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Abstract

By design fiber-reinforced plastics (FRP) show extraordinary specific strength
and stiffness performance when compared to classic structural materials. Unfor-
tunately, the extraordinary properties come at the price of complexity in design,
manufacturing and operation. Most notably, manifold failure modes and com-
plicated detectability of inherent damages represent a challenge for composite
engineers until now. Throughout the life-cycle of composites, it is crucial to
understand and track the material state in order to prevent premature failure.
Due to the high-cost sensitivity of the composites sector implementing mate-
rial health monitoring systems is usually not practical in application. Instead,
non-destructive testing (NDT) methods are usually applied to assure structural
integrity and damages within allowed limitations at planned maintenance events.
Nonetheless, currently available NDT methods are insufficient to fully cover all
possible damage scenarios. In this work a new approach to determine material
properties of the epoxy resin component using Fourier-transform infrared spec-
troscopy (FTIR)-spectroscopy is presented. It is shown that by post-processing
the acquired molecular information the material state can be determined and
based on this material state inherent material properties such as strength can be
predicted. First, starting with the evaluation of manufacturing parameters it is
shown that by using classic chemometrics techniques FTIR measurements can be
used to quantify the mixing ratio of an epoxy resin fast and reliable. Thereafter,
material changes due to mechanical loading in creep are observed and described
by applying advanced feature extraction methods. Finally, specimens exposed
to thermal loads are analyzed and it is confirmed, that the residual strength
can be determined solely by applying FTIR measurements and machine learn-
ing algorithms. Furthermore, it is demonstrated, that the method is suitable
to reveal the material exposure history. It is shown that an accurate prediction
of mechanical properties, as well as the processing and degradation parameters,
can be derived from the measurements and significantly improved by applying
data processing and machine learning methods.
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Kurzfassung

Im Vergleich zu klassischen Konstruktionsmaterialien zeigen faserverstärkte Ver-
bundwerkstoffe hohe spezifische Festigkeiten und Steifigkeiten auf. Als Nachteilig
müssen hingegen die komplexen Versagensmechanismen und eine hohe Anfällig-
keit für unentdeckte Schäden betrachtet werden die bei diesen Werkstoffen beob-
achtet werden. Während des gesamten Lebenszyklus von Verbundwerkstoffen ist
es daher entscheidend, den Materialzustand einzuschätzen und verfolgen zu kön-
nen, um ein frühzeitiges Versagen zu verhindern. Aufgrund der hohen Kostensen-
sitivität von Verbundwerkstoffanwendungen ist die Implementierung eines kon-
tinuierlichen Systems zur Bauteilüberwachung in der Regel nicht praktikabel.
Vielmehr ist es üblich zerstörungsfreie Prüfungen in regelmäßigen Intervallen
auszuführen, um die strukturelle Integrität sicherzustellen. Die derzeit verfügba-
ren zerstörungsfreie Prüfmethoden reichen jedoch nicht aus, um alle möglichen
Schadensszenarien vollständig abzudecken. In dieser Arbeit wird ein neuer An-
satz zur Bestimmung der Materialeigenschaften der Epoxidharzkomponente mit-
tels Fourier-Transformations-Infrarotspektroskopie (FTIR) -Spektroskopie vor-
gestellt. Durch die Nachbearbeitung der erfassten molekularen Informationen
wird der Materialzustand auf Basis abstrakter Parameter modelliert und die
inhärente Materialeigenschaften wie Festigkeit berechnet und vorhergesagt. Zu-
nächst wird anhand von Herstellungsparameter gezeigt, dass mithilfe klassischer
chemometrischer Methoden und FTIR-Messungen das Mischungsverhältnis ei-
nes Epoxidharzes schnell und zuverlässig bestimmt werden kann. In einem zwei-
ten Schritt werden Materialänderungen aufgrund mechanischer Belastung beim
Kriechen beobachtet und mit Hilfe des abgeleiteten Zustandvectors beschrie-
ben, wobei fortschrittliche Verfahren zur Merkmalsextraktion angewendet wer-
den. Schließlich werden Proben analysiert, die thermischen Belastungen ausge-
setzt wurden, wobei gezeigt werden konnte, dass die Restfestigkeit ausschließlich
durch die Anwendung von FTIR-Messungen in Kombination mit Algorithmen
des maschinelles Lernen bestimmt werden kann. Weiterhin wird gezeigt, dass
gleichzeitig auch eine genaue Beschreibung der Historie der Materialdegrada-



X

tion aufgedeckt werden kann. Zusammenfassen wird gezeigt, dass eine genaue
Vorhersage der mechanischen Eigenschaften sowie der Verarbeitungs- und Schä-
digungsparameter aus FTIR Messungen erfolgen kann und durch die Anwendung
von Datenverarbeitungs- und maschinellen Lernmethoden eine signifikante Ver-
besserung der Genauigkeit erzielt werden kann.
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1 Introduction

1.1 Motivation

The idea of joining different substituents and forming new artificial composite
materials is now established for more than 70 years. By utilizing the advanta-
geous individual properties of each substituent and circumventing their draw-
backs by tailored design, superior materials have been created in the past. In
the area of fiber-reinforced plastics (FRP), this approach is backed by the wide
availability of different fibers and polymeric matrices, enabling a wide range of
possible characteristics. Hence, it is no surprise that the quantity and variety of
composite structures in the industry, especially in the aviation and wind-energy
sectors, continuously increased over the past decades.

Design Approach in the Past

In addition to freedom in material choice, composites also opened a new way
of considering multiple scales in design. Composites inherently come with mul-
tiple length scales, which contributes to higher overall material performance.
However, it quickly became evident that the improved performance of the new
complex composite material class comes with a price tag. Especially in com-
parison to single-phase materials, the traceability of the damage evolution and
distribution became considerably more complicated. At the same time, accu-
rate prediction of failure and residual load-bearing capability turned out to be
more challenging. The reason for this behavior can be mainly seen in the highly
interactive multi-dimensional damage evolution processes, which are not yet suf-
ficiently understood.
In the early days of composite applications, it was sufficient to apply simple de-
sign methods to achieve substantial performance gains and surpass single-phase
materials in terms of performance. Defining conservative load-bearing limits by
experience and applying large safety margins based on phenomenological ob-
servations yielded reliable and sufficient lightweight structures. Over the last
decades, extensive experience in design and manufacturing led to an increase in
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knowledge in the composite area. Along with this development, a shift toward
more sophisticated statistics-based design methods was performed. The initial
phenomenologically defined load-bearing limitations have been replaced by prob-
abilistic models based on statistical material property distributions taking the
inherently large scatter into account. Significant efforts in testing have been
undertaken in the past to understand and quantify all relevant influence factors,
loading conditions and damage interactions to ensure a safe design. In service,
past experience has shown that even if a full record of the loading and exposure
history is available for a composite component, the ultimate load-bearing capa-
bilities and true safety margins still cannot be determined with high accuracy
and certainty. As a consequence, the full potential of composite materials is not
yet fully utilized due to safety concerns arising from the lack of true material
state knowledge.

Material State Estimation in the Past

A considerable amount of methods were proposed to understand and track ma-
terial variation in the design phase and operation to cover the shortcomings
described in the last section. The methods can be divided into two groups:
structural health monitoring (SHM) and non-destructive testing (NDT), which
have been proposed to keep track of potential material changes. However, cur-
rently available methods are limited to specific damage cases and are costly,
time-consuming or not applicable on a large scale. Indeed, tracking and evaluat-
ing the material state for a large-scale composite structure based upon unknown
damage history is still neither established nor feasible due to the lack of gener-
alization of the methods.
This study builds on the observations that initial damage modes in composites
are dominated by polymeric matrices with few exceptions. Due to their extraor-
dinary performance, beneficial costs and ease of manufacturing, thermosetting
polymers (TSP) are mainly used as polymeric matrices in high-performance com-
posite applications. Even though TSP’s macroscopic behavior is nowadays well
understood under a variety of loading and environmental conditions, the under-
lying physical and chemical processes are not yet fully disclosed. Nonetheless,
to explain the origin of the previously described stochastic variation in damage
evolution and material property variation, there is a need to understand these
processes.
Ideally, the material state, material changes and degradation processes shall be
explained based on the evaluation of information from all length scales using ro-
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bust data. The downside of currently applied methods to gather information is
that they are often based on complex experimental setups with many limitations.
As a result, there is little agreement on the broad applicability and validity of
data derived in such a manner in practice. The following section presents an
approach to resolve all these challenges.

1.2 Aims and Scope

A novel concept to establish a direct link between material state and material
properties by using data analytic and machine learning algorithms is introduced
in this work. Undoubtedly, macroscopic material properties such as strength and
stiffness are linked with the physical and chemical configuration of the material
on multiple scales. The main idea of this work is to use advanced data processing
tools to derive an abstract material state vector directly from the molecular level
using a non-destructive, contact-less technique called Fourier-transform infrared
spectroscopy (FTIR). FTIR is well established in science and industry to acquire
information on chemical bonds and molecular groups. So far, this method has
mainly been used to solve isolated problems where mostly single material para-
meters have been observed and analyzed.
In this study, the feasibility of obtaining a material state vector that is gener-
alizing and considering all material parameters is evaluated. It builds on the
hypothesis that infrared spectral data inherently contains information that has
not been considered in the classic infrared spectroscopy data analysis. The dis-
covery and processing of this additional information shall provide a full insight
into the material state of the analyzed TSP. It is further assumed that the derived
data contains historical material-dependent information, such as manufacturing,
ambient exposure, and degradation processes. In this work, mainly material
changes in the damage initiation stage on the molecular and microscopic levels
are considered. Macroscopic material changes, such as extended fracture regions
or delaminations as seen in composites are not considered.
The biggest advantage of this approach over the classic NDT methods lays within
the fact that the material state (See Section 2.1.1) is solely derived from the
molecular and microscopic structure of the material without the necessity to
add information from macroscopic observations.

The alleged limitation that spectral data is acquired on the molecular scale and
may not be suitable to derive macroscopic properties is accounted for as follows.
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First, in FTIR, large material volumes and numbers of molecules are measured,
where a cumulative and averaged data vector is acquired from each analysis.
Second, to ensure generalization, time and spatially resolved measurements can
be performed to increase the sample size. Hence, by performing multiple mea-
surements, statistically significant sampling is assured for larger specimens or
components.

Another advantage of this method is that using this approach, depth profiling
of a larger specimen can be performed if cross-sections are extracted and time
and specimen thickness-dependent variation can be analyzed. Assuming the
TSP can be regarded as isolated from the composite material, smaller specimens
can be used in situ to observe material changes and their impact on material
properties in real-time with a significant reduction of time and costs. Using the
proposed approach also allows for separating the influence factors that affect
the performance of TSP and reassembling them as desired. For each influence
factor, a correlation between the infrared spectra and material properties can
then be established. As a result, material properties such as the mechanical
load-bearing capabilities can be predicted by considering all influence factors.
Ideally, every possible influence factor and the contribution toward the damage
developing shall be identified.

Data Processing and Machine Learning

Early FTIR devices had the limitations that only trained personnel were able
to perform measurements, while the size of the devices restricted their use to
laboratory environments. Recent developments in the field of Fourier-transform
infrared spectrometers led to the wide availability of compact and relatively
cheap devices. Nonetheless, these industry grade devices are still only capable
of providing relatively low data quality and rather inaccurate measurements. As
will be shown later, looking at the molecular bonds responsible for the material
state estimation, the spectral variation is relatively small, highly scattered and
few research sources are available for accurate identification. To be able to ex-
tract accurate material state information, the data has to be further processed,
what will be done in this work using learning methods. Different algorithms are
evaluated to improve the reliability of the prediction and establish a link between
the IR spectra and material properties. One major drawback of machine learning
models, especially the artificial neural networks (ANN), is the lack of prediction
stability if unexpected influences have an impact on the measurement or the
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material state. Therefore, in this work, a new approach is proposed to increase
the robustness of the measurement, data processing and prediction quality.
The following data processing modules are used in this work to form the full
workflow. First, data pre-processing such as outlier detection, can be performed
to increase the spectral data quality, e.g., by detecting and deleting measure-
ments provably containing errors using principal component analysis (PCA) al-
gorithms.
Second, machine learning (ML) methods can be used to identify relevant spec-
tral areas and dependencies between measured spectra and material state para-
meters. Indeed, this approach allows a statement regarding the feasibility of
identifying and extracting underlying correlations. For example, it enables iden-
tifying the contribution of each molecular bond toward material parameter vari-
ations and defining relevant spectral areas to quantify the observed problem.
Finally, the ultimate goal is to create a robust data pipeline where the disclosed
dependencies are implemented into an analytical model connecting the FTIR
measurement and desired material property.

Research Objective

This work’s objective is to evaluate the feasibility and limits of state estimation
of thermosetting polymers by infrared spectroscopy. A link between the material
state, its mechanical properties and its infrared spectrum throughout the life-
cycle shall be established. To achieve this target, a trade-off study considering
testing effort, acquisition techniques and advanced data treatment methods is
performed. The core of the thesis is represented in Figure 1.1, while the major
four questions of the thesis are stated below:

Molecular 

structure

state

Material

properties Spectral data

Derived from

Figure 1.1: Interaction and dependencies information flow chart
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Major questions

• Which material state variation can be detected using infrared spectroscopy
and what is the sensitivity in each case?

• Is it possible to explain mechanical property changes on the molecular
level?

• Is it possible to establish a model to predict mechanical properties based
on infrared spectroscopy?

• How can advanced data processing be applied to increase the accuracy of
the out-of-sample prediction?
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2 Scientific and technological background

In the following section, a brief overview of the most relevant scientific and
technological topics is given to provide a solid background for this thesis.A more
detailed background and literature review regarding the single scientific content
is given at the beginning of each corresponding section. Here, a focus on shared
subjects is laid, starting with an explanation of the material state term, followed
by the degradation definition and finalized by a brief explanation of the infrared
spectroscopy technique.

2.1 Material State

2.1.1 Material State Definition

Depending on the area of research, each scientist may have a different definition
and idea of the term material state. Hence an explicit definition of this term is
given here to clarify what is meant by this term throughout this work.
The term material state refers to a collection of inner variables characterizing a
specific material condition capable of describing the expected material behavior
fully. Depending on the model complexity and model goal, a single numerical
entry or a numerical vector may represent the material state. In this work,
the term material state will be used as substitutional for both of these types.
This material state then defines unambiguously the expected material behavior
under certain loading conditions. In fact, the material state shall be used to
determine macroscopic material properties, such as load-bearing capabilities for
specific external inputs. In practice, the material state vector complexity will be
limited to the required size. Even though, in the future it is desirable to cover all
influence factors with a single material state, the required data to achieve such a
representation was not available in this work, highlighting the conceptual nature
of this work. Nonetheless, the results from the different sections are regarded as
interchangeable and summable.
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To obtain material state variables, non-destructive testing (NDT) and mechan-
ical testing are usually carried out. Until now, the challenge remains to choose
the correct method and scale to determine all required inner variables to define
the material state. As will be shown later, a wide variety of NDT methods is
nowadays available to determine isolated inner variables to describe specific TSP
properties. However, a single generalizing approach to fully characterize the ma-
terial state is still unknown. Deriving material states from mechanical testing is
usually undesired due to expected statistical scatter, the destructive character
of testing and influences from the inhomogeneity of the tested specimen.
In this work, the approach is undertaken to show the capability of infrared spec-
troscopy to serve as the base to derive a reliable material state. Different shapes
and abstraction levels of material states will be implemented throughout the
work. Within Section 5, the material state is represented by a measurable nu-
merical value. In Section 6, derived parameters represent the material state.
Finally, in Section 7, an abstract concept is used where the material state is
represented by a neural network model.

2.1.2 The Origin of Material State Information

The base idea behind using IR for state estimation is to quantify the material
state on the molecular scale while tracking the damage evolution on the macro-
scopic scale. It is well known that a TSP consists of atoms and molecules forming
a three-dimensional molecular network. The nature and amount of molecular
bonds on the atomic scale govern the molecular arrangement and therefore, the
molecular forces. During the damage evolution, the behavior and processes of
these molecular forces are currently not well understood and an object of re-
search. However, the macroscopic properties visible on the macroscopic scale
are doubtless in a strict relationship with these forces, which can be described
using infrared spectroscopy. The absorption signal of the infrared spectroscopy
represents an integral value of the single atomic bonds. Hence, even though the
IR measurements represent molecular scale data, they give access to the statis-
tical distribution and homogenized material data of these molecular bonds for
the considered material volume.
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2.2 Degradation

2.2.1 Degradation - Aging – State Variation

A sheer endless number of processes occurring during the life-cycle of compo-
sites have an effect on the mechanical properties of the material. The DIN 50035
standard introduces the term “aging” as the umbrella term for all irreversible
physical and chemical processes in a material that leads to a variation of the ma-
terial state [1]. The origin of the variation may be internal, e.g., conditioned by
a metastable state or external, caused by influence factors in general. The term
aging is used ambiguous but is mainly connected with the decrease in the per-
formance of a material or component. Whereas, according to the standard, the
term aging describes a material property variation that may be negative but can
also be of positive nature. Therefore, instead of using the word aging, the term
state variation is chosen in this thesis to describe changes in properties in gen-
eral. In fact, the state variation can be of chemical or physical nature, reversible
or irreversible, with a positive or negative influence on material properties. The
term degradation, on the other hand, is used to describe state variations that
lead to a negative impact on material property values. For instance, when a
material is stated to degrade, a reduction of strength or stiffness is expected.

2.2.2 Degradation Factors

Usually, the degradation processes themselves are not clearly disclosed, but
rather the effects of these processes are detectable and visible. Overall, one
can distinguish between fast and continuous processes that have to be analyzed
differently. The degradation process can take place almost immediately if a spe-
cific condition is met. For example, looking into thermal degradation, a specific
temperature may trigger molecular disintegration by bond dissociation. On the
contrary, continuous, relatively slow processes may set on from the moment a
specific condition is met, where a change in TSP properties evolves continuously
over time. One example of such a slow process is the absorption of moisture.
Most external and internal influence factors acting on the TSPs are capable of
varying the material state and therefore, material properties. The main ques-
tion, which has to be answered for every material and material combination is
the time or intensity-dependent threshold and the severity of the state variation.
Therefore, to understand the impact and interaction of a single process, ideally,
all influence factors shall be considered. Figure 2.1 shows a brief summary of
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the major influence factors acting on a TSP considered exemplary in this work.
The severity of the degradation is highly material and material state-dependent.
In composites, while the fibers are usually resistant to most external influence
factors, the matrix is highly susceptible to undergo a change in the material
state and therefore, usually represents the weak link. A review of the impact of
the factors shown in Figure 2.1 for the TSPs used in this work will be provided
in the literature review of each corresponding Section [2].

