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Abstract
The paper is devoted to an adjoint complement to the universal Law of the Wall (LoW) 
for fluid dynamic momentum boundary layers. The latter typically follows from a strongly 
simplified, unidirectional shear flow under a constant stress assumption. We first derive 
the adjoint companion of the simplified momentum equation, while distinguishing between 
two strategies. Using mixing-length arguments, we demonstrate that the frozen turbulence 
strategy and a LoW-consistent (differentiated) approach provide virtually the same adjoint 
momentum equations, that differ only in a single scalar coefficient controlling the inclina-
tion in the logarithmic region. Moreover, it is seen that an adjoint LoW can be derived 
which resembles its primal counterpart in many aspects. The strategy is also compatible 
with wall-function assumptions for prominent RANS-type two-equation turbulence mod-
els, which ground on the mixing-length hypothesis. As a direct consequence of the fre-
quently employed assumption that all primal flow properties algebraically scale with the 
friction velocity, it is demonstrated that a simple algebraic expression provides a consistent 
closure of the adjoint momentum equation in the logarithmic layer. This algebraic adjoint 
closure might also serve as an approximation for more general adjoint flow optimization 
studies using standard one- or two-equation Boussinesq-viscosity models for the primal 
flow. Results obtained from the suggested algebraic closure are verified against the primal/
adjoint LoW formulations for both, low- and high-Re settings. Applications included in 
this paper refer to two- and three-dimensional shape optimizations of internal and external 
engineering flows. Related results indicate that the proposed adjoint algebraic turbulence 
closure accelerates the optimization process and provides improved optima at no computa-
tional surplus in comparison to the frozen turbulence approach.
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1  Introduction

This paper is concerned with the formulation of an adjoint Law of the Wall (LoW) serv-
ing the formulation of momentum boundary conditions in an adjoint analysis and a related 
algebraic treatment of turbulence in the adjoint framework. In the context of local fluid 
dynamic optimization, the adjoint analysis aims at the efficient computation of deriva-
tive information for an integral objective functional with respect to (w.r.t) a general con-
trol function (Giles and Pierce 1997, 2000; Papoutsis-Kiachagias and Giannakoglou 2016; 
Kröger et  al. 2018; Kapellos et  al. 2019). In continuous space, the dual or adjoint flow 
state can be interpreted as a co-state and always follows from the underlying primal Par-
tial Differential Equation (PDE) governed model that describes the flow physics. However, 
the appropriate formulation of boundary conditions is often not intuitively clear in a PDE-
based, continuous adjoint framework and the development of numerical strategies clearly 
lags behind the primal progress (Soto and Löhner 2004; Othmer 2008; Zymaris et al. 2010; 
Stück and Rung 2013; Othmer 2014).

Modelling equations for the turbulent closure appear comparatively complex already 
on the primal side. The latter is underlined by an unfavourable algorithmic complexity 
that contains possibly non-differentiable expressions making it unhandy for a continuous 
adjoint approach which has motivated the neglect of adjoint turbulence models in line 
with the frozen turbulence approach (Soto et al. 2004; Othmer 2008; Dwight and Brézil-
lon 2006). However, the influence of the variation of the turbulence parameters is an open 
discussion (Marta and Shankaran 2013; Dwight and Brézillon 2006) which is why discrete 
adjoint approaches using automatic differentiation have been derived that aim at a syn-
chronization of the primal and dual turbulent development states, cf. Nielsen et al. (2004), 
Nielsen et  al. (2010), Nielsen and Diskin (2013). The discrete approach passes over the 
adjoint PDE and directly bridges the discrete linearized primal flow into a consistent dis-
crete dual approach, cf. Giles and Pierce (1997), Giles and Pierce (2000) or Vassberg and 
Jameson (2006), Vassberg and Jameson (2006). Despite the various merits and drawbacks 
of the discrete vs. the continuous adjoint method, the latter is unique for its invaluable con-
tribution to a physical understanding. The development of the continuous adjoint method 
w.r.t. adjoint turbulence modelling initially started with the derivation of adjoint one equa-
tion closures (Zymaris et al. 2009; Bueno-Orovio et al. 2012; Bagheri and Da Ronch 2020) 
followed by the complete linearization of prominent statistical closures, e.g. an adjoint 
k − � (Papoutsis-Kiachagias et al. 2015; Zymaris et al. 2010) and k − � (Kavvadias et al. 
2015; Hartmann et  al. 2011; Manservisi and Menghini 2016a, b) model. All previously 
mentioned contributions share the idea of deriving adjoint turbulence modelling equations. 
Optimizations of complex engineering flows using fully consistent, differentiated turbu-
lence transport models are comparatively rare and an overview of applications of continu-
ous adjoint methods, including various differentiated turbulence models, is documented in 
Papoutsis-Kiachagias and Giannakoglou (2016). Primal turbulence transport models inhere 
multiple non-linearities and inter-parameter couplings, that might significantly hamper 
the robustness and the efficiency of a consistent adjoint framework and hinder their utili-
zation in engineering applications. On the other hand, the continuous adjoint framework 
gives access to dedicated adjoint turbulence modelling at a lower level of adjoint consist-
ency. Thus, one research question of the present effort is to investigate the potential of an 
improved frozen turbulence approach that retains the algorithmic and efficiency benefits.

In contrast to former studies, our study originates from analysing the adjoint com-
plement to a simple unidirectional turbulent shear flow, which is the foundation of the 
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universal Law of the Wall that governs virtually all wall function based turbulent bound-
ary conditions using the mixing-length hypothesis (Prandtl 1925; Pope 2001). We believe 
that there is a fundamental interest into an analytical formulation for a continuous adjoint 
complement to the momentum law of the wall, since the concept is (and perhaps will be) 
intensively employed by turbulent flow simulations using wall functions. To this extent, the 
paper distinguishes between two adjoint turbulence formulations, i.e. an algebraic, mix-
ing-length based approach and a simple frozen turbulence approach. With reference to the 
adjoint LoW, both formulations differ only in a single scalar coefficient in the logarithmic 
region and a simple scaling with the ratio of the friction velocities. The analysis suggests 
a surprisingly simple algebraic approximation for an adjoint turbulence treatment. Results 
obtained by this strategy are deemed consistent to LoW physics and indicate improvements 
over the frozen turbulence assumption when applied to more general flows without solving 
an adjoint turbulence transport model.

