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Abstract

This thesis examines the robustness of sparse graphs and hypergraphs with respect to contain-
ing copies of given spanning subgraphs. In particular, we prove analogues of the bandwidth
theorem for random and pseudorandom graphs, as well as a Dirac-type theorem for Hamilton
Berge cycles in random r-uniform hypergraphs. Furthermore, we determine conditions for
the existence of rainbow matchings in edge-coloured multigraphs and study the number of
spanning trees in graphs chosen uniformly at random from subfamilies of series-parallel graphs.

Diese Dissertation beschäftigt sich mit der Robustheit von dünnen Graphen und Hypergra-
phen bezüglich des Auftretens gegebener aufspannender Subgraphen. Insbesondere werden
Analoga des Bandweitentheorems für zufällige und pseudozufällige Graphen und ein soge-
nanntes Dirac-artiges Theorem für Berge-Hamiltonkreise in zufälligen r-uniformen Hypergra-
phen bewiesen. Zudem werden Bedingungen, die die Existenz von Regenbogenmatchings in
kantengefärbten Multigraphen sichern, bestimmt und die Anzahl der Spannbäume in Gra-
phen, die zufällig aus Unterfamilien von serien-parallelen Graphen gewählt werden, studiert.





Zusammenfassung

Ein zentrale Fragestellung in der extremalen Graphentheorie ermittelt, unter welchen Be-
dingungen bestimmte große oder sogar aufspannende Substrukturen in Graphen erzwungen
werden. Für Graphen, die über eine solche Substruktur verfügen, stellt sich dann unmittelbar
die Frage, wie robust sich diese Eigenschaft bei ihnen zeigt.

Diese Robustheit lässt sich auf mehrere Arten messen. Eine Möglichkeit ist zu bestimmen,
wie viel Prozent der inzidenten Kanten ein fiktiver Gegenspieler an jedem Knoten des Graphen
mindestens löschen muss, damit der entstehende Graph die gewünschte Substruktur nicht
mehr aufweist. Dieses Konzept wird häufig als lokale Resilienz bezeichnet. Alternativ lässt
sich die Robustheit eines Graphen G bezüglich des Auftretens einer Kopie eines gegebenen
Graphen H ermitteln, indem man die Subgraphen von G zählt, die isomorph zu H sind. In
der vorliegenden Dissertation werden solche Probleme sowohl in dünnen Graphen als auch in
dünnen Hypergraphen studiert.

Zunächst beschäftigen wir uns mit der lokalen Resilienz von zufälligen Hypergraphen sowie
von zufälligen und pseudozufälligen Graphen. Insbesondere beweisen wir für diese Strukturen
Analoga zu den folgenden zwei Theoremen. Der bekannte Satz von Dirac gibt Auskunft über
die lokale Resilienz des vollständigen Graphen bezüglich eines Hamiltonkreises. Ein allge-
meineres Resultat, das Bandweitentheorem von Böttcher, Schacht und Taraz, ermittelt diese
bezüglich des Auftretens aller aufspannenden Graphen mit beschränktem Minimalgrad und
sublinearer Bandweite.

Das erste der beiden Theoreme erweitern wir, indem wir den vollständigen Graphen durch
einen zufälligen r-uniformen Hypergraphen ersetzen und die lokale Resilienz bezüglich eines
Berge-Hamiltonkreises bestimmen. Der Beweis basiert auf der von Rödl, Ruciński und Sze-
merédi entwickelten Absorbtionsmethode. Dies ist das erste bislang bekannte Ergebnis über
die lokale Resilienz von zufälligen Hypergraphen. Vor diesem Hintergrund diskutieren wir auch
den Zusammenhang zwischen lokalen-Resilienz-Resultaten und kombinatorischen Spielen.

Für das zweite oben genannte Resultat, das Bandweitentheorem, zeigen wir analoge Sätze
für dünne zufällige und pseudozufällige Graphen. Unsere Beweise beruhen auf der Regula-
ritätsmethode und verwenden verschiedene Blow-up-Lemmata für dünne Graphen, die von
Allen, Böttcher, Hàn, Kohayakawa und Person bewiesen wurden.

Ausgehend von einer Vermutung von Ryser, Brualdi und Stein über eine Bedingung,
die das Auftreten von perfekten oder fast perfekten Matchings in 3-partiten Hypergraphen
garantieren soll, und einer allgemeineren Vermutung von Aharoni und Berger untersuchen
wir kantengefärbte Multigraphen. Wir zeigen eine asymptotisch bestmögliche Bedingung an
die Größen der Farbklassen, die jeweils Vereinigungen von Cliquen induzieren, sodass der
Multigraph ein perfektes Matching besitzt, dessen Kanten mit paarweise verschiedenen Farben
gefärbt sind. Dieses Resultat ist eine Annäherung an die Vermutung von Aharoni und Berger
und bestätigt asymptotisch eine bisher offene, von Grinblat gestellte Frage aus der Algebra.

Im letzten der Teil der Dissertation beschäftigen wir uns mit der Anzahl an Spannbäumen
in Graphen bestimmter Familien. Schranken und Schätzungen für diese Zahl wurden unter
anderem für (zufällig gezogene) planare Karten und Graphen gegebener Gradsequenzen un-
tersucht. Mit Methoden der analytischen Kombinatorik, insbesondere der symbolischen Me-
thode und der Singularitätsanalyse, ermitteln wir die asymptotische erwartete Anzahl an
Spannbäumen in einem Graphen, der zufällig aus allen zusammenhängenden serien-parallen
Graphen gezogen wurde. Ferner erhalten wir ähnliche Resultate für Unterfamilien von serien-
parallelen Graphen, wie etwa für all jene mit maximal vielen oder besonders wenigen Kanten.
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1
Introduction

1.1 Overview of the thesis

A central problem in extremal graph theory is to determine conditions that force a graph to
contain a given large or spanning substructure. Knowing that a graph contains such a sub-
structure, it is natural to ask how robust the graph is with respect to that containment. This
vaguely formulated question can be approached from various different directions depending
on how the robustness of a graph is measured.

A first possibility is to study how many edges a fictitious adversary has to delete from a
graph G to destroy the property of containing a copy of a given large graph H. However,
vertices of G can become isolated while only a few edges are removed. Therefore, it makes
sense to impose the restriction that the adversary may delete only a certain fraction of the
incident edges at every vertex. The minimum fraction that is necessary to obtain a graph
that does no longer contain a copy of H is known under the name local resilience.

Instead of evaluating the robustness of a graph with regard to adversarial edge deletion,
one can also examine how rich a graph G is concerning the number of copies of H that G
contains. In other words, a possible choice of measurement is counting the subgraphs of G
that are isomorphic to H. The higher this number is, the more likely it is that removing a
few edges randomly from G does not destroy the property of containing a copy of H.

A classic theorem by Dirac [63] implies that the local resilience of Kn with respect to the
containment of a Hamilton cycle is 1/2 + o(1). Asymptotically this remains true if Kn is
replaced by a much sparser graph. For instance, it was shown by Lee and Sudakov [124] that
the random graph G(n, p), which is defined on n vertices with each pair of vertices forming
an edge independently with probability p, satisfies the following with high probability if
p = Ω(log n/n): whichever edges an adversary removes from G(n, p) respecting that 1/2+o(1)
of the incident edges remain at every vertex, the resulting graph is still Hamiltonian.

More generally, rather than requiring that a graph G contains a copy of one single given
graph, one can also ask whether and how strongly G contains any or even all graphs of a
given graph family. The bandwidth theorem by Böttcher, Schacht, and Taraz [41] provides
a sufficient minimum degree condition for graphs to contain all maximum degree bounded
subgraphs with sublinear bandwidth, which is asymptotically tight. In particular, this implies
a local resilience result for Kn with respect to such containment.

In this thesis we extend the above mentioned results in the following ways. First, in
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2 Chapter 1. Introduction

Chapter 3 we prove analogues of the bandwidth theorem with Kn being replaced by a sparse
random or pseudorandom graph, as well as a variant for the containment of degenerate graphs
in sparse random graphs. All of these results are universal, in the sense that the simultaneous
containment of all members of a given graph family is implied, and they are asymptotically
optimal with respect to the minimum degree condition. The proofs of these results are based
on the regularity method and use powerful blow-up lemmas for sparse graphs, proved by
Allen, Böttcher, Hàn, Kohayakawa, and Person [9].

Second, in Chapter 4 we prove a local resilience result for sparse random hypergraphs
with respect to Berge Hamiltonicity. The random hypergraph model that we use is H(r)(n, p),
which is a natural extension of G(n, p) to hypergraphs, i.e. H(r)(n, p) is defined on n vertices
with each r-tuple forming a hyperedge independently from each other with probability p. Our
result is the first known local resilience result for sparse random hypergraphs. It is asymptot-
ically best possible in terms of the local resilience and the bound on the edge probability is
optimal up to possibly a polylogarithmic factor. The proof is based on the absorbing method
developed by Rödl, Ruciński, and Szemerédi [144]. We also discuss minimum vertex degree
conditions for r-uniform hypergraphs to contain weak Hamilton cycles and Hamilton Berge
cycles, as well as connections between local resilience results of hypergraphs and positional
games. Furthermore, we investigate monotone and strict Avoider-Enforcer games played on
the edge set of a complete 3-uniform hypergraph and prove bounds on the biases for which
Avoider can keep his hypergraph (almost) Berge-acyclic.

Another substructure that we are particularly interested in are hypergraph matchings. A
famous conjecture suggests that every balanced 3-partite 3-uniform hypergraph H on 3n ver-
tices, where each pair of vertices from different partition classes lies in exactly one hyperedge,
contains a perfect matching if n is odd, and a matching of size (n − 1) if n is even. This
conjecture was originally formulated in terms of Latin squares by Ryser [146] (for odd n) and
by Brualdi [46] and Stein [148] (for all n with a weaker statement for odd n).

This problem has also been studied in the setting of edge-coloured graphs as there is a one-
to-one correspondence between hypergraphs with the property just described, and complete
bipartite graphs Kn,n whose edges are coloured with n colours such that adjacent edges
receive different colours. A matching in the hypergraph corresponds then to a so-called
rainbow matching in the edge-coloured graph and vice versa. Aharoni and Berger [2] posed
the following generalisation of the conjecture of Ryser, Brualdi, and Stein: every multigraph
whose edges are coloured with n colours, where each colour class induces a matching of size
n+ 1, contains a rainbow matching of size n.

As a result towards this conjecture, we prove in Chapter 5 that if each of the n colour
classes induces a matching of size

(
3/2 + o(1)

)
n, then the edge-coloured multigraph contains

a rainbow matching of size n. In fact we show a stronger theorem; we consider edge-coloured
multigraphs where each of the colour classes induces a disjoint union of cliques and we prove
an asymptotically tight bound on the sizes of the colour classes that guarantees the existence
of a rainbow matching that uses every colour. The result also affirms asymptotically an
algebraic question by Grinblat [85] on sets not belonging to algebras.

As already mentioned, another possibility to measure the robustness of a graph G with
respect to the containment of graphs from a given family F is to count the subgraphs of
G that are isomorphic to any graph from F . In fact, graph enumeration is an extensively
studied field of graph theory and dates back to the mid-19th-century. One of the earliest,
classic results in this area is attributed to Cayley [48]. It states that the number of spanning
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trees of the complete graph on n vertices is nn−2. A generalisation of Cayley’s formula is
Kirchhoff’s matrix tree theorem [104], which provides the number of spanning trees in any
fixed graph G as the determinant of a matrix that is associated with G.

Restricting to a specific class of graphs, it is interesting to know how many spanning trees
a graph from that class roughly contains, without having to compute this number for each
such graph. For instance, one can establish lower and upper bounds on these numbers or
estimate how many spanning trees one would expect in a graph chosen uniformly at random
from all graphs of the given class. Problems of this flavour have been studied for regular
graphs, graphs with given degree sequences, and rooted planar maps [13, 112, 126, 127, 132].

In Chapter 6 we address this problem for different subclasses of series-parallel graphs. In
particular we prove a precise asymptotic estimate for the number of spanning trees in a graph
chosen uniformly at random from all connected series-parallel graphs on a given number
of vertices. We obtain analogous results for random edge-maximal series-parallel graphs,
which are called 2-trees, and for random connected series-parallel graphs with fixed excess,
which means that their number of edges and their number of vertices differ by a constant.
Furthermore, we analyse the growth constant of the number of spanning trees in 2-connected
series-parallel graphs chosen uniformly at random as a function of their edge densities. Our
proofs are based on analytic combinatorics, in particular on the symbolic method, generating
functions, and singularity analysis.

Before stating and discussing the results of this thesis more precisely in Section 1.3, we
summarise in Section 1.2 previous relevant results in the areas that we are concerned with.

1.2 Historical background

This thesis addresses questions from extremal graph theory, probabilistic graph theory, and
analytic combinatorics. In this section we collect previous results from these areas that are
related to the questions that we treat in the subsequent chapters. In Subsection 1.2.1 we
survey local resilience results of graphs, random graphs, pseudorandom graphs, and hyper-
graphs, and discuss universality results of random graphs and random hypergraphs. In the
same subsection we also elaborate on a relation between local resilience and positional games.
Subsection 1.2.2 is devoted to the study of hypergraph matchings, Latin squares, and rain-
bow matchings, all with regard to the above mentioned conjectures of Ryser, Brualdi, Stein,
and Aharoni and Berger. Finally, in Subsection 1.2.3 we summarise results from enumera-
tive combinatorics that deal with the enumeration of spanning trees and with properties of
series-parallel graphs.

1.2.1 Local resilience

In Chapter 3 we prove local resilience results for random and pseudorandom graphs with re-
spect to containing maximum degree bounded spanning subgraphs with sublinear bandwidth,
and in Chapter 4 for random hypergraphs with respect to Berge Hamiltonicity. In view of
these results, the purpose of this subsection is to summarise known local resilience results for
graphs, random and pseudrandom graphs, and hypergraphs as well as thresholds of random
graphs and random hypergraphs for the properties we are interested in. We also discuss a
relation between local resilience of random graphs and biased Maker-Breaker games, which
we extend to hypergraphs in Chapter 4.
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Local resilience of graphs

As already mentioned, a typical question in extremal graph theory is which lower bound
on the minimum degree suffices to guarantee that graphs respecting this condition contain a
given spanning subgraph. The prototypical example is the following classic theorem by Dirac.

Theorem 1.1 (Dirac [63]). Let G be a graph on n ≥ 3 vertices. If δ(G) ≥ n
2 then G is

Hamiltonian.

The lower bound in Dirac’s theorem is tight, as for each m ∈ N the complete bipartite
graph Km,m+1 and the graph consisting of two disjoint cliques each of size m do not contain
a Hamilton cycle.

From an edge deletion perspective, Dirac’s theorem says that an adversary may delete up
to (n/2− 1) incident edges at every vertex of Kn without destroying Hamiltonicity. In other
words, one needs to delete at least n/2 edges at a vertex of Kn such that the graph obtained
in this way does not contain a Hamilton cycle. The latter perspective is the spirit of the
notion of local resilience, which was first introduced by Sudakov and Vu [149] for a systematic
study of minimum degree results. We use the following definition of local resilience, where
we say that a graph property is monotone increasing if it is preserved under edge addition.

Definition 1.2 (Local resilience). Let P be a monotone increasing graph property and let
G be a graph with property P. The local resilience of G with respect to P is the minimum
number ρ ∈ R such that by deleting at each vertex v ∈ V (G) at most ρ · deg(v) edges one can
obtain a graph without property P.

Using this terminology, Dirac’s theorem implies that the local resilience of Kn with respect
to Hamiltonicity is 1

2 + o(1).

Let us mention at this point that there is a related concept called global resilience, which
is defined as follows. Let G be a graph with a monotone increasing graph property P. The
global resilience of G with respect to P is the minimum number ρ′ ∈ R such that by deleting
ρ′|E(G)| edges from G, one can obtain a graph that does not have property P. In this thesis
we are interested in global graph properties, such as the containment of large or spanning
subgraphs. Since global graph properties can be destroyed by small, local changes, such as
isolating a vertex of minimum degree, global resilience is merely used for local graph properties
and hence this measurement is not suitable for our purposes.

Minimum degree conditions for the containment of large subgraphs H are known for a
wide range of graphs with bounded maximum degree, such as powers of Hamilton cycles,
trees, and F -factors for any fixed graph F (see e.g. the survey [120] by Kühn and Osthus and
the references therein). The following more general result, which confirms a conjecture by
Bollobás and Komlós, was proved by Böttcher, Schacht, and Taraz and is known under the
name bandwidth theorem. The bandwidth of a graph G is defined as the minimum integer
b such that there is a labelling of the vertex set of G by integers 1, . . . , |V (G)| such that
|i− j| ≤ b for every edge {i, j} ∈ E(G).

Theorem 1.3 (Böttcher, Schacht, Taraz [41]). For each γ > 0, ∆ ≥ 2, and k ≥ 1, there exist
constants β > 0 and n0 ≥ 1 such that for every n ≥ n0 the following holds. If G is a graph
on n vertices with minimum degree δ(G) ≥

(
k−1
k + γ

)
n and if H is a k-colourable graph on

n vertices with ∆(H) ≤ ∆, bandwidth at most βn, then G contains a copy of H.
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Neither the restriction on the bandwidth, nor the additional term γn in the minimum
degree condition can be omitted in Theorem 1.3 (see e.g. [1, 41]). As proved by Böttcher,
Taraz, and Würfl [42] the bound on the maximum degree of H can be relaxed to

√
n/ log n if

H is a-arrangeable, i.e. if there exists a labelling of its vertex set by 1, . . . , |V (H)| such that
the size of the neighbourhood of N(i) ∩ {i + 1, . . . , |V (H)|} restricted to {1, . . . , i− 1} is at
most a for every i ∈ [n].

Theorem 1.3 applies to a large family of graphs since many interesting classes of graphs
have sublinear bandwidth. It is easy to verify that Hamilton cycles and their powers have con-
stant bandwidth. Furthermore, it was proved by Böttcher, Pruessmann, Taraz, and Würfl [40]
that planar graphs with bounded maximum degree have bandwidth O(n/ log n). More gen-
erally, they have shown that a hereditary class of bounded degree graphs has sublinear band-
width if and only if it does not contain expanders of linear order.

The bandwidth theorem subsums therefore, up to the error term, most of the above
mentioned results. In fact, for (k − 1)-th powers of Hamilton cycles, this is only true if k
divides the number of vertices since otherwise the chromatic number is k+ 1 and it is known
that a minimum degree of (k− 1)n/k suffices for an n-vertex graph to contain the (k− 1)-th
power of a Hamilton cycle [108]. However, Böttcher, Schacht, and Taraz have actually proved
a stronger version of Theorem 1.3 in [40], where H is allowed to have a few vertices coloured
with an additional colour. That theorem includes in particular the cases of all powers of
Hamilton cycles.

Universality of random and pseudorandom graphs

The graphs occurring in the theorems above are all dense, which means that they have
Θ(n2) edges if n is the number of their vertices. This leads to the question whether well-
behaved sparse graphs also contain given spanning subgraphs. We are particularly interested
in bijumbled pseudorandom graphs, which we define later, and in the Erdős-Rényi random
graph G(n, p), which has n vertices and each pair of vertices forms an edge independently
with probability p. From now on, unless stated otherwise, the term random graph will always
refer to G(n, p).

The theory of random graphs, initiated by Erdős and Rényi [76] around 1960, is an
extensively studied field. Especially the problem of determining ranges of the edge probability
p, for which it is ‘likely’ that G(n, p) contains a given subgraph has received a lot of attention.
To make this more precise, given a function p : N → [0, 1], we say that G(n, p) has a graph
property P asymptotically almost surely (or a.a.s. for short) if

lim
n→∞

P[G(n, p) ∈ P] = 1.

Furthermore, the threshold for a monotone increasing property P is defined as a sequence
p̂ = p̂(n) such that

lim
n→∞

P[G(n, p) ∈ P] =

{
0 if p = o(p̂),

1 if p = ω(p̂).

A threshold p̂ is sharp for a monotone increasing property P if for every constant ε > 0 it
holds that limn→∞ P[G(n, p) ∈ P] = 0 if p ≤ (1 − ε)p̂ and limn→∞ P[G(n, p) ∈ P] = 1 if
p ≥ (1 + ε)p̂.
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It is well known that there exists a threshold for every non-trivial monotone increasing
graph property, as shown by Bollobás and Thomason [37]. By now, the threshold for the
containment of a specific graph is known for a wide range of classes of graphs. For instance,
Bollobás [35], and independently Komlós and Szemerédi [110] (improving on earlier results
by Pósa [140] and Korshunov [111]) showed that if p ≥ (log n + log log n + ω(1))/n, then
G(n, p) is a.a.s. Hamiltonian. In particular, log n/n is a sharp threshold as it is well known
that a.a.s. G(n, p) is disconnected if p ≤ (log n−ω(1))/n, where ω(1) stands for any function
tending to infinity with n arbitrarily slowly (see e.g. [36]).

For general spanning trees there is a polylogarithmic gap between the lower and the
best-known upper bound on the threshold. Indeed, Montgomery [129] (improving on Kriv-
elevich [114]) showed that G(n, p) a.a.s. contains a given spanning tree with maximum degree
at most ∆ if p ≥ ∆ log5 n/n. When restricted to certain kinds of trees, optimal results have
been obtained in the sense that they hold a.a.s. if p ≥ (1 + ε) log n/n for any ε > 0. Hefetz,
Krivelevich, and Szabó [94] settled the cases when the spanning tree has a linear number of
leaves or contains a path of linear length all of whose vertices have degree 2. The case when
the spanning tree is a comb, i.e. when it contains n/k vertices, each of which has a disjoint
path of length k − 1 beginning at that vertex, was covered by Montgomery [130], improving
an earlier result by Kahn, Lubetzky, and Wormald [100].

Solving a long-standing problem, the Johansson-Kahn-Vu theorem [99] determines the
threshold for F -factors with F being a graph for which each proper subgraph F ′ of F with
at least two vertices satisfies

d(F ′) := 1
|V (F ′)|−1 |E(F ′)| < 1

|V (F )|−1 |E(F )|.

Graphs with that property are called strictly balanced and include for instance complete
graphs. The Johansson-Kahn-Vu theorem states that, for every strictly balanced graph F ,
the threshold for G(n, p) to contain an F -factor is n−1/d(F )(log n)1/|E(H)|.

Finally, a general result of Riordan [141] gives an upper bound on the threshold for
the containment of spanning subgraphs from various families of graphs. For instance, it
determines the threshold for the appearance of a spanning hypercube, of a spanning square
lattice, as well as of the k-th power of a Hamilton cycle for k ≥ 3. The case k = 2 was studied
by Nenadov and Škorić [133], who (improving on Kühn and Osthus [121]) established the
threshold for the appearance of the square of a Hamilton cycle up to a logarithmic factor.

Most of the above mentioned results are not universal, i.e. the simultaneous containment
of a copy of each graph H from a given class H is not necessarily guaranteed. The following
general universality theorem by Dellamonica, Kohayakawa, Rödl, and Ruciński [60] gives an
upper bound on the edge probability such that G(n, p) is a.a.s. universal for the class H(n,∆)
of n-vertex graphs with maximum degree at most ∆.

Theorem 1.4 (Dellamonica, Kohayakawa, Rödl, Ruciński [60]). For each ∆ ≥ 3 there exists

a constant C > 0 such that if p ≥ C (log n/n)1/∆, then G(n, p) contains a.a.s. every n-vertex
graph H with maximum degree at most ∆.

Observe that a lower bound on the edge probability p in Theorem 1.4 is given by the thresh-

old for the appearance of a K∆+1-factor, which is n−2/(∆+1)(log n)1/(∆+1
2 ) by the Johansson-

Kahn-Vu theorem [99].

Let us now turn to spanning structures in pseudorandom graphs. The study of pseudo-
random graphs was initiated by Thomason [150, 151] when he was investigating the question
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whether a property that is satisfied a.a.s. by G(n, p) can be used to describe graphs such that
various structural results hold for them as well as a.a.s. for G(n, p). Meanwhile pseudorandom
graphs have become a central subject in graph theory (see e.g. the survey [118] by Krivelevich
and Sudakov).

We are mostly interested in bijumbled graphs, which are defined as follows. A graph G is
called (p, ν)-bijumbled if for all disjoint sets X,Y ⊆ V (G) we have

∣∣e(X,Y )− p|X||Y |
∣∣ ≤ ν

√
|X||Y | .

The notion of bijumbledness is related to other common notions of pseudorandom graphs
that have been studied, namely jumbled graphs and (n, d, λ)-graphs. First, bijumbled graphs
and jumbled graphs are equivalent with some loss in the parameters (see e.g. [150]). Second,
(n, d, λ)-graphs are in fact a subclass of bijumbled graphs. Recall that an (n, d, λ)-graph is
defined as follows. For a graph G with eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn of the adjacency
matrix of G, the value λ(G) := maxi∈{2,...,n} |λi| is called the second eigenvalue of G. An
(n, d, λ)-graph is defined as a d-regular graph on n vertices with λ(G) ≤ λ. The relation
between (n, d, λ)-graphs and bijumbled graphs can be seen by the expander mixing lemma
(see e.g. [15]), which says that for an (n, d, λ)-graph G it holds that

∣∣e(X,Y )− d
n |X||Y |

∣∣ ≤ λ
√
|X||Y |

for all disjoint sets X,Y ⊆ V (G). An (n, d, λ)-graph is therefore in particular (d/n, λ)-
bijumbled. Note that the reverse implication does not hold as bijumbled graphs are not
necessarily regular. However, every (p, ν)-bijumbled d-regular graph is an (n, d, λ)-graph
with λ = O

(
ν log(d/ν)

)
, as shown by Bilu and Linial [32].

While until recently not much was known concerning spanning subgraphs of general bi-
jumbled graphs, there are various results for (n, d, λ)-graphs, as for instance for the existence
of perfect matchings [118], Hamilton cycles [117], triangle factors [119], and, more generally,
powers of Hamilton cycles [10].

The just mentioned result on powers of Hamilton cycles in (n, d, λ)-graphs was proved for
pseudorandom graphs with a weaker pseudorandomness notion, which implies bijumbledness.
In particular, Allen, Böttcher, Hàn, Kohayakawa, and Person [10] proved that for every
k ≥ 2 and β > 0 there is a constant ε > 0 such that every (p, εp3k/2n)-bijumbled graph
with minimum degree at least βpn contains a k-th power of a Hamilton cycle and every
(p, εp5/2n)-bijumbled graph with the same minimum degree contains a square of a Hamilton
cycle.

The proof of Theorem 1.4 on the universality of G(n, p) for H(n,∆) is constructive and
gives a pseudorandomness condition which implies that such graphs are universal for H(n,∆).
However, this condition is specialised to the proof and not one of the standard, common
notions of pseudorandomness. In fact, no standard pseudorandomness condition was known to
imply H(n,∆)-universality. Recently, Allen, Böttcher, Hàn, Kohayakawa, and Person proved
in [9] that bijumbledness does imply H(n,∆)-universality. In particular, they showed that for
every ∆ ≥ 2 there exists a constant c > 0 such that for any p > 0, if ν ≤ cpmax{4,3∆/2+1/2}n,
then any (p, ν)-bijumbled graph with minimum degree at least pn/2 is H(n,∆)-universal.

Local resilience of random and pseudorandom graphs

So far we have encountered local resilience results for dense graphs and universality results of
random and pseudorandom graphs, all with respect to containing spanning structures. Joining
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these two strands, in the present thesis we are interested in the local resilience of random and
pseudorandom graphs with respect to the simultaneous containment of spanning graphs from
specific graph families. The study of local resilience in random and pseudorandom graphs
was initiated by Alon, Capalbo, Kohayakawa, Rödl, Ruciński, and Szemerédi [14], and named
and further investigated by Sudakov and Vu [149].

Several results have been obtained concerning the local resilience of nearly spanning sub-
graphs. For instance, Dellamonica, Kohayakawa, Marciniszyn, and Steger [59] studied the
local resilience of G(n, p) and of bijumbled graphs with respect to containing nearly span-
ning cycles and Balogh, Csaba, and Samotij [17] investigated the local resilience of G(n, p)
with respect to containing nearly spanning maximum degree bounded trees. Both results are
asymptotically best possible, that is, the local resilience of G(n, p) with respect to these prop-
erties is a.a.s. at least (1/2− o(1)) for every p = Ω(1/n). The bound on the edge probability
is optimal up to the constant factor. Moreover, the constant 1/2 cannot be improved, as one
can find a.a.s. an approximately even bipartition of the vertex set of G(n, p) such that each
vertex v has at most (1/2 + o(1)) deg(v) neighbours in the other partition class and deleting
all edges between the partition class yields a disconnected graph whose largest component
has about n/2 vertices (see e.g. [59]).

One of the strongest results for spanning subgraphs so far is the following by Lee and
Sudakov [124]. Improving on [149], they showed that a.a.s. the local resilience of G(n, p) with
respect to Hamiltonicity is at least (1/2 − o(1)) when p = Ω(log n/n). Again, the bound
on the edge probability is optimal up to the constant factor and the constant 1/2 cannot
be improved for the same reason as before. Observe that this is a generalisation of Dirac’s
theorem (Theorem 1.1) since G(n, p) is equal to Kn if p = 1.

The local resilience of random graphs and pseudorandom graphs with respect to containing
cycles of all possible lengths was investigated by Krivelevich, Lee and Sudakov [116]. They
proved that the local resilience with respect to that property is at least (1/2 − o(1)) for
(n, d, λ)-graphs with d2/n = ω(λ) and a.a.s. for G(n, p) if p = ω(n−1/2), which is again best
possible in terms of the parameters and the constant 1/2.

We would like to mention two more results. First, Böttcher, Kohayakawa, and Taraz [39]
showed the following random graph version of the bandwidth theorem (Theorem 1.3) for the
case that the graphs to be contained are bipartite and nearly spanning.

Theorem 1.5 (Böttcher, Kohayakwa, Taraz [39]). For each η, γ > 0 and ∆ ≥ 2 there exist
constants β,C > 0 such that the following holds a.a.s. for Γ = G(n, p) if p ≥ C(log n/n)1/∆.
Let G be a spanning subgraph of Γ with degG(v) ≥ (1/2 + γ) degΓ(v) for every v ∈ V (G) and
let H be a bipartite graph on (1 − η)n vertices with ∆(H) ≤ ∆ and bandwidth at most βn.
Then G contains a copy of H.

Second, the Corrádi-Hajnal theorem [58] states that every graph on n vertices with min-
imum degree at least 2n/3 contains a triangle factor. The following random graph analogue
of this theorem was proved by Balogh, Lee, and Samotij [18].

Theorem 1.6 (Balogh, Lee, Samotij [18]). For each γ > 0 there exist constants C,D > 0
such that if p ≥ C(log n/n)1/2, then a.a.s. every spanning subgraph G ⊆ G(n, p) with δ(G) ≥
(2/3 + γ)pn contains a triangle factor that covers all but at most Dp−2 vertices.

In Theorem 1.6 the constant 2/3 as well as the order O(p−2) of uncovered vertices are
best possible and p is optimal up to the (logn)1/2 factor.
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Both in the proof of Theorem 1.5 and the proof of Theorem 1.6 one of the main difficulties
was to prove a special case of the blow-up lemma for sparse random graphs. The blow-
up lemma is a technical result in extremal graph theory, proved by Komlós, Sárközy, and
Szemerédi [109], and instrumental in the proofs of most of the extremal results discussed
above. However it applies only to dense graphs. Huang, Lee, and Sudakov [95] used it to
prove a version of the bandwidth theorem (Theorem 1.3) for G(n, p) with 0 < p < 1 being
constant. They proved that the local resilience of G(n, p) is a.a.s. at least (1/k − o(1)) with
respect to H-containment for the graphs of Theorem 1.3 with the additional restriction that
a few vertices of H are not allowed to be contained in triangles of H. In fact, they observed
that there must be at least Ω

(
p−2
)

such vertices, corresponding to the uncovered vertices in
Theorem 1.6.

Very recently, a full version of the blow-up lemma for sparse random graphs, again able
to handle graphs with maximum degree ∆ provided that p � (log n/n)1/∆, was proved by
Allen, Böttcher, Hàn, Kohayakawa, and Person [9] and will be presented in Chapter 2. This
result as well as versions for bijumbled graphs and for the embedding of degenerate graphs
are essential in our proofs in Chapter 3.

Dirac-type theorems of hypergraphs

An r-uniform hypergraph is a tuple (V,E) with E ⊆
(
V
r

)
and thus the generalisation of a

graph. It is therefore natural to ask for degree conditions that force a subhypergraph of the
complete hypergraph to contain a copy of some given large structure. Such problems have
been studied extensively in the last years, especially for different kinds of Hamilton cycles.

There are several different ways to define problems in hypergraphs analogously to Dirac’s
theorem (Theorem 1.1) since there are several notions of minimum degrees and cycles for
hypergraphs. Given an r-uniform hypergraph H = (V,E) and a set S ⊆ V with |S| ≤ r − 1,
the degree of S is defined as

degH(S) = |{e ∈ E : S ⊆ e}|

and the minimum d-degree δd(H) of H is defined as

δd(H) = min
S⊆V,|S|=d

degH(S).

We simply write deg(v) to denote the vertex degree of a vertex v in a given hypergraph H and
call the minimum 1-degree of H minimum vertex degree. The notion of resilience in graphs
extends verbatim to the setting of hypergraphs.

Definition 1.7. Let r ≥ 3, let P be a monotone increasing graph property and let H be
an r-uniform hypergraph with property P. The local resilience of H with respect to P is
the minimum number ρ such that by deleting at every vertex v ∈ V (H) at most ρ · deg(v)
hyperedges one can obtain a hypergraph without property P.

Let us mention that it is common to call minimum degree conditions that force a hyper-
graph to contain a Hamilton cycle, regardless of the notion of cycles or degrees, Dirac-type
results.

We will be interested in the local resilience of random r-uniform hypergraphs with respect
to weak and Berge Hamiltonicity, which are the earliest notions of cycles in hypergraphs due
to Berge [24]. They are defined as follows.
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Definition 1.8 (Berge cycle). A weak cycle is an alternating sequence (v1, e1, v2, . . . , vk, ek) of
distinct vertices v1, . . . , vk and hyperedges e1, . . . , ek such that {v1, vk} ⊆ ek and {vi, vi+1} ⊆ ei
for every i ∈ [k − 1]. A weak cycle is called Berge cycle if all its hyperedges are distinct.

If P = (v1, e1, v2, . . . , vn, en) is a weak cycle or a Berge cycle in a hypergraph H on n
vertices, then P is called weak Hamilton cycle or Hamilton Berge cycle of H, respectively.

Other common notions of cycles are `-cycles, which are defined in the following way. For
an integer 1 ≤ ` ≤ r, an r-uniform hypergraph C is an `-cycle if there exists a cyclic ordering
of the vertices of C such that every hyperedge of C consists of r consecutive vertices and such
that every pair of consecutive hyperedges intersects in precisely ` vertices. If ` = 1, then C is
called a loose cycle and if ` = r − 1, then C is called a tight cycle.

Surprisingly, to the best of our knowledge, the only result on the minimum vertex degree
that implies the existence of a weak or a Berge Hamilton cycle is the following one due to
Bermond, Germa, Heydemann, and Sotteau [26]. They proved that for every integer r ≥ 3
and k ≥ r+1 any r-uniform hypergraph H with minimum vertex degree δ1(H) ≥

(
k−2
r−1

)
+r−1

contains a Berge cycle on at least k vertices. If we ask for a Berge Hamilton cycle in an r-
uniform hypergraph on n vertices, where r is fixed and n is large, then the bound

(
n−2
r−1

)
+r−1

is weak since it differs from the maximum possible degree by
(
n−2
r−2

)
− r + 1.

We would like to mention the following two local resilience results for loose and tight
Hamiltonicity. Han and Zhao [89] (improving on [47]) determined that the optimal minimum
vertex degree condition that guarantees a loose Hamilton cycle in 3-uniform hypergraphs

is
(
n−1

2

)
−
(b 3

4
nc

2

)
+ c, where c = 2 if 4 divides n and c = 1 otherwise. For tight cycles

the best-known bound is due to Rödl and Ruciński [143], who proved that if the minimum
degree of a 3-uniform hypergraph H is at least

(
(5−

√
5)/3 + ε

)(
n
2

)
, then H contains a tight

Hamilton cycle. Non-trivial bounds for higher uniformities are not known yet. For the various
approximate and exact Dirac-type results that are known for `-cycles in terms of minimum
d-degrees with d > 1, we refer to the surveys [122] by Kühn and Osthus, and [161] by Zhao
and the references therein.

Hamiltonicity thresholds of random hypergraphs

Like in the setting of graphs, an intriguing question is which sparse random hypergraphs
contain a.a.s. a weak Hamilton cycle or even a Hamilton Berge cycle. By H(r)(n, p) we
denote the random r-uniform hypergraph model on the vertex set [n], where each set of r
vertices forms an edge randomly and independently with probability p = p(n).

While the threshold for the appearance of a Hamilton Berge cycle in H(r)(n, p) is not yet
established, the threshold for a weak Hamilton cycle in H(r)(n, p) is the following one due to
Poole [139].

Theorem 1.9 (Poole, [139]). Let r ≥ 3. Then

P
[
H(r)(n, p) is weak Hamiltonian

]
→





0 if p ≤ (r − 1)! logn−ω(1)
nr−1

e−e
−c

if p = (r − 1)! logn+cn
nr−1

1 if p ≥ (r − 1)! logn+ω(1)
nr−1 ,

for all functions cn tending to c ∈ R and ω(1) tending to infinity, respectively.
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Since every Hamilton Berge cycle is in particular a weak Hamilton cycle, Theorem 1.9
yields that H(r)(n, p) a.a.s. does not contain a Hamilton Berge cycle if p ≤ (r − 1)! logn−ω(1)

nr−1 .

An upper bound on the threshold for H(r)(n, p) being Berge Hamiltonian follows from a
result by Dudek and Frieze [72], who showed that e/n is the sharp threshold for the appearance
of a tight Hamilton cycle in H(r)(n, p) if r ≥ 4 and 1/n is a threshold if r = 3. An algorithmic
proof for the case r ≥ 4 with a weaker bound of p ≥ n−1+o(1) was given by Allen, Böttcher,
Kohayakawa, and Person [11].

Finally, let us mention that, if p = ω(log n/nr−1), then a.a.s. H(r)(n, p) contains a loose
Hamilton cycle if n is a multiple of r − 1 and r ≥ 3. This was shown by Dudek, Frieze, Loh,
and Speiss in [73]. For thresholds for general `-cycles we refer again to the survey [122] by
Kühn and Osthus and the references therein.

Positional games

There is an interesting relation between the concept of local resilience of random graphs
and certain positional games called Maker-Breaker games played on the edge set of complete
graphs. Maker-Breaker games, first studied by Lehman [125], Chvátal and Erdős [52], and
Beck [22], have enjoyed great popularity during the last decades (see [23] by Beck and [92]
by Hefetz, Krivelevich, Stojaković, and Szabó for thorough surveys on positional games in
general and Maker-Breaker games in particular). Before we describe the above mentioned
connection in more detail, we first summarise the general setting of Maker-Breaker games.

Let b be a positive integer, X a finite set, and F ⊆ 2X a family of subsets of X. A (1 : b)
Maker-Breaker game (X,F) is defined as follows. The set X and the elements of F are called
board and winning sets, respectively. The integer b is the bias of the game. The game (X,F)
is played by two players, called Maker and Breaker, who alternately claim elements of the
board X that have not been claimed before by either of the players. Maker occupies 1 element
per turn, while Breaker claims b elements in each of his turns. The game ends when every
element of the board is claimed by one of the players. Maker wins the game if he has claimed
all elements of at least one winning set in F , otherwise it is Breaker’s win. In particular, it
is impossible that the game ends in a draw.

If P is a graph property and X is the edge set of a graph or hypergraph, we write (X,P)
to denote the Maker-Breaker game that is played on X and the family of winning sets consists
of the edge sets of the subgraphs or subhypergraphs of X that have property P.

Maker-Breaker games are known to be bias monotone, i.e. if Maker has a winning strategy
for a (1 : b) game (X,F), then he also wins the (1 : b−1) game (X,F) and if Breaker possesses
a strategy to win a (1 : b) game (X,F), then he also possesses one for the (1 : b + 1) game
(X,F). Thus, for (1 : b) Maker-Breaker games (X,F) with F 6= ∅ and |F | ≥ 2 for each
F ∈ F it makes sense to study the so-called threshold bias b∗F , which is defined as the unique
non-negative integer such that Maker has a winning strategy for the corresponding (1 : b)
game (X,F) if and only if b < b∗F .

The relation mentioned at the beginning of the paragraph allows to derive results for
Maker-Breaker games from local resilience results as explicated in the following theorem,
which is a special case of a more general one proved by Ferber, Krivelevich, and Naves in [77].

Theorem 1.10 (Ferber, Krivelevich, Naves [77]). For every real 0 < ε ≤ 1/100 the following
holds if n is sufficiently large. Let p = p(n) ∈ (0, 1) and let P be a monotone increasing graph
property such that G(n, p) has a.a.s. local resilience at least ε with respect to P. Then Maker
has a winning strategy in the (1 : bε/(20p)c) Maker-Breaker game

(
E(Kn),P

)
.
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As a case example, let us elaborate on the application of Theorem 1.10 to the so-called
Hamiltonicity game, a variant of which we will encounter again in Chapter 4. The (1 : b)
Hamiltonicity game is defined as the (1 : b) Maker-Breaker game (E(Kn),FH), where FH is
the family of the edge sets of all Hamilton cycles in Kn.

Since the local resilience of G(n, p) with respect to Hamiltonicity is a.a.s. at least
(
1/2−

o(1)
)

when p = Ω(log n/n) (see [124]), applying Theorem 1.10 yields that there exists a
constant α > 0 such that for every b ≤ αn/ log n, Maker has a winning strategy in the
(1 : b) Hamiltonicity game if n is sufficiently large (see also [77]). Thus the local resilience of
G(n, p) together with Theorem 1.10 readily imply a lower bound on the threshold bias of the
Hamiltonicity game. It is worth mentioning that the determination of the threshold bias b∗FH
was an open problem for a long period of time until it was finally resolved by Krivelevich [115],
who showed that b∗FH =

(
1− o(1)

)
n/ log n.

Finally, let us mention that there is an intriguing relation between some biased Maker-
Breaker games and random graphs. Observe that, as mentioned above, the threshold for
G(n, p) with respect to Hamiltonicity is log n/n, which is asymptotically equal to the recip-
rocal of b∗FH . This reflects the so-called Erdős paradigm (or random graph intuition), which
suggests that the threshold bias for a Maker-Breaker game is asymptotically the same as the
threshold bias for the same game, where one assumes that both Maker and Breaker claim
edges randomly (see e.g. [23, 82, 92] for more information).

1.2.2 Hypergraph matchings, Latin squares, and rainbow matchings

In Chapter 5 we study edge-coloured multigraphs, where each of the colour classes induces a
disjoint union of cliques. We determine a condition on the sizes of these colour classes such
that a rainbow matching that uses all colours is guaranteed. The motivation for studying
this problem arises from different areas of mathematics. In this subsection we summarise
previous combinatorial results related to our work. To follow up seamlessly on the previous
subsection, let us start with the problem of determining conditions for sparse hypergraphs to
contain perfect matchings.

Hypergraph matchings

A matching in a hypergraph H = (V,E) is defined as a subset M of E such that all hyperedges
in M are pairwise disjoint. We call a hypergraph matching perfect if it covers all vertices of
the hypergraph.

In graphs, maximum matchings can be found efficiently, for instance using Edmonds’
algorithm [74]. In the setting of hypergraphs the problem seems to be more difficult. The
decision problem whether, given an integer k, a 3-uniform hypergraph H contains a matching
of size at least k is known to be NP-complete [102]. Hence it is natural to search for conditions
that imply the existence of a perfect matching in a hypergraph. We would like to mention the
following local resilience result of hypergraphs with respect to perfect matchings. For further
results on minimum degree conditions for perfect matchings in hypergraphs we refer to the
survey [161] by Zhao.

It was proved by Khan [103] and independently by Kühn, Osthus, and Treglown [123]
that a minimum degree strictly greater than

(
n−1

2

)
−
(

2n/3
2

)
guarantees a perfect matching in

a 3-uniform hypergraph on n vertices if n is divisible by 3 and sufficiently large. They showed
that this bound is actually tight. However, it is believed that if one imposes an additional
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restriction that forces the hypergraph to look somehow ‘regular’, a much smaller bound on
the minimum degree suffices to guarantee a perfect matching.

Indeed, one of the most intriguing conjectures on 3-partite 3-uniform hypergraphs by
Ryser [146] suggests that, if n is odd, a minimum degree of n suffices to guarantee a perfect
matching in a balanced 3-partite 3-uniform hypergraph on 3n vertices if every pair of vertices
from different partition classes lies in exactly one hyperedge. If n is even, Brualdi [46] and
independently Stein [148] conjectured that such a hypergraph contains a matching of size n−1.
These conjectures were originally formulated in terms of Latin squares. Before returning to
the just mentioned conjecture, we will first introduce Latin squares.

Latin squares

A Latin square of order n is an n × n matrix filled with n different symbols such that each
symbol appears exactly once in every row and exactly once in every column. There is a
one-to-one correspondence between Latin squares and balanced 3-partite hypergraphs with
each pair of vertices from different partition classes being contained in exactly one hyperedge.
Simply let the rows, columns, and symbols of a Latin square define the partition classes of a
3-partite hypergraph and let the set of hypergraphs consist of those triples {x, y, z}, where
the symbol z appears in row x and column y. In the same way one can construct a unique
Latin square for every hypergraph with the stated property.

The study of Latin squares has a long history and was first systematically developed
by Euler (see e.g. [61]). Latin squares have various applications in different branches of
mathematics (see [61] for an extensive survey); for instance in algebra, where Latin squares
are the multiplication tables of quasigroups, and in a branch of statistics called ‘design of
experiments’, where Latin squares are a special case of row-column designs for two blocking
factors. Possibly many people come across Latin squares in recreational mathematics as
completed Sudoku puzzles are Latin squares, typically of order 9.

A matching in a hypergraph H, which is associated with a Latin square L, corresponds
to a so-called partial transversal in L. A partial transversal in a Latin square is a set of
entries with distinct symbols such that from each row and each column at most one entry
is contained in this set. We call a partial transversal of size n in a Latin square of order n
simply transversal .

A motivation to study transversals are orthogonal Latin squares, where two Latin squares
(Ai,j)i,j∈[n] and (Bi,j)i,j∈[n] are called orthogonal if all pairs {(Ai,j , Bi,j)}i,j∈[n] are distinct.
Orthogonal Latin squares, also known under the name Graeco-Latin squares, are used for
instance in experimental design and tournament scheduling (see e.g. [61]). It can be seen
fairly quickly that a Latin square has an orthogonal mate if and only if it has a decomposition
into disjoint transversals.

By considering Latin squares of order 2 one can easily verify that not every Latin square
has a transversal. For every even n ∈ N, the cyclic Latin square of order n (i.e. the addition
table of the group of integers modulo n) does not have a transversal (see e.g. [156]). For every
odd integer n ≥ 11, however, it is still an open question whether a Latin square of order n
without a transversal exists. This brings us back to the famous conjecture by Ryser [146].

Conjecture 1.11 (Ryser [146]). Every Latin square of odd order has a transversal.

Observe that this is an equivalent form of the conjecture that we mentioned above in terms
of hypergraph matchings. Conjecture 1.11 is known to be true for n ≤ 9 (see [128]). For all
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n ∈ N, Brualdi [46] conjectured that every Latin square of order n has a partial transversal of
size n− 1. Independently, Stein [148] made the stronger conjecture that every n× n matrix
that is filled with n symbols each appearing exactly n times contains a partial transversal of
size n − 1. Because of the similarity of these conjectures, the following one is often referred
to as the Brualdi-Stein conjecture.

Conjecture 1.12 (Brualdi-Stein [46, 148]). For every n ≥ 1 any Latin square of order n has
a partial transversal of size n− 1.

Recall that we have already mentioned above an equivalent form of Conjecture 1.12 in
the setting of hypergraphs. There have been several approaches to Conjecture 1.12. For
instance Hatami and Shor [90] proved that every Latin square contains a partial transversal
of length n−O(log2 n). This improves on earlier results by Brouwer, de Vries, Wieringa [45]
and Woolbright [158], who showed independently that every Latin square contains a partial
transversal of size n − √n, and by Drake [64] and Koksma [107], who determined the lower
bounds 3n/4 and 2n/3, respectively.

There is yet another way to rephrase Conjectures 1.11 and 1.12, namely to the study of
rainbow matchings in bipartite edge-coloured graphs. This also allows a more general setting
for strengthenings of the above conjectures. For more details on Latin squares we refer to the
survey [155] by Wanless.

Rainbow matchings

As already indicated, a natural way to transfer Conjectures 1.11 and 1.12 to graphs is the
following. Let L = (Li,j)i,j∈[n] be a Latin square of order n. We define GL := (A ∪ B,E)
as the complete bipartite edge-coloured graph with partition classes A = {a1, . . . , an} and
B = {b1, . . . , bn}, where {ai, bj} is coloured with colour Li,j . That is, A and B represent the
columns and rows of L, respectively. Moreover, a transversal of L corresponds to a perfect
matching in GL that uses each edge colour exactly once. Such a matching is called rainbow
matching of size n. Using this notion, Conjecture 1.12 is equivalent to the following: For
every n ≥ 1 any complete bipartite edge-coloured graph, the colour classes of which are
perfect matchings, contains a rainbow matching of size n − 1. It is believed that this is
true in the more general setting of bipartite edge-coloured multigraphs. Indeed, Aharoni and
Berger [2] conjectured the following generalisation of Conjecture 1.12.

Conjecture 1.13 (Aharoni, Berger [2]). Let G be a bipartite multigraph, the edges of which
are coloured with n colours and such that each colour class induces a matching of size n+ 1.
Then there is a rainbow matching of size n.

While Conjecture 1.13 remains open, asymptotic versions are known to be true. For
instance, Barat, Gyárfás, and Sárközy [19] extended Woolbright’s arguments to multigraphs
proving that every bipartite edge-coloured multigraph, each of whose n colour classes has size
at least n, contains a rainbow matching with n−√n edges.

Another possibility to approach Conjecture 1.13 is to let the colour classes be bigger than
n while keeping the requirement of the rainbow matching to be of size n. Aharoni, Charbit,
and Howard [3] proved that sizes of b7n/4c, and Kotlar and Ziv [113] proved that sizes of
b5n/3c suffice to guarantee a rainbow matching of size n. In Chapter 5 we further improve
this bound.
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It is worthwhile mentioning that when the matchings induced by the colour classes are all
edge-disjoint, a theorem by Häggkvist and Johansson [88] on so-called Latin rectangles implies
that there is a rainbow matching of size n in case when all colour classes induce edge-disjoint
perfect matchings of size n + o(n). Pokrovskiy [138] provided a proof for the more general
case where the matchings are not necessarily perfect and thus proved an approximate version
of Conjecture 1.13 in the case when the matchings are edge-disjoint.

1.2.3 Enumerative combinatorics

In Chapter 6 we are interested in the question of how many spanning trees are expected to
be in a graph chosen uniformly at random from a subfamily of series-parallel graphs. In this
section we provide a summary of relevant previous results of enumerative combinatorics; first
in view of counting spanning trees and then with regard to properties of series-parallel graphs
chosen uniformly at random.

Enumerating spanning trees

The study of spanning trees and their enumeration is a central question in graph theory and
combinatorial optimisation. The number of spanning trees of a fixed graph can be computed
exactly by using for instance the following methods.

A classic result, which is attributed to Cayley [48], states that the number of labelled trees
on n vertices is nn−2. This number is clearly equivalent to the number of spanning trees of
the complete graph on n vertices. As a generalisation, Kirchhoff’s matrix tree theorem [104]
provides the number of spanning trees in any fixed graph G. More precisely, in order to apply
Kirchhoff’s matrix tree theorem to a graph G one needs to determine first the Laplacian
matrix associated to G, which is defined as the degree matrix of G minus the adjacency
matrix of G. If λ1, . . . , λn−1 denote the non-zero eigenvalues of the Laplacian matrix of G,
then the number of spanning trees of G equals

1
n

∏

i∈[n−1]

λi.

Moreover, it is well known that, given any connected graph G = (V,E), the number of
spanning trees of G can be computed using its Tutte polynomial

TG(x, y) =
∑

F⊆E
(x− 1)c(F )−1(y − 1)|F |+c(F )−|V |,

where c(F ) denotes the number of connected components of the graph (V, F ) (see e.g. [31,
Theorem 13.9]). It can be easily seen that the evaluation of TG(x, y) at (1, 1) returns the
number of spanning trees in the graph G. It is worth mentioning that the Tutte polynomial
can equivalently be defined as a transformation of the Potts model, which is a model of
interacting spins on crystalline lattices in statistical mechanics (see e.g. [81]).

A lot of research has been devoted to the study of estimates of the number of spanning
trees in the context of restricted graph families. For instance, various results have been
obtained for regular graphs and more generally for graphs with given degree sequences (see
e.g. [13, 112, 126, 127]).

The enumeration of graphs with a distinguished spanning tree has also been extensively
studied in the context of planar maps, i.e. proper embeddings of connected multigraphs in
the sphere (see e.g. [38] for an introduction to this area).
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The first result of this kind was obtained in 1967 by Mullin [132] for rooted planar maps,
that is, planar maps with one of their edges marked and assigned an orientation. Mullin
showed that the number of unlabelled rooted planar maps on n edges with a distinguished
spanning tree is equal to CnCn+1, where Cn = 1

n+1

(
2n
n

)
stands for the n-th Catalan number.

Later, Cori, Dulucq, and Viennot [57] interpreted this formula by means of alternating
Baxter permutations (first introduced by Baxter in [21]). Then Bernardi [27] proved a direct
bijection between rooted planar maps on n edges with a distinguished spanning tree and
pairs consisting of a tree on n + 1 vertices and a non-crossing partition of size n + 1, i.e. an
equivalence relation ∼ on a linearly ordered set S of size n + 1 such that no four elements
a < b < c < d of S satisfy a ∼ c, b ∼ d, and a � b.

Recently, Bousquet-Mélou and Courtiel [43] investigated the enumeration of regular pla-
nar maps carrying a distinguished spanning forest, as well as the connections between their
counting formulas and the Potts model. For the connection between spanning trees in maps
and the Tutte polynomial see e.g. [28].

Properties of series-parallel graphs

Over the past few decades, series-parallel graphs have been extensively studied from various
points of view in graph theory, electrical engineering (where they describe electrical circuits)
and in computer science (which is due to the fact that many of the standard NP-complete
problems can be solved in polynomial time when restricted to the class of series-parallel
graphs, see e.g. [16] for a survey).

There are several common equivalent definitions of series-parallel graphs. The most concise
one is probably that a graph is series-parallel (or SP for short) if it is K4-minor free. Being
a subclass of planar graphs and a superclass of outerplanar graphs, SP graphs turned out to
serve well as a pre-stage for the analysis of problems concerning planar graphs. Indeed, the
family of SP graphs constitutes the prototype of the so-called subcritical graph class family,
where, informally speaking, a class is called subcritical if in a typical graph on n vertices
of this family the largest inclusion-maximal 2-connected subgraph (also called a block) has
O(log n) vertices (see e.g. [71, 84]).

A further definition of SP graphs is that edge-maximal SP graphs, i.e. graphs that cease to
be SP whenever an edge is added, are exactly the class of 2-trees. Conversely, every subgraph
of a 2-tree is series-parallel. Recall that a 2-tree can be defined in the following way: a single
edge is a 2-tree, and if T is not a single edge, then T is a 2-tree if and only if there exists a
vertex v of degree 2 such that its neighbours are adjacent and T − v is a 2-tree.

One can easily verify that the number of edges of an n-vertex 2-tree is precisely 2n − 3.
Moon [131] showed that the number of labelled 2-trees on n vertices equals

(
n
2

)
(2n − 3)n−4.

The enumeration of SP graphs is more involved and an exact value is not known. Bodirsky,
Giménez, Kang, and Noy [33] proved the following asymptotic estimate of the number of
labelled connected SP graphs on n vertices.

Theorem 1.14 (Bordirsky, Giménez, Kang, Noy [33]). Let Xn denote the number of labelled
connected SP graphs on n vertices. Then

Xn = csn
−5/2%−ns n!(1 + o(1)),

where cs ≈ 0.00679 and %s ≈ 0.11021 are computable constants.



1.3. Main results 17

In this context computable means that the constants can be determined exactly by explicit
formulas that appear in the proof. However, those are in general too long to be compactly
stated in a theorem.

In the same paper Bodirky, Giménez, Kang, and Noy showed that the number of edges in a
random connected SP graph is asymptotically normally distributed with mean asymptotically
equal to κn and variance asymptotically equal to λn, where κ ≈ 1.61673 and λ ≈ 0.2112 are
again computable constants.

Building on these results, a lot of research has been conducted in order to understand the
qualitative picture emerging in the study of graphs chosen uniformly at random from all SP
graphs on a fixed number of vertices. For the sake of brevity, in this context we call an object
of a given family random if the object is chosen uniformly at random among all objects of
the same size, e.g. graphs on the same number of vertices.

For instance, the expected value of the maximum degree of a random SP graph on n
vertices is asymptotically equal to c log(n), where c > 0 is a computable constant, as shown
by Drmota, Giménez, and Noy [70]. In the same paper they proved that this remains true
(although with different values for c) when the problem is restricted to the classes of connected
or 2-connected SP graphs or to the classes of all, connected or 2-connected outerplanar graphs,
respectively.

The expected number of vertices of degree k = k(n) in an n-vertex graph chosen uniformly
at random from a subcritical class of graphs was studied by Bernasconi, Panagiotou, and
Steger [30]. Using different techniques, Drmota, Giménez, and Noy [69] showed that the
number of vertices of a given degree (not depending on n) in a random (connected or 2-
connected) outerplanar or SP graph on n vertices is asymptotically normally distributed with
mean and variance linear in n.

Several other extremal parameters in subcritical graph classes were investigated by Dr-
mota and Noy [71]. They showed, for instance, that the expected diameter Dn of a random
connected SP graph on n vertices satisfies c1

√
n ≤ E[Dn] ≤ c2

√
n log(n) for some positive con-

stants c1 and c2. The asymptotic estimate has been recently proved by Panagiotou, Stufler,
and Weller [137] to be of order Θ(

√
n).

1.3 Main results

In this section we collect the main results of the present thesis. It is worth mentioning that
for the sake of readability we do not intend to optimise constants in our theorems and proofs.

1.3.1 The bandwidth theorem in random and pseudorandom graphs

As elucidated in the previous section, the bandwidth theorem (Theorem 1.3) determines an
asymptotically best possible minimum degree condition for the containment of all maximum
degree bounded spanning graphs of sublinear bandwidth. In other words, it provides asymp-
totically the local resilience of Kn with respect to such containment. In Chapter 3 we prove
analogues of this theorem first by replacing Kn with G(n, p) and then by replacing it with a
bijumbled graph. The first main result is the following bandwidth theorem for sparse random
graphs.

Theorem 3.1. For each γ > 0, ∆ ≥ 2, and k ≥ 1, there exist β∗ > 0 and C∗ > 0 such that the
following holds asymptotically almost surely for Γ = G(n, p) whenever p ≥ C∗ (log n/n)1/∆.
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Let G be a spanning subgraph of Γ with δ(G) ≥
(
k−1
k + γ

)
pn and let H be a k-colourable

graph on n vertices with ∆(H) ≤ ∆, bandwidth at most β∗n, and such that there are at least
C∗max{p−2, p−1 log n} vertices in V (H) not contained in any triangle of H. Then G contains
a copy of H.

We emphasize that the asymptotically almost sure event is that all subgraphs G of G(n, p)
respecting the stated minimum degree condition contain all graphs H with the given property.

As in the dense setting, neither can the minimum degree condition be decreased nor can
the bandwidth restriction be omitted in Theorem 3.1. Moreover, the requirement that there
have to be vertices in H not contained in any triangle is necessary. The reason for this is
that for each ε > 0 there exists some constant pε > 0 such that for all 0 < p < pε the random
graph G(n, p) contains a.a.s. a spanning subgraph G with δ(G) > (1 − ε)pn such that at
least εp−2/3 vertices of G are not contained in any triangles, as proved by Huang, Lee, and
Sudakov [95].

If we impose the additional restriction on H to be D-degenerate, i.e. that every subgraph
of H contains a vertex of degree at most D, we can prove a version of Theorem 3.1 for
p = Ω

(
(log n/n)1/(2D+1)

)
. However, in this case we do not only require that many vertices

are not in triangles of H, but in addition that these vertices are not contained in four-cycles.
This is a technical restriction of our proof method; we could remove it, but at the cost of a
worse bound on the edge probability. More precisely, we prove the following theorem.

Theorem 3.15. For each γ > 0, ∆ ≥ 2, and D, k ≥ 1, there exist constants β∗ > 0
and C∗ > 0 such that the following holds asymptotically almost surely for Γ = G(n, p) if
p ≥ C∗(log n/n)1/(2D+1).

Let G be a spanning subgraph of Γ with δ(G) ≥
(
k−1
k + γ

)
pn and let H be a D-degenerate,

k-colourable graph on n vertices with ∆(H) ≤ ∆, bandwidth at most β∗n and there are at least
C∗max{p−2, p−1 log n} vertices in V (H) that are not contained in any triangles or four-cycles
of H. Then G contains a copy of H.

Clearly, every tree is 1-degenerate. Moreover, an n-vertex tree with maximum degree
at most ∆ has bandwidth at most 5n/ log∆ n, as shown by Chung [51]. Therefore, as an
immediate consequence of Theorem 3.15 we obtain the following first resilience result of
G(n, p) for the containment of maximum degree bounded spanning trees.

Corollary 3.16. For each γ > 0 and ∆ ≥ 2, there exists C > 0 such that Γ = G(n, p)
satisfies the following asymptotically almost surely if p ≥ C(log n/n)1/3.

Let G be a spanning subgraph of Γ with δ(G) ≥
(
1/2 + γ

)
pn. Then G contains every

spanning tree with maximum degree at most ∆.

Finally, we turn to the resilience of pseudorandom graphs, where we are interested in
bijumbled graphs. Recall that a graph Γ is called (p, ν)-bijumbled if for all disjoint sets
X,Y ⊆ V (Γ) we have

∣∣e(X,Y )− p|X||Y |
∣∣ ≤ ν

√
|X||Y | . Our result is the following analogue

of the bandwidth theorem.

Theorem 3.19. For each γ > 0, ∆ ≥ 2, and k ≥ 1, there exists a constant c > 0 such that
the following holds for any p > 0.

Given ν ≤ cpmax{4,(3∆+1)/2}n, let Γ be a
(
p, ν
)
-bijumbled graph and let G be a spanning

subgraph of Γ with δ(G) ≥
(
k−1
k + γ

)
pn. Suppose further that H is a k-colourable graph on

n vertices with ∆(H) ≤ ∆, bandwidth at most cn and with at least c−1p−6ν2n−1 vertices not
contained in any triangle of H. Then G contains a copy of H.
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We note that for all three theorems above we actually prove a more general statement
(following [41]), which allows for a few vertices to receive a (k + 1)-st colour. Thus we can,
for example, show that the local resilience of G(n, p) with respect to Hamiltonicity is a.a.s. at
least 1/2− o(1) for all integers n whenever p = Ω

(
(log n/n)1/2

)
.

The proofs of the theorems from this subsection are presented in Chapter 3. They are
based on the regularity method and use sparse blow-up lemmas proved by Allen, Böttcher,
Hàn, Kohayakawa, and Person [9]. In Chapter 2 we present a blow-up lemma for sparse
random graphs as well as some related tools. In that chapter we also prove variants of the
sparse regularity lemma and collect bounds on the tails of various probability distributions.

1.3.2 A Dirac-type theorem for Berge cycles in random hypergraphs

The study of the local resilience of random graphs naturally leads to the question of how
robust random hypergraphs are with respect to the containment of spanning structures. For
instance, as mentioned above, the local resilience of G(n, p) with respect to Hamiltonicity is
a.a.s. at least (1/2 − o(1)) when p = Ω(log n/n). The following theorem can be seen as a
hypergraph analogue of this result, where we use the notion of Berge cycles for the desired
Hamilton cycle.

Theorem 4.1. For every integer r ≥ 3 and every real γ > 0 the following holds asymptotically

almost surely for H = H(r)(n, p) if p ≥ log8r n
nr−1 . Let H ⊆ H be a spanning subgraph with

δ1(H) ≥
(

1
2r−1 + γ

)
p
(
n
r−1

)
. Then H contains a Hamilton Berge cycle.

As in the local resilience result for random graphs, the minimum vertex degree condi-
tion in Theorem 4.1 is also asymptotically tight. The bound on p, however, might not be
best possible. But, since (r − 1)!log n/nr−1 is the threshold for the appearance of a weak
Hamilton cycle in H(r)(n, p) (see [139]) and hence a lower bound on the threshold for Berge
Hamiltonicity, the bound on p is tight up to possibly a polylogarithmic factor.

It is worthwhile mentioning that no upper bounds for the threshold of H(r)(n, p) with
respect to Berge Hamiltonicity were known, except for those that follow from results with
other notions of cycles (see e.g. [72]). As a direct consequence of Theorem 4.1 we obtain that
the threshold of H(r)(n, p) with respect to Berge Hamiltonicity is at most log8r n/nr−1.

Since H(r)(n, p) is the complete r-uniform hypergraph if p = 1, Theorem 4.1 provides a
sufficient minimum vertex degree condition for r-uniform hypergraphs to contain a Hamilton
Berge cycle provided that the number n of vertices is large enough. In Chapter 4 we investi-
gate this dense setting more closely, aiming to show tight minimum vertex degree conditions
for every n that guarantee the appearance of a weak Hamilton cycle or a Hamilton Berge
cycle, respectively. Since in weak Hamilton cycles hyperedges do not need to be distinct, the
following proposition can be easily proved by replacing every hyperedge of a given hypergraph
by a clique on r vertices and applying Dirac’s theorem.

Proposition 4.23. Let r ≥ 3 and n ≥ r and let H be an r-uniform hypergraph on n vertices.
If δ1(H) >

(dn/2e−1
r−1

)
, then H contains a weak Hamilton cycle.

The condition in Proposition 4.23 is shown to be tight. Proving an analogue for Berge
Hamilton cycles seems to be more involved. Using the ideas of the proof of Dirac’s theo-
rem we are able to show the following sufficient minimum vertex degree condition, which is
significantly lower than the one given by Theorem 4.1 but probably not best possible either.
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Proposition 4.24. Let r ≥ 3 and let H be an r-uniform hypergraph on n > 2r − 2 vertices.
If δ1(H) ≥

(dn/2e−1
r−1

)
+ n− 1 then H contains a Hamilton Berge cycle.

To the best of our knowledge, Theorem 4.1 constitutes the first non-trivial local resilience
result of random hypergraphs. Against this background, we would like to point out that a
similar relation as the one in Theorem 1.10 between local resilience results of random graphs
and Maker-Breaker games played on the edge set of complete graphs holds in the setting
of hypergraphs. More precisely, following the lines of the proof of Theorem 1.10 in [77]
one obtains the following connection of the local resilience of random hypergraphs and the

threshold bias of the corresponding Maker-Breaker games played on E(K
(r)
n ).

Theorem 4.25. For every integer r ≥ 3, and real 0 < ε ≤ 1/100 the following holds if n is
sufficiently large. Let p = p(n) ∈ (0, 1) and let P be a monotone increasing graph property
such that H(r)(n, p) has a.a.s. local resilience at least ε with respect to P. Then Maker has a

winning strategy in the (1 : d ε
10rpe) Maker-Breaker game

(
E(K

(r)
n ),P

)
.

Theorem 4.25 allows us to deduce from Theorem 4.1 a lower bound on the threshold bias
of the (1 : b) Berge Hamiltonicity game, which is defined as follows. A (1 : b) Maker-Breaker

game (X,F) is called (1 : b) Berge Hamiltonicity game if X = E(K
(r)
n ) for an integer r ≥ 3

and F is the family of the edge sets of the Hamilton Berge cycles of K
(r)
n . Using this notion,

the following bound holds.

Corollary 4.26. For every r ≥ 3 and sufficiently large n, Maker has a winning strategy in

the (1 : b) Berge Hamiltonicity game played on E(K
(r)
n ) if b ≤ nr−1/(1000r log8r n).

We also investigate games, which can be seen as misère versions of the Berge Hamiltonicity
game. In Avoider-Enforcer games two players, whose names are Avoider and Enforcer, play
according to the conventional rules of the corresponding Maker-Breaker games but their goal
is now to lose these corresponding games.

Following Hefetz, Krivelevich, Stojaković, and Szabó [91], we consider two variants of
Avoider-Enforcer games. Let b be a positive integer, X be a board, and F ⊆ 2X be a family
of subsets of X. In the original, strict (1 : b) Avoider-Enforcer game (X,F), Avoider occupies
exactly 1 and Enforcer exactly b unclaimed elements of X per round. Unlike Maker-Breaker
games, strict Avoider-Enforcer games are not bias monotone (see e.g. [93]). This means that
the lower threshold bias f−F , which is the largest integer such that Enforcer has a winning
strategy for the (1 : b) game (X,F) for every b ≤ f−F , does not necessarily coincide with the
upper threshold bias f+

F , which is the smallest non-negative integer such that Avoider has a
winning strategy for the (1 : b) game (X,F) for every b > f+

F .

In the monotone (1 : b) Avoider-Enforcer game (X,F), Avoider occupies at least 1 and
Enforcer at least b unclaimed elements of X per round. Games with these monotonicity rules
are bias monotone (see e.g. [91]). This means that there exists a unique threshold bias fmon

F ,
which is defined as the non-negative integer for which Enforcer wins the monotone (1 : b)
game if and only if b ≤ fmon

F .

In Chapter 4 we consider monotone and strict Avoider-Enforcer games played on the edge
set of a complete 3-uniform hypergraph, where Avoider wins if by the end of the game his
hypergraph is a Berge-acyclic hypergraph with at most one additional hyperedge. For these
games we prove the following bound on the (upper) threshold bias.
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Theorem 4.27. For n sufficiently large and b ≥ 3000n2 log2 n, Avoider can ensure that in the

monotone as well as in the strict (1 : b) Avoider-Enforcer game played on E(K
(3)
n ) by the end

of the game Avoider’s hypergraph is a Berge-acyclic hypergraph with at most one additional
hyperedge.