Air

Manufacturing 

influences
Mechanical loads Thermal loads

Physical proceses Chemical processesExternal factors

Material state

Figure 2.1: Overview of the material state influence factors considered in this
work

2.3 Material State Estimation Techniques

Understanding TSP damage evolution and its impact on mechanical properties
is the key to further improvement of the durability and performance of composite
materials. In order to understand the material degradation evolution, one should
ideally observe the changes in the material state as accurately as possible. This
is the task of NDT and SHM. The use of SHM is based on continuous anomaly
detection and data correlation with previously created material and data models
assuring operation within known limitations. While several approaches have
been shown in the past to work in a lab environment, there is no known reliable
method implemented into a primary structure until now. A key problem remains
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the overall low technology readiness level, costs and the transferability of the
methods from simple geometries to complex real components. In contrast to the
continuous approach, non-destructive testing at discrete points in time represents
a valid alternative. Based on the physical principle, the different techniques can
be divided into three categories, namely electrical methods, mechanical waves
and electromagnetic waves. The latter will be used in this work and will be
explained in more detail next. To show the current state of electromagnetic wave
techniques, the most important developments and methods will be presented.

2.3.1 Electromagnetic Waves

Depending on the emitting source, electromagnetic waves can be regarded as a
stream of light quants at different frequencies, respectively energies. An electro-
magnetic wave travels with the speed of light in a vacuum and can be consid-
ered a coupled electrical and magnetic field. In general, electromagnetic waves
ranging from gamma rays to radio waves can be considered for NDT due to the
advantage of being capable of propagating independently from the medium. The
choice of the electromagnetic band is highly dependent on the desired material
interaction. For spectroscopic applications, the wavenumber is used to quantify
the energy of the quants and correlate this energy with the interacting processes
of the material. The wavenumber is calculated by the number of waves per
centimeter and is the reciprocal of the wavelength in cm [3]. For NDT applica-
tions, different wavelengths have been used so far. As a general rule, it can be
stated that a higher radiation frequency is capable of penetrating a higher depth
of material. For applications in the area of TSPs and composites, the highest
penetration depth can be achieved using X-Ray waves. This method was used
in the past extensively to unveil the structure of a material by transmission or
diffraction. Most recently, a study by Trappe has shown that a special X-Ray
method called small-angle X-ray scattering (SAXS) can be used to characterize
composite structures in terms of inter-fiber failure and microcrack formation [4,
5]. Other studies used wide-angle X-Ray scattering (WAXS) on the atomic scale
to quantify the molecular orientation of polymers [6]. Even though these meth-
ods are capable of revealing structural information, they are not suitable to be
applied as a holistic NDT method in practice due to the limited scope of the
results.
In contrast to X-Ray wave-based methods, which can be considered passive meth-
ods with respect to material interaction, the infrared band-based methods allow
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a characterization by an active interaction of the electromagnetic waves with the
material. Another advantage is that a significantly higher information density
can be achieved. In the infrared band, two methods that are widely applied are
infrared and Raman spectroscopy. Infrared spectroscopy is based on the change
of the dipole moment of chemical bonds, while Raman spectroscopy uses the
effect of Raman scattering based on polarization [3]. Several studies have shown
that both techniques are suitable to answer a variety of questions with respect
to polymer characterization [7]. The reason IR spectroscopy was chosen over
Raman spectroscopy for this study is its advantage of superior sensitivity, as
will be explained next.

2.3.2 Fourier-transform Infrared Spectroscopy

In this section, a brief introduction to the basics of Fourier-transform infrared
(FTIR) spectroscopy is given. For more details and information on specific
topics, the following two books are highly recommended [3, 8]. A wide variety of
topics regarding the practical application of FTIR spectroscopy can also be found
in the FTIR talk letters published by Shimadzu [9]. Traditionally, FTIR was used
in chemistry and material science to identify and quantify molecular species [10].
It is a sensitive, easy-to-use and fast data acquisition technique widely used in
industrial and scientific applications. With rising accuracy and decreasing costs,
FTIR became a widely used technique in chemical process control, medicine and
material science [11, 12]. The introduction of chemometrics combined with near-
infrared (NIR) spectroscopy enabled a variety of new applications by reducing
the complexity of utilization [13]. With fast-progressing research in the area
of machine learning, great success was achieved in medical diagnosis, e.g., by
detection and classification of cancer cells [14–16]. An extensive topic-focused
literature review of applications in the area of composites and polymers will be
provided in the corresponding sections of this work.

Physical Basics

FTIR is based on the absorption of light at discrete energies by organic material
in the infrared region. One can distinguish between the NIR spectral region,
which ranges from 0.78 µm to 3 µm and the mid-infrared (MIR) spectral re-
gion from 3 to 50 µm [17]. In these regions, infrared radiation is capable of
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exciting molecular vibrations by absorption of single light quants of discrete en-
ergy. Through the measurement of the absorption intensity in a wide range of
the infrared region, the corresponding absorbing molecular bonds can be iden-
tified and further analyzed. Infrared spectroscopy is a three-step process based
on the emission of broadband electromagnetic radiation in the infrared region,
transmission through a medium and measurement by a detector, as shown in
Figure 2.2. Based on the molecular composition of the analyzed medium, the
FTIR spectrometer measures the difference between the emitted and detected
spectrum, quantifies the light quants absorbed by the specimen and calculates
its FTIR spectrum.

DetectorIR light source

Molecular vibration

Figure 2.2: Infrared spectroscopy scheme

As a result, the chemical composition is represented by a specific absorption spec-
trum comprised of different absorption intensities at discrete energies. Generally,
the absorption of light quants goes along with the change of the dipole moment
of the bonds leading to energetic excitation and a specific vibration or rotation
mode depending on the energy level. The time a molecular bond remains in
the excited state is usually very short, allowing multiple measurements without
influencing material properties [8]. Only discrete amounts of energy represented
by different wavelengths can induce the described excitation process. These
wavelengths depend on molecular bond properties such as bond stiffness, atomic
mass, geometric considerations and interaction between neighboring bonds. The
shape of the single peak is governed by the chemical environment of the bonds
[3]. Two main classes of excited vibration modes exist, which are stretching vi-
brations, where the bond length is changed and bending vibrations, where the
angle of the bonds is variated. A detailed description of the vibration modes can
be found in the literature [3, 8]. In infrared spectroscopy, it was established to
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use wavenumbers instead of frequencies. The wavenumber of a specific frequency
is defined as the number of waves that can be fitted into 1 cm.

Quantitative FTIR Analysis

Quantitative measurement of the molecular species can be performed by apply-
ing the Lambert-Beer-Law. It describes a relationship between the concentration
of a molecular bond in the beam path and the absorbance signal at the detec-
tor, assuming linear correlation [3]. A maximum thickness limitation is set by
non-linearities occurring at absorbance values higher than 0.7 or transmittance
values of less than 20 % [3]. These limits are defined based on experience and
originate from stray radiation, insufficient resolution or chemical reaction during
measurement [8]. To comply with these requirements, the specimen thickness
for mid-infrared spectroscopy (MIRS) measurements with current devices is usu-
ally ranging between 5 and 50 µm dependent on the analyzed material and the
wavenumber which is studied. For near-infrared spectroscopy (NIRS), the spe-
cimen thickness is usually found to be 0.1 to 5 mm. The thickness requirements
are set by the intensity of the signal and the signal-to-noise ratio (SNR). Hence,
the specimen has to be thick enough to generate a signal of sufficient intensity
with low noise while allowing sufficient penetration by not absorbing the full
intensity. In practice, the choice of the method between MIR and NIR spec-
troscopy is represented by a trade-off between specimen preparation effort and
feasibility and information density. While NIRS specimens require less specimen
preparation, their measurements yield lower information density. The second
trade-off in infrared spectroscopy is represented by SNR, spectral resolution and
measuring time. The signal-to-noise ratio depends on several parameters, such
as light source intensity, sensor detectivity and the velocity of the mirror of the
interferometer [8]. The spectral resolution determines the number of discrete val-
ues which form the single peaks. A higher resolution generally leads to sharper
spectra but also a lower SNR ratio and higher acquisition times. Temperature
and moisture usually have a high impact on FTIR measurements. Nonetheless,
in this work, the influence of moisture and temperature was avoided by stor-
ing the specimens for at least 14 days, as well as performing the tests under a
standard atmosphere at 23 °C and 50 % relative humidity.
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3 Materials and Methods

The materials and methods used in this work are introduced in the present sec-
tion. First, both TSPs and their components are presented, followed by the
corresponding manufacturing processes. In the second part, the methods used
throughout this work to acquire data for the analysis are given. For each tech-
nique, the data acquisition process is explained and basic material characteriza-
tion is performed where the base material properties are given for the reference
material state.

3.1 Materials and processes

3.1.1 Used Thermoset Systems

The analyzed TSPs are formed by the reaction of an epoxy resin which contains
reactive epoxy groups with a curing agent component leading to a chemical
reaction and formation of a three-dimensional cross-linked network.

The base component of the TSPs is usually based on di-glycidyl ether of bisphenol-
A (See Fig. 3.1). The molecular weight parameter n is usually varied in terms of
magnitude and distribution to set the desired viscosity for optimized processabil-
ity and polymer network density. The choice of the curing agent represents the
second setscrew. To conduct most experiments, mainly an amine-based curing
agent is used in this work. For comparison reasons, a second anhydride-based
curing agent is introduced in several sections where a curing agent variation
plays a major role in the experimental setup.

Figure 3.1: Di-glycidyl ether of bisphenol-A
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The two-component amine-cured system consisting of RIMR135TM /RIMH137TM

is a low-viscosity resin system designed for wind energy applications curing
at ambient conditions. This thermosetting polymer based on the amine-cured
epoxy system will be called RIM or RIM-system throughout the work. It mainly
consists of a standard di-glycidyl ether of bisphenol-A (DGEBA) type epoxy
resin and a reactive diluent 1,6-bis(2,3-epoxypropoxy)hexane and has an epox-
ide equivalent weight (EEW) of 166-185 g/eq. (RIMR135TM - Hexion, Inter-
national: USA/Europe). The curing agent consists of aliphatic amines, such
as poly(propylether amine) (AHEW = 52 g mol-1) and isophorone diamine
(RIMH137TM - Hexion, International: USA/Europe). In compliance with the
technical data sheet, a mixing ratio of (RIMR135/RIMH137) 100:30 was ap-
plied.

The three-component anhydride-cured system consisting of LY556/HY917/DY070
is a low-viscosity, long pot life resin system designed for filament winding or pul-
trusion cured at elevated temperatures. This thermosetting polymer based on
the anhydride cured epoxy system will be called LY or LY-system throughout the
work. It consists of a standard di-glycidyl ether of bisphenol-A (DGEBA) type
epoxy resin (Araldite LY 556 (Huntsman Advanced Materials, Belgium)) with
an epoxide equivalent weight (EEW) of 183-192 g/eq. The curing agent is a tetra
functional anhydride curing agent with an anhydride equivalent weight of 166
g/eq supplied by Huntsman Advanced Materials, Belgium. In addition, an imida-
zole accelerator DY070 (Huntsman Advanced Materials, Belgium) is added. Ac-
cording to the datasheet, the standard mixing ratio of (LY556/HY917/DY070)
100:90:1 was used. The chemical structure of the major components of both
epoxy systems can be found in [18].

3.1.2 Curing and Post-curing

All manufacturing and analysis tasks have been performed in the labs of the
Hamburg University of Technology (TUHH) at the Institute of Polymers and
Composites. For both epoxy systems, a standard manufacturing RTM process
was applied.
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Figure 3.2: Curing cycles for the LY-system in orange and RIM-system in blue

The components were mixed and degassed in a vacuum stirrer, followed by a
vacuum infusion process. The RIM-system was cured at 30 °C for 24 h and post-
cured for 15 h at 80 °C in compliance with the datasheet. The LY-system was
cured at 80 °C for 4 h and post-cured for 8 h at 140 °C. The post-curing process
took place after demolding from the RTM mold according to industry standards
in a temperature-controlled convection oven. All cooldown processes have been
performed at a cooling rate of 0.5 °C / min or less for both configurations. The
manufacturing processes for the RIM-system and LY-system are illustrated in
Figure 3.2.

3.1.3 Specimen Preparation

The manufacturing process yielded a high surface quality 300 mm * 600 mm *
0.5 mm rectangular-shaped panel that was further processed to extract the test
specimens. The final specimen geometry used in this work was derived from the
DIN EN ISO 527-1 technical standard by adapting the size (See Figure 3.3) to
fit into the test machines presented in Section 3.2.3. The constant cross-section
test area was 8 (± 0.1) mm long, 6 (± 0.1) mm wide and had a thickness of 500
(± 100) µm.
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Figure 3.3: Geometry of the neat resin specimen

After curing and post-curing, a EuroMod CNC-milling machine equipped with
a milling frame was used to machine the dogbone-shaped geometry, as shown in
Figure 3.3. After machining, the cut surfaces were manually polished using 600
/ 1000 / 2500 abrasive paper manufactured by Starcke GmbH & Co. KG.

3.1.4 Specimen Conditioning

Before testing, all specimens are stored at 23 (± 2) °C and 50 (± 10) % relative
humidity (RH) for at least 96 hours and until weight equilibrium is reached
to achieve the “as produced” moisture content (Specified as reference state and
ambient conditions). If not otherwise specified, the exposed and tested specimens
are also stored at ambient conditions prior to further analysis and testing.

3.2 Analysis Methods and Basic Characterization

The second part of the materials and methods section gives an insight into the
data collection process. For each method used in this work, details of the equip-
ment and applied techniques are given, along with the acquisition parameters.
In addition, a basic characterization of the material using these methods in the
reference state is provided. For the Fourier-transformed infrared spectroscopy
(FTIR), a more detailed description of the acquisition process is provided since
it is the major analysis method in this work. For the other well-established
methods, such as mechanical testing, differential scanning calorimetry (DSC)
and thermal gravimetric analysis (TGA), a basic description is given. Further
information can be found in [19].



3 Materials and Methods 19

3.2.1 FTIR Acquisition Techniques

Several methods to acquire FTIR data have been developed and applied in the
past [3]. The two widely used methods are based on transmission (TRS) and
attenuated total reflection (ATR), as shown in Figure 3.4. Both techniques are
characterized by easy application and high signal quality.

Transmission

ATR crystal

Infrared Beam

Attenuated total reflection

Specimen

Reflected IR radiation

Specimen

Infrared Beam Transmitted IR radiation

Figure 3.4: FTIR acquisition modes: transmission (left) and reflection (right)

TRS spectroscopy represents a contactless FTIR acquisition technique mainly
used for quantitative measurements. It is advantageous due to a high signal-
to-noise ratio and is, therefore, less susceptible to scatter compared to other
sampling techniques. However, this method has a number of limitations, in par-
ticular in regard to thickness dependency and measurable infrared bands. Hence,
dependent on the material and thickness of the specimen, the transmissivity may
also be low and TRS may not be applied at all. On the other hand, TRS ac-
quires an integral value along the measuring path giving information about the
bulk chemical composition of the specimen and allows easy quantification. The
second applied sampling technique is the ATR, where the specimen is in contact
with a crystal made of highly refractive material. This technique is mainly ap-
plied because of its easy sampling procedure and the ability to measure highly
absorbing materials. However, it shows a low reproducibility due to its low pen-
etration depth and high sensitivity to the applied pressure of the crystal on the
specimen. Furthermore, ATR only analyzes the surface of the specimen while
penetrating 2 – 10 µm. Also, the acquisition depth is highly dependent on the
wavenumber. Further details on different FTIR acquisition modes can be found
in the following excellent sources by Griffiths and Koenig [3, 8].
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3.2.2 FTIR Spectral Band Considerations

A trade-off between signal quality and wavenumber limitation has to be per-
formed when measuring infrared spectra. The penetration depth of ATR mea-
surements is highly wavenumber dependent. While wave numbers around 3500
cm−1 show penetration depths up to 0.5 µm, higher values can be achieved when
using lower wavenumbers yielding depths up to 8 µm [20]. For transmission mea-
surements, the thickness consideration reverses. With rising specimen thickness,
the probability of absorption rises, reducing the transitivity. In order to achieve
high-quality spectra, the transmitivity range between the baseline and the signal
should be chosen as big as possible. However, non-linearity limits the minimal
transmission values and has to be considered for transmission values below 30 %.
Furthermore, very thin specimens tend to generate interference fringes through
in-specimen reflection, which can be seen for the 0.03 mm specimen, making a
rough surface necessary [3]. The assignment of the spectral bands was performed
according to previously published literature and publications [21, 22].

Mid Infrared Region (MIR)

The MIR region ranges from 500 cm−1 to 4000 cm−1 and is characterized by
a high information density. Figure 3.5 shows the FT-IR spectrum for the ref-
erence spectra for the RIM-system, where the absorption is plotted against the
wavenumber in cm−1. On the most right side of the MIR spectrum, the so-
called fingerprint region (500 cm−1 to 1800 cm−1) is found. This region is
characterized by highly overlapping fundamental vibration modes, allowing the
identification of a specific material. Additional isolated bonds can be found in
the area from 2800 to 4000 cm−1 [8].
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Reference MIR Spectroscopy Measurements

To obtain transmission spectra, a Bruker Tensor 2 FTIR spectrometer equipped
with a transmission cell was used. The spectrometer is equipped with a globar
MIR source, a KBr beam splitter and a RT-DLaTGS Detector. The applied spec-
tral range for transmission measurements was 500 cm−1 to 6500 cm−1. Before
measuring each specimen, a 40-scan averaged background signal was acquired to
eliminate the influence of fluctuating ambient conditions on the measurements.
Each FTIR data vector consisted of an average of 8 specimen scans using a reso-
lution of 2 cm−1. The Blackman-Harris 3-term apodization was used for FTIR
data collection. In the end, the IR-spectra were exported as DPT files for further
data processing without internal pre-processing (PP).
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Figure 3.5: Reference spectra for the RIM-System and LY-System in the mid-
infrared region acquired by using film specimens of 25 (± 10) µm thickness
measured in transmission mode
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Near Infrared Region (NIR)

The intensity of the absorption generally decreases with rising wavenumber. This
effect is a result of a reduced probability of excitation with the increase of the
order of the overtone. Therefore, the second infrared region ranging from 4000
cm−1 to 12500 cm−1 usually shows a lower intensity. It consists of combination
vibrations of the fundamental vibrations and overtone regions. The NIR region
shows a significantly lower information density in comparison to the MIR region
but allows higher penetration depths and yields lower overlapping.

Reference NIR Spectroscopy Measurements

The Bruker Tensor 2 device is capable of acquiring FTIR data up to 6500 cm−1.
However, with increasing wavenumber, the SNR ratio decreases due to lower
detector detectivity and the lower intensity of the infrared source in this region.
Exemplary, Figure 3.6 shows the reference spectra of both epoxy systems in
the NIR region acquired with the Bruker Tensor 2 instrument using the same
instrument setup as for the MIR region. Clearly, the IR intensities are lower and
the single peaks are broader and less sharp.
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Figure 3.6: Reference spectra for RIM-system and LY-System in the near-
infrared region acquired by using dogbone specimens of 500 (± 100) µm thickness
measured in transmission mode
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3.2.3 Mechanical Testing

Mechanical testing is performed to analyze the elastic, visco-elastic and plastic
response of the specimen due to load application. The tests provide information
on the load-bearing capabilities of the material and are the major approach to
determining load limits.