The remainder of the paper is organized as follows: Sections   2 and 3 are concerned 
with the derivation of the adjoint unidirectional shear flow equations for a frozen as well 
as a consistently linearized turbulent viscosity contribution. The subsequent Sect. 4 derives 
an adjoint complement to the primal LoW. In Sect. 5 we discuss our findings w.r.t. more 
sophisticated two-equation turbulence models. Verification studies are presented in the 6th 
section. Section 7 scrutinizes the performance of the suggested algebraic model for sev-
eral internal and external shape optimization examples of engineering relevance. The final 
Sect.  8 provides conclusions and outlines future research. Within the publication, Ein-
stein’s summation convention is used for lower-case Latin subscripts and vectors as well as 
tensors are defined with reference to Cartesian coordinates.

2 � Primal Unidirectional Shear Flow

We start with a brief discussion of a simple—yet commonly used—incompressible primal 
flow description. The discussion is confined to plane wall flows, using a local orthogonal coor-
dinate system as illustrated in Fig. 1, where y denotes the wall normal coordinate or distance 
and x refers to the wall tangential direction. The flow field is usually considered to be fully 
developed and assumed as uni-directional, i.e. u(y) in the vicinity of the wall. Extensions to 

Fig. 1   Investigated turbulent channel flow. Sketch of the considered geometry (a) and computational grid 
(b) for an exemplary Reynolds-number of ReH = 107
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more general curved near wall flows have been published in Zymaris et al. (2010), Lübcke 
et al. (2001) but are not considered here to save space. A key element of the concept—which 
is crucial for the formulation of boundary conditions for turbulent wall flows—is the constant 
shear stress hypothesis. The latter assumes �eff = const. for the inner region of a wall boundary 
layer y∕Δ << 1 where y = Δ denotes the outer edge of the boundary layer. The simple rela-
tion substitutes the momentum equation above the wall and supports the derivation of both the 
primal and the adjoint LoW, viz.

The validity of (1) is restricted to approximately the inner 20% of the boundary layer and 
widens with increasing boundary-layer thickness, cf. Pope (2001), Wilcox (1998). An 
isotropic Boussinesq-viscosity model (BVM) is frequently employed in the majority of 
Reynolds-averaged Navier-Stokes (RANS) or large-eddy simulation (LES) frameworks 
to supplement the laminar, molecular stress �l = � du∕dy by a companion turbulent stress 
�t = �t du∕dy and close the formulation. Mind that despite the particular turbulence model 
employed to determine �t , e.g. the k − � , k − � or �t formulation (Wilcox 1998; Spalart 
and Allmaras 1992), their values usually comply with the mixing length hypothesis in the 
logarithmic layer, i.e. �t = �(� y)2du∕dy , where ( �y ) denotes the mixing length and � is the 
von-Karman constant.

3 � Adjoint Unidirectional Shear Flow

The adjoint system studied herein should provide gradient information for a boundary-
based objective jΓ w.r.t a general control parameter, e.g. the shape of the wall ( �yjΓ ). For 
this purpose, a variation of the fluid velocity will be attached to a perturbation in wall nor-
mal direction if the wall is examined for its optimization potential. Based on the concept 
of material derivative, a linear development of the local flow w.r.t. a perturbation in wall 
normal direction yields �u = −(du∕dy)�y , cf. Soto and Löhner (2004), Othmer (2008), 
Schmidt and Schulz (2009), Stück and Rung (2013). A widely used exemplary objective 
refers to the flow induced shear force jΓ = �eff[du∕dy] along the wall. We would like to 
point out that there are different adjoint answers to the same question, e.g. regarding fluid 
flow-induced forces (Kühl et al. 2019, 2021). If attention is given to a boundary layer, e.g. 
the lower half of a channel outlined in Fig. 1, the constraint optimization problem is trans-
formed into an unconstrained formulation based on a Lagrangian L

where the index (⋅)w denotes to a wall value. Equation (2) inheres a Lagrangian multiplier 
û which is frequently labeled as the dual or adjoint velocity. Its dimension depends on the 
underlying objective, e.g. [û] = [J]∕([Ru]m2) where [J] = [jΓ]m represents the units of the 
boundary-based objective. The total variation of the Lagrangian leads to the adjoint equa-
tion. Using � �eff = �eff together with a constant density � , we obtain

(1)Ru ∶
d�eff

dy
=

d

dy

[
�eff

du

dy

]
= 0 , with �eff = � + �t .

(2)min J = 𝜇eff

du

dy

||||w s.t. Ru = 0 → L = J + ∫
Δ

w

ûRu dy ,

(3)𝛿L = (𝛿𝜈eff)
du

dy

||||w + 𝜈eff
d(𝛿u)

dy

||||w + ∫
Δ

w

û

[
d

dy

[
(𝛿𝜈eff)

du

dy
+ 𝜈eff

d(𝛿u)

dy

]]
dy .
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The frozen turbulence assumption neglects the variation of the turbulent viscosity, i.e. 
��eff = 0 . An isolation of �u allows the formulation of first order optimality conditions, viz.

Here y = Δ marks the position of the outer boundary. The adjoint equation to (1) follows 
from the integral expression in (4) and reads

The asterisk (F) indicates the adjoint equation based on the frozen turbulence assumption 
that resembles its primal counterpart in a self-adjoint manner. The boundary conditions 
along the wall as well as the outer boundary follow from the remaining terms, viz.

A consistent approach also considers the variation of the turbulent viscosity. Thanks to 
the employed mixing length hypothesis, the turbulent viscosity exclusively depends on the 
tangential mean velocity and the related variation reads ��eff = (�y)2 (d(�u)∕dy) . The latter 
augments (4) towards a consistent total variation

Interestingly, (8) resembles (4) by doubling the turbulent contribution. Hence, the consist-
ent (C) adjoint to (1) reads

The asterisk (C) serves to separate the adjoint formulation based on the consistent alge-
braic turbulence model from the frozen turbulence framework. Necessary boundary condi-
tions follow again from the boundary parts in (8) and agree with Eqs. (6)-(7).