For the strict (1 : b) game played on E(K
(3)
n ), where Avoider must avoid Berge cyles,

we can show that he has a winning strategy for some bias b between 3000n2 log2 n and
3001n2 log2 n, which yields an upper bound on the lower threshold bias of the Avoider-Enforcer
game under consideration.

Theorem 4.28. For n sufficiently large, there is a bias 3000n2 log2 n ≤ b ≤ 3001n2 log2 n
such that Avoider can ensure that in the strict (1 : b) Avoider-Enforcer game played on

E(K
(3)
n ) Avoider’s hypergraph is Berge-acyclic by the end of the game.

We would like to mention that, to the best of our knowledge, there are no known results on
Maker-Breaker nor Avoider-Enforcer games played on the edge sets of complete hypergraphs
so far. We refer to the books [23] by Beck and [92] by Hefetz, Krivelevich, Stojaković, and
Szabó and to the references therein for Maker-Breaker and Avoider-Enforcer games played
on different boards.

In Chapter 4 we present the proof of Theorem 4.1, which is based on the absorbing method
developed by Rödl, Ruciński, and Szemerédi [144], and uses tools from the proof of a Dirac-
type result for random directed graphs by Ferber, Nenadov, Noever, Peter, and Škoric [78].
We also prove Propositions 4.23 and 4.24 in detail and explain how the proof of Theorem 1.10
must be modified for Theorem 4.25. The proofs of Theorems 4.27 and 4.28 are extensions of
the proofs in the joint work [55] with Dennis Clemens, Yury Person, and Tuan Tran to the
setting of 3-uniform hypergraphs.

1.3.3 Rainbow matchings in multigraphs

In Chapter 5 we prove a result on edge-coloured multigraphs that affirms asymptotically
an algebraic question by Grinblat. It also implies a partial result towards a conjecture by
Aharoni and Berger (Conjecture 1.13). For motivations and related results with regard to
this conjecture see Subsection 1.2.2.

While previously the appearance of rainbow matchings was studied primarily in properly
edge-coloured bipartite graphs or multigraphs, we examine general multigraphs and allow
the edge-colouring to be non-proper, meaning that there can be adjacent edges of the same
colour. However, we require that each colour class induces a disjoint union of cliques. We
show that if each of n colour classes covers 3n+ o(n) vertices of the multigraph, there exists
a rainbow matching of size n. More precisely, we prove the following.

Theorem 5.4. For every δ > 0 there exists n0 = n0(δ) = 144/δ2 such that the following
holds for every n ≥ n0. Let G be a multigraph, the edges of which are coloured with n colours.
If each subgraph of G induced by a colour class has at least (3+δ)n vertices and is the disjoint
union of non-trivial cliques, then G contains a rainbow matching of size n.

Theorem 5.4 is asymptotically best possible. This can be seen by taking all colour classes
to be identical and to be the disjoint union of (n− 1) triangles. Such a multigraph does not
contain a rainbow matching of size n.
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In the case that the multigraph G is bipartite and thus each clique has size 2 we obtain
immediately the following corollary.

Corollary 5.5. For every ε > 0 there exists an integer n0 ≥ 1 such that for every n ≥ n0 the
following holds. Let G be a bipartite multigraph whose edges are coloured with n colours and
each colour class induces a matching of size at least

(
3
2 + ε

)
n. Then G contains a rainbow

matching of size n.

We note that Clemens and the current author gave an independent direct proof of Corol-
lary 5.5 in [53] before Theorem 5.4 was proved by Clemens, Pokrovskiy, and the current
author in [56]. In this thesis we will solely provide the more general second proof.

Corollary 5.5 marks a step towards Conjecture 1.13 by Aharoni and Berger, which says
that if f(n) is the smallest integer m such that every bipartite edge-coloured multigraph with
n colour classes, each being a matching of size at least m, contains a rainbow matching of size
n, then f(n) = n+ 1 holds. Using this notion, Corollary 5.5 states that f(n) ≤ 3n/2 + o(n),
which is asymptotically the same as the best-known bound b3n/2c on the sizes of the colour
classes in the case where one aims to find a rainbow matchings of size n− 1 (see e.g. [113]).
It is worth noting that very recently Aharoni, Kotlar, and Ziv slightly improved our result to
f(n) ≤ d3n/2e+ 1 in the preprint [5].

As mentioned above, Theorem 5.4 affirms asymptotically an algebraic question of Grinblat.
In order to formulate this question we require a few definitions.

Let X be a set and let P(X) denote its power set. A nonempty subset A ⊆ P(X) is an
algebra on X if A is closed under complementation and under unions, i.e. if M1,M2 ∈ A,
then X \M1 ∈ A and M1 ∪M2 ∈ A.

In a series of papers and books [85, 86, 87] Grinblat investigated sufficient conditions for
countable families {Ai}i of algebras such that

⋃
iAi 6= P(X) and

⋃
iAi = P(X), respectively.

In this context, Grinblat [85] defined v = v(n) as the minimal cardinal number such that the
following is true:

“LetA1, . . . ,An be algebras on a setX such that for each i ∈ [n] there exist at least
v(n) pairwise disjoint sets in P(X) \ Ai. Then there exists a family {U1

i , U
2
i }i∈[n]

of 2n pairwise disjoint subsets of X such that, for each i ∈ [n], if Q ∈ P(X) and
Q contains one of the two sets U1

i and U2
i and its intersection with the other one

is empty, then Q /∈ Ai.”
In [85] Grinblat showed that v(3) = 9 and v(n) ≥ 3n − 2 for each n ∈ N and posed the
following question.

Question 5.1 (Grinblat, [85]). Is it true that v(n) = 3n− 2 for n ≥ 4?

Improving on Grinblat [87], who established the upper bound v(n) ≤ 10n/3 +
√

2n/3,
Nivasch and Omri [134] proved that v(n) ≤ 16n/5 + O(1) using an equivalent definition of
v(n) in the context of equivalence relations.

In Chapter 5 we argue that Theorem 5.4 is equivalent to the following one.

Theorem 5.2. For every δ > 0 there exists n0 = n0(δ) = 144/δ2 such that for every n ≥ n0

it holds that v(n) ≤ (3 + δ)n.

Since (3n − 2) is a lower bound on v(n), Theorem 5.2 gives an asymptotic answer to
Question 5.1.



1.3. Main results 23

1.3.4 Enumerating spanning trees in series-parallel graphs

In Chapter 6 we study the number of spanning trees in graphs from various subfamilies of
connected series-parallel graphs.

In order to determine the precise number of spanning trees in a fixed graph G, one can
apply for instance Kirchhoff’s matrix tree theorem or evaluate the Tutte polynomial of G
(cf. Section 1.2). However, if one would like to estimate how many spanning trees one expects
in a graph chosen uniformly at random from a given graph class, one can no longer apply the
standard approaches as in the setting of a fixed graph. A common method in this situation
is the use of analytic combinatorics, which will also be the key ingredient in the proofs of our
following results.

Our first theorem provides the following asymptotic estimate of the expected number of
spanning trees in a graph chosen uniformly at random from the family of connected series-
parallel graphs or from the family of 2-connected series-parallel graphs.

Theorem 6.1. Let Xn and Zn denote the number of spanning trees in a connected and,
respectively, 2-connected labelled SP graph on n vertices chosen uniformly at random. Then,

E[Xn] = s%−n(1 + o(1)), where s ≈ 0.09063, %−1 ≈ 2.08415,

E[Zn] = p$−n(1 + o(1)), where p ≈ 0.25975, $−1 ≈ 2.25829.

While Theorem 6.1 deals with the family of all connected/2-connected SP graphs with
a given number of vertices, we also analyse the growth constant of the expected number of
spanning trees in graphs chosen uniformly at random from the family of all 2-connected n-
vertex SP graphs with a given edge density. The study of extremal situations, i.e. when the
graphs are edge-maximal or have only a few more edges than a tree, is addressed separately in
more detail. First we estimate the expected number of spanning trees in an edge-maximal n-
vertex SP graph chosen uniformly at random. In this case, the expected number of spanning
trees is slightly bigger than the estimate provided by Theorem 6.1.

Theorem 6.8. Let Un denote the number of spanning trees in a labelled 2-tree on n vertices
chosen uniformly at random. Then, the expected value of Un is asymptotically equal to s2%

−n
2 ,

where s2 ≈ 0.14307 and %−1
2 ≈ 2.55561.

As for the other extremal case, we elaborate on the expected number of spanning trees in
a graph chosen uniformly at random from the family of all connected SP graph on n vertices
and excess equal to a constant k, i.e. for which the number of edges and vertices differ by a
constant k.

Our result is the following polynomial estimate of the expected number of spanning trees.

Theorem 6.12. Let k ≥ 2. Let Xn,k denote the number of spanning trees in a connected
labelled SP graph on n vertices and with fixed excess equal to k chosen uniformly at random.

Then for sufficiently large n we have

E[Xn,k] = c̃(k)
Γ(3k/2)

Γ(2k + 1/2)

(n
2

) k+1
2

(1 + o(1)),

where for large values of k the function c̃(k) satisfies

c̃(k) = c̃γ̃−k(1 + o(1)), (1.1)

with c̃ ≈ 0.90959 and γ̃−1 ≈ 2.60560.
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We would like to emphasize that the previous formulas should be understood in the
following way: first we fix k and then we let n tend to infinity. Additionally, if k is sufficiently
large, we can get the approximation of c̃(k) stated in the second part of Theorem 6.12.

The proofs of Theorems 6.1, 6.8, and 6.12 are based on graph decompositions and analytic
combinatorics, which includes in particular the symbolic method, the singularity analysis of
generating functions, and transfer theorems. We present the necessary combinatorial and
analytic background in Chapter 2.

1.4 Organisation

The thesis is organised as follows.

In Chapter 2 we introduce the notation and definitions that we frequently use in the
thesis. Moreover, we summarise necessary background material concerning the regularity
method and analytic combinatorics, and state concentration inequalities for various probabil-
ity distributions.

Next in Chapter 3 we prove analogues of the bandwidth theorem for sparse random and
pseudorandom graphs, as well as a version for the embedding of degenerate graphs in sparse
random graphs. These results are based on joint work with Peter Allen, Julia Böttcher, and
Anusch Taraz [7, 8].

Then in Chapter 4 we present the proof of a Dirac-type theorem for Hamilton Berge cycles
in random r-uniform hypergraphs, investigate the problem for dense r-uniform hypergraphs,
and prove bounds on the biases for which Avoider can keep his hypergraph (almost) Berge-
acyclic in monotone and strict Avoider-Enforcer games played on the edge set of a complete
3-uniform hypergraph. The first part is joint work with Dennis Clemens and Yury Person [54]
and the second part extends a joint work with Dennis Clemens, Yury Person, and Tuan
Tran [55].

Chapter 5 is devoted to the proof of a result on edge-coloured multigraphs that affirms
asymptotically an algebraic question by Grinblat and is a partial result towards a conjecture
by Aharoni and Berger. This chapter is based on joint work with Dennis Clemens and Alexey
Pokrovskiy [56] and with Dennis Clemens [53].

Finally in Chapter 6 we prove an asymptotic estimate of the expected number of spanning
trees in a labelled connected series-parallel graph chosen uniformly at random. Furthermore,
we obtain analogue results for subfamilies of series-parallel graphs such as 2-trees and con-
nected series-parallel graphs with fixed excess. This is based on joint work with Juanjo
Rué [75].
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Tools and notation

2.1 Definitions

In this section we introduce the basic definitions that are frequently used throughout the
present thesis. The terminologies that we need with regard to the regularity method and
analytic combinatorics are introduced in Section 2.2 and Section 2.3, respectively. Other
definitions, which occur rarely or are used in only certain parts of the thesis, are deferred to
the places where they are needed. For all elementary graph theoretic concepts not defined in
this section we refer the reader to e.g. [62].

2.1.1 General notions

Throughout the thesis log denotes the natural logarithm, whereas we write log2 for the loga-
rithm to the base 2. For a positive integer n we define [n] := {1, . . . , n} and for reals a, b > 0
we write x = a ± b if and only if a − b ≤ x ≤ a + b. For the sake of brevity, when we write
x > 0 we always assume x to be real and when we write x ≥ n with n being a positive integer,
we always assume that x is an integer, unless stated otherwise. Given a set S and a positive
integer r ≤ |S| we let

(
S
r

)
denote the set {S′ ⊆ S : |S′| = r}. For a sequence A = (a1, . . . , ak)

we write a ∈ A if there exists an index i ∈ [k] with a = ai.

Given a bivariate function A(x, y), we denote the partial derivative of A(x, y) with respect
to x and y by Ax(x, y) and Ay(x, y), respectively. However, we will usually use the notation
A′(x, y) := Ax(x, y) for the derivative of A(x, y) with respect to the first variable.

To express asymptotic behaviours we use the standard Landau notation. In particular,
given two functions f, g : N → R \ {0} we write f = o(g) if limn→∞ |f(n)/g(n)| = 0 and
f = ω(g) if limn→∞ |g(n)/f(n)| = 0. If there exist constants C > 0 and n0 ∈ N such that
|f(n)| ≤ C|g(n)| for every n ≥ n0, we use f = O(g) and if there exist c > 0 and n0 ∈ N such
that |f(n)| ≥ c|g(n)|, we write f = Ω(g). If f = Ω(g) and f = O(g), we use the notation
f = Θ(g). Finally, if limn→∞ f(n)/g(n) = 1, we say that f and g are asymptotically equal
and write f ∼ g. In all cases, for the sake of simplicity, we may replace f by f(n) or g by
g(n), for instance we may write f = O(n).

By Bin(n, p) we denote the binomial distribution with parameters n and p.

25
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2.1.2 Graphs and multigraphs

Most of the graph-theoretic terminology that we use is standard and follows [62]. All graphs
and hypergraphs in this thesis are finite and undirected. Graphs and hypergraphs are always
simple, while multigraphs may have multiple edges and loops, unless otherwise specified.

A graph G is a pair (V,E) of sets V and E with E ⊆
(
V
2

)
, where V is called vertex set

and E edge set of G. We say that vertices x, y ∈ V are adjacent if {x, y} ∈ E(G), and say
that a vertex x ∈ V and an edge e ∈ E are incident if x ∈ e. Two distinct edges are called
adjacent if their intersection is nonempty. Given a graph G, we use V (G) and E(G) to refer
to its vertex and edge set, respectively.

Let G = (V,E) be a graph and let A,B ⊆ V be disjoint. We denote the set of edges in A by
EG(A) := {e ∈ E : e ⊆ A} and the set of those between A and B by EG(A,B) :=

{
{x, y} ∈

E : x ∈ A and y ∈ B
}

. The cardinalities of these sets are denoted by eG(A) := |EG(A)| and
eG(A,B) := |EG(A,B)|. For a vertex x ∈ V we write NG(x) := {y ∈ V : {x, y} ∈ E} for the
neighbourhood of x in G and NG(x,A) := NG(x)∩A for the neighbourhood of x restricted to
A. Given vertices x1, . . . , xk ∈ V we denote the joint neighbourhood of x1, . . . , xk restricted
to A by NG(x1, . . . , xk;A) =

⋂
i∈[k]NG(xi, A).

The degree of a vertex x ∈ V is the size of its neighbourhood and is denoted by degG(x) :=
|NG(x)|. Similarly, we use the notation degG(x,A) := |NG(x,A)| and degG(x1, . . . , xk;A) :=
|NG(x1, . . . , xk;A)| for the degree of x restricted to A in G and the size of the joint neigh-
bourhood of x1, . . . , xk restricted to A in G, respectively. For short notation we may omit
the subscript G when there is no risk of confusion.

The minimum and maximum degree of G are denoted by δ(G) and ∆(G), respectively. If
δ(G) = ∆(G), then G is called regular and for the special case δ(G) = ∆(G) = 3, we say that
G is cubic.

Given a graph G = (V,E), we say that a graph H = (V ′, E′) is a subgraph of G if V ′ ⊆ V
and E′ ⊆ E. If H is a subgraph of G we write H ⊆ G. A subgraph H = (V ′, E′) ⊆ G is
spanning if V ′ = V and induced if for all edges e ∈ E with e ⊆ V ′ it holds that e ∈ E′.
We write G[V ′] for the induced subgraph of G on the vertex set V ′. A set W ⊆ V is
called independent if the edge set of G[W ] is empty. Moreover, for a set A ⊆ V we write
G−A := G[V \A].

A graph homomorphism or simply homomorphism from a graph H to a graph G is a
mapping h : V (H) → V (G) such that for every {x, y} ∈ E(H) it holds that {h(x), h(y)} ∈
E(G). Two graphs H and H ′ are isomorphic if there exists a bijective homomorphism h
from H to G such that the inverse function h−1 is again a homomorphism. In this case we
also say that H is a copy of H ′. If G has a subgraph that is isomorphic to H, we say that G
contains a copy of H or that there is an embedding of H onto G. When it is clear from the
context we simply say that G contains H (as a subgraph). A graph G is called universal for
a class of graphs H if G contains all graphs from H as subgraphs.

We say that a graph G is connected if for all vertices x, y ∈ V (G) there is a path in G
with endpoints x and y. A maximal connected subgraph of G is a connected component or
simply a component of G. A graph G is called k-connected if |V (G)| ≥ k and if one cannot
disconnect G by deleting (k − 1) vertices of G. A graph that does not contain any cycles is
called a forest or acyclic. Connected acyclic graphs are trees.

A Hamilton cycle in a graph G is a spanning subgraph of G that is a cycle. A graph
G is said to be Hamiltonian if G contains a Hamilton cycle. Given a graph G, the distance
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distG(x, y) between two vertices x, y ∈ V (G) is the length of a shortest path in G connecting
them. The k-th power of a graph G is the graph on the vertex set V (G) such that the edge
set consists of all sets {x, y} for which x, y ∈ V (G) and distG(x, y) ≤ k. The second power of
a graph G is also called square of G.

Given a graph H, an H-factor of a graph G is a subgraph of G consisting of disjoint unions
of copies of H. An H-factor is called perfect if it is spanning. The edge set of a K2-factor
is called matching and the edge set of a perfect K2-factor perfect matching. The size of a
matching M is defined as the number of edges of M . A vertex v is said to be saturated by a
matching M if there is an edge e ∈M with v ∈ e.

A graph property is called monotone increasing if the property is preserved under edge
and vertex insertions. We say that a graph G is edge-maximal with respect to some graph
property P if G has property P but adding any edge to G produces a graph that does no
longer have property P.

A graph H is a minor of a graph G if H can be obtained from G by a sequence of vertex
and edge deletions as well as edge contractions. We say that a family H′ of graphs is H-minor
free for a family H of graphs if no graph of H′ contains a graph from H as a minor.

Outerplanar graphs are the family of {K4,K3,2}-minor free graphs, series-parallel graphs
are those that exclude K4 as a minor, and a graph is called planar if it neither contains
K5 nor K3,3 as a minor. Edge-maximal series-parallel graphs are called 2-trees. Equivalent
definitions of series-parallel graphs and 2-trees are discussed in Chapters 1 and 6.

A partition of a graph G is a partition of its vertex set V (G) into disjoint sets. These sets
are referred to as partition classes.

A vertex-colouring of a graph is a map from the vertex set of a graph to a set of colours.
An edge-colouring is defined analogously. A colouring is said to be proper if adjacent vertices
or edges do not receive the same colour. A graph is said to be k-colourable if there exists a
proper colouring of its vertex set with k colours. A colour class of a colouring is a maximal
set of vertices or edges of the same colour.

A graph G is called k-partite, if G is k-colourable. For r = 2 we say that G is bipartite. If
G is bipartite we may write G = (A∪B,E) to indicate that A and B are partition classes of
a bipartition of G.

We let Kn denote the complete graph on n vertices and Kn,m the complete bipartite graph
with partition classes of size n and m. The complete graph K3 is also called triangle.

Given a graph G = (V,E), a labelling of its vertex set is a bijective function from V to
[|V |]. We define a labelled graph to be a pair (V,E) equipped with a labelling of V . Informally,
a labelled graph is a graph whose vertices bear distinct labels.

The bandwidth of a graph, denoted by bw(G), is defined as the minimum positive integer
b such that there is a labelling of V (G) such that |i− j| ≤ b for every edge {i, j} ∈ E(G).

Formally, a multigraph is a pair (V,E) of sets V and E with a map E → V ∪ (V × V ),
i.e. every edge is mapped to one or two vertices. One can think of a multigraph as a graph
with multiple edges and loops. For any vertices x, y ∈ V , the number of edges that are
mapped to {x, y} is called multiplicity of {x, y}.
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2.1.3 Hypergraphs

For every integer r ≥ 3, an r-uniform hypergraph is a pair (V,E) of a vertex set V and
an edge set E with E ⊆

(
V
r

)
. The elements of E are referred to as edges or hyperedges.

Given a hypergraph H, as in the setting of graphs, we use V (H) and E(H) to refer to its
vertex and edge set, respectively. Also, the definition of subgraphs generalises naturally to
subhypergraphs of hypergraphs.

Given an r-uniform hypergraph H = (V,E) and a set S ⊆ V with |S| ≤ r − 1, the degree
of S is defined as degH(S) := |{e ∈ E : S ⊆ e}|. The minimum d-degree δd(H) of H is defined
as δd(H) := min{degH(S) : S ⊆ V, |S| = d}. We call degH({x}) the vertex degree of x and
δ1(H) the minimum vertex degree of H and use degH(x) := degH({x}) and δ(H) := δ1(H)
for short notation. We may omit the subscript H whenever there is no risk of confusion.

An r-uniform hypergraph H is r-partite if its vertex set can be partitioned into r disjoint
sets such that each hyperedge contains exactly one element from each of the r sets. A matching
of a hypergraph H is a set of pairwise disjoint hyperedges. A matching M of H is perfect if
every vertex of H is contained in a hyperedge of M .

A weak cycle is an alternating sequence (v1, e1, v2, . . . , vk, ek) of distinct vertices v1, . . . , vk
and hyperedges e1, . . . , ek such that {v1, vk} ⊆ ek and {vi, vi+1} ⊆ ei for every i ∈ [k − 1]. A
weak cycle is called Berge cycle if all its hyperedges are distinct. If P = (v1, e1, v2, . . . , vn, en)
is a weak cycle or a Berge cycle in a hypergraph H on n vertices, then P is called weak
Hamilton cycle or Hamilton Berge cycle of H, respectively. A hypergraph H is called Berge-
acyclic if H does not contain any Berge cycle as a subgraph.

Given an r-uniform hypergraph H = (V,E) and sets A1, A2, . . . , A` ⊆ V as well as positive
integers r1, r2, . . . , r` with

∑
i∈[`] ri = r, we write

EH
(
A

(r1)
1 , A

(r2)
2 , . . . , A

(r`)
`

)
:=
{
e ∈ E(H) : ∃(v1, v2, . . . , vr) ∈ Ar11 ×Ar22 × . . .×Ar``

with e = {v1, v2, . . . , vr}
}
.

Moreover, we define eH
(
A

(r1)
1 , A

(r2)
2 , . . . , A

(r`)
`

)
:= |EH

(
A

(r1)
1 , A

(r2)
2 , . . . , A

(r`)
`

)
|. Again, we

may omit the subscript H whenever it is clear from the context.

Finally, we denote the complete r-uniform hypergraph on n vertices by K
(r)
n .

2.1.4 Random graphs and hypergraphs

The random graph model that we consider is the Erdős-Rényi model G(n, p), which is defined
on the vertex set [n] where each pair of vertices forms an edge randomly and independently
with probability p = p(n). The generalisation of G(n, p) to hypergraphs is defined as follows.
For every r ≥ 3 we denote by H(r)(n, p) the random r-uniform hypergraph model on the
vertex set [n], where each set of r vertices forms an edge randomly and independently with
probability p = p(n).

Given a function p : N→ [0, 1], we say that G(n, p) has a graph property P asymptotically
almost surely (or a.a.s. for short) if limn→∞ P[G(n, p) ∈ P] = 1. Furthermore, the threshold
for an increasing property P is defined as a sequence p̂ = p̂(n) such that

lim
n→∞

P[G(n, p) ∈ P] =

{
0 if p = o(p̂),

1 if p = ω(p̂).
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These notions are defined analogously for H(r)(n, p).

Finally, the notion of pseudorandomness that we use in our results is bijumbledness. We
say that a graph G is (p, ν)-bijumbled if for all disjoint sets X,Y ⊆ V (G) we have

∣∣e(X,Y )− p|X||Y |
∣∣ ≤ ν

√
|X||Y | .

We remark that in Chapter 6 an object chosen uniformly at random from all elements of
a family is called random object of this family, e.g. a random connected series-parallel graph
on n vertices is a graph chosen uniformly at random from the family of all connected series-
parallel graphs on n vertices. However, in the other parts of the thesis the term random graph
stands exclusively for G(n, p).

2.2 The regularity method

In Chapter 3 we address the problem of finding embeddings of graphs from a given graph
family into subgraphs of sparse random and pseudorandom graphs. In our proofs we use the
regularity method, which combines powerful regularity lemmas and blow-up lemmas.

In order to prove that a graph G contains a graph H using the regularity method, one
typically proceeds as follows. Roughly speaking, first one prepares the host graph G using
a regularity lemma in order to obtain a partition of V (G) with a constant number of clus-
ters such that most pairs are pairwise so-called regular. Then one needs to find a suitable
substructure in the so-called reduced graph corresponding to the partition. Next one applies
some technical manipulations in order to achieve for instance the so-called super-regularity of
some specific pairs and an appropriate partition of V (H). Finally, after possibly embedding
manually a few vertices of H into G, one applies a blow-up lemma to embed the remainder
of H into super-regular substructures of the partition of V (G).

In the following subsection we introduce necessary definitions concerning the regularity
method and prove in particular two versions of the sparse regularity lemma. Subsection 2.2.2
is then devoted to the statements of the blow-up lemma for sparse graphs and related lemmas
that are important in our proofs.

2.2.1 Sparse regular partitions

An essential concept of the regularity method is the notion of regular pairs. Let G = (V,E)
be a graph, and let ε, d > 0 and p ∈ (0, 1] be reals. Moreover, let X,Y ⊆ V be two disjoint
nonempty sets. The p-density of the pair (X,Y ) is defined as

dG,p(X,Y ) :=
eG(X,Y )

p|X||Y | .

We give two definitions of regularity. The first one requires a lower bound on the p-density
of all subpairs of a certain size.

Definition 2.1 ((Super-)regular pairs). The pair (X,Y ) is called (ε, d, p)G-regular if for
every X ′ ⊆ X and Y ′ ⊆ Y with |X ′| ≥ ε|X| and |Y ′| ≥ ε|Y | we have

dG,p(X
′, Y ′) ≥ d− ε.

If additionally we have |NG(x, Y )| ≥ (d − ε)p|Y | and |NG(y,X)| ≥ (d − ε)p|X| for every
x ∈ X and y ∈ Y , then the pair (X,Y ) is called (ε, d, p)G-super-regular.
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The second definition additionally imposes an upper bound on the p-density of those
subpairs.

Definition 2.2 ((Super-)fully-regular). The pair (X,Y ) is called (ε, d, p)G-fully-regular if
there exists d′ ≥ d such that for every X ′ ⊆ X and Y ′ ⊆ Y with |X ′| ≥ ε|X| and |Y ′| ≥ ε|Y |
we have

dG,p(X
′, Y ′) = d′ ± ε.

If additionally we have |NG(x, Y )| ≥ (d − ε)p|Y | and |NG(y,X)| ≥ (d − ε)p|X| for every
x ∈ X and y ∈ Y , then the pair (X,Y ) is called (ε, d, p)G-super-fully-regular.

Most of the time we will use the first version of regularity, which is sometimes called
lower-regularity . This is the version we have to use when dealing with subgraphs of random
graphs. However, the sparse regularity lemma gives us fully-regular pairs, and we have to
work with this stronger concept when dealing with subgraphs of bijumbled graphs. Note that
an (ε, d, p)-fully-regular pair is in particular (ε, d, p)-regular.

Whenever there is no risk of confusion, we might omit the subscript G in (ε, d, p)G-(super-)
(fully-)regular, which indicates with respect to which graph a pair is (super-)(fully-)regular.
A direct consequence of the definition of (ε, d, p)-regular pairs is the following proposition
about the sizes of neighbourhoods in regular pairs.

Proposition 2.3. Let (X,Y ) be (ε, d, p)-regular. Then there are less than ε|X| vertices x ∈ X
with |N(x, Y )| < (d− ε)p|Y |.

The next proposition asserts that small alterations of the vertex sets of an (ε, d, p)-regular
pair do not destroy regularity.

Proposition 2.4. Let (X,Y ) be an (ε, d, p)-regular pair in a graph G and let X̂ and Ŷ be
two subsets of V (G) such that |X4X̂| ≤ µ|X| and |Y4Ŷ | ≤ ν|Y | for some 0 ≤ µ, ν ≤ 1.
Then (X̂, Ŷ ) is (ε̂, d, p)-regular, where ε̂ := ε+ 2

√
µ+ 2

√
ν. Furthermore, if for any disjoint

subsets A,A′ ⊆ V (G) with |A| ≥ µ|X| and |A′| ≥ ν|Y | we have e(A,A′) ≤ (1+µ+ν)p|A||A′|,
and (X,Y ) is (ε, d, p)-fully-regular, then (X̂, Ŷ ) is (ε̂, d, p)-fully-regular.

Proof. Let A ⊆ X̂ and B ⊆ Ŷ such that |A| ≥ ε̂|X̂| and |B| ≥ ε̂|Ŷ | be given. Define
A′ := A ∩X and B′ := B ∩ Y and note that

|A′| ≥ |A| − µ|X| ≥ ε̂|X̂| − µ|X| ≥ ε̂(1− µ)|X| − µ|X| ≥
(
ε̂− 2

√
µ
)
|X| ≥ ε|X|

by the definition of ε̂. Analogously, one can show that |B′| ≥ ε|Y |. Since (X,Y ) is an
(ε, d, p)-regular pair, we know that dp(A

′, B′) ≥ d− ε. Furthermore, we have

|A′| ≥ |A| − µ|X| ≥ |A| − µ |A|
ε̂
≥
(
1−√µ

)
|A|

and by an analogous calculation we get |B′| ≥
(
1−√ν

)
|B|. For the number of edges between

A and B we get

e(A,B) ≥ e(A′, B′) ≥ (d− ε)p|A′||B′| ≥ (d− ε)p
(
1−√µ

)(
1−√ν

)
|A||B|

≥
(
d− ε− 2

√
µ− 2

√
ν
)
p|A||B| ≥ (d− ε̂)p|A||B|.

Therefore we have
dp(A,B) ≥ d− ε̂.
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Now suppose that (X,Y ) is (ε, d, p)-fully-regular. Let d′ be such that dp(A
′, B′) = d′ ± ε

for any A′ ⊆ X and B′ ⊆ Y with |A′| ≥ ε|X| and |B′| ≥ ε|Y |. Let A ⊆ X̂ and B ⊆ Ŷ with
|A| ≥ ε̂|X̂| and |B| ≥ ε̂|Ŷ | be given. As above, we obtain e(A,B) ≥ (d′ − ε̂)p|A||B|. We also
have

e(A,B) ≤ e(A′, B′) + e(A′, B \B′) + e(A \A′, B)

≤ (d′ + ε)p|A′||B′|+ (1 + µ+ ν)p|A′|ν|B|+ (1 + µ+ ν)pµ|A||B|
≤ (d′ + ε̂)|A||B| ,

so that (X̂, Ŷ ) is (ε̂, d, p)-fully-regular, as desired.

A partition V = {Vi}i∈{0,...,r} of the vertex set of G is called an (ε, p)G-(fully-)regular
partition of V (G) if |V0| ≤ ε|V (G)| and (Vi, Vi′) forms an (ε, p)-(fully-)regular pair in G for all
but at most ε

(
r
2

)
pairs {i, i′} ∈

(
[r]
2

)
. The partition V is called (ε, d, p)-(super-)(fully-)regular

on a graph R = ([r], F ) if |V0| ≤ ε|V (G)| and (Vi, Vi′) is (ε, d, p)-(super-)(fully-)regular for
every {i, i′} ∈ F . The graph R is referred to as the reduced graph of V, the partition classes Vi
with i ∈ [r] as clusters, and V0 as the exceptional set . We call V an equipartition if |Vi| = |Vi′ |
for every i, i′ ∈ [r].

Analogously to Szemerédi’s regularity lemma for dense graphs, the sparse regularity
lemma, proved by Kohayakawa and Rödl [105, 106], asserts the existence of an (ε, p)-fully-
regular partition of constant size of any sparse graph. We need two versions of this lemma in
our proofs. The first one allows an initial partition with parts of different sizes to be equitably
refined.

Before stating this lemma, we require one more definition. Given a partition {Vi}i∈[s] of
the vertex set of a graph G, we say that a partition {Vi,j}i∈[s],j∈[t] is an equitable (ε, p)-regular
refinement of {Vi}i∈[s] if |Vi,j | = |Vi,j′ |±1 for each i ∈ [s] and j, j′ ∈ [t], and there are at most
εs2t2 pairs (Vi,j , Vi′,j′) that are not (ε, p)-regular.

Lemma 2.5. For each ε > 0 and s ≥ 1 there exists t1 ≥ 1 such that the following holds
for every 0 < p < 1. Given any graph G, suppose {Vi}i∈[s] is a partition of V (G). If
e(Vi) ≤ 3p|Vi|2 for each i ∈ [s], and e(Vi, Vi′) ≤ 2p|Vi||Vi′ | for all distinct i, i′ ∈ [s], then
there exist sets Vi,0 ⊆ Vi for each i ∈ [s] with |Vi,0| < ε|Vi|, and an equitable (ε, p)-regular
refinement {Vi,j}i∈[s],j∈[t] of {Vi \ Vi,0}i∈[s] for some t ≤ t1.

The proof of Lemma 2.5 follows the proof of a sparse regularity lemma by Scott [147].

Proof of Lemma 2.5. Given ε > 0 and s ≥ 1, set L = 100s2ε−1. Let n1 = 1, and for each
j ≥ 1 let nj+1 = 10000ε−1nj2

snj . Finally, set t1 = n1000ε−5(L2+16Ls2)+1.

For all i, i′ ∈ [s], we define the energy E(P, P ′) of a pair of disjoint subsets P ⊆ Vi and
P ′ ⊆ Vi′ to be

E(P, P ′) =
|P ||P ′|min

{
dG,p(P, P

′)2, 2L · dG,p(P, P ′)− L2
}

|Vi||Vi′ |
.

Note that this quantity is convex in dG,p(P, P
′). Given a partition P refining {Vi}i∈[s], we

define the energy E(P) of P to be

E(P) :=
∑

{P,P ′}⊆P
E(P, P ′) .
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We now construct a succession of partitions Pj+1 for each j ≥ 1, each refining P1 := {Vi}i∈[s],
and claim that the following holds for every j ≥ 2:

(R1) Pj partitions every set Vi ∈ {Vi′}i′∈[s] into between nj and
(
1 + 10−4ε

)
nj sets such

that the largest nj sets are equally sized.

(R2) E(P2) ≥ 10−3ε5j.

We stop if Pj is (ε/2, p)-regular. If not, then we apply the following procedure.

For each pair of Pj that is not (ε/2, p)-regular, we take a witness of its irregularity,
consisting of a subset of each side of the pair. We let P ′j be the union of the Venn diagrams of

all witness sets in each part of Pj . Since Pj is not (ε/2, p)-regular, there are at least 1
2εs

2n2
j

pairs that are not (ε/2, p)-regular. By choice of L and by (R1), at least 1
4εs

2n2
j of these pairs

have density at most L/2. By the defect Cauchy-Schwarz inequality, just from refining these
pairs we conclude that E(P ′j) ≥ E(Pj)+10−3ε5 (cf. [147]). Note that, by convexity of E(P, P ′)
in dG,p(P, P ), refining the other pairs does not affect E(P ′j) negatively.

We now let Pj+1 be obtained by splitting each set of P ′j within each Vi into sets of size
1000−ε

1000nj+1
|Vi| plus at most one smaller set. By Jensen’s inequality, we have E(Pj+1) ≥ E(P ′j)

(cf. [147]), giving (R2). Since P ′j partitions each Vi into at most nj2
snj = 10−4εnj+1, the

total number of smaller sets is at most 10−4εnj+1. This gives (R1).

Observe that for any partition P refining P1, we have E(P) ≤ L2 + 16Ls2. It follows that
this procedure must terminate with j ≤ 1000ε−5(L2 + 16Ls2) + 1. The final partition Pj is
thus (ε/2, p)-regular. For each i ∈ [s], let Vi,0 consist of the union of all but the largest nj
parts of Pj . Let P be the partition of

⋃
i∈[s] Vi \Vi,0 given by Pj . This is the desired equitable

(ε, p)-regular refinement of {Vi \ Vi,0}i∈[s].

The second variant of the sparse regularity lemma that we need is the following minimum
degree version.

Lemma 2.6 (Minimum degree version of the sparse regularity lemma). For each ε > 0
and r0 ≥ 1 there exists r1 ≥ 1 with the following property. For any d ∈ [0, 1], any positive
reals α and p, and any n-vertex graph G with minimum degree αpn such that for any disjoint
X,Y ⊆ V (G) with |X|, |Y | ≥ εn

r1
we have e(X,Y ) ≤

(
1+ 1

1000ε
2
)
p|X||Y |, there is an (ε, d, p)G-

fully-regular equipartition of V (G) with reduced graph R such that δ(R) ≥ (α− d− ε)|V (R)|
and r0 ≤ |V (R)| ≤ r1.

Using Lemma 2.5 we now give a proof of Lemma 2.6, which follows [39] (c.f. [105]).

Proof of Lemma 2.6. Given ε > 0 and r0 ≥ 1, without loss of generality we assume ε ≤ 1/10.
Let t1 be returned by Lemma 2.5 for input ε2/(1000s) and s = 100r0/ε. Set r1 = st1.

Given α > 0 and p > 0, letG be an n-vertex graph with minimum degree αpn. Let {Vi}i∈[s]

be an arbitrary partition of V (G) into sets of as equal size as possible. By assumption, we
have e(Vi, Vi′) ≤ 2p|Vi||Vi′ | for distinct indices i, i′ ∈ [s]. Furthermore, if Vi is a part with
e(Vi) ≥ 3p|Vi|2, then for a maximum cut (A,A′) of Vi we have e(A,A′) ≥ 3p|Vi|2/2. Enlarging
the smaller of the sets A and A′ if necessary, we have a pair of subsets of V (G) both of size
at most |Vi| between which there are at least 3p|Vi|2/2 edges, contradicting the assumption
of Lemma 2.6. Thus G satisfies the conditions of Lemma 2.5 with input ε2/(1000s) and s.
Applying that lemma, we obtain a collection {Vi,0}i∈[s] of sets, and an (ε, p)-regular partition
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P of
⋃
i∈[s] Vi \Vi,0, which partitions each Vi \V0 into t ≤ t1 sets. Note that r0 ≤ s ≤ |P| ≤ r1

by construction.

Now let V ′0 be the union of the Vi,0 for i ∈ [s], of each set W ∈ P that lies in more than
εst/4 pairs which are not (ε/1000, p)-regular, and at most two vertices from each set W ∈ P
in order that the partition of V (G) \ V ′0 induced by P is an equipartition. Because the total
number of pairs that are not (ε/1000, p)-regular is at most ε2/(1000sr2

0t
2), the number of such

sets in any given Vi is at most εt/100, so |V ′i,0| has size at most ε|Vi|/50, and the number of
parts of P in Vi \ V ′i,0 is larger than t/2. Thus the partition P ′ of V (G) \ V ′0 induced by P is
an (ε, p)-regular equipartition of V (G) \ V ′0 , and we have |V ′0 | ≤ εn.

We claim that the partition P ′ has all the properties we require. It remains to verify that
for each d ∈ [0, 1], the d-reduced graph of P ′ has minimum degree at least (α−d−ε)t′. Suppose
that P is a part of P ′. Now we have e(P ) ≤ 3p|P |2, since otherwise, as before, a maximum
cut (A,A′) of P has at least 3p|P |2/2 < εp|P |n/20 edges, yielding a contradiction to the
assumption on the maximum density of pairs of G. By construction, P lies in at most εt′/2
pairs that are not (ε, p)-regular, and these contain at most (1+ε/10)p|P |

(
εt′|P |/2

)
< 3

4εp|P |n
edges of G. We conclude that at least αp|P |n − 7

8εp|P |n edges of G leaving P lie in (ε, p)-
regular pairs of P ′. Of these, at most dp|P |n can lie in pairs of density less than p, so that
the remaining at least

(
α− d− 7

8ε
)
p|P |n edges lie in (ε, d, p)-regular pairs. If so many edges

were in less than (α − d− ε)t′ pairs leaving P , this would contradict our assumption on the
maximum density of G, so that we conclude that P lies in at least (α− d− ε)t′ pairs that are
(ε, d, p)-regular, as desired.

2.2.2 Blow-up lemmas for sparse graphs

A key ingredient in the proofs in Chapter 3 is the sparse blow-up lemma developed by Allen,
Böttcher, Hàn, Kohayakawa, and Person [9]. Given a subgraph G ⊆ Γ = G(n, p) with
p = Ω((log n/n)1/∆) and an n-vertex graph H with maximum degree at most ∆ with vertex
partitions V and W, respectively, the sparse blow-up lemma guarantees under certain condi-
tions a spanning embedding of H in G that respects the given partitions. In order to state
this lemma we need to introduce some definitions.

Definition 2.7 ((ϑ,R′)-buffer). Let R′ be a graph on r vertices and let H be a graph with

vertex partition W = {Wi}i∈[r]. We say that the family W̃ = {W̃i}i∈[r] of subsets W̃i ⊆Wi is
an (ϑ,R′)-buffer for H if

(B1) |W̃i| ≥ ϑ|Wi| for all i ∈ [r] and

(B2) for each i ∈ [r] and each x ∈ W̃i, the first and second neighbourhood of x go along R′,
i.e., for each {x, y}, {y, z} ∈ E(H) with y ∈ Wj and z ∈ Wk we have {i, j} ∈ E(R′)
and {j, k} ∈ E(R′).

Let G and H be graphs on n vertices with partitions V = {Vi}i∈[r] of V (G) and W =
{Wi}i∈[r] of V (H). We say that V and W are size-compatible if |Vi| = |Wi| for all i ∈ [r]. If
there exists an integer m ≥ 1 such that m ≤ |Vi| ≤ κm for every i ∈ [r], then we say that
(G,V) is κ-balanced. Given a graph R on r vertices, we call (G,V) an R-partition if for every
distinct indices i, i′ ∈ [R] and for every edge {x, y} ∈ E(G) with x ∈ Vi and y ∈ Vi′ we have
{i, i′} ∈ E(R).
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Definition 2.8 (Restriction pair). Let ε, d > 0, p ∈ [0, 1], and let R be a graph on r vertices.
Furthermore, let G be a (not necessarily spanning) subgraph of Γ = G(n, p) and let H be a
graph given with vertex partitions V = {Vi}i∈[r] and W = {Wi}i∈[r], respectively, such that
(G,V) and (H,W) are size-compatible R-partitions. Let I = {Ix}x∈V (H) be a collection of
subsets of V (G), called image restrictions, and J = {Jx}x∈V (H) be a collection of subsets of
V (Γ) \ V (G), called restricting vertices. For each i ∈ [r] we define Ri ⊆ Wi as the set of all
vertices x ∈ Wi for which Ix 6= Vi. We say that I and J are a (ρ, ζ,∆,∆J)-restriction pair
if the following properties hold.

(RP1) For each i ∈ [r] we have |Ri| ≤ ρ|Wi|,

(RP2) if x ∈ Ri, then |Jx|+ degH(x) ≤ ∆ and if x ∈Wi \Ri, then Jx = ∅,

(RP3) for each i ∈ [r] and x ∈ Ri we have Ix ⊆
⋂
u∈Jx NΓ(u, Vi) and |Ix| ≥ ζ(dp/2)|Jx||Vi|,

(RP4) for each i ∈ [r] and x ∈ Wi, we have (p − εp)|Jx||Vi| ≤
∣∣⋂

u∈Jx NΓ(u, Vi)
∣∣ ≤ (p +

εp)|Jx||Vi|,

(RP5) the pair
(
Vi ∩

(⋂
u∈Jx NΓ(u)

)
, Vj ∩

(⋂
v∈Jy NΓ(v)

))
is (ε, d, p)G-regular for every

edge {x, y} ∈ E(H) with x ∈ Ri and y ∈Wj,

(RP6) each vertex in V (G) appears in at most ∆J of the sets of J .

Suppose V is an (ε, d, p)G-regular partition of V (G) with reduced graph R. We say (G,V)
has one-sided inheritance with respect to R if for all {i, j}, {j, k} ∈ E(R) and every v ∈ Vi the
pair

(
NΓ(v, Vj), Vk

)
is (ε, d, p)G-regular, and Vi ∈ V has two-sided inheritance with respect to

Vj , Vk ∈ V if for every v ∈ Vi the pair
(
NΓ(v, Vj), NΓ(v, Vk)

)
is (ε, d, p)G-regular.

Now we can finally state the sparse blow-up lemma.

Theorem 2.9 (Sparse blow-up lemma, [9]). For each ∆, ∆R′, ∆J , ϑ, ζ, d > 0, κ > 1 there
exist εBL, ρ > 0 such that for all r1 ≥ 1 there is a CBL > 0 such that for p ≥ CBL(log n/n)1/∆

asymptotically almost surely Γ = Gn,p satisfies the following.

Let R be a graph on r ≤ r1 vertices and let R′ ⊆ R be a spanning subgraph with ∆(R′) ≤
∆R′. Let H and G ⊆ Γ be graphs given with κ-balanced, size-compatible vertex partitions
W = {Wi}i∈[r] and V = {Vi}i∈[r] with parts of size at least m ≥ n/(κr1). Let I = {Ix}x∈V (H)

be a family of image restrictions, and J = {Jx}x∈V (H) be a family of restricting vertices.
Suppose that

(BUL1) ∆(H) ≤ ∆, for every edge {x, y} ∈ E(H) with x ∈ Wi and y ∈ Wj we have

{i, j} ∈ E(R), and W̃ = {W̃i}i∈[r] is an (ϑ,R′)-buffer for H,

(BUL2) V is (εBL, d, p)G-regular on R, (εBL, d, p)G-super-regular on R′ and has one-sided in-
heritance on R′,

(BUL3) for every vertex x ∈ W̃i and every triangle {x, y, z} in H with y ∈ Wj and z ∈ Wk,
the set Vi has two-sided inheritance with respect to Vj and Vk,

(BUL4) I and J form a (ρ, ζ,∆,∆J)-restriction pair.

Then there is an embedding φ : V (H)→ V (G) such that φ(x) ∈ Ix for each x ∈ H.
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Observe that in the blow-up lemma for dense graphs, proved by Komlós, Sárközy, and
Szemerédi [109], one does not need to explicitly ask for one- and two-sided inheritance prop-
erties since they are always fulfilled by dense regular partitions. This is, however, not true in
general in the sparse setting. The following two lemmas will be useful whenever we need to
redistribute vertex partitions in order to achieve some regularity inheritance properties.

Lemma 2.10 (One-sided regularity inheritance, [9]). For each εOSRIL, αOSRIL > 0 there exist
ε0 > 0 and C > 0 such that for any 0 < ε < ε0 and 0 < p < 1 asymptotically almost
surely Γ = G(n, p) has the following property. For any disjoint sets X and Y in V (Γ)
with |X| ≥ Cp−2 log n and |Y | ≥ Cp−1 log n, and any subgraph G ⊆ Γ such that (X,Y ) is
(ε, αOSRIL, p)G-regular, there are at most Cp−1 log n vertices z ∈ V (Γ) such that (X∩NΓ(z), Y )
is not (εOSRIL, αOSRIL, p)G-regular.

Lemma 2.11 (Two-sided regularity inheritance, [9]). For each εTSRIL, αTSRIL > 0 there exist
ε0 > 0 and C > 0 such that for any 0 < ε < ε0 and 0 < p < 1, asymptotically almost surely
Γ = Gn,p has the following property. For any disjoint sets X and Y in V (Γ) with |X|, |Y | ≥
C max{p−2, p−1 log n}, and any subgraph G ⊆ Γ such that (X,Y ) is (ε, αTSRIL, p)G-regular,
there are at most C max{p−2, p−1 log n} vertices z ∈ V (Γ) such that

(
X ∩NΓ(z), Y ∩NΓ(z)

)

is not (εTSRIL, αTSRIL, p)G-regular.

2.3 Analytic combinatorics

In enumerative combinatorics, obtaining an exact formula for the number of combinatorial
objects seems to be often out of reach. A common method for the approximate quantitative
study of combinatorial structures is analytic combinatorics, which has proved to have a vast
list of applications in the analysis of algorithms, statistical physics, computational biology,
information theory, and many other fields (see e.g. [80]).

The key objects in analytic combinatorics are generating functions that are associated with
the structures to be counted. The typical asymptotic enumeration process can be divided into
the following three steps. First, combinatorial constructions are used to specify the object
under study. With the help of the so-called symbolic method these constructions are then
transferred into equations of the corresponding generating functions. Finally, singularity
analysis is usually used to determine the asymptotics of the coefficients of these functions,
which immediately gives the asymptotic number of the studied structures.

In this section we review the definitions and results related to these topics that are es-
sential in our proofs in Chapter 6. Our main reference is the ground-breaking book Analytic
Combinatorics by Flajolet and Sedgewick [80].

2.3.1 The symbolic method

The symbolic method is an elegant and powerful tool to systematically translate set-theoretic
relations between combinatorial classes into operations of generating functions. In this sub-
section we summarise the basic rules for such operations.

A combinatorial class is a set A of objects equipped with a size function | · | : A → N0

such that
∣∣{α ∈ A : |α| = n}

∣∣ is finite for every n ∈ N. A combinatorial class is called labelled
if all objects in the class are labelled, i.e. if each object α is equipped with a bijective function
from

[
|α|
]

to the atoms of α that are counted by | · |.
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Depending on whether the class is labelled, there are two types of generating functions,
namely ordinary generating functions for combinatorial classes of unlabelled objects, and
exponential generating functions for labelled combinatorial classes. In this thesis we will
solely encounter the latter type since we restrict our enumerative study to labelled objects.
The exponential generating function (or EGF for short) of a sequence (an)n≥1 is the formal
power series

A(x) =
∑

n≥0

an
xn

n!
.

LetA be a labelled combinatorial class with a size function |·| and let an :=
∣∣{α ∈ A : |α| = n}

∣∣
denote the number of elements in A of size n. Then the EGF of A is the EGF of the sequence
(an)n≥1, that is,

A(x) =
∑

n≥0

an
xn

n!
=
∑

α∈A

x|α|

|α|! .

Conversely, we write [xn]A(x) to denote the n-th coefficient an/n! of A(x).

There are two basic combinatorial classes, namely the neutral class E , which consists of
a single object of size 0, and the atomic class Z, which contains a single object of size 1.
Their generating functions are hence E(x) = 1 and Z(x) = x, respectively. Starting with
the neutral and the atomic class one can define, sometimes recursively, more complex classes
in terms of already defined ones by using various set-theoretic constructions. As we have
already mentioned before, these constructions translate into relations of the corresponding
generating functions. In the following we describe the essential basic operations on labelled
combinatorial classes that we will use. Afterwards we summarise the corresponding operations
on their associated EGFs.

We always assume labelled objects to be well-labelled , that is, each object of size n receives
n distinct labels from the set [n]. If an object α is not well-labelled, we write ρ(α) for the
well-labelled object that we obtain from relabelling α in a canonical way, i.e. by preserving
the order of the labels.

LetA and B be labelled combinatorial classes with size functions |·|A and |·|B, respectively.
If A ∩ B = ∅, the disjoint union A+ B is defined as A ∪ B with the size function

|α|A+B :=

{
|α|A if α ∈ A,
|α|B if α ∈ B.

The (labelled) product C = A∗B is the class defined on the ground set
⋃
α∈A,β∈B α ∗β, where

α ∗ β := {(α′, β′) : (α′, β′) is well-labelled, ρ(α′) = α and ρ(β′) = β},

equipped with the size function

|α ∗ β|C := |α|A + |β|B.

For every n ∈ N let SEQn(A) = A ∗ · · · ∗ A with n factors of A. The (labelled) sequence of A
is denoted by SEQ(A) and is defined as

SEQ(A) = E +
∑

n≥1

SEQn(A).
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Furthermore, for every n ∈ N we let SETn(A) denote the collection of unordered sets in A
with n elements and define the (labelled) set of A as

SET(A) = E +
∑

n≥1

SETn(A).

The size of an element (α1, . . . , αn) in SEQn(A), SEQ(A), SETn(A), or SET(A) is the sum
of the sizes of α1, . . . , αn. We note that in the case of sequences and sets of a class A one
needs that a0 = 0 to ensure that there are only finitely many objects of a given size. The
pointing operator A• of the class A distinguishes for each element α of size n one of the n
atoms that compounds α. Finally, the (labelled) substitution of B into A, denoted by A ◦ B,
consists of all elements that are obtained by substituting each atom of every element of A by
an element of B, and by relabelling the resulting objects in a canonical way such that they
become well-labelled.

In Table 2.1 we summarise all the constructions explained above and the corresponding
operations of their associated EGFs, whose proofs can be found in e.g. [80].

Construction Notation EGF

Disjoint union A+ B A(x) +B(x)

Product A ∗ B A(x)B(x)

n-sequence SEQn(A) A(x)n

Sequence SEQ(A) 1
1−A(x)

n-set SETn(A) A(x)n

n!

Set SET(A) exp
(
A(x)

)

Pointing A• x d
dxA(x)

Substitution A ◦ B A
(
B(x)

)

Table 2.1: Basic set-theoretic operations on labelled combinatorial classes and the correspond-
ing algebraic relations of their associated EGFs.

Let A be a labelled combinatorial class equipped with a size function | · |. A function
ξ : A→N0 is called a parameter . Let an,k :=

∣∣{α ∈ A : |α| = n, ξ(α) = k}
∣∣. The bivariate

exponential generating function associated with A is defined as

A(x, y) =
∑

n,m≥0

an,m
xn

n!
ym.

We say that x marks the size function | · | and y marks the parameter ξ. Setting y = 1
reduces A(x, y) to the EGF of A. The constructions and rules illustrated in Table 2.1 extend
analogously to bivariate EGFs (see e.g. [80]).

2.3.2 Graph decompositions

While in the latter subsection we have collected rules for translating constructions of combi-
natorial classes into relations of generating functions, we concentrate in this subsection on the
decompositions of specific classes of graphs and on the application of the symbolic method
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in these settings. In view of Chapter 6 we are interested in series and parallel networks,
in a dissymmetry theorem for tree-decomposable classes, and in Tutte’s decomposition for
decomposing 2-connected graphs into 3-connected components.

Let C be a class of connected graphs with the property that a graph is in C if and only if all
its 2-connected and 3-connected components are in C. Observe that for instance the class of
connected series-parallel graphs carrying a distinguished spanning tree shares this property.
Let cn,m denote the number of graphs in C with n vertices and m edges. As explained in the
latter subsection, the associated (bivariate) EGF is the formal power series

C(x, y) =
∑

m,n≥0

cn,m
xn

n!
ym,

where x and y mark vertices and edges, respectively.

Similarly, let bn,m denote the number of 2-connected graphs in C with n vertices and m
edges and let B(x, y) be its associated EGF. A connected graph rooted at a vertex can be
obtained from a set of rooted 2-connected graphs, where the root is not labelled and where
every other vertex is substituted by a connected graph rooted at a vertex. Using the symbolic
method, this translates into the following relation between C(x, y) and B(x, y) (see also [83]):

xCx(x, y) = x exp
(
Bx (xCx(x, y), y)

)
. (2.1)

Following Walsh [154], a network is defined as a simple graph with two distinguished
vertices, that are called 0-pole and ∞-pole and do not bear a label, such that adding an edge
between the two poles gives rise to a 2-connected multigraph. If there is an edge joining the
two poles, it is called root edge. Let D(x, y) denote the EGF associated with networks. The
following equation that was shown by Walsh [154] reflects the relation between B(x, y) and
D(x, y):

2(1 + y)By(x, y) = x2(D(x, y) + 1). (2.2)

The left-hand side in Equation (2.2) corresponds to the family of 2-connected graphs rooted
at a directed edge that might not be present in the graph and the right-hand side corresponds
to the family of networks, that also includes the empty network, where in addition labels have
been assigned to the two poles.

A trivial network consists of the two poles and of the root edge. Following the ideas
of [152], we further distinguish between three types of networks, namely series, parallel, and
h-networks as follows. A series network S can be obtained from a directed cycle with a
distinguished edge (which defines the two poles of the network) by replacing every other edge
by a network, and finally by removing the distinguished edge. A parallel network P arises
from merging at least two non-trivial networks, the root edge of each of them being not
present, at their common poles. In this family, the root edge joining the two poles of P might
not be present in P . Finally, an h-network is obtained from a 3-connected graph H rooted
at an oriented edge by replacing every edge of H apart from the root edge by a network. As
in the parallel case the root edge might not be present in an h-network.

Trakhtenbrot [152] showed that a network is either trivial, series, parallel, or an h-network,
and Walsh [154] translated this decomposition into counting formulas. In series-parallel graphs
the set of h-networks is empty. Therefore, we restrict our attention to series and parallel
networks.



2.3. Analytic combinatorics 39

Let us mention that our definition of networks slightly differs from Trakhtenbrot’s. Indeed,
in [152] series networks could contain the root edge. In our work, series networks containing
the root edge (in Trakhtenbrot’s sense) are always considered to be parallel. This convention
turns out to be helpful when dealing with spanning trees.

In Chapter 6 we aim for an asymptotic estimate for the number of spanning trees in graphs
chosen uniformly at random from the family of connected series-parallel graphs. For this pur-
pose, we will enumerate the class of connected series-parallel graphs with a distinguished
spanning tree. The main idea is to give a complete analytic analysis of the generating func-
tion associated with this class using the relations to the class of 2-connected series-parallel
graphs and to the class of networks, both carrying a distinguished spanning tree. Using
Equation (2.2) would imply integration steps that are known to get difficult when considering
enriched classes of graphs. Fortunately, Chapuy, Fusy, Kang, and Shoilekova [50] found a
convenient combinatorial trick to forgo this integration step by using the dissymmetry theo-
rem for tree-decomposable classes (Theorem 2.12) and by using the grammar for decomposing
graphs into 3-connected components that they developed in [50].

A class A of graphs is tree-decomposable if for each graph G ∈ A we can define a tree
τ(G) associated with G. Let A◦ denote the class of graphs G in A where τ(G) has a distin-
guished vertex. Similarly, denote by A◦−◦ the class of all graphs G in A where τ(G) carries
a distinguished edge. Finally, let A◦→◦ be the class of all graphs G in A where an edge of
τ(G) is directed. The dissymmetry theorem for trees by Bergeron [25] allows to express the
class of unrooted trees in terms of classes of trees with a distinguished vertex, edge or with
a directed edge. This theorem can be extended to tree-decomposable classes in the following
way (see e.g. [50]).

Theorem 2.12 (Dissymmetry theorem for tree-decomposable classes). Let A be a class of
graphs that is tree-decomposable. Then,

A+A◦→◦ ' A◦ +A◦−◦.

Finally, let us briefly summarize Tutte’s decomposition [153] for decomposing 2-connected
graphs into 3-connected components. For a thorough exposition we refer to [50].

Tutte’s decomposition is based on split operations and the structure obtained from this
process is shown to be independent of the order of the operations. Informally speaking, in
every split operation we split the edge set of a graph G into two edge sets E1 and E2 that
only coincide in exactly two vertices, say u and v, and where G[E1] is 2-connected and G[E2]
is connected modulo {u, v} (meaning that there exists no partition of E2 into two nonempty
sets E′2 and E′′2 such that G[E′2] and G[E′′2 ] only intersect in u and v). Next we add a so-called
virtual edge e between these two vertices. Then we split the graph along this virtual edge,
which yields two graphs G1 and G2 that correspond respectively to G[E1] and G[E2] with e
now being a real edge. We say that G1 and G2 are matched by the virtual edge e.

The resulting structure is a collection of graphs that we call bricks. Tutte showed that
there are only three types of bricks, namely ring graphs (R-bricks), multi-edge graphs (M-
bricks), and 3-connected graphs with at least 4 vertices (T-bricks). The class of ring graphs
is defined as the class of cyclic chains of at least 3 edges and the class of multi-edge graphs as
the class of graphs with exactly two labelled vertices that are connected by at least 3 edges.

The RMT-tree of a graph G is defined as the graph τ(G) whose vertices are the bricks that
result from Tutte’s decomposition applied to G. Two vertices in τ(G) are connected when
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the corresponding bricks are matched by a virtual edge. It was shown by Tutte [153] that
τ(G) is indeed a tree and that there are no two adjacent R-bricks nor two adjacent M -bricks.

Let B be the class of all 2-connected graphs with at least 3 vertices. We denote by BR,
BM , and BT the classes of graphs G in B such that the RMT-tree associated with G carries
a distinguished R-vertex, M-vertex, and T-vertex, respectively. Moreover, let BR−M denote
the class of graphs G in B such that an edge between an R-vertex and an M-vertex in the
RMT-tree associated with G is distinguished. The classes BR−T , BM−T , and BT−T are defined
analogously. Finally, let BT→T be the class of graphs G in B such that an edge between two
T -vertices is directed.

Using Theorem 2.12, B satisfies the following equation (see [50]):

B ' BR + BM + BT − BR−M − BR−T − BM−T − BT→T + BT−T . (2.3)

Since series-parallel graphs do not have 3-connected components, they do not contain T-
bricks. Hence there are no T-vertices in the corresponding RMT-tree. Therefore, in the case
of series-parallel graphs, Equation (2.3) is simplified to

B ' BR + BM − BR−M . (2.4)

2.3.3 Singularity analysis

In this subsection we introduce the necessary analytic background for the singularity analysis
of generating functions that we will need in Chapter 6. In particular we state simplified
versions of the transfer theorems and for the singularity analysis of systems of functional
equations. For more details we refer to the books Analytic Combinatorics by Flajolet and
Sedgewick [80] and Random Trees by Drmota [67].

Given an EGF

A(x) =
∑

n≥0

an
xn

n!

we would like to determine an asymptotic estimate of the sequence (an)n≥0. Pringsheim’s
theorem (see e.g. [80]) assures that generating functions with radius of convergence % and
non-negative Taylor coefficients have a singularity at %, in particular a positive real dominant
singularity. As shown in [80, Theorem IV.7], the exponential growth of the sequence (an)n≥0

is therefore dictated by the smallest positive singularity % of A(x) in the sense that

[xn]A(x) ∼ Ψ(n)%−n,

where Ψ(n) grows subexponentially, i.e. lim supn→∞ |Ψ(n)|1/n = 1. The subexponential term
Ψ(n) results from the nature of this singularity. The so-called transfer theorems, developed
by Flajolet and Odlyzko [79], provide a convenient way to determine the subexponential term
of [xn]A(x). The following theorem is a special case of the transfer theorems stated in [80].
Before stating the result we first need the definition of dented domains (see Figure 2.1 for an
illustration of a such a domain). Given R, ζ > 0 with R > ζ and 0 < φ < π/2, the domain
dented at ζ, which is denoted by ∆ζ(φ,R), is defined as

∆ζ(φ,R) = {z ∈ C : |z| < R, z 6= ζ, |Arg(z − ζ)| > φ}.
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φ

Figure 2.1: An illustration of the domain ∆ζ(φ,R).

Theorem 2.13 (Transfer theorem [80], simplified version). Let α ∈ R \ Z− and let A(x) be
analytic in a domain ∆%(φ,R) dented at the smallest positive singularity % of A(x). If, as
x→ % in ∆%(φ,R),

A(x) ∼ c
(

1− x

%

)−α
,

then

[xn]A(x) =
c

Γ(α)
nα−1%−n(1 + o(1)),

where Γ(x) is the Euler Gamma function defined as Γ(x) =
∫∞

0 tx−1e−tdt.

In this thesis the singular expansion of a generating function A(x) in a domain dented at
a singularity % is always of the form

A(x) = A0 +A1X +A2X
2 + · · ·+A2k+1X

2k+1 +O(X2k+2),

where X =
√

1− x/%. The even powers of X, being analytic functions, do not contribute to
the asymptotic of [xn]A(x).

If A1 = A3 = · · · = A2k−1 = 0 and A2k+1 6= 0, then the number (2k + 1)/2 is called the
singular exponent . For this situation Theorem 2.13 yields

[xn]A(x) ∼ c

Γ(α)
nα−1%−n

with c = A2k+1 and α = −(2k + 1)/2. When A1 6= 0 we say that A(x) has a square-root
expansion.

Let us now turn to the asymptotic analysis of systems of functional equations. The main
reference for this topic is the paper [66] by Drmota. Assume that y1(x), . . . , yk(x) are gener-
ating functions satisfying a functional system of equations. We define y = (y1(x), . . . , yk(x)),
and the system satisfied by y is denoted by y = F(x; y), where F = (F1, . . . , Fk) is a vector
of functions. The dependency graph G = (V,E) associated with the system y = F(x; y) is an
oriented graph whose vertex set is V = {y1, . . . , yk} and −−→yiyj is in E if and only if ∂Fi∂yj

6= 0. The

latter condition indicates that there is a real dependence between Fi and yj . A dependency
graph is said to be strongly connected if every pair of vertices can be linked by a directed
path. Using this terminology we state the following shortened version of [67, Theorem 2.33].
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Theorem 2.14 (Systems of functional equations [67], simplified version). Let the functional
system of equations y = F(x;y) where each yi is analytic at x = 0 be given. Additionally,
we require that each component of F is an entire function with positive Taylor coefficients, is
not linear in the components yi, and depends on x. Finally, we assume that F(0;y) = 0 and
F(x; 0) 6= 0. Assume also that the associated dependency graph is strongly connected. Denote
by Ik the k×k identity matrix and by Jac(F) the Jacobian matrix associated with F and with
respect to variables y1, . . . , yk. Assume that the system of equations

y = F(x;y), 0 = det (Ik − Jac(F))

has a unique solution (x0,y0) in the region of analyticity of each component of F. Then there
is a unique solution y of the initial system of equations such that the components of y have
non-negative Taylor coefficients and a square-root expansion in a domain dented at x = x0.

In order to obtain asymptotic estimates we need to assure that the dominant singularity
is unique in a dented domain. This condition is usually satisfied whenever the counting
formula A(x) under consideration cannot be written in the form A(x) = xkf(xr) for non-
negative values k ≥ 0 and r ≥ 2. More precisely, we say that a generating function A(x)
is aperiodic if there exists a non-negative integer n0 such that [xn]A(x) > 0 for n ≥ n0.
Observe that checking the aperiodicity condition is straightforward whenever we know that
for each number of vertices there exist graphs in the family under study. The generating
functions we consider in Chapter 6 (which are defined by an implicit equation, or by means of
Theorem 2.14) will satisfy the aperiodicity condition by obvious combinatorial reasons. This
will imply uniqueness of the dominant singularity. See [67] for more details.

2.4 Concentration inequalities of random variables

In our proofs we use the following standard bounds on deviations of random variables. Their
proofs can be found in e.g. [98]. We start with Markov’s inequality, which can be applied to
any random variable that is almost surely positive.

Lemma 2.15 (Markov’s inequality). For every random variable X with X ≥ 0 almost surely
and t > 0 we have

P
[
X ≥ t

]
≤ E[X]

t
.

Next we consider random variables that follow a binomial distribution. The following
two bounds belong to Chernoff’s inequality, which collects different exponentially decreasing
bounds on the tails of this distribution.

Theorem 2.16 (Chernoff’s inequality I). For every random variable X ∼ Bin(n, p) and every
ε ≤ 3/2 we have

P
[
|X − E[X]| > εE[X]

]
< 2 exp

(
−ε

2E[X]

3

)
.

The second Chernoff’s inequality that we need provides only a bound on the upper tail of
the binomial distribution.
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Theorem 2.17 (Chernoff’s inequality II). For every random variable X ∼ Bin(n, p) and
every t ≥ 0 we have

P
[
X ≥ E[X] + t

]
≤ exp

(
− t2

2(E[X] + t/3)

)
.

Now we turn to random variables that follow a hypergeometric distribution. Let N , m,
and s be positive integers and let S and S′ ⊆ S be two sets with |S| = N and |S′| = m. The
hypergeometric distribution is the distribution of the random variable X that is defined by
drawing s elements of S without replacement and counting how many of them belong to S′.
It can be shown that Theorem 2.16 still holds in the case of hypergeometric distributions (see
again e.g. [98]) with E[X] := ms/N .

Theorem 2.18 (Hypergeometric inequality). Let X be a random variable that follows the
hypergeometric distribution with parameters N , m, and s. Then for any ε > 0 and t ≥ εms/N
we have

P
[
|X −ms/N | > t

]
< 2 exp

(
−ε

2t

3

)
.

We require the following technical lemma, which is a consequence of the hypergeometric
inequality.

Lemma 2.19. For each η > 0 and ∆ ≥ 1 there exists C > 0 such that the following holds.
Let W ⊆ [n], let t ≤ 100n∆, and let T1, . . . , Tt be subsets of W . For each m ≤ |W | there is a
set S ⊆W of size m such that

|Ti ∩ S| = m
|W | |Ti| ±

(
η|Ti|+ C log n

)
for every i ∈ [t] .

Proof. Set C = 30η−2∆. Let S consist of m elements of W that are drawn randomly from W
without replacement. Observe that for each i ∈ [t], the size of Ti ∩ S is hypergeometrically
distributed. By Theorem 2.18, for each i ∈ [t] we have

P
[
|Ti ∩ S| 6= m

|W | |Ti| ±
(
η|Ti|+ C log n

)]
< 2 exp

(
− η2C log n/3

)
<

2

n1+∆
.

Taking the union bound over all i ∈ [t] we conclude that the probability of failure is at most
2t/n1+∆ ≤ 200/n, which tends to 0 with n tending to infinity. Hence there exists a set S ⊆W
of size m with the desired property.

Finally we consider binomial random subsets. For Γ = [n] let Γp1,...,pn be defined by
including for every i ∈ [n] the i-th element of Γ with probability pi independently of all other
elements of Γ. For each set S ⊆ 2Γ of subsets of Γ and each set A ∈ S, we let XA denote
the indicator variable for the event A ⊆ Γp1,...,pn . Janson’s inequality gives an exponentially
small bound on the lower tail of the distribution of sums of such indicator variables.