Reference Tensile Tests

In this work, two different experimental setups have been used to perform static
and dynamic tensile tests. To determine time-dependent material behavior, the
Dynamic-Mechanical Thermal Analysis (DMTA) device (Gabo Eplexor 500 N)
was used due to its capabilities of fast loading and accurate force application.
For static tensile tests, the DEBEN microtest - 200N tensile stage was used.
Figure 3.7 shows representative stress-strain curves for both epoxy resin systems
in the reference state. The average maximum stress of the LY specimens is 84,8
MPa, while the RIM specimens achieve 63 MPa (at 1mm/min). Both values are
on the lower end of the strength specified in the datasheet (RIM 60 - 75 MPa,
LY 83-93 MPa). The elongation at break is found to be at 9.9 % for the RIM
specimens (Datasheet 8 - 16 %) and at 9.1 % for the LY specimens (DS 5 - 7
%). The modulus is found to be 2.93 GPa for LY- (DS: 3.1 – 3.3 GPa) and 2.63
GPa (DS 2.7 – 3.2 GPa) for the RIM-system. The deviation between measured
and TDS values is connected with the non-standard specimen geometry, the
specific curing conditions and pre-conditioning at a standard atmosphere before
testing.
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Figure 3.7: Reference stress-strain curves for the RIM-System (blue) and LY-
System (orange) dogbone specimens
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3.2.4 Differential scanning calorimetry (DSC)

The DSC is applied to measure the quantity of heat exchanged during a tem-
perature variation of a substance. Based on the heat flow, the specimen absorbs
or releases energy along with a change of internal energy. Generally, DSC is
capable of detecting physical changes as well as chemical reactions such as crys-
tallization, melting, glass-transitions or curing [19]. In this work, DSC was used
to gain information about the curing state and the glass-transition temperature
of the epoxy specimens. Furthermore, relaxation processes will be studied by
observing the mobility of polymeric chains for different energetic states.

Reference DSC Measurements

In this work, the measurements were performed using a Netzsch DSC 204 F1
Phoenix device, applying a heating rate of 20 K/min in the range of 23 °C
to 250 °C. The standard DSC curves of reference specimens are displayed in
Figure 3.8, showing the glass-transition region. The onset of the glass transition
temperature for the LY system was found to be at 127.68 °C, slightly below the
datasheet specifications, while the RIM system Tg onset value was measured at
87.1 °C within the datasheet specification.

60 80 100 120 140 160 180 200
Temperature in °C

1.0

0.9

0.8

0.7

0.6

He
at

 fl
ow

 R
IM

 in
 m

W
/m

g

1.8

1.7

1.6

1.5

1.4

1.3

He
at

 fl
ow

 L
Y 

in
 m

W
/m

gRIM
LY

Figure 3.8: Reference DSC curves for specimens made of the RIM-System
(blue) and LY-System (orange)
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3.2.5 Thermal gravimetric analysis (TGA)

TGA is applied to determine the mass change of substances under variation of
time and temperature within different atmospheres [19]. The analysis allows
a statement about chemical and physical processes occurring in the specimen,
such as the decomposition or evaporation of volatile components. In this work,
TGA is mainly applied to determine suitable testing temperatures for thermal
degradation and the onset temperatures for the water desorption process.

Reference TGA Measurements

The experiments were performed under a nitrogen atmosphere using the Q500
TGA device manufactured by TA Instruments at a heating rate of 10 °C/min.
As can be seen in Figure 3.9, the relative mass decreases after reaching the
decomposition onset temperature. The amine-based RIM system shows a lower
thermal onset temperature at 330 °C, while the anhydride-based LY system
undergoes a two-step thermal decomposition initiating at 200 °C and 389 °C.
This observation indicates different chemical or physical processes responsible for
the weight changes. The expected initial weight drop due to moisture desorption
is almost invisible in the present graph due to scaling.
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Figure 3.9: Reference TGA measurements for specimens made of the RIM-
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4 Data Handling and Analysis Methods

4.1 Introduction

In the previous section, methods to acquire material data from different sources
have been presented. In this section, the data flow and the main building blocks
are introduced. The processing and analysis process’s key aim is to create an ac-
curate and reliable link between measured raw input data and unknown material
properties.

4.2 Data pipeline and model

In data science, the composition of algorithms to transform raw data into mean-
ingful values is called a data processing pipeline (DPP). In general, a DPP can
include linear and non-linear connections and complex dataflow with feedback,
interconnection, and temporary storage. The DPP used in this work contains
two pipeline paths that partly use the same building blocks. These are the mod-
eling path (MP), where the predictive model is created and the application path
(AP), where the model is applied. For the AP, only new spectral data is required,
while the material properties are calculated using the predictive model. Both
paths are depicted in Figure 4.1 using red (AP) and blue (MP) colors consist-
ing of pre-processing (PP), feature extraction (FE) and modeling, respectively,
model application. In the following sections, the details of the building blocks
will be described and explained.
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Figure 4.1: Overview of the data processing pipeline

The main difference between MP (blue symbols) and AP (red symbols) lays
within the input and output data. The MP is used to create a validated predic-
tive model with set accuracy requirements as output, whereas spectral data, as
well as measured material properties are used as input. As shown in Figure 4.1,
the creation of the MP includes an iterative approach of combining and evalu-
ating different pre-processing and feature extraction algorithms. Once the MP
achieves the required performance and is validated, the PP and FE algorithms
are fixed and the predictive model is released to be used on new data in the
AP.

4.2.1 Data Handling Software Environment

In this section, a short introduction to the software environment’s capabilities is
given. The data analysis is performed using Python programing language and
Jupyter Notebooks, a highly interactive browser-based environment combining
Text, Code and Visualization [23, 24]. In addition to standard Python code, the
Numpy, Scipy, Matplotlib and Scikitlearn libraries are used [25–28]. The base
for all data handling steps is laid by the Python Pandas library providing data
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management comparable to the functionality of databases. As part of the Python
ecosystem, it provides easy integration and combination with other packages and
functions [29].

4.3 Data Processing

In this section, an explanation of the single DPP building blocks, as shown in
Figure 4.1, with a focus on the spectral data, is given. A brief introduction to
data pre-processing is given first to explain the origins of undesired variation
and how these challenges have been met, followed by feature extraction and
modeling.

4.3.1 Spectral Data Considerations

In theory, the observation of a single IR band representing a specific molecular
configuration of a particular material should allow the establishment of a di-
rect link between the measured IR signal and a physical or chemical variation.
However, a clear single peak is the exception rather than the rule due to natural
statistical scatter, measurement errors, overlapping spectral bands, and chemical
end groups’ interactions. Therefore, the major challenge in this work is to find
relevant patterns for all investigated phenomena and identify the origin of the
changes.

4.3.2 Pre-processing

Next, the concept behind the single data pre-processing steps is given. Data pre-
processing is justified by the fact that spectral deviations originating from errors
connected with specimen preparation and the acquisition process do not contain
information concerning the physical and chemical phenomena. This work focuses
on understanding the origin of data deviation and choosing the correct data
pre-processing steps accordingly. Therefore, the potential errors from the data
acquisition process were analyzed. Scatter originating from handling errors such
as picking a faulty background, detector noise, and specimen thickness variation
have been taken into account. Where possible, automated pre-processing is
performed to exclude personal judgment from the process to prevent bias. The
approach to pre-process raw spectral data is provided with the aim and complies
with the overall target of increasing the prediction accuracy.
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4.3.3 Handling Error Detection

First, data cleaning is performed to exclude obvious handling errors by detecting
and deleting incomplete or faulty data, e.g., faulty background measurements. If
a linear pattern of the signal variation is expected, obvious outliers are detected
and excluded from further analysis by applying a principal component analysis.
However, a certain amount of variation is expected in the spectral data of a
TSP due to the statistical nature of FTIR measurements. It is important to
remember that the acquired spectral value represents the average value for the
analyzed penetrated path and molecular state.

4.3.4 Signal-to-Noise Ratio

This statistical scatter can be reduced by increasing the signal-to-noise ratio
(SNR) by choosing appropriate sampling parameters. Generally, it can be said
that a trade-off between acquisition time, spectral resolution and SNR has to
be performed. Detector noise is known to be stochastically distributed and de-
pends on detector material and therefore, also on the spectral region. Detectors
used for NIR usually show a significantly lower SNR and a higher detectivity
when compared to MIR detectors. In order to achieve good quality spectra for
single measurements, the single measurements are binned into a single resulting
spectrum. Usually, the combination encompasses 8 to 64 single measurements
combined by averaging. For dynamic measurements, a smoothing of the result-
ing spectra is performed using a moving averaging filter introduced by Abraham
Savitzky and Marcel Golay, where a polynomial function approximates the data
[30].

4.3.5 Specimen Thickness, Reflection and Scatter

The spectral intensity for a given material depends directly on the length of the
penetrated path. Using the Lambert-Beer-Law previously presented, a correction
for thickness variation can be established. In order to scale the spectra into a
similar range, a baseline correction and normalization were applied. For the
normalization, the whole spectrum was linearly scaled according to the intensity
of the reference bands. Therefore, the reference bands of aromatic ring bonds (C-
C stretch at 1509 cm−1, C=C stretch at 1608 cm−1, or C-H stretch at 4066 cm−1

or 4623 cm−1) have been used depending on specimen thickness and analyzed
spectral band. Previous studies showed that aromatic bonds were suitable for
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normalization at moderate temperature since they possess the highest chemical
stability of the bonds within the epoxy resin network, as will be shown in Section
7.1.3.

4.4 Dimension Reduction

Dimensionality reduction is applied to convert the pre-processed spectral vector
to feature vectors by deriving non-redundant information important for the de-
sired observation. In this work, this approach is mainly used to reduce the size of
the spectral vectors while maintaining the inherent content of the physical and
chemical information. Using feature vectors instead of raw data vectors reduces
the risk of overfitting while increasing the speed of model training for machine
learning algorithms [8]. A special form of dimensionality reduction is feature
extraction. For spectral data, instead of using the single data points describing
a peak shape, general peak properties are derived and processed to a feature
vector. Two categories of features are defined and will be covered in this work.
Inherent features are directly measurable and calculated by considering a subset,
e.g., a specific wavelength of the data. Derived features are defined as dislocated
properties (not connected to a specific wavenumber) that need an algorithmic
processing step to be revealed, e.g., the calculation of a peak position based on
the weighted averaging and smoothing of spectral vectors.

4.4.1 Inherent Features

The simplest way to extract a feature vector can be performed by choosing the
maximum value for a specific wavenumber. The accuracy of this approach can be
improved by considering the discrete nature of spectral data and obtaining the
maximum value by interpolation. A special form of interpolation is represented
by the approximation using a Gaussian profile. It can be used to describe the
spectral shape of solids, which is also true for cured TSP [8]. The lmfit Python
library was used in this work to perform the peak fitting operation [31], as shown
in Figure 4.2.
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Figure 4.2: Gaussian profile fitted to highly scattered spectral IR data in the
range

Another feature is represented by the integral value, which can be calculated
using different methods and boundaries.

4.4.2 Principal Component Analysis

Principal component analysis (PCA) is based on the assumption of information
redundancy in data. It is assumed that a high-dimensional vector can be reduced
to a smaller number of derived features without losing a significant amount of
information. The calculation of the explained variance value after PCA allows
the estimation of the percentage of lost information. A detailed explanation of
the PCA method can be found in the literature and is not within the scope of this
work. A good introduction to the application of PCA for FTIR data can be found
in [32]. In this work, PCA is applied in three different ways. First, the PCA
approach is used to reduce scatter from the data acquisition process by deleting
high-order principal components and reconstructing the spectral data. Second,
by applying clustering algorithms on the first and second principal components,
outliers can be effectively identified and deleted. Third, the PCA will be used
as a feature extraction method to reduce the input vector for further analysis,
e.g., by reducing the length of the FTIR data vector.
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4.5 Modeling

4.5.1 Modeling complexity

Depending on the complexity of the expected underlying physical and chemical
observations in the experiment, a suitable model has to be chosen to describe
the dependence (See Figure 4.3). Application of the DPP in Sections 5 to 7
starts with a simple model and increases the model complexity as required by
the application. If a simple linear dependence with known influenced spectral
bands is present, a simple vector entry-based linear regression (LR) model can
be chosen. If the dependence is linear but hidden throughout the spectrum
or feature vector, the dependence can be uncovered using principal component
regression (PCR). Finally, if the link between data and information vector is
neither known nor linear artificial neural networks (ANN) can be applied to es-
tablish a model to describe the interconnection. It is important to understand
that for linear problems, the performance of ANNs is expected to be lower com-
pared to PCR/LR, with significantly higher computation costs. Overall, the
complexity of the model should be as low as possible due to the limitation of
available data or specimens and the dimensionality of the underlying pattern to
prevent overfitting. Therefore, the key to a good model is to cover the core of the
problem by generalizing the underlying dependencies and excluding unimportant
features and data variation sources. Only a brief introduction to the concepts is
provided next, while details and information regarding implementation can be
found in [33].

Figure 4.3: The relation of physical insight depth in comparison to the required
model complexity
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4.5.2 Machine learning

A very simple but accurate definition of the term “Machine Learning” can be
found in the following quote written by Cassie Kozyrkov [34].

“Instead of giving explicit instructions, you program with examples and the ma-
chine learning algorithm finds patterns in your data and turns them into those
instructions you couldn’t write yourself.”

Hence, in comparison to the previously presented analytical approaches, where
rules and code have to be implemented directly, machine learning describes an
approach where automated pattern detection in data takes place. This is partic-
ularly useful if the underlying processes are unknown, not well understood and
a reduction of the complexity would lead to an oversimplification of the prob-
lem. Artificial neural networks (ANN) represent a set of algorithms where simple
processing units called neurons form an interconnected network to process data
between an input and an output, as can be seen in Figure 4.4. While the number
and complexity of the hidden and output layers can be chosen arbitrarily and
task-dependent, the size of the input layer is determined by the length of the
data input vector. The single neurons are fed from the input or previous layer
with scalar values. The data is then processed by a so-called activation func-
tion, which sums up the inputs according to the weights and outputs a single
scalar value. The weights and the activation function are responsible for the
transmission of information to the next layer while the weights are changed and
optimized during the training process until convergence is reached. Using spec-
tral data, each wavenumber data point has its own input neuron. If a feature
vector is used as input, the input layer is reduced accordingly.
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Figure 4.4: General artificial neural network design, adapted from [35]

4.5.3 Training Set, Test Set and Cross-Validation

Once a pattern is identified and described by a model, the question of model
accuracy arises. As the training and optimization of model parameters go on,
continually improved accuracy is assessed using validation. The aim of the train-
ing is to create a model which shows comparable performance between new un-
seen data and data used for training. If such a model is found, it is stated to
generalize. Therefore, instead of using the full dataset for training, the available
data has to be split into three parts, the training, validation and test set with
specific functionality, as shown in Figure 4.5.

Figure 4.5: Overview of the data sets during training and cross-validation

The size of the training set depends on the complexity of the model and the
amount of available data. Generally, complex models such as the ANN require
a significantly larger training set than simple linear regression models. If the
final test set achieves a significantly lower accuracy compared to the validation
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set the model is probably reproducing the scatter pattern in the training set. In
this case, the model is stated to be overfitted and a reevaluation of the model
complexity and the size of the dataset for training should be considered.
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5 Mixing ratio estimation

5.1 Introduction

5.1.1 Motivation

A robust and fast way to accurately determine production variation prior to,
during and after the manufacturing process is crucial to ensure high-quality pro-
duction when using thermosetting polymers. Regarding the overall goal of this
thesis to estimate the material state, the following section presents a first, simple
model to evaluate the feasibility of the approach of creating a single parameter
model. In general, the robustness and dimensionality of the model can be ex-
tended by adding influence factors and/or increasing the range and number of
conducted experiments. Figure 5.1 shows exemplary important external fac-
tors when dealing with the manufacturing of TSPs. However, this list is not
exhaustive and is highly application-dependent.

Figure 5.1: Overview of the major external processes having an influence on
the material state during manufacturing

As a proof of concept, in this work, the mixing ratio is chosen and analyzed.
However, in general, each external influence factor acting on a polymer during
manufacturing could be regarded respectively. An additional focus in this section
lays on the introduction of methods for the evaluation, choice and application
of spectral pre-processing.
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5.1.2 Section Outline

First, the extraction process and assessment of useful information from a given
spectral dataset are performed. Next, basic features representing the single sub-
components are extracted and processed. An optimal set of pre-processing steps
is developed by illustrating the impact of the different methods on the results.
Finally, the prediction precision is assured by determining and eliminating noise
sources. As a result, the model can be used to identify production-driven devia-
tions and initiate corrective actions during the manufacturing process. Through-
out the study, a linear correlation between the mixture ratio and the spectral
data is assumed based on Lambert-Beer-Law. The task of estimating the mixture
ratio is known to be a linear problem and can be best solved by tools designed for
this kind of task. Therefore, linear regression and principal component analysis
are mainly considered.

5.1.3 Literature Review

The first step of the manufacturing process of composites is represented by the
mixing of the epoxy resin, the curing agent and if applicable, an accelerator.
Ensuring the correct mixture ratio during the manufacturing process is essential
to achieve the desired physical and chemical properties of the polymer. Currently
used techniques to determine the mixing ratio are time-consuming, cost-intensive
and usually presuppose a technical background of the personnel performing this
task. The optimal mixing ratio for thermosetting polymers is defined by the
stoichiometric ratio given by the number of epoxy groups and reactive groups
of the curing agent. Using the epoxy equivalent weight and the anhydride,
respectively, amine equivalent weight, the stoichiometric ratio can be defined
for the present systems. Usually, these values are provided with the delivery
documents of the epoxy components. An offset of the mixing ratio leads to a
variation of the mechanical properties, e.g., the strength and modulus decrease
and the elongation at break increases [36]. Besides, a lower glass-transition
temperature is usually observed [36]. The variation of mechanical properties
was extensively studied in the past and is not the subject of the investigation.

5.1.4 Data Acquisition Process

Two different epoxy resin systems have been used to illustrate the different chal-
lenges arising from the single components. For each epoxy resin system, a set of
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specimens with a variation of the predefined mixing ratio have been manufac-
tured. The extent of the weight variation of the curing agent was defined to be
limited by 10 % plus and minus. The single steps of the process are shown in Fi-
gure 5.2, where the components are added first, then weighed and subsequently
mixed and finally, the FTIR spectral data is acquired.