A sensitivity rule of the objective w.r.t. a general control variable depends on the 
definition as well as on the nature of the control. E.g. the relation �u = 0 (cf. Eq. (7)) 
along the channel wall holds as long as the wall is not subjected to control. However, 
if the wall is examined for its optimization potential, further variational contributions 
follow from a general shape calculus and are available based on a linear development of 

(4)
𝛿uL ⋅ 𝛿u = 𝜈eff

d(𝛿u)

dy

||||w +

[
𝜈eff

(
û
d(𝛿u)

dy
−

dû

dy
(𝛿u)

)]Δ
w

+ ∫
Δ

w

𝛿u

[
d

dy

[
𝜈eff

dû

dy

]]
dy

!
= 0 ∀ 𝛿u .

(5)R̂û,F ∶
d

dy

[
(𝜈 + 𝜈t)

dû

dy

]
= 0 .

(6)

y = Δ ∶

[
û
d(𝛿u)

dy
−

dû

dy
(𝛿u)

]
with 𝛿

(
du

dy

)
=

d(𝛿u)

dy
= 0 →

dû

dy

||||Δ = 0

(7)

y = w ∶

[
(1 + û)

d(𝛿u)

dy
−

dû

dy
(𝛿u)

]
with 𝛿u = 0 → û||w = −1.

(8)
𝛿uL ⋅ 𝛿u = (𝜈eff + 𝜈t)

d(𝛿u)

dy

||||w +

[
(𝜈eff + 𝜈t)

(
û
d(𝛿u)

dy
−

dû

dy
(𝛿u)

)]Δ
w

+ ∫
Δ

w

𝛿u

[
d

dy

[
(𝜈eff + 𝜈t)

dû

dy

]]
dy

!
= 0 ∀ 𝛿u.

(9)R̂û,C ∶
d

dy

[(
𝜈 + 2𝜈t

)dû
dy

]
= 0.
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the local flow w.r.t. a perturbation in wall normal direction �u = −(du∕dy)�y . The latter 
yields a shape sensitivity derivative expression

along the controlled part of the channel boundary and we refer to Soto et al. (2004), Soto 
and Löhner (2004), Othmer (2008), Kühl et al. (2019) for a detailed discussion. The coef-
ficient � = 1 [ � = 2 ] accounts for a frozen [consistent] algebraic formulation.

4 � Law of the Wall

The primal flow description (1) refers to a unidirectional shear flow and assumes a constant 
near wall stress. According to its units, the constant stress �eff is anticipated to be proportional 
to the square of a friction velocity U� , viz. �eff ∶= �U2

�
 . The two-layer model assumes a van-

ishing turbulent stress in the immediate vicinity of the turbulence damping wall ( �t∕� → 0 ), 
frequently labeled as viscous sub-layer, and the opposite behavior beyond a certain wall-nor-
mal distance, i.e. inside the logarithmic-layer, where �∕�t → 0 . Using � = �∕� and �t = �t∕� , 
Eq. (1) is usually integrated separately for both limit cases

where ỹ represents the (theoretical) intersection of the sub- and the logarithmic-layer solu-
tion. The use of a no-slip condition along the wall, i.e. at y = w , returns uw = C1 = 0 . 
The integration constant C2 is chosen such that the desired transition point is realized and 
thereby hinges on the choice of � . Using non-dimensional parameters based on inner scal-
ing, i.e. y+ = U�y∕� and u+∶=u∕U� , yields a more compact form of the LoW (12), viz.

where the former constant C2 is turned into a non-dimensional constant B. Frequently 
used parameter combinations refer to � = 0.4 and B = 5 to match ỹ+ ≈ 11 . In reality the 
transition from the near-wall to the logarithmic-layer solution spreads over a small region 
labeled as buffer-layer.

The adjoint complement to the LoW (13) also follows the two-layer ansatz. In line with 
(1), (4) and (9), the adjoint shear flow also features a constant adjoint shear stress, viz.

Equation (14) utilizes a coefficient � to switch between the frozen (F; � = 1 ) and the con-
sistent (C; � = 2 ) algebraic approach. Along the route of the primal flow, the adjoint stress 
𝜏eff is anticipated to behave proportional to the square of an adjoint friction velocity Û𝜏 . 
The two-layer model inherited from the primal flow restricts the effective viscosity of the 

(10)

y = w ∶ 𝛿yL ⋅ 𝛿y = 𝛿yjΓ ⋅ 𝛿y + 𝜈eff
dû

dy

du

dy
𝛿y

!
= 0 ∀ 𝛿y → 𝛿yjΓ = −(𝜈 + 𝛽𝜈t)

dû

dy

||||w
du

dy

||||w

(11)y < ỹ ∶ U2
𝜏
= 𝜈

du

dy
→ u =

U2
τ

𝜈
y + C1 ,

(12)y ≥ ỹ ∶ U2
𝜏
= (𝜅y)2

||||
du

dy

||||
du

dy
→ u =

Uτ

𝜅
ln(y) + C2 ,

(13)u+ =

{
y+ for y+ < ỹ+

1

𝜅
ln (y+) + B for y+ ≥ ỹ+ ,

(14)
d𝜏eff

dy
= 0 , → 𝜏eff = 𝜏l + 𝜏t = (𝜇 + 𝛽𝜇t)

dû

dy
= const. =∶ 𝜌 Û2

𝜏
.
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viscous layer ( �t∕� → 0 ) and the log-layer ( �∕�t → 0 ). Analogue to the primal derivation, 
Eq. (14) is integrated separately for both cases

Note that the primal velocity gradient in the logarithmic regime du∕dy was replaced by 
U�∕(�y) to solve for the adjoint tangential velocity. Applying a similar velocity normaliza-
tion, i.e. û+∶=û∕Û𝜏 , yields a compact form of the adjoint LoW similar to (13), viz.

Despite a possible shift due to non-intuitive boundary conditions, the adjoint LoW resem-
bles the primal counterpart scaled by the friction velocity ratio (Û𝜏∕U𝜏 ) and employs half 
the logarithmic inclination by the parameter � for the consistent approach.