Theorem 2.20 (Janson’s inequality). Let Γ be a finite set and let S ⊆ 2Γ be a set of subsets
of Γ. If X =

∑
A∈S XA, where XA is an indicator variable as just defined, and 0 ≤ t ≤ E[X],

then

P
[
X ≤ E[X]− t

]
≤ exp

(
− t2

2∆

)
,

where
∆ = E[X] +

∑

A∈S

∑

B∈S:
A∩B 6=∅,A6=B

E[XAXB].
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3
The bandwidth theorem in

random and pseudorandom graphs

In this chapter we study sparse random and pseudorandom graphs that contain (asymptot-
ically almost surely) every graph of a particular class in a robust manner. The subgraphs
that we are interested in are spanning and by robust we mean that the graph still contains
the desired subgraph even after an adversary has deleted up to a certain proportion of the
incident edges at every vertex. This concept is also known under the name local resilience
(see Subsection 1.2.1 for an introduction to this area).

The bandwidth theorem by Böttcher, Schacht, and Taraz [41] states that any graph on n
vertices with minimum degree at least

(
(k− 1)/k+ o(1)

)
n contains every k-colourable graph

on n vertices with bounded maximum degree and sublinear bandwidth.

We prove an analogous version of this statement for random graphs. More precisely, we
show that for every real γ > 0 and integers ∆ ≥ 2 and k ≥ 1, there exist constants β > 0
and C > 0 such that the following holds asymptotically almost surely for G(n, p) whenever
p ≥ C(log n/n)1/∆. If G is any subgraph of G(n, p) with minimum degree

(
(k− 1)/k+ γ

)
pn,

then G contains every n-vertex graph H with maximum degree at most ∆, bandwidth at
most βn and with at least C max{p−2, p−1 log n} vertices not contained in any triangles of H.

The additional restriction that the graph H needs to have vertices not contained in any
triangles is necessary in the sparse setting. We prove this theorem and a slightly stronger one
where H is allowed to have a few vertices coloured with an additional colour in Section 3.1.
The proof is based on the regularity method and uses the sparse blow-up lemma, proved by
Allen, Böttcher, Hàn, Kohayakawa, and Person [9].

If in addition to the requirements of the theorem for random graphs mentioned above, H
is also D-degenerate and does not contain any cycles of length four, we can prove a variant
where a lower bound of p = O

(
(log n/n)1/(2D+1)

)
suffices. The proof is similar to the one

of the theorem mentioned above and uses a version of the sparse blow-up lemma to embed
degenerate graphs into sparse random graphs [9]. We state and discuss the modifications that
need to be carried out to obtain this result in Section 3.2.

We would like to emphasize that the resilience results mentioned above apply to ‘pseudo-
random’ graphs in some sense, but not to any of the common, standard pseudorandomness
conditions. However, we are also able to prove a similar resilience statement with respect to

45
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pseudorandom graphs, where we use the notion of bijumbledness. The proof of this result
uses a sparse blow-up lemma for bijumbled graphs [9] and is presented in Section 3.3.

Finally, in Section 3.4 we remark on the optimality of our results and discuss some open
questions and related work.

As mentioned before, the results of this chapter are joint work with Peter Allen, Julia
Böttcher, and Anusch Taraz [7, 8].

3.1 The bandwidth theorem in random graphs

The goal of this section is to prove the following theorem, which can be seen as a random graph
analogue of the bandwidth theorem (Theorem 1.3) by Böttcher, Schacht, and Taraz [41].

Theorem 3.1. For each γ > 0, ∆ ≥ 2, and k ≥ 1, there exist β∗ > 0 and C∗ > 0 such that
the following holds asymptotically almost surely for Γ = G(n, p) if p ≥ C∗(log n/n)1/∆.

Let G be a spanning subgraph of Γ with δ(G) ≥
(
(k − 1)/k + γ

)
pn and let H be a k-

colourable graph on n vertices with ∆(H) ≤ ∆, bandwidth at most β∗n and such that there
are at least C∗max{p−2, p−1 log n} vertices in V (H) that are not contained in any triangles
of H. Then G contains a copy of H.

Theorem 3.1 is a corollary of a more general theorem (Theorem 3.3), where, subject to
a few conditions, H is allowed to have vertices coloured with an additional colour. One of
these requirements is that the proper (k+ 1)-colouring of the vertex set of H is zero-free with
respect to the bandwidth labelling, where ‘zero-free’ is defined as follows.

Definition 3.2 (Zero-free colouring). Let H be a (k + 1)-colourable graph on n vertices and
let L be a labelling of its vertex set of bandwidth at most βn. A block of L is defined as a set
of the form {(t− 1)4kβn+ 1, . . . , t4kβn} with some t ∈ [1/(4kβ)]. A proper (k+ 1)-colouring
σ : V (H) → {0, . . . , k} of its vertex set is said to be (z, β)-zero-free with respect to L if any
z consecutive blocks contain at most one block with colour zero.

With this definition in hand, we can now state Theorem 3.3.

Theorem 3.3. For each γ > 0, ∆ ≥ 2, and k ≥ 2, there exist β > 0, z > 0, and C > 0 such
that the following holds asymptotically almost surely for Γ = G(n, p) if p ≥ C(log n/n)1/∆.

Let G be a spanning subgraph of Γ with δ(G) ≥
(
(k − 1)/k + γ

)
pn and let H be a graph

on n vertices with ∆(H) ≤ ∆ that has a labelling L of its vertex set of bandwidth at most βn,
a (k + 1)-colouring that is (z, β)-zero-free with respect to L and where the first

√
βn vertices

in L are not given colour zero and the first βn vertices in L include C max{p−2, p−1 log n}
vertices that are not contained in any triangles of H. Then G contains a copy of H.

As already mentioned in Chapter 1, the minimum degree condition in Theorems 3.1 and 3.3
is tight and the bandwidth condition cannot be omitted. Moreover, the number of vertices in
H that are contained in triangles needs to be restricted. However, if G is required to contain
for every vertex x ∈ V (G) a positive proportion of the copies of K∆+1 containing x that
occurred in G(n, p), then this restriction is no longer needed. We briefly discuss this as well
as the (non-)optimality of Theorem 3.1 in terms of the edge probability and of the number of
vertices not in triangles in Section 3.4.
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In Subsection 3.1.7 we first present the proof of Theorem 3.3 and then deduce Theorem 3.1.
The proof of Theorem 3.3 uses five main lemmas, one of which is the sparse blow-up lemma
(Theorem 2.9) by Allen, Böttcher, Hàn, Kohayakawa, and Person. The other four lemmas
are formulated in the following subsection and are proved in Subsections 3.1.3–3.1.6.

3.1.1 Main lemmas and outline of the proof

Before we state the main lemmas that we use in the proof of Theorem 3.3 and outline roughly
how they will be combined, we need to introduce some more definitions.

Let r, k ≥ 1 and let Bk
r be the graph on kr vertices obtained from a path on r vertices

by replacing every vertex by a clique of size k and by replacing every edge by a complete
bipartite graph minus a perfect matching. More precisely, we define Bk

r as

V (Bk
r ) := [r]× [k]

and for all distinct j, j′ ∈ [k]

{(i, j), (i′, j′)} ∈ E(Bk
r ) if and only if i = i′ or |i− i′| = 1.

We call Bk
r backbone graph on the vertex set [r]× [k].

Let Kk
r ⊆ Bk

r be the spanning subgraph of Bk
r that is the disjoint union of r complete

graphs on k vertices given by the following components: the clique Kk
r [{(i, 1), . . . , (i, k)}] is

the i-th component of Kk
r for each i ∈ [r]. See Figure 3.1 for an illustration of the clique

factor Kk
r in a backbone graph Bk

r for k = 3.

Figure 3.1: Three components of the clique factor K3
r in the backbone graph B3

r .

A partition V ′ = {Vi,j}i∈[r],j∈[k] is called k-equitable if
∣∣|Vi,j | − |Vi,j′ |

∣∣ ≤ 1 for every i ∈ [r]
and j, j′ ∈ [k]. Similarly, an integer partition {ni,j}i∈[r],j∈[k] of n (meaning that ni,j ∈ Z≥0 for
every i ∈ [r], j ∈ [k] and

∑
i∈[r]j∈[k] ni,j = n) is k-equitable if |ni,j − ni,j′ | ≤ 1 for every i ∈ [r]

and j, j′ ∈ [k].

Now we are ready to sketch the idea of the proof of Theorem 3.3 and state the main
lemmas that we need. The goal of the proof is to find a.a.s. for every subgraph G of G(n, p)
with minimum degree at least

(
(k− 1)/k+ γ

)
pn a graph homomorphism from a given graph

H, with the properties as in the statement of the theorem, to G.
The first main lemma (Lemma 3.4) is used to partition G. It states that a.a.s. Γ = G(n, p)

satisfies the following property if p = Ω(log n/n)1/2. For any spanning subgraph G ⊆ Γ with
minimum degree a sufficiently large fraction of pn, there exists an (ε, d, p)G-regular vertex
partition V of V (G) whose reduced graph Rkr contains a clique factor Kk

r , on which the
corresponding vertex sets of V are pairwise (ε, d, p)G-super-regular. Furthermore, (G,V) has
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one-sided and two-sided inheritance with respect to Rkr , and the Γ-neighbourhoods of all
vertices but the ones in the exceptional set of V have almost exactly their expected size in
each cluster. The proof of Lemma 3.4 is given in Subsection 3.1.3.

Lemma 3.4 (Lemma for G). For each γ > 0, k ≥ 2, and r0 ≥ 1 there exists d > 0 such that
for every ε ∈

(
0, 1/(2k)

)
there exist r1 ≥ 1 and C∗ > 0 such that the following holds a.a.s. for

Γ = G(n, p) if p ≥ C∗ (log n/n)1/2.
Let G = (V,E) be a spanning subgraph of Γ with δ(G) ≥

(
(k − 1)/k + γ

)
pn. Then there

exists an integer r with r0 ≤ kr ≤ r1, a subset V0 ⊆ V with |V0| ≤ C∗max{p−2, p−1 log n}, a
k-equitable vertex partition V = {Vi,j}i∈[r],j∈[k] of V (G)\V0, and a graph Rkr on the vertex set

[r]× [k] with Kk
r ⊆ Bk

r ⊆ Rkr , with δ(Rkr ) ≥
(
(k − 1)/k + γ/2

)
kr, and such that the following

is true:

(G1) n
4kr ≤ |Vi,j | ≤ 4n

kr for every i ∈ [r] and j ∈ [k],

(G2) V is (ε, d, p)G-regular on Rkr and (ε, d, p)G-super-regular on Kk
r ,

(G3) both
(
NΓ(v, Vi,j), Vi′,j′

)
and

(
NΓ(v′, Vi,j), NΓ(v, Vi′,j′)

)
are (ε, d, p)G-regular for every

{(i, j), (i′, j′)} ∈ E(Rkr ) and v ∈ V \ V0,

(G4) |NΓ(v, Vi,j)| = (1± ε)p|Vi,j | for every i ∈ [r], j ∈ [k] and every v ∈ V \ V0.

Furthermore, if we replace (G3) by

(G3’)
(
NΓ(v, Vi,j), Vi′,j′

)
is (ε, d, p)G-regular for every {(i, j), (i′, j′)} ∈ E(Rkr ) and every

v ∈ V \ V0,

then we have the stronger bound |V0| ≤ C∗p−1 log n.

After Lemma 3.4 has constructed a regular partition V of V (G), the second main lemma
deals with the graph H that we would like to find as a subgraph of G.

More precisely, Lemma 3.5 provides a homomorphism f from the graph H to the reduced
graph Rkr given by Lemma 3.4, which has among others the following properties. The edges
of H are mapped to the edges of Rkr , and the vast majority of the edges of H are assigned
to edges of the clique factor Kk

r ⊆ Rkr . The number of vertices of H mapped to a vertex of
Rkr only differs slightly from the size of the corresponding cluster of V. The lemma further
guarantees that each of the first

√
βn vertices of the bandwidth ordering of V (H) is mapped

to (1, j) with j being the colour that the vertex has received by the given colouring of H.
In case H is D-degenerate the next lemma also ensures that for every (i, j) ∈ [r]× [k], a

constant fraction of vertices mapped to (i, j) have each at most 2D neighbours.

Lemma 3.5 (Lemma for H). Given D, k, r ≥ 1 and ξ, β > 0 the following holds if ξ ≤ 1/(kr)
and β ≤ 10−10ξ2/(Dk4r).

Let H be a D-degenerate graph on n vertices, let L be a labelling of its vertex set of
bandwidth at most βn and let σ : V (H) → {0, . . . k} be a proper (k + 1)-colouring that is
(10/ξ, β)-zero-free with respect to L, where the colour zero does not appear in the first

√
βn

vertices of L. Furthermore, let Rkr be a graph on vertex set [r]× [k] with Kk
r ⊆ Bk

r ⊆ Rkr such
that for every i ∈ [r] there exists a vertex zi ∈

(
[r] \ {i}

)
× [k] with

{
zi, (i, j)

}
∈ E(Rkr ) for

every j ∈ [k].
Then, given a k-equitable integer partition {mi,j}i∈[r],j∈[k] of n with n/(10kr) ≤ mi,j ≤

10n/(kr) for every i ∈ [r] and j ∈ [k], there exists a mapping f : V (H)→ [r]× [k] and a set
of special vertices X ⊆ V (H) such that for every i ∈ [r] and j ∈ [k] we have
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(H1) mi,j − ξn ≤ |f−1(i, j)| ≤ mi,j + ξn,

(H2) |X| ≤ ξn,

(H3) {f(x), f(y)} ∈ E(Rkr ) for every {x, y} ∈ E(H),

(H4) y, z ∈ ⋃j′∈[k] f
−1(i, j′) for every x ∈ f−1(i, j) \X and {x, y}, {y, z} ∈ E(H),

(H5) f(x) =
(
1, σ(x)

)
for all vertices x in the first

√
βn vertices of L, and

(H6) |{x ∈ f−1(i, j) : deg(x) ≤ 2D}| ≥ 1
24D |f−1(i, j)|.

Lemma 3.5 is a strengthened version of [42, Lemma 8]. The proof of [42, Lemma 8] is
deterministic; here we use a probabilistic argument to show the existence of a function f that
also satisfies the additional property (H6), which is required for the proof of Theorem 3.15,
that we give in Section 3.2. However, we still borrow ideas from the proof of [42, Lemma 8].
The proof of Lemma 3.5 is presented in Subsection 3.1.4.

So far, the vertices of the exceptional set V0 of the regular partition V of V (G) were
disregarded. To cover them, we need to manually pre-embed vertices of H onto all vertices in
V0. For this, we use vertices in H that are not in triangles, that are pairwise far apart from
each other and that are contained in the first βn vertices of the bandwidth ordering L of V (H).
Once we embedded a vertex x of H onto a vertex v of V0, we also embed its neighbours NH(x).
This creates restrictions on the vertices of G to which we can embed the second neighbours,
and for the application of the sparse blow-up lemma (Theorem 2.9) we need certain conditions
to be satisfied. The next lemma states that we can find vertices in NG(v) satisfying these
conditions with room to spare. We prove Lemma 3.6 in Subsection 3.1.5.

Lemma 3.6 (Common neighbourhood lemma). For each d > 0, k ≥ 2, and ∆ ≥ 2 there
exists α > 0 such that for every ε∗ ∈ (0, 1) there exists ε0 > 0 such that for every r ≥ 1 and
every 0 < ε ≤ ε0 there exists C∗ > 0 such that Γ = G(n, p) a.a.s. satisfies the following if

p ≥ C∗ (log n/n)1/∆.
Let G = (V,E) be a (not necessarily spanning) subgraph of Γ and {Vi \W}i∈[k] ∪ {W} a

vertex partition of a subset of V such that the following is true for every distinct i, i′ ∈ [k]:

(V1) n
4kr ≤ |Vi| ≤ 4n

kr ,

(V2) (Vi, Vi′) is (ε, d, p)G-regular,

(V3) |W | = 10−10 ε4pn
k4r4 , and

(V4) |NG(w, Vi)| ≥ dp|Vi| for every w ∈W .

Then there exists a tuple (w1, . . . , w∆) ∈
(
W
∆

)
such that for every Λ,Λ∗ ⊆ [∆], and every

distinct i, i′ ∈ [k] we have

(W1) |⋂j∈ΛNG(wj , Vi)| ≥ αp|Λ||Vi|,

(W2) |⋂j∈ΛNΓ(wj)| ≤ (1 + ε∗)p|Λ|n,

(W3) |⋂j∈ΛNΓ(wj , Vi)| = (1± ε∗)p|Λ||Vi|, and

(W4)
(⋂

j∈ΛNΓ(wj , Vi),
⋂
j∗∈Λ∗ NΓ(wj∗ , Vi′)

)
is (ε∗, d, p)G-regular if |Λ|, |Λ∗| < ∆ and ei-

ther Λ ∩ Λ∗ = ∅ or ∆ ≥ 3 or both.
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Let H ′ and G′ denote the subgraphs of H and G that result from removing all vertices
that were used in the pre-embedding process. As a last step before finally applying the sparse
blow-up lemma, the clusters in V

∣∣
G′ need to be adjusted to the sizes of Wi,j

∣∣
H′ . The next

lemma states that this is possible, and that after this redistribution the regularity properties
that we need for the sparse blow-up lemma (Theorem 2.9) hold. The proof of Lemma 3.7 is
given in Subsection 3.1.6.

Lemma 3.7 (Balancing lemma). For all integers k, r1,∆ ≥ 1, and reals γ, d > 0 and 0 <
ε < min{d, 1/(2k)} there exist 0 < ξ < 1/(10kr1) and C∗ > 0 such that the following is true

for every p ≥ C∗ (log n/n)1/2 and every 10γ−1 ≤ r ≤ r1 provided that n is large enough.

Let Γ be a graph on the vertex set [n] and let G = (V,E) ⊆ Γ be a (not necessarily spanning)
subgraph with vertex partition V = {Vi,j}i∈[r],j∈[k] that satisfies n/(8kr) ≤ |Vi,j | ≤ 4n/(kr) for

each i ∈ [r], j ∈ [k]. Let {ni,j}i∈[r],j∈[k] be an integer partition of
∑

i∈[r],j∈[k] |Vi,j |. Let Rkr be

a graph on the vertex set [r] × [k] with minimum degree δ(Rkr ) ≥
(
(k − 1)/k + γ/2

)
kr such

that Kk
r ⊆ Bk

r ⊆ Rkr . Suppose that the partition V satisfies the following properties for each
i ∈ [r], all distinct j, j′ ∈ [k], and each v ∈ V :

(B1) ni,j − ξn ≤ |Vi,j | ≤ ni,j + ξn,

(B2) V is
(
ε
4 , d, p

)
G

-regular on Rkr and
(
ε
4 , d, p

)
G

-super-regular on Kk
r ,

(B3) both
(
NΓ(v, Vi,j), Vi,j′

)
and

(
NΓ(v, Vi,j), NΓ(v, Vi,j′)

)
are

(
ε
4 , d, p

)
G

-regular pairs, and

(B4) |NΓ(v, Vi,j)| =
(
1± ε

4

)
p|Vi,j |.

Then, there exists a partition V ′ = {V ′i,j}i∈[r],j∈[k] of V such that the following properties hold
for each i ∈ [r], all distinct j, j′ ∈ [k], and each v ∈ V :

(B1’) |V ′i,j | = ni,j,

(B2’) |Vi,j4V ′i,j | ≤ 10−10ε4k−2r−2
1 n,

(B3’) V ′ is (ε, d, p)G-regular on Rkr and (ε, d, p)G-super-regular on Kk
r ,

(B4’) both
(
NΓ(v, V ′i,j), V

′
i,j′
)

and
(
NΓ(v, V ′i,j), NΓ(v, V ′i,j′)

)
are (ε, d, p)G-regular pairs, and

(B5’) for each 1 ≤ s ≤ ∆ and every collection of s vertices v1, . . . , vs ∈ [n] we have

∣∣NΓ(v1, . . . , vs;Vi,j)4NΓ(v1, . . . , vs;V
′
i,j)
∣∣ ≤ 10−10ε4k−2r−2

1 degΓ(v1, . . . , vs) + C∗ log n .

Furthermore, if for any two disjoint vertex sets A,A′ ⊆ V (Γ) with |A|, |A′| ≥ 1
50000kr1

ε2ξpn we

have eΓ(A,A′) ≤
(
1 + 1

100ε
2ξ
)
p|A||A′|, and if ‘regular’ is replaced with ‘fully-regular’ in (B2),

and (B3), then we can replace ‘regular’ with ‘fully-regular’ in (B3’) and (B4’).

The last step of the proof of Theorem 3.3 is the application of the sparse blow-up lemma
(Theorem 2.9) to the vertex partition of G′ given by Lemma 3.7 and to the vertex partition of
H given by Lemma 3.5 restricted to H ′ while respecting the image restrictions that resulted
from the pre-embedding process.

Before we turn to the details of the proof of Theorem 3.3 in Subsection 3.1.7, we prove
Lemmas 3.4–3.7 in Subsections 3.1.3–3.1.6. First of all we show in the next subsection an
almost sure property of G(n, p) that we need at numerous places in the proofs of this chapter.
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3.1.2 Preliminaries

In this subsection we prove the following useful observation. Roughly speaking, it states
that a.a.s. G(n, p) fulfils that most of its vertices have approximately the expected number
of neighbours within large subsets, the number of edges between disjoint large subsets is also
concentrated around its mean, and the number of edges within large subsets is not significantly
higher than what one expects.

Proposition 3.8. For each ε > 0 there exists a constant C > 0 such that for every 0 < p < 1
asymptotically almost surely Γ = G(n, p) has the following properties. For any disjoint sets
X,Y ⊆ V (Γ) with |X|, |Y | ≥ Cp−1 log n, we have e(X,Y ) = (1 ± ε)p|X||Y | and e(X) ≤
2p|X|2. Furthermore, for every Y ⊆ V (Γ) with |Y | ≥ Cp−1 log n, the number of vertices
v ∈ V (Γ) with

∣∣|NΓ(v, Y )| − p|Y |
∣∣ > εp|Y | is at most Cp−1 log n.

Proof of Proposition 3.8. Since the statement of the proposition is stronger when ε is smaller,
we may assume that 0 < ε ≤ 1. We set C ′ = 100ε−2 and C = 100C ′ε−1.

We first show that Γ = G(n, p) has a.a.s. the following two properties. For any disjoint
sets A,B ⊆ V (Γ), each of size at least C ′p−1 log n, we have e(A,B) = (1 ± ε/2)p|A||B|. For
any A ⊆ V (Γ) of size at least C ′p−1 log n, we have e(A) ≤ 2p|A|2. Note that these two
properties imply the first two conclusions of the proposition.

We estimate the failure probability of the first property by using Theorem 2.16 and ap-
plying the union bound. Assuming without loss of generality that |A| ≤ |B|, this probability
is at most

∑

|A|,|B|≤n
n|A|+|B| · 2e−ε2p|A||B|/12 ≤ 2n2+2|B|e−ε

2C′|B| logn/12 <
∑

|B|
2n1+2|B|n−4|B| ≤ 2n−2 .

Similarly, the failure probability of the second property is at most
∑

|A|
n|A| · 2e−p(|A|2 )/3 ≤

∑

|A|
2n|A|e−C

′|A| logn/12 ≤ 2n−2.

We conclude that a.a.s. G(n, p) enjoys both properties.
Now we condition on Γ having both of these properties. Let Y ⊆ V (Γ) have size at least

Cp−1 log n. We first show that there are at most C ′p−1 log n vertices in Γ that have less
than (1− ε)p|Y | neighbours in Y . If this was false, then we could choose a set X consisting
of C ′p−1 log n vertices in Γ where each of them has less than (1 − ε)p|Y | neighbours in Y .
Since by choice of C we have (1 − ε)p|Y | ≤ (1 − ε/2)p|Y \ X|, we see that e(X,Y \ X) <
(1− ε/2)p|X||Y \X|, which is a contradiction since |Y \X| ≥ C ′p−1 log n.

Next we show that there are at most 2C ′p−1 log n vertices of Γ each of them having more
than (1 + ε)p|Y | neighbours in Y . Again, if this is not the case we can let X be a set of
2C ′p−1 log n vertices of Γ with more than (1+ε)p|Y | neighbours in Y . Now e(X) ≤ 2p|X|2 =
4C ′|X| log n, so there are at most |X|/2 vertices in X that have 16C ′ log n or more neighbours
in X. Let X ′ ⊆ X consist of those vertices with at most 16C ′ log n neighbours in X. For each
v ∈ X ′ we have

(1 + ε)p|Y | ≤ deg(v, Y ) ≤ deg(v,X) + deg(v, Y \X) ,

and so, by choice of C, each vertex of X ′ has at least (1 + ε/2)p|Y \X| neighbours in Y \X.
This is a contradiction since |X ′|, |Y \X| ≥ C ′p−1 log n. Finally, since by choice of C we have
3C ′p−1 log n < Cp−1 log n, we conclude that all but at most Cp−1 log n vertices of Γ have
(1± ε)p|Y | neighbours in Y , as desired.
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3.1.3 The lemma for G

This subsection is devoted to the proof of the lemma for G (Lemma 3.4). We borrow ideas
from the proof of [41, Proposition 17] and from the proof of [39, Lemma 9].

Our proof strategy can be summarised as follows. First we apply Lemma 2.6 to obtain
an equitable partition of V (G) within whose reduced graph we can find a backbone graph
by Theorem 1.3. Then, starting with an empty set Z1 = ∅, we add every vertex v to Z1 for
which there exists a cluster U such that the size of the Γ-neighbourhood of v in U is not close
to p|U |, or for which the Γ-neihbourhood in the exceptional set is too large, or for which its
Γ-neighbourhoods fail to inherit regularity. We also add a minimum number of extra vertices
to maintain k-equitability and then remove temporarily the set Z1 from the graph.

Now we consider each vertex that destroyed super-regularity on the clique factor of the
backbone graph before the removal of Z1. We redistribute these vertices as well as the
vertices from the exceptional set of the partition to other clusters such that they do not
destruct super-regularity anymore. The moving of the vertices may have destroyed some
of the regularity inheritance, Γ-neighbourhood, and super-regularity properties we tried to
obtain before. However, a vertex only witnesses failure of these properties if exceptionally
many of its Γ-neighbours were moved from or to a cluster. We define Z2 to be the set of all
such vertices plus a minimum number of additional vertices to obtain k-equitability of the
remaining partition, and remove Z2 from the graph. We will see that Z2 is so small that its
removal does not significantly affect the desired properties. Hence we can set V0 = Z1 ∪ Z2

and have found a partition of V (G) with the properties as demanded.

Proof of Lemma 3.4. First we fix the constants that we need in the proof. Given γ > 0,
k ≥ 2, and r0 ≥ 1, set d = γ/32. Let β > 0 and n0 ≥ 1 be returned by Theorem 1.3 for input
γ/2, 3k, and k. Let

r′0 = max
{
r0, n0,

k
d ,

10k
β

}
.

Next, let ε1 > 0 and C1 > 0, and ε2 > 0 and C2 > 0 be returned by Lemma 2.10 and
Lemma 2.11, respectively, each with input ε/2 and d. Furthermore, let C3 > 0 be returned
by Proposition 3.8 with input ε∗2/(1000k2). Given ε ∈

(
0, 1/(2k)

]
, set

ε∗ = min
{
ε1, ε2,

ε2γ
1010k2

}
.

Then we apply Lemma 2.6 with input ε∗/k, (k − 1)/k + γ, and r′0 + k in order to obtain
r1 > 0. Finally, we set C = maxi∈[3]{Ci} and

C∗ =
100k2r3

1C
ε∗ .

Given p ≥ C∗
( logn

n

)1/2
, it holds that G(n, p) a.a.s. satisfies the good events of Lemmas 2.10

and 2.11, and of Proposition 3.8 with the parameters specified above. We condition on
Γ = G(n, p) satisfying these good events.

Given G = (V,E) ⊆ Γ with δ(G) ≥
(
k−1
k + γ

)
pn, we apply Lemma 2.6, with input ε∗/k,

α = (k− 1)/k+ γ, r′0 + k, and d, to G. Observe that this is possible because G is a subgraph
of Γ, and we have Cp−1 log n ≤ ε∗n/(kr1), so that the condition of Lemma 2.6 is satisfied as
we have conditioned on the good event of Proposition 3.8 for Γ. The result is an (ε∗/k, d, p)-
regular partition U ′ of V with t′ ∈ [r′0 + k, r1] equally sized clusters, with exceptional set U ′0
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of size at most ε∗n/k and whose reduced graph R has minimum degree at least

δ(R) ≥
(
k−1
k + γ − d− 1

kε
∗)t′.

We would like to work with a regular partition of V whose number of clusters is a multiple
of k. For this purpose we move at most k − 1 of the clusters of U ′ to U ′0 in order to obtain
a partition U of V with kr equally sized clusters, where r ∈ N and r′0 ≤ kr ≤ t′. By
construction, U is an (ε∗, d, p)-regular partition with exceptional set U0 of size at most ε∗n
and with a reduced graph Rkr of minimum degree at least

(
k−1
k + γ − d− 1

kε
∗)kr − k.

By the choice of d and ε∗ as well as of r′0 we have

δ(Rkr ) ≥
(
k−1
k + γ − d− 1

kε
∗)kr − k ≥

(
k−1
k + γ

2

)
kr .

Observe that the bandwidth graph Bk
r on the vertex set [r]× [k] has bandwidth at most

2k < βr′0 and maximum degree less than 3k. Moreover, note that |V (Bk
r )| = kr ≥ r′0 ≥ n0

by choice of r′0. Thus Theorem 1.3, with input γ/2, 3k, and k, states in particular that Rkr
contains a copy of Bk

r . We fix one such copy and let its vertices {(i, j)}i∈[r],j∈[k] label the

vertices of Rkr . Similarly, for each i ∈ [r] and j ∈ [k], we denote the cluster of U corresponding
to the vertex (i, j) of Bk

r by Ui,j . The partition U = {Ui,j}i∈[r],j∈[k] is equitable and thus in
particular k-equitable.

Starting with an empty set, we create a subset Z1 ⊆ V as follows. First we move to Z1

every vertex v ∈ V for which

• there exist pairs of indices (i, j), (i′, j′) ∈ [r]× [k] with {(i, j), (i′, j′)} ∈ E(Rkr ) such that(
NΓ(v, Ui,j), Ui′,j′

)
or
(
NΓ(v, Ui,j), NΓ(v, Ui′,j′)

)
is not

(
ε/2, d, p

)
G

-regular, or

• there exists a cluster Ui,j ∈ U with degΓ(v, Ui,j) 6= (1± ε∗)p|Ui,j |, or

• degΓ(v, U0) > 2ε∗pn holds.

We also add a minimum number of vertices to Z1 in order to obtain k-equitability of the sets{
Ui,j \Z1

}
i∈[r],j∈[k]

. By Lemmas 2.10 and 2.11, each with input ε/2 and d, and Proposition 3.8

with input ε∗/(1000k2) < ε∗ we have

|Z1| ≤ 4kr2
1C max

{
p−2, p−1 log n

}
≤ ε∗

kr1
n , (3.1)

where the factor k accounts for vertices removed to maintain k-equitability.

As a next step, for every i ∈ [r] and j ∈ [k] we collect in Wi,j all vertices from Ui,j \Z1 that
destroyed super-regularity on the copy of Kk

r in Bk
r before the removal of Z1. More precisely,

for each i ∈ [r] and j ∈ [k] let Wi,j be the set of vertices in Ui,j \ Z1 that have each less
than (d − 2ε∗)p|Ui,j′ | neighbours in Ui,j′ for some j′ 6= j. Since for each i ∈ [r] and distinct
j, j′ ∈ [k] the pair (Ui,j , Ui,j′) is (ε∗, d, p)G-regular, we have |Wi,j | ≤ kε∗|Ui,j |.

Now let W ⊆ V be a set that consists of U0\Z1 and
⋃
i∈[r],j∈[k]Wi,j and a minimum number

of additional vertices from V \Z1 to obtain k-equitability of the sets
{
Ui,j \(Z1∪W )

}
i∈[r],j∈[k]

.

By construction, we have
|W | ≤ ε∗n+ kr · kε∗ nkr ≤ 2kε∗n.

Given any vertex w ∈ W , we have in particular that w 6∈ Z1 and hence, for each i ∈ [r]
and j ∈ [k], it holds that

degΓ(w,U0) ≤ 2ε∗pn and degΓ(w,Ui,j) ≤ (1 + ε∗)p|Ui,j |.
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Now let us consider the edges in E(G) that are incident to w. At most 2ε∗pn of these go
to U0, and, clearly, at most 2dpn such edges go to clusters Ui,j with degG(w,Ui,j) ≤ 2dp|Ui,j |.
Since degG(w) ≥

(
k−1
k + γ

)
pn and d ≤ γ/4, at least

(
k−1
k + γ

2

)
pn edges leaving w go to sets

Ui,j with degG(w,Ui,j) ≥ 2dp|Ui,j |. Since for each cluster Ui,j ∈ U we have |Ui,j | ≤ n/(kr)
and degG(w,Ui,j) ≤ degΓ(w,Ui,j) ≤ (1 + ε∗)p|Ui,j | as w /∈ Z1, the number of sets Ui,j with
i ∈ [r] and j ∈ [k] and degG(w,Ui,j) ≥ 2dp|Ui,j | is at least

(
k−1
k + γ

2

)
pn

(1 + ε∗)p nkr
≥
(
k−1
k + γ

4

)
kr.

It follows that there are at least γr/4 indices i ∈ [r] with degG(w,Ui,j) ≥ 2dp|Ui,j | for each
j ∈ [k].

To each w ∈ W we know assign sequentially an index c(w) ∈ [r] × [k], where we choose
c(w) = (i, j) as follows. The index i is chosen minimal in [r] such that we have degG(w,Ui,j′) ≥
2dp|Ui,j′ | for each j′ ∈ [k] and at most 100r−1kε∗γ−1n vertices w′ ∈ W have so far been
assigned c(w′) = (i, j′) for any j′ ∈ [k]. We choose j ∈ [k] minimising the number of vertices
w′ ∈W with c(w′) = (i, j). Because |W | ≤ 2kε∗n, this assignment is always possible.

Next, for each i ∈ [r] and j ∈ [k], we let

V ′i,j = Ui,j \ (Z1 ∪Wi,j) ∪
{
w ∈W : c(w) = (i, j)

}
.

By construction, we have for each i ∈ [r] and j ∈ [k] that

|Ui,j4V ′i,j | ≤ |Z1|+ |Wi,j |+ 100
r kε

∗γ−1n ≤ 1000k2ε∗γ−1|Ui,j | .

Finally, we let Z2 consist of all vertices v ∈ V \ Z1 with

degΓ(v, Ui,j4V ′i,j) ≥ 2000k2ε∗γ−1p|Ui,j | for some i ∈ [r] and j ∈ [k],

together with a minimum number of additional vertices of V \ Z1 to obtain k-equitability of
the sets V ′i,j \ Z2. For each i ∈ [r] and j ∈ [k] we set

Vi,j = V ′i,j \ Z2 and V0 = Z1 ∪ Z2.

We claim that V := {Vi,j}i∈[r],j∈[k] is the desired partition of V \ V0.

Note that the sets V ′i,j and V ′i,j′ differ in size by at most one for any i ∈ [r] and j, j′ ∈ [k],
by our construction of the assignment c. By Proposition 3.8 and thanks to the choice of C∗

we thus have
|Z2| ≤ r1 + Ckr1p

−1 log n ≤ ε∗
kr1
pn . (3.2)

This gives
|Ui,j4Vi,j | ≤ |Ui,j4V ′i,j |+ |Z2| ≤ 2000k2ε∗γ−1|Ui,j | . (3.3)

Given any v ∈ V \ V0, for each i ∈ [r] and j ∈ [k], we have degΓ(v, Ui,j4V ′i,j) ≤
2000k2ε∗γ−1p|Ui,j | because v /∈ Z2 ⊆ V0. We thus have

degΓ(v, Ui,j4Vi,j) ≤ 2000k2ε∗γ−1p|Ui,j |+ |Z2| ≤ 3000k2ε∗γ−1p|Ui,j |. (3.4)

Since v 6∈ Z1 ⊆ V0 we have degΓ(v, Ui,j) = (1 ± ε∗)p|Ui,j |, and hence by Equations (3.3)
and (3.4)

degΓ(v, Vi,j) =
(
1± 10000k2ε∗γ−1

)
p|Vi,j | . (3.5)
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Adding up (3.1) and (3.2), we get the following desired upper bound on the size of V0 by
choice of C∗:

|V0| ≤ 4kr2
1C max{p−2, p−1 log n}+ r1 + Ckr1p

−1 log n ≤ C∗max{p−2, p−1 log n} ,

as desired. Furthermore, the partition V = {Vi,j}i∈[r],j∈[k] is by construction k-equitable, and

the graph Rkr has minimum degree
(
(k − 1)/k + γ/2

)
kr as desired.

In the remainder of the proof we check that V satisfies Properties (G1)–(G4) as well as
the stronger bound |V0| ≤ C∗p−1 log n in case we require (G3’) instead of (G3).

For each i ∈ [r] and j ∈ [k] we have |Ui,j | = (1± ε∗) nkr , and so by Equation (3.3) and by
our choice of ε∗ we have

n
4kr ≤ (1− ε∗)(1− 2000k2ε1γ

−1) nkr ≤ |Vi,j | ≤ (1 + ε∗)(1 + 2000k2ε∗γ−1) nkr ≤ 4n
kr ,

which is Property (G1).
Next, if {(i, j), (i′, j′)} is an edge of Rkr , then (Ui,j , Ui′,j′) is (ε∗, d, p)G-regular by construc-

tion. By (3.3), we have |Ui,j′′4Vi,j′′ | ≤ 2000k2ε∗γ−1|Ui,j′′ | for j′′ ∈ {j, j′} and hence we know

by Proposition 2.4 that G is (ε, d, p)-regular on (Vi,j , Vi′,j′) since ε∗ + 4
√

2000k2ε∗γ−1 ≤ ε.
Given i ∈ [r] and distinct indices j, j′ ∈ [k], let v be a vertex of Vi,j . Observe that since
v ∈ Vi,j , either we have v ∈ Ui,j \W or v ∈ W . In the first case, since v 6∈ W , we have
degG(v, Ui,j′) ≥ (d − 2ε∗)p|Ui,j |. In the other case, it holds that c(v) = (i, j) and hence
degG(v, Ui,j′) ≥ dp|Ui,j′ |. By (3.3) and (3.4) we have

degG(v, Vi,j′) ≥ (d− 2ε∗)p|Ui,j | − 3000k2ε∗γ−1p|Ui,j | ≥ (d− ε)p|Vi,j′ | ,

giving (G2).
Let {(i, j), (i′, j′)} ∈ E(Rkr ). Then for any v ∈ V \ V0, since v 6∈ Z1, we know that the

pairs
(
NΓ(v, Ui,j), Ui′,j′

)
and

(
NΓ(v, Ui,j), NΓ(v, Ui′,j′)

)
are

(
ε/2, d, p

)
G

-regular. By (3.4) and
since v /∈ Z1 we have for (i′′, j′′) ∈ {(i, j), (i′, j′)} that

|NΓ(v, Ui′′,j′′)4NΓ(v, Vi′′,j′′)| ≤ 3000k2ε∗γ−1p|Ui′′,j′′ | ≤ 6000k2ε∗γ−1|NΓ(v, Ui′′,j′′)|.

Using this fact and Equation (3.3) we know by Proposition 2.4 that both
(
NΓ(v, Vi,j), Vi′,j′

)

and
(
NΓ(v, Vi,j), NΓ(v, Vi′,j′)

)
are

(
ε, d, p

)
G

-regular since ε/2 + 4
√

6000k2ε∗γ−1 ≤ ε. This
shows Property (G3).

Finally, (G4) follows directly from (3.5) and our choice of ε∗.

If we alter the definition of Z1 by removing the condition on
(
NΓ(v, Ui,j), NΓ(v, Ui′,j′)

)
,

then we do not need to use Lemma 2.11 and the bound in (3.1) therefore improves to |Z1| ≤
3kr2

1Cp
−1 log n. Thus, if we only require (G3’), we obtain |V0| ≤ C∗p−1 log n as claimed.

3.1.4 The lemma for H

Before proving the lemma for H (Lemma 3.5), let us first state McDiarmid’s inequality (see
e.g. [98] for a proof) that is essential in our proof.

Lemma 3.9 (McDiarmid’s inequality). Let X1, . . . , Xk be independent random variables,
where Xi takes values in a finite set Ai for each i ∈ [k]. Suppose that a function g : A1 ×
. . .×Ak → R satisfies for each i ∈ [k]

sup
x1,...,xk,x̂i

|g(x1, x2, . . . , xk)− g(x1, x2, . . . , xi−1, x̂i, xi+1, . . . , xk)| ≤ ci.
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Then, for any ε > 0, we have

P
[
|E[g(X1, . . . , Xk)]− g(X1, . . . , Xk)| ≥ ε

]
≤ 2 exp

(
− 2ε2

∑
i∈[k] c

2
i

)
.

The idea of the proof of Lemma 3.5 is as follows. First, given the zero-free labelling L and
the (k + 1)-colouring σ of H, we split L into the blocks of the definition of zero-freeness. We
partition the blocks into r ‘sections’ of consecutive blocks, such that the i-th section contains
about

∑
j∈[k]mi,j vertices, and such that the ‘boundary vertices, namely the first and last βn

vertices of each section, do not receive colour zero.

Assigning the vertices of colour j in the i-th section to (i, j) for each i ∈ [r] and j ∈ [k], and
the vertices of colour zero in the i-th section to zi, yields a graph homomorphism. However,
it can be very unbalanced since different colours in [k] may be used with different frequencies
in each section. To fix this, we replace σ with a new colouring σ′, which we obtain as follows.
We partition each section into ‘intervals’ of consecutive blocks, and for each interval except
the last in each section, we pick a random permutation of [k]. We will show that there is a
colouring σ′ such that all but the first few vertices of each interval are coloured according to
the permutation applied to σ, with vertices of colour zero staying coloured zero. We use this
colouring σ′ in place of σ to define the mapping f . We let X consist of all vertices whose
distance is two or less to either boundary vertices, vertices near the start of an interval, or
colour zero vertices.

To complete the proof, we show that so few vertices receive colour zero that they do not
affect the desired conclusions significantly. Now the mapping f is in expectation balanced, and
using McDiarmid’s inequality (Lemma 3.9) we can show that it is also with high probability
close to balanced. We also show that, since H is D-degenerate, in the i-th section of L there
are many vertices of degree at most 2D. In expectation these are distributed about evenly
over

{
(i, j)

}
j∈[k]

by f . Using again McDiarmid’s inequality shows that with high probability

the same holds. These two observations give us Properties (H1) and (H6), while the other
four desired properties hold by construction.

Proof of Lemma 3.5. For given D ≥ 1, set α = 1/(24D). Let k, r ≥ 1 and ξ, β > 0 be given,
where ξ ≤ 1/(kr) and β ≤ 10−10ξ2/(Dk4r). Let H and Kk

r ⊆ Bk
r ⊆ Rkr be graphs as in

the statement of the lemma. Let L be the given labelling of V (H) of bandwidth at most
βn. Moreover, let σ : V (H) → {0, . . . k} be the given proper (k + 1)-colouring of V (H)
that is (10/ξ, β)-zero-free with respect to L and such that the first

√
βn vertices of L are

not mapped to 0 by σ. Also, let z1, . . . , zn be vertices such that zi ∈
(
[r] \ {i}

)
× [k] with{

zi, (i, j)
}
∈ E(Rkr ) for every i ∈ [r] and j ∈ [k]. Let {mi,j}i∈[r],j∈[k] be the given k-equitable

integer partition of n with n/(10kr) ≤ mi,j ≤ 10n/(kr) for every i ∈ [r] and j ∈ [k]. Finally,
set b = k/

√
β.

Let us now introduce the notation that we use in this proof. Recall that for every t ∈[
1/(4kβ)

]
the i-th block is defined as

Bt = {(t− 1)4kβn+ 1, . . . , t4kβn}.

Next we split the labelling L into r sections, where the first and the last block of each section
are zero-free, i.e. do not contain any vertices coloured with colour zero. Each section is
partitioned into intervals, each of which but possibly the last one consists of b blocks.
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Since σ is (10/ξ, β)-zero-free with respect to L, we can choose indices 0 = t0 ≤ t1 ≤ . . . ≤
tr−1 ≤ tr = 1/(4kβ) such that Bti and Bti+1 are zero-free blocks for every i ∈ [r] and

ti∑

t=1

|Bt| ≤
i∑

t=1

∑

j∈[k]

mt,j < 12kβn+

ti∑

t=1

|Bt|.

Since mi,j ≥ n/(10kr) > 12kβn, indices t0, . . . , tr are distinct. For every i ∈ [r] we define the
i-th section Si as

ti⋃

t=ti−1+1

Bt.

This means by the choice of the indices t0, . . . , tr that the first and last block of each section
are zero-free. Since {mi,j}i∈[r],j∈[k] is a k-equitable partition, we have in particular

1

k
(|Si| − 12kβn) ≤ mi,j ≤

1

k

(
|Si|+ 12kβn

)
. (3.6)

The last βn vertices of the blocks Bti and the first βn vertices of the blocks Bti+1 are called
boundary vertices of H. Notice that colour zero is never assigned to boundary vertices by
σ. For each i ∈ [r], we split Si into si := d(ti − ti−1 − 1)/be intervals, where each of the
first (si− 1) intervals is the concatenation of exactly b blocks and the last interval consists of
ti − ti−1 − 1− b(si − 1) ≤ b blocks. Therefore, for every i ∈ [r], we have

si(b− 1)4kβn+ 1 ≤ |Si| ≤ sib4kβn. (3.7)

Using Equation (3.6), b = k/
√
β, and n/(10kr) ≤ mi,j ≤ 10n/(kr) we get, for every i ∈ [r],

the following bounds on si
1

100rk2
√
β
≤ si ≤

10

rk2
√
β
.

We denote the intervals of the i-th section by Ii,1, . . . , Ii,si . Let Bsw
i,` denote the union of the

first two blocks of each interval Ii,`. All of these blocks but Bsw
i,1 and Bsw

i,si
will be used to

switch colours within parts of H. Notice that we have |Bsw
i,` | = 8kβn and, since σ is (10/ξ, β)-

zero-free with respect to L, at least one of the two blocks of Bsw
i,` is zero-free. We will not

use Bsw
i,1 and Bsw

i,si
to switch colours because we will need that the boundary vertices do not

receive colour zero. See Figure 3.2 for an illustration of the i-th section of a labelling.
For every i ∈ [r] and every ` ∈ {2, . . . , si − 1}, we choose a permutation πi,` : [k] → [k]

uniformly at random.

︸ ︷︷ ︸︸ ︷︷ ︸ ︸ ︷︷ ︸
Ii,1 Ii,2 Ii,si

︷ ︸︸ ︷
Bsw

i,2︷ ︸︸ ︷
Bsw

i,1 ︷ ︸︸ ︷
Bsw

i,si
Bti

boundary boundary

Figure 3.2: Illustration of the i-th section Si for b = 4 and for Ii,si consisting of 3 blocks.

The next claim ensures that we can use zero-free blocks to obtain a proper colouring of the
vertex set such that vertices before the switching block are coloured according to the original
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colouring and the colours of the vertices after the switching block are permuted as wished. A
proof can be found in [42].

Claim 3.10 ([42]). Let σ : [n] → {0, . . . , k} be a proper (k + 1)-colouring of H, let Bt be a
zero-free block and let π be any permutation of [k]. Then there exists a proper (k+1)-colouring
σ′ of H with σ′(x) = σ(x) for all x ∈ ⋃i<tBi and

σ′(x) =

{
π(σ(x)) if σ(x) 6= 0

0 otherwise

for all x ∈ ⋃i>tBi.

We use Claim 3.10 to switch colours at the beginning of each interval except for the first
and last interval of each section. More precisely, we switch colours within the sets Bsw

i,` so
that the colouring of the remaining vertices in the interval Ii,` matches πi,`. Note that we
can indeed use Bsw

i,` to do the switching since one of the two blocks in Bsw
i,` is zero-free. In

particular, we get a proper (k+ 1)-colouring σ′ = σ′
(
π1,2, . . . , πr,sr−1

)
: V (H)→ {0, . . . k+ 1}

of H that fulfils the following. For every x ∈ I1,1 we have

σ′(x) = σ(x),

for each i ∈ [r] and ` ∈ {2, . . . , si − 1} and every x ∈ Ii,` \Bsw
i,` we have that

σ′(x) =

{
πi,`
(
σ(x)

)
if σ(x) 6= 0

0 otherwise

and for each i ∈ [r] and every x ∈ Ii,si ∪ Ii+1,1 (where Ir+1,1 := ∅) we have that

σ′(x) = πi,si−1

(
σ(x)

)
.

While σ′ is well-defined on the sets Bsw
1,2, . . . , B

sw
r,sr−1 by Claim 3.10, the definition on these

sets is rather complicated as it is depends on which of the two blocks in Bsw
i,` is zero-free and

on the colourings before and after the switching. However, the precise definition on these sets
is not important for the remainder of the proof. Hence, we omit it here. Observe that σ′

never assigns colour zero to boundary vertices.
Using σ′ we now define f = f

(
π1,2, . . . , πr,sr−1

)
: V (H) → [r] × [k] as follows. For each

i ∈ [r] and x ∈ Si we set

f(x) :=

{(
i, σ′(x)

)
if σ′(x) 6= 0

zi otherwise,

where zi ∈
(
[r] \ {i}

)
× [k] is the vertex defined in the statement of the lemma. Let X consist

of all vertices at distance two or less from a boundary vertex of L, from a vertex in any
Bsw
i,` , or from a colour zero vertex. We now show that f and X satisfy Properties (H2)–(H5)

with probability 1 and Properties (H1) and (H6) with positive probability. In particular, this
implies that the desired f and X exist.

We start with Property (H1). For each i ∈ [r] let

S∗i := Si \


 ⋃

`∈[si]

Bsw
i,` ∪ Ii,1 ∪ Ii,si
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be the set of all vertices in Si except for the first and last interval and the first two blocks of
each interval of Si. We will also make use of the following restricted function

f∗ = f∗
(
π1,2, . . . , πr,sr

)
:= f

∣∣⋃
i∈[r] S

∗
i
.

The basic idea of the proof of Property (H1) is to determine bounds on |f∗−1(i, j)| that
hold with positive probability and then deduce the desired bounds on |f−1(i, j)|. Since the
permutations πi,` were chosen uniformly at random, we have by definition of f∗ that the
expected number of vertices mapped to (i, j) ∈ [r]× [k] by f∗ is

E
[
|f∗−1(i, j)|

]
=

1

k

[
(si − 2)(b− 2)4kβn−

∣∣{x ∈ S∗i : σ(x) = 0}
∣∣
]

+
∣∣ ⋃

ι∈[r]\{i}
{x ∈ S∗ι : σ(x) = 0 and zι = (i, j)}

∣∣ .

In particular, the following bounds on the expected value of |f∗−1(i, j)| hold.

E
[
|f∗−1(i, j)|

]
≤ (si − 2)(b− 2)4βn+

ξ

10
n (3.8)

and

E
[
|f∗−1(i, j)|

]
≥ (1− ξ/10)(si − 2)(b− 2)4βn ≥ (si − 2)(b− 2)4βn− ξ

10
n. (3.9)

If one replaced a permutation πi,` by some other permutation π̃ : [k]→ [k], then |f∗−1(i, j)|
would change by at most (b − 2)4kβn. Hence, by McDiarmid’s inequality (Lemma 3.9) we
have

P
[∣∣(si − 2)(b− 2)4βn− |f∗−1(i, j)|

∣∣ ≥ ξ

5
n

]
(3.8),(3.9)

≤

P
[∣∣E[|f∗−1(i, j)]− |f∗−1(i, j)|

∣∣ ≥ ξ

10
n

]
≤ 2 exp

(
− ξ2n2

50(si − 2)
(
(b− 2)4kβn

)2

)
. (3.10)

Taking the union bound over all j ∈ [k] and using si ≤ 10/(rk2
√
β) and b = k/

√
β as well

as β ≤ 10−10ξ2/(Dk4r) yields

P
[∣∣(si − 2)(b− 2)4βn− |f∗−1(i, j)|

∣∣ ≥ ξ

5
n for all j ∈ [k]

]
≤ 2k exp

(
− ξ2r

8000k2
√
β

)
< 1.

Observe that |f∗−1(i, j)| is independent of the choices for πi′,` if i′ 6= i. Hence, with
positive probability we have, for every i ∈ [r] and j ∈ [k], that

(si − 2)(b− 2)4βn− ξ

5
n ≤ |f∗−1(i, j)| ≤ (si − 2)(b− 2)4βn+

ξ

5
n.

From the definition of f∗ it follows that |f−1(i, j)| ≥ |f∗−1(i, j)| and |f−1(i, j)| is at most

|f∗−1(i, j)|+ |Ii,1|+ |Ii,si |+
si−1∑

`=2

|Bsw
i,` |+

∣∣∣
{
x ∈

⋃

ι∈[r]\{i}
Sι \ S∗ι : σ′(x) = 0 and zι = (i, j)

}∣∣∣.
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Using si ≤ 10/(rk2
√
β) and b = k/

√
β and β ≤ 10−10ξ2/(Dk4r), with positive probability we

have for every i ∈ [r] and j ∈ [k] that

|f−1(i, j)| ≥ |f∗−1(i, j)| ≥ (si − 2)(b− 2)4βn− ξ

5
n

≥ (si − 2)(b− 2)4βn− ξ

5
n+

(
8(si + b)βn− 4

5
ξn

)

≥ sib4βn+ 16βn− ξn
(3.7)

≥ 1

k

(
|Si|+ 16kβn

)
− ξn

(3.6)

≥ mi,j − ξn.

On the other hand,

|f−1(i, j)| ≤ |f∗−1(i, j)|+ |Ii,1|+ |Ii,si |+
si−1∑

`=2

|Bsw
i,` |

+
∣∣∣
{
x ∈

⋃

ι∈[r]\{i}
Sι \ S∗ι : σ′(x) = 0 and zι = (i, j)

}∣∣∣

≤ (si − 2)(b− 2)4βn+
ξ

5
n+ 8bkβn+ (si − 2)8kβn+

ξ

10
n

≤ 1

k

(
(si − 2)(b− 2)4kβn

)
+ ξn

≤ 1

k
(|Si| − 12kβn) + ξn

(3.6)

≤ mi,j + ξn,

which shows that Property (H1) holds with positive probability.

By definition of X, since L is a βn-bandwidth ordering, any vertex in X is at distance
at most 2βn in L from a boundary vertex, a vertex of some Bsw

i,` , or from a vertex assigned
colour zero. Since there are r sections, the boundary vertices form (r − 1) intervals each of
length 2βn, and so at most 6rβn vertices of H are at distance 2 or less from a boundary
vertex. There are

∑
i∈[r] si intervals and hence

∑
i∈[r] si switching blocks each of size 8kβn.

As si ≤ 10/(rk2
√
β) for every i ∈ [r], there are at most (4 + 8k)βn · 10/(k2

√
β) vertices at

distance 2 or less from a vertex of some switching block. Similarly, because L is (10/ξ, β)-
zero-free, in any consecutive 10/ξ blocks at most one contains vertices of colour zero, and
hence at most (8 + 4k)βn vertices in any such 10/ξ consecutive blocks are at distance 2 or
less from a vertex of colour zero. Thus we have

|X| ≤ 6rβn+ (4 + 8k)βn
(

10
k2
√
βn

)
+ (8 + 4k)βn

(
n

4kβn·10/ξ + 1
)
≤ 6rβn+ 1

4ξn+ 1
3ξn ≤ ξn ,

which gives (H2).

Since σ′ is a proper colouring, and boundary vertices are not adjacent to colour zero
vertices, by definition, f restricted to the boundary vertices is a graph homomorphism to
Bk
r . On the other hand, on each section Si, again since σ′ is a proper colouring and since{
(i, j)

}
j∈[k]

∪ {zi} forms a clique in Rkr , f is a graph homomorphism to Rkr . Since L is

a βn-bandwidth ordering, any edge of H is either contained in a section or goes between
two boundary vertices, and we conclude that f is a graph homomorphism from H to Rkr ,
giving (H3).
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Now, given i ∈ [r] and j ∈ [k], and x ∈ f−1(i, j) \X, if {x, y} and {y, z} are edges of H,
then y and z are at distance two or less from x in H. In particular, by definition of X neither
y nor z is either a boundary vertex, in any Bsw

i,` , or assigned colour zero. Since boundary
vertices appear in intervals of length 2βn in L, and L is a βn-bandwidth ordering, it follows
that y and z are both in Si. Furthermore, suppose x ∈ Ii,` for some `. By definition x 6∈ Bsw

i,` .
Because Bsw

i,` and Bsw
i,`+1 (if the latter exists) are intervals of length 8kβn, both y and z are

also in Ii,` \Bsw
i,` , and in particular both y and z are in

⋃
j′∈[k] f

−1(i, j′), giving (H4).

Since
√
βn ≤ b4kβn ≤ |I1,1| and σ′(x) 6= 0 for each x in the first

√
βn vertices of L, it

follows directly from the definition of f that f(x) =
(
1, σ(x)

)
, which shows Property (H5).

Finally, we show that Property (H6) holds with positive probability. Let i ∈ [r] and
j ∈ [k]. We define the random variable Ei,j := |{x ∈ f∗−1(i, j) : deg(x) ≤ 2D}|. Since H is
D-degenerate and L is a labelling of bandwidth at most βn we have

e
(
S∗i , V (H)

)
≤ D|S∗i |+D4βn ≤ D

(
1 + 1/(4D)

)
|S∗i |.

Hence it must hold that |{x ∈ S∗i : deg(x) ≥ 2D + 1}|(2D + 1) ≤ 2D
(
1 + 1/(4D)

)
|S∗i |. This

yields |{x ∈ S∗i : deg(x) ≤ 2D}| ≥ |S∗i |/(6D) and therefore

E[Ei,j ] ≥
1

6kD
|S∗i | ≥

1

6D
(si − 2)(b− 2)4βn.

By applying Chernoff’s inequality (Theorem 2.16) and using Equations (3.6) and (3.7) as well
as α = 1/(24D) we get

P
[∣∣{x ∈ f1(i, j) : deg(x) ≤ 2D}

∣∣ < α|f−1(i, j)|
] (H1)

≤ P
[
Ei,j < α(sib4βn+ 2ξn)

]

≤ P
[
Ei,j < 2α

(
(si − 2)(b− 2)4βn

)]

≤ P
[
Ei,j < 1

2E[Ei,j ]
]
< 2 exp

(
−(si − 2)(b− 2)4βn
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)
< 1.

Taking the union bound over all i ∈ [r] and j ∈ [k] yields that Property (H6) holds with
positive probability.

3.1.5 Common neighbourhood lemma

In the proof of the common neighbourhood lemma (Lemma 3.6) we use a version of the sparse
regularity lemma, where an initial partition is allowed to have different sizes and the final
partition is an equitable regular refinement of the initial one. We stated and proved this
lemma in Section 2.2 (Lemma 2.5).

The main idea of the proof of Lemma 3.6 can be summarised as follows. First we apply
Lemma 2.5 to the given partition {Vi \W}i∈[k] ∪W to obtain a regular refinement such that
each of these k + 1 sets is equitably partitioned into t clusters and an exceptional set. Then
we show that there exist clusters W ′ ⊆ W and V ′i ⊆ Vi for each i ∈ [k] such that (W ′, V ′i )
is regular for each i ∈ [k]. Finally we use induction to prove that we can find a tuple in W ′

with the desired properties. For this we only need the sets W ′, V ′1 , . . . , V
′
k from the regular

partition.

Proof of Lemma 3.6. First we fix all constants that we need throughout the proof. Given

d > 0, k ≥ 1, and ∆ ≥ 2, let ε∗∗∆ = 8−∆ 1
(k+1)2

(
d
8

)∆
. Now, for each j = 1, . . . ,∆ sequentially,
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choose ε∗∗∆−j ≤ ε∗∗∆−j+1 not larger than the ε0 returned by Lemma 2.10 for input ε∗∗∆−j and
d/2.

Now, Lemma 2.5 with input ε∗∗0 and s = k + 1 returns t1 ≥ 1. We set

α = 1
2t1

(
d
4

)∆
.

Next, given ε∗ > 0, let ε∗∆−1,∆−1 := ε∗, and let ε∗j,∆ = ε∗∆,j = 1 for each 1 ≤ j ≤ ∆. For

each (j, j′) ∈ [∆]2 \ {(1, 1)} in lexicographic order sequentially, we choose

ε∗∆−j,∆−j′ ≤ min{ε∗∆−j+1,∆−j′ , ε
∗
∆−j,∆−j′+1, ε

∗
∆−j+1,∆−j′+1}

not larger than the ε0 returned by Lemma 2.10 for both input ε∗∆−j+1,∆−j′ and d, and for
input ε∗∆−j,∆−j′+1 and d, and not larger than the ε0 returned by Lemma 2.11 for input
ε∗∆−j+1,∆−j′+1 and d.

We choose ε0 small enough such that (1 + ε0)∆ ≤ 1 + ε∗ and (1 − ε0)∆ ≥ 1 − ε∗. Given
r ≥ 1 and ε with 0 < ε ≤ ε0, suppose that C is the maximum of the C-outputs of each of the
calls to Lemmas 2.10 and 2.11 with the parameters from above, and of Proposition 3.8 with
input ε0. Finally, we set

C∗ = 1012k4t1r
4ε−422∆C .

Given p ≥ C∗
( logn

n

)1/∆
, we know that a.a.s. the good events of each of the above calls to

Lemma 2.10 and 2.11, and to Proposition 3.8 and Lemma 2.5, occur. We condition from now
on upon these events for Γ = G(n, p).

Let G = (V,E) be a (not necessarily spanning) subgraph of Γ. Suppose {Vi}i∈[k] and W
satisfy the conditions of the lemma. We first apply Lemma 2.5, with the input parameters
ε∗∗0 and s = k + 1, to G[V1 ∪ · · · ∪ Vk ∪W ], with input partition {Vi \W}i∈[k] ∪ {W}. We
can do this because Cp−1 log n < 10−10ε4pn/(k4r4), so that the good event of Proposition 3.8
guarantees that the conditions of Lemma 2.5 are satisfied. This returns an (ε∗∗0 , p)-regular
refinement such that each set of {Vi \W}i∈[k] ∪ {W} is equitably partitioned into 1 ≤ t ≤ t1
clusters together with an exceptional set whose size is an ε∗∗0 -fraction of the size of the set
itself.

As a next step we show that there exist clusters W ′ ⊆W and V ′i ⊆ Vi for each i ∈ [k] such
that (W ′, V ′i ) is (ε∗∗0 , d/2, p)G-regular for each i ∈ [k]. Let W ′ ⊆ W be a cluster that is in at
most 2k2ε∗∗0 t pairs with clusters in

(
V1 ∪ · · · ∪Vk

)
\W that are not (ε∗∗0 , p)G-regular. Observe

that such a cluster exists by averaging. By Proposition 3.8 and (V1), at most 16kε∗∗0 p|W ′|n/r
edges lie in the irregular pairs between W ′ and the Vi, and by Proposition 3.8 and (V3) at
most 2p|W ′||W | < ε∗∗0 p|W ′|n/r edges leaving W ′ lie in W . By (V4), for each i ∈ [k] each
w ∈ W ′ has at least dp|Vi| neighbours in Vi, and hence there are at least dp|Vi||W ′|/2 edges
from W ′ to Vi\W that lie in (ε∗∗0 , p)G-regular pairs. By averaging, for each i ∈ [k] there exists
a cluster V ′i of the partition such that (W ′, V ′i ) is (ε∗∗0 , d/2, p)G-regular. For the remainder of
the proof, we will only need these k + 1 clusters from the regular partition.

Notice that for every i ∈ [k] we have

|Vi| ≥ |V ′i |
(V 1)

≥ n

8kt1r
≥ 1

8kt1r
(C∗)2p−2 log n ≥ C∗p−2 log n

and

|W ′|
(V 3)

≥ 10−11 ε4pn

t1k4r4
≥ 10−11 ε4

t1k4r4
(C∗)2p−1 log n ≥ C∗p−1 log n, (3.11)
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both by the choice of C∗ and p.

We choose the required ∆-tuple (w1, . . . , w∆) inductively by using the following claim.

Claim 3.11. For each 0 ≤ ` ≤ ∆ there exists an `-tuple (w1, . . . , w`) ∈
(
W ′
`

)
such that the

following holds. For every Λ,Λ∗ ⊆ [`], and all distinct indices i, i′ ∈ [k] we have

(L1)
(⋂

j∈ΛNΓ(wj , V
′
i ),W ′

)
is (ε∗∗|Λ|,

d
2 , p)G-regular if |Λ| < ∆,

(L2) |⋂j∈ΛNG(wj , V
′
i )| ≥

(
d
4

)|Λ|
p|Λ||V ′i |,

(L3) |⋂j∈ΛNΓ(wj)| ≤ (1 + ε0)|Λ|p|Λ|n,

(L4) |⋂j∈ΛNΓ(wj , V
′
i )| = (1± ε0)|Λ|p|Λ||V ′i |,

(L5) |⋂j∈ΛNΓ(wj , Vi)| = (1± ε0)|Λ|p|Λ||Vi|, and

(L6)
(⋂

j∈ΛNΓ(wj , Vi),
⋂
j∗∈Λ∗ NΓ(wj∗ , Vi′)

)
is (ε∗|Λ|,|Λ∗|, d, p)G-regular if

|Λ|, |Λ∗| < ∆ and either ∆ ≥ 3 or Λ ∩ Λ∗ = ∅ or both.

We prove this claim by induction on `. If Λ = ∅ then we define
⋂
j∈ΛNΓ(wj , V

′
i ) to be

equal to V ′i , and we set [0] = ∅.

Proof of Claim 3.11. For the base case ` = 0, observe that (L1) follows from our choice of W ′

and {V ′i }i∈[r]. For all distinct indices i, j ∈ [k], the pair (Vi, Vj) is (ε, d, p)G-regular by (V2),
and since ε ≤ ε∗0,0, we have (L6). The remaining three properties (L2), (L4) and (L5) are
tautologies for ` = 0.

For the inductive step, suppose that there exists an `-tuple (w1, . . . , w`) ∈
(
W ′
`

)
satisfy-

ing (L1)–(L6) for some 0 ≤ ` < ∆. We now find a vertex w`+1 ∈W ′ such that the (`+1)-tuple
(w1, . . . , w`+1) still satisfies (L1)–(L6). We do this by determining, for each of these five con-
ditions, an upper bound on the number of vertices in W ′ that violate them and show that
the sum of these upper bounds is less than |W ′| − `.

Suppose Λ ⊆ [`] satisfies |Λ| < ∆− 1, and suppose i ∈ [k]. By the choice of C∗ and p we
have for every i ∈ [k]

∣∣ ⋂

j∈Λ

NΓ(wj , V
′
i )
∣∣ (L4)

≥ (1− ε0)|Λ|p|Λ||V ′i |
|Λ|<∆−1

≥ (1− ε0)∆−2p∆−2 n

8ktr
≥ C∗p−2 log n . (3.12)

We also have |W ′| ≥ C∗p−1 log n ≥ Cp−1 log n by (3.11) and
(⋂

j∈ΛNΓ(wj , V
′
i ),W ′

)
is an

(ε∗∗|Λ|, d/2, p)G-regular pair by (L1). Since the good event of Lemma 2.10 with input ε∗∗|Λ|+1 and

d/2 occurs, there exist at most Cp−1 log n vertices w in W ′ such that
(⋂

j∈ΛNΓ(wj , V
′
i ) ∩

NΓ(w),W ′
)

=
(⋂

j∈ΛNΓ(wj , V
′
i ) ∩ NΓ(w, V ′i ),W ′

)
is not (ε∗∗|Λ|+1,

d
2 , p)G-regular. Summing

over all possible choices of Λ ⊆ [l] and i ∈ [k], there are at most 2∆k2Cp−1 log n vertices w in
W ′ such that (w1, . . . , wl, w) does not satisfy (L1).

Moving on to (L2), let Λ ⊆ [`] and i ∈ [k] be given. We have

∣∣ ⋂

j∈Λ

NG(wj , V
′
i )
∣∣ (L2)

≥
(
d
4

)|Λ|
p|Λ||V ′i |
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and

∣∣ ⋂

j∈Λ

NΓ(wj , V
′
i )
∣∣ (L4)

≤ (1 + ε0)|Λ|p|Λ||V ′i | .

By choice of ε0 and ε∗∗|Λ|, we thus have
∣∣⋂

j∈ΛNG(wj , V
′
i )
∣∣ ≥ ε∗∗|Λ|

∣∣⋂
j∈ΛNΓ(wj , V

′
i )
∣∣. Now

by (L1), the pair
(
W ′,

⋂
j∈ΛNΓ(wj , V

′
i )
)

is
(
ε∗∗|Λ|,

d
2 , p
)
G

-regular, and thus the number of ver-

tices w ∈W ′ such that

∣∣NG(w, V ′i ) ∩
⋂

j∈Λ

NG(wj , V
′
i )
∣∣ <

(
d
4

)|Λ|+1
p|Λ|+1|V ′i |

is at most ε∗∗|Λ||W ′| ≤ ε∗∗∆ |W ′|. Summing over the choices of Λ ⊆ [`] and i ∈ [k], the number

of w ∈W ′ violating (L2) is at most 2∆kε∗∗∆ |W ′|.
For (L4), given Λ ⊆ [`] and i ∈ [k], by (L4) we have

∣∣ ⋂

j∈Λ

NΓ(wj , V
′
i )
∣∣ = (1± ε0)|Λ|p|Λ||V ′i | ,

and by choice of ε0 and p, in particular
∣∣⋂

j∈ΛNΓ(wj , V
′
i )
∣∣ ≥ Cp−1 log n. Since the good

event of Proposition 3.8 occurs, the number of vertices w ∈ W ′ such that
∣∣NΓ(w, V ′i ) ∩⋂

j∈ΛNΓ(wj , V
′
i )
∣∣ is smaller than (1− ε0)|Λ|+1p|Λ|+1|V ′i | or larger than (1 + ε0)|Λ|+1p|Λ|+1|V ′i |

is at most 2Cp−1 log n. Summing over the choices of Λ ⊆ [`] and of i ∈ [k], we conclude
that at most 2∆+1kCp−1 log n vertices of W ′ violate (L4). Since n ≥ |Vi| ≥ |V ′i |, the same
calculation shows that a further at most 2∆+1kCp−1 log n vertices of W ′ violate (L5), and at
most 2∆+1kCp−1 log n vertices of W ′ violate (L3).