Figure 5.2: Data acquisition approach for the mixture ratio data sets

In the case of the LY-system, the accelerator and the curing agent have been pre-
mixed in a ratio of 90:1, according to the datasheet. This approach complies with
the datasheet and excludes the ratio between the curing agent and accelerator
from the analysis while simplifying an accurate mixing for the anhydride-cured
epoxy resin system. For the RIM-system, both components were processed ac-
cording to the datasheet simultaneously. Cups of the size of 10 ml have been
used for the mixing process. The resin was added first, followed by the premix,
respectively, curing agent component. A difference between the desired mixing
ratio and the achieved mixing ratio cannot be prevented, as can be seen in Fig
5.3 and 5.11. However, this circumstance only leads to a shift of the single mea-
surement point along the calibration curve but has no impact on the calibration
itself. The weight was measured using a Sartorius CPA26P Microbalance with
a 10 ţg readability (linearity 8 µg, repeatability 4 µg). All specimens have been
manufactured by mixing the components using a SpeedMixer DAC 150 device
for 30 s at 3000 RPM. The spectral data is acquired in ATR mode using a di-
amond ATR crystal which is cleaned with isopropanol first. After 30 s solvent
flash-off time, a background spectrum is acquired using 40 co-added spectra.
The specimens are measured in the liquid state within 10 minutes after the end
of the mixing process. The FTIR spectra are recorded using 16 co-added scans
at a spectral resolution of 2 cm−1. A single drop fully covering the ATR crystal
of the mixed epoxy resin is measured for each data point. In addition, data
was also acquired in the cured state after curing according to the curing process
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specified in Section 3.1.2. The finally achieved mixing ratios were recalculated
once the add process was completed using a precision scale to determine the true
mixing ratio.

5.2 Results and Discussion - LY System

An overview of the LY epoxy resin systems dataset used in this section is shown
in Figure 5.3. As can be seen, the small calibration dataset (Series 1) contains
11 single specimens with single FTIR spectra. The second dataset (Series 2)
contains 15 specimens, each measured five times using the FTIR. For the Series
1 dataset, a mixing ratio (premix:resin) range of 95:100 to 85:100 was used,
while the Series 2 dataset ranges from 82:100 to 100:100. The general idea is
to perform the calibration of the model using the small accurate dataset and
validate the calibration curve using the results of a bigger less accurate dataset
with a wider mixing ratio range.
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Figure 5.3: Dataset overview for the LY epoxy resin system mixing analysis

The basic spectra for the LY epoxy resin systems and their pure components are
shown in Figure 5.4. Clear differentiation between the epoxy resin and the curing
agent can be done. The epoxy resin shows high absorbance at the aromatic bands
at 830 cm−1, 1508 cm−1 and 1608 cm−1 and a characteristic absorbance at the
oxirane band at 915 cm−1. The spectrum of the curing agent shows a unique
carbonyl band at 1772 cm−1. The spectral properties of the accelerator, on the
other hand, highly overlap with the epoxy resin and potentially have the ability
to be a source of scattering. A more detailed analysis of the single spectra is
performed next.
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Figure 5.4: Components of the LY epoxy resin system, LY 556 resin (gold),
HY 917 curing agent (blue) and the accelerator DY 070 (green). The mixed LY
epoxy resin system in orange.

5.2.1 Spectral Band Allocation

In Figure 5.5, spectral information of the Series 1 dataset is presented. All
11 infrared spectra of the calibration set are displayed in blue. Due to the
low overall variation, the difference between the spectra is hardly noticeable.
Therefore, the variance is calculated for each wavenumber along the specimen
axis displayed as a red line. Besides the spectral contributions of the single
components, assuming linearity with the pure component spectra, are displayed
in the background. First, the maxima of the variance curve are chosen, and
the spectral contribution at the closest spectral peak position is calculated (See
Table 5.1).

Table 5.1: Spectral contribution of the single components of the LY-System at
discrete wavenumbers

Wavenumber in cm−1

1772 1508 1182 904 828

LY 556 [%] 0.24 95.31 6.18 23.87 68.88
HY 917 [%] 99.75 2.48 91.37 75.92 28.64
DY 070 [%] 0.01 2.21 2.46 0.21 2.49
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Based on this analysis and with the knowledge from Figure 5.4, the carbonyl
band of the curing agent located at 1772 cm−1 represents a good choice to
quantify this component. A spectral contribution value of 99.75 % of the spec-
tral absorbance at 1772 cm−1 confirms this choice, especially if the spectral
contribution of the accelerator with 0.01 % and the epoxy resin with 0.24 % is
considered. The same approach is performed for the choice of the spectral band
representing the epoxy resin. In fact, both aromatic bands at 1508 cm−1 and
829 cm−1 show high spectral contribution. Though, due to the higher value at
1508 cm−1, this peak is chosen to represent the epoxy resin. Even though the
pure spectra of the epoxy resin showed high overlap with the accelerator, the
contribution toward the mix signal only accounts for 2.48 % of the signal. This
choice is also beneficial considering measurement path length variation since
the proximity of evaluation peaks minimizes deviations from penetration depth
variation.
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Figure 5.5: Spectral data overview, showing the variance, the absorbance of
the single spectra and the spectral contribution from different components.

5.2.2 Dataset Dimensionality and Structure

Using the PCA, the underlying structure of the raw data can be analyzed to dis-
cover the dimensionality of the data. Figure 5.6 shows the principal component
weights over the achieved mixing ratio for the first two principal components for
the Series 1 dataset. Clearly, the variation of the mixing ratio leads to a linear
dependence which accounts for 97 % of the explained variation. The second
principal component does not show a clear structure and therefore, it can be
assumed that the values of the PC 2 are randomly distributed and not relevant
for further analysis. As a result, a linear model can be used to establish a link
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between the mixture ratio and the data. This result is not surprising considering
the Lambert-Beer-Law where the concentrations of a two-component system add
linearly. Though, additional effects, such as chemical reactions, may occur and
have to be excluded when performing this analysis.
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Figure 5.6: PCA of the raw data for the LY epoxy resin system mix dataset
showing principal component 1 (left) and principal component 2 (right)

5.2.3 Pre-processing and Feature Extraction

Now that a deeper insight into the dataset has been acquired, several pre-
processing (PP) and feature extraction (FE) steps are evaluated to generate
different models and test them for accuracy. In the end, the best set of steps is
chosen to generate a model for application in order to predict the mixing ratio.
Several pre-processing steps and feature extraction models have been used on
the calibration dataset and compared with the aim of maximizing the coefficient
of determination R2. The best results could be achieved with the normalization
step using the aromatic peak at 1508 cm−1. Furthermore, a Sawitzky-Golay
filter using a window length of 7 and a function order of three also produced
promising results. Both pre-processing steps will be used in combination with
three different feature extraction steps. They are the raw peak value, the cubic
peak approximation and integral ratios.

5.2.4 Linear Model Calibration Set

Next, the PP and FE steps are applied on the calibration set to choose the
wavenumber with the lowest deviation. The results are presented in Figure
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5.7, where the normalization PP step with the cubic peak approximation was
used. As can be seen, the peak absorbance value for the carbonyl band at 1772
cm−1 yields the best results achieving a coefficient of determination of 9.94. The
other two bands showed higher scatter, which is reasonable, recalling the lower
variance compared to the carbonyl band. Hence the carbonyl band will be used
for further analysis.

Figure 5.7: Calibration model for the mixing ratio for the LY epoxy resin
system

After the selection of the spectral band which will be used for the analysis, the
pre-processing steps and the FE methods are further analyzed. As can be seen,
by using the raw peak values after normalization, the best-combined results
can be achieved. The coefficient of determination is equal for the cubic peak
and the raw peak in combination with smoothing and normalization when used
on the calibration dataset. However, comparing these values on the validation
dataset clearly shows that choosing the raw peak value in combination with data
normalization yields the best results achieving an R2 value of 0.656 and an MSE
of 0.0026. It was shown that the use of integral values does not lead to higher
accuracy when compared with the peak extraction method. Though, it has to
be considered that the peak value is highly spectral resolution-dependent and
the integration method may be beneficial if a spectral resolution variation is
expected between datasets.

Figure 5.8 illustrates the results of the calibration model and the validation set.
Generally, a clear correlation between a rising absorbance and an increasing
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Table 5.2: Influence of pre-processing and feature extraction on model accuracy
using the carbonyl peak (1772 cm−1)

R2 calibration set R2 validation set MSE validation set
Normalized o x x o x x o x x
Smoothed o o x o o x o o x
Raw peak value 0.983 0.994 0.994 -1.793 0.656 0.625 0.001 0.0026 0.0028
Cubic peak approx. 0.983 0.994 0.994 -1.719 0.649 0.625 0.001 0.0027 0.0028
Integral ratio 0.991 0.991 0.992 -0.64 -0.640 -0.573 0.0126 0.0126 0.0111

mixing ratio can be seen. The scatter of the validation dataset is significantly
higher compared to the calibration dataset from Figure 5.7. The reason for this
observation lays within the lower SNR ratio achieved in the validation set due
to a lower FTIR signal amplitude. Furthermore, it was found that the standard
deviation of the weight measurements was significantly higher for the validation
set.

Figure 5.8: Application of the calibration model on the Series 2 dataset

5.2.5 Influence of the Curing State

Another explanation for the deviation of the regression models may be found
in the curing of the epoxy resin. One can see that the deviation of the model
increases with the share of the curing agent. It is expected that with a rising
curing agent and accelerator content, the curing reaction sets on faster and
it may have an influence on the mixing ratio determination. Due to the fact
that the carbonyl band is consumed during the curing reaction, the model is
highly time-critical, especially if the curing temperature was reached during the
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manufacturing process. Since the LY epoxy resin system is a hot curing system,
the reaction initiation at room temperature can be neglected if the time between
mixing and the measurement is kept small. Hence the presented calibration
approach is considered valid. As shown in Figure 5.9, this is not true for longer
time durations and especially, not true if the polymer is in the cured and post-
cured state. With progressing curing, the carbonyl band at 1772 cm−1 and the
oxirane band at 915 cm−1 disappears.

Figure 5.9: LY system at different curing states

As an indication of the effect, Figure 5.10 shows the derived spectral features for
the calibration set in the cured state. Clearly, the model is no longer applicable
due to a linear shift and higher scatter. Nonetheless, the slope of the model is
comparable to the slope of the single values. This effect and additional influence
factors have to be further evaluated prior to the application of this model.
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Figure 5.10: Application of the calibration model on the cured specimens of
the Series 1 dataset

In this section, the general approach to develop a calibration model for the mixing
ratio was presented for an anhydride-cured epoxy resin system. The limitations
of a linear model based on single features have been presented and explained.
In the next section, the model will be extended using a more sophisticated data
analysis using an amine-curing agent-based epoxy resin system.

5.3 Results and Discussion - RIM system

The previous section showed how a linear calibration model could be established
using pre-processing and feature extraction methods. In this section, the ac-
quired knowledge will be used and the normalization step and the peak values
are set as the default method for the extraction of spectral features. In addition,
an approach to cope with highly overlapping peaks and more scattered data is
presented. A dataset consisting of 39 specimens representing a variation of the
mixing ratio of the RIM epoxy resin system is used. The dataset consists of two
different measurement series performed on two different dates. Each specimen
was measured three times, totaling a number of 117 single spectra underlying a
distribution around the default mixing ratio, as shown in Figure 5.11.
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Figure 5.11: Single measurements of the RIM epoxy resin system dataset

5.3.1 Single Components of the RIM System

The single FTIR spectra of the components of the amine-based epoxy resin sys-
tem (blue) composed of the RIMR 135 resin (gold) and the RIMH 137 curing
agent (red) are shown in Figure 5.12. As stated in Section 5.1.1, the single com-
ponents do not consist of a single molecular species but are rather composed of
several subcomponents which are partly of unknown share. Therefore, an ac-
curate assignment of single molecular species with spectral bonds is not always
possible. As seen before, the resin can be identified using aromatic bands, espe-
cially the one at 1508 cm−1. The other aromatic band of the resin at 829 cm−1

highly overlaps with the molecular band of the curing agent.
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Figure 5.12: Single components of the RIM epoxy resin system and the mixed
epoxy resin system



5 Mixing ratio estimation 49

Overall, the curing agent does not produce isolated infrared bands in this epoxy
resin system but has a strong peak at 1105 cm−1. For the next steps, the
dataset is divided into a test and a validation dataset, while 80 % (93 spectra)
of the specimens are used for the model development, 20 % (24 spectra) of
the specimens are kept for validation and the model accuracy evaluation. A
separate test and validation set is unnecessary since the model uses a validation
step during training.

5.3.2 Pre-processing and Outlier Detection

Based on the knowledge from the previous section, all spectra have been nor-
malized at the 1508 cm−1 aromatic peak prior to further processing. Single
specimens with high deviation may have a big impact on the calibration model
and if possible, outliers should be deleted or marked. Several pre-processing steps
have been evaluated to reduce the scatter of the data. Figure 5.13 shows the
accumulated absorbance intensity distribution prior to (left) and after the pre-
processing steps (right). The accumulated absorbance intensity is represented by
the summation of all spectral intensities for the regarded spectral range. Clearly,
the normalization process has led to a homogenization of the dataset, while the
impact of the variation between the two different datasets could be reduced.
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Figure 5.13: Histograms of accumulated absorbance intensity prior to the pre-
processing (left) and after the pre-processing step (right)

In the second step, the signal-to-noise ratio (SNR) for an area without signifi-
cant peaks was calculated. The results are presented in Figure 5.14, where the
SNR is plotted versus the total counts in a histogram along with the normal
distribution.
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Figure 5.14: Outlier detection by analysis of the SNR

Therefore, the standard deviation was calculated in the spectral range between
1700 cm−1 and 2500 cm−1 and was divided by the corresponding spectral mean
values. This approach also covers a possible deviation from CO2 variation and
excludes highly influenced specimens from further analysis. One single outlier
specimen was identified in the training set and was excluded from further anal-
ysis, as can be seen in Figure 5.14.

5.3.3 Spectral Band Allocation

Equivalent to the approach used in Figure 5.5, the variation of the data is ana-
lyzed by observing the variance and spectral contribution of the single compo-
nents using Figure 5.15. The highest variance can be found at a region ranging
from 1090 cm−1 to 1110 cm−1. Instead of a clear peak, an overlapped region of
different features can be seen. The same observation can be made for the band
around 1373 cm−1. As a result, instead of peak values, single wavenumbers are
chosen for further analysis.
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Figure 5.15: RIM-system mix and the corresponding variance in specimen di-
rection

Figure 5-16 shows the method to extract the wavenumbers which will be used
for the model. Therefore, the spectral contribution of the curing agent was
multiplicated with the variance yielding a new vector that shows regions highly
influenced by the curing agent component.
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Figure 5.16: Relative variance, influenced regions by the curing agent variation

For the extraction, the resulting vector was smoothed using a Sawitzky-Golay
filter with a window width of 7 and a third-order function. In addition, the
peak values have been extracted by applying a threshold value of 2 · 10-4 and
a minimum distance between the peaks of 50 data points. The initial guess of
using the bands around 1373 cm−1 and 1105 cm−1 could be confirmed by this
calculation.
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5.3.4 Peak-Based Linear Model

Based on the analysis in the previous section, four different wavenumber candi-
dates were identified and the corresponding R2 values for the linear regression
models were calculated, as shown in Table 5.3.

Table 5.3: Identified spectral bands for RIM epoxy resin system mixing ratio
estimation

Wavenumber [cm-1] 1373.38 1093 876.11 804.05
R2 value 0.877 0.83 0.878 0.325

Figure 5.17 shows the results of the analysis, where the R2 values range from
0.325 for the 804 cm−1 band to 0.878 for the 1373 cm−1 band. It can be seen that
wavenumbers with a higher spectral contribution from the curing agent, such as
876 cm−1 and 1373 cm−1, yield a higher overall correlation. Comparing the
coefficient of determination of this analysis with the results of the calibration
model previously presented for the LY epoxy resin system, one can see that
overall, a lower coefficient of determination is observed.

Figure 5.17: Linear model using peak value approximation by cubic function
representing the major variation in the mixing spectra
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5.3.5 PCA analysis

As shown in Figure 5.6, the structure of the dataset can be analyzed using PCA.
This approach is applied next to further improve the model by considering the
dimensionality of the data and evaluating the necessary model depth required
to cover the observed variation.

Data structure

Figure 5.18 shows the principal component weights over the achieved mixing
ratio for the first two principal components of the RIM epoxy resin system.
Considering the first PC, the variation of the mixing ratio leads to a linear
dependence which accounts for 83 % of the explained variance. In comparison,
the second component clearly shows the different datasets and accounts for 12.1
% of the variance. PC 3 and PC 4 are not shown here since they do not posses
any structure.
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Figure 5.18: PCA of the raw data for the RIM epoxy resin system mix dataset

Based on this analysis, the first PC will be used to establish a correlation between
the mixing ratio and the spectral data by applying regression analysis.

Principal component regression

In the last section, it was shown that by choosing specific spectral features, a
linear model could be obtained to estimate the mixing ratio. Unfortunately, this



54 5 Mixing ratio estimation

approach presupposes knowledge of the underlying processes and the effect on
the spectral data. Using PCA, these prerequisites can be skipped by creating
a solely data-based model. PCA can be seen as a multivariate extension of
the feature extraction-based approach and operates on a larger set of input
parameters. Figure 5.19 shows the results of the principal component regression
using the first principal component.
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Figure 5.19: PCA-based estimation of the mixing ratio for the RIM epoxy resin
system

The analysis yields a coefficient of determination of 0.84 and therefore, a lower
value by comparing it to the pure analytical and feature extraction approach as
presented in Section 5.3.4. The reason for the lower correlation lays within the
fact that the PCA considers a significantly higher amount of spectral entries for
the calculation and weights them automatically. Hence it can be concluded that
the application of the PCA method does not increase the accuracy of the model
but may lead to an improvement in the robustness of the prediction by being
less susceptible to noise in the spectra. In general, it was shown that using PCA
does not require additional pre-processing of the spectral data but also comes
with lower accuracy and higher computational efforts.
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6 Mechanical degradation

6.1 Introduction

6.1.1 Motivation

The mechanical behavior of thermosetting polymers and composites is well un-
derstood on the macroscopic level [37, 38]. Currently used techniques to de-
termine the damage state after mechanical loading are based on macroscopic
phenomenological observation and homogenization approaches. For engineering
applications, the micromechanical structure is usually ignored since no quan-
tification method for the stress and strain of the polymeric matrix or fibers is
known to date. Nevertheless, the existing material models based on these sim-
plifications deliver good results for the design and dimensioning of components
encountered the issues using probabilistic design and intense testing. In the
last section, the process of connecting spectral data with manufacturing-related
metrics was introduced by creating a simple linear model. Next, a further step
toward the major aim of this thesis to establish a direct connection between
spectral data and mechanical properties, as described in Section 1.2, is taken.
By observing the change of the material state vector under different loads, the
damage evolution is tracked while identifying the dominant processes and the
major underlying physical processes. In this section, the physical processes dis-
played in Figure 6.1 are mainly considered. Partial results of the presented work
have been published in Polymer, Volume 221, 2021, Article 123585 [39].
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Stress OrientationRelaxation

Physical processes

Figure 6.1: Overview of the major external processes having an influence on
the material state

6.1.2 Section Outline

First, a literature review concerning molecular aspects of mechanical degrada-
tion with an emphasis on molecular relaxation, stress and orientation is pro-
vided. Second, the results of static testing and DSC analysis of the specimens
are shown. Third, creep testing results and the model to estimate the molecular
forces are presented. Third, the results of cyclic testing confirming the model
and reversibility of the approach are given.