Since the adjoint field quantities are mathematically motivated, their adjoint boundary 
conditions enter the integration constants in Eqs. (15)–(16). Depending on the objective 
under investigation, the adjoint velocity potentially experiences a non-zero boundary con-
dition along no-slip walls, hence Ĉ1 = ûw , e.g. Ĉ1 = −1 if the shear stress objective from 
Sect. 2 is considered. The piece-wise continuous transition from the sub- towards the loga-
rithmic-layer is ensured by an appropriate value of Ĉ2 . The latter is reformulated into B̂ as 
an adjoint counterpart of the primal B. Using

we conclude that the adjoint B̂ follows from the primal B, where the latter is augmented by 
a constant shift in line with the prescribed boundary condition for the adjoint velocity, viz.

5 � Adjoint Two‑Equation Wall Functions

This section tries to convey the notion that the simple manipulation of adjoint turbulence 
viscosity also supports more general BVM. We refer to the frequently used baseline k − � 
model (Jones and Launder 1972) as an exemplary turbulence closure of the primal flow 
equations. The employed wall boundary conditions are of significance. They refer to stand-
ard approaches, used by most engineering finite volume methods, and employ a prescribed 
shear stress �w = �eff as well as pressure load on the wall face of the wall adjacent elements 
to close the primal momentum equations. Zero wall-normal gradients for the turbulent 

(15)y ≤ ỹ ∶ Û2
𝜏
= 𝜈

dû

dy
→ û =

Û2
𝜏

𝜈
y + Ĉ1,

(16)y ≥ ỹ ∶ Û2
𝜏
= 𝛽(𝜅y)2

du

dy

dû

dy
→ û =

1

𝛽

(
Û𝜏

U𝜏

)
Û𝜏

𝜅
ln(y) + Ĉ2 .

(17)û+ =

⎧⎪⎨⎪⎩

y+
Û𝜏

U𝜏

+
ûw

Û𝜏

for y+ < ỹ+

1

𝛽 𝜅
ln (y+)

�
Û𝜏

U𝜏

�
+ B̂ for y+ ≥ ỹ+

.

(18)ỹ+
Û𝜏

U𝜏

+
ûw

Û𝜏

!
=

1

𝛽 𝜅
ln (ỹ+)

Û𝜏

U𝜏

+ B̂ and ỹ+
!
=

1

𝜅
ln (ỹ+) + B

(19)B̂ =
ûw

Û𝜏

+
Û𝜏

U𝜏

[
B

𝛽
+ ỹ+

(
1 −

1

𝛽

)]
.
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kinetic energy (TKE) k and a prescribed near wall value of the energy dissipation � , includ-
ing the assurance of the local turbulence equilibrium Pk = � in the wall adjacent node / cell 
/ element, serve to close the primal turbulence model equations, cf. Wilcox (1998). The 
study resembles the investigation already performed in Sect. 2 by directly imposing either 
the primal low-Re or high-Re formulation.

The algorithmic structure for the low- and the high-Re situation is identical. The only 
difference refers to assigned specific values for the wall shear in line with either of the two 
solutions (13), and the near wall value of � which accommodates to the low- ( � = 2�k∕y2 ) 
or the high-Re situation ( � = u3

�
∕(�y) = (

√
C�k)

3∕2∕(�y) ). As regards the adjoint approach, 
we only consider the adjoint momentum. The wall value ûw does—of course—not differ for 
the low- and the high-Re situation. However, when attention is given to high-Re simula-
tions, the resolution of û in the very near-wall region is deemed computationally expensive 
and it is more convenient to follow the same implementation strategy as for the primal 
flow.

In the following, our exemplary objective again refers to the fluid flow induced shear 
force.

Employing a low-Re approach, one frequently imposes

for the turbulent quantities in the very near-wall regime. This allows for the construction of 
a Lagrangian, viz.

The variation of (21)reads

and can be rearranged to apply first order optimality conditions, viz.

The adjoint low-Re formulation follows from the integral in (23) and yields

and agrees with the observations already documented in the frozen turbulence part 
of Sect.  2, cf. Eq.  (5). Mind that (23) is also fulfilled if �k∕�y is employed, hence 
𝜕(𝛿k)∕𝜕y = 0 → 𝜕k̂∕𝜕y = 0 . The boundary conditions for the low-Re formulation follow 
from the remaining terms in (23) that can be collected in a compact form and subsequently 
eliminated, viz.

(20)k = 0, � = 2�
k

y2
and thus �t = 0

(21)L =

[
𝜈
du

dy

]

w

+ ∫
Δ

w

[
û
d

dy

[
𝜈

(
du

dy

)]
+ k̂[k] + 𝜖

[
𝜖 − 2𝜈

k

y2

]]
dy .

(22)𝛿L =

[
𝜈
d(𝛿u)

dy

]

w

+ ∫
Δ

w

[
û
d

dy

[
𝜈

(
d(𝛿u)

dy

)]
+ k̂[𝛿k] + 𝜖

[
𝛿𝜖 − 2𝜈

𝛿k

y2

]]
dy

(23)
𝛿L =

[
𝜈
d(𝛿u)

dy

]

w

+ 𝜈

[
û
d(𝛿u)

dy
−

dû

dy
(𝛿u)

]Δ
w

+ ∫
Δ

w

[
(𝛿u)

d

dy

[
𝜈
dû

dy

]

+𝛿k

[
k̂ − 𝜖

2𝜈

y2

]
+ 𝛿𝜖[𝜖]

]
dy

!
= 0 ∀ (𝛿u, 𝛿k, 𝛿𝜖) .

(24)𝜖 = 0 and k̂ = 0 → ∫
Δ

w

[
d

dy

[
𝜈
dû

dy

]]
dy = 0
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This again confirms the findings of Sect. 2 and Eqs. (6)–(7). Equation (26) is fulfilled if 
either

holds that allows for a low-Re (LR) shape derivative expression (cf. Eq. (10)) if a linear 
development of the local flow w.r.t. a perturbation in wall normal direction is applied.