Finally, we come to (L6). Suppose we are given Λ,Λ′ ⊆ [`] and distinct i, i′ ∈ [k].
Suppose that |Λ| ≤ ∆ − 2 and |Λ′| ≤ ∆ − 1. We wish to show that for most vertices w ∈
W ′, the pair

(
NΓ(w, Vi)∩

⋂
j∈ΛNΓ(wj , Vi),

⋂
j∈ΛNΓ(wj , V

′
i )
)

is
(
ε∗|Λ|+1,|Λ′|, d, p

)
G

-regular, and

furthermore, if ∆ ≥ 3 and |Λ′| ≤ ∆−2, that the pair
(
NΓ(w, Vi)∩

⋂
j∈ΛNΓ(wj , Vi), NΓ(w, Vi′)∩⋂

j∈ΛNΓ(wj , V
′
i )
)

is
(
ε∗|Λ|+1,|Λ′|+1, d, p

)
G

-regular.

By (L5), and by choice of ε0, C and p, we have

∣∣ ⋂

j∈Λ

NΓ(wj , Vi)
∣∣ ≥ (1− ε0)|Λ|p|Λ||Vi| ≥ Cp|Λ|−∆ log n

and

∣∣ ⋂

j∈Λ′
NΓ(wj , Vi′)

∣∣ ≥ (1− ε0)|Λ
′|p|Λ

′||Vi′ | ≥ Cp|Λ
′|−∆ log n .

By (L6), the pair
(⋂

j∈ΛNΓ(wj , Vi),
⋂
j∈ΛNΓ(wj , V

′
i )
)

is
(
ε∗|Λ|,|Λ′|, d, p

)
G

-regular. Since the

good event of Lemma 2.10 with input ε∗|Λ|+1,|Λ′| and d occurs, there are at most Cp−1 log n

vertices w of W ′ such that the pair
(
NΓ(w, Vi) ∩

⋂
j∈ΛNΓ(wj , Vi),

⋂
j∈ΛNΓ(wj , V

′
i )
)

is not(
ε∗|Λ|+1,|Λ′|, d, p

)
G

-regular. Moreover, if |Λ′| ≤ ∆−2, then, since the good event of Lemma 2.11

with input ε∗|Λ|+1,|Λ′|+1 and d occurs, there are at most Cp−2 log n vertices w of W ′ such that(
NΓ(w, Vi)∩

⋂
j∈ΛNΓ(wj , Vi), NΓ(w, Vi′)∩

⋂
j∈ΛNΓ(wj , V

′
i )
)

is not
(
ε∗|Λ|+1,|Λ′|, d, p

)
G

-regular.
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Observe that if ∆ = 2 the property (L6) does not require this pair to be regular. Summing
over the choices of Λ,Λ′ ⊆ [`] and i, i′ ∈ [k], we conclude that if ∆ = 2 then at most
22∆k2Cp−1 log n vertices w of W ′ cause (L6) to fail, while if ∆ ≥ 3, at most 22∆k2C(p−1 +
p−2) log n vertices w of W ′ violate (L6).

Summing up, if ∆ = 2 then at most

2∆k2Cp−1 log n+ 2∆kε∗∗∆ |W ′|+ 3 · 2∆+1kCp−1 log n+ 22∆k2Cp−1 log n (3.13)

vertices w of W ′ cannot be chosen as w`+1. By choice of C∗ and ε∗∗∆ , and by choice of p,
this is at most |W ′|/2, so that there exists a vertex of W ′, which can be chosen as w`+1, as
desired. If on the other hand ∆ ≥ 3, then at most

2∆k2Cp−1 log n+ 2∆kε∗∗∆ |W ′|+ 3 · 2∆+1kCp−1 log n+ 22∆k2C(p−1 + p−2) log n (3.14)

vertices of W ′ cannot be chosen as w`+1. Again by choice of C∗, ε∗∗∆ and p, this is at most
|W ′|/2, and again we therefore can choose w`+1 satisfying (L1)–(L6) as desired. �

Finally, let us argue why the lemma is a consequence of Claim 3.11. Let (w1, . . . , w∆) ∈(
W ′
∆

)
be a tuple satisfying (L1)–(L6). By (L2), for any Λ ⊆ [`] and i ∈ [k] we have

∣∣∣
⋂

j∈Λ

NG(wj , Vi)
∣∣∣ ≥

(
d
4

)|Λ|
p|Λ||V ′i | ≥

(
d
4

)∆
p|Λ| |Vi|2t1

≥ αp|Λ||Vi| ,

as required for (W1). Properties (W2), (W3) and (W4) are respectively (L3), (L5) and (L6),
by choice of ε0.

3.1.6 Balancing lemma

The statement of Lemma 3.7 gives us a partition of V (G) with parts
{
Vi,j
}
i,j

, and a collection

of ‘target integers’
{
ni,j
}
i,j

, where ni,j is close to |Vi,j | for every i ∈ [r] and j ∈ [k] and where∑
ni,j =

∑ |Vi,j | holds. Our aim is to find a partition of V (G) with parts
{
V ′i,j
}
i,j

such that

|V ′i,j | = ni,j for each i ∈ [r] and j ∈ [k]. This partition is required to maintain similar regularity
properties as the original partition, while not substantially changing common neighbourhoods
of vertices.

There are two steps to our proof. In a first step, we correct global imbalance, that is,
we find a partition Ṽ, which maintains all the desired properties and which has the property
that

∑
i |Ṽi,j | =

∑
i ni,j for each j ∈ [k]. To do this, we identify some j∗ ∈ [k] such that∑

i |Vi,j∗ | >
∑

i ni,j∗ and some index j′ ∈ [k] such that
∑

i |Vi,j′ | <
∑

i ni,j′ . We move(∑
i |Vi,j∗ |−ni,j∗

)
vertices from V1,j∗ to some cluster Vi′,j′ , maintaining the desired properties,

and repeat this procedure until no global imbalance remains.
In a second step, we correct local imbalance, that is, for each i = 1, . . . , r− 1 sequentially,

and for each j ∈ [k], we move vertices between Ṽi,j and Ṽi+1,j , maintaining the desired
properties, in order to obtain a partition V ′ such that |V ′i,j | = ni,j for each i ∈ [r − 1] and

j ∈ [k]. Observe that, since Ṽ is globally balanced, once we know that |V ′i,j | = ni,j holds for
each i ∈ [r− 1] and j ∈ [k], we are guaranteed that |V ′r,j | = nr,j holds as well for each j ∈ [k].

The proof of the lemma then comes down to showing that we can move vertices and
maintain the desired properties. Because we start with a partition in which |Vi,j | is very close
to ni,j for each i ∈ [r] and j ∈ [k], the total number of vertices we move in any step is at
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most the sum of the differences, which is much smaller than any ni,j . The following lemma
shows that we can move any small (compared to all ni,j) number of vertices from one part to
another and maintain the desired properties.

Lemma 3.12. For all integers k, r1,∆ ≥ 1, and reals d > 0 and 0 < ε < 1/2k as well as
0 < ξ < 1/(100kr3

1), there exist C∗ > 0 such that the following holds for sufficiently large n.
Let Γ be a graph on vertex set [n], and let G be a not necessarily spanning subgraph. Let

X,Z1, . . . , Zk−1 ⊆ V (G) be pairwise disjoint subsets, each of size at least n/(16kr1), such that
(X,Zi) is (ε, d, p)G-regular for each i ∈ [k − 1]. Then for each 1 ≤ m ≤ 2r2

1ξn, there exists a
set S of m vertices of X with the following properties.

(SM1) For each v ∈ S we have degG(v, Zi) ≥ (d− ε)p|Zi| for each i ∈ [k − 1], and

(SM2) for each 1 ≤ s ≤ ∆ and every collection of vertices v1, . . . , vs ∈ [n] we have

degΓ(v1, . . . , vs;S) ≤ 100kr3
1ξ degΓ(v1, . . . , vs;X) + 1

100C
∗ log n .

Proof. Given k, r1, ∆, d, ξ and ε. Let C be returned by Lemma 2.19 for input ξ and ∆. We
set C∗ = 100C. Given Γ, G and X, Y , Z1, . . . , Zk−1, let X ′ be the set of vertices v ∈ X such
that degG(v;Zi) ≥ (d− ε)p|Zi| for each i ∈ [k − 1]. Because each pair (X,Zi) for i ∈ [k − 1]
is (ε, d, p)G-regular, we have |X ′| ≥ |X| − kε|X| ≥ |X|/2.

We now apply Lemma 2.19, with input ξ, ∆, W = X ′ and the sets Ti consisting of the
sets NΓ(v1, . . . , vs;X

′) for each 1 ≤ s ≤ ∆ and v1, . . . , vs ∈ [n], to choose a set S of size
m ≤ 2r2

1ξn ≤ |X ′| in X ′. We then have

degΓ(v1, . . . , vs;S) ≤
(

2r2
1ξn
|X′| + ξ

)
degΓ(v1, . . . , vs;X

′) + C log n

≤ 100kr3
1ξ degΓ(v1, . . . , vs;X) + 1

100C
∗ log n ,

where the final inequality is by choice of C∗, and since |X ′| ≥ |X|/2 ≥ n/(32kr1). Thus the
set S satisfies (SM2), and since S ⊆ X ′ we have (SM1).

We now turn to the proof of the balancing lemma.

Proof of Lemma 3.7. Given integers k, r1,∆ ≥ 1 as well as reals γ, d > 0 and 0 < ε <
min{d, 1/(2k)}, we set

ξ = 10−15ε4d/(k3r5
1).

Let C∗1 be returned by Lemma 3.12 with input k, r1, ∆, d, ε/4, and ξ, and let C∗2 be returned
by Lemma 3.12 with input k, r1, ∆, d, 3ε/4, and ξ. We set C∗ = max{C∗1 , C∗2}.

Now suppose that p ≥ C∗(log n/n)1/2, that 10γ−1 ≤ r ≤ r1, and that graphs Γ and G,
a partition V of V = V (G), and graphs Rkr , Bk

r and Kk
r on [r] × [k] as in the statement of

Lemma 3.7 are given. We divide the proof into two stages.

First stage (global imbalance):

The goal of the first stage is to move vertices between clusters of V such that the partition
Ṽ = {Ṽi,j}i∈[r],j∈[k] that we obtain satisfies

∑
i∈[r] |Ṽi,j | =

∑
i∈[r] ni,j for every j ∈ [k], such

that V is (ε/2, d, p)G-regular on Rkr and (ε/2, d, p)G-super-regular on Kk
r , and such that the

sizes of the clusters and the common Γ-neighbourhoods of any at most ∆ vertices restricted
to any cluster has not changed much.
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We use the following algorithm to create a globally balanced partition Ṽ, i.e. for which∑
i∈[r] |Ṽi,j | =

∑
i∈[r] ni,j holds. In Claim 3.13 we show that the properties mentioned above

hold for every partition that is the outcome of the algorithm if we select the set S in the
fourth step of the ‘While loop’ cleverly. A cluster that has not been changed by Algorithm 1
before is referred to as ’unchanged’.

Algorithm 1: Global balancing

while ∃j ∈ [k] such that
∑

i∈[r](|Vi,j | − ni,j) 6= 0 do

Choose j∗ ∈ [k] maximising
∑

i∈[r](|Vi,j∗ | − ni,j∗) ;

Choose i′ > 1 such that Vi′,j is ‘unchanged’ and (V1,j∗ , Vi′,j) is
(
ε/4, d, p

)
G

-regular

for every j ∈ [k];
Choose j′ ∈ [k] such that

∑
i∈[r](|Vi,j′ | − ni,j′) < 0 ;

Select S ⊆ V1,j∗ with |S| = ∑i∈[r] |Vi,j∗ | − ni,j∗ ;

Update V1,j∗ := V1,j∗ \ S and Vi′,j′ = Vi′,j′ ∪ S ;
Flag V1,j∗ and Vi′,j′ as ‘changed’ ;

end

We use Lemma 3.12 to select S with input k, r1, ∆, d and ε/4, with X = V1,j∗ and
with the Z1, . . . , Zk−1 being the {Vi′,j′′}j′′∈[k]\{j′} with the notation as in Algorithm 1. See
Figure 3.3 for an illustration of Algorithm 1.

V1,1

V1,j′

V1,j∗

V1,k

Vi′,1 Vr,1

Vi′,j′ Vr,j′

Vi′,j∗ Vr,j∗

Vi′,k Vr,k

S

re
gu
lar

reg
ula

r

regular

regular

unchanged

unchanged

unchanged

unchanged

changed

Figure 3.3: One iteration step in Algorithm 1, where vertices of V1,j∗ are moved to Vi′,j′ .

We claim that the algorithm completes successfully. In other words, we show that each
of the choices is possible and that Lemma 3.12 is always applicable. In each ‘While loop’,
since

∑
i∈[r],j∈[k](|Vi,j |−ni,j) = 0 and since the While condition is satisfied, the index j∗ ∈ [k]

maximising
∑

i∈[r](|Vi,j∗ | − ni,j) satisfies
∑

i∈[r](|Vi,j∗ | − ni,j∗) > 0.

Observe that the ‘While loop’ is run at most k times since at the end of the ‘While loop’
we have achieved

∑
i∈[r](|Vi,j | − ni,j) = 0 for an index j ∈ [k] and do not select this index

in future iterations as j∗ or j′. It follows that the number of clusters flagged as ‘changed’
never exceeds 2k. Every vertex (1, j∗) ∈ {1} × [k] has degree at least (k − 1 + γk/2)r in Rkr .
Hence there are at least γkr/2 indices i ∈ [r] such that (1, j∗) is adjacent to each (i, j) with
j ∈ [k] in Rkr . Since γkr/2 > 3k, we can choose i′ ∈ [r] in the second step of the ‘While
loop’ such that (1, j∗) is adjacent to each (i′, j) with j ∈ [k] in Rkr and no Vi′,j is flagged as
changed. Since {(1, j∗), (i′, j)} ∈ E(Rkr ) for each j ∈ [k], each pair (V1,j∗ , Vi′,j) is

(
ε/4, d, p

)
G

-
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regular. Thus it is possible to choose i′ in the second step of the ‘While loop’. It is possible
to choose j′ ∈ [k] in the third step of the ‘While loop’ since

∑
i∈[r],j∈[k](|Vi,j | − ni,j) = 0 and∑

i∈[r](|Vi,j∗ | − ni,j∗) > 0.

Finally, we need to show that Lemma 3.12 is always applicable with the given param-
eters. In each application, the sets denoted by X,Z1, . . . , Zk−1 are parts of the partition
V. This means that they have not been changed by the algorithm yet. It follows that each
set has size at least n/(8kr) > n/(16kr1). Since V is (ε/4, d, p)G-regular on Bk

r , the pairs
(X,Z1), . . . , (X,Zk−1) are (ε/4, d, p)G-regular as required. Finally, by choice of j∗ ∈ [k] we
see that the sizes of the sets S that we select in each step are decreasing. Hence it is enough
to show that in the first step we have |S| ≤ rξn, which follows from (B1). Thus Lemma 3.12
is applicable in each step, and we conclude that the algorithm indeed completes. We denote
the resulting vertex partition by Ṽ = {Ṽi,j}i∈[r],j∈[k].

Claim 3.13. The following properties hold for Ṽ:

(P1)
∑

i∈[r] |Ṽi,j | =
∑

i∈[r] ni,j,

(P2) for each i ∈ [r] and j ∈ [k] we have
∣∣|Ṽi,j | − ni,j

∣∣ ≤ 2rξn,

(P3) Ṽ is
(
ε
2 , d, p

)
G

-regular on Rkr and
(
ε
2 , d, p

)
G

-super-regular on Kk
r ,

(P4) for each i ∈ [r], j ∈ [k] and 1 ≤ s ≤ ∆ and v1, . . . , vs ∈ [n] we have

|NΓ(v1, . . . , vs; Ṽi,j)4NΓ(v1, . . . , vs;Vi,j)| ≤ 100kr3
1ξ degΓ

(
v1, . . . , vs;V (G)

)
+ 1

100C
∗ log n .

Proof. Property (P1) holds by construction of Algorithm 1.

Observe that vertices were removed from or added to each Vi,j to form Ṽi,j at most once
in the running of Algorithm 1, and the number of vertices added or removed was at most
rξn. Since |Vi,j | satisfies (B1), we conclude that (P2) holds. Furthermore, the vertices added
to or removed from Vi,j satisfy (SM2) and therefore (P4) holds.

Since |Vi,j | ≥ n/(8kr) for each i ∈ [r] and j ∈ [k], we can apply Proposition 2.4 with

µ = ν = 8kr2ξ to each edge of Rkr , concluding that Ṽ is (ε/2, d, p)G-regular on Rkr since
ε/4 + 4

√
8kr2ξ < ε/2. Now for any i ∈ [r] and j ∈ [k], consider v ∈ Ṽi,j . If v 6∈ Vi,j , then we

applied Lemma 3.12 to select v, and at that time no Vi,j′ with j′ ∈ [k] was flagged as changed
by Algorithm 1. Thus by (SM1) we have

degG(v; Ṽi,j′) = degG(v;Vi,j′) ≥
(
d− ε

4

)
p|Vi,j′ | =

(
d− ε

4

)
p|Ṽi,j′ |

for each j′ ∈ [k] \ {j} since Vi,j is then flagged as changed and thus Vi,j′ = Ṽi,j′ for each
j′ ∈ [k] \ {j}. If on the other hand v ∈ Vi,j , then by (B2) we started with degG(v;Vi,j′) ≥
(d− ε/4)p|Vi,j′ |. By (SM2) and (B4), we have

degG(v; Ṽi,j′) ≥
(
d− ε

4

)
p|Vi,j′ | − ε2

1000kr1

(
1 + ε

4

)
p|Vi,j′ | − 1

100C
∗ log n ≥

(
d− ε

2

)
p|Ṽi,j′ | ,

where the final inequality follows since |Ṽi,j′ | ≤ |Vi,j′ |+rξn ≤ (1+εd/100)|Vi,j′ | and since n was

assumed to be sufficiently large. Therefore, Ṽ is (ε/2, d, p)-super-regular on Kk
r , giving (P3).

�



3.1. The bandwidth theorem in random graphs 69

Second stage (local imbalance):

The first stage resulted in a partition Ṽ with Properties (P1)–(P4) of Claim 3.13. In
particular, Ṽ is globally balanced, i.e.

∑
i∈[r] |Ṽi,j | =

∑
i∈[r] ni,j for every j ∈ [k]. The goal of

the second stage is to obtain a balanced partition V with the desired properties of the lemma.
We use the following algorithm to correct the local imbalances in Ṽ.

Algorithm 2: Local balancing

foreach i = 1, . . . , r − 1 do
foreach j = 1, . . . , k do

if |Ṽi,j | > ni,j then

Select S ⊆ Ṽi,j with |S| = |Ṽi,j | − ni,j ;

Update Ṽi,j := Ṽi,j \ S and Ṽi+1,j := Ṽi+1,j ∪ S ;

end
else

Select S ⊆ Ṽi+1,j with |S| = ni,j − |Ṽi,j | ;

Update Ṽi+1,j := Ṽi+1,j \ S and Ṽi,j := Ṽi,j ∪ S ;

end

end

end

Again, in each step when we select S we make use of Lemma 3.12 to do so. If we select
S from Ṽi,j , then we use the input k, r1, d and 3ε/4 with X = Ṽi,j and the sets Z1, . . . , Zk−1

being {Ṽi+1,j′}j′∈[r]\{j}. If on the other hand we select S from Ṽi+1,j , then we use the input k,

r1, d and 3ε/4, with X = Ṽi+1,j and the sets Z1, . . . , Zk−1 being {Ṽi,j′}j′∈[r]\{j}. In Figure 3.4
we sketch one iteration step of Algorithm 2.

Ṽi,1

Ṽi,j

Ṽi,k

Ṽi+1,1Ṽi−1,1

Ṽi+1,jṼi−1,j

Ṽi+1,kṼi−1,k

S
if |Ṽi,j| ≤ ni,j if |Ṽi,j| > ni,j

Figure 3.4: One iteration step in Algorithm 2, where vertices of Vi,j are either moved to Vi−1,j

or to Vi+1,j .

We claim that Lemma 3.12 is always applicable. To see that this is true, observe first that
the number of vertices that we move between any Ṽi,j and Ṽi+1,j in a given step is, thanks

to (P2), bounded by 2r2ξn. We change any given Ṽi,j at most twice in the running of the
algorithm, so that in total at most 4r2ξn vertices are changed. In particular, we maintain
|Ṽi,j | ≥ n/(16kr1) throughout. By Proposition 2.4, with input µ = ν = 4r2ξn/

(
n/(16kr1)

)
<

100r3
1kξ, and by (P3) we maintain the property that any pair in Rkr , and in particular any pair

in Bk
r , is (3ε/4, d, p)-regular throughout. This shows that Lemma 3.12 is always applicable,

and therefore the algorithm completes and returns a partition V ′ = {V ′i,j}i∈[r],j∈[k].
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We claim that V ′ is the desired partition. To this end, we need to verify that Proper-
ties (B1’)–(B5’) hold.

As for each j ∈ [k] we have
∑

i∈[r] |V ′i,j | =
∑

i∈[r] |Ṽi,j | =
∑

i∈[r] ni,j , and as |V ′i,j | = ni,j
for each i ∈ [r − 1] and j ∈ [k], we conclude that |V ′i,j | = ni,j for all i ∈ [r] and j ∈ [k],
giving (B1’).

For the first part of (B3’), we have justified that we maintain (3ε/4, d, p)G-regularity on
Rkr throughout the algorithm. For the second part, we need to show that for each i ∈ [r]
and distinct indices j, j′ ∈ [k], and each v ∈ V ′i,j , we have degG(v;V ′i,j′) ≥ (d − ε)p|V ′i,j′ |. If

v ∈ Ṽi,j , then by (P3) we have degG(v; Ṽi,j′) ≥ (d− ε/2)p|Ṽi,j′ |. We change Ṽi,j′ at most twice
to obtain V ′i,j′ , both times by adding or removing vertices satisfying (SM2). As in the proof of

Claim (P4) above, using (B4) and (P4) we obtain degG(v; Ṽi,j′) ≥ (d− ε)p|V ′i,j | as desired. If

v 6∈ Ṽi,j , then it was added to the set Ṽi,j by Algorithm 2, and Ṽi,j′ was changed at most twice

thereafter. Again, using (SM1), (SM2), (B4), and (P4) we obtain degG(v; Ṽi,j′) ≥ (d−ε)p|V ′i,j |
as desired.

In Algorithm 1 at most rξn vertices were removed from or added to Vi,j . Hence, we have

|Vi,j4Ṽi,j | ≤ rξn. In Algorithm 2 at most 4r2ξn are removed from or added to Ṽi,j . By choice
of ξ this implies |Vi,j4V ′i,j′ | ≤ 5r2ξn ≤ 10−10ε4k−2r−2

1 n, which is Property (B2’).

To see that Property (B4’) holds, observe thatthat for any given i ∈ [r] and j ∈ [k] we
change Ṽi,j at most twice in the running of Algorithm 2, both times either adding or removing
a set satisfying (SM2). Hence by (B4), (P4), (SM2), and by choice of ξ we have

∣∣NΓ(v;Vi,j)∆NΓ(v;V ′i,j)
∣∣ ≤ ε2

1000kr1
degΓ

(
v;V (G)

)
+ 1

10C
∗ log n ≤ ε2

100 degΓ(v;Vi,j)

where the final inequality follows by choice of p and of n sufficiently large. Using (B3), we
can apply Proposition 2.4, with µ = ν = ε2/100, to deduce (B4’). By a similar calculation
Property (B5’) holds.

Finally, suppose that for any two disjoint vertex sets A,A′ ⊆ V (Γ) with |A|, |A′| ≥
ε2ξpn/(50000kr1) we have eΓ(A,A′) ≤ (1 + ε2ξ/100)p|A||A′|. In each application of Propo-
sition 2.4 we have µ, ν ≥ ε2ξ/200, and if we have ‘fully-regular’ in place of ‘regular’ in (B2)
and (B3), we always apply Proposition 2.4 to a fully-regular pair with sets of size at least
εpn/(1000kr1), so it returns fully-regular pairs for (B3’) and (B4’), as desired.

3.1.7 Proof of the main theorem

In this subsection we present the proofs of Theorem 3.3 and Theorem 3.1, where the latter is
a corollary of the first one.

Before we start with the proof of Theorem 3.3, we first sketch the main ideas. Given the
graph G, we first use the lemma for G (Lemma 3.4) to find a regular partition of V (G) with
a small exceptional set V0 and such that its reduced graph Rkr contains a spanning backbone
graph Bk

r , on whose subgraph Kk
r the graph G is super-regular and has one- and two-sided

inheritance. Given this, and H together with a (z, β)-zero-free (k + 1)-colouring, we use the
lemma for H (Lemma 3.5) to find a homomorphism f from V (H) to Rkr almost all of whose
edges are mapped to Kk

r and in which approximately the ‘right’ number of vertices of H are
mapped to each vertex of Rkr . At this point, if V0 were empty, and if the ‘approximately’ were
exact, we would apply the sparse blow-up lemma (Theorem 2.9) to obtain an embedding of
H into G.
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We resolve the first of these problems in the following way. Given v ∈ V0, we choose
x ∈ V (H) that is not in any triangles and that is far from any vertices of colour zero, and
embed x to v. We then embed the neighbours of x to carefully chosen neighbours of v, which
we obtain using the common neighbourhood lemma (Lemma 3.6). Here we use the fact that
NH(x) is independent. This then fixes a clique of Kk

r to which N2
H(x) must be assigned, and

gives image restrictions in the corresponding parts of the regular partition for these vertices.
Since N2

H(x) may have been assigned by f to a different component of Kk
r , we have to adjust

f to match. This will not cause any problems since x is far from vertices of colour zero.
Now the idea is to repeat the above procedure, choosing vertices of V (H) to pre-embed

that are widely separated in H, until we pre-embedded vertices to all vertices of V0. We end
up with a homomorphism f∗ from what the remainder of V (H) to Rkr . This homomorphism
still maps about the right number of vertices of H to each vertex of Rkr since V0 is small and
each vertex has at most ∆ neighbours. We now apply the balancing lemma (Lemma 3.7) to
correct the sizes of the clusters of the partition of the remainder of V (G) to match f∗, and
complete the embedding of H using the sparse blow-up lemma (Theorem 2.9).

However, there is one difficulty with this idea. Because we perform the pre-embedding
sequentially, we might use up a significant fraction of NG(w) for some w ∈ V (G) in the pre-
embedding, destroying super-regularity of G on Kk

r , or we might use up a significant fraction
of some common neighbourhood that defines an image restriction for the sparse blow-up
lemma. In order to avoid this, before we begin the pre-embedding, we fix a set S ⊆ V (G)
whose size is a small linear fraction of n. We choose S using Lemma 2.19 such that S does not
have a large intersection with any common G-neighbourhood of at most ∆ vertices (which
could define an image restriction). We perform the pre-embedding as outlined above, except
that we choose our neighbours of each v ∈ V0 within S. We show that this procedure does
not destroy super-regularity or use up image restriction sets. In order to not having to choose
at some point a vertex v ∈ V0 whose neighbourhood in S was already used up in the pre-
embedding process, we choose vertices of V0 first that have not many unused neighbours in
S left.

Proof of Theorem 3.3. Let γ > 0, ∆ ≥ 2, and k ≥ 2 be given. Set

r0 = 10/γ and D = ∆.

Let d be returned by Lemma 3.4, with input γ, k, and r0. Let α be returned by Lemma 3.6
with input d, k, and ∆. Now let εBL > 0 and ρ > 0 be returned by Theorem 2.9 with input
∆, ∆R′ = 3k, ∆J = ∆, ϑ = 1/(100D), ζ = α/4, d and κ := 64. Next, putting ε∗ = εBL/8 into
Lemma 3.6 returns ε0 > 0. We set

ε = min
{
ε0, d/8, ε

∗/(4D), 1/(16k)
}
.

Putting ε into Lemma 3.4 returns r1 and C∗1 . Next, Lemma 3.7, for input k, r1, ∆, γ, d, and
8ε, returns ξ ∈

(
0, 1/(10kr1)

)
and C∗2 . We set

β = 10−12ξ2/(∆k4r2
1) and µ = 10−5ε2/(kr1).

Let C∗3 be the maximum of the C-outputs of Theorem 2.9 with input r1, of Proposition 3.8
with input ε and with input µ2, and of Lemma 2.19 with input εµ and ∆. Finally, let
C∗ = max{C∗1 , C∗2 , C∗3} and set

C = 1010k2r2
1∆2r1+20C∗/(ε2ξµ2) and z = 10/ξ.
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Let p ≥ C(log n/n)1/∆. Then a.a.s. G(n, p) satisfies the good events of Theorem 2.9,
Lemmas 3.4 and 3.6, and Proposition 3.8, with the parameters stated above. Suppose that
Γ = G(n, p) satisfies these good events.

Let G ⊆ Γ be a spanning subgraph with δ(G) ≥
(
(k−1)/k+γ

)
pn. Furthermore, let H be

a graph on n vertices with ∆(H) ≤ ∆ and L be a labelling of the vertex set of H of bandwidth
at most βn such that the first βn vertices of L include C max{p−2, p−1 log n} vertices that
are not contained in any triangles of H, and such that there exists a (k+ 1)-colouring that is
(z, β)-zero-free with respect to L, and the colour zero is not assigned to the first

√
βn vertices.

Applying Lemma 3.4 to G, with input γ, k, r0 and ε, we obtain an integer r with 10γ−1 ≤
kr ≤ r1, a set V0 ⊆ V (G) with |V0| ≤ C∗max{p−2, p−1 log n}, a k-equitable partition V =
{Vi,j}i∈[r],j∈[k] of V (G) \ V0, and a graph Rkr on vertex set [r] × [k] with minimum degree

δ(Rkr ) ≥
(
(k − 1)/k + γ/2

)
kr, such that Kk

r ⊆ Bk
r ⊆ Rkr , and such that

(G1a) n
4kr ≤ |Vi,j | ≤ 4n

kr for every i ∈ [r] and j ∈ [k],

(G2a) V is (ε, d, p)G-regular on Rkr and (ε, d, p)G-super-regular on Kk
r ,

(G3a) both
(
NΓ(v, Vi,j), Vi′,j′

)
and

(
NΓ(v, Vi,j), NΓ(v, Vi′,j′)

)
are (ε, d, p)G-regular pairs for

every {(i, j), (i′, j′)} ∈ E(Rkr ) and v ∈ V \ V0, and

(G4a) |NΓ(v, Vi,j)| = (1± ε)p|Vi,j | for every i ∈ [r], j ∈ [k] and every v ∈ V \ V0.

For every i ∈ [r] and j ∈ [k] we choose

mi,j ∈
{
|Vi,j |+

⌊
1
kr |V0|

⌋
, |Vi,j |+

⌈
1
kr |V0|

⌉ }

such that {mi,j}i∈[r],j∈[k] forms a k-equitable integer partition of n.

Since δ(Rkr ) > (k−1)r, there exists for every i ∈ [r] a vertex v ∈ V (Rkr ) that is adjacent to
each (i, j) with j ∈ [k]. This together with our assumptions on H allow us to apply Lemma 3.5
to H, with input D, k, r, ξ/10, β, and {mi,j}i∈[r],j∈[k]. Note that since ∆(H) ≤ ∆, the graph
H is in particular ∆-degenerate.

Let f : V (H) → [r] × [k] be the mapping returned by Lemma 3.5, let Wi,j := f−1(i, j),
and let X ⊆ V (H) be the set of special vertices returned by Lemma 3.5. For every i ∈ [r]
and j ∈ [k] we have

(H1a) mi,j − 1
10ξn ≤ |Wi,j | ≤ mi,j + 1

10ξn,

(H2a) |X| ≤ ξn,

(H3a) {f(x), f(y)} ∈ E(Rkr ) for every {x, y} ∈ E(H),

(H4a) y, z ∈ ⋃j′∈[k] f
−1(i, j′) for every x ∈ f−1(i, j) \X and {x, y}, {y, z} ∈ E(H), and

(H5a) f(x) =
(
1, σ(x)

)
for every x in the first

√
βn vertices of L.

Lemma 3.5 actually guarantees more, which we do not require for this proof. We let F be
the first βn vertices of L. By definition of L, in F there are at least C max{p−2, p−1 log n}
vertices whose neighbourhood in H is independent.

Next, we apply Lemma 2.19, with input εµ and ∆, to choose a set S ⊆ V (G) of size µn.
We let the Ti of Lemma 2.19 be all sets that are common neighbourhoods in Γ of at most
∆ vertices of Γ, together with the G-neighbourhoods of each vertex in G and together with
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the sets Vi,j for i ∈ [r] and j ∈ [k]. The result of Lemma 2.19 is that for any 1 ≤ ` ≤ ∆ and
vertices u1, . . . , u` of V (G), we have for each i ∈ [r] and j ∈ [k] and v ∈ V (G) that

∣∣∣S ∩
⋂

1≤i′≤`
NΓ(ui′)

∣∣∣ = µ
∣∣∣
⋂

1≤i′≤`
NΓ(ui′)

∣∣∣± µ
(
ε
∣∣∣
⋂

1≤i′≤`
NΓ(ui′)

∣∣∣+ p`n
)
,

|S ∩NG(v)| = µ|NG(v)| ± 2µε|NG(v)| and
∣∣S ∩ Vi,j

∣∣ ≤ 2µ|Vi,j |
(3.15)

where we use the fact p ≥ C(log n/n)1/∆ and the choice of C to deduce C∗ log n < µp∆n.

Our next task is to create the pre-embedding that covers the vertices of V0. We use the
following algorithm, starting with φ0 as the empty partial embedding.

Algorithm 3: Pre-embedding

Set t := 0 ;
while V0 \ im(φt) 6= ∅ do

1 Let vt+1 ∈ V0 \ im(φt) minimise
∣∣(NG(v) ∩ S

)
\ im(φt)

∣∣ over v ∈ V0 \ im(φt) ;
Choose xt+1 ∈ F with NH(x) independent, with dist

(
xt+1,dom(φt)

)
≥ 2r + 20 ;

Let ` = |NH(xt+1)| and {y1, . . . , y`} = NH(xt+1) ;
2 Choose w1, . . . , w` ∈

(
NG(v) ∩ S

)
\ im(φt) ;

Set φt+1 = φt ∪ {xt+1 → vt+1} ∪ {y1 → w1} ∪ · · · ∪ {y` → w`} ;
Update t := t+ 1 ;

end

Suppose this algorithm does not fail, terminating with t = tf . The final φtf is an em-
bedding of some vertices of H into V (G) that covers V0 and is contained in V0 ∪ S. Before
we specify how exactly we choose vertices at line 2, we justify that the algorithm does not
fail. In other words, we need to verify that at every time t there are vertices of F whose
neighbourhood is independent and that are not close to any vertices in dom(φt), and that at
every time t, the set

(
NG(v) ∩ S

)
\ im(φt) is ‘big’.

For the first, observe that since |V0| ≤ C∗max{p−2, p−1 log n}, we have dom(φt) ≤
C∗∆ max{p−2, p−1 log n} at every step. Thus the number of vertices at distance less than
2r + 20 from dom(φt) is at most

(
1 + ∆ + · · ·+ ∆2r+19

)
C∗∆ max{p−2, p−1 log n} < 2C∗∆2r+20 max{p−2, p−1 log n},

which by choice of C is smaller than the number of vertices in F with NH(x) independent,
as there are at least C max{p−2, p−1 log n} of them.

For the second part, let t be the minimum number such that at time t a vertex v with∣∣(NG(v)∩S
)
\ im(φt)

∣∣ < µ2pn/4 is picked. For all integers t′ with t− 1
4(∆+1)µ

2pn ≤ t′ < t, we

have
∣∣(NG(v)∩S

)
\im(φt′)

∣∣ < µ2pn/2 since
∣∣(NG(v)∩S

)
\im(φt′)

∣∣ can decrease by at most ∆+1
in each step. As v was not picked for any t− 1

4(∆+1)µ
2pn ≤ t′ < t, the vertex that was chosen for

t′ had at most as many uncoveredG-neighbours in S as v. Let Z be the set of vertices chosen at
line 1 in each of these time steps. Then for each z ∈ Z we have

∣∣(NG(v)∩S
)
\im(φt)

∣∣ ≤ µ2pn/2.
But by (3.15) we have

∣∣NG(z)∩S
∣∣ ≥ 3µ2pn/4, so

∣∣NG(z)∩im(φt)
∣∣ ≥ µ2pn/4 for each z ∈ Z. By

choice of C, we have |Z| = 1
4(∆+1)µ

2pn ≥ C∗p−1 log n. Since |im(φ)| ≤ (∆+1)|V0| ≤ µ2n/(8r),
by choice of C, this contradicts the good event of Proposition 3.8. Hence at each time we
reach line 2 there are at least µpn/4 vertices of

(
NG(v) ∩ S

)
\ im(φ) to choose from. In

particular we verified that Algorithm 3 completes.
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In order to specify how to choose the vertices {w1, . . . , w`} in Algorithm 3, we need the
following claim.

Claim 3.14. Given any set Y of µ2pn/4 vertices of V (G), there exists W ⊆ Y of size at
least µ2pn/(8r) and an index i ∈ [r] with the following property. For each w ∈ W and each
j ∈ [k], we have |NG(w, Vi,j)| ≥ dp|Vi,j |.

Proof. First let Y ′ be obtained from Y by removing all vertices y ∈ Y such that |NΓ(y, V0)| ≥
εpn, or for some i ∈ [r] and j ∈ [k] we have

∣∣NΓ(y, Vi,j)
∣∣ 6= (1 ± ε)p|Vi,j |. Because

the good event of Proposition 3.8 occurs, the total number of vertices removed is at most
2krC∗p−1 log n < |Y |/2, where the inequality is by choice of C. Now given any y ∈ Y ′, if
for each i ∈ [r] there exists an index j ∈ [k] such that

∣∣NG(y, Vi,j)
∣∣ < dp|Vi,j |, then, since

{Vi,j}i∈[r],j∈[k] is k-equitable, we have

|NG(y)| ≤ εpn+ dpn+ (1 + ε)k−1
k pn+ r <

(
k−1
k + γ

)
pn,

a contradiction. We conclude that for each y ∈ Y ′ there exists iy ∈ [r] such that |NG(y, Vi,j)| ≥
dp|Vi,j | for each j ∈ [k]. We let W be a maximum subset of Y ′ such that iy = iy′ for all
y, y′ ∈ W . By construction we have |W | ≥ µ2pn/(8r) and |NG(w, Vi,j)| ≥ dp|Vi,j | for each
w ∈W and each j ∈ [k]. �

Now we describe how we choose the vertices w1, . . . , w` at each time t in line 2 of Algo-
rithm 3.

Let Y =
(
NG(vt) ∩ S

)
\ im(φt). Let it ∈ [r] be an index, and Wt ⊆ Y be a set of

size µ2pn/(8r) such that
∣∣NG(w, Vit,j)

∣∣ ≥ dpn|Vit,j | for each j ∈ [k] and w ∈ Wt, whose
existence is guaranteed by Claim 3.14. By construction, and by our choice of µ, we can apply
Lemma 3.6 with input d, k, ∆, ε∗, r and ε, with the clusters

{
Vit,j

}
j∈[k]

as the
{
Vi
}
i∈[k]

,

and inputting a subset of Wt of size 10−10ε4pn/(k4r4) as required for (V3). To verify the
conditions of Lemma 3.6, observe that (V1) follows from (G1a), (V2) from (G2a), and (V4)
from Claim 3.14. We obtain a ∆-tuple of vertices in Wt satisfying (W1)–(W4) of Lemma 3.6.
We let

w1, . . . , w` ∈Wt ⊆
(
NG(vt) ∩ S

)
\ im(φt)

be the first ` vertices of this tuple, where ` := |NH(xt)| .

Let H ′ = H − dom(φtf ). We next define image restricting vertex sets and create an
updated homomorphism f∗ : V (H ′)→ [r]× [k]. For each x ∈ V (H ′), set

Jx = φtf
(
NH(x) ∩ dom(φtf )

)
.

Since the vertices {xt}t∈[tf ] are by construction at pairwise distance at least 2r + 20, in
particular for each y ∈ V (H ′) with Jy 6= ∅ there exists an index t′ ∈ [tf ] such that y is at
distance two from xt′ , and at distance greater than r + 10 from all xt with t ∈ [tf ] \ {t′}. In
particular this means that Jy is a subset of the set {w1, . . . , w`} that was chosen at time t′.
Let j ∈ [k] such that f(y) = (1, j). Then we set

f∗(y) = (it′ , j),

where it′ is defined as in the latter paragraph.
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Next, for each t ∈ [tf ] and each z ∈ V (H) at distance at least 3 and at most it + 1 from
xt, we set f∗(z) as follows. Recall that f(z) = (1, j) for some j ∈ [k]. We set

f∗(z) =
(
it + 2− dist(xt, z), j

)
.

Since {xt}t∈[tf ] are at pairwise distance at least 2r+ 20, no vertex is at distance r+ 5 or less

from any two xt and xt′ . This means that f∗ is well-defined. Because Rkr contains Bk
r , the

function f∗ we constructed so far is a graph homomorphism. Furthermore, for each t ∈ [tf ]
the set of vertices z at distance it + 1 from xt are in the first

√
βn vertices of L, and so

by (H5a) satisfy f∗(z) = f(z). We complete the construction of f∗ by setting f∗(z) = f(z)
for each remaining z ∈ V (H ′). Because f is a graph homomorphism, f∗ is also a graph
homomorphism whose domain is V (H ′).

For each i ∈ [r] and j ∈ [k], let

W ′i,j = (f∗)−1(Vi,j)

and let

X ′ = X ∪ {x ∈ H ′ : ∃t ∈ [tf ] such that dist(x, xt) ≤ r + 10}.

The total number of vertices z ∈ V (H) at distance at most r + 10 from some xt is at most
2∆r+10|V0| < ξn/100. Since Wi,j4W ′i,j contains only such vertices, we have

(H1b) mi,j − 1
5ξn ≤ |W ′i,j | ≤ mi,j + 1

5ξn,

(H2b) |X ′| ≤ 2ξn,

(H3b) {f∗(x), f∗(y)} ∈ E(Rkr ) for every {x, y} ∈ E(H ′), and

(H4b) y, z ∈ ⋃j′∈[k]W
′
i,j′ for every x ∈W ′i,j \X ′ and {x, y}, {y, z} ∈ E(H ′).

where we used Properties (H2a) and (H4a) as well as the definitions of X ′ and f∗.
Furthermore, we have the following properties, where (G1a)–(G4a) are repeated for con-

venience.

(G1a) n
4kr ≤ |Vi,j | ≤ 4n

kr for every i ∈ [r] and j ∈ [k],

(G2a) V is (ε, d, p)G-regular on Rkr and (ε, d, p)G-super-regular on Kk
r ,

(G3a) both
(
NΓ(v, Vi,j), Vi′,j′

)
and

(
NΓ(v, Vi,j), NΓ(v, Vi′,j′)

)
are (ε, d, p)G-regular pairs for

every {(i, j), (i′, j′)} ∈ E(Rkr ) and v ∈ V \ V0,

(G4a) |NΓ(v, Vi,j)| = (1± ε)p|Vi,j | for every i ∈ [r], j ∈ [k] and every v ∈ V \ V0,

(G5a)
∣∣⋂

u∈Jx NG(u, Vf∗(x))
∣∣ ≥ αp|Jx||Vf∗(x)| for each x ∈ V (H ′),

(G6a)
∣∣⋂

u∈Jx NΓ(u, Vf∗(x))
∣∣ = (1± ε∗)p|Jx||Vf∗(x)| for each x ∈ V (H ′),

(G7a)
(⋂

u∈Jx NΓ(u, Vf∗(x)),
⋂
v∈Jy NΓ(v, Vf∗(y))

)
is an (ε∗, d, p)G-regular pair for each edge

{x, y} ∈ E(H ′), and

(G8a)
∣∣⋂

u∈Jx NΓ(u)
∣∣ ≤ (1 + ε∗)p|Jx|n for each x ∈ V (H ′).
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Properties (G5a), (G6a) and (G8a) are trivial when Jx = ∅, and are otherwise guaranteed
by Lemma 3.6 since for every Jx there exists t ∈ [tf ] such that Jx is a subset of the set
{w1, . . . , w`} that was chosen at time t. Finally (G7a) follows from (G2a) when Jx, Jy = ∅,
and otherwise is also guaranteed by Lemma 3.6.

For each i ∈ [r] and j ∈ [k], set

V ′i,j = Vi,j \ im(φtf )

and let V ′ = {V ′i,j}i∈[r],j∈[k]. Recall that |im(φtf )| ≤ C∗∆ max{p−2, p−1 log n} ≤ n/(12kr).
Since also Vi,j \ V ′i,j ⊆ S for each i ∈ [r] and j ∈ [k], we obtain by Equation (3.15), Proposi-
tion 2.4 the following properties:

(G1b) n
6kr ≤ |V ′i,j | ≤ 6n

kr for every i ∈ [r] and j ∈ [k],

(G2b) V ′ is (2ε, d, p)G-regular on Rkr and (2ε, d, p)G-super-regular on Kk
r ,

(G3b) both
(
NΓ(v, V ′i,j), V

′
i′,j′
)

and
(
NΓ(v, V ′i,j), NΓ(v, V ′i′,j′)

)
are (2ε, d, p)G-regular pairs for

every {(i, j), (i′, j′)} ∈ E(Rkr ) and v ∈ V \ V0,

(G4b) |NΓ(v, V ′i,j)| = (1± 2ε)p|Vi,j | for every i ∈ [r], j ∈ [k] and every v ∈ V \ V0,

(G5b)
∣∣V ′f∗(x) ∩

⋂
u∈Jx NG(u)

∣∣ ≥ 1
2αp

|Jx||V ′f∗(x)|,

(G6b)
∣∣V ′f∗(x) ∩

⋂
u∈Jx NΓ(u)

∣∣ = (1± 2ε∗)p|Jx||V ′f∗(x)|,

(G7b)
(⋂

u∈Jx NΓ(u, V ′f∗(x)),
⋂
v∈Jy NΓ(v, V ′f∗(y))

)
is is an (2ε∗, d, p)G-regular pair for each

edge {x, y} ∈ E(H ′),

(G8b)
∣∣⋂

u∈Jx NΓ(u)
∣∣ ≤ (1 + 2ε∗)p|Jx|n for each x ∈ V (H ′).

We are now almost finished. However, we do not necessarily have |W ′i,j | = |V ′i,j | for each

i ∈ [r] and j ∈ [k]. Since |V ′i,j | = |Vi,j | ± 2∆r+10|V0| = mi,j ± 3∆r+10|V0|, by (H1b) we
have |V ′i,j | = |W ′i,j | ± ξn. We can thus apply Lemma 3.7, with input k, r1, ∆, γ, d, 8ε, and
r. This gives us a partition {V ′′i,j}i∈[r],j∈[k] with |V ′′i,j | = |W ′i,j | for each i ∈ [r] and j ∈ [k]
by Property (B1’) of Lemma 3.7. Let V ′′ = {V ′′i,j}i∈[r],j∈[k]. Lemma 3.7 guarantees us the
following since 4ε∗ ≥ 8ε and by using Properties (G1b)–(G8b) and Proposition 2.4.

(G1c) n
8kr ≤ |V ′′i,j | ≤ 8n

kr for every i ∈ [r] and j ∈ [k],

(G2c) V ′′ is (4ε∗, d, p)G-regular on Rkr and (4ε∗, d, p)G-super-regular on Kk
r ,

(G3c) both
(
NΓ(v, V ′′i,j), V

′′
i′,j′
)

and
(
NΓ(v, V ′′i,j), NΓ(v, V ′′i′,j′)

)
are (4ε∗, d, p)G-regular pairs

for every {(i, j), (i′, j′)} ∈ E(Rkr ) and v ∈ V \ V0,

(G4c) we have (1 − 4ε)p|V ′′i,j | ≤ |NΓ(v, V ′′i,j)| ≤ (1 + 4ε)p|V ′′i,j | for every i ∈ [r], j ∈ [k] and
every v ∈ V \ V0.

(G5c)
∣∣V ′′f∗(x) ∩

⋂
u∈Jx NG(u)

∣∣ ≥ 1
4αp

|Jx||V ′′f∗(x)|,

(G6c)
∣∣V ′′f∗(x) ∩

⋂
u∈Jx NΓ(u)

∣∣ = (1± 4ε∗)p|Jx||V ′f∗(x)|, and

(G7c)
(
V ′′f∗(x) ∩

⋂
u∈Jx NΓ(u), V ′′f∗(y) ∩

⋂
v∈Jy NΓ(v)

)
is an (4ε∗, d, p)G-regular pair for each

edge {x, y} ∈ E(H ′).
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Let us briefly explain why these properties hold. Property (G1c) results from Property (G1b)
and Property (B2’) of Lemma 3.7, while Property (G2c) comes from Property (B3’) and
choice of ε. Property (G3c) is guaranteed by Property (B4’) of Lemma 3.7. Now, each of
Properties (G4c), (G5c) and (G6c) comes from the corresponding Properties (G4b), (G5b)
and (G6b) together with Property (B5’) of Lemma 3.7. Finally, Property (G7c) holds due to
Properties (G7b) and (G8b) together with Proposition 2.4 and Property (B5’) of Lemma 3.7.

Next we define the family I = {Ix}x∈V (H′) of image restrictions. For each x ∈ V (H ′) with
Jx = ∅, set

Ix = V ′′f∗(x)

and for each x ∈ V (H ′) with Jx 6= ∅, set

Ix = V ′′f∗(x) ∩
⋂

u∈Jx
NG(u).

The last step of the proof is to use Theorem 2.9 to embed the vertices in V (H ′) onto
V (G′) respecting the image restrictions. By Property (G1c), the partitions W ′ and V ′′ are
both κ-balanced since κ = 64, and by construction they are size-compatible. While W ′ is a
partition of V (H ′), we have that V ′′ is partition of V (G) \ im(φtf ). Each of their parts has
size at least n/(κr1) by (G1c).

Let W̃i,j := W ′i,j \ X ′. We have to check that the following properties hold in order to
apply Theorem 2.9 with the parameters defined above.

(BUL1) ∆(H ′) ≤ ∆, for every edge {x, y} ∈ E(H ′) with x ∈ W ′i,j and y ∈ W ′i′,j′ we have

{(i, j), (i′, j′)} ∈ E(Rkr ) and {W̃i,j}i∈[r],j∈[k] is an (ϑ,Kk
r )-buffer for H ′,

(BUL2) V ′′ is (εBL, d, p)G-regular on Rkr , (εBL, d, p)G-super-regular on Kk
r and has one-sided

inheritance on Kk
r ,

(BUL3) for every vertex x ∈ W̃i,j and every triangle {x, y, z} in H ′ with y ∈ W ′i′,j′ and
z ∈W ′i′′,j′′ , the set V ′′i,j has two-sided inheritance with respect to V ′′i′,j′ and V ′′i′′,j′′ ,

(BUL4) I and J form a (ρ, ζ,∆,∆J)-restriction pair.

By Property (H2b), choice of ξ, and by Property (H4b) it holds that {W̃i,j}i∈[r],j∈[k] is a(
ϑ,Kk

r

)
-buffer for H ′. Furthermore since f∗ is a graph homomorphism from H ′ to Rkr , we

have (BUL1).
By Properties (G2c), (G3c) and (G4c) we have Properties (BUL2) and (BUL3).
Finally, the pair (I,J ) =

(
{Ix}x∈V (H′), {Jx}x∈V (H′)

)
forms a (ρ, α/4,∆,∆J)-restriction

pair. To see this, observe that the total number of image restricted vertices in H ′, that is the
number of vertices x with Jx 6= ∅, is at most ∆2|V0| < ρ|Vi,j | for any i ∈ [r] and j ∈ [k]. This
gives Property (RP1) of the definition of a restriction pair (Definition 2.8). Since for each
vertex x ∈ V (H ′) we have |Jx|+degH′(x) = degH(x) ≤ ∆ we have (RP2), while (RP3) follows
from (G5c), and (RP4) follows from (G6c). Finally, Property (RP5) follows from (G7c), and
Property (RP6) holds since ∆(H) ≤ ∆. All in all, this shows that Property (BUL4) is
satisfied.

As a consequence, by Theorem 2.9 there exists an embedding φ of H ′ into G \ im(φtf ),
such that φ(x) ∈ Ix for each x ∈ V (H ′). Together with φtf we have thus found an embedding
of H in G, as desired.
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With Theorem 3.3 in hand, we can now present the proof of Theorem 3.1.

Proof of Theorem 3.1. Given γ, ∆, and k, let β > 0, z > 0, and C > 0 be returned by
Theorem 3.3 with input γ, ∆, and k. Set β∗ = β/2 and C∗ = C/β. Let H be a k-
colourable graph on n vertices with ∆(H) ≤ ∆ such that there exists a set W of at least
C∗max{p−2, p−1 log n} vertices in V (H) that are not contained in any triangles of H and
such that there exists a labelling L of its vertex set of bandwidth at most β∗n.

By the choice of C∗ we find an interval I ⊆ L of length βn containing a subset F ⊆ W
with |F | = C max{p−2, p−1 log n}. Now we can rearrange the labelling L to a labelling L′ of
bandwidth at most 2β∗n = βn such that F is contained in the first βn vertices in L′.

Then, by Theorem 3.3 we know that Γ = G(n, p) satisfies the following a.a.s. if p ≥
C(log n/n)1/∆ and in particular if p ≥ C∗(log n/n)1/∆. If G is a spanning subgraph of Γ with
δ(G) ≥

(
(k − 1)/k + γ

)
pn, then G contains a copy of H, which finishes the proof.

3.2 Local resilience of spanning degenerate subgraphs

Recall that a graph G is k-degenerate if every subgraph of G has a vertex of degree at most k.
An easy upper bound on the degeneracy of a graph is by definition its maximum degree.
However, there are many classes of graphs that have small degeneracy while their maximum
degrees can be arbitrarily large. Clearly, trees and forests are 1-degenerate. Since every planar
graph is known to have a vertex of degree 5 or less, planar graphs are 5-degenerate. Every
series-parallel graphs has a vertex of degree 2. Hence, series-parallel graphs and in particular
2-trees and outerplanar graphs are 2-degenerate.

In the proof of Theorem 3.1 there are two places, where a lower bound of (log n/n)1/∆

on p is required. First, when we apply the common neighbourhood lemma (Lemma 3.6) and
then when we use the sparse blow-up lemma (Theorem 2.9). If we demand H to not only
have a particular number of vertices not in triangles but that the same vertices are also not
contained in any 4-cycles, we can avoid having to use the common neighbourhood lemma in
the embedding process. Allen, Böttcher, Hàn, Kohayakawa, and Person [9] have also proved
a sparse blow-up lemma to embed degenerate graphs into sparse random graphs. This allows
us to prove a variant of Theorem 3.1 to embed D-degenerate graphs with O(p−2, p−1 log n)
vertices not in triangles or 4-cycles, where a lower bound of Ω

(
(log n)1/(2D+1)

)
on the edge

probability suffices. More precisely, we prove the following.

Theorem 3.15. For each γ > 0, ∆ ≥ 2, and D, k ≥ 1, there exist constants β∗ > 0
and C∗ > 0 such that the following holds asymptotically almost surely for Γ = G(n, p) if
p ≥ C∗(log n/n)1/(2D+1).

Let G be a spanning subgraph of Γ with δ(G) ≥
(
(k − 1)/k + γ

)
pn and let H be a D-

degenerate, k-colourable graph on n vertices with ∆(H) ≤ ∆, bandwidth at most β∗n and
there are at least C∗max{p−2, p−1 log n} vertices in V (H) that are not contained in any
triangles or four-cycles of H. Then G contains a copy of H.

As an immediate consequence we obtain the following resilience result for the containment
of maximum degree bounded spanning trees.

Corollary 3.16. For each γ > 0 and ∆ ≥ 2, there exists C > 0 such that Γ = G(n, p)
satisfies the following asymptotically almost surely if p ≥ C(log n/n)1/3.

Let G be a spanning subgraph of Γ with δ(G) ≥
(
1/2 + γ

)
pn. Then G contains every

spanning tree with maximum degree at most ∆.
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As with Theorem 3.1, we can deduce Theorem 3.15 from the following more general
statement.

Theorem 3.17. For each γ > 0, ∆ ≥ 2, D ≥ 1 and k ≥ 1, there exist constants β > 0,
z > 0, and C > 0 such that the following holds asymptotically almost surely for Γ = G(n, p)
if p ≥ C(log n/n)1/(2D+1).

Let G be a spanning subgraph of Γ with δ(G) ≥
(
(k−1)/k+γ

)
pn and let H be a graph on

n vertices with ∆(H) ≤ ∆ and degeneracy at most D, that has a labelling L of its vertex set of
bandwidth at most βn, a (k+ 1)-colouring that is (z, β)-zero-free with respect to L and where
the first

√
βn vertices in L are not given colour zero and the first βn vertices in L include

C max{p−2, p−1 log n} vertices that are not in any triangles or copies of C4 in H. Then G
contains a copy of H.

Before giving the proof of Theorems 3.15 and 3.17 in Subsection 3.2.2 we state in the
following subsection the sparse blow-up lemma, which is the essential tool in the proof of
Theorem 3.17.

3.2.1 Preliminaries

Given an order τ on V (H) and a family J = {Jx}x∈V (H) of image restricting vertices, we
define πτ (x) = |Jx| +

∣∣{y ∈ NH(x) : τ(y) < τ(x)}
∣∣. The following sparse blow-up lemma,

which was proved by Allen, Böttcher, Hàn, Kohayakawa, and Person in [9], is a variant of the
sparse blow-up lemma (Theorem 2.9) to embed degenerate graphs.

Theorem 3.18 (Blow-up lemma to embed degenerate graphs into random graphs, [9]).
For all non-negative integers ∆, ∆R′, ∆J , D′, Dqueue, and Dbuf and reals ϑ, ζ, d > 0,
and κ > 1 there exist ε, ρ > 0 such that for all r1 ≥ 1 there exists C > 0 such that for
p ≥ C(log n/n)1/max{D′,2Dqueue,Dbuf} the random graph Γ = Gn,p asymptotically almost surely
satisfies the following.

Let R be a graph on r ≤ r1 vertices and let R′ ⊆ R be a spanning subgraph with ∆(R′) ≤
∆R′. Let H and G ⊆ Γ be graphs given with κ-balanced, size-compatible vertex partitions
W = {Wi}i∈[r] and V = {Vi}i∈[r] with parts of size at least m ≥ N/(κr1). Let I = {Ix}x∈V (H)

be a family of image restrictions, and J = {Jx}x∈V (H) be a family of restricting vertices.
Suppose that

(DBUL1) H satisfies ∆(H) ≤ ∆, for every edge {x, y} ∈ E(H) with x ∈Wi and y ∈Wj we

have {i, j} ∈ E(R), and W̃ = {W̃i}i∈[r] is an (ϑ,R′)-buffer for H with deg(x) ≤
Dbuf for each x ∈ W̃i and i ∈ [r],

(DBUL2) (G,V) is an (ε, d, p)-regular R-partition, which is (ε, d, p)-super-regular on R′, and
has one-sided inheritance,

(DBUL3) for every vertex x ∈ W̃i and every triangle {x, y, z} in H with y ∈Wj and z ∈Wk,
the set Vi has two-sided inheritance with respect to Vj and Vk, and

(DBUL4) I and J form a (ρ, ζ,∆,∆J)-restriction pair.

Suppose furthermore that there is an order τ on V (H), and a set Xe ⊆ V (H) with |Xe| ≤
εpmax{πτ (x):x∈Xe}n/r1 with the following properties.

(ORD1) For each x ∈ V (H), we have
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• πτ (x) ≤ D′,
• πτ (x) ≤ D′ − 1 if there is y ∈ NH(x) with τ(y) > τ(x), and

• πτ (x) ≤ D′− 2 if there are y, z ∈ NH(x) with τ(y), τ(z) > τ(x) and {y, z} ∈
E(H).

(ORD2) For each vertex x in V (H)\Xe, either πτ (x) ≤ Dqueue, or x is not image restricted
and all neighbours of x appear in the εpπ

τ (x)n/r1 places of τ before x.

(ORD3) If x ∈ N(W̃i) for some i ∈ [r] then

• πτ (x) ≤ Dbuf − 1,

• πτ (x) ≤ Dbuf − 2 if there is y ∈ NH(x) with τ(y) > τ(x), and

• πτ (x) ≤ Dbuf − 3 if there are y, z ∈ NH(x) with τ(y), τ(z) > τ(x) and
yz ∈ E(H).

(ORD4) If x ∈ N(W̃i) for some i ∈ [r] then at most s := Dbuf − 1−max{πτ (y) : τ(y) <
τ(x), y 6∈ Xe} neighbours of x not in Xe appear in τ before τ(x)− εpsn/r1.

Then there is an embedding ψ : V (H)→ V (G) such that ψ(x) ∈ Ix for each x ∈ H.

3.2.2 Proof of the theorem

In this subsection we prove Theorem 3.17. The proof is very similar to the one of Theorem 3.3.
Therefore, we may at some points omit arguments and calculations that we provided in the
proof of Theorem 3.3 in Section 3.1.

Proof of Theorem 3.17. We set up the constants quite similarly as in the proof of Theorem 3.3.
Specifically, given γ > 0, ∆ ≥ 2, D ≥ 1, and k ≥ 2, set r0 = 10/γ. Let d be returned by
Lemma 3.4, with input γ, k, and r0. Set α = d/2. Let D′ := D+ 2 if D = 1, and D′ := D+ 3
otherwise. Furthermore, set Dqueue = D and Dbuf = 2D + 1.

Now let εBL > 0 and ρ > 0 be returned by Theorem 3.18 with input ∆, ∆R′ = 3k, ∆J = ∆,
D′, Dqueue, Dbuf , ϑ = 1/(100D), ζ = α/4, d, and κ := 64. Set ε∗ = εBL/8. Next, let ε1 > 0 be
returned by Lemma 2.10 for input ε∗ and d. Let ε0 > 0 be small enough both for Lemma 2.11
with input ε∗ and d, and for Lemma 2.10 with input ε1 and d.

We choose
ε = min

{
ε0, d/8, ε

∗/(4D), 1/(16k)
}
.

Putting ε into Lemma 3.4 returns r1 and C∗1 . Next, Lemma 3.7, for input k, r1, ∆, γ, d, and
8ε, returns ξ ∈

(
0, 1/(10kr1)

)
and C∗2 . We set

β = 10−12ξ2/(∆k4r2
1) and µ = 10−5ε2/(kr1).

Let C∗3 be the maximum of the C-outputs of Theorem 2.9 with input r1, of Propo-
sition 3.8 with input ε and µ2, and for Lemma 2.19 with input εµ and ∆. Finally, let
C∗ = max{C∗1 , C∗2 , C∗3} and set

C = 1010k2r2
1∆2r1+20C∗/(ε2ξµ2) and z = 10/ξ.

Given p ≥ C(log n/n)1/(2D+1), a.a.s. G(n, p) satisfies the good events of Theorem 3.18,
Lemmas 3.4, 2.10 and 2.11, and Proposition 3.8 with the inputs as specified above. We
condition on these good events for Γ = G(n, p).
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Let G be a spanning subgraph of Γ with δ(G) ≥
(
(k−1)/k+γ

)
pn. Let H be any graph on

n vertices with ∆(H) ≤ ∆, and let L be a labelling of V (H) of bandwidth at most βn whose
first βn vertices include C max

{
p−2, p−1 log n

}
vertices that are not contained in any triangles

or four-cycles of H, and such that there exists a (k+ 1)-colouring that is (z, β)-zero-free with
respect to L, and the colour zero is not assigned to the first

√
βn vertices. Furthermore, let

τ be a D-degeneracy order of V (H).

Next, as in the proof of Theorem 3.3, we apply Lemma 3.4 to G, obtaining a partition of
V (G) with the following properties:

(G1a) n
4kr ≤ |Vi,j | ≤ 4n

kr for every i ∈ [r] and j ∈ [k],

(G2a) V is (ε, d, p)G-regular on Rkr and (ε, d, p)G-super-regular on Kk
r ,

(G3a) both
(
NΓ(v, Vi,j), Vi′,j′

)
and

(
NΓ(v, Vi,j), NΓ(v, Vi′,j′)

)
are (ε, d, p)G-regular pairs for

every {(i, j), (i′, j′)} ∈ E(Rkr ) and v ∈ V \ V0, and

(G4a) |NΓ(v, Vi,j)| = (1± ε)p|Vi,j | for every i ∈ [r], j ∈ [k] and every v ∈ V \ V0.

If D = 1, we ask only for the following weaker condition in place of (G3a):

(G3a’)
(
NΓ(v, Vi,j), Vi′,j′

)
is an (ε, d, p)G-regular pair for every

{
(i, j), (i′, j′)

}
∈ E(Rkr )

and v ∈ V \ V0.

Thus, for D = 1 we have for the size of the exceptional set |V0| ≤ C∗p−1 log n, whereas for
D ≥ 2 we have |V0| ≤ C∗max

{
p−2, p−1 log n

}
.

As in the proof of Theorem 3.3, for every i ∈ [r] and j ∈ [k] we choose

mi,j ∈
{
|Vi,j |+

⌊
1
kr |V0|

⌋
, |Vi,j |+

⌈
1
kr |V0|

⌉ }

such that {mi,j}i∈[r],j∈[k] forms a k-equitable integer partition of n.
Next, we apply Lemma 3.5 to obtain a partition of V (H). We use the same inputs as in

the proof of Theorem 3.3. The result is a function f : V (H) → V (Rkr ) and a special set X
with the following properties:

(H1a) mi,j − 1
10ξn ≤ |Wi,j | ≤ mi,j + 1

10ξn,

(H2a) |X| ≤ ξn,

(H3a) {f(x), f(y)} ∈ E(Rkr ) for every {x, y} ∈ E(H),

(H4a) y, z ∈ ⋃j′∈[k] f
−1(i, j′) for every x ∈ f−1(i, j) \X and {x, y}, {y, z} ∈ E(H), and

(H5a) f(x) =
(
1, σ(x)

)
for every x in the first

√
βn vertices of L.

(H6a) |{x ∈ f−1(i, j) : deg(x) ≤ 2D}| ≥ 1
24D |f−1(i, j)|.

We now continue following the proof of Theorem 3.3, using Lemma 2.19 with input εµ
and D + 1 (rather than εµ and ∆), to choose a set S of size µn that satisfies for all vertices
u1, . . . , u` of V (G) with 1 ≤ ` ≤ D + 1 the following:

∣∣∣S ∩
⋂

1≤i′≤`
NΓ(ui′)

∣∣∣ = µ
∣∣∣
⋂

1≤i′≤`
NΓ(ui′)

∣∣∣± µ
(
ε
∣∣∣
⋂

1≤i′≤`
NΓ(ui′)

∣∣∣+ p`n
)
,

|S ∩NG(v)| = µ|NG(v)| ± 2µε|NG(v)| and
∣∣S ∩ Vi,j

∣∣ ≤ 2µ|Vi,j |.
(3.16)



82 Chapter 3. The bandwidth theorem in random and pseudorandom graphs

We use the same pre-embedding Algorithm 3, with the exception that we choose vertices
at line 2 differently. As before, given vt+1 ∈ V0 \ im(φt) we use Claim 3.14 to find a set
W ⊆ NG(vt+1) of size at least µ2pn/(8r) and an index it+1 ∈ [r] such that for each w ∈ W
we have

∣∣NG(w, Vit+1,j)
∣∣ ≥ dp|Vii+1,j | for each j ∈ [k]. As before, for each t′ ∈ [t + 1]

and each z ∈ V (H) at distance at least 2 and at most it′ + 1 from xt′ , we set f∗(z) as
f∗(z) =

(
it + 2 − dist(xt, z), j

)
if j ∈ [k] such that f(z) = (1, j). For all other z ∈ V (H) we

set f∗(z) = f(z).
Rather than applying Lemma 3.6, we let w1, . . . , w` be distinct vertices of W such that,

if φt+1 is as in Algorithm 3, they satisfy the following, where we let Jx := φt+1

(
NH(x) ∩

dom(φt+1)
)

for each x ∈ V (H) \ dom(φt+1):

(G5a)
∣∣⋂

u∈Jx NG(u, Vf∗(x))
∣∣ ≥ αp|Jx||Vf∗(x)| for each x ∈ V (H) \ dom(φt+1),

(G6a)
∣∣⋂

u∈Jx NΓ(u, Vf∗(x))
∣∣ = (1± ε∗)p|Jx||Vf∗(x)| for each x ∈ V (H) \ dom(φt+1),

(G7a)
(⋂

u∈Jx NΓ(u, Vf∗(x)),
⋂
v∈Jy NΓ(v, Vf∗(y))

)
is an (ε∗, d, p)G-regular pair for all x, y ∈

V (H) \ dom(φt+1) with {x, y} ∈ E(H), and

(G8a)
∣∣⋂

u∈Jx NΓ(u)
∣∣ ≤ (1 + ε∗)p|Jx|n for each x ∈ V (H) \ dom(φt+1) .

Let us justify that this is possible. We choose the vertices w1, . . . , w` successively. Since
x1, . . . , xt+1 are not contained in any triangle or four-cycle of H, we have |Jx| ≤ 1 for each x ∈
V (H) \ dom(φt+1). Hence, Property (G5a) is satisfied. By Proposition 3.8, Properties (G6a)
and (G8a) are satisfied for all but at most 2C∗kr1p

−1 log n vertices of W . It remains to show
that we can obtain (G7a), which we do as follows. For s ∈ [`], when we come to choose ws,
we insist that for any

{
(i, j), (i′, j′)

}
∈ E(Rkr ), the following hold. First,

(
NΓ(ws, Vi,j), Vi′,j′

)

is (ε1, d, p)G-regular. Second,
(
NΓ(ws, Vi,j), NΓ(ws, Vi′,j′)

)
is (ε∗, d, p)G-regular. Third, for

each 1 ≤ s′ ≤ s − 1,
(
NΓ(ws, Vi,j), NΓ(w′s, Vi′,j′)

)
is (ε∗, d, p)G-regular. The conditions of

respectively Lemma 2.10, Lemma 2.11, and Lemma 2.10 are in each case satisfied (in the last
case by choice of wt) and thus in total at most 3C∗k2r2

1 max{p−2, p−1 log n} vertices of W
are prohibited. Since 5C∗k2r2

1 max{p−2, p−1 log n} < |W |/2 < ` by choice of C, at each step
there is a valid choice of ws. Since for each x ∈ V (H) \ dom(φt+1) we have |Jx| ≤ 1, this
construction guarantees (G7a).