6.1.3 Literature review

In the following literature review section, the major previous work on the topic
of mechanical degradation, plasticity and current approaches to explain these
processes on the molecular level are presented.

General Idea for Tracking of Mechanical Degradation

In this section, the micromechanical concepts of state variation due to mechan-
ical loading are introduced. The basis for the section is the observation that
mechanical loading can lead to a variation of the material state of a TSP and
as a consequence, the residual mechanical properties are changed. It is assumed
that these material state and residual mechanical property changes are somehow
connected to a change in the underlying molecular structure. If that is the case,
it should be measurable using the proposed FTIR approach, assuming sufficient
sensitivity can be achieved. Until now, such an approach to derive a quantifiable
material state of TSPs has not yet been presented.
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Damage Evolution in Thermosets

The deformation behavior of polymers is highly temperature and test condition-
dependent. While thermoplastic polymers consist of long molecules forming an
entanglement network allowing reversible plastic deformation by chain-slipping
mechanisms due to the reduction of the entanglement intensity, this deformation
mechanism is not available for TSPs. Since TSPs are made of short molecules
cross-linked by covalent bonds forming a three-dimensional polymeric network,
extensive chain-slipping processes are not possible. Instead, as a result of the
structure, molecular level deformation of TSPs in the elastic and visco-elastic
domains is limited to small strains. The underlying physics of elastic thermoset
deformation is connected to the mobility of side-groups, rotation of parts of the
molecules and a change of bond lengths, respectively angles. These processes
limit the elastic straining of the three-dimensional cross-linked network signi-
ficantly, while overloading leads to the initiation of non-linear and irreversible
processes [40]. To which extent the dissolution of bonds takes place during visco-
elastic deformation is discussed controversially in the literature [41]. Most au-
thors assume it is either not occurring at all or to a very limited, non-measurable
extent.

Plasticity in Thermosetting Polymers

In general, plasticity describes a non-reversible deformation of a material that
remains inherent even if the load is removed. The concept of plasticity goes
along with bond breaking, local yielding and subsequent chain alignment and
orientation, while the dissolution of entanglements plays a minor role [42]. Un-
fortunately, accurate quantification and explanation of these processes with re-
spect to thermoset-based composite degradation are not yet available. As will
be shown later, plasticity in TSP requires very special conditions and geometric
configurations. The key to studying the plasticity of TSPs is to prevent brittle
fracture by the design of the experiment. The inherent susceptibility of TSPs
to fracture at flaws and surface defects makes this task especially difficult. So
far, the plasticity of thermosetting polymers in literature has been limited to
the concept of plastic process zones at crack tips to explain crack propagation
in thermosets [43]. The crack propagation process itself in thermosets was de-
scribed to underlie a stick/slip process rather than continuous and stable, as
observed in thermoplastics [41]. On this scale, the amorphous epoxy resin can
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no longer be considered homogeneous but rather show heterogeneous deforma-
tion mechanisms [41]. In fact, further examples will be quoted next, showing
that plasticity in epoxy resins is not unusual but rather requires specific stress
and loading situations. The situation becomes more complex if temperature
considerations are in place. If the temperature is approaching the glass transi-
tion temperature, the brittle behavior switches toward ductility [44]. According
to Kinloch, the crack propagation process in epoxy resins shows a “slip-stick”
behavior, while thermoplastic polymers undergo a rather continuous crack prop-
agation [41]. However, statistical flaw distribution and plasticity limited to crack
tips represent an oversimplification of the mechanical situation for the microme-
chanical specimens.

Shear-Yielding

The shear bands represent a special form of plastic deformation where a broad
deformation zone can be observed. Shear bands usually develop under an angle of
45° to the loading direction, corresponding to the maximum shear stress direction
[42]. In the previous section, the special conditions for epoxy plasticity were
presented. In most quoted cases, the plasticity goes along with local stress
concentration. At the same time, shear-yielding can be achieved by pure shear
loading. A study performed by Fiedler et al. shows that under shear loads, the
epoxy strain can achieve values beyond 60 % [45]. On the molecular level, shear
bands are reported to be connected with collective molecular alignment and free
volume rearrangement [46–48].

The Role of Specimen Size

A significant difference in the behavior of the matrix in composites compared to
macroscopic specimens is observed [41]. Previous studies have shown a highly
size-dependent brittleness of materials in general [49–52]. This is also true for
epoxy-based polymers in case the specimen volume is sufficiently small. In this
case, the epoxy resin can undergo significant plastic deformation and yielding
even below Tg [6, 53, 54]. This effect is not limited to pure epoxy specimens
but can also be observed in fiber and nanoparticle-reinforced plastics. Due to
the presence of nanoparticles in epoxy resins, a change in the stress distribu-
tion is observed, leading to higher global yielding and significant local plasticity
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[55, 56]. Hopmann et al. confirmed this observation for single fiber model spe-
cimens, showing that already the presence of single fibers can lead to highly
stressed areas inducing significant plastic deformation [57]. A study conducted
by Hobbiebrunken analyzing plasticity in small epoxy volumes in fiber-reinforced
composites found that these small TSP volumes also undergo comparable plastic
deformation when loaded [58]. Hence, one can summarize if fracture events can
be delayed by geometry or the absence of flaws, increased local stress concen-
trations are capable of forcing the epoxy resin to undergo plastic deformation.
Classic concepts of thermoset deformation fail to explain such behavior since
they cannot explain excessive deformation in a 3D-crosslinked polymer [41].

Molecular Relaxation

Structural relaxation plays an extensive role in the deformation process. Ther-
mosets are manufactured by curing a TSP with a curing agent by chemical reac-
tion, attaining a three-dimensional cross-linked polymer network. The transition
from the rubbery state to a glassy state goes along with a cross-linking chemical
reaction, continually reducing the distance between the molecules. At the glass
transition temperature, the molecular mobility is significantly reduced, leading
to a residual free volume and a non-equilibrium amorphous state. While the
molecular backbone is almost entirely locked-in, the mobility of side groups and
local motions of molecules is still possible [59, 60]. With time and temperature,
the TSP tends to further decrease the free volume and excess enthalpy by a re-
laxation process called physical aging. Physical aging describes a process where
the polymeric network converges toward a lower enthalpy and entropy state. As
a result, an increase in intermolecular forces due to a reduction of the distance
between the polymeric chains occurs [61]. Besides, the brittleness of the poly-
mer increases and the fracture toughness decreases [62]. The process is known
to be reversible by resetting the locked-in state with elevated temperatures. The
effect can be seen using Differential Scanning Calorimetry (DSC) measurements,
where an endothermal peak occurs below the glass transition temperature [63].
During the DSC measurement, energy is consumed in order to restore the cor-
responding equilibrium state in relation to the temperature. The onset of the
resetting process is reported to be found at approximately 20 °C below the Tg
[63, 64]. The same effect was observed by analyzing the constricted area of the
specimens tested in tensile loading, indicating changes in the polymer’s energetic
states [6].
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Molecular Stress

When a force is applied to a polymer, the external load is distributed among
the molecular bonds leading to stress of these bonds. In the early ’70s, several
authors addressing the load distribution in molecular bonds showed that the
backbone molecules of polymers are not uniformly loaded. Instead, the bond
load underlies a statistical distribution where single bonds may be overloaded
while the majority of the bonds are strained to a lower extent [65–69]. Hence,
during extensive plastic deformation of a 3D-crosslinked TSP, the dissociation
of these overloaded bonds would be expected. These ruptures in the backbone
chain of the polymer enable additional degrees of freedom for the polymeric
chains. A previous study by Seitz quantifying bond scission events during frac-
ture revealed that the number of affected bonds usually remains below 1 % [70].
A theoretical approach to quantifying the bond scission events has also been
proposed by Zhurkov et al. [71], stating that according to the kinetic concept of
fracture, the probability of bond rupture can be estimated from the temperature
and stress of the polymer. Two different approaches have been proposed in the
past to quantify chain scission events directly during the event or indirectly by
measuring residual molecular components. One of the direct methods is rep-
resented by electron paramagnetic resonance involving the measurement of free
radicals, which exist for a short time after the breaking event [72]. Alternatively,
it is possible to measure the residual polymeric components and end groups in-
directly by spectroscopy methods [73, 74]. Instead of measuring the number of
polymeric chain scissions, several authors have proposed methods to estimate
the molecular stress magnitude and distribution. A study by Ferraro et al. re-
vealed a correlation between the variation of atomic bond length and the shift of
the vibration frequency measurable by infrared spectroscopy [75]. Tensile stress
induces a shift toward lower frequency and therefore, lower wavenumbers due to
a change of the force on the atomic bonds, valence angles and internal-rotation
angles [65, 76]. These authors also confirmed that the shift is mainly affecting
the backbone bonds such as C-C at 975 cm−1 or 1060 cm−1, while side-group
bonds usually remain unchanged. Salmen and Bergström further elaborated
on these insights, showing that the C − O − C deformation vibration of cellu-
lose located at 1160 cm−1 also undergoes a peak shift upon loading [77]. The
intensity of the peak shift highly depends on the polymer orientation since ori-
entated polymers show lower standard deviation and therefore, sharper peaks
compared to amorphous polymers. A recent study by Sammon et al. confirms
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these observations by atomistic simulations. The majority of the experiments
so far have been performed using thin films analyzing the mid-infrared region
[78]. Although the information density in the mid-region is higher, the extensive
overlapping of the single peaks represents a challenge during analysis. Also, thin
layers often show significantly different viscoelastic and plastic behavior when
compared to the bulk material, as previously explained. In a previous study, it
was confirmed that the NIR spectrum already contains molecular information
allowing a prediction of the mechanical performance of a TSP upon thermal
exposure [79]. Furthermore, a study performed by Shinzawa and Mizukado con-
firmed that the chain deformation of polymers could also be detected by looking
at the overtones in the near-infrared spectrum by analyzing Nylon 6 films [80].
Until now, accurately resolving and quantifying the peak shift of a single bond
or bond angle vibration remains challenging due to the broad character of the
relevant peaks, high scattering during the measurement and a low overall shift
sensitivity. Therefore, further data processing is inevitable in order to derive a
quantitative model.

Molecular Orientation

The application of rheo-optical measurements can determine the orientation of
polymeric chains. In amorphous polymers, the backbone chains are randomly
oriented in the unloaded case. Upon the application of stress, the orientation
of the chains shows a tendency to point toward the main stress direction. By
measuring the absorbance of polarized infrared light, one can determine the
dichroic ratio R, which indicates the bond direction and, therefore, polymer
chains’ orientation [81]. The physical background and basics can be found in [52,
82]. Several authors have applied the methodology by simultaneously recording
the strain and the polarized absorbance to determine the orientation. Polymers
undergoing significant strains, such as rubber or thermoplastics, have been used,
showing high variation in the dichroic ratio [83–87]. More recently, Scherzer has
published several articles on polarized infrared spectroscopy of thermosetting
polymers proving that alignment effects are also measurable on epoxy resin under
lower total strains [88–90]. Kataoka et al. showed that this approach could also
be used for the backbone bond of cellulose-containing C − O − C bonds at 1160
cm−1 [91].
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6.1.4 Data Acquisition Process

An experimental setup allowing static and dynamic tensile tests while recording
FTIR spectra in situ is used. The specimens are mounted to a DEBEN microtest
200N tensile stage and positioned in the IR beam, as illustrated in Figure 2.2.
The IR light is transmitted orthogonally to the specimen surface and at the
same time, orthogonal to the load direction. The quasi-static tensile tests were
performed using a velocity of 1 mm/s while the creep and cyclic experiments
were conducted controlling the force. The FTIR spectra were acquired using
a Tensor 2 FTIR spectrometer manufactured by the Bruker Corporation. The
spectral data acquisition was performed in transmission mode in the range of
500 cm−1 to 6500 cm−1 using a spectral resolution of 2 cm−1. To achieve a
more accurate tracking of the spectral variation in time, the acquisition sam-
pling number was set to one. Instead of using the OEM integrated data binning
function, a moving averaging window data processing step was applied. For all
tests, a torque-limited wrench key and mechanical clamping were used. All tests
were performed in a temperature-controlled room at 23 (± 2) °C and 50 (± 10)
relative humidity. Specimen quality was controlled by performing optical anal-
ysis using an EPSON V850 Pro transmission light scanner and a Gabo Eplexor
500 N DMTA to measure the Tg.

6.2 Quasi-Static Testing

The tensile tests of the initial reference (IRE) specimens showed expected stress-
strain curves, while the mechanical properties lay within the range specified in
the technical datasheet. During the experiment, the formation of unexpected
surface irregularities was observed in the central part of the specimen imme-
diately before fracture. As described in the literature review section, TSP is
generally capable of undergoing local yielding due to stress concentration at
flaws and defects prior to fracture initiation. However, the observed phenomena
did not fall into this category due to a significantly larger affected area in com-
parison to previous studies. Nonetheless, to minimize surface-driven fracture,
the roughness of the specimen side surfaces was significantly reduced by polish-
ing by applying the previously described three-step process, as can be seen in
Figure 6.2. To further quantify stress peaks and track the stress distribution
during loading, in situ microscopy combined with birefringence measurements
has been added to the test configuration.
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Figure 6.2: Surface comparison between IRE specimen surface (bottom) and
specimen side surface after a three-step polishing process (top)

As a result, the resulting stress-strain curves have changed notably, as shown in
Figure 6.3, where the black curve represents the IRE specimen. Clearly, polishing
leads to a significant increase in the elongation at break value while the ultimate
strength is slightly reduced and the modulus remains unchanged.

Figure 6.3: Representative stress-strain curves comparing the initial reference
(black) and polished specimens (red-orange-green) after different polishing steps

Remarkably, while the IRE specimens fractured without significant cross-section
reduction the polished specimens (PS) undergone a cross-section reduction form-
ing a large visible constricted area as displayed in Figure 6.4.
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Figure 6.4: Standard specimen showing the constricted area after static loading
and subsequent unloading

Also, after unloading, the constricted area remained unchanged, indicating re-
sidual plastic deformation. Remarkably, the change in the experimental setup
amplified the formation of the previously observed irregularities instead of pre-
venting them. The observations indicate that also the previously observed ir-
regularities can be attributed to extensive shear-yielding zones with shear band
formation. The visible deformation is lengthwise limited to the central 20 % of
the PS specimen, as can be seen in Figure 6.5.

Figure 6.5: Microscopy image of the constricted zone (left) and birefringence
image of the unloaded specimen (right) illustrating shear bands

It is concluded that the non-standard geometry and smooth specimen surfaces
contribute to the formation of the constricted area. In contrast to previous
studies, the observation also shows that the plasticity of TSP is not strictly
limited to small volumes but may also occur in larger volumes under certain
conditions. To date, a large-scale formation of shear bands has not been reported
for TSP and is, therefore, further investigated. To gain more insight into the
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structural changes of the constricted area, the energetic state is analyzed next.
Therefore, one exemplary PS was unloaded once a strain of 18 % was reached
and before the fracture occurred and subsequently analyzed using DSC.

Figure 6.6: Comparison of DSC measurements for the constrained subspecimen
in blue color and the non-constrained area in red color. Clearly, a relaxation peak
for the constrained subspecimen can be seen, indicating endothermal behavior
during heat-up. During the second heating cycle, no further difference is detected
between the red and blue curves, indicating equal thermal behavior of both
subspecimens

Figure 6.6 shows the resulting DSC curves comparing subspecimens extracted
from the constricted areas (blue curves) with subspecimens extracted from non-
constricted (NC) area indicated by red curves. For both configurations, the
first heating cycle is represented by the solid line, while the dashed lines show
the second heating cycle. For both subspecimens an endothermal peak can be
observed in the range between 60 °C and 67 °C. While the constricted subspeci-
men peak shows a high intensity, the NC peak is clearly of lower intensity. Both
endothermal peaks disappear during the second heating cycle, indicating a re-
versible energetic transition during the first cycle. However, even though the
energetic analysis indicates reversibility, no recovery of the dimensions was ob-
served if a constricted specimen was exposed to heat using the same heat cycle.
One possible explanation for these DSC observations is that during shear band
formation, the molecular structure undergoes a weak form of the orientation
of the polymeric chains while the free volume is reduced and the intermolecular
forces are increased. Above all, the observed substructure shows properties com-
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monly associated with semi-crystalline areas of thermoplastic polymers. FTIR
spectroscopy is applied to further analyze the chemical structure of the TSP
in both areas of the specimen. First, the focus is laid on chain scission events
assuming that the extensive deformation of a 3D cross-linked epoxy network has
to go along with the rupture of the polymeric backbone chain. This assump-
tion is also backed by the fact that a slightly reduced ultimate tensile strength
(UTS) was observed for the PS, which may be connected with a reduction of
primary bonds. Unfortunately, a statistically significant increase or decrease in
functional groups indicating chain scission could not be observed. Therefore,
it is hypothesized that the FTIR measurement’s sensitivity is either insufficient
or that the number of chain scission events during the formation of constrained
areas is very limited. However, a small indication of peak-shift behavior could be
found during FTIR testing even though the scatter was very high. As a conse-
quence, a slower deformation process by applying creep tensile testing combined
with in situ FTIR measurements is performed next to increase the time-driven
resolution of the molecular processes involved. The main question remains why
brittle fracture is suppressed by the formation of the constricted area and which
role do the intermolecular and intramolecular forces play?

6.3 Creep Loading

The in situ creep testing approach is expected to provide a more in-depth insight
into the deformation process by the acquisition of time-dependent mechanical
and FTIR data. The spectral data will then be used to derive variables that
describe the molecular state based on the peak shift approach. First, three
different load levels, at 80 %, 60 % and 40 % of the ultimate tensile stress, were
tested to evaluate the feasibility of the approach. As expected, a load level-
dependent straining behavior is observed in Figure 6.7. The 50 MPa specimen
is showing instability due to a fracture at the end of the creep curve, which is
not relevant for further evaluation. Thus, the 80 % ultimate tensile stress level
at 50 MPa is chosen for the initial experiments. It allows a good tracking of the
molecular processes at a reasonable time frame but comes at the price of higher
scatter, as will be seen later.
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Figure 6.7: Creep loading curves for three different load levels at 25 MPa, 37
MPa and 50 MPa using the standard specimen dimensions

During the initial loading, spontaneous elastic and viscoelastic deformations lead
to the straining of the specimen within the first seconds of the experiment. With
advancing time, the cross-section is continually reduced due to the application
of a constant load. At the same time, the stress in the analyzed area is in-
creased accordingly. In the end, with the formation of the necking, the process
is further accelerated, leading to the failure of the specimen. Generally, the ob-
served course of the strain development is expected for TSP. However, as stated
before, the necking behavior is unusual for thermosetting polymers. An expla-
nation of this behavior may be accessible through the interpretation of changes
in the intramolecular and intermolecular forces. Therefore, an attempt to quan-
tify these forces by FTIR is performed next. First, deformation-sensitive FTIR
bands are identified and the dependence on straining is evaluated. Therefore,
the previously presented feature extraction process is applied and a data vector
is derived. The data vector stores information about the peak positions and
integral variations. It was generally found that several peaks show a shift of the
derived peak wavenumber (PWN) upon loading to different extents. In fact, a
wavenumber-dependent variation with progressing creep time is observed. This
enables the evaluation of the connection between the PWN behavior and the
molecular forces.
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6.3.1 Intra-molecular forces

Observing the infrared absorbance of the ether group (see red highlighted atoms
in Figure 6.8 allows an evaluation of the intramolecular forces and the backbone
straining. The ether group is found at 1036 cm−1, while the first overtone is
located at 2070 cm−1 [40].