Employing a high-Re k − � formulation, one frequently imposes

Hence, a possible Lagrangian, that is valid within the logarithmic layer [or in the first node 
/ cell / element] from a continuous [discrete] perspective, reads

Substituting � = U3
�
∕(�y) = (k

√
C�)

3∕2∕(�y) as well as (�y)du∕dy = U� = (k
√
C�)

1∕2 we 
end up with

A subsequent total variation reads

The variations of primal velocity and the TKE are isolated to

(25)

y = Δ ∶

[
û
d(𝛿u)

dy
−

dû

dy
(𝛿u)
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Rewriting (32) by expressing everything in terms of the primal friction velocity U� yields

Ensuring a vanishing Lagrangian for all possible variations finally yields the adjoint wall 
functions, viz.

Interestingly, the adjoint dissipation rate is identical zero whereas the adjoint TKE remains 
as a passive scalar that enters the adjoint shear to form the same expression as in Eq. (8) 
w.r.t. a doubled turbulent viscosity. The boundary conditions for the high-Re formulation 
follow from the remaining terms in (33) that can be collected in a compact form and subse-
quently eliminated, viz.
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 in line with Eq. (10) resulting from the fully continuous derivation in Sect. 2. Similar to 
the low-Re formulation, Eq. (36) is again fulfilled if either

holds that allows for a high-Re (HR) shape derivative expression based on twice the tur-
bulent viscosity (cf. Eq. (10)). We thus use stress conditions and prescribe 𝜏w = 𝜏eff and p̂ 
instead of a simple Dirichlet condition û(y = w) = ûw , which helps to match with the wall 
function (17). Mind that, due to the employed objective function, the adjoint flow often 
features moving walls, cf. Kühl et al. (2019).

We conclude that there is no need for further adjoint turbulent equations in the range of 
validity of the adjoint LoW if the above presented wall function based two-equation clo-
sure is employed, except a volumetric objective is considered that explicitly depends on the 
turbulent quantities. The reason for this is the algebraic scaling of all mean flow and turbu-
lence parameters with the friction velocity U� within the logarithmic-layer.

6 � Verifications

The verfication study refers to a 2D turbulent channel flow at Reynolds-numbers between 
106 ≤ ReH = UH∕� ≤ 108 based on the channel height H, the bulk velocity U and the kin-
ematic fluid viscosity � , cf. Fig. 1.

For the sake of clarity, we explicitly state the complete underlying primal and adjoint 
balance equations used for all verification and application cases. The mean fluid velocity vi 
and pressure p follow from the steady incompressible RANS equations

where Sik = 1∕2(�vi∕�xk + �vk∕�xi) and �ik represent the symmetric strain rate tensor as 
well as the Kronecker delta, respectively. Mind that we switch the notation compared to 
the unidirectional setting, viz. u∶=v1 and û∶=v̂1 from now on. Corresponding boundary 
conditions are given in Stück and Rung (2013), Kröger et al. (2018), Kühl et al. (2019), 
Kühl et al. (2021). As already mentioned, wall function expressions often involve singu-
larities at the wall and/or high-order polynomial behaviour beyond the capabilities of the 
numerical discretization. Thus—rather than using wall values—wall function expressions 
often replace the governing equations in the wall adjacent discrete node / cell / element. 
The verification involves two turbulence closures for the primal flow. The low-Re study 
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aims to verify the predictive agreement with the adjoint LoW (17) and therefore employs 
a mixing-length model supplemented by a van-Driest (Van Driest 1956) damping function 
fvD = 1 − exp(−y+∕A+) , i.e. �t = (� yw fvD)

2(du∕dy) . Here yw represents the normal dis-
tance to the nearest wall and A+ was assigned to A+ = 27 . A standard k − � model (Jones 
and Launder 1972) serves as a closure for the high-Re study. In the absence of volume 
based objective functional, the adjoint equations to (38)–(39) read:

It should be noted that the adjoint equations possibly experience twice the primal turbulent 
viscosity since � = 2 [ � = 1 ] is chosen in the consistent [frozen] case. Strictly speaking, 
the suggested approach is only consistent in the immediate wall vicinity. Hence, only the 
sub-layer and the logarithmic region of the channel flow correspond to a truly consistent 
adjoint turbulence model. The consistency is lost for the outer layer, while all applications 
in Sect. 7 can only refer to a formulation that is deemed to feature an enhanced consistency 
compared to the frozen turbulence approach. Mind that shape optimization problems are 
by definition interested in the primal / adjoint near wall flow, hence a consistent adjoint 
formulation is particularly relevant in this region. Using a two-equation model the consist-
ency is restricted to the momentum equation and assumes the eddy-viscosity distribution to 
agree with the mixing-length results. Figure 2 validates the compliance of both approaches 
for high-Re simulations over the normalized wall distance.

A boundary based objective functional is considered that accounts for the fluid flow 
induced force JF , viz.

Hence, the local objective reads jF
Γ
= (p�ik − 2�effSik)nkri which in turn enters the adjoint 

boundary conditions and we refer to Stück and Rung (2013), Kühl et  al. (2019) for a 
detailed overview. The force objective coincides with the pure shear objective (cf. Sect. 2) 
augmented by a pressure contribution projected into a certain spatial direction ri . After a 

(40)R̂i ∶ −𝜌vk
𝜕v̂i

𝜕xk
+ 𝜌v̂k

𝜕vk

𝜕xi
+

𝜕

𝜕xk

[
p̂𝛿ik − 2

(
𝜇 + 𝛽𝜇t

)
Ŝik

]
= 0

(41)Q̂ ∶ −
𝜕v̂k

𝜕xk
= 0.

(42)JF = ∫ΓW

(
p�ik − 2�effSik

)
nkridΓ .