We now return to following the proof of Theorem 3.3. Let tf be the time at which
Algorithm 3 terminates. We obtain the partition V ′ = {V ′i,j}i∈[r],j∈[k] by removing the images
of pre-embedded vertices, and V ′′ = {V ′′i,j}i∈[r],j∈[k] with the following properties (as in the
proof of Theorem 3.3) by applying Lemma 3.7. We have

(G1c) n
8kr ≤ |V ′′i,j | ≤ 8n

kr for every i ∈ [r] and j ∈ [k],

(G2c) V ′′ is (4ε∗, d, p)G-regular on Rkr and (4ε∗, d, p)G-super-regular on Kk
r ,

(G3c) both
(
NΓ(v, V ′′i,j), V

′′
i′,j′
)

and
(
NΓ(v, V ′′i,j), NΓ(v, V ′′i′,j′)

)
are (4ε∗, d, p)G-regular pairs

for every {(i, j), (i′, j′)} ∈ E(Rkr ) and v ∈ V \ V0,

(G4c) we have (1 − 4ε)p|V ′′i,j | ≤ |NΓ(v, V ′′i,j)| ≤ (1 + 4ε)p|V ′′i,j | for every i ∈ [r], j ∈ [k] and
every v ∈ V \ V0.

(G5c)
∣∣V ′′f∗(x) ∩

⋂
u∈Jx NG(u)

∣∣ ≥ 1
4αp

|Jx||V ′′f∗(x)|,

(G6c)
∣∣V ′′f∗(x) ∩

⋂
u∈Jx NΓ(u)

∣∣ = (1± 4ε∗)p|Jx||V ′f∗(x)|, and
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(G7c)
(
V ′′f∗(x) ∩

⋂
u∈Jx NΓ(u), V ′′f∗(y) ∩

⋂
v∈Jy NΓ(v)

)
is an (4ε∗, d, p)G-regular pair for each

edge {x, y} ∈ E(H ′).

Note that Property (B5’) of Lemma 3.7 may be trivial, that is, the error term C∗ log n
may dominate the main term when s is large. However, we only require it for s = 1 to
obtain (G1c)–(G7c).

Finally, we are ready to apply Theorem 3.18 to complete the embedding. We define (I,J )

as in the proof of Theorem 3.3. However, we let W̃i,j consist of the vertices of W ′i,j \X whose

degree is at most 2D ≤ Dbuf . By (H6a) there are at least |W ′i,j |/(100D) of these, so that W̃ is

a (ϑ,Kk
r )-buffer, giving (DBUL1). Now (DBUL2) and (DBUL3) follow from (G2c) and (G3c).

Finally, (I,J ) is a (ρ, α/4,∆,∆)-restriction pair, giving (DBUL4), exactly as in the proof of
Theorem 3.3. However now we need to give an order τ ′ on V (H ′) and a set Xe ⊆ V (H ′).
The former is simply the restriction of τ to V (H ′), and the set Xe consists of all vertices
x ∈ V (H) with |Jx| > 0. We now justify that the remaining conditions of Theorem 3.18 are
satisfied.

First, we claim |Xe| ≤ ∆2|V0| ≤ εpmaxx∈Xe πτ
′
(x)n/r1. Observe that πτ

′
(x) ≤ πτ (x)+|Jx| ≤

D + 1. For D = 1, we have |V0| ≤ C∗p−1 log n, and by choice of C the desired inequality
follows. For D ≥ 2, we have |V0| ≤ C∗max{p−2, p−1 log n, and again by choice of C we have
the desired inequality. Now observe that for any vertex x of H ′ we have πτ

′
(x) ≤ D + 1.

If D = 1, then H ′ contains no triangles, and hence (ORD1) with D′ = D + 2 is satisfied.
If D ≥ 2, then we have D′ = D + 3, so that again (ORD1) is satisfied. Next, if x 6∈ Xe

then πτ
′
(x) ≤ D, so that (ORD2) holds. If x ∈ N(W̃i,j) for some (i, j) ∈ Rkr , then by choice

x 6∈ Xe, and thus πτ
′
(x) ≤ D. Since Dbuf = 2D + 1, if D = 1 then H contains no triangles

and (ORD3) holds, while if D ≥ 2 then Dbuf ≥ D + 3 and (ORD3) holds. Finally, observe
that if x 6∈ Xe then πτ

′
(x) ≤ D, and since Dbuf = 2D + 1 we obtain (ORD4).

We can thus apply Theorem 3.18 to embed H ′ into G′, completing the embedding of H
into G as desired.

The proof of Theorem 3.15 can be deduced from Theorem 3.17 verbatim as Theorem 3.1
from Theorem 3.3. Therefore we omit it here.

3.3 The bandwidth theorem in pseudorandom graphs

In this section we prove an analogue of Theorem 3.1 for bijumbled graphs. Recall that a
graph G is said to be (p, ν)-bijumbled if for all disjoint sets X,Y ⊆ V (G) it holds that∣∣e(X,Y )− p|X||Y |

∣∣ ≤ ν
√
|X||Y |. Bijumbled graphs are so-called pseudorandom graph since

their edge distribution resembles that of a random graph by definition. Indeed, the random
graph G(n, p) is a.a.s. (p,

√
pn)-bijumbled (see e.g. [10]).

Recently, it was proved by Allen, Böttcher, Hàn, Kohayakawa, and Person [9] that for
every ∆ ≥ 2 there exists a constant c > 0 such that for all p > 0 every (p, ν)-bijumbled graph
on n vertices with minimum degree at least pn/2 contains a copy of every n-vertex graph
with maximum degree at most ∆ whenever ν ≤ cpmax{4,(3∆+1)/2}n. In this section we prove
the following theorem, which assures that such bijumbled graphs are robust with respect to
the containment of all maximum degree bounded graphs with sublinear bandwidth and with
a certain amount of vertices not in triangles.
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Theorem 3.19. For each γ > 0, ∆ ≥ 2, and k ≥ 1, there exists a constant c > 0 such that
the following holds for any p > 0.

Given ν ≤ cpmax{4,(3∆+1)/2}n, let Γ be a
(
p, ν
)
-bijumbled graph and let G be a spanning

subgraph of Γ with δ(G) ≥
(
(k− 1)/k+ γ

)
pn. Suppose further that H is a k-colourable graph

on n vertices with ∆(H) ≤ ∆, bandwidth at most cn and with at least c−1p−6ν2n−1 vertices
not contained in any triangle of H. Then G contains a copy of H.

Once again, Theorem 3.19 is a consequence of the following more general theorem, in
which a few vertices of H are allowed to receive an additional (k + 1)-st colour.

Theorem 3.20. For each γ > 0, ∆ ≥ 2, and k ≥ 1, there exist c > 0 and z > 0 such that
the following holds for any p > 0.

Given ν ≤ cpmax{4,(3∆+1)/2}n, suppose Γ is a
(
p, ν
)
-bijumbled graph, G is a spanning

subgraph of Γ with δ(G) ≥
(
(k− 1)/k+ γ

)
pn, and H is a graph on n vertices with ∆(H) ≤ ∆

and bandwidth at most cn. Suppose further that H has a labelling L of its vertex set of
bandwidth at most cn, a (k+ 1)-colouring that is (z, c)-zero-free with respect to L, and where
the first

√
cn vertices in L are not given colour zero, and the first cn vertices in L include

c−1p−6ν2n−1 vertices in V (H) that are not contained in any triangles of H. Then G contains
a copy of H.

The proof of Theorem 3.20 is again a modification of that of Theorem 3.3 and uses a
blow-up lemma for bijumbled graphs by Allen, Böttcher, Hàn, Kohayakawa, and Person.
In Subsection 3.3.1 we state this blow-up lemma as well as regularity inheritance lemmas
for bijumbled graphs. We also prove an analogous version of Proposition 3.8 for bijumbled
graphs in that subsection. Then in Subsection 3.3.2 we state bijumbled graph versions of
the lemma for G (Lemma 3.4) and of the common neighbourhood lemma (Lemma 3.6) and
sketch their proofs, which are modifications of the proofs of Lemmas 3.4 and 3.6. Finally, in
Subsection 3.3.3 we present the proofs of Theorems 3.19 and 3.20.

3.3.1 Preliminaries

Since we are dealing with bijumbled graphs, we need to work with fully-regular pairs rather
than with regular pairs. In order to use this concept and to work with bijumbled graphs, we
need versions of Theorem 2.9, Lemmas 2.10 and 2.11, and Proposition 3.8, for fully-regular
pairs and where Γ is a bijumbled graph rather than a random graph. We also require the
following proposition, which gives a lower bound on the value ν for a (p, ν)-bijumbled graph
with p > 0.

Proposition 3.21. For every integer n and 16/n < p < 1 − 16/n there does not exist a
(p, ν)-bijumbled n-vertex graph with ν ≤ min

{√
pn/32,

√
(1− p)n/32

}
.

Proof. Suppose that Γ is a (p, ν)-bijumbled graph on n vertices with p ≤ 1/2. If Γ contains
n/2 vertices of degree at least 4pn, then we have e(Γ) ≥ pn2- Letting (A,B) be a maximum
cut of Γ, by bijumbledness we have

1
2pn

2 ≤ e(A,B) ≤ p|A||B|+ ν
√
|A||B| ≤ 1

4pn
2 + 1

2νn ,

and thus ν ≥ pn/2 ≥
√
pn/32.
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If, on the other hand, Γ contains at least n/2 vertices of degree less than 4pn, then let
A be a set of 1/(8p) such vertices, and B a set of n/4 vertices with no neighbours in A. By
bijumbledness, we have

0 ≥ p|A||B| − ν
√
|A||B| = n

32 − ν
√
n/(32p)

and thus ν ≥
√
pn/32. The same argument applied to the complement Γ of Γ proves the case

when p ≥ 1/2.

The following sparse blow-up lemma for bijumbled graphs was proved by Allen, Böttcher,
Hàn, Kohayakawa, and Person [9].

Theorem 3.22 (Blow-up lemma for bijumbled graphs, [9]). For all ∆, ∆R′, ∆J , ϑ, ζ, d > 0,
κ > 1 there exist ε, ρ > 0 such that for all r1 ≥ 1 there is a constant c > 0 such that if p > 0
and Γ is an n-vertex graph that is (p, cp(3∆+1)/2n)-bijumbled, the following holds.

Let R be a graph on r ≤ r1 vertices and let R′ ⊆ R be a spanning subgraph with ∆(R′) ≤
∆R′. Let H and G ⊆ Γ be graphs given with κ-balanced, size-compatible vertex partitions
W = {Wi}i∈[r] and V = {Vi}i∈[r] with parts of size at least m ≥ n/(κr1). Let I = {Ix}x∈V (H)

be a family of image restrictions and J = {Jx}x∈V (H) be a family of restricting vertices.
Suppose that

(PBUL1) H satisfies ∆(H) ≤ ∆, and for every edge {x, y} ∈ E(H) with x ∈Wi and y ∈Wj

we have {i, j} ∈ E(R), and W̃ = {W̃i}i∈[r] is an (ϑ,R′)-buffer for H,

(PBUL2) (G,V) is an (ε, d, p)-fully-regular R-partition, which is (ε, d, p)-super-fully-regular
on R′, and has one-sided inheritance,

(PBUL3) for every vertex x ∈ W̃i and every triangle {x, y, z} in H with y ∈Wj and z ∈Wk,
the set Vi has two-sided inheritance with respect to Vj and Vk, and

(PBUL4) I and J form a (ρp∆, ζ,∆,∆J)-restriction pair.

Then there is an embedding ψ : V (H)→ V (G) such that ψ(x) ∈ Ix for each x ∈ H.

There are three main differences between Theorem 3.22 and the blow-up lemma for sparse
random graphs (Theorem 2.9). First, Γ is a bijumbled graph rather than a random graph.
Second, ‘regular’ is replaced by ‘fully-regular’. Third, the number of vertices we may image
restrict is smaller than in Theorem 2.9. We will see that these last two restrictions do not
affect our proof substantially.

Next, we need the following regularity inheritance lemmas for bijumbled graphs. The first
one deals with one-sided regularity inheritance.

Lemma 3.23 (Allen, Böttcher, Skokan, Stein [12]). For each ε′, d > 0 there are constants
ε, c > 0 such that for all 0 < p < 1 the following holds. Let Γ be a graph and G ⊆ Γ be a
subgraph of Γ. Let further X,Y, Z be disjoint vertex sets in V (Γ). Assume that

• (X,Z) is (p, cp3/2
√
|X||Z|)-bijumbled in Γ,

• (X,Y ) is
(
p, cp2

(
log2

1
p

)−1/2√|X||Y |
)

-bijumbled in Γ, and

• (X,Y ) is (ε, d, p)G-fully-regular.
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Then, for all but at most ε′|Z| vertices z of Z, the pair
(
NΓ(z) ∩ X,Y

)
is (ε′, d, p)G-fully-

regular.

The following lemma treats the case of two-sided regularity inheritance.

Lemma 3.24 (Allen, Böttcher, Skokan, Stein [12]). For each ε′, d > 0 there are constants
ε, c > 0 such that for all 0 < p < 1 the following holds. Let Γ be a graph and G ⊆ Γ be a
subgraph of Γ. Let further X,Y, Z be disjoint vertex sets in V (Γ). Assume that

• (X,Z) is (p, cp2
√
|X||Z|)-bijumbled in Γ,

• (Y,Z) is (p, cp3
√
|Y ||Z|)-bijumbled in Γ,

• (X,Y ) is (p, cp5/2
(

log2
1
p

)− 1
2
√
|X||Y |)-bijumbled in Γ, and

• (X,Y ) is (ε, d, p)G-fully-regular.

Then, for all but at most ε′|Z| vertices z of Z, the pair
(
NΓ(z)∩X,NΓ(z)∩ Y

)
is (ε′, d, p)G-

fully-regular.

The following two lemmas, which more closely resemble Lemmas 2.10 and 2.11, are corol-
laries of Lemmas 3.23 and 3.24.

Lemma 3.25 (One-sided regularity inheritance for bijumbled graphs). For each εOSRIL, αOSRIL >
0 there exist ε0 > 0 and C > 0 such that for any 0 < ε < ε0 and 0 < p < 1, if Γ is any (p, ν)-
bijumbled graph the following holds. For any disjoint sets X and Y in V (Γ) with |X| ≥ Cp−3ν
and |Y | ≥ Cp−2ν, and any subgraph G ⊆ Γ such that (X,Y ) is (ε, αOSRIL, p)G-regular, there
are at most Cp−3ν2|X|−1 vertices z ∈ V (Γ) such that (X ∩NΓ(z), Y ) is not (εOSRIL, αOSRIL, p)G-
regular.

Lemma 3.26 (Two-sided regularity inheritance for bijumbled graphs). For each εTSRIL, αTSRIL >
0 there exist ε0 > 0 and C > 0 such that for any 0 < ε < ε0 and 0 < p < 1, if Γ is any
(p, ν)-bijumbled graph the following holds. For any disjoint sets X and Y in V (Γ) with
|X|, |Y | ≥ Cp−3ν, and any subgraph G ⊆ Γ such that (X,Y ) is (ε, αTSRIL, p)G-regular, there
are at most Cp−6ν2/min

{
|X|, |Y |

}
vertices z ∈ V (Γ) such that

(
X ∩ NΓ(z), Y ∩ NΓ(z)

)
is

not (εTSRIL, αTSRIL, p)G-regular.

Note that the bijumbledness requirements of this lemma are such that if Y and Z are sets
of size Θ(n), then X must have size Ω

(
p−6ν2n−1

)
. This will be the reason for the requirement

of Theorem 3.20 on the number of vertices of H that are not allowed to be in triangles.
Finally, we provide a version of Proposition 3.8 for bijumbled graphs. The proof is similar

to that of Proposition 3.8.

Proposition 3.27. For each ε > 0 there exists a constant C > 0 such that for every p > 0,
any graph Γ that is (p, ν)-bijumbled has the following property. For any disjoint sets X,Y ⊆
V (Γ) with |X|, |Y | ≥ ε−1p−1ν, we have e(X,Y ) = (1 ± ε)p|X||Y |, and e(X) ≤ 2p|X|2.
Furthermore, for every Y ⊆ V (Γ) with |Y | ≥ Cp−1ν, the number of vertices v ∈ V (Γ) with∣∣|NΓ(v, Y )| − p|Y |

∣∣ > εp|Y | is at most Cp−2ν2|Y |−1.

Proof. Given ε > 0, set C ′ = 100/ε2 and C = 200C ′/ε. Suppose Γ is (p, ν)-bijumbled.
Given disjoint subsets X,Y ⊆ V (Γ) with |X|, |Y | ≥ ε−1p−1ν, by the (p, ν)-bijumbledness

of Γ we have e(X,Y ) = p|X|||Y | ± ν
√
|X||Y |. Hence we need to verify that ν

√
|X||Y | ≤

εp|X||Y |. This follows directly from the lower bounds on |X| and |Y |.



3.3. The bandwidth theorem in pseudorandom graphs 87

For the second property, let (A,B) be a maximum cut of X. We have e(A,B) ≥ e(X)/2,
and |A||B| ≤ |X|2/4. By the (p, ν)-bijumbledness of Γ we conclude

e(X) ≤ 2e(A,B) ≤ 2p|A||B|+ 2ν
√
|A||B| ≤ 1

2p|X|2 + ν|X|.

Thus it is enough to verify ν|X| ≤ p|X|2, which follows from the lower bound on |X|.
Now let Y ⊆ V (Γ) have size at least Cp−1ν. We first show that there are at most

C ′p−2ν2|Y |−1 vertices in Γ that have each less than (1− ε)p|Y | neighbours in Y . If this were
false, then we could choose a set X of C ′p−2ν2|Y |−1 vertices in Γ that have each less than
(1 − ε)p|Y | neighbours in Y . Since by choice of C we have (1 − ε)p|Y | ≤ (1 − ε/2)p|Y \X|,
we see that e(X,Y \X) < (1− ε/2)p|X||Y \X|. Since

ν
√
|X||Y | = ν

√
C ′p−2ν2 =

√
C ′ν2p−1 < ε

2p|X||Y \X|

this is a contradiction to the (p, ν)-bijumbleness of Γ.
Next we show that there are at most 2C ′p−2ν2|Y |−1 vertices of Γ that have each more

than (1 + ε)p|Y | neighbours in Y . Again, if this is not the case we can let X be a set of
2C ′p−2ν2|Y |−1 vertices of Γ each with more than (1 + ε)p|Y | neighbours in Y .

If there are more than |X|/2 vertices of X with more than εp|Y |/2 neighbours in X,
then we have e(X) ≥ εp|X||Y |/8. Taking a maximum cut (A,B) of X, we have e(A,B) ≥
εp|X||Y |/16, and by (p, ν)-bijumbledness of Γ we therefore have

1
16εp|X||Y | ≤ p|A||B|+ ν

√
|A||B| ≤ 1

4p|X|2 + 1
2ν|X| ,

and since |X| ≤ ε|Y |/100, we conclude |Y | ≤ 100ε−1p−1ν, a contradiction to the choice of C.
We conclude that there are |X|/2 vertices X ′ of X have at most εp|Y |/2 neighbours in

X, and hence at least (1 + ε/2)p|Y | neighbours in Y \ X. By the (p, ν)-bijumbledness of Γ
we have

1
2 |X|

(
1 + ε

2

)
p|Y | ≤ e(X ′, Y \X) ≤ 1

2p|X||Y |+ ν
√

1
2p|X||Y | ,

from which we have εC ′p−1ν2 ≤ 2
√
C ′ν2p−1, a contradiction to the choice of C ′.

3.3.2 Main lemmas

The idea of the proof of Theorem 3.20 is essentially the same as the one of the proof of
Theorem 3.3. The lemma for H (Lemma 3.5) and the balancing lemma (Lemma 3.7) can
be adopted as they stand. In place of the sparse blow-up lemma (Theorem 2.9) we use the
version for pseudorandom graphs that we formulated in the previous subsection. Merely the
lemma for G and the common neighbourhood lemma have to be modified for our needs and
the proof of the theorem needs to be adjusted.

Briefly, the modifications that we make are replacing ‘regular’ with ‘fully-regular’ in the
proofs, applying the lemmas for bijumbled graphs from above instead of their analogues for
random graphs, and recalculating some error bounds. We start with stating and proving the
bijumbled graph version of the lemma for G.

Lemma 3.28 (Lemma for G, bijumbled graph version). For each γ > 0 and integers k ≥ 2
and r0 ≥ 1 there exists d > 0 such that for every ε ∈ (0, 1/(2k)) there exist r1 ≥ 1 and
c, C∗ > 0 such that the following holds for any n-vertex (p, ν)-bijumbled graph Γ with ν ≤ cp3n
and p > 0.
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Let G = (V,E) be a spanning subgraph of Γ with δ(G) ≥
(
(k − 1)/k + γ

)
pn. Then there

exists an integer r with r0 ≤ kr ≤ r1, a subset V0 ⊆ V with |V0| ≤ C∗p−6ν2n−1, a k-equitable
vertex partition V = {Vi,j}i∈[r],j∈[k] of V (G) \ V0, and a graph Rkr on the vertex set [r] × [k]

with Kk
r ⊆ Bk

r ⊆ Rkr , with δ(Rkr ) ≥
(
(k − 1)/k + γ/2

)
kr, and such that the following is true.

(G1) We have n
4kr ≤ |Vi,j | ≤ 4n

kr for every i ∈ [r] and j ∈ [k],

(G2) V is (ε, d, p)G-fully-regular on Rkr and (ε, d, p)G-super-fully-regular on Kk
r ,

(G3)
(
NΓ(v, Vi,j), Vi′,j′

)
and

(
NΓ(v′, Vi,j), NΓ(v′, Vi′,j′)

)
are (ε, d, p)G-fully-regular pairs for

every {(i, j), (i′, j′)} ∈ E(Rkr ), v ∈ V \ (V0 ∪ Vi,j), and v′ ∈ V \ (V0 ∪ Vi,j ∪ Vi′,j′),
(G4) we have (1 − ε)p|Vi,j | ≤ |NΓ(v, Vi,j)| ≤ (1 + ε)p|Vi,j | for every i ∈ [r], j ∈ [k] and

every v ∈ V \ V0.

Observe that apart from the replacement of ‘regular’ with ‘fully-regular’, and ‘random
graph’ with ‘bijumbled graph’, the difference between Lemma 3.4 and Lemma 3.28 is that V0

may now be much larger. Nevertheless, the proof is very similar to the one of Lemma 3.4.
Since the proof of Lemma 3.4 is quite long, but the modifications that need to be made are
only a few, we concentrate on explaining the changes.

Sketch proof of Lemma 3.28. We begin the proof as in that of Lemma 3.4, setting up the
constants in the same way, with the exception that we replace Lemmas 2.10 and 2.11 with
Lemmas 3.25 and 3.26, respectively, and Proposition 3.8 with Proposition 3.27. We require
C to be the maximum of the the C-outputs of Lemmas 3.25 and 3.26, and Proposition 3.27.
We define

C∗ = 100k2r3
1C/ε

∗

as in the proof of Lemma 3.4, and set

c = 10−5(ε∗)3/(k3r3
1C
∗) .

We now assume that Γ is (p, ν)-bijumbled with ν ≤ cp3n rather thanG(n, p). In particular,
by choice of c this implies that

10k2r2
1Cp

−2ν2n−1 ≤ ε∗pn and 10k2r3
1Cp

−6ν2n−1 ≤ ε∗n . (3.17)

As a next step, we obtain a regular partition of V (G) with a reduced graph containing
Bk
r , exactly as in the proof of Lemma 3.4, using Proposition 3.27 in place of Proposition 3.8

to justify the use of Lemma 2.6. Here we need to use the fact that the regular pairs re-
turned by Lemma 2.6 are fully-regular. The next place where we need to change something
occurs in defining Z1. In the definition of Z1 we replace ‘regular’ with ‘fully-regular’. Using
Lemmas 3.25 and 3.26, and Proposition 3.8 with Proposition 3.27, we replace Equation (3.1)
with

|Z1| ≤ kr2
1Cp

−6ν2n−1 + kr2
1Cp

−3ν2n−1 + 2kr1Cp
−2ν2n−1 ≤ 4kr2

1Cp
−6ν2n−1

(3.17)

≤ ε∗
kr1
n .

Note that the final conclusion on the size of Z1 is exactly as in Equation (3.1).
We can now continue following the proof of Lemma 3.4 until we come to estimate the size

of Z2, where we use Proposition 3.27 and replace Equation (3.2) with

|Z2| ≤ r1 + kr1Cp
−2ν2n−1

(3.17)

≤ ε∗
kr1
pn .
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Again, the final conclusion is as in Equation (3.2).

The next change we have to make is in estimating the size of V0. We now have

|V0| ≤ |Z1|+ |Z2| ≤ 4kr2
1Cp

−6ν2n−1 + r1 + kr1Cp
−2ν2n−1 ≤ C∗p−6ν2n−1 .

Finally, we need to assure that we have fully-regular pairs in Properties (G2) and (G3)
rather than regular pairs. All other conclusions work verbatim.

We obtained fully-regular pairs from Lemma 2.6 and in the definition of Z1, so that we
only need Proposition 2.4 to return fully-regular pairs. We always apply Proposition 2.4 to
pairs of sets of size at least ε∗pn/r1, altering them by a factor ε∗. Now Proposition 3.27
shows that if X and Y are disjoint subsets of Γ with |X|, |Y | ≤ (ε∗p)−1ν, then eΓ(X,Y ) ≤
(1 + ε∗)p|X||Y |, as required. By choice of c, we have (ε∗p)−1ν ≤ (ε∗)2pn/r1, so that the
condition of Proposition 2.4 to return fully-regular pairs is satisfied.

Let us now turn to the second main lemma, that needs to be modified. The statement of
the common neighbourhood lemma (Lemma 3.6) only changes by a replacement of ‘regular’
with ‘fully-regular’ and G(n, p) with a bijumbled graph. However, the proof changes slightly
more as the error bounds in the bijumbled graph versions of various lemmas are different.

Lemma 3.29 (Common neighbourhood lemma, bijumbled graph version). For each d > 0,
k ≥ 1, and ∆ ≥ 2 there exists α > 0 such that for every ε∗ ∈ (0, 1) there exists ε0 > 0 such
that for every r ≥ 1 and every 0 < ε ≤ ε0 there exists c > 0 such that the following is true.
For any n-vertex (p, ν)-bijumbled graph Γ with ν ≤ cp∆+1n and p > 0 the following holds.

Let G = (V,E) be a (not necessarily spanning) subgraph of Γ and {Vi \W}i∈[k] ∪ {W} a
vertex partition of a subset of V such that the following is true for all distinct i, i′ ∈ [k].

(V1) n
4kr ≤ |Vi| ≤ 4n

kr ,

(V2) (Vi, Vi′) is (ε, d, p)G-fully-regular,

(V3) |W | = εpn
16kr2 , and

(V4) |NG(w, Vi)| ≥ dp|Vi| for every w ∈W .

Then there exists a tuple (w1, . . . , w∆) ∈
(
W
∆

)
such that for every Λ,Λ∗ ⊆ [∆], and all distinct

i, i′ ∈ [k] we have

(W1) |⋂j∈ΛNG(wj , Vi)| ≥ αp|Λ||Vi|,

(W2) |⋂j∈ΛNΓ(wj)| ≤ (1 + ε∗)p|Λ|n,

(W3) (1− ε∗)p|Λ||Vi| ≤ |
⋂
j∈ΛNΓ(wj , Vi)| ≤ (1 + ε∗)p|Λ||Vi|, and

(W4)
(⋂

j∈ΛNΓ(wj , Vi),
⋂
j∗∈Λ∗ NΓ(wj∗ , Vi′)

)
is (ε∗, d, p)G-fully-regular if |Λ|, |Λ∗| < ∆

and either Λ ∩ Λ∗ = ∅ or ∆ ≥ 3 or both.

The main modifications for the proof of Lemma 3.29 compared to the proof of Lemma 3.6
are to replace Lemmas 2.10 and 2.11 with Lemmas 3.25 and 3.26, and Proposition 3.8 with
Proposition 3.27, as well as to replace all occurrences of ‘regular’ with ‘fully-regular’. Again,
we only state and explain the changes.
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Sketch proof of Lemma 3.29. We begin the proof by setting up the constants as in the proof
of Lemma 3.6, but appealing to Lemmas 3.25 and 3.26, and Proposition 3.27, rather than
their random graph equivalents Lemmas 2.10 and 2.11, and Proposition 3.8.

Furthermore, we set
c = 10−202−2∆ε5(Ct1kr)

−4.

Suppose that Γ is an n-vertex (p, ν)-bijumbled graph with ν ≤ cp∆+2n rather than a
random graph.

In order to apply Lemma 2.5 to G, we need to observe that its condition is satisfied
by Proposition 3.27 and because ε−1p−1ν < 10−10ε4pn/(k4r4) by choice of c. The same
inequality justifies further the use of Proposition 3.27 to find the desired set W ′. Estimating
the size of W ′, we replace (3.11) with

|W ′| ≥ 10−11 ε4pn

t1k4r4
≥ 105Cp−2ν , (3.18)

where the final inequality is by choice of c.
We only need to change the statement of Claim 3.11 by replacing ‘regular’ with ‘fully-

regular’ in Properties (L1) and (L6). However we need to make more changes to its inductive
proof. The base case remains trivial. In the induction step, we need to replace (3.12) with

∣∣ ⋂

j∈Λ

NΓ(wj , V
′
i )
∣∣ ≥ (1− ε0)∆−2p∆−2 n

8tr
≥ 105Cp−4ν ,

where the final inequality is by choice of c. This, together with |W ′| ≥ 105Cp−2ν from (3.18),
justifies that we can apply Lemma 3.25. We obtain that at most 2∆k2Cp−3ν2(8krt1)/n
vertices w in W violate (L1).

The estimate on the number of vertices violating (L2) does not change.
For (L4), we need to observe that

∣∣⋃
j∈ΛNΓ(wj , V

′
i )
∣∣ = (1±ε0)|Λ|p|Λ||V ′i |, and in particular

by choice of ε0 and c this quantity is at least Cp−1ν. Then Proposition 3.27 then gives that at
most 2∆+1kCp−2ν2(8krt1)/n vertices destroy (L4), and the same calculation gives the same
bound for the number of vertices violating (L3) and (L5).

Finally, for (L6), we need to use the inequality (1− ε0)∆−1p∆−1n/(4kr) ≥ Cp−2ν, which
holds by choice of c, to justify that Lemmas 3.25 and 3.26 can be applied. If ∆ = 2, then we
only use Lemma 3.25, with an input regular pair with both sets having size at least n/(4kr).
Hence, the number of vertices violating (L6) in this case is at most 22∆k2Cp−3ν2(4kr)/n.
If ∆ ≥ 3, we use both Lemma 3.25 and Lemma 3.26. The set playing the role of X in
Lemma 3.25 has size at least (1− ε0)∆−2p∆−2n/(4kr), while we apply Lemma 3.26 with both
sets of the regular pair having at least this size. As a consequence, the number of vertices
violating (L6) is at most 22∆+1k2Cp−6ν2(1− ε0)2−∆p2−∆(4kr)/n for the case ∆ ≥ 3.

Putting this together, for the case ∆ = 2 we replace (3.13) with the following upper bound
for the number of vertices w ∈W ′ that cannot be chosen as w`+1.

2∆k2Cp−3ν2 8krt1
n + 2∆kε∗∗∆ |W ′|+ 3 · 2∆+1kCp−2ν2 8krt1

n + 22∆k2Cp−3ν2 4kr
n ≤

|W ′|
2 ,

where the latter inequality is by choice of c and ε∗∗∆ . This completes the induction step for
∆ = 2. For ∆ ≥ 3, we replace the upper bound (3.14) with

2∆k2Cp−3ν2 8krt1
n + 2∆kε∗∗∆ |W ′|+ 3 · 2∆+1kCp−2ν2 8krt1

n +

22∆+1k2Cp−6ν2(1− ε0)2−∆p2−∆ 4kr
n ≤

|W ′|
2 ,
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where we used the choice of c and ε0 as well as ε∗∗∆ . This completes the induction step for
∆ ≥ 3.

Therefore, the modified Claim 3.11 holds, which implies the statement of Lemma 3.29 as
in the proof of Lemma 3.6.

3.3.3 Proof of the theorem

In this subsection we give the proof of Theorem 3.20, which is again similar to that of Theo-
rem 3.3. For this reason we mainly focus on the modifications that need to be made.

Sketch proof of Theorem 3.20. We begin as in the proof of Theorem 3.3 by setting up the
constants as there, but replacing Lemma 3.4 with Lemma 3.28, Lemma 3.6 with Lemma 3.29,
Theorem 2.9 with Theorem 3.22, and Proposition 2.16 with Proposition 3.27. More precisely,
we define the constants as follows.

Given γ > 0, ∆ ≥ 2, and k ≥ 2, set r0 = 10/γ and D = ∆. Let d be returned by
Lemma 3.28, with input γ, k and r0. Let α be returned by Lemma 3.29 with input d, k and
∆. Now let εBL > 0 and ρ > 0 be returned by Theorem 3.22 with input ∆, ∆R′ = 3k, ∆J = ∆,
ϑ = 1/(100D), ζ = α/4, d and κ := 64. Next, putting ε∗ = εBL/8 into Lemma 3.29 returns
ε0 > 0. We set

ε = min
{
ε0, d/8, ε

∗/(4D), 1/(16k)
}
.

Putting ε into Lemma 3.28 returns r1, c1, and C∗1 . Next, Lemma 3.7, for input k, r1, ∆, γ,
d, and 8ε, returns ξ ∈

(
0, 1/(10kr1)

)
and C∗2 . We set

β = 10−12ξ2/(∆k4r2
1) and µ = 10−5ε2/(kr1).

Next let C∗3 > 0 be the maximum of the outputs of Proposition 3.27 with input ε and input
µ2 and of Lemma 2.19 with input εµ and ∆. Let C∗ = max{C∗1 , C∗2 , C∗3} and set

C = 1010k2r2
1∆2r1+20C∗/(ε2ξµ2) and z = 10/ξ.

Let c2 be returned by Lemma 3.29 with input r1 and ε, and let c3 be the outcome of Theo-
rem 3.22 with input r1. Finally, set

c = min{c1, c2, c3, 10−50ε8µρξ2(∆kr1C)−10}.

Let Γ be an n-vertex (p, ν)-bijumbled graph with ν ≤ cpmax{4,(3∆+1)/2}n. By Proposi-
tion 3.21 we have

p ≥ C∗
( logn

n

)1/2
. (3.19)

Let H be a graph as in the statement of the theorem and observe that c < β.
We continue following the proof of Theorem 3.3. We now assume that the first βn vertices

of L include Cp−6ν2n−1 vertices that are not contained in any triangles of H. We appeal
to Lemma 3.28 rather than Lemma 3.4 to obtain a partition of V (G). This partition has
an exceptional set of size |V0| ≤ C∗p−6ν2n−1, but still satisfies (G1a) and (G4a), and (G2a)
and (G3a) when ‘regular’ is replaced by ‘fully-regular’ in both statements.

The applications of Lemma 3.5 and Lemma 2.19 are identical and the deduction of (3.15)
is still valid by (3.19). The pre-embedding is also identical, except that we replace each
occurrence of C∗max{p−2, p−1 log n} with C∗p−6ν2n−1, and that we replace the application
of Proposition 3.8 justifying that at each visit to Line 1 we have at least µ2pn/4 choices with
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an application of Proposition 3.27. To verify the condition of the latter, we use εn/(8r) ≥
C∗p−1ν, and to see that this yields a contradiction we use the inequality |Z| ≥ µ2pn/

(
4(∆ +

1)
)
≥ 2C∗p−2ν28r/(εn). Both inequalities follow by choice of c.

Moving on, we justify Claim 3.14 by observing that εn/4kr1 ≥ Cp−1ν, which allows us
to apply Proposition 3.27 in place of Proposition 3.8, and that 2krC∗p−2ν24kr1/εn ≤ |Y |/2,
both inequalities following by choice of c.

Now Lemma 3.29, in place of Lemma 3.6, finds the desired vertices w1, . . . , w`. Our
construction of f∗ and its properties are identical, while Lemma 3.29 gives (G1a)–(G8a),
with ‘regular’ replaced by ‘fully-regular’ in (G2a), (G3a) and (G7a). The deduction of (G1b)–
(G8b) is identical, except that we use the ‘fully-regular’ consequence of Proposition 2.4. To
justify this, observe that each time we apply Proposition 2.4, we apply it to a regular pair
with sets of size at least (1−ε∗)p∆−1n/(4kr) by (G1a) and (G6a), and we change the set sizes
by a factor (1 ± 2µ) so that Proposition 3.27 gives the required condition. To check this in
turn, we need to observe that 2µ(1− ε∗)p∆−1n/(4kr) ≥ 100µ−1p−1ν, which follows by choice
of c. We can thus replace ‘regular’ with ‘fully-regular’ in (G2b), (G3b) and (G7b).

Next, we still have 3∆r+10|V0| ≤ ξn/10, so that |V ′i,j | = |W ′i,j | ± ξn is still valid for
each i ∈ [r] and j ∈ [k]. This, together with (3.19), Proposition 3.27, and the inequality
ε2ξpn/(50000kr1) ≤ 100ε−2ξ−1p−1ν, justifies that we can apply Lemma 3.7 to obtain (G1c)–
(G6c), with ‘regular’ replaced by ‘fully-regular’ in (G2c) and (G3c). Finally, to obtain (G7c)
with ‘regular’ replaced by ‘fully-regular’, we use Proposition 2.4, with the condition to output
fully-regular pairs guaranteed by the inequality 10−20ε4k−3r−3

1 p∆−1n ≥ 1020ε−4k3r3
1Cp

−1ν,
which follows by choice of c, and Proposition 3.27.

Finally, we verify the conditions for Theorem 3.22. The only point where we have to be
careful is with the number of image restricted vertices. The total number of image restricted
vertices in H ′ is at most ∆2|V0| ≤ ∆2C∗p−6ν2n−1, which by choice of c and by (G1c) is smaller
than ρp∆|Vi,j | for any i ∈ [r] and j ∈ [k], justifying that (I,J ) is indeed a (ρp∆, α/4,∆,∆)-
restriction pair. The remaining conditions of Theorem 3.22 are verified as in the proof of
Theorem 3.3, and applying it we obtain an embedding φ of H ′ into G \ im(φtf ). This embed-
ding yields together with φ ∪ φtf the desired embedding of H into G.

Finally, we present the deduction of Theorem 3.19 by Theorem 3.20, which is essentially
the same as the deduction of Theorem 3.1 by Theorem 3.3.

Proof of Theorem 3.1. Given γ, ∆, and k, let c∗ > 0 and z > 0 be returned by Theorem 3.20
with input γ, ∆, and k. Set c = (c∗)2/2. Let H be a k-colourable graph on n vertices with
∆(H) ≤ ∆ such that there exists a set W of at least c−1p−6ν2n−1 vertices in V (H) that are
not contained in any triangles of H and such that there exists a labelling L of its vertex set
of bandwidth at most cn.

By the choice of c we find an interval I ⊆ L of length c∗n containing a subset F ⊆W with
|F | = (c∗)−1p−6ν2n−1. Now we can rearrange the labelling L to a labelling L′ of bandwidth
at most 2cn ≤ c∗n such that F is contained in the first c∗n vertices in L′.

Then, by Theorem 3.20 we know that for every
(
p, ν
)
-bijumbled graph the following holds

if ν ≤ c∗pmax{4,(3∆+1)/2}n and hence in particular if ν ≤ cpmax{4,(3∆+1)/2}n. If G is a spanning
subgraph of Γ with δ(G) ≥

(
(k − 1)/k + γ

)
pn, then G contains a copy of H, which finishes

the proof.
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3.4 Remarks on optimality

In order to conclude this chapter, we would like to collect several remarks about the optimality
and non-optimality of the assumptions on the parameters in our results, which might serve
as starting points for possible further improvements.

The main theorems in this chapter place restrictions on the graphsH with respect to whose
containment random or pseudorandom graphs have local resilience. It was shown by Huang,
Lee, and Sudakov [95] that the restrictions in terms of vertices not contained in triangles are
necessary. Given ε > 0 and p = o(1), if Γ is a random graph G(n, p) or a pseudorandom graph
with density p, then, if n is large enough, one can delete all edges in the neighbourhood of a
given vertex of Γ without deleting (a.a.s.) more than p2n ≤ εpn edges at any vertex. Thus
if H is a graph all of whose vertices are in triangles, the local resilience of Γ with respect to
the containment of H is a.a.s. o(1) if p = o(1).

While for this reason a certain number of vertices of H needs to have an independent
neighbourhood, we believe that in Theorem 3.1 the bound on the number of vertices of H
that may not be in triangles can be relaxed to C∗p−2 rather than C∗max

{
p−2, p−1 log n

}
.

In fact, if p is large, Theorem 3.19 gives stronger results than Theorem 3.1. Since G(n, p) is
a.a.s.

(
p,O(

√
pn)
)
-bijumbled, by Theorem 3.19 we require at most C∗p−5 vertices of H to

have independent neighbourhoods, which for large p is significantly less than C∗p−1 log n. We
note that this is also a significant improvement on the results of Huang, Lee, and Sudakov [95],
who proved a bandwidth theorem for dense random graphs. The number of vertices in H
that they require to have independent neighbourhood grows as a tower type function of p−1.
Moreover, they require that these vertices are well distributed in the bandwidth labelling.

As with Theorem 3.1, we believe that for large p the number of vertices of H which are
required to not be in triangles or copies of C4 should be C∗p−2. However in this range of p,
Theorem 3.15 has no advantages over Theorem 3.1.

In Theorem 3.19 the requirement that C∗p−6ν2n−1 vertices of H are not contained in any
triangles is due to Lemma 3.24. This lemma is proved by Allen, Böttcher, Skokan, and Stein
in [12], where it is conjectured that the requirement is not optimal.

Instead of restricting the number of vertices of H that are contained in triangles, one
can also impose a further restriction on G in Theorem 3.1. If we require that G contains
in addition a positive proportion of the copies of K∆+1 in Γ at each vertex, then we can
show that G contains any k-colourable bounded degree spanning subgraph H with sublinear
bandwidth. More precisely, in joint work [6] with Allen, Böttcher, Schnitzer, and Taraz, we
prove the following theorem.

Theorem 3.30. For each γ > 0, ∆ ≥ 2, k ≥ 2 and 0 ≤ s ≤ k − 1, there exist constants
β∗ > 0 and C∗ > 0 such that the following holds asymptotically almost surely for Γ = G(n, p)

whenever p ≥ C∗ (log n/n)1/∆.
Let G be a spanning subgraph of Γ with δ(G) ≥

(
(k − 1)(k + γ

)
pn such that for each

v ∈ V (G) there are at least γp(
s
2)(pn)s copies of Ks in NG(v). Let H be a graph on n vertices

with ∆(H) ≤ ∆, bandwidth at most β∗n and suppose that there is a proper k-colouring of V (H)
such that there are at least C∗max{p−2, p−1 log n} vertices in V (H) whose neighbourhood is
coloured by at most s colours. Then G contains a copy of H.

Let us now turn to the bound on the edge probability in Theorem 3.1. For ∆ = 2,
Theorem 3.1 is optimal up to possibly the logarithmic factor as the statement is certainly false
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for p = o(n−1/2) since then G(n, p) has a.a.s. local resilience o(1) with respect to containing
even one triangle. However, we believe that for general values of ∆, the lower bounds on p in
Theorem 3.1 and Theorem 3.15 are not optimal.

The bijumbledness requirement of Theorem 3.19 is due to Theorem 3.22, which was proved
in [9] by Allen, Böttcher, Hàn, Kohayakawa, and Person. It is suggested there that the
statement could still hold given only

(
p, cp∆+Cn

)
-bijumbledness for some C > 0. Such an

improvement would immediately improve our results correspondingly.

Finally, we would like to mention that the additional restriction that we place in Theo-
rem 3.15 of having many vertices of H which are neither in triangles nor in four-cycles is an
artefact of our proof. It would be possible to remove the stipulation regarding four-cycles
since one can prove a version of Lemma 3.6 capable of embedding vertices in a degeneracy
order. However this comes at the cost of a worse lower bound on p.



4
A Dirac-type theorem of

Hamilton Berge cycles in random hypergraphs

In this chapter we are concerned with Berge cycles in hypergraphs. In particular, we study
the robustness of complete and sparse random r-uniform hypergraphs with respect to Berge
Hamiltonicity. To measure the robustness of hypergraphs we use the concept of local resilience
as in the setting of graphs in Chapter 3 (see Subsection 1.2.1 for an introduction). Moreover,
we investigate Maker-Breaker and Avoider-Enforcer games played on the edge set of complete
r-uniform hypergraphs with respect to building and avoiding Berge cycles, respectively.

In Section 4.1 we prove the above mentioned local resilience result for Hamilton Berge
cycles in random r-uniform hypergraphs by showing that for every integer r ≥ 3 and for every
real γ > 0 asymptotically almost surely every spanning subhypergraph H ⊆ H(r)(n, p) with
minimum vertex degree δ1(H) ≥

(
1

2r−1 + γ
)
p
(
n
r−1

)
contains a Hamilton Berge cycle whenever

p ≥ log8r(n)/nr−1. Our proof is based on the absorbing method developed by Rödl, Ruciński,
and Szemerédi [144]. Furthermore, the ideas that are used in the proof of a Dirac-type result
for random directed graphs due to Ferber, Nenadov, Noever, Peter, and Škoric [78] are of
particular interest as they allow us to apply the absorbing method in this sparse scenario.

We briefly study the local resilience of complete r-uniform hypergraphs with respect to
weak and Berge Hamiltonicity in Section 4.2, where we prove a tight minimum degree condi-
tion for weak Hamilton cycles and an asymptotically tight one for Berge Hamilton cycles. The
first result is proved by applying Dirac’s theorem to an underlying graph of the hypergraph
and the proof of the second one uses an extension of the proof of Dirac’s theorem.

Next we study positional games played on the edge set of K
(r)
n . We first discuss a relation

between local resilience of hypergraphs and Maker-Breaker games. This yields a lower bound
on the threshold bias for Maker-Breaker games, where Maker aims to build a hypergraph
that contains a Hamilton Berge cycle. Moreover, we examine a misère version of such games.
More precisely, we prove bounds on the threshold biases for monotone and strict Avoider-

Enforcer games played on E(K
(3)
n ), where Avoider’s task is to keep his hypergraph (almost)

Berge-acyclic. Last, we present some concluding remarks and open questions in Section 4.4.

The results of Sections 4.1 and 4.2 are joint work with Dennis Clemens and Yury Per-
son [54] and the proofs in Section 4.3 are extensions of a joint work with Dennis Clemens,
Yury Person, and Tuan Tran [55] to the setting of hypergraphs.

95
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4.1 Berge Hamiltonicity in random hypergraphs

In this section we prove a local resilience result, which can be seen as a hypergraph analogue
of a result by Lee and Sudakov [124], who proved that a.a.s. the local resilience of G(n, p) with
respect to Hamiltonicity is at least

(
1/2− o(1)

)
whenever p = Ω(log n/n). More precisely, we

prove the following theorem.

Theorem 4.1. For every integer r ≥ 3 and every real γ > 0 the following holds asymptotically

almost surely for H = H(r)(n, p) if p ≥ log8r n
nr−1 . Let H ⊆ H be a spanning subgraph with

δ1(H) ≥
(

1
2r−1 + γ

)
p
(
n
r−1

)
. Then H contains a Hamilton Berge cycle.

The minimum degree condition in Theorem 4.1 is asymptotically tight, which can be seen
as follows. Roughly speaking, given H = H(r)(n, p) together with a partition V (H) = V1 ∪V2

with |V1 − V2| ≤ 1 chosen uniformly at random among all such partitions, then a.a.s. the
degree of every v ∈ Vi into Vi is at least

(
1

2r−1 − γ
)
p
(
n
r−1

)
for every γ > 0 and i ∈ [2] if n

is sufficiently large. Deleting all edges between V1 and V2 yields a hypergraph that does not
contain a Hamilton Berge cycle and that satisfies δ1(H) ≥

(
1

2r−1 − γ
)
p
(
n
r−1

)
.

The bound on p is best possible up to possibly the logarithmic factor since log n/nr−1

is the threshold for the appearance of a weak Hamilton cycle in H(r)(n, p) (Theorem 1.9 by
Poole [139]). To the best of our knowledge, there are no non-trivial upper bounds known for
the threshold of H(r)(n, p) with respect to Berge Hamiltonicity, except for the ones that follow
from results with other notions of cycles (see e.g. [72]). Theorem 4.1 yields immediately the
following upper bound on the threshold of H(r)(n, p) with respect to Berge Hamiltonicity.

Corollary 4.2. Let r ≥ 3. Then H(r)(n, p) contains asymptotically almost surely a Hamilton

Berge cycle if p ≥ log8r n
nr−1 .

This section is structured as follows. In Subsection 4.1.1 we introduce necessary definitions
and prove almost sure properties of random hypergraphs. Then, in Subsection 4.1.2, we
outline the proof of Theorem 4.1. In Subsections 4.1.3–4.1.5 we derive the main lemmas for
the proof of Theorem 4.1, which we present in Subsection 4.1.6.

4.1.1 Preliminaries

For the proof of Theorem 4.1 we need the following definitions of weak and Berge paths. A
weak Berge path (or simply weak path) is an alternating sequence (v1, e1, v2, . . . , vk) of distinct
vertices v1, . . . , vk and (not necessarily distinct) hyperedges e1, . . . , ek−1 such that vi, vi+1 ∈ ei
for every i ∈ [k − 1]. A weak path is called Berge path if all its hyperedges are distinct.

For a weak path P = (v1, e1, . . . , ek−1, vk) we denote by E(P ) := {e1, . . . , ek−1} the set of
hyperedges of P , by V ∗(P ) := {v1, . . . , vk} the set of vertices in the sequence of P , and by
V (P ) :=

⋃
i∈[k−1] ei the union of the hyperedges of P . We say that P connects v1 to vk and

call v1 and vk endpoints of P . We set End(P ) := {v1, vk}.
The length of a weak path P is defined as |V ∗(P )| − 1. In particular, if P is a Berge

path, then the length of P is exactly the number of hyperedges of P . For the sake of
simplicity, we do not consider weak paths to be oriented. In other words, the weak paths
(v1, e1, . . . , ek−1, vk) and (vk, ek−1, . . . , e1, v1) are the same. Moreover, given two weak paths
P = (v1, e1, . . . , ek−1, vk) and Q = (vk, e

′
1, . . . , e

′
k′−1, v

′
k′) with |V ∗(P )∩V ∗(Q)| = 1, we denote

by P ·Q the weak path (v1, e1, . . . , ek−1, vk, e
′
1, . . . , e

′
k′−1, v

′
k′).
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We say that two Berge paths P = (v1, e1, . . . , ek−1, vk) and P ′ = (v′1, e
′
1, . . . , e

′
k′−1, v

′
k′) are

edge-disjoint if ei 6= ej for all i ∈ [k] and j ∈ [k′].

Let H = (V,E) be an r-uniform hypergraph. For every vertex v ∈ V , the link of v in H
is a subset of

(
V
r−1

)
that consists of all (r− 1)-tuples of vertices that form together with v an

hyperedge of H, i.e.

linkH(v) =

{
e ∈

(
V

r − 1

)
: e ∪ {v} ∈ E

}
.

We note that, in caseH ∼ H(r)(n, p), the link of any vertex ofH is distributed as H(r−1)(n, p).
The following lemma gives an asymptotically almost sure upper bound on the maximum
degree of H(r)(n, p).

Lemma 4.3. Let r ≥ 3 be an integer, and let ε > 0 and p ∈ [0, 1] be reals. Then H =
H(r)(n, p) satisfies the following properties with probability

(
1− o(n−1)

)
:

∆(H) ≤ 2nr−1p+ log1.1 n.

Proof. For every v ∈ V (H) it holds degH(v) ∼ Bin
((

n−1
r−1

)
, p
)

and thus E[degH(v)] ≤ nr−1p.

Setting t = nr−1p+ log1.1 n we obtain 2(E[degH(v)] + t/3) ≤ 3t for n sufficiently large. Hence
Theorem 2.17 and applying the union bound yields

P
[
∃v ∈ V (H) : degH(v) ≥ E[degH(v)] + t

]
≤ n exp

(
− t2

2(E[X] + t/3)

)

≤ n exp

(
− t

3

)
≤ exp

(
log n− log1.1 n

3

)
= o

(
1

n

)
,

which finishes the proof.

The following lemma provides an upper bound on the typical number of Berge paths of
length 2 in H(r)(n, p).

Lemma 4.4. Let r ≥ 3 be an integer, and let ε > 0 and p ≥ n−r be reals. Then, with
probability

(
1−o(n−1)

)
, the random hypergraph H = H(r)(n, p) contains at most n2r−1+εp2 +

log2 n Berge paths of length 2.

Proof. Given r, ε, and p, we set t = d4/εe. We consider the set

SH := {(S1, S2, . . . , St) : S1, S2, . . . , St are edge-disjoint Berge paths of length 2 in H} .

Every Berge path of length 2 covers at most 2r−1 vertices of the hypergraph. Hence, as an
upper bound on the expected value of the cardinality of SH, we obtain E[|SH|] ≤ n(2r−1)tp2t.
By Markov’s inequality (Lemma 2.15) we therefore have

P
[
|SH| ≥ n(2r−1)t+2p2t

]
≤ 1

n2
.

In particular, using Lemma 4.3, we know that with probability
(
1− o(n−1)

)
the random

graph H satisfies the following two properties:

(a) |SH| ≤ n(2r−1)t+2p2t,
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(b) ∆(H) ≤ 2nr−1p+ log1.1 n.

It now suffices to show that for every sufficiently large integer n and every graph H with
Properties (a) and (b), the number N2 of Berge paths of length 2 is at most n2r−1+εp2+log2 n.
We may assume that N2 > 2rt∆(H) holds as otherwise we obtain N2 ≤ n2r−1+εp2 + log2 n
immediately by Property (b) and by the choice of p, assuming n to be large enough.

Given a Berge path P of length 2 in H, let us count how many Berge paths of length
2 there are at most such that each of these paths shares one hyperedge with P . Let P =
(v1, e1, v2, e2, v3). The hyperedge e1 can occur in at most r∆(H) Berge paths of length 2.
The same is true for e2. Hence there are at most 2r∆(H) Berge paths that share a hyperedge
with P . As a consequence we obtain

|SH| ≥ N2(N2 − 2r∆(H))(N2 − 4r∆(H)) · · · (N2 − 2r(t− 1)∆(H)) > (N2 − 2rt∆(H))t.

Using Properties (a) and (b) we thus conclude that for n sufficiently large we have

N2 ≤ n2r−1+2/tp2 + 2rt∆(H) < n2r−1+εp2 + log2 n.

In the proof of Theorem 4.1 we need only a few asymptotically almost sure properties of
H(r)(n, p) for our arguments. Therefore, rather than proving Theorem 4.1 for H(r)(n, p), we
prove it for pseudorandom graphs that have these sufficient properties. We define pseudoran-
domness as follows.

Definition 4.5 ((p, ε)-pseudorandom). Let r ≥ 3. We say that an r-uniform hypergraph H
on n vertices is (p, ε)-pseudorandom if H satisfies the following properties.

(H1) For every disjoint sets A,B ⊆ V (H) with |A|, |B| ≥ n
10r log5 n

we have

eH(A,B(r−1)) ≤ (1 + ε)p|A|
( |B|
r − 1

)
,

and for every set C ⊆ V (H) with |C| ≥ ε n
10r log5 n

we have

eH(A,B(r−2), C) ≤ (1 + ε)p|A|
( |B|
r − 2

)
|C|.

(H2) For every disjoint sets A,B ⊆ V (H) with |A|, |B| ≤ n
log5 n

and |B| ∈ {|A|, 2|A|} and

for every set R ⊆ V (H), we have

eH(A,B,R(r−2)) ≤ |A||B|
( |R|
r − 2

)
p+ ε

|A|nr−1p

log5 n
.

(H3) For every v ∈ V (H) there are at most n2r−3+εp2 + log2 n Berge paths of length 2 in
linkH(v).

Now we show that H(r)(n, p) is a.a.s. (p, ε)-pseudorandom for suitable values of p.

Lemma 4.6. Let r ≥ 3 be an integer, and let ε > 0 and p ≥ log8r n/nr−1 be reals. Then
H = H(r)(n, p) is a.a.s. (p, ε)-pseudorandom.
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Proof. Let r ≥ 3, ε > 0, and p ≥ log8r n/nr−1 be given. We show that H = H(r)(n, p) satisfies
each of the Properties (H1)–(H3) from Definition 4.5 with probability

(
1−o(1)

)
. This implies

then that H is a.a.s. (p, ε)-pseudorandom.

We start with Property (H3). Let v ∈ V (H). We know from Lemma 4.4 that linkH(v)
contains at most n2r−3+εp2 + log2 n Berge paths of length 2 with probability

(
1 − o(n−1)

)
.

Applying the union bound, we get that H fulfils with probability
(
1 − o(1)

)
that linkH(v)

contains at most n2r−3+εp2 + log2 n Berge paths of length 2 for every vertex v ∈ V (H).

Next we show that Property (H1) holds with probability
(
1 − o(1)

)
. Let A and B be

disjoint subsets of V (H) with |A|, |B| ≥ n/(10r log5 n). We define

X = eH(A,B(r−1)).

Note that we have X ∼ Bin
(
e
K

(r)
n

(A,B(r−1)), p
)

and therefore, since A and B are disjoint,

E[X] = |A|
( |B|
r − 1

)
p.

Let t := ε|A|
( |B|
r−1

)
p and observe that 2

(
E[X]+t/3

)
≤ 3t/ε. By applying Chernoff’s inequality

(Theorem 2.17) we obtain

P
[
X ≥ E[X] + t

]
≤ exp

(
− t2

2(E[X] + t/3)

)
≤ exp

(
−εt

3

)
≤ exp

(
−ε

2

3
p|A|

( |B|
r − 1

))
.

Now, let C ⊆ V (H) with |C| ≥ εn/(10r log5 n) and let

XA,B,C = eH(A,B(r−2), C).

Observe that XA,B,C ∼ Bin
(
e
K

(r)
n

(A,B(r−2), C), p
)

and therefore E[XA,B,C ] ≤ |A|
( |B|
r−2

)
|C|p.

Let t′ := ε|A|
( |B|
r−2

)
|C|p and note that 2

(
E[XA,B,C ] + t′/3

)
≤ 3t′/ε. Therefore, by applying

Chernoff’s inequality (Theorem 2.17) we obtain

P
[
XA,B,C ≥ E[XA,B,C ] + t′

]
≤ exp

(
− (t′)2

2(E[XA,B,C ] + t′/3)

)
≤ exp

(
−εt

′

3

)

≤ exp

(
−ε

2

3
p|A|

( |B|
r − 2

)
|C|
)
≤ exp

(
−ε

2

rr
p|A||B|r−2|C|

)
.

By the bounds on the sizes of A, B, and C and by choice of p we have p|A||B|r−2|C| =
ω
(
(|A|+ |B|+ |C|) log n

)
and p|A||B|r−1 = ω

(
(|A|+ |B|) log n

)
. For n large enough, applying

the union bound therefore leads to

P
[
Property (H1) fails

]

≤
∑

a,b,c≥ εn
10r log5 n

nanb
(

exp

(
−ε

2

3
pa

(
b

r − 1

))
+ nc exp

(
−ε

2

rr
pabr−2c

))

≤
∑

a,b,c≥ εn
10r log5 n

exp

(
(a+ b) log n− ε2

3rr
pabr−1

)
+ exp

(
(a+ b+ c) log n− ε2

rr
pabr−2c

)

≤
∑

a,b,c≥ εn
10r log5 n

exp(−(a+ b) log n) + exp(−(a+ b+ c) log n) = o(1).
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Next we show that Property (H2) holds with probability
(
1 − o(1)

)
. Let A and B be

disjoint subsets of V (H) with |A|, |B| ≤ n
log5 n

and |B| ∈ {|A|, 2|A|}, and let R ⊆ V (H). We

distinguish two cases.

First case: |A|, |B| ≤ 2n
log10 n

.

Let XV := eH(A,B, V (H)(r−2)) and observe that we have eH(A,B,R(r−2)) ≤ XV and

XV ∼ Bin
(
e
K

(r)
n

(A,B, V (H)(r−2)), p
)
. For n large enough, it holds that

E[XV ] ≤ |A||B|
(

n

r − 2

)
p ≤ ε|A|nr−1p

3 log5 n
.

We set t = ε|A|nr−1p/ log5 n and observe that E[X] + t/3 ≤ t. By applying Theorem 2.17
we thus obtain

P
[
XV ≥ E[XV ] + t

]
≤ exp

(
−ε|A|n

r−1p

2 log5 n

)
≤ exp

(
−ε

2
|A| log8r−5 n

)
.

Using the union bound we obtain for n large enough that the probability of Property (H2)
failing for any disjoint sets A,B ⊆ V (H) of size at most 2n/ log10 n and with |B| ∈ {|A|, 2|A|}
is at most

2n/ log10 n∑

a=1

(
n

a

)((
n

a

)
+

(
n

2a

))
exp

(
−ε

2
a log8r−5 n

)

≤
2n/ log10 n∑

a=1

2 exp
(
a
(

3 log n− ε

2
log8r−5 n

))
= o(1).

Second case: n
log10 n

≤ |A|, |B| ≤ n
log5 n

.

We now define XR := eH(A,B,R(r−2)). It holds that XR ∼ Bin
(
e
K

(r)
n

(A,B,R(r−2)), p
)

and hence

E[XR] ≤ |A||B|
( |R|
r − 2

)
p ≤ |A|n

r−1

log5 n
p.

By Theorem 2.17 we have

P
[
XR ≥ E[XR] +

ε|A|nr−1p

log5 n

]
≤ exp

(
−
(
ε|A|nr−1p

logbb n

)2

·min

{
1

3E[XR]
,

log5 n

3ε|A|nr−1p

})

≤ exp

(
−ε

2|A|nr−1p

3 log5 n

)
≤ exp

(
−ε

2

3
n log8r−15 n

)
.

For n large enough, applying the union bound yields that the probability that Property
(H2) fails for any disjoint sets A,B ⊆ V (H) of size at least n/ log10 n and any set R ⊆ V (H)
is at most

23n · exp

(
−ε

2

3
n log8r−15 n

)
= o(1).

Hence Property (H2) holds with probability
(
1− o(1)

)
.
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We note that any spanning subhypergraph of a (p, ε)-pseudorandom hypergraph is by
definition also (p, ε)-pseudorandom.

4.1.2 Outline of the proof of the main theorem

As already indicated we will prove the following theorem for (p, ε′)-pseudorandom r-uniform
hypergraphs, which implies immediately Theorem 4.1 using Lemma 4.6.

Theorem 4.7. Let r ≥ 3, and let γ > 0 and ε′ > 0 be reals such that ε′ ≤
(
10−3rγ2

)r
.

Furthermore, let p ≥ log8r n
nr−1 and let H be a (p, ε′)-pseudorandom r-uniform hypergraph on

n vertices. Then every spanning subhypergraph H ⊆ H with δ1(H) ≥
(

1
2r−1 + γ

)
p
(
n
r−1

)

contains a Hamilton Berge cycle.

We first explain the idea of the proof of Theorem 4.7 in the case of weak Hamilton cycles
and sketch afterwards how we guarantee the cycle to be Berge.

Let H be a (p, ε′)-pseudorandom r-uniform hypergraph on n vertices. Given a spanning
subhypergraph H ⊆ H as in the statement of the theorem, using Lemma 4.8 (which we
state and prove in Subsection 4.1.3) we partition the vertex set of H into disjoint sets Y ,
Z, and W , where Y and W are both of linear size and W contains almost all vertices of H.
The set Z assumes the role of a reservoir and is of size n/ logO(1) n. Lemma 4.8 provides
also a refined partition and guarantees lower bounds for every vertex v on the number of
hyperedges incident to v across and into the sets of the refined partition. Also, since H is
(p, ε′)-pseudorandom, we have good control on the maximum number of hyperedges among
various subsets of vertices.

Next, using Lemma 4.19 (which we state and prove in Subsection 4.1.5) we construct a
weak path Q with V ∗(Q) ⊆ Y such that for every subset M ⊆ Z there exists a weak path
QM that has the same endpoints as Q and such that V ∗(Q) ∪M is a partition of V ∗(QM ).
This property will be crucial at a later stage of the proof.

Then we distribute a maximum number of vertices in Y \V ∗(Q) among the clusters of W in
the refined partition such that all of these clusters have the same size n/ logO(1) n. Informally
speaking, since |Y | is significantly smaller than |W | and every vertex from Y is ‘well-connected’
to W , such partition allows us to find weak paths P1, . . . , Pm, with m = n/ logO(1) n such
that V ∗(P1), . . . , V ∗(Pm) form a partition of W ∪ Y \ V ∗(Q).

As a last step, we use vertices from Z to connect the paths P1,. . . , Pm and Q into a
weak cycle C (again this is possible since every vertex of H is ‘well-connected’ into Z). Since
the unused vertices M of Z can be absorbed by the path Q into a weak path QM with
V ∗(QM ) = V ∗(Q)∪M , we have found a weak Hamilton cycle in H in this way. To construct
the path Q and to connect the paths P1,. . . , Pm and Q into a cycle we will repeatedly use
Lemma 4.9 (which we state and prove in Subsection 4.1.4). This will allow us to connect
various vertices by paths of length O(log n).

Now we describe the changes that are necessary to ensure that the cycle we actually
construct is Berge. Recall that in this case, each hyperedge is allowed to appear at most
once in the cycle. Hence one needs to be careful every time a path is built, be it when the
paths Pi are constructed simultaneously, when we apply Lemma 4.9 to connect the paths Pi
and Q, and especially when we construct the paths Q and QM for M ⊆ Z. We resolve this
problem by a careful analysis whenever we build paths simultaneously and by defining for
each of these main steps a different bucket set R ⊆ V (H) such that the hyperedges of the
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paths constructed in that step only use vertices from the clusters, where the inner vertices
of their sequences lie, plus vertices from R. By a careful choice of the bucket sets, it is then
ensured that the Hamilton cycle that we get in the end is indeed Berge.

Before proving Theorem 4.7 in Subsection 4.1.6, we state and prove the main lemmas that
we need in Subsections 4.1.3–4.1.5.

4.1.3 Partition lemma

This subsection is devoted to the following lemma, which we use at the beginning of the proof
of the main theorem to partition the vertex set of the given subhypergraph.

Lemma 4.8 (Partition lemma). Let r ≥ 3 be an integer, and let γ ∈ (0, 1), ε ∈ (0, 1), and
p ≥ log8r n/nr−1 be reals. Let H be an r-uniform hypergraph with the following properties.
For every v ∈ V (H) it holds that

(a) degH(v) ≥
(
1/2r−1 + γ

)
p
(
n
r−1

)
and

(b) linkH(v) contains at most n2r−3+εp2 + log2 n Berge paths of length 2.

Then there exists a partition
V (H) = Y ∪ Z ∪W

and a refined partition P = {Yi, Zi,Wj}i∈[`],j∈[t] with

Y =
⋃

i∈[`]

Yi , Z =
⋃

i∈[`]

Zi , W =
⋃

j∈[t]

Wj ,

where t := log5 n and ` := 16 log n such that the following holds for every i ∈ [`] and j ∈ [t]:

(P1) The sizes of the sets in the refined partition satisfy

εn

2`
≤ |Yi| ≤

εn

`
,

n

2` log3 n
≤ |Zi| ≤

n

` log3 n
,

(
1− 4ε

5

)
n

log5 n
≤ |Wj |≤

(
1− 3ε

5

)
n

log5 n
,

(P2) for every set A ∈ P and every v ∈ V (H) \A it holds that

eH(v,A(r−1)) ≥
(

1

2r−1
+
γ

2

)
p

( |A|
r − 1

)
,

(P3) for all disjoint sets A ∈ P and

∅ 6= R ∈
{⋃

A′∈F
A′ : F ⊆ {Yi}i∈[`] or F ⊆ {Zi}i∈[`] or F ⊆ {Wj}j∈[t]

}

and for every v ∈ V (H) \ (A ∪R) it holds that

eH(v,A,R(r−2)) ≥
(

1

2r−1
+
γ

2

)
p|A|

( |R|
r − 2

)
.
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Proof of Lemma 4.8. Given r ≥ 3, γ ∈ (0, 1), ε ∈ (0, 1) and p ≥ log8r n/nr−1, choose ε′ ∈
(0, 10−rεγ) such that

(1 + ε′)r <
1 + 2r−2γ

1 + 2r−3γ
.

Let H be an r-uniform hypergraph as in the statement of the lemma.

Set Yi = Zi = ∅ and Wj = ∅ for every i ∈ [`] and j ∈ [t]. Now, for every v ∈ V (H) we
add v to Yi with probability

pi =
(
3ε/(4`)− 3/(4` log3 n)

)

for every i ∈ [`], to Zi with probability

p′i = 3/(4` log3 n)

for every i ∈ [`] and to Wj with probability

p′′j = (1− 3ε/4)/ log5 n

for every j ∈ [t]. Observe that we have

∑

i∈[`]

(pi + p′i) +
∑

j∈[t]

p′′j =
∑

i∈[`]

(
3ε

4`
− 3

4` log3 n
+

3

4` log3 n

)
+
∑

j∈[t]

(
1− 3ε

4

)
1

log5 n
= 1.

Our aim is to show that with positive probability such a random partition

V (H) =
⋃

i∈[`]

Yi ∪
⋃

i∈[`]

Zi ∪
⋃

j∈[t]

Wj

satisfies Properties (P1)–(P3).

We first prove that each of the following properties holds with probability
(
1− o(1)

)
.

(P1’) For every i ∈ [`] and j ∈ [t] it holds that |Yi| = (1±ε′)npi as well as |Zi| = (1±ε′)np′i
and |Wj | = (1± ε′)np′′j ,

(P2’) for every A ∈ P we have eH(v,A(r−1)) ≥
(

1
2r−1 + 3γ

4

)
p
(
n
r−1

)
(p̃)r−1 for every v ∈

V (H) \A, where p̃ = pi if A = Yi with i ∈ [`], and p̃ = p′i if A = Zi with i ∈ [`], and
p̃ = p′′j if A = Wj with j ∈ [t],

(P3’) for every vertex v ∈ V (G) and every nonempty set F with F ⊆ {Yi}i∈[`] or F ⊆
{Zi}i∈[`] or F ⊆ {Wj}j∈[t] and for every setA ∈ P that is disjoint fromR :=

⋃
A′∈F A

′

we have

eH(v,A,R(r−2)) ≥
(

1

2r−1
+

3γ

4

)
p

(
n

r − 1

)
(r − 1)p̃(sp∗)r−2,

where s = |F|, and p̃ = pi if A = Yi with i ∈ [`], and p̃ = p′i if A = Zi with i ∈ [`],
and p̃ = p′′j if A = Wj with j ∈ [t], and p∗ = pi if F ⊆ {Yi}i∈[`], and p∗ = p′i if
F ⊆ {Zi}i∈[`], and p∗ = p′′j if F ⊆ {Wj}j∈[t].
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We start with the proof of Property (P1’). Let i ∈ [`], j ∈ [t] and set X1 = |Yi|,
X2 = |Zi|, and X3 = |Wj |. We have X1 ∼ Bin(n, pi), X2 ∼ Bin(n, p′i), and X3 ∼ Bin(n, p′′j ).
Using Chernoff’s inequality (Theorem 2.16) we obtain for every k ∈ [3] that

P
[
|Xk − E[Xk]| > ε′E[Xk]

]
< 2 exp

(
−(ε′)2E[Xk]

3

)
.