Figure 6.8: Major molecular bonds of the DGEBA polymer. The ether groups
are indicated in red, while the C − H bonds of the phenyl ring are shown in blue
[94].

The wavenumber of the overtone peak of the ether bond (C − O − C) serves as
an indicator for the mean molecular strain in the polymer. As a component of
the backbone, this bond is directly responsible for force transmission through
covalent bonds when the specimen is loaded. While the peak position can be
used as a gauge for the average strain, it is expected that analyzing the integral
value and the standard deviation gives access to a bond scission count with
respect to a molecular stress distribution. However, the focus is put on the
mean molecular stress in this work. It is found that with increasing tension on
the polymer network, a shift of the ether peak toward lower wavenumbers occurs,
indicating an elongation of the ether group bond length confirming previous
studies [67, 69]. Figure 6.9 shows the evolution of the center of the distribution
of the backbone measured by the peak shift. The peak position observed during
the creep experiment illustrates a correlation with typical strain vs. time creep
curves. The initial loading leads to an instantaneous drop of the wavenumber,
as can be seen in the first seconds of the experiment by looking at the single
measurements shown as grey dots. The Sawitzky-Golay filtering algorithm may
be misleading for the initial phase of the experiment by over-smoothing the
curve and not showing the immediate character of the drop. However, a fixed
set of smoothing parameters was chosen, allowing good tracking over the whole
experimental time. The following constant phase shows a tendency for constantly
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accelerating the reduction of the PWN prior to a final drop at the end of the
experiment, starting at approximately 3500 s. With increasing strain, the peak
shift accelerates, indicating the development of higher average strain on the
molecular bonds and increased distance between involved atoms. In the end,
a second drop-like decrease is observed prior to specimen failure. Hence, the
molecular strain can be observed in all three creep stages.

Figure 6.9: Temporal evolution of the ether bond peak shift measured by in
situ FTIR spectroscopy during creep loading for 4000 seconds at a tensile stress
of 50 MPa

6.3.2 Inter-molecular forces

The second observed infrared band is used to analyze the extent of the inter-
molecular forces. The FTIR peak-position of C − H bonds in the aromatic ring
(see Figure 6.8, highlighted light blue atoms), which is assumed to be associated
with more general van der Waals (vdW) interactions, is calculated and evalu-
ated. Even though these bonds are not directly loaded during a tensile test, they
are known to contribute to the load-bearing capability of the polymer. Indeed,
the vdW interactions are highly distance-dependent and a small variation of the
distance may already lead to a significantly higher load-bearing capacity [95].
Therefore, the location of the spectral peak is assumed not only to be connected
with the distance between the chains but may also be used as an indication of
the free volume and the intensity of intermolecular forces. Figure 6.10 shows
the PWN of the C − H bond in bending vibration at 1885 cm−1. Although the
initial behavior is similar to the ether bond, a different progression is observed
over time. Looking at the whole experiment, the highest variation of the cor-
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responding peak positions is observed during the initial loading and the tertiary
creep stage.

It is assumed that the PWN of the hydrogen bond can be seen as a measurement
value for the free volume of the polymer. At the same time, it represents the
load-bearing share for the polymer. In this case, the initial decrease in the
PWN value could be associated with the increase in mobility due to a rising free
volume. During the second phase, where a constant strain rate is observed, the
PWN remains almost constant due to unchanged free volume. Upon necking,
the free volume decreases and leads to a rising PWN and at the same time
to a higher contribution of the intermolecular forces toward the load-bearing.
This goes along with a shear-yielding phenomenon which leads to a significant
reduction of the distances between the polymeric chains and also to a chain
alignment. However, chain alignment has not been analyzed here, but previous
studies have shown that this effect can also be observed in TSP using rheo-optical
infrared spectroscopy [92].

Figure 6.10: The evolution of the hydrogen bond during a creep loading for
4000 seconds at a tensile stress of 50 MPa

Even though additional spectral bands may be suitable for analysis, the choice of
these peaks is based on the highest intensity and largest variation during the ex-
periment. However, future studies with more sensitive methods and other spec-
tral bands could contribute to a further understanding of this phenomenon.
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6.3.3 Explanation of the Plasticity

Based on these results, a theory to explain the yielding behavior of the thermoset-
ting polymer is proposed. As initially stated, the central question of this study
is why a 3-dimensional cross-linked polymer is capable of undergoing extensive
plastic deformation without fracture. Based on the previous observations, iso-
lated analysis of the intramolecular and intermolecular forces is carried out while
establishing a connection with load-bearing capability. As can be seen in Figure
6.9, once the specimen is loaded, a continual increase in the strain with respect
to the stress of the ether bond takes place with the passing of time. Even though
the bond scission events could not be quantified, it is further assumed that they
take place in general. This has the effect that with increasing straining, the
probability and rate of backbone bond scission increases, which would lead to
a reduced number of load-bearing backbone bonds. The remaining load would
then be distributed on fewer bonds leading to higher strain values and to some
extent, to a chain reaction. The behavior of the C − H bonds indicates that
they are also subjected to external force when the external force is first applied.
Therefore, intermolecular bonds take up part of the load, which also weakens
them and causes the peak shift to smaller wavenumbers. The final phase shift to
higher wave numbers in the tertiary creep range can be explained by the necking
of the material occurring in this phase. Necking is accompanied by an increased
alignment of the polymer chains, which brings the individual chains closer to-
gether. It was seen that a shear-yielding sets on, leading to reduced mobility of
the polymeric groups and an increased load-bearing capability through a reduced
chain distance. This alignment results in an increase in the intermolecular forces,
which is reflected in the back shifting of the peak. Thus, the peak value of the
hydrogen bending bond directly correlates with the distance between the poly-
meric chains and therefore can be viewed as an indicator of intermolecular forces.
Combining the previous observations, an explanation for the yielding behavior
is possible. It is suggested that the percentile contribution of the intermolecular
forces during the third creep phase increases while the intramolecular forces stay
constant or are slightly reduced, leading to an increased load-bearing capability
of the TSP. The severity of the single bond scission event is therefore reduced,
while on the macroscopic level, the crack growth is suppressed by "intercepting"
crack growth and delaying fracture.
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6.4 Cyclic loading

In this section, the repeatability and reproducibility of the observation are an-
alyzed. As can be seen in Figure 6.11, the time until the third creep stage is
initiated varies for the single experiments from 3500 s to 11000 s.

Figure 6.11: Strain evolution for cyclic (between 0 MPa and 50 MPa) tensile
loading and constant tensile loading at 50 MPa. Black lines indicate different
specimens showing the underlying scatter connected with this experimental setup

A possible explanation for this behavior is the high load level chosen for these
experiments. It leads to high susceptibility to inaccuracies in measuring the
specimen cross-section, which results in a variation of the true stresses. Further-
more, the question of reversibility may arise from the previous findings. There-
fore, cyclic experiments have been performed additionally in order to confirm
the observations. Even though a high variation of the time period until fracture
or until the instable creep initiates is observed, the critical PWN value, which
describes the point of instability initiation, is found to be stable for all experi-
ments. Exemplary, a limit for a critical peak shift is proposed to be located at
2069.15 cm−1, as shown in Figure 6.12.
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Figure 6.12: Evolution of the central peak position for the ether bond over
time for different specimens. The bold light red line indicates a proposed peak
value that can be used as an indicator for non-reversible plastic deformation.

Both figures also indicate that the presented method is not only limited to creep
specimens but is also applicable in cyclic fatigue experiments.

In the end, the peak shift approach to predict and estimate the current material
state is proposed using the peak shift factor derived from the analysis. As was
shown, a clear correlation between the peak position and molecular stresses can
be established using the proposed methodology. The experiments suggest that
a generalization of the observations can be performed covering creep as well as
fatigue experiments for epoxy resin. Furthermore, the presented results indicate
that the derived value is independent of load level and duration. Therefore, a
specific wavenumber can be defined as a limit value indicating the damage state
of the polymer. Therefore, a catastrophic fracture event can be prevented by
monitoring the development either as an NDT approach or by in situ condition
monitoring. A simple model to apply the peak shift methodology of the C−O−C

ether stretch to estimate the material state is proposed in Figure 6.12, where a
limit value of 2069 cm−1 is proposed. However, extensive further work needs to
be conducted to confirm the generalization of this approach and applicability in
service under all degradation influences.
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7 Thermal degradation

7.1 Introduction

7.1.1 Motivation

In the last section, an approach to quantify the material state based on the inter-
molecular and intramolecular forces was introduced. It was shown that physical
processes could be tracked using infrared spectroscopy and the underlying mate-
rial properties can be estimated using FTIR data combined with pre-processing
and post-processing algorithms.
In terms of the overall goal of this work to establish a holistic method to evalu-
ate the material state of a TSP, this section contributes by focusing on chemical
processes. In fact, the feasibility of extending the model to identify and quantify
chemical processes is evaluated by using the example of thermal degradation
(TD). It is well established in the literature that exposing materials to elevated
temperatures can lead to the initiation and acceleration of physical and chemical
processes. In fact, these processes usually lead to reduced material durability
and therefore, are connected with thermal degradation. The initiation of these
processes is usually linked to an activation energy barrier which is attributed to
specific temperatures.
Until now, commonly used methods to observe thermal degradation processes
rely on phenomenological observations and indirect measurements. A simple and
robust method to continuously track material state changes and derive residual
material properties after thermal degradation is not yet established. Therefore,
to improve the degradation process understanding, a significant need for ob-
servation, identification and accurate quantification of the underlying chemical
processes is present until now.
In figure 7.1, major chemical processes (CP) which are connected with thermal
degradation in TSP are listed. Due to the highly complex nature of TD, this
list should not be considered exhaustive but rather represents the CP analyzed
in detail in this section. In general, it is barely possible to accurately cover all
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chemical processes and interactions which contribute to the final material state
using currently existing methods.

Oxidation Curing / Post-curingChain scission

Chemical processes

Oxidation Curing / Post-curingChain scission

Chemical processes

Figure 7.1: Chemical processes governing the thermal degradation

The main goal of this section is to establish a direct link between the material
state and the residual mechanical properties after thermal exposure. Therefore,
analytical and machine learning-based approaches are considered. Even though
both approaches fulfill the same function of connecting FTIR and material prop-
erty measurements, the structure and complexity of the connection significantly
differ.
The analytical approach can be considered robust and computational-simple but
comes with lower accuracy. It is based on the direct identification and quantifica-
tion of the underlying physical and chemical processes through IR intensity mea-
surements. These values are then used to establish a correlation with observed
material properties. Additional influences not covered in the model-creation
phase, e.g., moisture uptake, cannot be covered in the present application.
The machine learning approach based on artificial neural networks, on the other
hand, is highly complex, has a high number of variables and is computational-
intensive. However, it is considered holistic, covering all physical and chemical
processes represented by FTIR data. As explained in Sections 4.5.2 and 4.5.3 this
method is based on algorithms where learning from sample data is performed to
derive a pattern to predict material properties. Partial results of the presented
work have been published in Polymers 2019, 11(2), 363 [79].

7.1.2 Section Outline

In detail, the section is structured as follows: First, a literature review of thermal
degradation in TSP with an emphasis on chemical processes is done to show how
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the molecular structure of TSP is impacted in detail. Second, using the meth-
ods introduced in Section 3.2, a characterization of temperature-driven physical
changes is performed. Third, the major chemical degradation processes are iden-
tified and quantified using FTIR spectroscopy, mainly looking into dehydration,
chain scission and oxidation processes. Fourth, using the information on the
chemical processes from the previous section, a connection with the mechanical
properties is established, adding mechanical testing. Also, a preliminary study
to combine this information with the Peak-Shift methodology presented in Sec-
tion 6 is conducted. Finally, an approach is presented where machine learning
methods are applied to predict the residual mechanical properties solely based
on FTIR spectra.

7.1.3 Literature Review

In the following section, an overview of the literature concerning the thermal
degradation of TSP and FTIR spectroscopy-based methods to evaluate thermal
degradation is provided. So far, a considerable amount of literature has been
published on the topic of the thermal degradation of TSP, separating the un-
derlying processes into physical and chemical degradation [2, 63, 92]. Regarded
individually, the physical and chemical processes leading to a change of material
properties due to thermal degradation are well understood. The main weakness
in state-of-the-art knowledge lays in the poor understanding of the interaction
between chemical reactions and physical phenomena. Clearly, this fact can be
attributed to a lack of suitable data acquisition techniques to cover all possible
aspects of thermal degradation by a single measurement. In addition, the big
variation in the velocity of thermal activated physical and chemical processes
requires an accurate technique with high sensitivity on the one hand, but also a
wide measurement range.
As was shown in Figure 3.9, the onset of the thermal degradation measured by
TGA using a temperature ramp is found to be at 330 ◦C. In no way should
this value be considered as an upper limit for operation, but rather the single
physical and chemical processes have to be taken into account. For example, if
a long-term static temperature exposure is considered, a significantly lower tem-
perature already leads to continuous material property changes. On the other
hand, TSP may be able to sustain temperatures above the TGA onset for short
times without structural failure accompanied by structural changes in the poly-
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meric network. Indeed, the complexity of thermal degradation requires extensive
testing and a deep understanding of the underlying processes to determine op-
erational limits. Therefore, in this work, a wide temperature range between up
to 400 ◦C was chosen to account for the most relevant processes.
The impact of physical aging and chain scission on the polymeric network were
covered in Section 6. Therefore, the literature review in this section is focused
on oxidation and dehydration. In addition, a short overview of previous work in
the area of FTIR-based methods for thermal degradation analysis is given.

Oxidation and discoloration

It was conclusively shown that the oxidized surface layer of TSP leads to embrit-
tlement and accelerated crack formation [93]. Several studies made an attempt
to quantify the depth of the oxidation-induced surface layer. Most recently, Yang
et al. performed a thermal degradation study on anhydride-based epoxy resins
using a combined grinding and a KBR-pellet preparation technique [94]. As a
result, it was shown that for the specific resin system, oxidation was limited to
the surface of the specimen and a thickness of up to 100 µm for the analyzed
configuration [94]. A more advanced technique using microtoming of degraded
TSP specimens and FTIR micro-spectroscopy was used by Mailhot to acquire
depth profiles by extracting cross-sections [95]. The thermally degraded cross-
sections revealed linearly increasing carbonyl bonds toward the surface, while an
inverse pattern was observed for the ether bond concentration toward the bulk
material inside the specimen. The overall depth of the oxide layer was reported
to be up to 300 µm depending on exposure conditions [95]. Taking the fraction of
the oxide layer into account, the reduction of the observed TSP strength cannot
be explained by the presence of the oxide layer alone. Even though the oxide
layer significantly contributes toward fracture through the formation of polymer
cracks, additional processes in the bulk polymer are present. Studies perform-
ing thermal degradation under an inert atmosphere confirmed this by excluding
oxygen and preventing surface oxidation, showing thermal degradation beyond
oxidation [96]. In addition, a study by Echtermeyer and Krauklis confirmed this
observation for the RIMR135/RIMH137 based epoxy system focusing on discol-
oration. They have shown that thermo-oxidative reactions and the formation of
carbonyl groups attributed to the oxidation of TSP only represent one part of
the thermal degradation process [97].
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Moisture considerations

Undoubtedly, the moisture content has an influence on the molecular structure
and the mechanical properties of TSP. Right after manufacturing, epoxy resin
begins to absorb ambient moisture once it is demolded. According to the tech-
nical datasheet, the cured RIM-system absorbs 0.2 to 0.5 wt-% of water when
exposed for seven days at ambient conditions and 23 ◦C [98]. Even though the
water absorption process is simple in general, the molecular changes connected
with the absorption and desorption processes have not yet been fully explained.
This is especially true for the question of the reversibility of physical proper-
ties after drying and is still the subject of controversial discussion and ongoing
research [99–102]. Considering mechanical properties, e.g., Rocha et al. have
confirmed that with rising moisture content, a reduction of the ultimate tensile
strength (UTS), modulus and Tg can be observed [103].
It was shown that using FTIR spectroscopy, the water content of the TSP can
be tracked [104]. For the RIM-system, Krauklis et al. have shown that a cali-
bration model can be established to determine the water content of epoxy resin
using FTIR spectroscopy [105]. The main limitation of this study is that the
approach does not allow a distinction between the type of water bonding. As has
been previously shown by Zhou et al., water molecules in TSP can be retained
as Type I by single hydrogen bonds or Type II where water molecules form
multiple hydrogen bonds and are capable of contributing to the cross-linking of
the TSP [102]. The impact of the different types on material properties has not
been sufficiently studied yet, while Zhou found indication that Type II bonded
water leads to an increase of hydrogen bonds and therefore, to an increase in
mechanical performance. A study that conclusively distinguishes between drying
(desorption of water molecules absorbed after manufacturing) and dehydrating
(desorption of water molecules that are part of the polymeric network) has not
been published yet. Also, the differentiation between free and bonded water
in TSP is still not fully researched. A method presented by Hintertoisser and
Salmen suggested that the broad hydrogen band can be resolved using DMA-
FTIR and IR polarization, which may provide access to this question in the
future [106]. As a result, the estimation of the moisture content using FTIR by
tracking the hydrogen bond alone is considered insufficient to establish a correla-
tion with mechanical properties. In contrast, additional parameters are required
to build a robust model.
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FTIR approaches to describe thermal degradation

Numerous authors have applied FTIR spectroscopy to establish the link between
the mechanical properties of TSP and thermal exposure. Janke et al. evaluated
and quantified the mechanical properties of carbon-fiber-reinforced polymers
(CFRP) after thermal exposure using diffuse reflectance FTIR-spectroscopy. It
was found that a correlation between flexural strength after thermal exposure
and FTIR intensities for the carbonyl (1600 - 2000 cm−1) and hydroxyl regions
(3000 - 4000 cm−1) can be established [107]. The main weakness of this study
is the fact that only material close to the surface is measured and bulk internal
material is not taken into account. Rein et al. [108] used an FTIR handheld
device to acquire spectra of thermally degraded CFRP specimens and set the
spectra in relation to mechanical properties. They extended the analysis by using
a toolbox for artificial neural networks using short beam shear mechanical tes-
ting to generate labeled data for the calculation. The main limitation of Rein’s
study was the low resolution of the acquired spectra and the use of classification
for thermal degradation, where no continuous prediction values were calculated.
But instead, four classes were used to specify degradation severity. Eibl has
shown a two-step approach where a model for thermal damage was created first
by correlating inter-laminar shear strength of CFRP with FTIR spectra and in
the second step, bigger parts can be evaluated by mapping material properties
using FTIR spectra acquired in two dimensions [109]. However, this study con-
sidered damage severity and residual properties and did not allow a statement
regarding the degradation history. In summary, previous studies using FTIR for
thermal damage evaluation only used surface-related FTIR techniques and did
not sufficiently consider changes in the bulk material.