Fig. 2   Comparison of field values for the normalized mean flow (left), turbulent viscosity (center) and 
Reynolds stresses (u�v�)

+
= (|u�v�|)∕U2

�
 (right) predicted by a mixing-length (open symbols) and a k − � 

(closed symbols) BVM
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successfully approximation of the primal and adjoint field equations, a shape sensitivity 
can be derived along the controlled design wall (Stück and Rung 2013; Kühl et al. 2019, 
2021)

Equations (38)–(41) are approximated using the Finite-Volume procedure FreSCo+ (Rung 
et al. 2009). Analogue to the use of integration-by-parts in deriving the continuous adjoint 
equations, summation-by-parts is employed to derive the building blocks of the discrete 
(dual) adjoint expressions. A detailed derivation of this hybrid adjoint approach can be 
found in Stück and Rung (2013), Kröger et al. (2018), Kühl et al. (2021). The segregated 
algorithm uses a cell-centered, collocated storage arrangement for all transport proper-
ties. The implicit numerical approximation is second order accurate and supports poly-
hedral cells. Both, the primal and adjoint pressure-velocity coupling is based on a SIM-
PLE method and possible parallelization is realized by means of a domain decomposition 
approach (Yakubov et al. 2013, 2015). In all cases, the convective term for primal [adjoint] 
momentum is approximated using the QUICK [QU(D)ICK] scheme. Periodic boundary 
conditions are employed between the inlet and the outlet. A friction condition is used along 
the top and bottom boundaries in conjunction with low-Re and high-Re grids. The numeri-
cal grids consist of 4 × 250 finite volumes and the wall normal resolutions reach down to 
y+ = O(10−1) for the low-Re cases and y+ ≈ 50 for the high-Re cases.

Figure 3 depicts the result of the low-Re studies. For all investigated Reynolds num-
bers, the results are in remarkably fair predictive agreement with the respective LoW (13) 
and (17). All results feature a narrow buffer-layer region triggered by the employed van-
Driest term. Figure 4 depicts the results obtained for the high-Re simulations. It is seen, 
that the log-layer branch of the two solutions (13) and (17) is again matched fairly accurate 
in combination with a k − � BVM and we conclude, that the adjoint LoW for momentum 
is compatible with the above suggested approach. These results encourage us to scrutinize 
the performance of the simple adjoint algebraic turbulence closure for more complex cases 
beyond the limits of unidirectional attached shear flows in the following section.

(43)𝛿uJ = ∫ΓD

𝛿ujΓ dΓO with 𝛿ujΓ = −𝛽𝜈eff
𝜕vi

𝜕xj

𝜕v̂i

𝜕xk
njnk.

Fig. 3   Comparison of predicted primal and adjoint velocity profiles using the frozen turbulence (F) as 
well as the LoW-consistent (C) approach for a turbulent channel flow at Reynolds-numbers between 
106 ≤ ReH ≤ 108 increasing from left to right (low-Reynolds formulation)
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7 � Applications

The application part of the manuscript reports the predictive performance of the alge-
braic LoW-consistent closure in more relevant engineering-type flows. Examples included 
exclusively refer to k − � primal flow turbulence modelling in combination with high-Re 
wall functions. Hence, the wall normal resolutions reach down to y+ ≈ 50 for all consid-
ered studies. The upcoming studies investigate precisely Eq. (43) and it is distinguished 
whether the respective study aims at the local integrand or the global integral of the sen-
sitivity derivative. The focal points of interest are (a) a comparison of initial (local) shape 
sensitivities predicted by the adjoint frozen (F) and the LoW-consistent (C) adjoint turbu-
lence closure, and (b) their respective influence on a (global), complete, gradient (steep-
est descent) based shape optimizations using a CAD-free (aka node-based) optimization 
framework. The shape optimization approaches herein operate in the design space of the 
discrete CFD surface that allows to access local features and shape optima on the level of 
the discrete CFD resolution. The "raw" adjoint shape derivatives suffer from a few well-
known weaknesses, e.g. they only describe the normal deformation but do not provide 
tangential information and the shape derivatives are not necessarily smooth. These defi-
ciencies yield rough/noisy shape updates (cf. Stück and Rung (2011), Kröger and Rung 
(2015)) and lead to distorted near-wall meshes which in turn hamper the preservation of 
numerical accuracy during the optimization procedure, e.g. Stavropoulou et al. (2014) and 
Bletzinger (2014). As a consequence, the adjoint shape derivatives have to be regularized 
to obtain meaningful technical shape updates based on the inherently smooth shape gradi-
ent. In general, the habitat of the shape gradient—surface versus volume based—depends 
on the underlying surface metric and prominent examples refer to Laplace-Beltrami (LB) 
or Steklov-Poincaré (SP) type metrics, e.g. Schulz and Siebenborn (2016). The optimiza-
tions in this manuscript employ the LB (Stück and Rung 2011; Kröger and Rung 2015) 
[SP (Schulz and Siebenborn 2016; Haubner et al. 2021; Kühl et al. 2021)] type approach 
for the external [internal] flows. Initial applications refer to two-dimensional investigations 
ranging from external to internal flows. The final application refers to the optimization of a 
three-dimensional ducted geometry.

Fig. 4   Comparison of predicted primal and adjoint velocity profiles using the frozen turbulence (F) as 
well as the LoW-consistent (C) approach for a turbulent channel flow at Reynolds-numbers between 
106 ≤ ReH ≤ 108 increasing from left to right (high-Reynolds formulation)
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7.1 � 2D External: Pointed Oval

The first test case examines a two dimensional elliptic, pointed oval geometry of length 
[height] L [L/2] under a Reynolds-number of ReL = U L∕� = 106 where U and � refer to 
the bulk velocity and kinematic viscosity, respectively, cf. Fig. 5a and 6 (left). The inves-
tigated oval employs a height h to length ratio of h∕L = 1∕2 . The structured numerical 
grid consists of 11 600 control volumes and the obstacle is discretized with 200 surface 
elements as depicted in Fig. 5b. A homogeneous velocity is imposed along the inlet, a zero 
pressure value is prescribed at the outlet and slip-walls are employed along the top and bot-
tom boundary. The obstacle is optimized w.r.t. the total resistance JF (cf. Eq. (42)). In line 
with the habitat of the objective (42), the adjoint velocity reads v̂i = −ri = −𝛿1i along the 
design surface.

The initial shape sensitivities along the upper side resulting from both employed adjoint 
formulations (F vs. C) are shown in Fig. 6 (center). Notable quantitative differences are 
observed in the maximum absolute sensitivity. Moreover, qualitative differences occur due 
to the deviating signs in the vicinity of the leading and trailing edge. While the former 
should primarily result in an accelerated optimization, the latter points to possibly different 
optimal solutions. For this reason, two optimizations were performed, i.e. one for a convex 
problem, that should exclusively reveal convergence speed differences, and one for a non-
convex problem.