By applying the union bound, we get that with probability (1− o(1)) it holds that |Yi| =
(1 ± ε′)npi as well as |Zi| = (1 ± ε′)np′i for every i ∈ [`] and |Wj | = (1 ± ε′)np′′j for every
j ∈ [k].

Let us now turn to Property (P2’). Let A ∈ P and v ∈ V (H) \A. Set

p̃ =





pi if A = Yi with i ∈ [`],

p′i if A = Zi with i ∈ [`],

p′′j if A = Wj with j ∈ [t].

To describe the expected value of X := eH(v,A(r−1)) we set

XM =

{
1 if M ⊆ A ,

0 otherwise.

Therefore we obtain

X =
∑

M⊆V (H)\{v}:
{v}∪M∈E(H)

XM ,

which leads to

E[X] =
∑

M⊆V (H)\{v}:
{v}∪M∈E(H)

P[XM = 1] = degH(v)(p̃)r−1.

Hence, if c1 := (1/2r−1 + γ) · r−r and c2 := (1− 3ε/4)r−1c1, we have

E[X] ≥
(

1

2r−1
+ γ

)
p

(
n

r − 1

)
(p̃)r−1 ≥ c1n

r−1p(p̃)r−1 ≥ c2 log3r+5 n, (4.1)

where we used that p ≥ log8r n/nr−1 and p̃ ≥ (1 − 3ε/4)/ log5 n. We aim to apply Janson’s
inequality (Theorem 2.20). With the notation from that theorem we obtain

∆ = E[X] +
∑

M⊆V (H)\{v}:
{v}∪M∈E(H)

∑

M′⊆V (H)\{v}:
{v}∪M′∈E(H)

M 6=M′, M∩M′ 6=∅

E[XMXM ′ ] ≤ E[X] + 2
(
n2r−3+εp2 + log2 n

)
(p̃)r,

where we used that |M ∪M ′| ≥ r and the upper bound on the number of Berge paths of
length 2 in linkH(v), which is given by Property (b). Thus, by applying Theorem 2.20 with
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t′ := γ
8E[X] we conclude

P
[
X ≤ E[X]− t′

]
≤ exp

(
−(t′)2

2∆

)

≤ exp

(
− γ2

1000
min

{
E[X],

E[X]2

n2r−3+εp2(p̃)r
,
E[X]2

(p̃)r log2 n

})

≤ exp

(
− γ2

1000
min

{
c2 log3r+5 n, c2

1n
1−ε(p̃)r−2, c2

1 log11r n
})

≤ exp(−2 log n),

as p ≥ (log8r n)/nr−1 and p̃ ≥ (1− 3ε/4)/ log5 n and by Equation (4.1).
Applying the union bound yields that

P
[
Property (P2’) fails

]
≤
∑

A∈P

∑

v∈V (H)

exp(−2 log n) ≤ 3(log5 n)n exp(−2 log n) = o(1).

We now turn to Property (P3’). Let A ∈ P and

∅ 6= R ∈
{⋃

A′∈F
A′ : F ⊆ {Yi}i∈[`] or F ⊆ {Zi}i∈[`] or F ⊆ {Wj}j∈[t]

}

be disjoint sets and let v ∈ V (H) \ (A ∪R). As before, we set

p̃ =





pi if A = Yi with i ∈ [`],

p′i if A = Zi with i ∈ [`],

p′′j if A = Wj with j ∈ [t].

By choice of R there exists a subset F ⊆ P such that R =
⋃
A′∈F A

′. We define s = |F|
and set

p∗ =





pi if Yi ∈ F for an index i ∈ [`],

p′i if Zi ∈ F for an index i ∈ [`],

p′′j if Wj ∈ F for an index j ∈ [t].

Since pi = pi′ and p′i = p′i′ for all i, i′ ∈ [`] and p′′j = p′′j′ for all j, j′ ∈ [`], and by definition of

R, the value p∗ is well defined. We consider X := eH(v,A,R(r−2)). To describe its expected
value, we define the indicator variable

XM :=

{
1 if |M ∩A| = 1 and |M ∩R| = r − 2 ,

0 otherwise.

So, we obtain

X =
∑

M⊆V (H)\{v}:
M∪{v}∈E(H)

XM ,

which leads to

E[X] =
∑

M⊆V (H)\{v}:
M∪{v}∈E(H)

P[XM = 1] = degH(v)(r − 1)p̃(sp∗)r−2.
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With c1 = (1/2r−1 + γ) · r−r we have

E[X] ≥
(

1

2r−1
+ γ

)
p

(
n

r − 1

)
(r − 1)p̃(sp∗)r−2 ≥ c1pn

r−1(r − 1)p̃(sp∗)r−2. (4.2)

Again, with the notation from Theorem 2.20 we obtain

∆ = E[X] +
∑

M⊆V (H)\{v}:
{v}∪M∈E(H)

∑

M′⊆V (H)\{v}:
{v}∪M′∈E(H)

M 6=M′, M∩M′ 6=∅

E[XMXM ′ ]

≤ E[X] + 2(n2r−3+εp2 + log2 n)(r − 1)p̃(sp∗)r−2(p̃+ sp∗),

where we used that |M ∪M ′| ≥ r and the upper bound on the number of Berge paths of
lengh 2 in linkH(v).

Thus, by applying Janson’s inequality (Theorem 2.20) with t′ := γ
8E[X] we conclude

P
[
X ≤ E[X]− t′] ≤ exp

(
−(t′)2

2∆

)

≤ exp

(
− γ2

2000
min

{
E[X],

c2
1(r − 1)p̃(sp∗)r−2n1−ε

p̃+ sp∗
,
c2

1(r − 1)p2n2r−2p̃(sp∗)r−2

(p̃+ sp∗) log2 n

})

≤ exp(−2 log5 n),

where we used Equation (4.2) and p ≥ (log8r n)/nr−1 and p̃, p∗ ≥ (1− 3ε/4)/ log5 n.
Applying the union bound yields

P
[
Property (P3’) fails

]
≤
∑

A∈P

∑

R

∑

v∈V (H):
v/∈(A∪R)

exp(−2 log5 n)

≤ 9(log5 n)2log5 nn exp(−2 log5 n) = o(1).

Finally we need to show that Properties (P1)–(P3) hold with positive probability. Prop-
erty (P1) holds a.a.s. since Property (P1’) is a.a.s. satisfied. It can be seen fairly quickly that
Property (P2) holds a.a.s. by conditioning on Property (P1’) and using Property (P2’), the
definition of p̃, and the choice of ε′. Similarly, Property (P3) holds a.a.s., which can be seen
by conditioning on Property (P1’) and using Property (P3’), the definition of p̃, p∗, s, and
the choice of ε′.

4.1.4 Connecting lemma

In this subsection we prove the following lemma that is essential at various places in the proof
of Theorem 4.7.

Lemma 4.9 (Connecting Lemma). Let r ≥ 3 be an integer and let p ≥ log8r n/nr−1. Fur-
thermore, let γ ∈ (0, 1) as well as ε ≥ ε′ > 0 be reals such that ε ≤ 10−3γ/2r+1 and
ε′ ≤ (γε/(10r))r. Let H be an n-vertex (p, ε′)-pseudorandom r-uniform hypergraph given
with a partition

V (H) =
⋃

i∈[`]

Yi ∪
⋃

i∈[`]

Zi ∪
⋃

j∈[t]

Wj
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with t := log5 n and ` := 16 log n that satisfies Properties (P1)–(P3) from Lemma 4.8 with
input r, γ, ε, and p.

Let A = (A1, . . . , A8 logn) be a sequence of pairwise disjoint subsets of {Yi, Zi}i∈[`]. More-
over, let s ≤ mini∈[`] ε|Ai|/4 be a positive integer and let {(ai, bi)}i∈[s] be pairs of vertices in
V (H) \ V (A) such that ai 6= aj and bi 6= bj for every distinct i, j ∈ [s]. Furthermore, let

∅ 6= R ∈
{⋃

A′∈F
A′ : F ⊆ {Yi}i∈[`] or F ⊆ {Wj}j∈[t]

}

such that R ∩
(
V (A) ∪ {ai, bi}i∈[s]

)
= ∅ and |R| ≥ εn/10.

Then there exist P1, . . . , Ps, each being a Berge path or a Berge cycle, such that for every
i ∈ [s] we have

(C1) Pi is a Berge path connecting ai to bi in case ai 6= bi, or a Berge cycle containing ai
in case ai = bi,

(C2) V ∗(Pi) ⊆ V (A) ∪ {ai, bi},
(C3) E(Pi) ⊆ EH

(
V (A) ∪ {ai, bi}, V (A)(r−1)

)
∪ EH

(
V (A) ∪ {ai, bi}, V (A), R(r−2)

)
,

(C4) V ∗(Pi) ∩ V ∗(Pi′) = {ai, bi} ∩ {ai′ , bi′} for every i′ ∈ [s] \ {i},
(C5) E(Pi) ∩ E(Pi′) = ∅ for every i′ ∈ [s] \ {i},
(C6) |V ∗(Pi) \ {ai, bi}| ≡ 2 mod 4, and

(C7) |V ∗(Pi)| ≤ 8 log n.

For the proof of Lemma 4.9 we need to introduce some more definitions. We start with
two notions of compatible weak paths, which will allow us to have good control of where
the vertices and hyperedges of a weak path with respect to a vertex partition lie. The first
definition is that of an A-compatible weak path. Informally speaking, given a sequence A of
pairwise disjoint sets, a weak path is called A-compatible if all vertices that are contained
in any of its hyperedges except for its endpoints lie in the sets of A arranged in a specific
manner.

Definition 4.10 (A-compatible). Let H be an r-uniform hypergraph with r ≥ 3, let m ≥ 1
and let A = (A1, . . . , Am) be a sequence of pairwise disjoint subsets of V (H). We say that a
weak path P = (v0, e0, v1, . . . , vm, em, vm+1) is A-compatible if

(1) v0, vm+1 /∈ V (A),

(2) vi ∈ Ai for every i ∈ [m],

(3) e0 ∈ EH
(
v0, v1, A

(r−2)
1

)
,

(4) em ∈ EH
(
vm, vm+1, A

(r−2)
m

)
, and

(5) ei ∈ EH
(
vi, vi+1, A

(r−2)
i

)
∪ EH

(
vi, vi+1, A

(r−2)
i+1

)
for every i ∈ [m− 1].

In the second definition of compatible paths, we have apart from a sequence A a bucket
set R. Roughly speaking, a weak path P is called (A, R)-compatible if the vertices of
V ∗(P ) \ End(P ) lie in the sets of A arranged in a specific manner and all other vertices
of the hyperedges of P except for its endvertices are contained in R.
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A1 A2 A3

v0 v1 v2 v3

e0 e1 e2

x1

y1

x2

y2

x3

y3

y4

v4

e3

Figure 4.1: An (A1, A2, A3)-compatible weak path (v0, e0, v1, e1, v2, e2, v3, e3, v4) in a 4-
uniform hypergraph with ei = {vi, vi+1, xi+1, yi+1} for i ∈ {0, 1, 3} and e2 = {v2, v3, x2, y2}.

Definition 4.11 ((A, R)-compatible). Let H be an r-uniform hypergraph with r ≥ 3 and
let m ≥ 0 be an integer. If m = 0, let A be the empty sequence and otherwise let A =
(A1, . . . , Am) be a sequence of pairwise disjoint subsets of V (H). Moreover, let R ⊆ V (H)
be disjoint from V (A). We say that a weak path P = (v0, e0, v1, . . . , vm, em, vm+1) is (A, R)-
compatible if

(1) v0, vm+1 /∈ R ∪ V (A),

(2) vi ∈ Ai for every i ∈ [m], and

(3) ei ∈ EH
(
vi, vi+1, R

(r−2)
)

for every i ∈ {0, . . . ,m}.

A1 A2

e0 e1
e2

R

v3v2v0 v1

x1 x2

x3 x4

x5

Figure 4.2: An ((A1, A2), R)-compatible weak path (v0, e0, v1, e1, v2, e2, v3) in a 4-uniform
hypergraph with e0 = {v0, v1, x1, x2}, e1 = {v1, v2, x3, x4} and {v2, v3, x4, x5}.

Observe that for a weak path P that is either A-compatible or (A, R)-compatible for
any sequence A of pairwise disjoint subsets of V (H) and for any subset R ⊆ V (H) with
R∩ V (A) = ∅, it holds that P is a Berge path since all its hyperedges have to be distinct by
Definitions 4.10 and 4.11.

The following lemma will be useful in the proof of the connecting lemma (Lemma 4.9)
when one needs to argue that certain A-compatible and (A′, R′)-compatible Berge paths are
edge-disjoint.

Lemma 4.12. Let r ≥ 3, let H be an r-uniform hypergraph and let k,m,m′ ≥ 1. Let
D = (D1, . . . , Dk) be a sequence of pairwise disjoint subsets of V (H) and let A = (A1, . . . , Am)
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and A′ = (A′1 . . . , A
′
m′) be (not necessarily distinct) sequences such that for every j ∈ [m] and

j′ ∈ [m′] there exist i, i′ ∈ [k] with Aj ⊆ Di and A′j′ ⊆ Di′. Moreover, let R,R′ ⊆ V (H) be
(not necessarily distinct) subsets each being disjoint from both V (A) and V (A′). Let P1 and
P2 be two Berge paths such that one of the following three properties holds:

• P1 is A-compatible and P2 is (A′, R′)-compatible,

• P1 is A-compatible, P2 is A′-compatible and V ∗(P1) ∩ V ∗(P2) = ∅,

• P1 is (A, R)-compatible, P2 is (A′, R′)-compatible, P1 6= P2 and V ∗(P1) ∩ V ∗(P2) =
End(P1) ∩ End(P2).

Then E(P1) ∩ E(P2) = ∅.

Proof. If P1 is A-compatible and P2 is (A′, R′)-compatible, then it follows directly from
Definitions 4.10 and 4.11 that E(P1) ∩ E(P2) = ∅, as R′ ∩ V (A) = ∅.

Suppose now that P1 is A-compatible, P2 is A′-compatible, and V ∗(P1) ∩ V ∗(P2) = ∅.
Assume for a contradiction that there exists a hyperedge e ∈ E(P1) ∩ E(P2). We let
the Berge path P1 be P1 = (v0, e0, v1, . . . , vm, em, vm+1). By Properties (3)–(5) of Defini-

tion 4.10 there exists an index i ∈ [m + 1] such that e ∈ EH(vi−1, vi, A
(r−2)
i−1 ) (if i ≥ 2)

or e ∈ EH(vi−1, vi, A
(r−2)
i ) (if i ≤ m). Without loss of generality we may assume that

e ∈ EH(vi−1, vi, A
(r−2)
i−1 ). Obviously, we have vi ∈ V ∗(P1). By the definition of A and A′

and by Properties (2)–(5) of Definition 4.10 we also get vi ∈ V ∗(P2), a contradiction to
V ∗(P1) ∩ V ∗(P2) = ∅.

Finally, suppose that P1 is (A, R)-compatible, P2 is (A′, R′)-compatible, and V ∗(P1) ∩
V ∗(P2) = End(P1) ∩ End(P2) but P1 6= P2. Assume again for a contradiction that there
exists a hyperedge e ∈ E(P1)∩E(P2). By Property (3) of Definition 4.11 there exist vertices
x, y ∈ V ∗(P1) such that e ∈ EH(x, y,R(r−2)). It follows from Properties (1) and (2) and by the
definition of A and A′ that x, y ∈ V ∗(P2). But then V ∗(P1)∩V ∗(P2) = End(P1)∩End(P2) =
{x, y} and P1 = (x, e, y) = P2, a contradiction.

We need two more definitions. The first is the definition of the i-th neighbourhood of a
vertex set with respect to a given sequence of length at least i.

Definition 4.13 (i-th neighbourhood). Let H be an r-uniform hypergraph, let m ∈ N, and
let A = (A1, . . . , Am) be a sequence of pairwise disjoint subsets of V (H). For every subset
X ⊆ V (H) that is disjoint from V (A) and for every i ∈ [m] we write

N i
A(X) :=

{
vi ∈ Ai : there exist v0 ∈ X and a Berge path (v0, e0, v1, e1, v2, . . . , vi−1, ei−1, vi)

such that vj ∈ Aj for every j ∈ [i− 1] and

ej ∈ EH
(
vj , vj+1, A

(r−2)
j+1

)
for every j ∈ {0, . . . , i− 1}.

}

for the i-th neighbourhood of X with respect to A.

For the sake of simplicity, we write N i
A(x) = N i

A({x}). In Figure 4.1 we have vi ∈
N i

(A1,A2,A3)(v0) and v4−i ∈ N i
(A3,A2,A1)(v4) for every i ∈ [2] but it does not necessarily hold

that v3 ∈ N3
(A1,A2,A3)(v0) or v2 ∈ N3

(A3,A2,A1)(v4).

Next we define (2, R)-matchings between two sets A and B with a bucket set R.
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Definition 4.14 ((2, R)-matching). Let H be an r-uniform hypergraph and let A,B,R ⊆
V (H) be pairwise disjoint subsets of. A (2, R)-matching between A and B that saturates A
is a set {e1

a, e
2
a}a∈A of distinct hyperedges such that for every a, a′ ∈ A and i, j ∈ [2] we have

(1) e1
a, e

2
a ∈ EH(a,B,R(r−2)) and

(2) eia ∩ eja′ ∩B = ∅.

Finally, we are in the position to prove Lemma 4.9. Before embarking on the proof, let us
first explain the main idea of the proof. We give the proof for the cases that the vertices ai
and bi are distinct for all i ∈ [s]. This means that our goal is to construct Berge paths (rather
than cycles) to connect ai to bi. The cases when ai = bi for at least one index i ∈ [s] work
analogously. We define r(n) ≤ 4 log n to be the largest integer such that r(n) ≡ 0 mod 4.
The reason for this definition is to ensure that the Berge paths that we construct have the
right length, i.e. satisfy Property (C6).

Informally speaking, we prove the lemma iteratively by connecting in the k-th step 2−k of
the given pairs of vertices by Berge paths and by identifying for each vertex x, which is not
yet connected to its mate, 2k−1 vertices each of which can be reached via a Berge path from
x using k − 1 hyperedges. These duplicates are used in the (k + 1)-th step to connect 2−k+1

not yet connected pairs of vertices.
To make this rough idea a bit clearer, we illustrate the iteration by explaining the first

two steps more precisely. We start with connecting half of the given pairs of vertices by Berge
paths such that the vertex sets of their sequences are pairwise disjoint and each of them is
(A1, . . . , Ar(n)+2)-compatible. We store the indices of these pairs in the set I1. Next, we
find a (2, R)-matching between {ai}i∈[s]\I1 and A4 logn+1 that saturates {ai}i∈[s]\I1 as well as
a (2, R)-matching between {bi}i∈[s]\I1 and A4 logn+2 that saturates {bi}i∈[s]\I1 . We connect
half of the pairs of the vertices in A4 logn+1 and A4 logn+2, respectively, that are touched by
this matching, by Berge paths such that the vertex sets and the edge sets of their sequences
are pairwise disjoint and disjoint from the already built ones and such that each of them is
(A1, . . . , Ar(n))-compatible. Hence, after this step, we can connect 3/4 of the given pairs of
vertices by Berge paths and we show that that Properties (C1)–(C7) hold for these paths.

Proof of Lemma 4.9. Let p, γ, ε, ε′ be given. Furthermore, let H be a (p, ε′)-pseudorandom
r-uniform hypergraph on n vertices given with a partition of V (H), let A = (A1, . . . , A8 logn)
be a sequence of disjoint subsets of V (H), let R ⊆ V (H) be a set and {(ai, bi)}i∈[s] pairs of
vertices as in the statement of the lemma.

Let r(n) ≤ 4 log n be the largest integer such that r(n) ≡ 0 mod 4. Let `′ := 4 log n. For
the sake of readability we assume in the proof that ai 6= bi for every i ∈ [s]. The cases that
ai = bi for at least one index i ∈ [s] work analogously.

We will prove the statement for every s ≥ n/ log5 n for which there exists an integer N
such that s = 2N and s ≤ mini∈[8 logn]{ε|Ai|/2}. This gives us immediately a proof of the
lemma. Indeed, let s ≤ mini∈[8 logn]{ε|Ai|/4} be given. If s is not a power of 2, let s′ ≥ s
be the smallest integer such that s′ is a power of 2. Then s′ ≤ 2s ≤ mini∈[8 logn]{ε|Ai|/2}.
Hence, we can take arbitrary distinct vertices {ai, bi}s+1≤i≤s′ from V (H)\

(
V (A)∪{ai, bi}i∈[s]

)

and apply the proof to {ai, bi}i∈[s′], which gives us in particular the desired Berge paths for
{ai, bi}i∈[s].

Let us now define the invariants that we maintain in every iteration step k ∈ {0, . . . , N+1}.
We will explain directly afterwards what the rough meaning of them is.
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(I1) Ik ⊆ [s] is a subset of indices such that |Ik| = ds(1− 2−k)e.

(I2) Pk = {Pi}i∈Ik are Berge paths such that for every distinct i, i′ ∈ Ik we have

(a) Pi connects ai to bi,

(b) V ∗(Pi) ⊆
⋃
j∈[`′+2k−2]Aj ∪ {ai, bi},

(c) E(Pi) ⊆ EH
(⋃

j∈[`′+2k−2]Aj ∪ {ai, bi},
(⋃

j∈[`′+2k−2]Aj
)(r−1))

E(Pi) ⊆ ∪ EH
(⋃

j∈[`′+2k−2]Aj ∪ {ai, bi},
⋃
j∈[`′+2k−2]Aj , R

(r−2)
)

(d) V ∗(Pi) ∩ V ∗(Pi′) = {ai, bi} ∩ {ai′ , bi′},
(e) E(Pi) ∩ E(Pi′) = ∅,

(f) |V ∗(Pi) \ {ai, bi}| ≡ 2 mod 4, and

(g) |V ∗(Pi) ∩Aj | ≤ 1 for every j ∈ [`′ + 2k − 2].

(I3) Kak = {Ka
i,k}i∈[s]\Ik and Kbk = {Kb

i,k}i∈[s]\Ik are families of pairwise disjoint sets such
that for every k ≤ N and i ∈ [s] \ Ik we have

(a) Ka
i,0 ⊆ {aj}j∈[s] and Kb

i,0 ⊆ {bj}j∈[s],

(b) Ka
i,k ⊆ A`′+2k−1 and Kb

i,k ⊆ A`′+2k if k ≥ 1, and

(c) |Ka
i,k| = |Kb

i,k| = 2k,

(I4) for every i ∈ [s] \ Ik and x ∈ Ka
i,k ∪Kb

i,k there exists a Berge path Qx such that for

every j ∈ [s] \ (Ik ∪ {i}), every y ∈ Ka
j,k ∪Kb

j,k and every j′ ∈ Ik we have

(a) Qx connects ai to x if x ∈ Ka
i,k,

(b) Qx connects bi to x if x ∈ Kb
i,k,

(c) Qx is
(
(A`′+1, A`′+3, . . . , A`′+2k−3), R

)
-compatible if x ∈ Ka

i,k,

(d) Qx is
(
(A`′+2, A`′+4, . . . , A`′+2k−2), R

)
-compatible if x ∈ Kb

i,k,

(e) V ∗(Qx) ∩ V ∗(Qy) = End(Qx) ∩ End(Qy),

(f) V ∗(Qx) ∩ V ∗(Pj′) = End(Qx) ∩ {aj′ , bj′}, and

(g) E(Qx) ∩ E(Pj′) = ∅.

In the set Ik ⊆ [s] we record the indices of the Berge paths {Pi}i∈Ik that we have already
constructed. The set Ka

i,k consists of 2k vertices of A`′+2k−1 such that each x ∈ Ka
i,k can

be reached from ai via an
(
(A`′+1, A`′+3, . . . , A`′+2k−3), R

)
-compatible Berge path Qx. The

set Kb
i,k contains 2k vertices of A`′+2k, where each vertex x ∈ Kb

i,k is connected to bi by an(
(A`′+2, A`′+4, . . . , A`′+2k−2), R

)
-compatible Berge path Qx.

Before proving that the induction works, let us first argue why then the lemma follows.
Let k = N +1, then Ik = [s] and there are Berge paths {Pi}i∈[s] with Properties (I2.a)–(I2.g),
which immediately imply Properties (C1)–(C7).

For the base case, let k = 0. Then, I0 = ∅, P0 = ∅, Ka0 = {ai}i∈[s], Kb0 = {bi}i∈[s], and

Qx = (x) for every x ∈ Ka
0 ∪Kb

0 trivially fulfil Properties (I1)–(I4).

For the inductive step, let k ≤ N . Assume that for Ik, Pk = {Pi}i∈Ik , Kak = {Ka
i,k}i∈[s]\Ik ,

and Kbk = {Kb
i,k}i∈[s]\Ik Properties (I1)–(I4) hold. For every i ∈ [s] \ Ik, let {aji , b

j
i}j∈[2k] be a

perfect matching between vertices of Ka
i,k and vertices of Kb

i,k. Let {a′j , b′j}j∈[s] be the union
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of these matchings. Let A′i := Ai \
⋃
j∈Ik V

∗(Pj) for every i ∈ [`′]. Using Property (I2.g) we
can deduce that for every i ∈ [`′] we have

|A′i| ≥ |Ai| − |Ik| ≥ |Ai| − s ≥
(
1− ε

2

)
|Ai|.

Set

ρ(n) =

{
r(n) if k is odd

r(n) + 2 if k is even.

The next claim ensures that we can find Berge paths that connect half of the pairs {a′j , b′j}j∈[s]

using only vertices from A′1, . . . , A
′
ρ(n).

Claim 4.15. Let A′ = (A′1, . . . , A
′
ρ(n)) be a sequence such that A′i ⊆ Ai and |A′i| ≥ (1−ε/2)|Ai|

for every i ∈ [ρ(n)]. Let {(xi, yi)}i∈[s] be pairs of vertices from V \ V (A′) such that xi 6= xi′

and yi 6= yi′ for every i 6= i′ ∈ [s].
Then there exist a subset I ⊆ [s] with |I| = s/2 and Berge paths {P ′i}i∈I such that for

every distinct indices i, j ∈ I we have

(1) V ∗(P ′i ) ∩ V ∗(P ′j) = ∅,

(2) P ′i connects xi to yi,

(3) P ′i is (A′1, . . . , A
′
ρ(n))-compatible, and

(4) E(P ′i ) ∩ E(P ′j) = ∅.

We defer the proof of this claim to the end of the proof of the lemma.

Let I ⊆ [s] with |I| = s/2 be the subset and P ′ = {P ′i}i∈I the set of Berge paths
ensured by Claim 4.15 such that for every distinct indices i, j ∈ I we have V ∗(P ′i )∩V ∗(P ′j) =
E(P ′i ) ∩E(P ′j) = ∅, path Pi connects a′i to b′i and is (A′1, . . . , A

′
ρ(n))-compatible. This means

that there exist a subset I ′ ⊆ [s] \ Ik of size |I ′| = max{s2−k−1, 1} such that for every i ∈ I ′
there exist a path P ∗i ∈ P ′ and vertices xi ∈ Ka

i,k and yi ∈ Kb
i,k such that P ∗i connects xi to

yi. We define
Pi = Qxi · P ∗i ·Qyi .

First let us argue why Pi is a Berge path. As V ∗(Qxi) ∩ V ∗(Qyi) = ∅ by Properties (I4.a)–
(I4.d) and ai 6= bi, and as V ∗(Qxi) ∩ V ∗(P ∗i ) = {xi} and V ∗(Qyi) ∩ V ∗(P ∗i ) = {yi} by using
(I4.c), (I4.d) and that A1, . . . , A`′+2k are pairwise disjoint, we have that Pi is a weak path.
Since Qxi , Qyi , and P ∗i are Berge paths, we only need to ensure that there is no hyperedge that
appears in two of the paths Qxi , Qyi , and P ∗i . Since Qxi is

(
(A`′+1, A`′+3, . . . , A`′+2k−3), R

)
-

compatible by Property (I4.c), Qyi is
(
(A`′+2, A`′+4, . . . , A`′+2k−2), R

)
-compatible by Prop-

erty (I4.d), and P ∗i is (A′1, . . . , A
′
ρ(n))-compatible by Claim 4.15 it follows from Lemma 4.12

that E(Qxi), E(Qyi), and E(P ∗i ) are pairwise disjoint. Therefore, Pi is indeed a Berge path
for every i ∈ I ′.

Let
Ik+1 := Ik ∪ I ′ and Pk+1 := Pk ∪ {Pi}i∈I′ .

Before defining families of sets Kak+1 and Kbk+1 as well as paths {Qx : x ∈ Kak+1∪Kbk+1} that
satisfy Properties (I3) and (I4), respectively, we prove that Ik+1 and Pk+1 fulfil Properties (I1)
and (I2), respectively.
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Property (I1). Clearly, Ik+1 ⊆ [s]. For k < N , we have |Ik+1| = |Ik| + |I ′| = s(1 −
2−k) + s2−k−1 = s(1 − 2−k−1). If k = N , then |Ik+1| = |Ik| + |I ′| = s. Hence, Ik+1 satisfies
Property (I1).

Property (I2). We have already shown that Pi is a Berge path for every i ∈ I ′. The
same is true by the induction hypothesis for every other index i ∈ Ik+1. We can also conclude
using the induction hypothesis that Properties (I2.a)–(I2.g) hold for every i ∈ Ik and i′ ∈ Ik.

Let i ∈ I ′. Then Pi can be decomposed into Pi = Qxi ·P ∗i ·Qyi as described earlier. Prop-
erty (I2.a) follows immediately by Properties (I4.a) and (I4.b) of Qxi and Qyi . Furthermore,
we can deduce from Properties (I4.c) and (I4.d) for Qxi and Qyi as well as from the fact that
P ∗i is (A′1, . . . , A

′
ρ(n))-compatible that Properties (I2.b), (I2.c) and (I2.g) hold.

Next we verify Property (I2.d), that is, V ∗(Pi) ∩ V ∗(Pi′) = {ai, bi} ∩ {ai′ , bi′} for every
i′ ∈ Ik+1 \ {i}. First assume that i′ ∈ Ik. By Property (I4.f), by the definition of {A′j}j∈[`′]
and since P ∗i is (A′1, . . . , A

′
ρ(n))-compatible, we know that V ∗(Qxi)∩V ∗(Pi′) = {ai}∩{ai′ , bi′},

V ∗(P ∗i ) ∩ V ∗(Pi′) = ∅ and V ∗(Qyi) ∩ V ∗(Pi′) = {bi} ∩ {ai′ , bi′}. Hence, V ∗(Pi) ∩ V ∗(Pi′) =
{ai, bi} ∩ {ai′ , bi′} follows. Suppose now that i′ ∈ I ′. Let Pi′ = Qxi′ · P ∗i′ · Qyi′ be the
decomposition of Pi′ as before. By Property (I4.e) we have

(
V ∗(Qxi)∪V ∗(Qyi)

)
∩
(
V ∗(Qxi′ )∪

V ∗(Qyi′ )
)

= {ai, bi}∩{ai′ , bi′}. Furthermore, we know by Claim 4.15 that V ∗(P ∗i )∩V ∗(P ∗i′) =
∅. Since V ∗(P ∗i ) ⊆ ⋃j∈[ρ(n)]Aj∪{xi, yi} (Properties (2) and (3) of Claim 4.15) and V ∗(Qxi′ )∪
V ∗(Qyi′ ) ⊆

⋃
j∈[2k−2]A`′+j ∪ {ai′ , bi′ , xi′ , yi′} (Properties (I4.a)–(I4.d)) we have V ∗(P ∗i ) ∩(

V ∗(Qxi′ )∪V ∗(Qyi′ )
)

= ∅. Similarly one can show that V ∗(P ∗i′)∩
(
V ∗(Qxi)∪V ∗(Qyi)

)
= ∅.

All in all this shows V ∗(Pi) ∩ V ∗(Pi′) = {ai, bi} ∩ {ai′ , bi′}.
Let us now check Property (I2.e), i.e. E(Pi) ∩ E(Pi′) = ∅ for every i′ ∈ Ik+1 \ {i}. If

i′ ∈ Ik, then we have by Property (I4.g), by Property (3) of Claim 4.15 and by the definition
of {A′j}j∈[`′] that

(
E(Qxi) ∪ E(P ∗i ) ∪ E(Qyi)

)
∩ E(Pi′) = ∅, implying E(Pi) ∩ E(Pi′) = ∅.

Now suppose that i′ ∈ I ′. Let again Pi′ = Qxi′ · P ∗i′ · Qyi′ be the decomposition of Pi′ as
before. Using Property (4) of Claim 4.15, E(P ∗i ) and E(P ∗i′) are disjoint. Using Lemma 4.12
(part 1) and Properties (I4.c)-(I4.d) and Claim 4.15 (3), we know that E(P ∗i′) is disjoint
from E(Qxi) ∪ E(Qyi), and E(P ∗i ) is disjoint from E(Qxi′ ) ∪ E(Qyi′ ). Similarly, but using
Lemma 4.12 (part 3), we also see that E(Qxi) ∪ E(Qyi) and E(Qxi′ ) ∪ E(Qyi′ ) are disjoint.
Hence, E(Pi) ∩ E(Pi′) = ∅.

It remains to show that |V ∗(Pi) \ {ai, bi}| ≡ 2 mod 4 for every i ∈ Ik+1. If i ∈ Ik, then
this follows by the induction hypothesis. If i ∈ I ′, let Pi = Qxi · P ∗i · Qyi as before. By
Properties (I4.c) and (I4.d) we know that |V ∗(Qxi) \ {ai}| = |V ∗(Qyi) \ {bi}| = k and by
Property (3) of Claim 4.15 that |V ∗(P ∗i ) \ {xi, yi}| = ρ(n). Hence,

|V ∗(Pi) \ {ai, bi}| = 2k + ρ(n) =

{
2k + r(n) if k is odd

2(k + 1) + r(n) if k is even.

This means in particular that |V ∗(Pi) \ {ai, bi}| ≡ 2 mod 4 since r(n) ≡ 0 mod 4.

Let us now turn to the definition of Kak+1 and Kbk+1. If k = N , then we have [s]\Ik+1 = ∅
and Kak+1 = Kbk+1 = ∅ clearly fulfil (I3). Assume that k < N and set Sa :=

⋃
i∈[s]\Ik+1

Ka
i,k.

Using |Ik+1| = s(1 − 2−k−1) and |Ka
i,k| = 2k we can deduce that |Sa| = s/2. Analogously

one can show that for Sb :=
⋃
i∈[s]\Ik+1

Kb
i,k we also have |Sb| = s/2. We use the following

claim to find a (2, R)-matching between Sa ⊆ A`′+2k−1 ∪ {ai}i∈[s] and A`′+2k+1 as well as a

(2, R)-matching between Sb ⊆ A`′+2k ∪ {bi}i∈[s] and A`′+2k+2.



114 Chapter 4. A Dirac-type theorem of Hamilton Berge cycles in random hypergraphs

Claim 4.16. Let B ∈ A and let S ⊆
(
V (A) \B

)
∪ {ai, bi}i∈[s] of size s/2. Then there exists

a (2, R)-matching between S and B that saturates S.

Proof. Define the bipartite graph GS = (S ∪B,ES) with

ES :=
{
{u, v} : u ∈ S, v ∈ B with eH

(
u, v,R(r−2)

)
> 0
}
.

Using Hall’s theorem (see e.g. [157]) the claim is proved if for every T ⊆ S we have |NGS (T )| >
2|T |. For a contradiction let us assume that there are sets T ⊆ S, N ⊆ B with NGS (T ) ⊆ N
and |N | = 2|T |. We have

eH
(
T,N,R(r−2)

)
= eH

(
T,B,R(r−2)

) (P3)

≥
(

1

2r−1
+
γ

2

)
p|T ||B|

( |R|
r − 2

)
.

For an upper bound on eH
(
T,N,R(r−2)

)
we distinguish two cases. First let us assume that

|N |, |T | ≤ n/ log5 n. Then, for n large enough, it follows from Property (H2) that

eH
(
T,N,R(r−2)

)
≤ |T ||N |

( |R|
r − 2

)
p+ ε′

|T |nr−1p

log5 n
,

which leads to a contradiction with |N | = 2|T | ≤ 2s ≤ |B|/2r+1 and |B| ≥ n/(32 log4 n) and
|R| ≥ εn/10 as well as ε′ ≤

( γε
10r

)r
.

Now suppose that |N |, |T | ≥ n/(2 log5 n). Then, using Property (H1) we obtain

eH
(
T,N,R(r−2)

)
≤ (1 + ε′)p|T ||N |

( |R|
r − 2

)
,

which also leads to a contradiction with |N | = 2|T | ≤ 2s ≤ |B|/2r+1 and ε′ ≤ γ/2r+1. �

Let Ma denote a (2, R)-matching between Sa and A`′+2k+1 that saturates S and let M b

denote a (2, R)-matching between Sb and A`′+2k+2 that saturates Sb. For every i ∈ [s] \ Ik+1

let
Ka
i,k+1 := {x ∈ A`′+2k+1 : ∃ e ∈Ma with x ∈ e}

and
Kb
i,k+1 := {x ∈ A`′+2k+2 : ∃ e ∈M b with x ∈ e}.

Property (I3). By definition we have for every i ∈ [s] \ Ik+1 that Ka
i,k+1 ⊆ A`′+2k+1 and

Kb
i,k+1 ⊆ A`′+2k+2 and |Ka

i,k+1| = |Kb
i,k+1| = 2|Ka

i,k| = 2k+1. Hence, Property (I3) holds for

Kak+1 := {Ka
i,k+1}i∈[s]\Ik+1

and Kbk+1 := {Kb
i,k+1}i∈[s]\Ik+1

.

Let x ∈ Ka
i,k+1 ∪ Kb

i,k+1. If x ∈ Ka
i,k+1, then there exists a unique hyperedge ex ∈ Ma

with x ∈ ex. Let yx ∈ Ka
i,k be the unique vertex in ex ∩ Sa. Analogously, if x ∈ Kb

i,k+1, then

there exists a unique hyperedge ex ∈ M b that contains x. In this case, let yx ∈ Kb
i,k denote

the unique vertex in ex ∩ Sb.
Using this notation we define for every x ∈ Ka

i,k+1 ∪Kb
i,k+1 the weak path

Qx := Qyx · (yx, ex, x),

where Qyx is a Berge path connecting ai and yx (if yx ∈ Ka
i,k) or bi and yx (if yx ∈ Kb

i,k) with

Property (I4). We show that Property (I4) holds for all paths Qx with x ∈ Ka
i,k+1 ∪Kb

i,k+1.
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Property (I4). Obviously, if x ∈ Ka
i,k+1, then Qx connects ai to x. If x ∈ Kb

i,k+1, then

Qx connects bi to x. Hence, Properties (I4.a) and (I4.b) hold for {Qx : x ∈ Ka
i,k+1∪Kb

i,k+1, i ∈
[s] \ Ik+1}.

For x ∈ Ka
i,k+1 we have that Qyx is

(
(A`′+1, A`′+3, . . . , A`′+2k−3), R

)
-compatible and ex ∈

EH(A`′+2k−3, A`′+2k−1, R
(r−2)). Hence, Qx is

(
(A`′+1, A`′+3, . . . , A`′+2k−1), R

)
-compatible.

This shows Property (I4.c). Analogously, one can show that Property (I4.d) holds as well.

Let x1 ∈ Ka
i,k+1 ∪Kb

i,k+1 and x2 ∈ Ka
j,k+1 ∪Kb

j,k+1 for any distinct indices i, j ∈ [s] \ Ik+1.
As before, let Qx1 = Qyx1

· (yx1 , ex1 , x1) and Qx2 = Qyx2
· (yx2 , ex2 , x2). By induction we

have V ∗(Qyx1
) ∩ V ∗(Qyx2

) = End(Qyx1
) ∩ End(Qyx2

). Since it holds that yx1 6= yx2 and also
that x1, x2 /∈ V ∗(Qyx1

)∪V ∗(Qyx2
), we conclude V ∗(Qx1)∩V ∗(Qx2) = End(Qx1)∩End(Qx2).

Hence, Property (I4.e) holds.

Next we show Property (I4.f), that is, V ∗(Qx) ∩ V ∗(Pj) = End(Qx) ∩ {aj , bj} for every
x ∈ Ka

i,k+1 ∪ Kb
i,k+1 and j ∈ Ik+1 \ {i}. Let Qx = Qyx · (yx, ex, x) as before. Since x ∈

A`′+2k+1 ∪ A`′+2k+2 and V ∗(Pj) ⊆
⋃
j∈[`′+2k]Aj ∪ {aj , bj} (Property (I2.b)), we have x /∈

V ∗(Pj). Therefore, it is enough to verify that V ∗(Qyx) ∩ V ∗(Pj) = End(Qyx) ∩ {aj , bj}. If
j ∈ Ik, then this follows directly by induction. If, on the other hand, j ∈ I ′, let Pj =
Qxj · P ∗j · Qyj as before. By induction and since yx, xj , yj are distinct, we have

(
V ∗(Qxj ) ∪

V ∗(Qyj )
)
∩ V ∗(Qyx) = (End(Qxj )∪End(Qyj ))∩End(Qyx) = {aj , bj} ∩End(Qyx). Moreover,

V ∗(Qx)∩
(⋃

j′∈[`′]Aj′
)

= ∅ while V ∗(P ∗j ) ⊆ ⋃j′∈[`′]Aj′∪{xj , yj}, and xj , yj /∈ V ∗(Qx). Thus,

V ∗(Pj) ∩ V ∗(Qx) = ∅. As a consequence, Property (I4.f) is satisfied.

Finally, it remains to show Property (I4.g), i.e. E(Qx)∩E(Pj) = ∅ for every x ∈ Ka
i,k+1∪

Kb
i,k+1 and j ∈ Ik+1. Let Qx = Qyx · (yx, ex, x) as before. If j ∈ Ik, then E(Qyx)∩E(Pj) = ∅

by induction. Since we also have x /∈ ⋃j′∈[`′+2k−2]Aj′ ∪ {aj , bj} ⊇ V (Pj) it follows that

E(Qx)∩E(Pj) = ∅. If j ∈ I ′, let Pj = Qxj ·P ∗j ·Qyj as before. Using Properties (I4.c)–(I4.e),
Property (3) of Claim 4.15 for P ∗j and x /∈ V (Qxj ) ∪ V (Qyj ), we deduce with Lemma 4.12
that E(Qx) is disjoint from E(Qxj ), E(P ∗j ), and E(Qyj ). Hence, E(Qx) ∩ E(Pj) = ∅ holds
again, which finishes the induction.

Now let us turn to the proof of Claim 4.15, for which we need the following two claims.

Claim 4.17. Let A ∈ A and let B ⊆ V (H) be a subset of size n/(10 log5 n) such that
A ∩B = ∅. Then for every A′ ⊆ A with |A′| ≥ (1− ε)|A| we have |N1

(A′)(B)| > |A|/2.

Proof of Claim 4.17. Assume for a contradiction that the claim is not true. Then there exist a
set A′ ⊆ A with |A′| ≥ (1−ε)|A| and a set N ′ ⊆ A of size |A|/2 such that N := N1

(A′)(B) ⊆ N ′.
Furthermore, let D ⊆ A be an arbitrary subset of size ε|A| with A \ A′ ⊆ D. Due to the
assumption on ε′ we then obtain

eH(B,N (r−1)) = eH(B, (A′)(r−1)) ≥ eH(B,A(r−1))− eH(B,A \A′, A(r−2))

≥ eH(B,A(r−1))− eH(B,D,A(r−2))

≥
(

1

2r−1
+
γ

2

)
p|B|

( |A|
r − 1

)
−
(
1 + ε′

)
ε|B||A|

( |A|
r − 2

)
p

>

(
1

2r−1
+

γ

20

)
p|B|

( |A|
r − 1

)
,
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where in the second last inequality we use Properties (P2) and (H1). On the other hand, we
obtain

eH(B,N (r−1)) ≤ eH(B, (N ′)(r−1))
(H1)

≤
(
1 + ε′

)
p|B|

( |N ′|
r − 1

)

≤
(

1 +
γ

2r+1

)
p|B| · 1

2r−1

( |A|
r − 1

)
,

which yields a contradiction. �

Claim 4.18. Let m ≥ log2 n + 1, let D = (D1, . . . , Dm) be a subsequence of A and let
D′ = (D′1, . . . , D

′
m) be a sequence with D′i ⊆ Di and |D′i| ≥ (1− ε)|Di| for every i ∈ [m]. Let

further B ⊆ V (H) \
(⋃

i∈[m]Di

)
with |B| ≥ n/(10 log5 n). Then there exists a vertex x ∈ B

such that for every log2 n+ 1 ≤ i ≤ m we have |N i
D′(x)| > |Di|/2.

Proof. We prove by induction that for every i ∈ [m] there exists a set Bi−1 ⊆ B of size
|Bi−1| ≤ max{1, d|B|/2i−1e} such that |N i

D′(Bi−1)| > |Di|/2. Since then |Bi−1| = 1 holds for
every i ≥ log2 n + 1, Claim 4.18 follows directly from this statement. For i = 1, Claim 4.17
ensures that for B0 = B we have |N1

D′(B0)| > |Di|/2.

For the inductive step, assume that the statement is true for i < m. Let Bi−1 be a
set such that |N i

D′(Bi−1)| > |Di|/2. One can easily find a subset Bi ⊆ Bi−1 such that
|Bi| = d|Bi−1|/2e with |N i

D′(Bi)| ≥ |Di|/4 > n/(10 log5 n). Using Claim 4.17 again, we have
|N i+1
D′ (Bi)| = |N1

(D′i+1)(N
i
D′(Bi))| > |Di|/2, which completes the inductive step. �

Finally, we are in the position to prove Claim 4.15.

Proof of Claim 4.15. Let I ⊆ [s] be a largest subset of [s] such that there exist Berge paths
{P ′i}i∈I as described in the statement of the claim. Assume for a contradiction that |I| < s/2.
Let

Cj := A′j \
⋃

i∈I
V ∗(P ′i )

for every j ∈ [ρ(n)] and let

ρ′(n) =
ρ(n)

2
.

We also define C′ := (C1, . . . , Cρ′(n)) and C′′ = (Cρ(n), . . . , Cρ′(n)), and note that both sequence
have length larger than log2 n+ 1.

As P ′i is A′-compatible and therefore |A′j ∩ V ∗(P ′i )| ≤ 1 for every j ∈ [ρ(n)] and i ∈ I we

have |Cj | > |A′j | − s/2 ≥ (1− ε)|Aj | for every j ∈ [ρ(n)]. As |[s] \ I| > s/2 ≥ n/(2 log5 n) we

know that there are at least |[s] \ I|/2 + 1 vertices x ∈ {xi : i ∈ [s] \ I} with |Nρ′(n)
C′ (x)| >

|Aρ′(n)|/2 by iteratively applying Claim 4.18. Analogously, we can find |[s] \ I|/2 + 1 vertices

y ∈ {yi : i ∈ [s]\I} with |Nρ′(n)+1
C′′ (y)| > |Aρ′(n)|/2. Hence, there exists an index i∗ ∈ [s]\I such

that N
ρ′(n)
C′ (xi∗)∩Nρ′(n)+1

C′′ (yi∗)∩Aρ′(n) 6= ∅. Let vρ′(n) ∈ Nρ′(n)
C′ (xi∗)∩Nρ′(n)+1

C′′ (yi∗)∩Aρ′(n),
then by definition there exist

• a Berge path Px = (xi∗ , e0, v1, e1, v2, . . . , vρ′(n)−1, eρ′(n)−1, vρ′(n)) such that vi ∈ Ci

for every i ∈ [ρ′(n)], ei ∈ EH
(
vi, vi+1, C

(r−2)
i+1

)
for every i ∈ [ρ′(n) − 1], and e0 ∈

EH
(
xi∗ , v1, C

(r−2)
1

)
,
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• a Berge path Py = (yi∗ , eρ(n)+1, vρ(n), eρ(n), vρ(n)−1, . . . , vρ′(n)+1, eρ′(n)+1, vρ′(n)) such that

vi ∈ Ci for every i ∈ {ρ′(n), . . . , ρ(n)}, ei ∈ EH
(
vi−1, vi, C

(r−2)
i−1

)
for every i ∈ {ρ′(n) +

1, . . . , ρ(n)}, and eρ(n)+1 ∈ EH
(
yi∗ , vρ(n), C

(r−2)
ρ(n)

)
.

But then Pi∗ := Px ·Py is a Berge path that connects xi∗ and yi∗ and which is (C1, . . . , Cρ(n))-
compatible and therefore (A′1, . . . , A

′
ρ(n))-compatible. Moreover, by the definition of the

sets Cj , we conclude that V ∗(Pi∗) is disjoint from
⋃
i∈I V

∗(Pi) and E(Pi∗) is disjoint from⋃
i∈I E(Pi). This, however, is a contradiction to the maximality of I. �

This finishes the proof of Lemma 4.9.

4.1.5 Absorbing lemma

In this subsection we prove a lemma that ensures the existence of a Berge path Q in a (p, ε′)-
pseudorandom r-uniform hypergraph H given with a vertex partition by the partition lemma
(Lemma 4.8) such that Q ‘absorbs’ every subset of the set Z of the vertex partition of H.
More precisely, we prove the following lemma.

Lemma 4.19 (Absorbing lemma). Let r ≥ 3 be an integer and let p ≥ log8r n/nr−1. Fur-
thermore, let γ > 0 and ε ≥ ε′ > 0 be reals such that ε < 10−3γ/2r+1 and ε′ ≤

( γε
10r

)r
. Let H

be a (p, ε′)-pseudorandom 3-uniform hypergraph given with a partition

V (H) =
⋃

i∈[`]

Yi ∪
⋃

i∈[`]

Zi ∪
⋃

j∈[t]

Wj

with t := log5 n and ` := 16 log n that satisfies Properties (P1)–(P3) from Lemma 4.8. Set
A =

⋃
i∈[8 logn] Yi and B =

⋃
i∈[8 logn] Y`+1−i. Moreover, let R1, R2 ⊆

⋃
j∈[t]Wj be two disjoint

subsets each of size at least εn/10.
Then H contains a Berge path Q with V ∗(Q) ⊆ Y such that for every M ⊆ ⋃i∈[`] Zi there

exists a Berge path QM with the same endpoints as Q such that

(Q1) V ∗(QM ) = V ∗(Q) ∪M ,

(Q2) E(QM ) ⊆ EH(A) ∪ EH
(
A(2), R

(r−2)
1

)
∪ EH

(
M,A(r−1)

)
∪ EH

(
M,A,R

(r−2)
1

)

E(QM ) ⊆ ∪ EH(B) ∪ EH
(
B(2), R

(r−2)
2

)
∪ EH

(
A,B(r−1)

)
∪ EH

(
A,B,R

(r−2)
2

)
, and

(Q3) |V ∗(Q)| ≤ 2n/ log n.

Property (Q2) in Lemma 4.19 will be essential in the proof of Theorem 4.7, when we need
to argue why certain Berge paths are edge-disjoint. Before we prove Lemma 4.19 we introduce
the definitions of x-absorbing sets and certifying paths, and prove that a specific construction
yields an x-aborbing set.

Definition 4.20 (x-absorbing, certifying path). Let H be an r-uniform hypergraph, let A ⊆
V (H) and let x, sx, tx ∈ A be distinct vertices. We say that A is x-absorbing with endpoints
sx and tx if there exist two Berge paths Px and P ′x in H with endpoints sx and tx such that

(1) x /∈ V (Px) and

(2) V ∗(Px) ∪ {x} = V ∗(P ′x) ⊆ A .
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Additionally, we say that Px and P ′x certify that A is x-absorbing.

The next lemma yields an x-absorbing set with two certifying paths constructed using a
Berge cycle of length (4k + 3) and 2k Berge paths for any positive integer k. In Figure 4.3
we illustrate such a construction.

Lemma 4.21. Let H be an r-uniform hypergraph and let k ∈ N. Let Cx be a Berge cycle
in H with (x, sx, s

x
2 , t

x
1 , s

x
3 , t

x
2 , . . . , s

x
2k, t

x
2k−1, tx, t

x
2k, s

x
1) being the order of V ∗(Cx) on Cx (up

to cyclic permutation). For i ∈ [2k] let P xi be a Berge path in H such that the following four
properties hold for all distinct i, i′ ∈ [2k]:

(1) V ∗(P xi ) ∩ V ∗(P xi′ ) = ∅,

(2) V ∗(P xi ) ∩ V ∗(Cx) = {sxi , txi },
(3) sxi and txi are the endpoints of P xi ,

(4)
(
E(P xi ) ∪ E(Cx)

)
∩ E(P xi′ ) = ∅.

Then Ax := V ∗(Cx) ∪⋃i∈[2k] V
∗(P xi ) is x-absorbing with endpoints sx and tx, and with two

certifying paths Px and P ′x such that E(Px) ∪ E(P ′x) = E(Cx) ∪⋃i∈[2k]E(P xi ).

sx x

sx1 tx1

sx2 tx2

sx3 tx3

sx2k tx2k tx

P x
2

P x
3P x

1

P x
2k

Figure 4.3: An illustration of the graph G = (Ax, E), where the edge set E is defined as
E =

{
{x, y} ∈

(
Ax
2

)
: ∃ e ∈ E(Cx) ∪⋃i∈[2k]E(P xi ) with {x, y} ⊆ e

}
.

Proof of Lemma 4.21. Let

P ′x := (sx, f, x, g, s
x
1) · P x1 · (tx1 , e1, s

x
2) · P x2 · (tx2 , e2, s

x
3) · . . . · (tx2k−1, e2k−1, s

x
2k) · P x2k · (tx2k, h, tx),

where f, g, h, ei are the unique hyperedges in E(Cx) with {sx, x} ⊆ f , {x, sx1} ⊆ g, {tx2k, tx} ⊆
h, and {txi , sxi+1} ⊆ ei for every i ∈ [2k − 1]. Furthermore, let

Px := (sx, f
′, sx2) · P x2 · (tx2 , e(2,4), s

x
4) · P x4 · (tx4 , e(4,6), s

x
6) · . . . · (tx2k−2, e(2k−2,2k), s

x
2k) · P x2k

· (tx2k, g′, sx1) · P x1 · (tx1 , e(1,3), s
x
3) · P x3 · . . . (tx2k−3, e(2k−3,2k−1), s

x
2k−1) · P x2k−1 · (tx2k−1, h

′, tx),

where f ′, g′, h′, e(i,i+2) are the unique hyperedges in E(Cx) with {sx, sx2} ⊆ f ′, {tx2k, sx1} ⊆ g′.
{tx2k−1, tx} ⊆ h′, and {txi , sxi+2} ⊆ e(i,i+2) for every i ∈ [2k − 2].

Using Properties (1)–(4) one can verify quite easily that Px and P ′x are Berge paths.
Clearly, Px and P ′x have sx and tx as endpoints, and E(Px)∪E(P ′x) = E(Cx)∪⋃i∈[2k]E(P xi )

holds. Furthermore, x /∈ V (Px) and V ∗(P ′x) = V ∗(Px) ∪ {x}.
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Now we turn to the proof of the absorbing lemma.

Proof of Lemma 4.19. Let {z1, . . . , zm} :=
⋃
i∈[`] Zi with n/(32 log3 n) ≤ m ≤ n/(16 log3 n).

First we aim to find zi-absorbing sets Azi ⊆ A, together with certifying paths Pzi and P ′zi ,
for every i ∈ [`]. To this end we proceed in two steps.

For the first step, set A1 = (Y1, Y2, . . . , Y8 logn) and observe that m ≤ ε|Yi|/4 for every
i ∈ [8 log n]. By Lemma 4.9 (with A = A1 and R = R1), we therefore find Berge cycles
C1, . . . , Cm such that for all distinct indices i, i′ ∈ [m] we have

(S1.1) zi ∈ V ∗(Ci),
(S1.2) V ∗(Ci) ⊆ A ∪ {zi},

(S1.3) E(Ci) ⊆ EH
(
A ∪ {zi}, A(r−1)

)
∪ EH

(
A ∪ {zi}, A,R(r−2)

1

)

(S1.4) V ∗(Ci) ∩ V ∗(Ci′) = ∅,

(S1.5) E(Ci) ∩ E(Ci′) = ∅, and

(S1.6) there exists ki ∈ N such that |V ∗(Ci)| = 4ki + 3 ≤ 8 log n.

With Lemma 4.21 in mind, let (zi, szi , s
zi
2 , t

zi
1 , s

zi
3 , t

zi
2 , . . . , s

zi
2ki
, tzi2ki−1, tzi , t

zi
2ki
, szi1 ) denote the

ordering of V ∗(Ci) on the Berge cycle Ci.

For the second step, set A2 = (Y8 logn+1, Y8 logn+2, . . . , Y`). We now consider all (disjoint)
pairs (szij , t

zi
j ) with j ∈ [ki] and i ∈ [m] as well as all (disjoint) pairs (tz1 , sz2), (tz2 , sz3), . . . ,

(tzm−1 , szm). These are in total at most s := m ·maxi∈[m]{ki}+m−1 ≤ 3m log n pairs. Hence,
s ≤ ε|Yi|/4 for every i ∈ [`]. Therefore, Lemma 4.9 (with A = A2 and R = R2) ensures that
we can find Berge paths P ij for every j ∈ [ki] and i ∈ [m] as well as Berge paths Pi for every
i ∈ [m − 1] such that for every distinct i, i′ ∈ [m − 1] and j, j′ ∈ [m] and for every k ∈ [kj ]
and for every (j′, k′) ∈ ([m]× [kj′ ]) \ (j, k) it holds that

(S2.1) P jk connects s
zj
k to t

zj
k ,

(S2.2) Pi connects tzi to szi+1 ,

(S2.3) V ∗(P jk ) ⊆ B ∪ {szjk , t
zj
k },

(S2.4) V ∗(Pi) ⊆ B ∪ {tzi , szi−1},

(S2.5) E(P jk ) ∪ E(Pi) ⊆ EH
(
A ∪B,B(r−1)

)
∪ EH

(
A ∪B,B,R(r−2)

2

)
,

(S2.6) V ∗(P ij ), V
∗(P i

′
j′ ), V

∗(Pi), and V ∗(Pi′) are pairwise disjoint,

(S2.7) E(P ij ), E(P i
′
j′ ), E(Pi), and E(Pi′) are pairwise disjoint, and

(S2.8) |V ∗(P jk )|, |V ∗(Pi)| ≤ 8 log n.

Using all these cycles and paths, we are able to construct zi-absorbing sets Azi . For every
i ∈ [m], it follows from Lemma 4.21 that Azi = V ∗(Ci) ∪

⋃
j∈[ki]

V ∗(P ij ) is zi-absorbing with
endpoints szi and tzi . Indeed, Property (1) from Lemma 4.21 is given by (S2.6). Property (2)
follows from (S1.2), (S2.1), and (S2.3). Property (3) follows from (S2.1), and Property (4) is
given by (S1.3), (S2.5) and (S2.7).
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Moreover, by Lemma 4.21, we find two certifying paths Pzi and P ′zi with endpoints szi and
tzi such that zi /∈ V ∗(Pzi), such that V ∗(P ′zi) = V ∗(Pzi) ∪ {zi} ⊆ Azi and E(Pzi) ∪ E(P ′zi) =
E(Ci) ∪

⋃
j∈[ki]

E(P ij ).

We now consider the weak path

Q := Pz1 · P1 · Pz2 · P2 . . . · Pm−1 · Pzm .

Observe that V ∗(Q)∩{z1, . . . , zm} = ∅ since V ∗(Pzi) =
(
V ∗(Ci) \ {zi}

)
∪⋃j∈[ki]

V ∗(P ij ) ⊆ Y
for every i ∈ [m], where we used Properties (S1.2) and (S2.3), and V ∗(Pi) ⊆ Y for every
i ∈ [m− 1], where we used Property (S2.4).

Now, for every i ∈ [m−1] and i′ ∈ [m], Pi is edge-disjoint from Pzi′ since E(Pzi′ ) ⊆ E(Ci′)∪⋃
j∈[ki′ ]

E(P i
′
j ) and by Properties (S1.3), (S2.5), and (S2.7). All paths Pi with i ∈ [m − 1]

are pairwise edge-disjoint by Property (S2.7), and similarly all paths Pzi are pairwise edge-
disjoint since E(Pzi) ⊆ E(Ci)∪

⋃
j∈[ki]

E(P ij ) holds and by Properties (S1.3),(S1.5),(S2.5) and
(S2.7). Hence, it follows that Q is a Berge path. By Properties (S1.6) and (S2.8) we obtain
that |V ∗(Q)| ≤ 32m log2 n ≤ 2n/ log n.

Let M ⊆ [m] be given. Then we construct a path QM by taking the definition of Q and
by replacing every path Pzi by the path P ′zi , whenever i ∈M holds. Then, its endpoints are
sz1 and tzm , and thus the same as of the path Q. Since E(P ′zi) ⊆ E(Ci)∪

⋃
j∈[ki]

E(P ij ) holds
for every i ∈ M , it follows analogously to the above discussion that QM is a Berge path.
Moreover, we obtain V ∗(QM ) ∩ {z1, . . . , zm} = {zi : i ∈ M} as V ∗(P ′zi) = V ∗(Pzi) ∪ {zi}
holds for every i ∈M .

4.1.6 Proof of the main theorem

In this subsection we first present the proof of Theorem 4.7 and then show that it directly
implies Theorem 4.1 using Lemma 4.6.

Proof of Theorem 4.7. Let r, γ, ε′, p, H be given according to the assumptions of the
theorem. Set ε = 10−3γ/2r+2. Let H be a spanning subhypergraph of H with δ1(H) ≥
(1/2r−1 + γ)p

(
n
r−1

)
.

Since H is (p, ε′)-pseudorandom by assumption, we have that H is (p, ε′)-pseudorandom.
Hence we may apply Lemma 4.8 with input r, γ, ε, and p to H and get a partition V (H) =
Y ∪Z∪W and a refined partition P = {Yi, Zi,Wj}i∈[`],j∈[t] with Y =

⋃
i∈[`] Yi and Z =

⋃
i∈[`] Zi

and W =
⋃
j∈[t]Wj with ` := 16 log n and t := log5 n such that Properties (P1)–(P3) of

Lemma 4.8 are fulfilled.

Next we introduce a few definitions. First we divide Y into two sets, each consisting of
8 log n clusters of {Yi}i∈[`]. We set

A =
⋃

i∈[8 logn]

Yi and B =
⋃

i∈[8 logn]

Y`+1−i.

We also need the following subset B′ of B:

B′ :=
⋃

i∈[4 logn]

Y`+1−i ⊆ B.
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The set W is also split into two sets. Let

R1 =
⋃

j∈[t/2]

Wj and R2 =
⋃

j∈[t/2]

Wt+1−j .

Applying Lemma 4.19, we find a Berge path Q in H with V ∗(Q) ⊆ Y such that for every
M ⊆ Z there exists a Berge path QM with the same endpoints as Q such that Properties
(Q1)–(Q3) from Lemma 4.19 hold with R1 and R2 as defined above. We denote the endpoints
of Q by xQ and yQ.

Next we distribute all but at most t/2 vertices of A\V ∗(Q) to W1, . . . ,Wt/2 such that the
resulting clusters S1, . . . , St/2 with Wi ⊆ Si for every i ∈ [t/2] have equal size. Similarly, we
distribute all but at most t/2 vertices of B \ V ∗(Q) to Wt/2+1, . . . ,Wt such that the resulting
clusters St/2+1, . . . , St with Wt+1−i ⊆ St+1−i for every i ∈ [t/2] have equal size and such that
B′ ⊆ ⋃i∈[t/2] St+1−i and (St/2+1 ∪ St) ∩B′ = ∅.

Let us argue why such a distribution is possible. Since (1 − 4ε/5)n/ log5 n ≤ |Wj | ≤
(1−3ε/5)n/ log5 n for every j ∈ [t] by Property (P1), one needs to add at most εn/10 vertices
to W1, . . . ,Wt/2 to extend them to equally sized clusters. The same holds for Wt/2+1, . . . ,Wt.
Since |Yi| ≥ εn/(2`) for every i ∈ [`] by Property (P1) and |V ∗(Q)| ≤ 2n/ log n by Prop-
erty (Q3) we have for sufficiently large n in particular |A \ V ∗(Q)| ≥ εn/5 and |B \ V ∗(Q)| ≥
εn/5. By definition of B′ it can be seen quickly that it is possible to choose a distribution
such that B′ ⊆ ⋃i∈[t/2] St+1−i and (St/2+1 ∪ St) ∩ B′ = ∅. The vertices of A \ V ∗(Q) and
B \ V ∗(Q) that were not distributed are stored in the set S.

As a next step we construct edge-disjoint Berge paths such that the union of their vertex
sequences cover

⋃
j∈[t] Sj . For this we use the following claim, whose proof we defer to the

end of the current proof.

Claim 4.22. There exists a family S of Berge paths with
⋃
P∈S V

∗(P ) =
⋃
j∈[t] Sj and |P| ≤

4n/ log5 n such that for every distinct P, P ′ ∈ S the following holds:

(1) V ∗(P ) ∩ V ∗(P ′) = ∅ and E(P ) ∩ E(P ′) = ∅,

(2) for every M ⊆ Z, we have V ∗(P ) ∩ V ∗(QM ) = ∅ and E(P ) ∩ E(QM ) = ∅, and

(3) V (P ) ∩ Z = ∅.

Let S = {P1, . . . , Pm} for some 1 ≤ m ≤ 4n/ log5 n be the family of Berge paths guaran-
teed by Claim 4.22. For every j ∈ [m] we denote the endpoints of Pj by xj and yj . Moreover,
let {s1, . . . , sm′} = S for some 0 ≤ m′ ≤ t. We now apply the connecting lemma (Lemma 4.9)
with A := (Z1, . . . , Z8 logn) and R := B′ and the family Ω consisting of the pairs

(y1, x2), . . . , (ym−1, xm), (ym, s1), (s1, s2), . . . , (sm′−1, sm′), (sm′ , xQ), (yQ, x1).

We can do this since the number of pairs equals m + m′ + 1 ≤ ε|Zi|/4 for every i ∈ [`] and
|B′| ≥ εn/8. For every pair (u, v) ∈ Ω we then obtain a Berge path P(u,v) such that for every
other pair (u′, v′) ∈ Ω the following holds:

(O1) P(u,v) connects u and v,

(O2) V ∗(P(u,v)) ∩ V ∗(P(u′,v′)) = {u, v} ∩ {u′, v′},
(O3) E(P(u,v)) ∩ E(P(u′,v′)) = ∅, and
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(O4) E(P(u,v)) ⊆ EH(V (Ω) ∪ Z,Z(r−1)) ∪ EH(V (Ω) ∪ Z,Z, (B′)(r−2)).

Finally, set M = Z \⋃(u,v)∈Ω V
∗(P(u,v)). We claim that the following weak cycle defines

a Berge cycle in H:

C := P1 · P(y1,x2) · P2 · . . . · Pm−1 · P(ym−1,xm) · Pm · P(ym,s1) · P(s1,s2) · . . .
· P(sm′−1,sm′ ) · P(sm′ ,xQ) ·QM · P(yQ,x1).

By construction we have that C is a weak cycle. Furthermore, observe that V ∗(C) =
V (H) holds since W ∪ (Y \ V ∗(Q)) =

⋃
i∈[m] V

∗(Pi) ∪ S and V ∗(Q) ⊆ V ∗(QM ) and Z ⊆⋃
(u,v)∈Ω P(u,v) ∪ V ∗(QM ). It remains to show that C is Berge. All Berge paths of the

family {Pi}i∈[m] ∪ {QM} are pairwise edge-disjoint according to Claim 4.22. The Berge
paths {P(u,v)}(u,v)∈Ω are pairwise edge-disjoint by Property (O3). For every i ∈ [m] and
(u, v) ∈ Ω we have that Pi and P(u,v) are edge-disjoint since every hyperedge of P(u,v)

intersects Z, while no hyperedge of Pi does. Moreover, QM is edge-disjoint from P(u,v)

for every (u, v) ∈ Ω since every hyperedge of P(u,v) intersects Z but does not belong to

EH(Z,A(r−1)) ∪ E(Z,A,R
(r−2)
1 ), while every hyperedge in QM that intersects Z needs to

belong to EH(Z,A(r−1))∪E(Z,A,R
(r−2)
1 ). As a consequence, C is a Hamilton Berge cycle in

H.

Hence, in order to finish the proof, it remains to prove Claim 4.22.

Proof of Claim 4.22. By construction of the sets Sj , for every j ∈ [t], we have

(
1− 4ε

5

)
n

log5 n
≤ |Wj | ≤ |Sj | ≤

(
1− 3ε

5

)
n

log5 n
+

εn

log5 n
≤
(

1 +
2ε

5

)
n

log5 n
.

We now define the bucket sets that we use when constructing the desired family of Berge
paths. For the first t/2 clusters of

⋃
j∈[t] Sj we use R2 as a bucket set and for the other t/2

clusters we use A. We use the following general notation: For every j ∈ [t− 1] \ {t/2}, we set

Lj =

{
R2 if j < t/2

A otherwise.

Moreover, we define the following set of hyperedges for every j ∈ [t− 1] \ {t/2}:

Ej := EH(Sj ,W
(r−1)
j+1 ) ∪ EH(W

(r−1)
j , Sj+1) ∪ EH(Sj ,Wj+1, L

(r−2)
j ) ∪ EH(Wj , Sj+1, L

(r−2)
j ).

For all pairs {a, b} of distinct vertices a, b ∈ V (H) we define Ej({a, b}) = {e ∈ Ej : {a, b} ⊆ e}.
We now consider the bipartite graph Gj := (Sj ∪ Sj+1, Ej) with

Ej :=
{
{a, b} : a ∈ Sj , b ∈ Sj+1 and Ej({a, b}) > 0

}
.

