), t)

]
+

n∑
r=1

Ej

[
∂V (Y(t), t)

∂Yr
cr(Y(t), t)

]

+
m∑
l=1

∞∫
−∞

∞∫
−∞

[
V (x(t), t)J{Y}(x, j|y, l, t)qi(y, t)

−V (y(t), t)J{Y}(x, l|y, j, t)qj(y, t)
]
dxdy, j = 1, 2, ...,m.

(43)

As the usual-sense (marginal) joint probability density function is obtained by summation

q(y, t) =
m∑
j=1

qj(y, t), (44)

so is the usual-sense expectation

E
[
V (Y(t), t)

]
=

m∑
j=1

Ej

[
V (Y(t), t)

]
(45)

4.2. Moment equations for an Erlang renewal impulse process
For an Erlang renewal impulse process the jump probability intensity function J{Y}(x1, x2, j|y1, y2, l, t)
determined with the aid of the Markov chain (Figure 6) equals

J{Y}(x1, x2, j|y1, y2, l, t) =


νδ(x1 − y1)

∫
P

δ
(
x2 − (y2 + b(y1, y2)p)

)
fP (p)dp,

j = 1, l = k.

νδ(x1 − y1)δ(x2 − y2), j = 2, 3, ..., k, l = j − 1

(46)

After the insertion of the jump probability intensity function into the general generating
equation (43) and integration with respect to x the problem-specific generating equations for
moments are obtained as

d

dt
E1

[
V (Y(t), t)

]
= E1

[
∂

∂t
V (Y(t), t)

]
+

n∑
r=1

E1

[
∂V (Y(t), t)

∂Yr
cr(Y(t), t)

]

+νEk

∫
P

V
(
Y(t) + b(Y)p, t

)
fP (p)dp

− νE1

[
V (Y(t), t)

]
,

d

dt
Ej

[
V (Y(t), t)

]
= Ej

[
∂

∂t
V (Y(t), t)

]
+

n∑
r=1

Ej

[
∂V (Y(t), t)

∂Yr
cr(Y(t), t)

]

+νEj−1

[
V (Y(t), t)

]
− νEj

[
V (Y(t), t)

]
, j = 2, 3, ..., k

(47)

The explicit equations for first-, second-, third- and fourth-order moments are obtained as
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d

dt
E1

[
Zi(t)

]
= E1

[
ci(Z(t))

]
+ νEk

[
Zi(t)

]
+ νE[P ]Ek

[
bi(Z(t))

]
− νE1

[
Zi(t)

]
d

dt
Ej

[
Zi(t)

]
= Ej

[
ci(Z(t))

]
+ νEj−1

[
Zi(t)

]
− νEj

[
Zi(t)

]
, j = 2, 3, ..., k (48)

d

dt
E1

[
Zi(t)Zl(t)

]
= 2

{
E1

[
Zicl(Z(t))

]}
s

+ νEk

[
Zi(t)Zl(t)

]
+ 2νE[P ]

{
Ek

[
Zibl(Z(t))

]}
s

+νE[P 2]Ek

[
bi(Z(t))bl(Z(t))

]
− νE1

[
Zi(t)Zl(t)

]
d

dt
E2

[
Zi(t)Zl(t)

]
= 2

{
Ej

[
Zicl(Z(t))

]}
s

+ νEj−1

[
Zi(t)Zl(t)

]
− νEj

[
Zi(t)Zl(t)

]
, j = 2, 3, ..., k

(49)

d

dt
E1

[
Zi(t)Zl(t)Zm(t)

]
= 3

{
E1

[
ZiZlcm(Z(t))

]}
s

+ νEk

[
Zi(t)Zl(t)Zm(t)

]
+3νE[P ]

{
Ek

[
ZiZlbm(Z(t))

]}
s

+ 3νE[P 2]

{
Ek

[
Zibl(Z(t)bm(Z(t))