Fig. 5   Pointed oval ( ReL = 106 ): (a) Illustration of the considered geometry and (b) computational grid for 
the flow around a pointed oval. Red lines indicate the design region

Fig. 6   Pointed oval ( ReL = 106 ): (Left) initial and optimized shapes, (center) initial upper wall shape sen-
sitivities predicted by the frozen (F) and consistent (C) approach, and (right) objective convergence for the 
geometrically unconstrained optimization of the flow around
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The first study uses an identical step size in combination with a Laplace-Beltrami 
surface metric, which extracts the inherently smooth shape gradient out of the possibly 
rough shape derivative, viz. g − h2ΔΓg = s where g and ΔΓ = �2∕�x2

k
− �2∕�n2 represent 

the shape gradient as well as the Laplace-Beltrami operator, respectively (Stück and 
Rung 2011; Kröger and Rung 2015). The utilized step size was chosen to ensure a maxi-
mum first displacement d of d∕L = 1∕1000 for the consistent optimization. The mathe-
matically convex problem should physically converge to a flat plate boundary layer flow. 
The convergence of the drag objective is documented in Fig. 6 (right) where both strate-
gies yield almost the same optimal value that drops by approximately 85%. However, 
the LoW-consistent approach converges approximately 30% faster compared to the fro-
zen turbulence approach. Note that an increased effective viscosity within the consistent 
adjoint wall functions also affects the sensitivity derivative, cf. Eqs. (10), (27), (37) and 
(43). The optimized shapes are depicted in Fig. 6 (left) and the deviation of their opti-
mal drag value is below 2% w.r.t. the non-dimensional drag coefficient of a turbulent flat 
plate boundary layer, e.g. cd ≈ 0.074Re

(−1∕5)

L
= 4.7 × 10−3 , cf. Hucho (2002).

Subsequently, an additional optimization study was carried out, whereby the sensitiv-
ity is modified in such that the flow displacement of the initial shape is conserved using 
a projection method, viz. s → s − ∫ s dΓ∕ ∫ 1dΓ . Analogous to the previous optimiza-
tion, the same constant step size was specified for both optimizations, which was chosen 
to ensure a maximum first displacement of d∕L = 1∕1000 for the consistent optimiza-
tion. The convergence of the objective function is documented in the center graph of 
Fig. 7. Again, the LoW-consistent approach converges almost 30% faster, while absolute 
[relative] improvements of ≈ 3% [ ≈10%] are observed for the resistance reduction com-
pared to the frozen turbulence approach. The profit follows mainly from the slightly 
more bulbous [slimmer] front [rear] region (cf. Fig. 7). The formal correctness of the 
gradient procedure is validated by comparing the achieved cost functional Ja change 
with the predicted change Jp based on the adjoint solution (not be confused with the 
power loss functional JP of upcoming internal flow studies) . Following (Jameson and 
Vassberg 2000; Vassberg and Jameson 2006), each new cost functional value is pre-
dicted based on Jp, n+1(un+1) ≈ Ja, n(un) − � �Ja, n(un), where �Ja, n(un) = ∫

ΓD g
n sn dΓ fol-

lows from the gradient operation as described above, cf. Stück and Rung (2011) for 
further details. Here u, � and n refer to the control variable (shape contour), a step-size 
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Fig. 7   Pointed oval ( ReL = 106 ): (Left) initial and optimized shapes, (center) achieved drag objective con-
vergence [ (Ja − Jini)∕Jini × 100 ] based on the frozen (F) and the LoW-consistent (C) approaches for the vol-
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based on the frozen (F) and the LoW-consistent (C) adjoint sensitivity, which should be compared against 
the achieved changes
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value of unit length and an incremental (shape) optimization counter, respectively. The 
estimated functional decreases based on an identical step-size value � are shown on the 
right in Fig. 7 and are consistent with the achieved decreases as documented in the mid-
dle figure. For better comparability, the latter are transparently included.

An interesting aspect follows from a comparison of the optimal resistance reduction 
observed with different adjoint algebraic turbulence models. Lifting the ratio between 
the primal and the adjoint eddy-viscosity from the LoW-consistent value of 2 to similar 
values—e.g. 3, 4 or 5—inside the field does marginally change the computed optimum 
and the related behaviour is equivocal. More drastic changes are detrimental to the accu-
racy and robustness. Hence, we would recommend to retain the LoW-consistent value.

7.2 � 2D T‑Junction Flow

The second test case examines a two-dimensional T-junction at a bulk Reynolds-number of 
ReD = UD∕� = 5 × 104 where U, D and � refer to the bulk velocity, inlet diameter as well 
as the kinematic viscosity, respectively, cf. Fig. 8a. The structured numerical grid models 
half of the geometry and consists of 10 000 control volumes. The upper/flat [inner/curved] 
boundary is free for design and discretized with 105 [210] surface elements as depicted in 
Fig. 8b. The grid is refined towards the transition between fixed and designed wall.

Along the inlet, a homogeneous velocity is imposed together with turbulent quantities 
that follow from the empirical relation

A zero pressure value is prescribed at the outlet. The ducted geometry is optimized w.r.t. 
the total power loss JP

(44)k =
3

2
Tu2U2 , � =

√
3

2

TuU

0.07D
C3∕4
�

k and Tu = 0.16Re
−1∕8
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D 3D
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D D
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(a) (b)

Fig. 8   T-junction ( ReD = 5 × 104 ): (a) Sketch of the considered symmetric geometry and (b) computational 
grid for the turbulent. Red lines indicate the design region
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which yields jP
Γ
= −nkvk(p +

�

2
v2
i
) . In line with the habitat of the objective (45), the adjoint 

pressure is prescribed to ensure p̂ni = 𝜌vknkv̂i + 𝜇eff(𝜕v̂i∕𝜕xk)nk − 0.5𝜌v2
k
ni − 𝜌vknkvi along 

the outlet whereas the adjoint velocity is defined as v̂i = vi at the inlet, cf. Stück and Rung 
(2013).

The initial flow field is depicted in Fig.  10 (left) where the re-circulation zone is 
deemed to be responsible for a large portion of the total power loss. The resulting ini-
tial shape sensitivity along the upper/flat [inner/curved] boundary is depicted in Fig. 9 
(left) [(center)] for both proposed adjoint formulations. Basically, the sensitivities 
along the two design walls appear affine to each other but a noticeable increase in the 
sensitivity magnitude arises along the curved design region. The latter is pronounced 

(45)JP = −∫Γin,out

nkvk

(
p +

�

2
v2
i

)
dΓ .