We claim that there exist Berge paths as required by the claim if for every j ∈ [t− 1] \ {t/2}
there is a perfect matching in Gj . Indeed, assume first that we found such perfect matchings.
Let G be the union of all graphs Gj , then the union of all these perfect matchings induces
a collection {P ′1, . . . , P ′T } of T ≤ 4n/ log5 n pairwise edge-disjoint paths in G that cover the
whole vertex set

⋃
j∈[t] Sj . These paths naturally correspond to weak paths in H in the

following way: For each path P ′i = (v1, e1, v2, . . . , eri−1, vri) in G, with i ∈ [T ] and ri ∈ N, we
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can fix a weak path Pi = (v1, f1, v2, . . . , fri−1, vri) with fj ∈ Ej′(ej) where j′ satisfies vj ∈ Sj′ .
We show that the paths {Pi}i∈[T ] fulfil all requirements asked by the claim.

First of all, Pi is a Berge path for every i ∈ [T ], which can be seen as follows: Let
P ′i = (v1, e1, v2, . . . , eri−1, vri) and Pi = (v1, f1, v2, . . . , fri−1, vri) as above and assume for a
contradiction that there exist distinct indices j1, j2 ∈ [ri− 1] with fj1 = fj2 . Let j′1, j

′
2 denote

the indices with fj1 ∈ Ej′1(ej1) and fj2 ∈ Ej′2(ej2) and ej1 6= ej2 . Notice that we must have
ej1 ∪ ej2 ⊆ fj1 . We assume without loss of generality that j′1 < j′2.

Assume first that fj1 ∈ EH(Sj′1 ,W
(r−1)
j′1+1

). This implies ∅ 6= ej1 ∩ Sj′1 = fj1 ∩ Sj′1 =

fj2 ∩ Sj′1 = ej2 ∩ Sj′1 and ej1 ∩Wj′1+1, ej2 ∩Wj′1+1 6= ∅, which forces both ej1 and ej2 to be
edges of the perfect matching of Gj′1 , a contradiction.

Similarly, we get a contradiction if we assume that fj1 ∈ EH(S
(r−1)
j′1

,Wj′1+1) or fj2 ∈
EH(Sj′2 ,W

(r−1)
j′2+1

) or fj2 ∈ EH(S
(r−1)
j′2

,Wj′2+1).

So, let us assume that

fj1 ∈ EH
(
Sj′1 ,Wj′1+1, L

(r−2)
j′1

)
∪ EH

(
Wj′1

, Sj′1+1, L
(r−2)
j′1

)

and
fj2 ∈ EH

(
Sj′2 ,Wj′2+1, L

(r−2)
j′2

)
∪ EH

(
Wj′2

, Sj′2+1, L
(r−2)
j′2

)
.

If j′1, j
′
2 < t/2 or j′1, j

′
2 > t/2, we get a contradiction by a similar argument as before. Hence

we assume that j′1 < t/2 and j′2 > t/2. Since j′1 < t/2 we have |fj1 ∩R1| ≥ 1. Since j′2 > t/2
we have Lj′2 = A and |fj2∩(R2∪B)| = 2 and hence in particular fj2∩R1 = ∅, a contradiction
to the assumption fj1 = fj2 .

Next observe that V (Pi) ∩ Z = ∅ for every i ∈ [T ] since e ∩ Z = ∅ for every e ∈ Ej and
j ∈ [t− 1] \ {t/2}, which gives Property (3) of the claim.

Let i, i′ ∈ [T ] be distinct indices. We have V ∗(Pi)∩ V ∗(Pi′) = V (P ′i )∩ V (P ′i′) = ∅ by the
construction of the weak paths in H and the disjointness of the paths {P ′i}i∈[T ] in G. Assume
for a contradiction that there exists a hyperedge e ∈ E(Pi) ∩E(Pi′). Then, by the definition
of the sets Ej we know that there needs to be an index j ∈ [t] such that |e ∩ Sj | = 1 and
thus Sj ∩ V ∗(Pi) = e ∩ Sj = Sj ∩ V ∗(Pi′), a contradiction to V ∗(Pi) ∩ V ∗(Pi′) = ∅. Hence
E(Pi) ∩ E(Pi′) = ∅. Therefore, Property (1) of the claim is fulfilled.

For every M ⊆ Z and i ∈ [T ] we have V ∗(Pi) ∩ V ∗(QM ) = ∅ since V ∗(Pi) ⊆ W ∪
(
Y \

V ∗(Q)
)

and V ∗(QM ) = V ∗(Q) ∪M ⊆ V ∗(Q) ∪ Z and V ∗(Q) ⊆ Y .
Finally, let M ⊆ Z and i ∈ [T ]. We aim to prove that E(Pi)∩E(QM ) = ∅. Let e ∈ E(P )

be any hyperedge. Assume first that e ∈ Ej with j < t/2. Then we have |e ∩W | ≥ r − 1.
Since for every hyperedge e′ ∈ E(QM ) it holds that |e′ ∩W | ≤ r − 2 by Property (Q2), we
have e /∈ E(QM ).

Assume now that e ∈ Ej with j > t/2. Then we have |e ∩ W | ≥ r − 1 or e ∈
EH(Sj ,Wj+1, A

(r−2)) ∪ EH(Wj , Sj+1, A
(r−2)). In the first of the two cases, it holds that

e /∈ E(QM ) by the same argument as above. Thus suppose that

e ∈ EH(Sj , R2, A
(r−2)) ∪ EH(R2, Sj+1, A

(r−2)). (4.3)

This means in particular that

e /∈EH(A) ∪ EH(A(2), R
(r−2)
1 ) ∪ EH(M,A(r−1)) ∪ EH(M,A,R

(r−2)
1 )

∪ EH(B) ∪ EH(B(2), R
(r−2)
2 ) ∪ EH(A,B(r−1)).
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Hence, by Property (Q2) it must hold that e ∈ EH(A,B,R
(r−2)
2 ). Let {b} = e ∩B. Then we

have b ∈ Sj ∪ Sj+1 by (4.3). Observe that since e ∩ Z = ∅, we have e ∈ E(Q) and hence
b ∈ V ∗(Q), a contradiction to Sj ∪ Sj+1 ⊆ (W ∪ Y ) \ V ∗(Q). Therefore e /∈ E(QM ), which
gives Property (P3).

Hence it remains to prove the existence of a perfect matching in Gj for every j ∈ [t −
1] \ {t/2}. We show that for every C ⊆ Sj of size |C| ≤ |Sj |/2 we have |NGj (C)| > |C|. By
symmetry and since |Sj′ | = |Sj′′ | for every j, j′′ ∈ [t], the same argument works if C ⊆ Sj+1.
Using Hall’s condition a perfect matching is then guaranteed to exist in the graph Gj .

So, let C ⊆ Sj be a subset of size |C| ≤ |Sj |/2 and recall that (C ∪ NGj (C)) ∩ Lj = ∅.
Assume for a contradiction that |NGj (C)| ≤ |C|. Then there exists a set D ⊆ Sj+1 with
|D| = |C| and NGj (C) ⊆ D. We distinguish two cases.

Case 1: Assume that |C| ≤ n/(10r log5 n). Then

eH
(
C,NGj (C), L

(r−2)
j

)
≥ eH

(
C,Wj+1, L

(r−2)
j

) (P3)

≥ |C|
(

1

2r−1
+
γ

2

)
p|Wj+1|

( |Lj |
r − 2

)
.

On the other hand we get

eH
(
C,NGj (C), L

(r−2)
j

)
≤ eH(C,D,L

(r−2)
j )

(H2)

≤ |C|2
( |Lj |
r − 2

)
p+ ε′

|C|nr−1p

log5 n
,

which leads to a contradiction since |C| ≤ n/(10r log5 n) ≤ 1
2r−1

(
1− 4ε

5

)
n

log5 n
≤ 1

2r−1 |Wj+1|
and by choice of ε′.

Case 2: Assume that n/(10r log5 n) < |C|. Then

eH(C,NGj (C)(r−1)) ≥ eH(C,W
(r−1)
j+1 )

(P2)

≥ |C| ·
(

1

2r−1
+
γ

2

)
p

(|Wj+1|
r − 1

)
,

and

eH(C,NGj (C)(r−1)) ≤ eH(C,D(r−1))
(H1)

≤ (1 + ε′)p|C|
( |D|
r − 1

)
.

This leads to a contradiction with |C| = |D| ≤
(
1 + 2ε

5

)
n

2 log5 n
≤ 1+2ε

2 |Wj+1| and by the

choices of ε and ε′. �

This finishes the proof of Theorem 4.7.

Finally, we are in the position to present the proof of Theorem 4.1.

Proof of Theorem 4.1. Let r ≥ 3 and γ > 0 as well as p ≥ log8r n/nr−1 be given. Let
H = H(r)(n, p). Set ε′ = (10−3rγ2)r. By Lemma 4.6 we know that H(r)(n, p) is a.a.s. (p, ε′)-
pseudorandom. We condition on this event assuming thatH is (p, ε′)-pseudorandom. Let H ⊆
H be any spanning subhypergraph with minimum vertex degree at least (1/2r−1 + γ)p

(
n
r−1

)
.

Then, by Theorem 4.7 it holds that H contains a Hamilton Berge cycle.
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4.2 Weak and Berge Hamiltonicity in dense hypergraphs

In this subsection we investigate the local resilience of complete r-uniform hyergraphs with
respect to containing weak Hamilton cycles and also with respect to Berge Hamiltonicity.

Setting p = 1 in Theorem 4.1 yields that for every γ > 0 and sufficiently large n, every

spanning subhypergraph of K
(r)
n with minimum vertex degree at least

(
1

2r−1 + γ
) (

n
r−1

)
con-

tains a Hamilton Berge cycle and hence also a weak Hamilton cycle. Considering the following
cases suggests that the bound given by Theorem 4.1 might not be optimal for weak Hamilton
cycles: For even n, the disjoint union of two copies of the complete r-uniform hypergraph

K
(r)
n/2 on n/2 vertices has minimum vertex degree

(
n/2−1
r−1

)
but is disconnected. For odd n, the

hypergraph H on n vertices that is the composition of two copies of K
(r)
dn/2e sharing one vertex

satisfies δ1(H) =
(dn/2e−1

r−1

)
but does not contain a weak Hamilton cycle. In fact, the following

proposition assures that a minimum degree strictly larger than
(dn/2e−1

r−1

)
already suffices to

guarantee a weak Hamilton cycle in an r-uniform hypergraph on n vertices.

Proposition 4.23. Let r ≥ 3 and n ≥ r and let H be an r-uniform hypergraph on n vertices.
If δ1(H) >

(dn/2e−1
r−1

)
, then H contains a weak Hamilton cycle.

Proof of Proposition 4.23. Let r ≥ 3 and let H = (V,E) be an r-uniform hypergraph on
n ≥ r vertices with δ1(H) >

(dn/2e−1
r−1

)
. Consider the underlying graph GH = (V, FH) where

FH :=
{
{x, y} : ∃e ∈ E such that {x, y} ⊆ e

}
.

Then, δ(GH) ≥ dn/2e as otherwise there would be a vertex v ∈ V with vertex degree at most(dn/2e−1
r−1

)
in H. Dirac’s theorem (Theorem 1.1) implies that GH contains a Hamilton cycle.

By construction of GH this Hamilton cycle corresponds to a weak Hamilton cycle in H.

Observe that for r ≥ 3 an r-uniform hypergraph on r vertices with one hyperedge is weak
Hamiltonian. This is not true for Hamilton Berge cycles since a hypergraph on n vertices with
a Berge Hamilton cycle must have at least n hyperedges. Hence, in order to guarantee a Berge
Hamilton cycle, the lower bound on the minimum vertex degree must be larger than the one
in Proposition 4.23. The following proposition states that the lower bound

(dn/2e−1
r−1

)
+ n− 1

is sufficient.

Proposition 4.24. Let r ≥ 3 and let H be an r-uniform hypergraph on n > 2r − 2 vertices.
If δ1(H) ≥

(dn/2e−1
r−1

)
+ n− 1 then H contains a Hamilton Berge cycle.

In the proof of Proposition 4.24 we follow the proof idea of Dirac’s theorem [63].

Proof of Proposition 4.24. Let r ≥ 3 and let H = (V,E) be an r-uniform hypergraph on
n > 2r − 2 vertices with δ1(H) ≥

(dn/2e−1
r−1

)
+ n − 1. Let P = (v1, e1, v2, . . . , ek−1, vk) be a

longest Berge path in H.
For every v ∈ V we define E′(v) =

{
e ∈ E \ {e1, . . . , ek} : v ∈ e

}
. The condition on

the minimum vertex degree implies that we have |E′(v1)|, |E′(vk)| ≥
(dn/2e−1

r−1

)
. Since P is a

longest Berge path, it holds for every e ∈ E′(v1) that e ⊆ V ∗(P ). The same is true for vk.
We claim that there exist distinct hyperedges e ∈ E′(v1) and e′ ∈ E′(vk) as well as an

index i ∈ [k] such that vi+1 ∈ e ∩ V ∗(P ) and vi ∈ e′ ∩ V ∗(P ). Assume for a contradiction
that this is not true. Then there exists a subset S ⊆ V ∗(P ) such that |S| ≤ bk/2c with
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f ⊆ S for every f ∈ E′(v1) or with f ′ ⊆ S for every f ′ ∈ E′(vk). Suppose that f ⊆
S for every f ∈ E′(v1). Then δ1(v1) ≤

(|S|−1
r−1

)
+ k − 1 ≤

(bn/2c−1
r−1

)
+ n − 1, which is a

contradiction. Hence there exist e ∈ E′(v1) and e′ ∈ E′(vk) with the claimed property.
Let C = (v1, e, vi+1, ei+1, vi+2, . . . , vk, e

′, vi, ei−1, . . . , e1, v1) be the Berge cycle that can be
constructed from P using e and e′. If k = n, then C is a Hamilton Berge cycle and we are
done. Otherwise we get a contradiction as follows. Let (v′1, e

′
1, v
′
2, . . . , v

′
k, e
′
k, v
′
1) := C.

Suppose that V \ V (C) 6= ∅. Due to the large minimum vertex degree, it can be
seen quickly that H is connected. Therefore there exist a vertex v ∈ V \ V (C) and a
hyperedge e ∈ E such that v ∈ e and e ∩ V (C) 6= ∅. Let e′i ∈ {e′1, . . . , e′k} such that
e ∩ e′i 6= ∅. Let v′ ∈ e ∩ e′i. We may assume without loss of generality that v′ 6= v′i+1.
Then P ′ := (v, e, v′, e′i, v

′
i+1, e

′
i+1, . . . , e

′
k+1, v

′
1, e
′
1, . . . , e

′
i−2, v

′
i−1) is a Berge path of length k, a

contradiction to the assumption that P is a longest Berge path.

Suppose now that V = V (C). Let e ∈ E \ E(C) be any hyperedge such that e intersects
V \ V ∗(C). Such a hyperedge exists due to the assumption on the minimum vertex degree.
By choice of e and since V = V (C), there exists an index j ∈ [k] and distinct vertices x and
y ∈ e′j such that x /∈ V ∗(C) and {x, y} ⊆ e. We may assume without loss of generality that
y 6= v′j+1. Then P ′ := (x, e, y, e′j , v

′
j+1, e

′
j+1, . . . , v

′
k, e
′
k+1, v

′
1, . . . , e

′
j−2, v

′
j−1) is a Berge path of

length k, again a contradiction.

4.3 Positional games

In this section we discuss a relation between local resilience results of random r-uniform
hypergraphs and biased Maker-Breaker games played on the edge set of complete r-uniform
hypergraphs. This allows us to apply Theorem 4.1 in order to obtain a bound on the threshold
bias for games, where Maker wins if he builds a Hamilton Berge cycle. Then we investigate
strict and monotone biased Avoider-Enforcer games, where Avoider wins if by the end of the
game his hypergraph is a Berge-acyclic hypergraph with at most one additional hyperedge.

4.3.1 Local resilience of hypergraphs and Maker-Breaker games

Although Maker-Breaker games played on the edge set of complete graphs have been exten-
sively studied, to the best of our knowledge there are no known results on Maker-Breaker
games played on the edge set of complete uniform hypergraphs. Following the proof of The-
orem 1.10 by Ferber, Krivelevich, and Naves [77], one can show that local resilience results
of random r-uniform hypergraphs imply bounds on the threshold biases of the corresponding

Maker-Breaker games played on E(K
(r)
n ). More precisely, the following analogue theorem

holds.

Theorem 4.25. For every integer r ≥ 3, and real 0 < ε ≤ 1/100 the following holds if n is
sufficiently large. Let p = p(n) ∈ (0, 1) and let P be a monotone increasing graph property
such that H(r)(n, p) has a.a.s. local resilience at least ε with respect to P. Then Maker has a

winning strategy in the (1 : d ε
10rpe) Maker-Breaker game

(
E(K

(r)
n ),P

)
.

The proof of Theorem 4.25 is almost identical to the proof of Theorem 1.10. The main
difference lies in the additional game that Maker simulates. This game is a so called MinBox
game, which is defined as follows. A MinBox(n′, D, α, b′) game is an (1 : b′) Maker-Breaker
game played on a family of n′ disjoint sets, called boxes, each having size at least D. Maker’s
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goal in MinBox(n′, D, α, b′) is to claim at least α|F | elements from every box F . In the

proof of Theorem 4.25 the game MinBox
(
n, 4δ1(K

(r)
n ), p/2, rbr

)
is simulated instead of the

game MinBox
(
n, 4δ(Kn), p/2, 2b2

)
, which is simulated in the proof of Theorem 1.10, where

br and b2 are the biases of the Maker-Breaker games in the statements of Theorem 4.25
and Theorem 1.10, respectively. Since the rest of the proof works verbatim, we only explain
Maker’s strategy roughly. In particular we do not repeat any details and calculations of the
proof but rather refer to the proof of Theorem 1.10 in [77].

The idea of the proof of Theorem 4.25 is to provide Maker with a random strategy that
ensures him to win asymptotically almost surely. This implies in particular that Maker has
a deterministic winning strategy. The random strategy of Maker is to generate a random

hypergraph H = H(r)(n, p) by successively exposing a hyperedges of K
(r)
n and assigning each

exposed hyperedge to H with probability p. Whenever Maker exposes a hyperedge that was
not yet claimed by Breaker, Maker inserts the hyperedge into his hypergraph. In the end,
Maker’s hypergraph is a subgraph of H that contains all hyperedges of H except for those
that were taken by Breaker. Thus the goal is then to show that a.a.s. at most an ε-proportion
of the incident hyperedges at every vertex of H were claimed by Breaker.

Let us discuss some more details on Maker’s turns. Maker pretends to additionally play a

MinBox
(
n, 4δ1(K

(r)
n ), p/2, rbr

)
game, where each box Fx corresponds to a vertex x ∈ V (K

(r)
n ).

Maker’s strategy is divided into two stages, where it is shown that a.a.s. all hyperedges of

K
(r)
n are exposed before Maker reaches the second stage.

In each turn during the first stage, for each hyperedge {x1, . . . , xr} that was claimed by
Breaker in the previous move, Maker pretends that Breaker has claimed one free element from
each of the boxes Fx1 , . . . , Fxr . Then Maker chooses a vertex x for which Fx still contains free
elements and is active (which means that Maker has claimed less than p|Fx|/2 elements from
Fx so far) and such that the difference between the number of elements taken by Breaker from
Fx and the number of elements taken by Maker from Fx multiplied by rbr is largest among
all choices of x.

Next Maker successively exposes hyperedges incident to x until either he exposes a hy-
peredge that is assigned to H or there are no unexposed hyperedges incident to x left. In the
latter case, Maker declares the current turn as a failure of type I and claims dp|Fx|/2e free
elements from Fx. In the other case, if the last exposed hyperedge already belongs to Breaker,
Maker claims one free element of Fx, skips his move in the original game, and declares the
current turn as a failure of type II. If, on the other hand, this last exposed hyperedge, say
{x1, . . . , xr}, is still free, Maker claims {x1, . . . , xr} in the original game as well as an element
from Fxi for every i ∈ [r].

The proof of Theorem 4.25 then comes down to proving an asymptotically almost sure
upper bound on the number of failures of type II. As already mentioned above, for more
details and calculations we refer to the proof of Theorem 1.10 by Ferber, Krivelevich, and
Naves [77].

Using Theorem 4.1, we obtain as an immediate consequence of Theorem 4.25 the following

bound on the threshold bias of the (1 : b) Maker-Breaker game played on E(K
(r)
n ), where

Breaker wins if his hypergraph contains a Hamilton Berge cycle.

Corollary 4.26. For every r ≥ 3 and sufficiently large n, Maker has a winning strategy in

the (1 : b) Berge Hamiltonicity game played on E(K
(r)
n ) if b ≤ nr−1/(1000r log8r n).
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Proof. By Theorem 4.1 we know that H(r)(n, p) has a.a.s. local resilience at least 1/100
with respect to containing a Hamilton Berge cycle whenever p ≥ log8r n/nr−1. Therefore,
Theorem 4.25 assures that for sufficiently large n, Maker has a winning strategy for the

(1 : nr−1/(1000r log8r n)) Berge Hamiltonicity game played on the edge set of K
(r)
n .

4.3.2 Avoiding Berge cycles in Avoider-Enforcer games

Turning to misère versions of the Maker-Breaker games studied in the previous subsection,
we are interested in Avoider-Enforcer games played on the edge set of complete uniform
hypergraphs, where the first player, which is now Avoider, has to avoid Berge cycles in his
hypergraph rather than aiming to build a Hamilton Berge cycle. We restrict the problem to
3-uniform hypergraphs as the calculations in our proofs would be more involved for higher
uniformities. However, the proof ideas should also work for higher uniformities.

The first theorem below gives a lower bound of 3000n2 log2 n on the bias such that both
in the monotone and in the strict (1 : b) Avoider-Enforcer game, by the end of the game
Avoider’s hypergraph is a Berge-acyclic hypergraph with at most one additional hyperedge.

Theorem 4.27. For n sufficiently large and b ≥ 3000n2 log2 n, Avoider can ensure that in the

monotone as well as in the strict (1 : b) Avoider-Enforcer game played on E(K
(3)
n ) by the end

of the game Avoider’s hypergraph is a Berge-acyclic hypergraph with at most one additional
hyperedge.

The next theorem concerns the strict (1 : b) Avoider Enforcer game played on the edge
set of the complete 3-uniform hypergraph, where Avoider’s task is to keep his graph Berge-
acyclic. In this game he has a winning strategy for some bias b between 3000n2 log2 n and
3001n2 log2 n.

Theorem 4.28. For n sufficiently large, there is a bias 3000n2 log2 n ≤ b ≤ 3001n2 log2 n
such that Avoider can ensure that in the strict (1 : b) Avoider-Enforcer game played on

E(K
(3)
n ) Avoider’s hypergraph is Berge-acyclic by the end of the game.

Let us mention at this point that Theorems 4.27 and 4.28 are hypergraph analogues of the
following two theorems, which were proved in joint work with Dennis Clemens, Yury Person,
and Tuan Tran [55].

Theorem 4.29 ([55]). For n sufficiently large and b ≥ 200n log n, Avoider can ensure that
in the monotone as well as in the strict (1 : b) Avoider-Enforcer game played on E(Kn) by
the end of the game Avoider’s graph is a forest with at most one additional edge.

The second theorem provides the existence of a bias between 200n log n and 201n log n for
which Avoider can keep his graph acyclic.

Theorem 4.30 ([55]). For n sufficiently large, there is a bias 200n log n ≤ b ≤ 201n log n
such that Avoider can ensure that in the strict (1 : b) Avoider-Enforcer game played on E(Kn)
Avoider’s graph is a forest by the end of the game.

We start with the proof of Theorem 4.27, which is an extension to hypergraphs of the
proof of Theorem 4.29.
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Proof of Theorem 4.27. Let n be large enough and let b ≥ 3000n2 log2 n. In the following
we will provide Avoider with a strategy that ensures that by the end of the game Avoider’s
graph is Berge-acyclic plus at most one additional hyperedge.

Let t be the smallest integer with

n

(
t+ 1

10 log n

)t
< 3. (4.4)

An easy calculation shows that t = Θ(log n), in particular, we have for large n that

t < log n/3. (4.5)

To succeed, Avoider will play according to t stages in increasing order and each stage consists
of several consecutive rounds where it is possible that a stage lasts zero rounds, i.e. that
a stage does not occur at all. In the first t − 1 stages, Avoider always claims exactly one
hyperedge in each round, connecting three components of his hypergraph such that the sum
of their sizes is minimal (whenever we talk about components, we mean the components of
Avoider’s hypergraph). In the last stage, which will be shown to last at most one round,
Avoider will claim an arbitrary further hyperedge. We refer to hyperedges, neither taken by
Avoider nor by Enforcer, as unclaimed hyperedges.

Starting with Stage 1, Avoider plays according to the following rules.

Stage k (for k ∈ [t − 1]). If there exists an unclaimed hyperedge e between three
components T1, T2, and T3 with

∑
i∈[3] |V (Ti)| = k+1, Avoider claims such a hyperedge, thus

creating a component on the vertex set V (T1) ∪ V (T2) ∪ V (T3). Then it is Enforcer’s turn
and the round is over.

Avoider is going to play according to Stage k in the next round as well. If there is no such
hyperedge e to be claimed at Stage k, Avoider proceeds with Stage k + 1. (As mentioned
above it might happen that there is no hyperedge to be claimed at Stage k already when
Avoider enters Stage k. In that case, this stage lasts zero rounds, and Avoider immediately
proceeds with Stage k + 1.)

Stage t. In every further round, Avoider claims exactly one arbitrary free hyperedge.

One can easily verify that Avoider can follow the strategy. Moreover, as long as Avoider
plays according to the strategy of the first t−1 stages, his graph remains Berge-acyclic. Thus,
in order to show that the above described strategy is indeed a winning strategy, it remains to
show that the last stage lasts at most one round. As a first step we aim to bound the number
of rounds a given stage lasts. Let nk denote the number of rounds in Stage k − 1. Observe
that Avoider creates components of size exactly k only in this stage. Thus, the number of
such components is always bounded from above by nk.

Claim 4.31. For every k ≤ t,

nk ≤ n
(

k

10 log n

)k−1

.

Proof. The claim is obviously true for k = 1. So, let k > 1 and we proceed by induction.
When Avoider enters Stage k − 1 every existing component contains at most k − 1 vertices
and there are no unclaimed hyperedges between any three components T1, T2, and T3 with
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∑
i∈[3] |V (Ti)| ≤ k − 1. In particular, every unclaimed hyperedge is either between three

components T1, T2, and T3 with
∑

i∈[3] |V (Ti)| ≥ k or between two components T ′1 and T ′2
each of size at most k− 1 or within a component, which has size at most k− 1. The first case
contributes at most ∑

1≤i≤j≤`≤k−1
i+j+`≥k

ij`ninjn`

unclaimed hyperedges since ni is an upper bound on the number of components of size ex-
actly i. The second and third cases yield at most (k− 1)n2 + (k− 1)2n unclaimed hyperedges
by the following reason: Let n′i denote the number of components of order i immediately after
the end of Stage k−2. Then, after k−2 stages, the number of unclaimed hyperedges between
pairs of components is at most

∑

i,j∈[k−1]

i

(
j

2

)
n′in
′
j =

∑

j∈[k−1]

(
j

2

)
n′j

∑

i∈[k−1]

in′i =
∑

j∈[k−1]

(
j

2

)
n′jn

≤ n(k − 1)
∑

j∈[k−1]

jn′j = (k − 1)n2,

since
∑

i∈[k−1] in
′
i =

∑
j∈[k−1] jn

′
j = n. Moreover, the number of unclaimed hyperedges within

components after k − 1 stages is at most
∑

i∈[k−1]

(
i
3

)
n′i ≤ (k − 1)2

∑
i∈[k−1] in

′
i = (k − 1)2n.

Therefore, at the beginning of Stage k−1, the number of unclaimed hyperedges is at most

∑

1≤i≤j≤`≤k−1
i+j+`≥k

ij`ninjn` + (k − 1)n2 + (k − 1)2n.

Since in each but possibly the last round at least b+ 1 hyperedges are claimed (1 by Avoider
and at least b by Enforcer), we conclude

nk ≤
1

b+ 1




∑

1≤i≤j≤`≤k−1
i+j+`≥k

ij`ninjn` + (k − 1)n2 + (k − 1)2n


+ 1. (4.6)

Using the induction hypothesis we find an upper bound on the sum
∑

1≤i≤j≤`≤k−1
i+j+`=s

ij`ninjn`

for s = k, . . . , 3k − 3 as follows:

∑

1≤i≤j≤`≤k−1
i+j+`=s

ij`ninjn` ≤
n3

(10 log n)s−3

∑

1≤i≤j≤`≤s−1
i+j+`=s

iijj``.

For s ≤ 6, it is easy to check that

∑

1≤i≤j≤`≤s−1
i+j+`=s

iijj`` < 5ss−1.

On the other hand, for s ≥ 7 observe that we have for every 2 ≤ i ≤ s/2
(
i

s

)i
≤
(

2

s

)2

(4.7)



4.3. Positional games 131

by an easy calculation for i ≤ 3 and since

ii

si−2
≤ ii

(2i)i−2
≤ i2

2i−2
≤ 4

for every i ≥ 4. Therefore, we also obtain for s ≥ 7

∑

1≤i≤j≤`≤s−1
i+j+`=s

iijj`` <
∑

1≤j≤`≤s−1
j+`=s−1

jj`` +
∑

2≤i≤s/3
iiss−i < ss−1 +

∑

2≤j≤s/2
jjss−j +

∑

2≤i≤s/3
iiss−i

= ss−1


1 + 2s

∑

2≤i≤s/2

(
i

s

)i

 (4.7)

≤ ss−1


1 + 2s

∑

2≤i≤s/2

(
2

s

)2

 < 5ss−1.

Observing that for every s ≥ k we have

(
s

10 log n

)s−1

=

(
k

10 log n

)k−1 s−k∏

i=1

k + i− 1

10 log n

(
1 +

1

k + i− 1

)k+i−1

≤
(

k

10 log n

)k−1( 3ke

10 log n

)s−k (4.5)

≤
(

k

10 log n

)k−1

2k−s, (4.8)

we can simplify Equation (4.6) using b ≥ 3000n2 log2 n and using the above established upper
bounds as follows

nk ≤
1

3000n2 log2 n

(
3k−3∑

s=k

500n3 log2 n

(
s

10 log n

)s−1

+ (k − 1)n2 + (k − 1)2n

)
+ 1

(4.8)

≤ n

6

(
k

10 log n

)k−1 3k−3∑

s=k

2k−s +
k

3000 log2 n
+

k2

3000n log2 n
+ 1

(4.5)

≤ n

2

(
k

10 log n

)k−1

+
1

9000 log n
+

1

27000n
+ 1 ≤ n

(
k

10 log n

)k−1

.

This completes the proof of Claim 4.31.

Now, analogously to the calculation of the proof of Claim 4.31 it follows that, when Avoider
enters the last stage, Stage t, the number of remaining unclaimed hyperedges is bounded by

∑

1≤i≤j≤`≤t
i+j+`≥t+1

ij`ninjn` + tn2 + t2n ≤ 500n3 log2 n

(
t+ 1

10 log n

)t 3t∑

s=t+1

2t+1−s + tn2 + t2n

(4.4)
< 2999n2 log2 n+ n2 log n+ n log2 n < 3000n2 log2 n

by the choice of t (t < log n/3) and for n sufficiently large. Thus, this last stage lasts at most
one round.
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Now we turn to the case of the strict rules, when Enforcer has to claim exactly b hyperedges
during each round (except possibly for the last one). The proof is a modification of the proof
of Theorem 4.30.

Proof of Theorem 4.28. We claim that for large enough n, there exists b with 3000n2 log2 n ≤
b ≤ 3001n2 log2 n and the remainder of

(
n
3

)
divided by b+ 1 is at least n2 log2 n.

Before proving this claim let us explain how the theorem follows then. Let b be given
as above. Avoider now plays according to the same strategy as given in the proof of Theo-

rem 4.27 until he reaches Stage t, where again t is the smallest integer with n
(

t+1
10 logn

)t
< 3.

At this point, Avoider’s graph is still Berge-acyclic and its components are all of size at most
t. Analogously to the proof of Theorem 4.27, there can be at most t2n < n log2 n/9 un-
claimed hyperedges within components and at most tn2 < n2 log n/3 unclaimed hyperedges
between pairs of components. However, since the remainder of the division

(
n
2

)
/(b + 1) is at

least n2 log2 n, there exist unclaimed hyperedges connecting three distinct components when
Avoider enters Stage t (provided n is large enough). Now, Avoider just claims one such hy-
peredge arbitrarily. His graph remains Berge-acyclic and afterwards, Enforcer must take all
remaining hyperedges. Observe that in the case when Avoider is the second player, he does
not even claim a hyperedge in the last round.

So, it only remains to prove the above mentioned claim. Let b1 = d3000.5 · n2 log2 ne.
Moreover, let

(
n

3

)
= q1(b1 + 1) + r1 with 0 ≤ r1 ≤ b1 and q1 ∼

n

c log2 n
with c := 18003.

If r1 > n2 log2 n, we are done by setting b = b1. Otherwise, let b = b1 − dcn log4 ne. Then

(
n

3

)
= q1(b+ 1) + (r1 + q1dcn log4 ne).

Moreover, for large enough n, we obtain r1 + q1dcn log4 ne < b, and therefore the remainder
of the division

(
n
3

)
by (b + 1) is at least r1 + q1dcn log4 ne > n2 log2 n, while 3000n2 log2 n ≤

b ≤ 3001n2 log2 n.

4.4 Concluding remarks

It is still an open problem what the threshold for the appearance of a Berge Hamilton cycle in
random r-uniform hypergraphs is. Theorem 4.1 implies an upper bound of log8r n/nr−1 on this
threshold, leaving a polylogarithmic gap to the best-known lower bound (see Theorem 1.9). It
is worth mentioning that the proof of Theorem 4.1 works for slightly lower edge probabilities
than log8r n/nr−1. However, using our proof method, the exponent of log n needs to be strictly
larger than a multiple of r. Since we do not believe that this is the correct answer, we did
not intend to optimise the polylogarithmic factor for the sake of readability.

Having investigated the local resilience of random hypergraphs with respect to Berge
Hamiltonicity, a natural problem to study next is the local resilience of random hypergraphs
with respect to Hamilton cycles with a different notion of cycles, for instance with the notion
of `-cycles. For tight Hamilton cycles such a result seems to be hard to achieve. Indeed,
determining the local resilience of the complete r-uniform hypergraph with respect to tight
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Hamilton cycles turned out to be challenging. The best-known bound on the minimum vertex
degree of an n-vertex 3-uniform hypergraph that implies the containment of a tight Hamilton
cycle is

(
(5 −

√
5)/3 + ε

)(
n
2

)
, as shown by Rödl and Ruciński [143]. Non-trivial bounds

for higher uniformities are not known yet. Rödl and Ruciński [142] posed the following
conjecture, which would yield an asymptotically tight minimum vertex degree condition for
tight Hamilton cycles.

Conjecture 4.32 (Rödl, Ruciński [142]). For each integer r ≥ 3 and real ε > 0 there is an
integer n0 such that the following holds. If H is an r-uniform hypergraph on n ≥ n0 vertices
with

δ1(H) ≥
(

1−
(

1− 1

r

)r−1

+ ε

)(
n

r − 1

)
,

then H contains a tight Hamilton cycle.

We remark that while the minimum vertex degree condition for weak Hamilton cycles in
Proposition 4.23 is tight, the one that we established for Hamilton Berge cycles in Proposi-
tion 4.24 can probably be improved.

Finally, using Theorem 4.1 and Theorem 4.25 we obtained a lower bound on the threshold

bias of the (1 : b) Maker-Breaker game played on E(K
(r)
n ), where Maker wins if his hypergraph

contains a Hamilton Berge cycle. In Subsection 4.3.2 we determined upper bounds on the

threshold biases of Avoider-Enforcer games played on E(K
(3)
n ), where Avoider has to keep

his hypergraph (almost) Berge-acyclic. We believe that for both games the bounds are not
optimal and would be interested in knowing the threshold biases for the games that we studied.
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5
Rainbow matchings in multigraphs

A conjecture by Aharoni and Berger suggests that every bipartite multigraph, the edges of
which are coloured with n colours such that each colour class induces a matching of size
n + 1, contains a rainbow matching of size n. As elucidated in Subsection 1.2.2, this is
a generalisation of famous open conjectures by Ryser and by Brualdi and Stein on Latin
squares.

In this chapter we study general multigraphs, the edges of which are coloured with n
colours. We prove that if each of the n colour classes covers 3n+o(n) vertices of the multigraph
and induces a disjoint union of cliques, then there exists a rainbow matching of size n. In the
setting above, this implies that matching sizes of 3n/2 + o(n) suffice to guarantee a rainbow
matching of size n. Thus our result marks a step towards the conjecture of Aharoni and
Berger. Moreover, it solves an algebraic problem by Grinblat asymptotically.

In Section 5.1 we formulate our main result in terms of rainbow matchings in multigraphs,
rainbow matchings in equivalence classes, and using the algebraic terminology of Grinblat’s
question. We prove the equivalence of these formulations in Section 5.2. The proof of the
main result is presented in Section 5.3. Finally, we close this chapter with a discussion of
some open problems in Section 5.4.

This chapter is based on joint work with Dennis Clemens and Alexey Pokrovskiy [56] and
on joint work with Dennis Clemens [53].

5.1 Introduction

In this chapter we asymptotically affirm a question by Grinblat on sets not belonging to alge-
bras. Before formulating this question, let us recall that v = v(n) was defined by Grinblat [85]
as the minimal cardinal number such that the following is true:

“LetA1, . . . ,An be algebras on a setX such that for each i ∈ [n] there exist at least
v(n) pairwise disjoint sets in P(X) \ Ai. Then there exists a family {U1

i , U
2
i }i∈[n]

of 2n pairwise disjoint subsets of X such that, for each i ∈ [n], if Q ∈ P(X) and
Q contains one of the two sets U1

i and U2
i and its intersection with the other one

is empty, then Q /∈ Ai.”
As shown by Grinblat [85], a lower bound on v(n) is 3n−2 for every n ∈ N. He asked whether
this bound is tight for every n ≥ 4:

135
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Question 5.1 (Grinblat, [85]). Is it true that v(n) = 3n− 2 for n ≥ 4?

By proving the following theorem, we give an asymptotic answer to Question 5.1.

Theorem 5.2. For every δ > 0 there exists n0 = n0(δ) = 144/δ2 such that for every n ≥ n0

it holds that v(n) ≤ (3 + δ)n.

Nivasch and Omri [134] proved the upper bound v(n) ≤ 16n/5+O(1), using the following
equivalent definition of v(n) in the context of equivalence relations. Let X be a finite set and
let A be an equivalence relation on X. If x, y ∈ X are equivalent under A, we write x ∼A y.
By

[x]A := {y ∈ X : x ∼A y}
we denote the equivalence class under A of an element x ∈ X, while the kernel of A is defined
as

ker(A) :=
{
x ∈ X : |[x]A| ≥ 2

}
.

Following Nivasch and Omri [134], we let v1(n) be the minimal number such that if A1, . . . , An
are equivalence relations on X with | ker(Ai)| ≥ v1(n) for each i ∈ [n], then A1, . . . , An
contain a rainbow matching, i.e. a set of 2n distinct elements x1, y1, . . . , xn, yn ∈ X with
xi ∼Ai yi for each i ∈ [n]. This identity is mainly based on the fact that there is a natural
correspondence between algebras and equivalence relations. Using these definitions, it turns
out that v(n) = v1(n) holds. Indeed, given an equivalence relation A on the set X, we can
define the algebra A :=

{⋃
x∈S [x]A : S ⊆ X

}
. Conversely, given some algebra A on X, one

can define the equivalence relation A on X the equivalence classes of which are the inclusion
minimal sets in A. A complete argument to show that v(n) = v1(n) is presented in Section 5.2.

Thus, using the terminology of Nivasch and Omri [134] Theorem 5.2 is equivalent to the
following theorem.

Theorem 5.3. For every δ > 0 there exists n0 = n0(δ) = 144/δ2 such that the following
holds for every n ≥ n0. Let A1, . . . , An be n equivalence relations on a finite set X. If
| ker(Ai)| ≥ (3 + δ)n for each i ∈ [n], then A1, . . . , An contain a rainbow matching.

Observe that it would suffice to prove Theorem 5.3 for the case that each equivalence class
of A1, . . . , An has size 2 or 3. In the special case when all of these equivalence classes consist
of 3 elements, the statement can be easily proved by a greedy argument even for δ = 0.

Theorem 5.3 can be rephrased in the context of graphs. If A1, . . . , An are equivalence
relations on a set X, let the vertices of an edge-coloured multigraph be the elements of X
and, for each i ∈ [n], let {x, y} ∈

(
X
2

)
be an edge of colour i if and only if x ∼Ai y. This means

that the equivalence relations are represented in this multigraph by colour classes, each of
which is the disjoint union of non-trivial cliques, i.e. complete graphs with at least 2 vertices.
A matching in an edge-coloured multigraph is called a rainbow matching if all its edges have
distinct colours. Using this notion, we can reformulate Theorem 5.3 as follows.

Theorem 5.4. For every δ > 0 there exists n0 = n0(δ) = 144/δ2 such that the following
holds for every n ≥ n0. Let G be a multigraph, the edges of which are coloured with n colours.
If each subgraph of G induced by a colour class has at least (3+δ)n vertices and is the disjoint
union of non-trivial cliques, then G contains a rainbow matching of size n.
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As a direct consequence of Theorem 5.4 we obtain the following partial result towards the
conjecture by Aharoni and Berger (Conjecture 1.13). The corollary constitutes the special
case of Theorem 5.4 when the multigraph G is bipartite and thus each clique consists of two
vertices:

Corollary 5.5. For every ε > 0 there exists an integer n0 ≥ 1 such that for every n ≥ n0 the
following holds. Let G be a bipartite multigraph whose edges are coloured with n colours and
each colour class induces a matching of size at least

(
3
2 + ε

)
n. Then G contains a rainbow

matching of size n.

For an independent direct proof of Corollary 5.5 we refer to the joint work [53] with Dennis
Clemens.

In Section 5.3 we prove Theorem 5.4, which automatically provides a proof for Theo-
rems 5.2 and 5.3. As already mentioned, the best-known lower bound on v(n) is 3n − 2 for
each n ≥ 4. Indeed, if all colour classes are identical and are the disjoint union of n − 1
triangles, then there is no rainbow matching of size n. Hence, Theorem 5.4 is asymptotically
best possible. If n = 3, then v(3) = 9 > 3n− 2 as shown by Grinblat [85]. See Figure 5.1 for
the lower bound v(3) ≥ 9, which was also observed by Nivasch and Omri [134].

1 1 1 1

2

2

2

2

3 3 3 3

Figure 5.1: Example of a graph with 3 colour classes each of size 8 that has no rainbow
matching of size 3.

5.2 Equivalence classes and algebras of sets

In this section we prove that v(n) = v1(n) for all n ∈ N, where v(n) and v1(n) are defined as
in the previous section.

Proof. First we show that v(n) ≥ v1(n) holds. Let A1, . . . , An be equivalence relations on
a set X with | ker(Ai)| ≥ v(n) for each i ∈ [n]. Let Ai :=

{⋃
x∈S [x]Ai : S ⊆ X

}
for each

i ∈ [n]. Recall that for a set X ′ a nonempty subset A ⊆ P(X ′) is an algebra on X ′ if A is
closed under complementation and under unions, i.e. if M1,M2 ∈ A, then X ′ \M1 ∈ A and
M1 ∪M2 ∈ A. It can be easily seen that A1, . . . ,An are algebras on X.

For each of the at least v(n) elements x ∈ ker(Ai) it holds that {x} ∈ P(X) \ Ai. In
particular, by the definition of v(n), we find a family {U1

i , U
2
i }i∈[n] such that if Q ∈ P(X) and

Q contains one of the two sets U1
i and U2

i and its intersection with the other one is empty,
then Q /∈ Ai. For every i ∈ [n], we now choose Qi ∈ Ai to be the inclusion minimal set
satisfying U1

i ⊆ Qi, and we note that U2
i ∩ Qi 6= ∅ is implied. By the minimality of Qi, it

turns out that every equivalence class of Ai that is contained in Qi needs to intersect U1
i , and

thus, there is at least one such class [zi]Ai intersecting both U1
i and U2

i . Choosing arbitrary
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elements xi ∈ [zi]Ai∩U1
i and yi ∈ [zi]Ai∩U2

i for every i ∈ [n] finally yields a rainbow matching
as desired.

Let us now prove that v(n) ≤ v1(n) holds. For this we need to argue that for every
algebras A1, . . . ,An on a set X with at least v1(n) pairwise disjoint sets in P(X) \ Ai, for
each i ∈ [n], there is a family {U1

i , U
2
i }i∈[n] as described earlier. To do so, for each i ∈ [n],

we define equivalence relations Ai on X the equivalence classes of which are the inclusion
minimal sets in Ai.

As, by the properties of an algebra, for every set B ∈ P(X) \ Ai there is at least one
element b ∈ B with {b} /∈ Ai, we conclude | ker(Ai)| ≥ v1(n), for every i ∈ [n]. Thus, by
definition of v1(n), we find a rainbow matching x1, y1, . . . , xn, yn as described above. Now,
for every i ∈ [n], let U1

i := {xi} and U2
i := {yi}. Then, whenever U ji ⊆ Q holds for some

Q ∈ P(X) and j ∈ {1, 2} we obtain [yi]Ai = [xi]Ai ⊆ Q, by definition of Ai, and thus
Q ∩ U3−j

i 6= ∅.

5.3 Rainbow matchings

The aim of this section is to present the proof of Theorem 5.4. Our proof of this theorem will
be by induction on n. Rather than proving the theorem directly we will first prove a technical
lemma (Lemma 5.7), which is more amenable to induction. To state this lemma rigorously,
we first need to introduce some definitions and notation.

5.3.1 Preliminaries

For any edge-coloured multigraph G, we denote by c(e) the colour assigned to the edge
e ∈ E(G). For the sake of simplicity, we call an edge of colour c simply c-edge. Let F be a
set or a sequence of edges, then we denote by V (F ) :=

⋃
e∈F e the vertex set of F .

Next we define switchings, which, given some rainbow matching M of size k, provide us a
new rainbow matching of size k by replacing edges in M with edges in E(G)\M . In Figure 5.2
we illustrate a switching of length 3.

M
e0 e1 e2 m1 m2 m3

1 2 3

2 3 4

Figure 5.2: A (1, 4)-switching of length 3.

Definition 5.6 (Switching). Let G be an edge-coloured multigraph and let M be a rainbow
matching in G. We say that a sequence of edges σ = (e0,m1, e1,m2, . . . , ek−1,mk) is a(
c(e0), c(mk)

)
-switching of length k with respect to M if for each i 6= j ∈ [k] we have

(S1) m1, . . . ,mk are distinct edges in M ,

(S2) ei−1 ∈ EG
[
mi, V \ V (M)

]
,
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(S3) c(e0) 6= c(mi) and c(ei) = c(mi), and

(S4) ei−1 ∩ ej−1 = ∅.

Whenever it is clear from the context, we may omit writing explicitly with respect to
which matching the considered switching is defined. The length of σ is denoted by `(σ).
Furthermore, we denote by m(σ) the set of all edges of σ that are contained in the matching
M and by e(σ) the set of all other edges of σ. Observe that `(σ) = |m(σ)| = |e(σ)|.

For every colour c, we also define an empty (c, c)-switching σ0
c . This switching has no

edges, starts and ends at the colour c, has length zero, and satisfies m(σ0
c ) = e(σ0

c ) = ∅.

5.3.2 Switching lemma

In this subsection we state and prove Lemma 5.7. Roughly speaking, Lemma 5.7 says that
given a rainbow matching M in a multigraph G, either there are few edges of colour c touching
V (G) \ V (M) for some colour c or there exists a larger rainbow matching.

Lemma 5.7 (Switching lemma). For each n ∈ N and δ > 0 satisfying δ
√
n ≥ 12, the following

holds. Let G = (V,E) be a multigraph whose edges are coloured with n colours, M a rainbow
matching of size n− 1 in G, and c0 the colour that is missing in M .

Suppose that for every colour c in G, and every (c0, c)-switching σ there are at least(
d(1 + δ)ne − 4`(σ)

)
disjoint c-edges between V \

(
V (M)∪ V (σ)

)
and V \ V (σ). Then G has

a rainbow matching of size n.

An important special case of the condition in Lemma 5.7 is when c = c0 and σ is the
empty switching σ0

c0 . In this case the condition says that there are at least d(1 + δ)ne disjoint
c0-edges touching V \ V (M).

Proof of Lemma 5.7. Let C be the set of colours of edges of G and R := V \V (M). We prove
Lemma 5.7 by induction on n. For the initial case, we prove the theorem for all n ≤ 144.
Notice that if n ≤ 144, then from δ

√
n ≥ 12, we obtain δ ≥ 1. This means in particular

that there are 2n disjoint edges of colour c0 in EG[R, V ]. However, there can be at most
|V (M)| = 2n−2 disjoint c0-edges in EG[R, V (M)]. Hence, there exists a c0-edge in EG[R,R],
which can be added to M in order to obtain a rainbow matching of size n.

Now let n > 144 and assume that Lemma 5.7 holds for every n′ < n. We may also assume
that δ ≤ 1 since otherwise there is a rainbow matching of size n by the same argument as
before. Let G = (V,E) be a multigraph and M a rainbow matching of size n − 1 in G,
which satisfies all the assumptions of the lemma. Suppose for the sake of contradiction that
G does not have a rainbow matching of size n. The following claim produces a switching, a
set of colours, and a set of edges that will later be used to reduce the problem to a smaller
multigraph, to which we apply induction.

Claim 5.8. There exist a colour c2 ∈ C, a (c0, c2)-switching σ = (e0,m1, e1,m2) and a subset
C∗ ⊆ C \ {c0, c1, c2}, where c1 := c(m1), with |C∗| = dδn/6e, such that for each c ∈ C∗ there
exists a c-edge ec between V \

(
V (M) ∪ V (σ)

)
and m2 \ e1.

In Figure 5.3 we illustrate the switching, the set of colours and the edges that are guar-
anteed by Claim 5.8.
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e0 m1 m2e1

M

C∗

C∗

Figure 5.3: An illustration of the switching (e0,m1, e1,m2), the set C∗ ⊆ C \ {c0, c1, c2} and
the family of c-edges in V \

(
V (M) ∪ V (σ)

)
with c ∈ C∗.

Proof of Claim 5.8. Let C1 :=
{
c ∈ C : ∃(c0, c)-switching of length 1

}
. First we show that

C1 is big. By the assumption of the lemma, there exist d(1 + δ)ne disjoint c0-edges having an
endvertex in R. If there exists a c0-edge e ∈ EG[R,R], then M ∪{e} is a rainbow matching of
size n. Therefore we may assume that all c0-edges from R end in V (M), which implies that

|C1| ≥
d(1 + δ)ne

2
. (5.1)

For every c ∈ C1, let σc = (ec0,m
c
1) be an arbitrary but fixed (c0, c)-switching of length 1.

For a colour c ∈ C1, we say that an edge m ∈M is c-good if there exist two disjoint c-edges in
EG
[
R \ V (σc),m

]
. Over the next few paragraphs we will find a large set of colours C2 ⊆ C1

and an edge m2 such that m2 is c-good for all c ∈ C2.

By the assumption of the lemma, for every c ∈ C1, there exist d(1 + δ)ne − 4 disjoint
c-edges in EG

[
R \ V (σc), V \ V (σc)

]
. If there exists a colour c ∈ C1 and a c-edge e ∈ EG

[
R \

V (σc), R \V (σc)
]
, then there is a rainbow matching of size n, namely the union of the subset

of M induced by the colours in C \{c}, and the edges e and ec0. Therefore we may assume that
for every c ∈ C1, there exist d(1 + δ)ne − 4 disjoint c-edges in EG

[
R \ V (σc), V (M) \ V (σc)

]
.

The maximum number of disjoint c-edges in EG
[
R \ V (σc), V (M) \ V (σc)

]
is less than

twice the number of c-good edges m ∈ M plus the number of edges m ∈ M that are not
c-good. Hence, for every c ∈ C1, there exist at least dδne − 2 edges in M \m(σc) that are
c-good since otherwise there would be less than 2(dδne− 3) + (n−dδne+ 2) = d(1 + δ)ne− 4
edges of colour c in EG

[
R\V (σc), V \V (σc)

]
, a contradiction to the assumption of the lemma.

Next we find an edge m that is c-good for many colours c ∈ C1. Let

µ := max
m∈M

{|C ′| : C ′ ⊆ C1 \ {c(m)} such that m is c-good for each c ∈ C ′}.

Double counting the pairs (c,m), where c ∈ C1 \ {c(m)} and m is a c-good edge, yields

µ|M | ≥ |C1|
(
dδne − 2

)

and hence using (5.1) we obtain

µ ≥ (δn− 2)(1 + δ)

2
.

This means that there exists an edge m2 = {x, y} ∈ M and a subset C2 ⊆ C1 \ {c(m2)} of
size d(δn− 2)(1 + δ)/2e such that m2 is c-good for every c ∈ C2.
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For every c ∈ C2, let xc, yc ∈ EG
[
R \ V (σc),m2

]
be disjoint edges of colour c such that

xc∩m2 = {x} and yc∩m2 = {y} (such edges exist since m2 is c-good). Let X := {xc : c ∈ C2}
and Y := {yc : c ∈ C2}. The remainder of the proof is split into the case that there exists a
vertex in R that is incident to at least 1/3 of the edges in X and the case that there does not
exist such a vertex.

Case 1: Suppose that there exists a vertex v ∈ R such that v is incident to at least 1/3
of the edges in X. Using δ

√
n ≥ 12 and δ ≤ 1, notice that

|X|
3

=
|C2|

3
≥ (δn− 2)(1 + δ)

6
≥
⌈
δn

6

⌉
+ 1.

Therefore, we can let X ′ be a subset of X consisting of dδn/6e + 1 edges such that v ∈ e
for every e ∈ X ′. Let e′1 be any edge in X ′. Since c(e′1) ∈ C2, there is an edge e1 ∈ Y with
c(e′1) = c(e1). By the definition of X and Y , we also have e1∩ e′1 = ∅ and V (σc(e1))∩ e′1 = ∅,
which imply X ′ ⊆ EG

[
R \

(
V (σc(e1)) ∪ e1

)
, x
]
. Set c1 := c(e1), c2 := c(m2), e0 := ec10 ,

and m1 := mc1
1 . We show that the set C∗ := {c ∈ C2 : xc ∈ X ′ \ {e′1}}, the sequence

σ := (e0,m1, e1,m2), and edges ec := xc for each c ∈ C∗ are as desired in the claim.

First let us argue that σ is indeed a (c0, c2)-switching. Property (S1) is fulfilled since
m1 ∈ M as (e0,m1) is a switching and since m2 ∈ M by the choice of m2. Property (S2)
holds since (e0,m1) is a switching and since e1∩m2 = {y} 6= ∅ and e1∩R 6= ∅ by the definition
of Y . As c0 is not assigned to edges in M , we have c(m1) 6= c(e0) 6= c(m2). Moreover, we have
c(m1) = c(e1) by construction. This shows Property (S3). Finally, Property (S4) is satisfied
since we have e1 ∈ EG

[
R \ V (σc1),m2

]
by definition of e1 ∈ Y , and hence e0 ∩ e1 = ∅. Thus,

σ is indeed a (c0, c2)-switching.

Observe that C∗ ⊆ C2\{c1} ⊆ C1\{c1, c2} ⊆ C \{c0, c1, c2}. Finally, for each c ∈ C∗ ⊆ C,
we have ec = xc ∈ EG

[
V \

(
V (M) ∪ V (σ)

)
, x
]

= EG
[
V \

(
V (M) ∪ V (σ)

)
,m2 \ e1

]
.

Case 2: Suppose that all vertices in R are incident to at most 1/3 of the edges in X.
Let e1 be any edge in Y . Then at least 2/3 of the edges in X ⊆ EG

[
R, x

]
are disjoint from

e1 ∈ EG
[
R, y

]
and at least 2/3 of the edges in X are disjoint from σc(e1) =

(
e
c(e1)
0 ,m

c(e1)
1

)
since

e
c(e1)
0 ∈ EG

[
R,m

c(e1)
1

]
and m

c(e1)
1 ∩{x} = ∅. As a consequence, at least 1/3 of the edges in X

are disjoint from both e1 and σc(e1). Since, as before, |X|/3 ≥ (δn−2)(1+δ)/6 ≥ dδn/6e+1 we
can choose a subset X∗ ⊆ X of size dδn/6e such that for every e ∈ X∗ we have c(e) 6= c(e1) and
e∩
(
e1∪σc(e1)

)
= ∅. Set again c1 := c(e1), c2 := c(m2), e0 := ec10 , and m1 := mc1

1 . Analogously
to the previous case, the set C∗ := {c ∈ C2 : xc ∈ X∗}, the sequence σ := (e0,m1, e1,m2),
and the edges ec := xc for each c ∈ C∗ are as desired in the claim. �

From now on we may assume the existence of the switching σ = (e0,m1, e1,m2), the set
C∗ ⊆ C and the edges ec as in Claim 5.8. Next we define a subgraph G′ of G, as well as a
matching M ′ in G′ to which we will apply induction. To this end we consider the following
sets:

W := {e ∈M : c(e) ∈ C∗},
M ′:= M \ (m(σ) ∪W ),

C ′ := C \ (C∗ ∪ {c0, c1}).



142 Chapter 5. Rainbow matchings in multigraphs

Observe that C ′ is exactly the set of all colours assigned to the edges of M ′ plus colour c2.
Note further that |W | = |C∗| = dδn/6e. Moreover, we set

n′ := |C ′| = bn(1− δ/6)c − 2,

S :=
⋃

c∈C∗
ec ∩R,

R′:= R \ (V (σ) ∪ S).

See Figure 5.4 for an illustration of the sets M ′,W ⊆M , the set S ⊆ R and the switching
(e0,m1, e1,m2).

M’
e0 m1 m2e1

W

S M

Figure 5.4: Sets M ′,W ⊆M , set S ⊆ R and switching (e0,m1, e1,m2).

To apply induction, we now consider the edge-coloured multigraph G′ formed from G by
deleting edges of colours from C∗ ∪ {c0, c1} and vertices in

(
V (σ)∪ S ∪ V (W )

)
. Formally, let

G′ = (V ′, E′) be the multigraph with vertex set

V ′ := V \ (V (σ) ∪ S ∪ V (W )) = R′ ∪ V (M ′)

and edge set

E′ := {e ∈ EG[V ′] : c(e) ∈ C ′}.
The edges of G′ keep the colours they had in G.

With this notation in hand, we show that G′,M ′, n′, and c2 satisfy the inductive assump-
tion of the lemma. We prove the following claim.

Claim 5.9. There is a constant δ′ ≥ 12/
√
n′ such that for every colour c ∈ C ′ and (c2, c)-

switching σ (in G′, with respect to M ′) there are at least
(
d(1+δ′)n′e−4`(σ)

)
disjoint c-edges

between V ′ \
(
V (M ′) ∪ V (σ′)

)
and V ′ \ V (σ′).

Proof of Claim 5.9. Set δ′ = (dδne − 12)/n′ and notice that the following holds:

δ′n′ ≥ δn− 12 ≥ 12(
√
n− 1) ≥ 12

√
n(1− δ/12) ≥ 12

√
n
√

1− δ/6 > 12
√
n′.

The second and third inequalities use δ ≥ 12/
√
n. Therefore δ′ ≥ 12/

√
n′ holds.

Consider any colour c ∈ C ′ and let σ′ be some (c2, c)-switching in G′. We need to show
that there are at least

(
d(1 + δ′)n′e − 4`(σ′)

)
disjoint c-edges in EG′

[
R′ \ V (σ′), V ′ \ V (σ′)

]
.

Recall that σ is the (c0, c2)-switching, given by Claim 5.8. Then the concatenation of σ and
σ′ gives a (c0, c)-switching σ′′ (in G w.r.t. M) of length `(σ′) + 2. So, by the assumption of
Lemma 5.7 on G, we can find at least d(1 + δ)ne − 4`(σ′′) = d(1 + δ)ne − 4(`(σ′) + 2) disjoint
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c-edges in EG
[
R \ V (σ′′), V \ V (σ′′)

]
. As |R \ V (σ′′)| − |R′ \ V (σ′′)| = |S| ≤ dδn/6e, at least

d(1+δ)ne−dδn/6e−4(`(σ′)+2) of these disjoint edges belong to EG
[
R′\V (σ′′), V \V (σ′′)

]
⊆

EG
[
R′ \ V (σ′), V \ V (σ′)

]
.

Assume first that there is no edge e ∈ EG
[
R′ \ V (σ′), V (W ) ∪ S

]
with c(e) = c. Then,

since at most 6 disjoint edges of colour c intersect V (σ), the claim holds since the number of
c-edges in EG′

[
R′ \ V (σ′), V ′ \ V (σ′)

]
is at least

d(1 + δ)ne −
⌈
δn
6

⌉
− 4(`(σ′) + 2)− 6 = (1 + δ′)n′ − 4`(σ′).

Assume then that there is an edge e ∈ EG
[
R′ \ V (σ′), V (W ) ∪ S

]
with c(e) = c. If

e∩S 6= ∅, then (M \m(σ′′))∪ ({e}∪ e(σ′′)) is a rainbow matching of size n in G. Otherwise,
if e∩V (W ) 6= ∅, then let f ∈W with f ∩e 6= ∅. By definition of W and S, and by Claim 5.8
we find an edge g ∈ EG(S,m2\e1) with c(g) = c(f). Then (M \(m(σ′′)∪{f}))∪(e(σ′′)∪{e, g})
is a rainbow matching of size n in G, contradicting our assumption that M was maximum.

�

Now we are able to finish the induction. By Claim 5.9, the multigraph G′ satisfies the
hypothesis of Lemma 5.7. Therefore, since n′ < n, we can apply induction, which yields that
G′ contains a rainbow matching M ′′ of size n′. Now, M ′′∪W ∪e(σ) forms a rainbow matching
of size n, which is a contradiction to our assumption that there were no rainbow matchings
in G of this size.

5.3.3 Proof of the main result

With Lemma 5.7 in hand, we can now present the proof of Theorem 5.4, the idea of which
is as follows. If a largest rainbow matching M in the given graph G has size less than n, we
choose any colour c0 that is not in M and consider a subgraph G′ of G that is induced by
the edges that are coloured by the colours of M or by c0. The goal is then to show that G′

contains a rainbow matching that uses all colours of G′, which would lead to a contradiction
to the maximality of M . Using the assumption on the number of vertices of the induced
subgraph of each colour class allows us to show that the technical requirements of Lemma 5.7
are fulfilled. This is the place where we need to have for every colour 3n + o(n) rather than
3n − 2 such vertices. Finally, Lemma 5.7 guarantees that there exists a rainbow matching
using all colours in G′.

Proof of Theorem 5.4. Let δ > 0, n ≥ 144/δ2, and let G be as stated in the theorem. For the
sake of contradiction, let us assume that a largest rainbow matching M in G has size smaller
than n. Let C ′ be the set of colours in M plus one further colour c0. Set n′ := |C ′|. In the
following, we consider the multigraph G′ = (V,E′) with E′ = {e ∈ E : c(e) ∈ C ′}. We now
apply Lemma 5.7 to G′ in order to find a rainbow matching of size n′. This is a contradiction
since we assumed that M was a maximum matching.

Let δ′ = δn/n′ and observe that from n ≥ 144/δ2, we have δ′ ≥ 12/
√
n′. Let c ∈ C ′ and

let σ be any (c0, c)-switching in G′ with respect to M . By assumption on G, the number of
vertices in V \

(
V (M) ∪ V (σ)

)
that are incident to colour c is at least

d(3 + δ)ne − |V (M) ∪ V (σ)| > d(1 + δ)ne − `(σ) ≥ d(1 + δ′)n′e − `(σ).

If in the subgraph induced by the colour class of c any two of these vertices are adjacent or
have a common neighbour, then, since all the colour classes in G are unions of cliques, there is
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an edge, say e, of colour c between them, which leads to the rainbow matching (M \m(σ))∪
(e(σ)∪{e}) of size n′. So, we may assume that there are at least

(
d(1 + δ′)n′e− `(σ)

)
disjoint

edges of colour c in EG′
[
V \

(
V (M) ∪ V (σ)

)
, V
]
. Therefore and since there can be at most

3`(σ) disjoint c-edges in EG′
[
V \
(
V (M)∪V (σ)

)
, V (σ)

]
, there are at least

(
d(1+δ′)n′e−4`(σ)

)

disjoint c-edges in EG′
[
V \

(
V (M) ∪ V (σ)

)
, V \ V (σ)

]
. As c and σ were chosen arbitrarily,

Lemma 5.7 now guarantees that G′ contains a rainbow matching of size n′.

5.4 Concluding remarks

We wonder how Theorem 5.3 changes if one adds the natural constraint that every pair of
distinct elements belongs to at most one equivalence relation. More precisely, we are interested
in the following problem.

Problem 5.10. Determine the minimal number v∗(n) such that if A1, . . . , An are equivalence
relations on a set X with | ker(Ai)| ≥ v∗(n) and Ai ∩ Aj =

{
(x, x) : x ∈ X

}
for all distinct

indices i, j ∈ [n], then A1, . . . , An contains a rainbow matching.

Using the graph theoretic notion as before, the additional constraint means that the colour
classes are pairwise disjoint. This can also be seen as restricting the problem to graphs instead
of considering multigraphs. It is known that for every even n, there exists an edge-coloured
bipartite graph whose colour classes induce matchings of size n and that does not contain
a rainbow matching of size n. This follows from the fact that for every even n there exists
a Latin square of order n without a transversal (see Subsection 1.2.2). For general n we
thus obtain v∗(n) > 2n − 2. An upper bound on v∗(n) follows directly from Theorem 5.4,
i.e. v∗(n) ≤ v(n) = 3n+ o(n).

Corollary 5.5 assures that a collection of n matchings of size (3/2 + o(1))n in a bipartite
multigraph guarantees a rainbow matching of size n. Aharoni, Kotlar, and Ziv [5] slightly
improved the lower bound on the sizes of the matchings to d3n/2e+ 1. For smaller matching
sizes, it is unknown whether a rainbow matching of size n − 1 exists. More generally, as
suggested by Tibor Szabó (private communication), it would be interesting to determine
upper bounds on the smallest integer µ(n, `) such that every family of n matchings of size
µ(n, `) in a bipartite multigraph guarantees a rainbow matching of size n − `. One can
verify that µ(n, l) ≤ l+2

l+1n. Moreover, it holds that µ(n,
√
n) ≤ n, which is a generalisation

(see e.g. [4, 19]) of a result proved in the context of Latin squares by Woolbright [158], and
independently by Brouwer, de Vries and Wieringa [45].

In order to approach Conjecture 1.13, one can also increase the number of matchings
and fix their sizes to be equal to n instead of considering families of n matchings of sizes
greater than n. Drisko [65] proved that a collection of 2n − 1 matchings of size n in a
bipartite multigraph with partition classes of size n guarantees a rainbow matching of size n.
This result is tight, as the factorisation of a cycle on 2n vertices with edges of multiplicity
n − 1 show. The problem was further investigated in the following two directions. Does the
statement also hold if we omit the restriction on the sizes of the vertex classes? And how
many matchings do we need to find a rainbow matching of size n− ` for every ` ≥ 1?

Aharoni and Berger [2] affirmed the first question by showing that for any two integers
s ≤ t, the maximal number of matchings of size t in a bipartite multigraph that do not contain
a rainbow matching of size s is equal to 2(s− 1).
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The second question was studied recently by Barát, Gyárfás, and Sárközy in [19]. They

proved that for every ` ≥ 1 any bipartite multigraph with
⌊
`+2
`+1n

⌋
−(`+1) matchings of size n

has a rainbow matching of size n− `. This result is best possible for ` = 0 and bn/2c ≤ ` < n.

Finally, if Conjecture 1.13 is true, it is of interest to see how tight it is. As shown by Barát
and Wanless [20], one can find constructions of n matchings with

⌊
n
2

⌋
− 1 matchings of size

n + 1 and the remaining ones being of size n such that there is no rainbow matching of size
n. We wonder whether the expression

⌊
n
2

⌋
− 1 above could also be replaced by (1− o(1))n.
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6
Enumerating spanning trees in series-parallel graphs

While in the preceding chapters we were examining questions concerning the existence of
certain substructures, in this chapter we are interested in the number of spanning subgraphs.
As motivated and summarised in Subsection 1.2.3, the enumeration of spanning trees and
the analysis of series-parallel graphs (or SP graphs for short) have a rich history. By means
of analytic techniques we show that the expected number of spanning trees in a connected
labelled SP graph on n vertices chosen uniformly at random satisfies an estimate of the form

s%−n
(
1 + o(1)

)
,

where s ≈ 0.09063 and %−1 ≈ 2.08415 can be computed explicitly (Theorem 6.1). We obtain
analogue results for subfamilies of SP graphs including 2-connected SP graphs (Theorem 6.1),
2-trees (Theorem 6.8), and SP graphs with fixed excess (Theorem 6.12). Our proofs are based
on analytic combinatorics, especially on the symbolic method and the singularity analysis of
generating functions. The necessary analytic background was introduced in Section 2.3.

Since we focus on enumerative problems defined on SP graphs, let us quickly state the
following alternative definition of SP graphs, which provides more insight into their structure
and also justifies their name: let G be a graph and let s and t be two of its vertices. We
say G is series-parallel with terminals s and t if G can be turned into the single edge {s, t}
by a sequence of the following operations: replacement of a pair of parallel edges (i.e. edges
sharing two common endpoints) by a single edge, or replacement of a pair of series edges
(i.e. non-parallel edges sharing a common endpoint of degree 2) by a single edge. A graph G
is 2-terminal series-parallel if there exist vertices s and t in G such that G is series-parallel
with terminals s and t. Finally, a graph G is series-parallel if and only if each of its 2-connected
components is a 2-terminal series-parallel graph (see e.g. [44]).

This chapter is structured in the following way. In Section 6.1 we prove Theorem 6.1 and
analyse the behaviour of the growth constant of the expected number of spanning trees if we
fix the edge density of a random 2-connected SP graph. We also comment on the variance of
the number of spanning trees in a 2-connected SP graph chosen uniformly at random. Next,
Section 6.2 is devoted to the analysis of the number of spanning trees in edge-maximal SP
graphs (Theorem 6.8). The proof of Theorem 6.12, which deals with connected SP graphs
with fixed excess, is presented in Section 6.3. We close the chapter with some concluding
remarks and open questions in Section 6.4.