7.2 Identification and quantification of physical changes

In this section, material changes on the macroscopic level are observed during and
after thermal exposure. Therefore, TGA measurements at different temperatures
are performed to quantify mass changes in air and nitrogen atmosphere. Then,
specimens degraded at different temperatures, times and atmospheric conditions
are presented to evaluate the color change.

In Section 7, the RIM system was solely used. It was chosen due to the benefi-
cial peak location of the carbonyl groups indicating oxidation while preventing
overlapping with the FTIR peaks from the base spectrum of the TSP.



7 Thermal degradation 81

7.2.1 Weight Variation

The weight variation study is divided into two parts. The temperature range bet-
ween 50 ◦C and 90 ◦C was observed for 10 hours to evaluate the weight behavior
in the Tg region and 150 ◦C to 400 ◦C to observe high-temperature changes.

Temperature in Tg Range

Prior to testing, all specimens (as shown in Figure 3.3) were conditioned as
described in Section 3.1.4. In contrast to the standard time, the conditioning
was extended to 10 days until full equilibrium was reached. To determine the
true water content, reference specimens were dried for 96 h in a vacuum oven
at 50 ◦C and a pressure of 5 mbar. The results have shown that the reference
weight increased by 1.2 % due to moisture uptake after manufacturing and full
conditioning. Nonetheless, this value may be inaccurate since it does not account
for the possible loss of volatiles during the drying process. Therefore, the true
absorbed ambient moisture content of the reference specimens may be lower.
In order to reduce the possible impact of lost volatiles and not to create an
artificial condition of the specimens, after manufacturing, all tested specimens
were only conditioned at standard atmosphere at 23 ◦C and 50 % RH without
previous drying. Next, the mass change over time at moderate temperatures
is analyzed using TGA experiments. All experiments were conducted using an
initial constant heat-up rate of 10 °C/min starting at a temperature of 23 ◦C. As
expected, Figure 7.2 shows that thermal exposure leads to mass loss over time,
while higher temperatures lead to a larger gradient and faster mass loss. Within
the 10 hours, convergence toward a relative mass equilibrium is observed for all
temperatures and both atmospheres. In the air atmosphere, thermal exposure
at 50 ◦C and 70 ◦C leads to a weight loss of 0.93 %, respectively, 1.23 %. In
the nitrogen atmosphere, the mass loss is within a similar range, with 1.09 %
for the 50 ◦C specimen and 1.19 % for the 70 ◦C specimen. It is assumed that
these weight changes can be attributed to drying and loss of volatiles of the
TSP. Remarkably, the weight-loss behavior above Tg is different. Even though
for the first 1-2 hours, the specimens at 80 ◦C and 90 ◦C showed a higher initial
mass loss gradient, as expected, the final values deviated from expectation. It
is observed that for both ambient conditions, the mass-loss process is stopped
or even reversed. Assuming the dehydration process is ongoing as expected, it
is suggested that an additional overlapping mass gain process is in place. Since
this effect occurs in the air as well as in the nitrogen atmosphere, this process
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is not oxidation-driven, rather, nitrogen seems to promote this process when
comparing the 90 ◦C specimens. This observation needs further investigation
once the chemical processes have been fully disclosed.
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Figure 7.2: Weight changes in the range close to the Tg during thermal exposure
for standard (left) and nitrogen (right) atmosphere

Elevated Temperature

In this section, the effect of elevated temperatures on mass loss behavior is ana-
lyzed using an exposure time of 2 hours. If the temperature is further increased,
the relative mass loss ratio significantly increases, as can be seen in Figure 7.3. It
is expected that in addition to the dehydration processes shown in the previous
section, new processes set on. While the 150 ◦C setup leads to changes of a few
percent within the experiment time, all specimens at temperatures above 150 ◦C
show rapid weight loss. After the experiment, it was found that all specimens
above 250 ◦C have fully disintegrated for both atmospheric conditions. Hence
350 ◦C in the air atmosphere and 300 ◦C in the nitrogen atmosphere lead to the
full destruction of TSP. This result is expected taking the mass loss values into
account, e.g., the 350 ◦C specimen in standard atmosphere loses 71.6 % of its
weight after 2 hours, while the nitrogen specimen undergoes a mass loss of 85.1
%. As expected, comparing the 250 ◦C specimen in the standard atmosphere
with the 250 ◦C specimen in the nitrogen atmosphere, it can be seen that an
oxidation process sets on, leading to a faster degradation process. However, the
total mass loss at 350 ◦C is higher for the nitrogen atmosphere in comparison to
the air atmosphere, which cannot be currently explained. Overall, a variety of
physical and chemical processes play a role in the degradation processes, which
needs to be further analyzed.
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Figure 7.3: Weight change behavior of high temperature exposure for standard
(left) and nitrogen (right) atmosphere

7.2.2 Discoloration

In addition to weight variation, thermal exposure leads to a change in the out-
ward appearance of TSP. To analyze this effect, standard specimens have been
exposed to elevated temperatures in a range from 50 ◦C to 150 ◦C for 24 to 72
hours in a standard air atmosphere. Moreover, additional specimens under vac-
uum and nitrogen have also been exposed to thermal exposure at 150 ◦C for
72 hours. A square area was extracted from the pictures of each specimen for
comparison. As a result, a change in the color of the specimens can be observed,
as illustrated in Figure 7.4. For direct comparison, a circle was added to the
center of each specimen using the reference picture. Furthermore, for the 150 ◦C
and 72 h configurations, the 150 ◦C standard atmosphere specimen coloration
was additionally added.

Figure 7.4: The effect of thermal degradation on the color of the RIM-system
specimens with rising temperature and time in standard air atmosphere
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As expected, in general, with higher temperature and thermal exposure time,
the specimens became darker, changing from transparent to yellow, brown and
finally to black, as previously reported in the literature [23]. Remarkably, it
can be observed that specimens exposed to 70 ◦C undergo an opposite change
of the color first, showing higher transparency for a 24 and 48 h exposure time
when compared to 50 ◦C specimens. This observation confirms the presence of
several active processes, as described in the previous section. Looking into the
150 ◦C specimen, it can be clearly seen that the nitrogen and vacuum atmosphere
lead to a reduced change of the color when compared to the standard ambient
atmospheric (SAA) conditions. Nonetheless, a shift toward a brown color in
comparison to the reference specimen is still observed.
The change in color is known to be connected with a variety of thermo-oxidative
processes and mechanisms under the presence of oxygen [99]. In epoxy resin,
mainly a carbonyl formation by the separation of the hydrogen atom of the
ether bond was suggested [110]. However, the presented results indicate that the
change of the color in vacuum and nitrogen atmosphere must be connected with
additional mechanisms, e.g., chain scission or internal oxidation, as previously
reported [111].

7.3 Identification and quantification of the chemical
processes

Now that an overview of the impact of thermal exposure on the physical prop-
erties of the RIM-system has been provided, the underlying chemical processes
are analyzed by looking into the molecular changes using FTIR. A temperature
range between 130 ◦C and 200 ◦C is chosen to be able to observe these chemi-
cal processes in a reasonable time frame. As explained in the previous section,
experiments using a temperature above 250 ◦C are unreasonable since it leads
to very fast degradation and is outside practical application toward the goal of
material state estimation. To maximize the accuracy of the analysis, the MIR
band and data acquisition in transmission mode were chosen. Hence, the highest
possible IR information density and linearity of the absorbance enable precise
quantification of the molecular species and their changes. Though, to obtain
a fully resolved MIR spectrum, a specimen thickness of 25 to 30 µm has to
be used for the RIM-system. Unfortunately, this results in excessive specimen
preparation efforts and barely allows mechanical testing due to the extensive
susceptibility to fracture through irregularities at the surface and challenges in
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clamping. Conducted mechanical testing has shown that the single tensile tests
have been of no value due to significant scatter. Therefore, the study in this
section is limited to the observation of the variation of molecular species.
An overview of the spectral information obtained by this setup is shown in Figure
7.5. A qualitative FTIR spectrum of the reference specimen after conditioning
in the standard atmosphere is displayed in blue, while a thermal degraded (3
h at 200 ◦C) specimen spectrum is shown in red. To provide a comprehen-
sive overview, the spectra have been normalized using the aromatic peak at
1608 cm−1 and have been shifted along the y-axis. As can be seen, thermal ex-
posure leads to a variation of the FTIR spectrum in various spectral regions.
Depending on the spectral range, the intensity increases, decreases or remains
constant. An increasing absorption intensity is especially found for the carbonyl
bonds (C = O) located at 1656 cm−1 and 1727 cm−1. All aromatic bands located
at 830 cm−1, 1510 cm−1, and 1610 cm−1 show a comparable behavior and remain
widely unchanged. This observation also justifies the usage of these bands as
a reference for normalization. In contrast, a reduction in the intensity can be
found for several other spectral bands. Between 3000 cm−1 and 3600 cm−1 the
hydroxyl band undergoes an intensity reduction along with a slight shift toward
lower wavenumbers. In addition, the decreased intensity was also found for the
ether bonds at 1250 cm−1 and 1039 cm−1 and the triple peak between 2800 and
2960 representing the CH2 and CH3 bonds.
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The quantification of the molecular species is performed using the intensity ratio,
as shown in Equation 7.1. The peak ratio is calculated by the extracted observed
peak value (e.g., at 1250 cm−1) divided by the closest aromatic reference peak,
e.g., at 1610 cm−1 or 830 cm−1.

P eakratio = Iobserved

IReference
= I1250

I1610
(7.1)

For all following graphs showing the variation of the spectral absorbance, the
exposure time in hours is depicted along the x-axis, while the peak ratio, re-
spectively the peak wavenumber, is found along the y-axis. Every peak ratio
data point represents an absorbance intensity or a peak ratio value calculated
by equation 7.1. A detailed description of the spectral changes of the molecular
groups is provided next using the exposure times quoted in Table 7.1. In addi-
tion to the quantification of the molecular species, the changes of the PWN are
provided, where reasonable, applying the approach presented in Section 6.

Table 7.1: Times and temperatures of thermal exposure for the film specimens

Temperature [°C] Exposure Times [h]

23 (Reference) 0
130 4, 8, 22, 26, 30
150 1, 2, 3, 4, 8, 22, 26, 30
180 1, 2, 3, 4,
200 1, 2, 3

7.3.1 Carbonyl Group

First, the oxidation process is observed by quantifying the formation of the
carbonyl groups represented by the peaks at 1656 cm−1 and 1725 cm−1. The
normalized absorbance intensities are displayed in Figure 7.6, where it can be
seen that both peaks contain similar information. The reason for this behavior is
that they represent the identical underlying molecular bond type. Both spectral
bands are known to form due to thermo-oxidative reactions, as described in
Section 7.1.3. In order to choose a spectral band for oxidation quantification,
a trade-off between SNR and possible interference from overlapping should be
taken into account. Comparing both carbonyl peaks, it can be seen that the
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1656 cm−1 peak undergoes a more intense change leading to the formation of
a larger peak area in comparison to the 1727 cm−1 peak leading to a higher
SNR. However, the close proximity of the 1656 cm−1 peak to the reference peak
at 1608 cm−1 may be a source of interference and may impact a quantitative
analysis.
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Figure 7.6: Development of the peak ratios for carbonyl bonds at different
temperatures and times

Clearly, a strict dependence between the peak ratio and the time and tempera-
ture can be found for both carbonyl peaks. The oxidation intensities for 1 hour
at 150 ◦C and 4 hours at 130 ◦C are comparable with the reference specimen
indicating slow oxidation initiation. A weak tendency for convergence and satu-
ration can be seen for all specimens below 150 ◦C, though it is not reached in the
presented time frame. It is expected that due to the high surface-to-volume frac-
tion, significantly faster oxidation of the analyzed specimen takes place, which
may not be representative in extent for composites or bulk specimens. As a re-
sult, it can be stated that both peaks are suitable for determining the oxidation
extent of the surface of the RIM-system and that oxidation initiation starts at
least at 130 ◦C. As reported in the literature, the formation of radicals involved
in the oxidation process may also have an effect on the chain scission processes,
which should be examined in detail in the future.

7.3.2 Hydroxyl Group

A further major spectral variation can be found at the hydroxyl band around
3400 cm−1. Figure 7.7 shows the peak intensity ratio on the left side and the
peak shift on the right side. In general, a reduction of the peak intensity and
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a peak shift toward lower wavenumbers are observed after thermal exposure
of the specimens. Clearly, the reduced peak ratio indicates a loss of hydrogen
bonds in the TSP, indicating a dehydration process due to a loss of bonded
water, respectively, a loss of free water. The hydroxyl band is known to overlap
with secondary amines located at 3297 cm−1, which may also play a role in the
reduction of the peak ratio intensity.
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Figure 7.7: Development of the 3400 cm−1 bond intensities at different tem-
peratures and times (left) and the peak shift of the corresponding peak

In contrast to the oxidation process, which sets on at higher temperatures and
times, a step decrease response of the O − H-bond PR sets on directly for all
specimens, as can be seen in Figure 7.7 (left). A reduction of the peak ratio
when compared to the initial peak ratio of 0.87 can be seen for all tested speci-
mens to at least a value of 0.8. This indicates that the drying process is nearly
completed for the 130 ◦C test condition after 4 hours. Looking into the 130 ◦C
curve, a tendency toward convergence of the peak ratio is found at a PR of 0.77.
This indicates that an equilibrium hydrogen bond content of the corresponding
temperature was reached. Assuming 130 ◦C is sufficient to dry the specimen,
which is in line with literature where values of 50-60 °C are reported as suffi-
cient, the data of 150 ◦C, 180 ◦C and 200 ◦C indicate that at these temperatures,
additional processes are in place which lead to a loss of hydrogen bonds, presum-
ably which are part of the polymeric network and not absorbed water. This also
confirms the assumption made in Section 7.2.1 that additional processes have to
be in place, which are now identified as the loss of hydrogen bonds.
A peak shift toward lower wavenumbers is observed, indicating reduced mobility
of the hydroxyl group and a reduction of the free volume. An exemption can
be found for short exposure times and lower temperatures where an increasing
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PWN is observed, indicating increasing molecular mobility, which may be con-
nected with the previously described moisture desorption. Another possibility is
that the peak shift of the hydrogen bonds is connected with a partial intensity
reduction of the broad O − H-band or the underlying N − H band. The con-
vergence of the 130 ◦C peak ratios indicates that further ongoing changes in the
molecular structure are also present for the 130 ◦C specimens. The overlap with
the nitrogen bond may influence this evaluation and further studies have to be
performed in order to fully understand the peak shift behavior.

7.3.3 Ether Group

To allow a statement regarding the chain scission events, the ether bond lo-
cated at 1039 cm−1 was chosen. As stated in the literature review section, the
1039 cm−1 peak is associated with the aromatic ether and is part of the poly-
meric backbone. A second ether bond located at 1250 cm−1 can also be found.
However, it is not usable due to intensity-limited non-linear behavior. Figure
7.8 shows the intensity of the 1039 cm−1 band on the left side, while the corres-
ponding peak shift is depicted on the right side of the figure. The peak ratio
was calculated using the aromatic reference at 1040 cm−1, while no further data
processing apart from feature extraction was performed.
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Figure 7.8: Development of the 1039 cm−1 ether bond intensities at different
temperatures and times (left) and the peak shift of the corresponding peak

As can be seen, the peak intensity ratio is decreasing with rising exposure time
and temperature, indicating progressing chain scission. Looking at Figure 7.8
(left), a slight tendency to convergence can be found, though the chosen time
frame does not allow a clear statement regarding the final values for time versus
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infinity. On the right side of Figure 7.8, the peak shift behavior with exposure
time is shown. In Section 6.3.1, it was shown that a decrease in the PWN is
associated with increased stress. Here, the opposite effect indicates decreasing
mean backbone stress of the polymeric network. Combining these observations,
it is concluded that a possible explanation for this behavior is the reduction of
cross-linking through chain scission leading to stress reduction of ether bonds.
The effect of this observation on the mechanical properties will be analyzed in
the next subsection using the corresponding overtone.

7.3.4 Methylene and Ethylene Groups

Looking at the IR band between 2800 cm−1 and 2960 cm−1 a strict decrease of all
three single peaks can be observed. Therefore, a relative comparison of the peak
behavior of both CH2 peaks in comparison to the CH3 peak was performed, as
can be seen in Figure 7.9. While the 2870 cm−1 peak ratio shows a decreasing
pattern the 2964 cm−1 peak increases.
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Figure 7.9: Development of the ethylene groups in relation to the methylene
peaks at different temperatures for the 2869 cm−1 peak (left) and the 2964 cm−1

peak

This observation confirms the results from Section 7.3.3, confirming that the
bond scission event may also be tracked by CH2 to CH3 rearrangement. How-
ever, the different behavior of the single CH3 peaks indicates a different behavior
for two different molecular species and needs further research in the future with
a wider experimental basis.
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7.4 Correlation between mechanical properties and FTIR
spectra

7.4.1 Mechanical properties

In the last sections, it was shown that using film specimens, the molecular
changes after thermal exposure can be identified and quantified using FTIR
spectroscopy. Next, the impact of thermal exposure on mechanical properties is
analyzed and correlated with these observations.
Therefore, dogbone-shaped RIM-system specimens, as shown in Figure 3.3, have
been prepared using the standard procedure described in Section 3.1.3. Figure
7.9 shows a typical FTIR spectrum of the 0.5 mm thick specimen after thermal
exposure for the MIR and NIR region. Due to the thickness of the specimen,
the spectral bands used to identify molecular changes, as shown in the previous
section, can no longer be used due to the reduced transmissivity of the speci-
mens. Instead, the results will be transferred assuming similarity between both
test setups and by using overtone bands. In this section, the FTIR analysis is
limited to the MIR window in the range from 1800 to 2200 cm−1, as highlighted
and indicated with an arrow in the Figure 7.10 is used in analogy to Section 6.

Figure 7.10: Spectral window for FTIR measurements using 0.5 mm thick
specimens

After conditioning, the specimens were exposed to different temperatures and
times in a convection oven in an air atmosphere. The different test configu-
rations can be found in Table 7.2, where at least three specimens have been
tested for each data point. The measurement of the mechanical properties was
conducted after cool-down of the specimens and additional conditioning at stan-
dard atmosphere for 24 hours. Invalid mechanical testing results, e.g., where



92 7 Thermal degradation

specimens have undergone a slippage at the clamping have been excluded from
further analysis. The results of mechanical testing are presented in Figure 7.11,
showing the UTS on the left side and the strain at UTS on the right side.