]}
s

+νE[P 3]Ek

[
bi(Z(t))bl(Z(t))bm(Z(t)

]
− νE1

[
Zi(t)Zl(t)Zm(t)

]
d

dt
Ej

[
Zi(t)Zl(t)Zm(t)

]
= 3

{
Ej

[
ZiZlcm(Z(t))

]}
s

+ νEj−1

[
Zi(t)Zl(t)Zm(t)

]
−νEj

[
Zi(t)Zl(t)Zm(t)

]
j = 2, 3, ..., k (50)

d

dt
E1

[
Zi(t)Zl(t)Zm(t)Zn(t)

]
= 4

{
E1

[
ZiZlZmcn(Z(t))

]}
s

+ νEk

[
Zi(t)Zl(t)Zm(t)Zn(t)

]
+4νE[P ]

{
Ek

[
ZiZlZmbn(Z(t))

]}
s

+6νE[P 2]

{
Ek

[
ZiZlbm(Z(t)bn(Z(t))

]}
s

+4νE[P 3]Ek

[
Zibl(Z(t))bm(Z(t))bn(Z(t)

]
+νE[P 4]Ek

[
bi(Z(t))bl(Z(t))bm(Z(t))bn(Z(t)

]
−νE1

[
Zi(t)Zl(t)Zm(t)Zn(t)

]
d

dt
Ej

[
Zi(t)Zl(t)Zm(t)Zn(t)

]
= 4

{
Ej

[
ZiZlZmcn(Z(t))

]}
s

+ νEj−1

[
Zi(t)Zl(t)Zm(t)Zn(t)

]
−νEj

[
Zi(t)Zl(t)Zm(t)Zn(t)

]
, j = 2, 3, ..., k (51)

4.3. Example: response of a linear oscillator to an Erlang renewal impulse process with k = 2
Consider a linear oscillator under external excitation, governed by the equation

Ÿ + 2ζωẎ + ω2Y = b

R(t)∑
i=1

Piδ(t− ti), (52)
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or

dZ1(t) = Z2(t)dt

dZ2(t) =
(
−2ζωZ2(t)− ω2Z1(t)

)
dt+ bP (t)dR(t), (53)

hence c1(Z1, Z2, t) = Z2, c2(Z1, Z2, t) = −ω2Z1 − 2ζωZ2, b1 = 0, b2(Z1, Z2, t) = const. = b. The

equations for the mean values m(t) =
[
E1[Z1(t)], E2[Z1(t)], E1[Z2(t)], E2[Z2(t)]

]T
are obtained

from (47) as
d

dt
m(t) = A1m(t) + f1(t), (54)

where

A1 =


−ν ν 1 0
ν −ν 0 1
−ω2 0 −(2ζω + ν) ν

0 −ω2 ν −(2ζω + ν)

 , f1(t) =


0
0

νbE[P ]P2(t)
0

 . (55)

and P2(t) = Pr{S(t) = 2}.
According to (45), the usual-sense mean values E[Z1] and E[Z2] are

E[Z1] = E1[Z1] + E2[Z1], E[Z2] = E1[Z2] + E2[Z2], (56)

hence the equations for these mean values are obtained by pair-wise summation of the equations
(54, 55), which yields

d

dt
E[Z1] = E[Z2]

d

dt
E[Z2] = −ω2E[Z1]− 2ζωE[Z2] + νbE[P ]P2(t) (57)

The asymptotic, stationary mean values m = lim
t→∞

m(t) =
[
E1[Z1], E2[Z1], E1[Z2], E2[Z2

]T
are

governed by
A1m = −f1, (58)

with the stationary value of P2(t)

P2 =
1

2
(59)

In particular, the stationary solution for the mean value of the displacement response equals (cf.
[9])

E[Z1] =
νbE[P ]

2ω2
(60)