147
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Throughout this chapter all graphs under study are labelled, unless stated otherwise.
Furthermore, in contrast to the previous chapters, by a random object of a given family we
mean an object chosen uniformly at random from all the elements of the same size, e.g. graphs
on the same number of vertices. As already mentioned, this chapter is based on joint work
with Juanjo Rué [75].

6.1 Spanning trees in connected and 2-connected SP graphs

The goal of this section is to analyse the expected value and the variance of spanning trees in
random connected and 2-connected SP graphs as well as to elaborate on the growth constant
of the expected number of spanning trees in random 2-connected SP graphs of a given edge
density. Our main result in this respect is the following theorem. Its proof is presented in
Subsection 6.1.1.

Theorem 6.1. Let Xn and Zn denote the number of spanning trees in a connected, respec-
tively 2-connected labelled SP graph on n vertices chosen uniformly at random. Then

E[Xn]= s%−n
(
1 + o(1)

)
, where s ≈ 0.09063, %−1 ≈ 2.08415,

E[Zn] = p$−n
(
1 + o(1)

)
, where p ≈ 0.25975, $−1≈ 2.25829.

Since the number of connected/2-connected SP graphs was already determined asymp-
totically by Bodirsky, Giménez, Kang, and Noy [33] (see Theorem 1.14), we may reduce
the problem of estimating the number of spanning trees in random connected/2-connected
SP graphs to the enumeration of connected/2-connected SP graphs carrying a distinguished
spanning tree.

For this purpose, let cn,m and bn,m denote the number of connected and 2-connected SP
graphs with a distinguished spanning tree, respectively. Let C(x, y) and B(x, y) be their as-
sociated counting formula, where x and y mark vertices and edges, respectively. Furthermore,
let D denote the class of series-parallel networks carrying a distinguished spanning tree and
let D(x, y) be its associated generating function.

6.1.1 Expected number of spanning trees

The first step in our proof of Theorem 6.1 is the enumeration of SP networks that carry a
distinguished spanning tree. For this purpose we need to introduce the following auxiliary
class. Let D̄ denote the class of SP networks that carry a distinguished spanning forest with
two components, each of which contains one of the poles. Let D̄(x, y) denote its associated
(bivariate) exponential generating function (or EGF for short).

Recall that an SP network is either trivial, series, or parallel. By convention, we assume
that networks with a root edge are parallel. Therefore, we define the following classes of
networks.

Let S and S̄ denote the class of series networks that carry a distinguished spanning tree,
respectively a distinguished spanning forest with two components, each of which contains one
of the poles. We denote their associated EGFs by S(x, y) and S̄(x, y), respectively.

Similarly, let P and P̄ denote the class of parallel networks that carry a distinguished
spanning tree, respectively a distinguished spanning forest with two components each of which
contains one of the poles. Observe that in both families the root edge might be present. Their
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associated EGFs are denoted by P (x, y) and P̄ (x, y), respectively. For the sake of readability
we may omit the parameters whenever they are clear from the context.

We start with elaborating relations between D, D̄, S, S̄, P , and P̄ in order to obtain a
suitable system of equations. One can easily verify that

D(x, y) = y + S(x, y) + P (x, y), (6.1)

and
D̄(x, y) = y + S̄(x, y) + P̄ (x, y). (6.2)

Note that in Equation (6.1) the variable y on the right-hand side corresponds to a trivial
network with a distinguished spanning tree, whereas in Equation (6.2) it corresponds to a
trivial network with a distinguished spanning forest with two components of size 1.

Let us now analyse series networks. Observe that a series network N can be decomposed
into at least two networks, where the 0-pole of the i-th network is identified with the ∞-pole
of the (i+1)-th network. Equivalently, N can be decomposed into an ordered sequence formed
by a network N ′ that is not series and an arbitrary network N ′′ that are joined by a series
operation. If N ∈ S, then each of these two networks contains a distinguished spanning tree
(see Figure 6.1). Using the symbolic method we therefore have

S(x, y) =
(
D(x, y)− S(x, y)

)
xD(x, y) =

(
y + P (x, y)

)
xD(x, y). (6.3)

0 ∞

D \ S D

Figure 6.1: Decomposition of N ∈ S.

If N ∈ S̄, then either N ′ ∈ D\S and N ′′ ∈ D̄, or N ′ ∈ D̄\S̄ and N ′′ ∈ D (see Figure 6.2).
This translates into the following equation:

S̄(x, y) =
(
D(x, y)− S(x, y)

)
xD̄(x, y) +

(
D̄(x, y)− S̄(x, y)

)
xD(x, y)

=
(
y + P (x, y)

)
xD̄(x, y) +

(
y + P̄ (x, y)

)
xD(x, y). (6.4)

0 ∞

D̄ \ S̄ D

0 ∞

D \ S D̄

Figure 6.2: Decomposition of N ∈ S̄.

Finally, we turn to parallel networks. A parallel network can be described as a set of at
least one series network if the root edge is present, or of at least two series networks, otherwise.
If N ∈ P, we need to distinguish between the case that the root edge is present and the case
that it is not. In the second case, all series networks are in S̄ except for one, which is in S.
If in the first case the root edge is in the distinguished spanning tree of N , then all series
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0

∞

S y

0

∞

S S y

0

∞

S S

Figure 6.3: Decomposition of N ∈ P.

networks are in S̄. If, on the other hand, the root edge is not in the spanning tree, then
exactly one of the series networks is in S and all other networks are in S̄ (see Figure 6.3).

Thus, we get

P (x, y) = y
(

exp(S̄(x, y))− 1
)

+ y
(
S(x, y) exp(S̄(x, y))

)
+ S

(
exp(S̄(x, y))− 1

)
. (6.5)

If N ∈ P̄, then N can be decomposed into the root edge if present and into series networks
in S̄ that are joined by a parallel operation. If the root edge is present, then there is at least
one other network. In the other case, there must be at least two (see Figure 6.4). This gives
rise to the following equation:

P̄ (x, y) =
(

exp(S̄(x, y))− S̄(x, y)− 1
)

+ y
(

exp(S̄(x, y))− 1
)
. (6.6)

∞

0

S

∞

0

S y

Figure 6.4: Decomposition of N ∈ P̄.

Using formal manipulations, we get that the system of Equations (6.1)–(6.6) defines the
following implicit expression for D(x, y):

D =

(
y + (1 + y)

xD2

1 + xD

)
exp

(
−xD

(
y(1 + xD)− (1 + y)D

)
(2 + xD)(

y(1 + xD) + (1 + y)xD2
)
(1 + xD)2

)
. (6.7)

In order to study the singular behaviour of all the previous generating functions we
could apply the Dromta-Lalley-Woods methodology for systems of functional equations (see
e.g. [80]). However, as in this particular case we have an expression for D(x, y) not depending
on any other variables but x and y, we will analyse Equation (6.7) in order to get the singular
behaviour of D(x, y). The following theorem is reminiscent to [84, Lemma 3.3]:



6.1. Spanning trees in connected and 2-connected SP graphs 151

Lemma 6.2. Let D(x, y) be the formal power series defined by Φ
(
x, y;D(x, y)

)
= 0, where

Φ(x, y; z) = z −
(
y + (1 + y)

xz2

1 + xz

)
exp

(
−xz

(
y(1 + xz)− (1 + y)z

)
(2 + xz)(

y(1 + xz) + (1 + y)xz2
)
(1 + xz)2

)
.

Then, for every y > 0, it holds that D(x, y) has a unique square-root singularity R(y) such
that D(x, y) has a singular expansion of the following form in a domain dented at x = R(y):

D(x, y) = D0(y) +D1(y)X(y) +D2(y)X(y)2 +D3(y)X(y)3 +O
(
X(y)4

)
, (6.8)

where X(y) =
√

1− x/R(y).

For y = 1 we have the numerical values x = R(1) = R ≈ 0.05668, D0(1) ≈ 1.82404,
D1(1) ≈ −1.52769, D2(1) ≈ 1.34779, and D3(1) ≈ −1.25138.

Proof. We fix y > 0. A simple computation shows that Φz

(
0, y;D(0, y)

)
= 1 > 0 and

D(0, y) = y. Hence, by the analytic implicit function theorem (see e.g. [80]) we know that
D(x, y) is analytic at x = 0.

We continue with showing that D(x, y) has a finite radius of convergence. Denote the
singularity of the function D(x, y) by R(y). Observe that [xn]D∅(x, y) ≤ [xn]D(x, y), where
D∅(x, y) is the generating function associated with SP networks without a distinguished
spanning tree. As it is shown in [33], the radius of convergence R∅(y) of D∅(x, y) is finite.
In particular, 0 < R(y) ≤ R∅(y) < 1 <∞ and D(x, y) ceases to be analytic at x = R(y).

Observe that the only source of singularity for D(x, y) is the condition

Φz

(
R(y), y;D(R(y), y)

)
= 0,

which means that the singularity arises from a branch point. Let us now justify that we have
Φzz

(
R(y), y;D(R(y), y)

)
6= 0. This condition is enough in order to assure a square-root type

singularity for each choice of y. For a contradiction, let us assume the opposite. Hence we
have a solution (R0, y0, z0) of the following system of equations:

Φ(x, y; z) = 0, Φz(x, y; z) = 0, Φzz(x, y; z) = 0.

Observe that Φ(x, y; z) = z − A(x, y; z) exp
(
B(x, y; z)

)
with A(x, y; z) and B(x, y; z) being

rational functions. Hence, Φz(x, y; z) = 1−C(x, y; z) exp(B(x, y; z)) where again C(x, y; z) is
a rational function. Finally, Φzz(x, y; z) can be written in the form E(x, y; z) exp

(
B(x, y; z)

)

for a certain rational function E(x, y; z).

In particular, combining the first two equations by eliminating the exponential term, we
get the following system of rational equations:

zC(x, y; z) = A(x, y; z), E(x, y; z) = 0.

After rearranging the denominators in both expressions, such a system can be transformed
into a system of two polynomial equations P1(x, y; z) = 0, P2(x, y; z) = 0, from which we can
get a new polynomial equation Q(x, y) = 0 by eliminating the variable z. By carrying out
the explained computations with Maple, we obtain

Q(x, y) = (−4y + yx− 4)y(y + 1)T (x, y),
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where

T (x, y) = 100(1 + y)4 + 6917y(1 + y)3x+ 1266y2(1 + y)2x2 − 1867y3(1 + y)x3 + 280y4x4.

We now argue that Q(x, y) = 0 does not have a solution satisfying both y > 0 and x < 1.
Observe that the first multiplicative term −4y+yx−4 gives the solution (x, y) = (4+4/y, y).
This means in particular that x is always greater than 1 if y > 0. It is also obvious that
the multiplicative terms y and y+ 1 cannot contribute with the required solution. Therefore,
we need to analyse the existence of solutions (x, y) of T (x, y) with the condition y > 0 and
x < 1. Using that y(1 + y)3 > y3(1 + y) and x > x3 for all y > 0 and 0 < x < 1, we know
that 6917y(1 + y)3x > 6917y3(1 + y)x3 > 1867y3(1 + y)x3. Hence, T (x, y) = 0 does not have
solutions with both 0 < x < 1 and y > 0, which implies that the solution (x0, y0, z0) of the
equation Φ(x, y; z) = Φz(x, y; z) = 0 satisfies that Φzz(x0, y0; z0) 6= 0. Hence, the singularity
of D(x, y) is of a square-root type in a domain dented at x = R(y). This proves the singular
expansion in Equation (6.8).

In order to prove the special case of y = 1 in the statement of the lemma, we set y = 1,
R = R(1), and X = X(1) (and consequently x = R(1 − X2)). By plugging the singular
expansion of D(x, 1) in Φ(x, y; z) = 0, taking the Taylor expansion in terms of X, and
applying the method of indeterminate coefficients, we get the numerical values as claimed.
Finally, observe that for each choice of y > 0, the generating function D(x, y) is aperiodic,
as for every n there exists a network on n vertices. Consequently, the singularity R(y) is
unique.

Knowing that D(x, y) admits a singular expansion of square root-type in a domain dented
at x = R(y), one can compute by means of indeterminate coefficients the exact expressions
of Di(y) for i ≥ 1 in terms of the function D(R(y), y) = D0(y), which satisfies the functional
equation Φ

(
R(y), y,D0(y)

)
= 0. Although the expressions are long, we needed to compute

the evaluations at y = 1 for enumerative purposes.

The following lemma gives the coefficients of the singular expansions (rounded up to 5
digits) of the EGFs D̄(x, 1), S(x, 1), S̄(x, 1), P (x, 1), and P̄ (x, 1). In order to get asymptotic
estimates for these counting formulas we only need the multiplicative constant of the term
(1− x/R)1/2, in order to get the asymptotics in the 2-connected level we need expansions up
to term (1− x/R)3/2.

Lemma 6.3. For each y > 0 the generating functions D̄, S, S̄, P , and P̄ have a square-
root singular expansion in a domain dented at R(y), where R(y) is the unique singularity of
D(x, y). Furthermore, for y = 1 the singular expansions of D̄, S, S̄, P , and P̄ in a domain
dented at R := R(1) ≈ 0.05668 are

D̄(x, 1) = D̄0(1)+D̄1(1)X+D̄2(1)X2+D̄3(1)X3+O(X4),

S(x, 1) = S0(1) +S1(1)X +S2(1)X2 +S3(1)X3 +O(X4),

S̄(x, 1) = S̄0(1) +S̄1(1)X +S̄2(1)X2 +S̄3(1)X3 +O(X4),

P (x, 1) = P0(1) +P1(1)X +P2(1)X2 +P3(1)X3 +O(X4),

P̄ (x, 1) = P̄0(1) +P̄1(1)X +P̄2(1)X2 +P̄3(1)X3 +O(X4),

where X =
√

1− x/R and the constants have the following approximate values:
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i = 0 i = 1 i = 2 i = 3

D̄i(1) 1.71871 −1.17120 1.17120 −0.59820
Si(1) 0.17092 −0.27289 0.18433 −0.15440
S̄i(1) 0.30701 −0.43079 0.19616 −0.12220
Pi(1) 0.65312 −1.25480 1.16347 −1.09697
P̄i(1) 0.41170 −0.74041 0.58941 −0.47600

Proof. The first claim follows directly due to Equations (6.1)–(6.6), which are analytic and
allow us to express D̄, S, S̄, P , and P̄ in terms of D. In particular, all these generating
functions have a unique singularity at x = R(y). The second part follows by setting y = 1
and by plugging the singular expansion of D(x, 1) into Equations (6.1)–(6.6).

Now we turn to the analysis of B(x, y), the EGF associated with the class of 2-connected
SP graphs carrying a distinguished spanning tree. In Subsection 2.3.2 we have encountered
in Equation 2.2 a relation between the EGF associated with 2-connected graphs (without a
distinguished spanning tree) and the EGF associated with networks (without a distinguished
spanning tree). In the context of 2-connected SP graphs with a distinguished spanning tree,
Equation 2.2 translates to

2(1 + y)By(x, y) = x2
(

1 +D(x, y) + D̄(x, y)− y
(

exp(S̄(x, y)
)
− 1)

)
, (6.9)

which means that when directing and possibly deleting an edge in a 2-connected SP graph
with a distinguished spanning tree, the resulting object is a network, where labels are given
to the poles, and which is either empty or of type D or of type D̄, but not a parallel network
of type P̄ with an edge linking the poles (see Equation (6.6)).

A direct integration of Equation (6.9) is technically involved due to the relations between
the generating functions associated with the different types of networks. However, we can
get a simple expression of B(x, y) in terms of the EGF associated with the networks just by
combinatorial arguments using Tutte’s decomposition and the dissymmetry theorem for tree-
decomposable classes (Theorem 2.12). In the following lemma we provide such an equation.

Lemma 6.4. The generating function B(x, y) associated with the class of 2-connected SP
graphs carrying a distinguished spanning tree can be expressed as

B(x, y) =
x2

2
y +BR(x, y) +BM (x, y)−BR−M (x, y), (6.10)

where

BR(x, y) =
x2

2
S(D̄ − S̄), (6.11)

BM (x, y) =
x2

2

(
S
(

exp(S̄)− S̄ − 1
)

+ yS
(

exp(S̄)− 1
)

+ y
(

exp(S̄)− S̄ − 1
))
, (6.12)

BR−M (x, y) =
x2

2
(SP̄ + S̄P ). (6.13)

Proof. Applying Tutte’s decomposition (see Subsection 2.3.2 for the combinatorial back-
ground) to 2-connected SP graphs bearing a distinguished spanning tree on at least 3 vertices
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only yields R-bricks (ring graphs) and M-bricks (multi-edge graphs), both carrying a distin-
guished spanning tree. In particular, there are no T-bricks since the family of h-networks is
empty in our case. We obtain Expression (6.10) for B(x, y) using Equation (2.4) to which we
needed to add x2y/2 since we also consider a single edge to be a 2-connected SP graph.

Let us study each term. Let R be a distinguished R-brick with a distinguished spanning
tree. By definition, R is a cyclic chain of at least 3 networks that carries a spanning tree. In
particular, exactly one of these networks is in D̄ while the other ones are in D. This means
that R can be decomposed into a non-series network in D̄ and a series network in S that
are joined by a parallel operation and where the two poles are added to the graph, see also
Figure 6.5. This gives Equation (6.11).

0

∞ S

D

Figure 6.5: Decomposition of a distinguished R-brick in the RMT-tree.

We continue with M-bricks. Let M be a distinguished M-brick with a distinguished
spanning tree. Then, M can be decomposed into at least three networks, all but possibly one
of which are series and the possibly other one is a single edge. These networks are joined
by a parallel operation and the two poles are again added to the graph. This situation is
similar to the decomposition of parallel networks carrying a spanning tree that we considered
for developing Equation (6.5). The main difference is that, by definition, M is decomposed
into at least three and not into at least two networks.

We need to distinguish again between the two cases where there is a single edge component
in M and where there is no such component. Observe that it is not possible that there are
two such components in M since we are only considering simple graphs. In the former of
the two cases, we note that if the edge of the single edge component is not contained in the
distinguished spanning tree, then exactly one of the series networks is in S while all the others
are in S̄. If, on the other hand, the edge is in the spanning tree, then all series networks must
be in S̄. This gives rise to Equation (6.12).

Finally, we need to decompose 2-connected SP graphs with a distinguished spanning tree
and with a distinguished {R,M}-edge in the RMT-tree. This means, that the distinguished
edge corresponds to a virtual edge {x, y} matching an R-brick and a M-brick. Hence the
graphs can be decomposed into a series network and a parallel network by a parallel operation,
where we need to add again the two poles to the graph. One of the two networks must be in
D while the other one must be in D̄. As a consequence Equation (6.13) holds. See Figure 6.6
for an illustration of this situation.
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0

∞

S

P
0

∞

S

P

Figure 6.6: Decomposition of a distinguished {R,M}-edge in the RMT-tree.

With Lemmas 6.3 and 6.4 in hand, we can now turn to the analysis of the singular
behaviour of B(x, y).

Lemma 6.5. Let y > 0. Then B(x, y) has a unique square-root singularity, which is the
unique singularity R(y) of the function D(x, y) from Lemma 6.2. Moreover, B(x, y) has a
singular expansion of the following form in a domain dented at x = R(y):

B(x, y) = B0(y) +B2(y)X(y)2 +B3(y)X(y)3 +O
(
X(y)4

)
, (6.14)

where X(y) =
√

1− x/R(y).

For y = 1 we have x = R(1) = R ≈ 0.05668, B0(1) ≈ 0.00176, B2(1) ≈ −0.00394, and
B3(1) ≈ 0.00062.

Proof. Observe that the generating functions BR(x, y), BM (x, y) and BR−M (x, y) are analytic
transformations of the generating functions for networks (namely, the EGFs that appear in
Lemma 6.4). Hence, B(x, y) has a unique dominant singularity, which is the same one as
the coinciding singularity of the EGFs from Lemma 6.3, namely R(y). Similarly, for each
y we have that B(x, y) admits a singular expansion in a domain dented at R(y). In order
to obtain it, we express the singular expansion of each of the network EGFs appearing in
Equation (6.10) in terms of the singular expansions obtained in Lemma 6.3. Observe that
Equation (6.9) implies that the singular expansion of B(x, y) must start at X(y)3, which gives
in particular that B1(y) = 0 (c.f. [80, Theorem VI.9]).

Finally, by setting y = 1 and by the same procedure as above using Maple, we obtain
the approximation of Bi(1) for i ≥ 0 as stated in the lemma. In particular, the term B3(1)
depends on all singular coefficients in Lemma 6.3.

Next, we analyse the generating function C(x, y) of connected SP graphs carrying a dis-
tinguished spanning tree. Since the singular expansion of B(x, y) is of a square-root type
with singular exponent 3/2 as it is shown in Equation (6.14), we get the singular expansion
of C(x, y) immediately from [84, Proposition 3.10] (see also [71]).

Lemma 6.6. The singularity of C(x, y) is at

ρ̄(y) =
τ(y)

exp
(
Bx(τ(y), y)

) ,
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where τ(y) is the unique solution of the equation τ(y)Bxx(τ(y), y) = 1. The singular expansion
of C(x, y) in a domain dented at ρ̄(y) is

C(x, y) = C0(y) + C2(y)X(y)2 + C3(y)X(y)3 +O
(
X(y)4

)
,

where X(y) =
√

1− x/ρ̄(y) and

C0(y) = τ
(
1 + log(ρ̄(y))− log(τ(y))

)
+B(τ(y), y),

C2(y) = −τ(y),

C3(y) =
3

2

√
2ρ̄(y) exp(Bx(ρ̄(y), y))

τBxxx(τ(y), y)− τBxx(τ(y), y)2 + 2Bxx(τ(y), y)
.

For y = 1 we have ρ̄(1) ≈ 0.05288, C0(1) ≈ 0.05450, C2(1) = −τ ≈ −0.05668, and
C3(1) ≈ 0.00145.

Proof. See [84, Proposition 3.10] for the general value of y. When y = 1, we use Maple to
obtain the approximate values of the constants. The uniqueness of the singularity is assured
by the aperiodicity of C(x, y) with y being fixed (c.f. the proofs of [68, Lemma 7] and [68,
Lemma 9]).

Finally, we have all necessary ingredients to prove the main theorem of this section.

Proof of Theorem 6.1. We will prove the statement for Xn in detail. The result for Zn is
obtained mutatis mutandis.

Let us denote the class of all connected SP graphs on n vertices by Cn, and the class of all
connected SP graphs on n vertices carrying a distinguished spanning tree by Csn. For a graph
G ∈ Cn we write s(G) for the number of spanning trees in G. Then, the expected value of Xn

can be written as:

E[Xn] =
∑

G∈Cn
s(G)P[G] =

∑
G∈Cn s(G)

|Cn|
=
|Csn|
|Cn|

=
[xn]C(x, 1)

|Cn|
. (6.15)

It follows directly from Lemma 6.6 and the transfer theorem (Theorem 2.13) that the number
of connected SP graphs on n vertices that carry a distinguished spanning tree is asymptotically
equal to

C3(1)

Γ(−3/2)
n−5/2ρ̄(1)−nn! .

From Theorem 1.14 we know that the number of connected SP graphs on n vertices is asymp-
totically equal to csn

−5/2%−ns n!, where cs ≈ 0.0067912 and %s ≈ 0.11021 are computable
constants. Dividing the former by the latter as in Equation (6.15), we obtain that the ex-
pected value of Xn is asymptotically equal to s%−n, where s ≈ 0.09063 and %−1 ≈ 2.08415.

The corresponding result for 2-connected SP graphs is obtained analogously by using [33,
Theorem 2.6], which states that the number of 2-connected SP graphs on n vertices is asymp-
totically equal to bn−5/2r−nn!, where b ≈ 0.00101 and r ≈ 0.12800.
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6.1.2 Fixing the edge density

The previous results can be used to study random SP graphs with a fixed edge density, as
well as limiting distributions for the number of edges. For the sake of brevity, we only discuss
the problem for the family of 2-connected SP graphs, but the connected case is very similar.

The first main important observation is that the number of edges in a random 2-connected
SP graph carrying a distinguished spanning tree follows a normal limiting distribution. In-
deed, Lemma 6.5 shows that the singular behaviour of B(x, y) is the same when choosing y
in a real-valued neighbourhood of 1. Then, by Hwang’s quasi-power theorem (see [96]) the
distribution follows a normal limit law with linear expectation and linear variance. In partic-
ular, the number of edges is concentrated around its mean value. This behaviour is similar
to the case of 2-connected SP graphs (without a spanning tree), where again the number of
edges is normally distributed (see [33]).

Under these circumstances, our techniques provide a method to study the expected number
of spanning trees in a random SP graph on n vertices of a given edge density µ. Following
the arguments of [83, Theorem 3], for every µ > 0 we can choose a value y0 > 0 such that
if we assign the weight yk0 to each graph with k edges, then only the graphs with n vertices
and with approximately µn edges (with a deviation of order n1/2) have non-negligible weight.
Such a technique is valid whenever Hwang’s quasi-power theorem holds. Hence we can apply
it in our context.

As a case example we plot the expected value of the random variable Zn,µ that counts
the number of spanning trees in a graph chosen uniformly at random from all 2-connected
SP graphs with n vertices and edge density µ. Let R(y) denote the radius of convergence of
B(x, y). Given an edge density µ, the right choice for y0 is the unique positive solution of the
following equation (see e.g. [83, Theorem 3]):

−y0
Ry(y0)

R(y0)
= µ. (6.16)

Observe that when µ tends to 1, the family of SP graphs under study are graphs with a
small but positive number of cycles, whereas when µ tends to 2, the subfamily under study
tends to the class of 2-trees. These cases correspond to the ones when y tends to 0 and
infinity, respectively. Both cases will be analysed in full detail in Sections 6.2 and 6.3.

The precise computational method to obtain the exponential growth constant of the ex-
pected value of Zn,µ as a function of the edge density is the following: For a given density
µ we use (6.16) to obtain the corresponding y0. Then we use the implicit expression of the
singularity curve stated in [33, Theorem 2.2] in order to obtain the growth constant of the
number of 2-connected SP graphs of edge density equal to µ.

To get the growth constant in the setting of 2-connected SP graphs carrying a spanning
tree and with edge density µ, we perform the calculations explained in the proof of Lemma 6.2
for y0. Finally, the exponential growth of the expected value of Zn,µ is obtained by dividing
these two numerical values as we did in the proof of Theorem 6.1. In Figure 6.7 we plot this
exponential growth constant in terms of the edge density µ ∈ (1.07626, 1.97173).

We would like to mention that the non-plotted margins for µ correspond to values of y
very close to 0 and when y tends to infinity. In both cases, the numerical method used to get
the constant growth for the number of spanning trees fails because of indetermination of the
operation to be carried out.
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Figure 6.7: Exponential growth constant of the expected number of spanning trees in a
random 2-connected SP graph (ordinate) as a function of its edge density (abscissa).

As already mentioned, the two cases when the edge density reaches its maximum and
when it tends to its minimum will be analysed in Section 6.2 and in Section 6.3, respectively.

6.1.3 Variance of the number of spanning trees

Refining the combinatorics exploited in the proofs in Subsection 6.1.1, one has also access to
the second moment of the random variables Xn and Zn. In this subsection we develop this
by determining the growth constant of the variance of Zn. This will also show that Zn is not
concentrated around its expected value. Recall that Zn was defined as the random variable
that counts the number of spanning trees in a random 2-connected SP graph on n vertices.

In order to determine the growth constant of the second moment of Zn, we will first study
the asymptotic behaviour of the number of 2-connected SP graphs on n vertices carrying two
distinguished spanning trees. As in Subsection 6.1.1, we start with the analysis of networks
carrying spanning trees and spanning forests.

We define D∗, S∗, and P∗ as the classes of SP, series, and parallel networks, respectively,
each carrying two distinguished spanning trees. Let D∗(x, y), S∗(x, y), and P ∗(x, y) denote
their EGFs.

In order to be able to analyse these generating functions, we need again some auxiliary
classes. Let D̃ denote the class of all SP networks carrying a distinguished spanning tree
and a distinguished spanning forest with (exactly) two components, each of which contains
one pole. Furthermore, let D̂ denote the class of all SP networks carrying two distinguished
spanning forests both with (exactly) two components, each of which contains one pole. Let
D̃(x, y) and D̂(x, y) denote their EGFs. In the same way S̃, P̃, Ŝ, and P̂ as well as S̃(x, y),
P̃ (x, y), Ŝ(x, y), and P̂ (x, y) are defined. We might again omit the parameters whenever they
are clear from the context.

Following the proof of Theorem 6.1, we start with the following lemma that provides the
growth constant of these generating functions.
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Lemma 6.7. For y = 1, the generating functions D∗, D̃, D̂, S∗, S̃, Ŝ, P ∗, P̃ , and P̂ have
a square-root expansion in a domain dented at R2 ≈ 0.02407.

Proof. We start again with elaborating relations between all given generating functions.

One can easily verify that the following relations hold:

D∗(x, y)= y + S∗(x, y) + P ∗(x, y),

D̃(x, y) = y + S̃(x, y) + P̃ (x, y), (6.17)

D̂(x, y) = y + Ŝ(x, y) + P̂ (x, y).

Recall that a series network can be decomposed into a network that is not series and an
arbitrary SP network. Similarly to Equations (6.3) and (6.4), we get the following equations
for the generating functions associated with the networks from the classes S, S̃, and Ŝ.

S∗(x, y) =
(
D∗(x, y)− S∗(x, y)

)
xD∗(x, y),

S̃(x, y) =
(
D̃(x, y)− S̃(x, y)

)
xD∗(x, y) +

(
D∗(x, y)− S∗(x, y)

)
xD̃(x, y), (6.18)

Ŝ(x, y) =
(
D∗(x, y)− S∗(x, y)

)
xD̂(x, y) +

(
D̂(x, y)− Ŝ(x, y)

)
xD∗(x, y)

+2
(
D̃(x, y)− S̃(x, y)

)
xD̃(x, y).

Finally, a parallel network can be decomposed into a set of at least one series network if
the root edge is present, or into at least two series networks, otherwise. In the first case we
need to distinguish whether the root edge is in a distinguished spanning tree or not. By a
careful case distinction, we get the following three equations:

P (x, y) = S(x, y)
(

exp
(
Ŝ(x, y)

)
− 1
)

+ (1 + y)S̃(x, y)2 exp
(
Ŝ(x, y)

)

+ yS(x, y) exp
(
Ŝ(x, y)

)
+ 2yS̃(x, y) exp

(
Ŝ(x, y)

)
+ y
(

exp
(
Ŝ(x, y)

)
− 1
)
,

P̃ (x, y) =
(
y + S̃(x, y)

)(
exp

(
Ŝ(x, y)

)
− 1
)

+ yS̃(x, y) exp
(
Ŝ(x, y)

)
, (6.19)

P̂ (x, y) =
(

exp
(
Ŝ(x, y)

)
− Ŝ(x, y)− 1

)
+ y
(

exp
(
Ŝ(x, y)

)
− 1
)
.

Equations (6.17)–(6.19) define a system of functional equations that can be analysed
by means of Theorem 2.14 by setting y = 1. More precisely, each equation in this sys-
tem is defined by an analytic function because the exponential function is an entire func-
tion. In addition, easy lower and upper bounds imply that the radius of convergence of
D(x, 1), D̃(x, 1), D̂(x, 1) is in (0, R], where R ≈ 0.05668 is the constant from Lemma 6.2.

Solving the system of equations stated in Theorem 2.14 using Maple we get that R2 ≈
0.02407. Furthermore, Theorem 2.14 assures that R2 is the singularity of all generating
functions appearing in Equations (6.17)–(6.19) and that they have a square-root expansion in
a domain dented at R2. As all generating functions written so far are aperiodic, the singularity
is unique on the circle |x| = R2.

Let B∗(x, y) denote the EGF associated with the class of all 2-connected SP graphs car-
rying two spanning trees. As in Lemmas 6.4 and 6.5 one can write B∗(x, y) as an analytic
combination of the generating functions from Lemma 6.7 by using Tutte’s decomposition and
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Equation (2.4). Therefore, the dominant singularity of B∗(x, 1) is the same as the coinciding
singularity of the EGFs appearing in Lemma 6.7, which is R2, and moreover, B∗(x, 1) has a
square-root expansion in a domain dented at R2. By Theorem 2.13 we get that the number
of 2-connected SP graphs on n vertices carrying two spanning trees is asymptotically equal
to Θ

(
n−5/2R−n2 n!

)
.

Let Bn denote the number of 2-connected SP graphs on n vertices and SB∗n the number
of 2-connected SP graphs on n vertices carrying two spanning trees. The second moment of
Zn can be calculated in the following way:

E[Z2
n] =

∑

G∈Bn
s(G)2P[G] =

|SB∗n|
|Bn|

=
[xn]B∗(x, 1)

|Bn|
,

where again s(G) denotes the number of spanning trees in a graph G. By [33, Theorem 2.6]
the number of 2-connected SP graphs on n vertices is asymptotically equal to Θ

(
n−5/2r−nn!

)
,

where r ≈ 0.12800. This means that the second moment of Zn is asymptotically equal to
Θ
(
$−n2

)
, where $−1

2 ≈ 5.31718. The same holds for Var(Zn) = E[Z2
n] − E[Zn]2 since E[Zn]

is approximately equal to Θ (%−n), where %−1 ≈ 2.08415 by Theorem 6.1. In particular, this
implies that Zn is not concentrated around its expected value.

6.2 Spanning trees in 2-trees

The previous analysis is done over all connected/2-connected SP graphs on a given number
of vertices. Now we also address the study of extremal situations. First, we particularize
the computation of the expected value in the case of a random 2-tree on n vertices, which
maximizes the number of edges in an n-vertex SP graph. In this case, the expected value of the
number of spanning trees is slightly bigger than the one in Theorem 6.1. In Subsection 6.1.2
we analysed the exponential growth constant of the expected number of spanning trees in
a random 2-connected SP graph with respect to its edge density. Observe that if the edge
density of SP graphs tends to its maximum, we reach the class of 2-trees. In this section we
present an alternative, direct way to compute this growth constant in the setting of 2-trees.
More precisely, we give a proof of the following theorem.

Theorem 6.8. Let Un denote the number of spanning trees in a labelled 2-tree on n vertices
chosen uniformly at random. Then, the expected value of Un is asymptotically equal to s2%

−n
2 ,

where s2 ≈ 0.14307 and %−1
2 ≈ 2.55561.

The proof of Theorem 6.8 is again based on the symbolic method, the extension of the
dissymmetry theorem to tree-decomposable classes (Theorem 2.12), and the singularity anal-
ysis of generating functions. As in the previous section, we use x and y to mark vertices and
edges, respectively. In this particular scenario the number of edges is determined once fixing
the number of vertices. However, for pedagogical reasons, we will write all the equations
keeping track of both parameters.

6.2.1 Enumerating 2-trees

In order to obtain the expected number of spanning trees in a random 2-tree, we aim to
determine an asymptotic estimate of the number of 2-trees as well as of the number of 2-trees
carrying a distinguished spanning tree. As a first step, Lemma 6.9 provides the singularity
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%T and the singular expansion in a domain dented at %T of the generating function T (x, y)
associated with the class of 2-trees.

Lemma 6.9. For y = 1 it holds that T (x, y) has the unique square-root type singularity
%T = 1/(2e) and admits the following singular expansion in a domain dented at x = %T :

T (x, 1) =
1

12
e−3/2 − 3

16
e−3/2X2 +

√
2

48
e−3/2X3 +O(X4),

where X =
√

1− x/%T .

Proof. Let T̄ denote the class of labelled 2-trees rooted at an edge whose endpoints do not
bear a label and let T (x, y) denote its associated generating function. By the rules of the
symbolic method for pointing operations we have the following relation between T (x, y) and
T (x, y):

y
∂

∂y
T (x, y) =

x2

2
T (x, y).

Observe that we had to add the factor x2/2 on the right-hand side because we had to add
labels to the endpoints of the root edge. By integrating by substitution we get that

T (x, y) =
x2

2

∫ y

0

T (x, z)

z
dz =

x2

2

(
T (x, y)− 2

3
xT (x, y)3

)
.

In order to compute the radius of convergence of T (x, y), it suffices to compute the radius
of convergence of T (x, y) since their values coincide by the latter equation. A graph in T̄
can be reconstructed by merging at the root edge a set of pairs of graphs in T̄ that share a
vertex, see Figure 6.8 for an illustration.

T

T T

T

0 ∞y

x

x

Figure 6.8: Decomposition of rooted 2-trees.

Using the symbolic method this gives rise to the following equation for T (x, y):

T (x, y) = y exp
(
xT (x, y)2

)
.

By Lagrange’s Theorem (see e.g. [80]) we get for every n,m ≥ 0 that

[xn][ym]T (x, y) = [xn] 1
m [um−1]emxu

2

= [xn] 1
m·(m−1

2 )!
m

m−1
2 x

m−1
2 =





1

(m−1
2 )!

m
m−3

2 if n = m−1
2 ,

0 otherwise.
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We study the case y = 1 since the number of edges of a 2-tree is determined by its number
of vertices. The inverse function of T (x, 1) is given by ψ(u) = log(u)/u2. Let τ > 0 such
that ψ′(τ) =

(
1− 2 log(τ)

)
/τ3 = 0, implying τ = exp(1/2). Then we know from the analytic

inverse function theorem that the singularity %T of T (x, 1) satisfies %T = ψ(τ) = 1/(2e).
Therefore, T (x, 1) and hence also T (x, 1) have a square-root type singular expansion in a
domain dented at %T . By the method of indeterminate coefficients we get that the singular
expansion of T (x, 1) is of the form as stated in the lemma. Finally, by the aperiodicity of the
generating functions under study, the dominant singularity of T (x, 1) is unique.

6.2.2 Enumerating 2-trees carrying spanning trees

Now let us turn to 2-trees carrying a spanning tree. We denote this class by T s and its
associated generating function by T s(x, y). Similarly to Section 6.1, we need to analyse
edge-maximal SP networks first to get access to the singular behaviour of T s(x, y). For
this purpose, let Dr(x, y) denote the EGF associated with the class of all edge-maximal
SP networks carrying a spanning tree that contains the root edge. Furthermore, let Dr(x, y)
denote the EGF associated with the class of all edge-maximal SP networks carrying a spanning
tree that does not contain the root edge. Finally, let D◦(x, y) denote the EGF associated with
the class of all edge-maximal SP networks with a distinguished spanning forest that consists
of exactly two components, each of which contains one of the poles. Observe that we have
Dr(x, y) = D◦(x, y). Lemma 6.10 gives us the singular behaviours of Dr = D◦ and Dr for
y = 1.

Lemma 6.10. We have Dr = D◦ and for y = 1 the generating functions Dr and Dr have
the same unique square-root singularity RT ≈ 0.07197. Furthermore, the singular expansions
(with rounded coefficients) of Dr(x, 1) and Dr(x, 1) in a domain dented at x = RT are:

Dr(x, 1) = Dr
0(1) +Dr

1(1)X +Dr
2(1)X2 +Dr

3(1)X3 +O(X4),

Dr(x, 1) = Dr
0(1) +Dr

1(1)X +Dr
2(1)X2 +Dr

3(1)X3 +O(X4),

where X =
√

1− x/RT and the constants have the following approximate values:

i = 0 i = 1 i = 2 i = 3

Dr
i (1) 1.46516 −0.77028 0.53282 −0.40927

Dr
i (1) 0.34588 −0.77028 0.87870 −0.92279

Proof. Using the symbolic method (see also Figure 6.9) one can easily verify that the following
system of equations hold:

Dr(x, y) = y exp
(

2
(
Dr(x, y) +Dr(x, y)

)
xDr(x, y)

)
,

Dr(x, y) = yx
(
Dr(x, y) +Dr(x, y)

)2
exp

(
2
(
Dr(x, y) +Dr(x, y)

)
xDr(x, y)

)
.

(6.20)

We may set y = 1 since the number of edges of 2-trees is always given by the number of
vertices. The two equations in (6.20) are defined by entire functions. As these structures carry
spanning trees, the corresponding singularity is smaller than %T , and hence their singularity
RT is finite. We can apply Theorem 2.14 and know therefore that Dr(x, 1) and Dr(x, 1) have
the same singularity RT and that they have a square-root singular expansion in a domain
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Dr or Dr

Dr or D
r D◦

D◦

0 ∞y

x

x

Dr or Dr

Dr or D
r D◦

Dr or Dr

0 ∞y

x

x

Figure 6.9: Possible decompositions of an edge-maximal SP network with a distinguished
spanning tree that contains the root edge (depicted on the left hand side)/does not contain
the root edge (depicted on the right hand side).

dented at this singularity. Solving the system of equations stated in Theorem 2.14 with Maple

yields that RT ≈ 0.07197. By the aperiodicity of the counting formulas, this is the unique
smallest dominant singularity. Using the method of indeterminate coefficients we get the
exact coefficients of the singular expansions of Dr(x, 1) and Dr(x, 1), which are the ones as
stated in the lemma.

Lemma 6.11. For y = 1 it holds that T s(x, 1) has a square-root singularity, which is the
singularity RT of Dr(x, 1) and Dr(x, 1). Moreover, T s(x, 1) has a singular expansion of the
following form in a domain dented at x = RT ≈ 0.07197:

T s(x, 1) = T s0 + T s2X
2 + T s3X

3 +O(X4),

where X =
√

1− x/RT and T s0 ≈ 0.00290, T s2 ≈ −0.00669, and T s3 ≈ 0.00133 are computable
constants.

Proof. We define the ∆e-tree τ(G) of a graph G as the bipartite graph describing the inci-
dences between edges and triangles of G. More precisely, the node set of τ(G) is given by
E(G) ∪

{
{x1, x2, x3} : {xi, xj} ∈ E(G) for each i 6= j ∈ [3]

}
and two nodes e and ∆ are

neighbours if and only if e ( ∆ in G.

Since we are dealing with graphs carrying a spanning tree we need to encode information
about the distinguished spanning tree also in the associated ∆e-tree. For this reason, we
define five different types of nodes of τ(G) if G ∈ T s. Let Ve and Ve denote the set of vertices
of τ(G) associated with edges of G that are/are not contained in the distinguished spanning
tree of G. Moreover, for i ∈ [3], let V∆i denote the sets of vertices of τ(G) associated with
triangles of G that contain exactly 3− i edges that are in the distinguished spanning tree.

Observe that for every G ∈ T s the connected ∆e-tree τ(G) associated with it is uniquely
defined. We claim that τ(G) is a tree. Indeed, assume for a contradiction that there exists a
cycle C = ∆1e1∆2 . . .∆kek∆1 in τ(G). Let G′ be the induced subgraph of G on the vertex set⋃
i∈[k] ∆i. In particular, being edge-maximal and K4-minor free, G′ is also a 2-tree. However,

G′ does not contain a vertex of degree 2, a contradiction.

Since τ(G) is a tree, we know that T s is a tree-decomposable class. Therefore we can
apply Theorem 2.12. Because ∆e-trees are bipartite, the equation in Theorem 2.12 simplifies
to T s ' T s◦ − T s◦−◦. The class T s◦ is naturally partitioned into the five classes T se , T se , T s∆1

,
T s∆2

, and T s∆3
depending on whether the distinguished node is from the set Ve, Ve, V∆1 , V∆2 , or
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V∆3 . The class T s◦−◦ is partitioned into the classes T se−∆1
, T se−∆2

, T se−∆1
, T se−∆2

, and T se−∆3
by

the structure of τ(G). In terms of their associated generating functions these facts translate
into the following equation

T s = T se + T se + T s∆1
+ T s∆2

+ T s∆3
− T se−∆1

− T se−∆2
− T se−∆1

− Te−∆2 − T se−∆3
. (6.21)

Using the symbolic method, it is not difficult to check that the following equations are true.
Recall that we have Dr(x, y) = D◦(x, y).

T se (x, y) =
x2

2
Dr(x, y), T se =

x2

2
Dr(x, y), T s∆1

(x, y) =
x3

2

(
Dr(x, y)

)3
,

T s∆2
(x, y) = x3

(
Dr(x, y)

)2
Dr(x, y), T s∆3

(x, y) =
x3

2
Dr(x, y) (Dr(x, y))2

and

T se−∆1
(x, y) = x3

(
Dr(x, y)

)3
, T se−∆2

(x, y) = x3
(
Dr(x, y)

)2
Dr(x, y),

T se−∆1
(x, y) =

1

2
x3
(
Dr(x, y)

)3
, T se−∆2

(x, y) = 2x3
(
Dr(x, y)

)2
Dr(x, y),

T se−∆3
(x, y) =

3

2
x3Dr(x, y) (Dr(x, y))2 .

In particular, T s(x, y) can be expressed in terms of x, Dr(x, y), and Dr(x, y) by plugging
the previous equations in Equation (6.21). Hence one can see that the dominant singularity
of T s(x, 1) is the same as the coinciding one of Dr(x, 1) and Dr(x, y), namely RT . Finally, we
obtain the singular expansion of T s(x, 1) in a domain dented at RT by using Equation (6.21)
and the singular expansions of Dr(x, 1) and Dr(x, 1) from Lemma 6.10.

6.2.3 Expected number of spanning trees

Knowing the singular expansions of the generating function T (x, 1) associated with the class
of 2-trees (Lemma 6.9) as well as of the generating function T s(x, 1) of the class of 2-trees
carrying a distinguished spanning tree (Lemma 6.11), we have now all ingredients that we
need to finally give a proof of Theorem 6.8.

Proof of Theorem 6.8. Let Un denote the number of spanning trees in a random 2-tree on n
vertices. Then, it holds that

E[Un] =
∑

G∈Tn
s(G)P[G] =

∑
G∈Tn s(G)

|Tn|
=
|T sn |
|Tn|

=
[xn]T s(x, 1)

|Tn|
, (6.22)

where Tn and T sn denote the class of 2-trees on n vertices and the class of 2-trees on n vertices
carrying a distinguished spanning tree, respectively, and s(G) denotes the number of spanning
trees in a graph G. By Lemma 6.11 and Theorem 2.13 we get that the number of 2-trees on
n vertices that carry a distinguished spanning tree is asymptotically equal to

T s3
Γ(−3/2)

n−5/2R−nT n! .
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Furthermore, it follows from Lemma 6.9 and Theorem 2.13 that the number of 2-trees on n
vertices is asymptotically equal to

√
2e−3/2

48 · Γ(−3/2)
n−5/2%−nT n! .

Dividing the former by the latter as in Equation (6.22), we obtain that the expected value of
Un is asymptotically equal to s2%

−n
2 , where s2 ≈ 0.14307 and %−1

2 ≈ 2.55561.

6.3 Spanning trees in series-parallel graphs with fixed excess

Having studied the number of spanning trees in edge-maximal SP graphs in the preceding
subsection, we are now interested in the other extremal situation, namely when connected SP
graphs have only few edges.

Recall that the excess of a graph is the number of its edges minus the number of its vertices.
In this subsection we address the following question: given an integer k that does not depend
on n, what is the expected number of spanning trees in a random connected SP graph with
n vertices and excess equal to k if n is large? In order to study this question we exploit
the structure of graphs with fixed excess introduced by Wright [159, 160]. The structure of
graphs with fixed excess has been applied successfully in a wide variety of situations (see
e.g. [29, 49, 135, 145]).

Our main result in this context is the following polynomial estimate (in n) of the expected
number of spanning trees in a random connected SP graph on n vertices and with fixed excess
equal to k.

Theorem 6.12. Let k > 1 be a fixed integer. Let Xn,k denote the number of spanning trees in
a connected labelled SP graph, on n vertices and with fixed excess equal to k, chosen uniformly
at random. Then, when n is large enough,

E[Xn,k] = c̃(k)
Γ(3k/2)

Γ(2k + 1/2)

(n
2

) k+1
2 (

1 + o(1)
)
,

where the function c̃(k) satisfies the following equation if k is large enough:

c̃(k) = c̃γ̃−k
(
1 + o(1)

)
, (6.23)

with c̃ ≈ 0.90959 and γ̃−1 ≈ 2.60560.

In order to deduce these expressions in Theorem 6.12 we analyse weighted cubic SP
multigraphs on 2k vertices. These objects are reminiscent of the work [101] and are building
on previous enumerative results on simple cubic planar graphs [34]. The asymptotic estimate
stated in Theorem 6.12 arises when getting asymptotic estimates (in terms of k) for the
number of such multigraphs.

The idea of the proof of Theorem 6.12 is as follows. We first provide in Subsection 6.3.1
asymptotically tight formulas for the number of connected SP graphs on n vertices with excess
equal to k and for the number of such graphs that carry in addition a distinguished spanning
tree. These formulas will be formulated in terms of the number of weighted cubic SP graphs
without and with a spanning tree, respectively. In Subsection 6.3.2 we establish asymptotic



166 Chapter 6. Enumerating spanning trees in series-parallel graphs

estimates of these numbers. The proof of Theorem 6.12 then comes down to dividing the
asymptotic estimate of the number of connected SP graphs on n vertices with excess k and a
distinguished spanning tree by the asymptotic estimate of those graphs without a spanning
tree. As in the previous sections, the proofs are based on the symbolic method and uses
transfer theorems for the singularity analysis of generating functions.

6.3.1 Kernels of connected SP graphs with fixed excess

Let Ck(x) denote the EGF associated with connected SP graphs with excess equal to k car-
rying a distinguished spanning tree. Furthermore, we denote by Ck(x) the EGF of connected
SP graphs with excess equal to k.

The goal of this section is to determine asymptotically tight upper and lower bounds on
Ck(x) and Ck(x) in terms of the number of weighted cubic SP graphs without and with a
spanning tree, respectively. To this end, we also need the EGF for rooted labelled trees,
which we denote by W (x). Using the symbolic method one can see that W (x) satisfies the
functional equation

W (x) = x exp
(
W (x)

)
.

Concerning the singular expansion, it is well known and not difficult to check that W (x) has
a unique square-root type singularity at x = e−1, and in a domain dented at this point, W (x)
has an expansion of the form

W (x) = 1−
√

2X +O(X2),

where X =
√

1− ex.

Let G be a graph with excess k. Starting from G, we build a multigraph that we call the
kernel of G in the following way: first we delete recursively vertices of degree one and obtain
thus the core of the graph (see for instance [135]). Then we continue by dissolving vertices of
degree two, i.e. by replacing the two edges incident to a vertex of degree two by a single edge.
The resulting connected multigraph K(G) (the kernel of G) has minimum degree greater or
equal than 3 and fixed excess equal to k. The vertices of the kernel of G can be labelled in
the following way: the surviving |V (K(G))| vertices in K(G) carry labels from 1 to |V (G)|.
The labels induce then an order of the vertices. The final labels in [|V (K(G))|] of the kernel
are the ones induced by the ordering of the original labels.

If G has a distinguished spanning tree, the construction of the kernel of G induces also a
spanning tree in K(G). Indeed, observe that the edges in G belonging to this distinguished
structure induce a spanning tree in its core. Then, in the next step, two edges that are both in
the distinguished spanning tree of the core and that are incident to the same vertex of degree
2 are replaced by a single edge that belongs to the distinguished structure of the kernel. If
one of the two edges is not in the distinguished spanning tree of the core, then the new single
edge does not belong to the distinguished structure of the kernel. Hence, the spanning tree of
the core induces a spanning tree of the kernel. In particular, possible loops do not belong to
the induced spanning tree of the kernel. Additionally, if there is a multiple edge, at most one
of the copies belongs to the spanning tree. See an example of the construction of the kernel
in Figure 6.10 together with the distinguished spanning structure.

It is straightforward how to reverse this construction: starting from a given kernel C one
can build directly the initial graph by pasting over each vertex of C a rooted labelled tree and
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(1) (2)

(3)

Figure 6.10: Construction of the kernel of an SP graph with a distinguished spanning tree.

by substituting each edge by a sequence of rooted labelled trees. In our approach, dealing
with spanning trees, we need to consider a slight modification for edges not belonging to the
spanning tree. More precisely, we need to substitute in this case each edge (neither a loop
nor a multiple edge) by

1 + 2W (x) + 3W (x)2 + · · · =
∑

r≥0

(r + 1)W (x)r =
1

(1−W (x))2
,

whose singular expansion in a domain dented at x = e−1 is of the form 1
2X
−2 + O(X−1),

where again X =
√

1− ex. The reason for this is that whenever we paste a sequence of rooted
trees over the edge under consideration we must maintain the spanning structure acyclic and
connected. If, in the sequence, we paste r different trees, the edge becomes subdivided into
r + 1 edges. We need to choose then which one of these r + 1 edges is not in the spanning
tree.

In the case of the loop the previous sequence must start at the term 2W (x) in order to
obtain at the end a simple graph. Similarly, for multiple edges we need to assure that at the
end we obtain a simple graph. This case-by-case analysis suggests that generating functions
would be somehow involved (see the similar problem in general graphs in [159, 160]). However,
we show that we are able to find closed formulas for the asymptotic estimates by means of a
sequence of reductions.

In the problem that we study, our graph G is a connected SP graph. Hence, its kernel
K(G) is an SP multigraph, i.e. a K4-minor free multigraph. Note that the number of possible
kernels of excess k does not depend on the number of vertices of G. Moreover, observe
that for a fixed value of k, a multigraph K with minimum degree at least 3 and of excess k
maximizes its number of edges if and only if K is cubic. Hence, we can restrict ourselves to
the study of connected SP graphs arising from a cubic kernel as these ones will provide the
main contribution to the asymptotics.

For technical reasons we will deal with weighted cubic multigraphs. The weight (called the
compensation factor in [97], see also [101]), has the following meaning. When we substitute
edges of the kernel by sequences of rooted trees, a loop has two possible orientations that
give the same simple graph. A double (triple) edge can be permuted in two (six) ways and
still produce the same object. The enumerative study of weighted cubic multigraphs will
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be deferred to the end of this section. We denote by gk the number of weighted cubic SP
multigraphs with excess k. Additionally, we denote by gk the number of weighted cubic SP
multigraphs with excess k that carry a distinguished spanning tree. In the rest of this section,
all cubic multigraphs are considered to be weighted.

Observe that a cubic multigraph of excess k has 2k vertices and 3k edges. Therefore, any
spanning tree has 2k− 1 edges and hence k+ 1 edges are not used in the spanning structure.
The first lemma gives a lower bound for [xn]Ck(x):

Lemma 6.13. For fixed k > 1, the following inequality holds:

gk[x
n]

(
3− 2W (x)

)k+1
W (x)6k

(
1−W (x)

)4k+1
< [xn]Ck(x). (6.24)

Proof. The proof is reminiscent to the proof of Lemma 3 in [136]. The EGF on the left hand
side of Equation (6.24) can be written in the following way:

W (x)2k W (x)2k−1

(
1−W (x)

)2k−1
·
(
3− 2W (x)

)k+1
W (x)2k+2

(
1−W (x)

)2k+2
.

This can be interpreted as follows: for a given cubic SP multigraph with a distinguished
spanning tree we

(a) paste a rooted labelled tree over each of the 2k vertices,

(b) paste a sequence of at least one rooted labelled tree over each of the 2k − 1 edges
belonging to the spanning tree of the kernel.

(c) paste a sequence of at least one rooted labelled tree over each of the k + 1 edges not
belonging to the spanning tree of the kernel, and then decide which of the new edges
does not belong to the resulting spanning tree.

Points (a) and (b) contribute with terms W (x)2k and (W (x)/(1 −W (x)))2k−1, respectively,
where the second term is associated with a sequence of at least one rooted labelled tree. For
the computation of Point (c), recall that loops are not in spanning trees. Hence, to guarantee
that the final graph is simple we need sequences of length at least two for edges that do not
belong to the spanning tree (length one is enough for multiple edges, but length two is needed
for loops). Hence, the computation in point (c) arise from the fact that

∑

r≥2

(r + 1)W (x)r =

(
3− 2W (x)

)
W (x)2

(
1−W (x)

)2 .

This construction is injective and does not give all possible connected SP graphs with excess k.
Summing over all possible weighted cubic SP multigraphs we obtain the result as claimed.

The next step is to get an upper bound for [xn]Ck(x). This is provided by the following
lemma:

Lemma 6.14. For fixed k > 1, the following inequality holds:

[xn]Ck(x) < gk

(
[xn]

W (x)2k

(
1−W (x)

)4k+1

)
(
1 + o(1)

)
. (6.25)
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Proof. The statement is proved by applying a similar argument to the one of Lemma 6.13. For
a fixed cubic multigraph with a distinguished spanning tree, we now paste over each edge an
arbitrary sequence of rooted trees (possibly empty), and take care of the special requirement
on the edges of the kernel that do not belong to the initial spanning tree. In this way we
generate all connected SP graphs with excess k that carry a spanning tree. Observe that it is
possible to generate graphs that are not simple. Hence, this construction only gives an upper
bound. Finally, the term o(1) in Equation (6.25) arises from the set of kernels that are not
cubic.

We can now combine both lemmas to get an asymptotic estimate for [xn]Ck(x).

Proposition 6.15. For fixed k > 1, the following asymptotic estimate in n holds:

[xn]Ck(x) = gk
1

22k+1/2

n2k−1/2

Γ(2k + 1/2)
en
(
1 + o(1)

)
. (6.26)

Proof. We apply the transfer theorem for singularity analysis (Theorem 2.13) to Equations
(6.24) and (6.25). In particular we get that

[xn]Ck(x) > gk[x
n]

(
3− 2W (x)

)k+1
W (x)6k

(
1−W (x)

)4k+1
= gk

1

22k+1/2

n2k−1/2

Γ(2k + 1/2)
en
(
1 + o(1)

)
,

and concerning the upper bound,

[xn]Ck(x) < gk

(
[xn]

W (x)2k

(
1−W (x)

)4k+1

)
(
1 + o(1)

)
= gk

1

22k+1/2

n2k−1/2

Γ(2k + 1/2)
en
(
1 + o(1)

)
.

In both estimates we have exploited the fact that W (e) = 1. As these estimates have the
same singular behaviour, we conclude the estimate in Equation (6.26).

Before moving to the computation of gk and gk, let us mention that similar arguments
give estimates for [xn]Ck(x). Indeed, using the argument in [136, Lemma 3] (or mutatis
mutandis the previous arguments for Ck(x)) one gets the following upper and lower bounds
for [xn]Ck(x):

gk[x
n]

W (x)8k

(
1−W (x)

)3k < [xn]Ck(x) < gk

(
[xn]

W (x)2k

(
1−W (x)

)3k

)
(
1 + o(1)

)
.

Again, by applying the transfer theorem for singularity analysis (Theorem 2.13) we get the
estimate

[xn]Ck(x) = gk
1

23k/2

n3k/2−1

Γ(3k/2)
en
(
1 + o(1)

)
. (6.27)

6.3.2 Enumerating weighted cubic SP multigraphs with spanning trees

We complete the picture by getting asymptotic formulas (in k) for both gk and gk. The
main results we implicitly use are the transfer theorem (Theorem 2.13), joint with the fact
that singular expansions can be integrated on dented domains (see e.g. [80, Theorem VI.9]).
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Additionally, given a value k, one can obtain the corresponding values by getting the Taylor
expansions of the generating functions that will be introduced in the next lines.

Let us start studying gk. As mentioned before, gk is the number of connected cubic SP
multigraphs with weights and excess equal to k. The weights are defined rigorously in the
following way: given a multigraph with l1 loops, l2 double edges and l3 triple edges, its weight
is 2−l1−l26−l3 . Weights are needed to encode edge symmetries of multigraphs. Let G(u) be
the EGF of connected weighted cubic SP multigraphs, where the variable u marks the excess.
G(u) satisfies the following system of functional equations:

6u
dG(u)

du
= d(u) + c(u),

b(u) =
u

2

(
d(u) + c(u)

)
+
u

2
, (6.28)

c(u) = s(u) + p(u) + b(u),

d(u) =
b(u)2

u
,

s(u) = c(u)2 − c(u)s(u),

p(u) = uc(u) +
1

2
uc(u)2 +

u

2
.

Full details concerning these equations can be found in [136, Section 3], building on results

on [101] (see also [34]). The meaning of these EGF is the following: the term 6udG(u)
du

corresponds to the EGF of connected weighted cubic SP multigraphs where an edge (the root
edge) is marked and oriented (remember that a cubic multigraph of excess k has 3k edges
and each edge has 2 possible orientations). We have the following cases depending on the
nature of the root edge: either the root edge is a loop (term b(u)) or a bridge (term d(u))
or when deleting it we get a series construction (term s(u)) or a parallel construction (term
p(u)). The term c(u) plays the role of an auxiliary EGF.

We proceed now with the analysis of this system.

Proposition 6.16. The number gk = [uk]G(u) of weighted connected cubic SP multigraphs
with fixed excess equal to k has the following asymptotic estimate:

gk = ck−5/2γ−k
(
1 + o(1)

)
,

where γ = 4
27

√
6
√

3− 9 ≈ 0.17481, and c ≈ 0.06034.

Proof. From the system of equations (6.28) we get a single equation for c(u) by successive
elimination. Computations give that c(u) satisfies the following algebraic equation

0 = 8u+ u2 + (−8 + 24u+ 6u2)c(u) + (−4 + 24u+ 15u2)c(u)2 + (8u+ 20u2)c(u)3

+15u2c(u)4 + 6u2c(u)5 + u2c(u)6.

We refer to [80, Section VII.8] for more details. From this equation we deduce that the
dominant singularity of c(u) is the smallest positive root of the equation

19683u4 + 7776u2 − 256 = 0,
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whose value is equal to γ = 4
27

√
6
√

3− 9 ≈ 0.17481 (−γ is also a root of this polynomial with
the same absolute value, but it is easy to check that c(u) is analytic at u = −γ). Using now
Newton’s Polygon Method (see [80, Section VII.7]) we get that c(u) has a Puiseux’s expansion
of the following form in a domain dented at u = γ:

c(u) = c0 + c1U +O(U2), (6.29)

where U =
√

1− u/γ, c0 ≈ 0.61185, and c1 ≈ −1.08766. Using Expansion (6.29) we deduce
that D(u) admits the following singular expansion in a domain dented at u = γ:

d(u) = d0 + d1U +O(U2)

with d0 ≈ 0.13306 and d1 ≈ −0.19574. Finally, using that 6udG(u)
du = d(u) + c(u) we conclude

that the dominant singularity of G(u) is located at u = γ. The proposition finally follows
by integration of the Puiseux’s series (by applying [80, Theorem VI.9]) in order to get the
singular expansion of G(u) and by the application of the transfer theorem (Theorem 2.13)

Let us now study gk. For this purpose, we refine the system of equations (6.28) in the
following way: we denote by G(u) the EGF associated with connected weighted cubic SP
multigraphs carrying a distinguished spanning tree, where, as before, u marks the excess. We

study decompositions for 6udG(u)
du , which correspond to the EGF of connected weighted cubic

SP multigraphs carrying a distinguished spanning tree where an edge is distinguished and
oriented.

In the following expressions we use the subindex 0 to denote that the distinguished and
oriented edge belongs to the spanning tree, while we use the subindex 1 to denote the oppo-
site. Using this convention, we write d0(u), b0(u), s0(u) and p0(u) for the cases where this
distinguished edge is a bridge, a loop, defines a series construction or a parallel construction,
respectively, in such a way that the distinguished edge belongs to the spanning tree of the
initial structure. Analogue definitions are done for d1(u), b1(u), s1(u) and p1(u). The EGFs
c0(u) and c1(u) are associated with auxiliary families.

Using the same arguments used to obtain the system of equations (6.28) yields the fol-
lowing, more involved system of equations:

6u
dG(u)

du
= d0(u) + c0(u) + d1(u) + c1(u),

c0(u) = b0(u) + s0(u) + p0(u), (6.30)

c1(u) = b1(u) + s1(u) + p1(u),

b0(u) = 0,

b1(u) =
u

2

(
d0(u) + c0(u)

)
+ u
(
d1(u) + c1(u)

)
+
u

2
,

d0(u) =
b1(u)2

u
,

d1(u) = 0,

s0(u) =
(
c1(u)− s1(u)

)
c1(u) +

(
c0(u)− s0(u)

)
c1(u) +

(
c1(u)− s1(u)

)
c0(u),

s1(u) =
(
c1(u)− s1(u)

)
c1(u),

p0(u) =
u

2
+ uc0(u) + 2uc1(u) +

1

2
uc0(u)2,

p1(u) = u+ uc0(u) + 3uc1(u) + uc0(u)c1(u) + 2uc1(u)2.
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We now analyse this system of equations similarly to what we did when studying Sys-
tem (6.28):

Proposition 6.17. The number gk = [uk]G(u) of weighted connected cubic SP multigraphs
carrying a spanning tree and with excess equal to k has the following asymptotic estimate:

gk = ck−5/2γ−k
(
1 + o(1)

)
,

where γ ≈ 0.06709 and c ≈ 0.06634.

Proof. The arguments are exactly the same as in Proposition 6.16. From the system of
equations (6.30) we get the following algebraic equation satisfied by c0(u):

0 = 121u3 + 2304u+ 7656u2

+(51696u− 26620u2 − 968u3 − 4608)c0(u)

+(−384 + 34532u+ 30888u2 + 3388u3)c0(u)2

+(256− 1392u− 10516u2 − 6776u3)c0(u)3

+(32− 1608u− 2376u2 + 8470u3)c0(u)4

+(−352u− 132u2 − 6776u3)c0(u)5

+(4u+ 1144u2 + 3388u3)c0(u)6

+(−44u2 − 968u3)c0(u)7 + 121u3c0(u)8.

The singular point is located at γ ≈ 0.06709, and the Puiseux’s expansion of c0(u) around
u = γ is of the form

c0(u) = c0,0 + c0,1W +O(W
2
),

where W =
√

1− u/γ, c0,0 ≈ 0.29896, and c0,1 ≈ −0.47032. We can then directly obtain the
Puiseux’s expansion of c1(u), b1(u) and d1(u) from the expansion of c0(u). By integrating the
equation 6u d

duG(u) = c0(u)+c1(u)+d0(u) and applying the transfer theorem (Theorem 2.13)
we get the estimate for gk as it is claimed.

6.3.3 Expected number of spanning trees

Joining the results from the previous two subsections, we can now complete the proof of
Theorem 6.12.

Proof of Theorem 6.12. Let Cn,k denote the class of all connected SP graphs on n vertices
with excess k and let s(G) denote the number of spanning trees of a graph G. Due to
Proposition 6.15 and Equation (6.27), the value E[Xn,k] is

E[Xn,k] =
∑

G∈Cn,k
s(G)P[G] =

∑
G∈Cn,k s(G)

|Cn,k|
=

[xn]Ck(x)

[xn]Ck(x)

=
gk

1
22k+1/2

n2k−1/2

Γ(2k+1/2)e
n

gk
1

23k/2
n3k/2−1

Γ(3k/2) e
n

(1 + o(1)) =
gk
gk

Γ(3k/2)

Γ(2k + 1/2)

(n
2

) k+1
2

(1 + o(1)),

where, by using now the estimates obtained for gk and gk in Propositions 6.16 and 6.17,
the function c̃(k) satisfies the following equation if k is large enough:

c̃(k) = c̃γ̃−k
(
1 + o(1)

)
, (6.31)

with c̃ ≈ 0.90959 and γ̃−1 ≈ 2.60560.
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6.4 Concluding remarks

In this chapter we have exploited the use of generating functions joint with analytic combina-
torics to get exact expressions for the counting generating functions associated with connected
SP graphs as well as with 2-connected SP graphs, 2-trees, and SP graphs with fixed excess in
all cases with a distinguished spanning tree. As a consequence, we were able to get asymptotic
estimates for the expected number of spanning trees in an object chosen uniformly at random
from the family under study.

These techniques could be exploited in related families of graphs, as for instance the family
of k-trees with k ≥ 3. Even though the analytic techniques that we used allow access to higher
moments, unfortunately, they do not provide a technique to determine the limit law of the
number of spanning trees in SP graphs.

With the techniques used in this chapter one can also determine, with a bit more effort,
the counting generating function of connected SP graphs carrying a distinguished spanning
forest with a given number of components. From this, one can derive the expected number
of components of a random spanning forest in a random connected SP graph. In particular,
the main difficulty in this situation is that for encoding networks carrying a distinguished
spanning forest, one needs more auxiliary classes than in the restricted case of spanning
trees. Roughly speaking, one needs to define classes of SP networks that carry a spanning
forest and such that either the two poles are contained in the same component or in different
components.

The analysis of the generating function associated with networks as well as determining
and analysing the generating functions associated with 2-connected and connected SP graphs
carrying a spanning forest can be done similarly to the case of spanning trees. It is worth
mentioning that Bousquet-Mélou and Courtiel [43] recently investigated the enumeration of
regular planar maps carrying a distinguished spanning forest.

Finally, we would like to discuss similar results on planar graphs. Following the lines
of [84], the tools developed in this chapter can be extended to graphs defined by 3-connected
components. When the family under consideration is defined by a finite number of 3-connected
graphs, the techniques used so far can be exploited to get analogue results. This would include,
for instance, the family of graphs Ex(W4) or Ex(W5), where W4 and W5 are the wheel graphs
with 4 and 5 external vertices, respectively (see [84]).

An intriguing problem is to extend the results of SP graphs to the random planar graph
model. In this situation, the family of 3-connected components is infinite, and one requires
additional results arising from map enumeration in order to control counting formulas for
T-bricks. Although the number of rooted unlabelled maps carrying a spanning tree is a well-
known fact (see e.g. [132]), to the best of our knowledge nothing is known when dealing with
3-connected planar graphs. The problem of getting the expected number of spanning trees
in a planar graph chosen uniformly at random is an interesting problem to be considered in
future investigations.
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[8] P. Allen, J. Böttcher, J. Ehrenmüller, and A. Taraz. Local resilience of spanning sub-
grahs in sparse random graphs. Electronic Notes in Discrete Mathematics, 49:513–421,
2015.
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[29] O. Bernardi and J. Rué. Enumerating simplicial decompositions of surfaces with bound-
aries. European Journal of Combinatorics, 33(3):302–325, 2012.

[30] N. Bernasconi, K. Panagiotou, and A. Steger. The degree sequence of random graphs
from subcritical classes. Combinatorics, Probability and Computing, 18(5):647–681,
2009.

[31] N. Biggs. Algebraic Graph Theory. Cambridge University Press, 2nd edition, 1993.

[32] Y. Bilu and N. Linial. Lifts, discrepancy and nearly optimal spectral gap. Combinator-
ica, 26(5):495–519, 2006.
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[75] J. Ehrenmüller and J. Rué. Spanning trees in random series-parallel graphs. Advances
in Applied Mathematics, 75:18–55, 2016.
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