Table 7.2: Times and temperatures of thermal exposure for the dogbone spe-
cimens for mechanical test-set

Temperature [°C] Exposure Times [h]

23 (Reference) 0
70 24, 48, 120, 168
90 24, 72, 168
110 24, 48, 168
130 24, 48, 72
150 24, 48, 72
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Figure 7.11: UTS (left) and strain at UTS (right) of the dogbone specimens
after thermal exposure in air atmosphere

In general, the results show that for short exposure time with rising exposure
temperature, a tendency toward a reduction of the UTS and a decrease of the
strain at UTS is observed. An inversion of this tendency is observed to set on
with a specific temperature with increasing time. These results indicate that at
least two different mechanisms are contributing to the change of UTS values in
TSP after thermal exposure.
In Figure 7.11 (left), it can be seen that initially, presumably, a time-independent
temperature-driven mechanism leads to a decrease in the UTS value. The second
time-dependent mechanism is assumed to set on above a specific temperature,
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presumably around 100 ◦C, which significantly influences the UTS with rising
temperature and time. Looking at the strain at UTS, an increase of the value is
found for all times at 70 ◦C thermal exposure. A further increase of the temper-
ature, starting with 90 ◦C leads to a strict decrease of the strain at UTS values.
To further evaluate the different mechanical behavior, the stress-strain curves of
the specimens are analyzed next. Figure 7.12 shows representative stress-strain
curves for three specimens of each configuration after 24 h exposure time. Each
stress value was calculated based on the initial cross-section after standard condi-
tioning. In Figure 7.12, the UTS values are indicated using circles with different
colors, while the black symbols indicate the corresponding breaking points.

Exemplary the percental changes of the UTS for the 24 h exposure time are
shown in Table 7.3. E.g., for the 90 ◦C thermal exposure the mean UTS decreased
by 12 % from 61.65 (σ= 0.29) MPa to 54,24 MPa (σ= 0,93), while the mean
strain at UTS decreased by 11 % from 5.75 % (σ= 0.18) to 5,12 % (σ= 0.03).

Table 7.3: UTS reduction for 24 h thermal exposure at elevated temperatures

Temperature [°C] UTS change Strain at UTS change

70 0 % 18 %
90 -12 % -11 %
110 -14 % -17 %
130 -12 % -16 %
150 -5 % -22 %
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Figure 7.12: Comparison of the reference specimen with the thermally exposed
specimen after 24 h exposure time at different temperatures in standard air
atmosphere

Several physical and chemical processes may be responsible for this behavior.
Using these results, a clear correlation of the specific molecular phenomena with
the observed mechanical changes cannot be done yet. Therefore, further anal-
ysis is performed with a focus on surface oxidation and intermolecular and in-
tramolecular forces next.

7.4.2 Surface oxidation

An additional dataset is used next to confirm the impact of oxidation on the
reduced strain at break values observed in the previous section, as presented in
the literature review section by several authors. Therefore standard specimens
have been exposed to an elevated temperature at 150 ◦C in ambient air, nitrogen
atmosphere and in vacuum conditions at one mbar using a Memmert VO 400 vac-
uum chamber. To increase the impact of oxidation and the variation between the
datasets, the specimens have not been polished but instead have been exposed
to elevated temperature directly after the milling process. It is assumed that
this specimen processing leads to accelerated crack formation. A comparison of
the surfaces can be seen in Figure 6.2. The tensile tests have been performed
directly after thermal exposure and subsequent cool-down to room temperature.
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The FTIR peak evaluation of the carbonyl groups at 1727 cm−1 reveals that the
air specimens have undergone significant oxidation where the FTIR signal was
saturated, not allowing quantification. Comparing the nitrogen atmosphere spe-
cimens with the vacuum specimens revealed that the nitrogen specimens have
undergone light oxidation, assumed to be formed by residual oxygen molecules in
the nitrogen gas. The resulting stress-strain curves confirm the assumption, as
can be seen in Figure 7.13. However, only a minor decrease of the strain at break
can be seen for the nitrogen specimen in comparison to the vacuum specimen.
The increased UTS value for the nitrogen specimen cannot be explained based
on the available information. These results show that the observed reduction
of the strain at break and strain at UTS can be attributed to the oxidation of
the surface, confirming Figure 7.6, which revealed that the minimum oxidation
temperature set on is at max. 130 ◦C.
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Figure 7.13: Comparison of the specimen after thermal exposure at different
atmospheres after 72 h exposure time at 150 ◦C

7.4.3 Mechanical – FTIR data correlation

In Section 6, the peak shift observations have been used to describe the under-
lying physical processes during creep loading. As stated in Section 1.2, the main
assumption is that the mechanical behavior is primarily driven by the material
state represented by the molecular bonds and this material state can be deter-
mined using infrared spectroscopy. The results from Section 7.4.2 showing the
impact of surface oxidation can be used to explain the reduced strain at break
and strain at UTS values observed in Figure 7.12. At the same time, the re-
sults from the hydroxyl group analysis presented in Section 7.3.2 also indicate a
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dehydration process which may reinforce the increase of brittleness. Next, the
approach introduced in Section 6 to measure the intermolecular and intramolec-
ular forces will be used to explain the UTS development of the thermally exposed
specimens shown in Figure 7.12. Therefore, the peak shift analysis is performed
for the spectral data acquired from the thermally exposed specimens. It is im-
portant to mention that in comparison to Section 6, all specimens are free of
external loads during measurement and that the degradation lays time-wise in
the past. The results of the peak-shift analysis can be seen in Figure 7.14, where
on the left side, the PWN of the hydrogen peak indicates higher intermolecu-
lar forces with an increasing value, while on the right side, a decreasing PWN
indicates higher intramolecular forces.
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Figure 7.14: Peak wavenumber shifts of thermally degraded specimens in air at-
mosphere indicating intramolecular forces (left) and intermolecular forces (right)

Looking at the hydrogen PWN (Figure 7.14 left), the results indicate that, in
general, with rising temperature and time, the free volume between the polymer
chains increases while the intermolecular forces decrease. The thermal exposure
at 70 ◦C (17.1 ◦C below Tg) is expected to lead to a reduction of the free volume.
However, the hydrogen PWN value in Figure 7.14 left indicates an increase.
Also, the initial decrease of the free volume for the 90 ◦C cannot be explained
with the available data. Additional experiments performing thermal aging, as
well as DSC measurements, have to be performed to explain this behavior in
the future. Looking into ether PWN which is assumed to indicate the stress of
ether bond and therefore, the polymeric backbone, with increasing exposure time
and temperature, the stress is generally decreasing. This may be caused by an
increase in chain scission events during thermal exposure. This observation could
also explain the behavior of the 90 ◦C / 24 h specimens. It can be seen that the
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backbone stress is slightly increased for this specimen. Increased intramolecular
stress, on the other hand, may also influence intermolecular forces.

7.5 Thermal degradation for thick specimens

In the last sections, it was shown that the FTIR spectrum generally contains
the information to describe a material state sufficient to predict material proper-
ties. Next, a machine learning-based approach will be used to create a numerical
model to connect the NIR spectrum with the mechanical properties of the poly-
mer after thermal degradation. The goal of this approach is to estimate the
thermal degradation severity and predict the mechanical properties solely based
on the FTIR spectrum. The section should be regarded as a proof of concept
rather than an in-depth study due to the highly limited experimental configura-
tion and small sample size. For the study, 1 mm thick dogbone specimens have
been manufactured using the standard geometry and manufacturing approach.
Due to the specimen thickness, the MIR is not available and the FTIR mea-
surements were performed in the NIR. As explained in Section 3.2.2, the NIR
spectra contain less information and the clear allocation of the single bands is
more complicated. Therefore, deriving thermal degradation variables in the NIR
spectra is not straightforward and the results from the previous sections cannot
be simply transferred. However, it is assumed that the specimens show similar
physical and chemical behavior, e.g., oxidation and the bulk material undergoes
similar intramolecular and intermolecular changes as the thinner specimens. A
clear variation of the spectrum after thermal exposure of the specimen cannot
be seen by comparing the spectra alone. Rather, it is assumed that the spectral
variation exists and can be unveiled using computational methods. On the one
hand, lower information density in comparison to the MIR bands and a higher
scatter of the data is observed and complicates the analysis. On the other hand,
the benefits of using the NIR spectra are the high penetration depth (obtaining
information for the bulk) and low-cost components. An indication of a change
in the hydroxy group intensity can be observed at 5238 cm−1, though the overall
intensity change does not allow for an easy regression approach, as shown in the
MIR spectrum for the thermal degradation. As a result, the approach of further
processing the data and extracting information regarding thermal degradation
is motivated by these circumstances. Figure 7.15 shows two FTIR spectra in
the NIR spectral range. The blue spectrum represents the bulk specimen after
manufacturing, as previously introduced in Figure 7.6, while the red spectrum



98 7 Thermal degradation

was obtained after heat exposure. As for the MIR spectrum, the assignment of
the spectral bands was also performed according to the literature (e.g., [40]).
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Figure 7.15: NIR spectra, comparison of reference and thermally degraded
specimen

7.5.1 ANN Prediction Results

In the following section, the results of the ANN prediction are shown. The UTS,
the temperature, and the exposure time can be predicted using FTIR spec-
troscopy and the ANN approach with high accuracy. Figure 7.16 shows that a
clear correlation between the measured and predicted UTS could be established.
The graphic shows the results for 60 data points of the validation set, while the
training was performed on a dataset of 237 FTIR spectra. The measured UTS
values have been calculated using a default specimen cross-section. While it was
perceived after the study that the true cross-section was larger and an offset of
approximately 20 MPa was introduced due to this inaccuracy leading to lower
true UTS values, the validity of the results and the prediction approach are not
affected. Even though the overall scatter for the UTS was high for the whole
dataset, the prediction for the single specimens had high accuracy. A black line
represents an accurate prediction where the measurement corresponds to the
prediction. Actual predicted values were marked with blue dots. The vertical
difference between the line and the dots represents the prediction error for every
specimen. Two outliers, at 64 and 94 MPa, could be seen, showing the limits
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of the model at its boundaries. The same approach to displaying the results is
used for temperature and time prediction, see Figure 7.16.

Figure 7.16: Prediction of mechanical properties using ANN - the measured
and predicted UTS values

The results regarding temperature prediction showed good results normalized
mean absolute error (nMAE) of 2.1 %, even though time and temperature are
considered coupled in the literature. The scatter of the predicted time values
is high, as short exposure times were used to show the limitations of the ap-
proach. Longer exposure times would significantly increase prediction accuracy
in practice. In addition to the regression approach, classification was initially
considered to predict the exposure time and temperature. Although the clas-
sification approach showed good results, it was not further considered since, in
practice, a prediction of a concrete value after an unknown thermal exposure is
desired.
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Figure 7.17: Prediction of mechanical properties using ANN - Time and Tem-
perature prediction

As the Spectra in Figure 7.17 were already pre-processed, a comparison between
the results of the ANN with and without any pre-processing steps is provided in
Figure Figure 7.18. Therefore, the best prediction made for the raw spectra was
compared to the prediction after pre-processing and feature extraction. The PP
approach not only reduced the calculation time but also increased the accuracy
of the achievable results significantly.

Figure 7.18: Prediction accuracy for the UTS, exposure temperature and time,
along with the effect of pre-processing on ANN results

For the tensile strength, the prediction could be improved by 11 %; toward
an nMAE of 4.51 %, which equals a mean absolute error of 1.35 MPa. The
prediction of the set oven temperature reached an nMAE of 2.1 % and the
predicted exposure time 8.3 %.
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8 Summary and Conclusion

In this work, the feasibility of estimating the material state of a thermoset-
ting polymer was evaluated using infrared spectroscopy and predictive analyt-
ics. Different external influence factors have been considered while establishing
predictive models and quantifying residual mechanical properties.

As a result, it was shown that the molecular information acquired from the
spectral infrared region contains suitable information to derive a material state
vector describing inherent material properties. Under the assumption that suffi-
cient data is available, it is possible to establish a direct link between the material
state and residual material behavior for certain degradation factors.

Influence Factors during Manufacturing

The results of the mixing ratio evaluation show that for both epoxy systems, the
determination of the mixing ratio is connected to a calibration task and that the
accuracy of the model highly depends on the mixing components as well as the
modeling approach. The results showed that the calibrated model could be used
to predict the mix ratio. Clearly, the model accuracy can be improved if the SNR
ratio is increased by optimizing the data acquisition parameters, especially by
increasing the acquisition time and data binning. In general, a trade-off between
effort and required accuracy has to be performed to define the correct approach.

Mechanical Degradation

A new approach to evaluating the physical processes on the molecular level was
introduced by performing static, creep and cyclic mechanical experiments while
recording spectroscopic data in situ. A model was proposed to explain the ex-
tensive plasticity observed in small epoxy specimens. The origin of the plasticity
was found to be connected to different molecular changes occurring in tensile-
loaded thin specimens. It was shown that using infrared spectroscopy and feature
extraction, the intermolecular and intramolecular forces can be quantified. Ap-
plying Gaussian fitting on IR peaks yields a variable connected with the mean
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molecular stress of the molecular bonds. After loading the molecular structure,
a shift of the peak wavenumber value was found, which can be used to quantify
the forces acting on the corresponding molecular bond. The first overtone of
the ether bond was found to be useful in quantifying the intramolecular forces
describing the stress of the polymeric backbone. Furthermore, the aromatic hy-
drogen bond also undergoes a peak wavenumber variation that was found to be
connected with the intensity of intermolecular forces. As a result, a critical PWN
could be defined, which indicates a point of instability, allowing the prediction
of a critical material state for creep and fatigue loads.

Thermal Degradation

A quantitative analysis of thermal degradation and its spectral identification
was performed. It was shown that thermal exposure leads to chain scission
in the polymer bulk material, as well as oxidation of the surface under the
presence of oxygen. While oxidation increases the brittleness of the epoxy resin
by forming an oxide layer, specimens under vacuum condition do not show a
variation in brittleness. However, a reduction of the UTS was shown to be
directly connected with the exposure temperature and time. It was shown that
this effect is based on the altered chemistry inside of the polymer and is caused by
the chain scission process. Overall, a complex dependence between the molecular
forces and degradation factors was found while the experimental setup did not
allow a full resolution of the underlying influence effects. Further studies have
to be conducted to evaluate the specimens after thermal exposure by the peak-
shift approach. Furthermore, a novel method to predict and quantify the thermal
degradation time, temperature, and residual strength of a polymer matrix using
ANN and FTIR spectroscopy was presented in this study. The ANN approach
is capable of predicting the residual strength of thermally degraded epoxy resin,
as well as estimating the exposure time and temperature, with high accuracy.
Applying a data reduction process significantly reduces the training time of the
ANN and increases the accuracy of the predictions. The results also demonstrate
that an average temperature deviation of about 6 % and an average deviation
of 3 % for the strength prediction could be achieved using this approach.

Final Considerations

The presented work represents an initial study confirming the feasibility of de-
riving in-depth material properties from FTIR spectra. Nonetheless, with cur-
rently available devices, the method was only confirmed to work under strictly
controlled lab environmental conditions but may evolve with the development of
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customized FTIR spectrometers. The prediction of the properties is currently
limited to the configuration used in this study, especially regarding the used
specimen manufacturing methods, applied specimen geometry and material, as
well as the used the FTIR spectrometer settings and model. In order to ap-
ply the method in practice, additional research has to be undertaken to extend
the understanding. Nonetheless, the generalization of the approach represents
a promising path toward a new non-destructive inspection method. In the next
section (Section 9), a number of recommendations and ideas for future work are
presented.
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9 Outlook

This work presented the capabilities and the advantages of estimating the mate-
rial state using advanced analytical methods based on FTIR spectroscopy data.
Throughout the different sections and applications, several assumptions and lim-
itations had to be applied to enable the methodology evaluation. For future
applications, it is inevitable to further extend the knowledge of the impact and
interaction of different influences on the reliability of the model. The ultimate
goal shall remain in a holistic model capable of deriving all material properties
solely based on spectral data. Advantages in technical capabilities and know-
ledge in three different areas have to be accomplished in order to achieve further
progress.

Testing

First, the data acquisition in this work represented limited, highly focused
datasets. An extension of the data acquisition process toward different specimen
geometries and out-of-lab specimens or in-production parts would give access
to a significantly higher sample size while covering additional, partly unknown
influence factors. On the other hand, an increased and more representative sam-
ple size may also be achieved by applying a solid design of the experimental
approach and mixing the single influence factors randomly. The unavailability
of true stress and true strain values made it hard to evaluate local material
properties in the analyzed zone. In the future, in situ combination of mechan-
ical loading, IR measurements and digital image correlation or birefringence
measurements could allow additional insight into local material processes. The
extensions of the experimental setup toward compression and shear experiments
could give a more complete picture of the deformation capabilities. In addition,
using the-optical FTIR spectroscopy, chain orientation could be revealed, allow-
ing a deeper insight into the molecular orientation processes occurring during
mechanical loading.
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Data Acquisition

Furthermore, the quantity and quality of FTIR data could be improved by in-
creasing the spectral and spatial resolution. By reducing the scanned bandwidth
to the important spectral bands, a faster data acquisition could be achieved
while optimizing the spectrometer components to work in this area. A diffe-
rent approach to reducing signal noise and increasing spectral resolution may
be accessible through additional progress in the application of quantum cascade
lasers as IR light source. Focal plane array detectors, as currently used in FTIR
microscopes, could give access to spatially resolved data while allowing real-time
spectral scatter evaluation and in situ mapping of material properties. Even
though the presented models were based on infrared spectral data, they may be
extended to additional electromagnetic spectrum and acquisition methods such
as Raman or VIS spectroscopy to overcome material absorbance and penetration
depth limitations.

Model Improvements

In regard to the prediction of the material state and the corresponding mechani-
cal properties and its evolution, the underlying effects could be further analyzed
to understand the molecular processes. Therefore, extending the loading cycles
while adding influence factors may represent an interesting research direction,
especially if real-time data processing is performed. In this work, the assump-
tion of a Gaussian distribution was made for spectroscopic data. By reevaluating
this approach and the use of composite models (adding other distributions or
functions) for peak modeling, the accuracy of the prediction may be improved
while increasing the model complexity. In this work, the center position of the
Gaussian fit was used as model input. However, the Gaussian fit also delivers the
integral and the sigma value, which may be connected with additional material
properties presumably representing the overall bond number and the distribu-
tion of the stress for the single molecular bonds.

Data Processing

As was shown in the last section, using ANN may lead to outstanding and un-
expected results. The performance of ANN is extraordinary if unknown depen-
dencies have to be found in huge datasets. They are, therefore, highly beneficial
to narrow the research objectives and determine future research direction. How-
ever, these results may come with the downside of reduced interpretability and
reliability. The models are governed and highly limited by the training data set
and its containing influence factors. Therefore, to create a robust and reliable
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model, the insights acquired by ANN should be transferred into knowledge and
clear rules. In a second step, these rules should be used to implement classic data
processing algorithms to process the data and avoid unexpected model behavior,
e.g., by the emergence of new influence factors or unknown scatter sources.
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