The equations for the ordinary second-order moments

µ(t) =
[
E1[Z2

1 ], E2[Z2
1 ], E1[Z1Z2], E2[Z1Z2], E1[Z2

2 ], E2[Z2
2 ]
]T

are obtained from (47) as

d

dt
µ(t) = A2µ(t) + f2(t), (61)

where

A2 =



−ν ν 2 0 0 0
ν −ν 0 2 0 0
−ω2 0 −(2ζω + ν) ν 1 0

0 −ω2 ν −(2ζω + ν) 0 1
0 0 −2ω2 0 −(4ζω + ν) ν
0 0 0 −2ω2 ν −(4ζω + ν)


, (62)
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f2(t) =



0
0

νbE[P ]E2[Z1]
0

2νbE[P ]E2[Z2] + νb2E[P 2]P2(t)
0


. (63)

The pair-wise summation of the equations (61 - 63) yields the equations for the usual-sense

ordinary second-order moments E
[
Zi(t)Zl(t)

]
d

dt
E[Z2

1 ] = 2E[Z1Z2],

d

dt
E[Z1Z2] = −ω2E[Z2

1 ]− 2ζωE[Z1Z2] + E[Z2
2 ] + νbE[P ]E2[Z1],

d

dt
E[Z2

2 ] = −2ω2E[Z1Z2]− 4ζωE[Z2
2 ] + 2νbE[P ]E2[Z2] + νb2E[P 2]P2(t) (64)

In order to obtain the asymptotic, stationary ordinary second-order moments E
[
ZrZs

]
the

stationary moments E2[Z1] and E2[Z2] must be determined from the equations (58). The results
are

E2[Z1] =
ν2bE[P ](ζω + ν)

ω2 (ω2 + 4ν(ζω + ν))
, E2[Z2] = − ν2bE[P ]

2 (ω2 + 4ν(ζω + ν))
. (65)

The stationary solution for the mean-square of the displacement response E[Z2
1 ] is

E[Z2
1 ] =

νb2E[P 2]

8ζω3
+

ν3b2E2[P ](ζω + ν)

ω2 (ω2 + 4ν(ζω + ν))

(
ζω + ν

ω2
− 1

4ζω

)
(66)

Assume the data: ω = 1 [s−1], ζ = 0.05, b = 1 [kg−1], ν = 20 [s−1], and assume that

the impulses magnitudes P are Rayleigh distributed with parameter σ = 0.1 [kg·ms ]. Hence

E[P ] = σ

√
π

2
= 0.12533 [kg·ms ], E[P 2] = 2σ2 = 0.02 [kg

2·m2

s2
].

Variance of the stationary displacement response

var(Z1) = E[Z2
1 ]− E2[Z1] = 2.178− 1.25332 = 0.607[m2] (67)

Mean value and variance of the response to Erlang renewal impulse process excitation were
determined in [9] with the aid of the method of state vector augmentation. The above value of
var(Z1) is in perfect agreement with the numerical results given in [9].

5. Conclusions
The review of the methods for determination of the response of mechanical dynamic systems
to Poisson and non-Poisson impulse process stochastic excitations is presented. Stochastic
differential and integro-differential counterparts of the usual differential equations of motion
are introduced. For systems driven by Poisson impulse process the following tools of the theory
of non-diffusive Markov processes are presented: the generalized Itô’s differential rule and the
forward integro-differential Chapman-Kolmogorov equation. It is shown how these tools allow
to derive the differential equations for response moments and the integro-differential equation
(Kolmogorov-Feller equation) governing the probability density of the response. The relation of
Poisson impulse process problems to the theory of diffusive Markov processes is also discussed.
For systems driven by a class of non-Poisson (Erlang renewal) impulse processes an exact
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conversion of the original non-Markov problem into a Markov one is based on the appended
Markov chain corresponding to the introduced auxiliary pure jump stochastic process. The
derivation of the set of integro-differential equations for response probability density and also a
moment equations technique are based on the forward integro-differential Chapman-Kolmogorov
equation. An illustrating numerical example is also included.
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