Fig. 9   T-junction ( ReD = 5 × 104 ): Local shape derivatives w.r.t. a power loss objective predicted by the 
LoW-consistent (C) and frozen (F) turbulence approach along (left) the upper/flat and (center) the inner/
curved boundary. The right graph documents the convergence of objective functional over the optimization 
cycles
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Fig. 10   T-junction ( ReD = 5 × 104 ): Comparison of streamlines for the (left) initial and (center) optimized 
geometry which was returned by the LoW-consistent (C) approach. The (right) graph displays a detailed 
comparison of the design changes
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in the direction of the narrowed region ( (x1 − x2)∕D ≈ 4 ) immediately after the bend. 
Its influence on a gradient based optimization process is documented in Fig. 9 (right). 
Assuming an equal step size for both optimizations—which follows from the LoW-
consistent approach with an initial maximum displacement of d∕D = 1∕1000—the 
consistent approach finds a minimum that is absolutely [relatively] ≈3.3% [ ≈22.2%] 
smaller compared to the optimal shape w.r.t. the frozen turbulence approach based 
on an—albeit minimal—increased convergence. The optimal shape of the consistent 
approach is depicted in Fig. 10 (center) and (right). In line with the absolute sensitivity 
values, cf. Fig. 9, the modification of the initially flat part appears to be pronounced, 
which finally returns a visible reduction of the re-circulation.

7.3 � 3D Double Bent Pipe Flow

The final test case examines a three-dimensional double-bent pipe at a bulk Reynolds-
number of ReD = UD∕� = 105 , where U, D and � refer to the bulk velocity, inlet diam-
eter as well as the kinematic viscosity, respectively, cf. Fig. 11. A structured numerical 
grid of 820 000 control volumes was used to mesh the internal flow field. Three diam-
eters downstream of the inlet, the curved area is free for design in a CAD-free optimiza-
tion environment and discretized with 16,000 surface elements as depicted in Fig. 12. 
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Fig. 11   Double bent pipe ( ReD = 105 ): Divers views on the initial geometry where red areas indicate the 
design region

Fig. 12   Double bent pipe ( ReD = 105 ): Initial geometry (a) as well as (b) employed numerical grid where 
red areas indicate the design region
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The grid is refined towards the transition between fixed and designed wall. Along the 
inlet, a homogeneous velocity is imposed together with turbulent quantities that follow 
from the empirical relations (44). A zero pressure value is prescribed at the outlet. The 
ducted geometry is optimized w.r.t. the total power loss JP outlined in Eq. (45). Hence, 
the adjoint boundary conditions coincide with those from the two-dimensional study 
in Sect.  7.2. Figure  13 shows the difference in initial sensitivities between the LoW-
consistent and frozen turbulence approach for three different perspectives. Analogous 
to the previous two-dimensional test case, widespread differences arise between the two 
methods. As illustrated by Fig. 14, the LoW-consistent framework (C) provides better 
convergence to an improved optimum when compared to the frozen turbulence approach 
(F). The respective differences are both significant and approximately amount to 22% 
improvements.
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Fig. 13   Double bent pipe ( ReD = 105 ): Difference in initial sensitivities between the Low-consistent and 
frozen turbulence approach for three different perspectives
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Fig. 14   Perspective view on the consistently optimized turbulent double bent pipe ( ReD = 106 ) (a) as well 
as the evolution of the power loss objective (b) for the frozen turbulence (F) and the LoW-consistent (C) 
optimization framework. Red [green] areas indicate the initial [optimized] shape
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8 � Conclusions

The paper discussed the adjoint complement to the universal Law of the Wall (LoW) for 
fluid dynamic momentum boundary layers. The latter typically follows from a strongly 
simplified, unidirectional shear flow assumption. We first derived the adjoint companion 
of the simplified shear flow while distinguishing between two frequently used adjoint for-
mulations. It is seen that both, the frozen turbulence strategy as well as a (differentiated) 
approach consistent to a mixing length model provide nearly the same adjoint equations. 
Moreover, the adjoint LoW essentially resembles the primal LoW, and the differences refer 
to a simple scaling with the ratio between the primal and the adjoint friction velocity and 
the inclination in the logarithmic region, which reduces for the LoW-consistent approach. 
As a consequence, no finer/coarser numerical grid is necessary for adjoint simulations. 
The analysis displays that the LoW-consistent approach is compatible with prominent 
RANS-type two-equation turbulence models, which ground on the mixing-length hypoth-
esis. Hence, an algebraic adjoint momentum closure can be formulated for the LoW which 
hooks up to any primal Boussinesq viscosity model due to the assumed universal scaling of 
primal mean flow and turbulence quantities with the friction velocity. The latter motivates 
a surprisingly simple algebraic turbulence treatment for the adjoint momentum equation, 
which is admittedly inconsistent outside the LoW regime, if turbulence transport equa-
tion models are employed. However, if algebraic models are utilized, e.g. by wall-func-
tion based LES, the adjoint formulation is consistent. The LoW-consistent formulation is 
expressed by halving the velocity inclination entering a wall function boundary condition 
in the logarithmic region and doubling the turbulent viscosity. Comparing to the frozen tur-
bulence approach, the LoW-consistent method is deemed a better approximation for adjoint 
flow optimization efforts. Results obtained by the LoW-consistent algebraic closure come 
at negligible extra cost and indicate an acceleration of the optimization process as well as 
improved optimal solutions for shape optimizations of external and internal engineering 
flows. A hidden benefit of the suggested LoW-consistent approach refers to the enhanced 
stability of the numerical framework due to the augmented viscosity.

Future studies should compare the demonstrated improvement of the frozen turbulence 
strategy against fully-differentiated one- and two-equation turbulence models. Both qualita-
tive and quantitative aspects should be considered. E.g., the former should assess the local 
[global] shape derivative w.r.t. changes in the sign [magnitude]. The latter should focus on 
the trade-off between an expected convergence acceleration and possibly increased com-
putational efforts due to additional adjoint transport equations and/or additional coupling 
relations.
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