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Abstract
We study a supply chain consisting of production-inventory systems at several locations
which are coupled by a common supplier. Demand of customers arrives at each production
system according to a Poisson process and is lost if the local inventory is depleted (“lost
sales”). To satisfy a customer’s demand a server at the production system needs raw material
from the associated local inventory. The supplier manufactures raw material to replenish
the local inventories, which are controlled by a continuous review base stock policy. The
routing of items depends on the on-hand inventory at the locations with the aim to obtain
“load balancing”. We show that the stationary distribution has a product form of the marginal
distributions of the production subsystem and the inventory-replenishment subsystem. For
the marginal distribution of the production subsystem we derive an explicit solution and for
the marginal distribution of the inventory-replenishment subsystem we deduce an explicit
solution or a recursive algorithm for some special cases.

Keywords Queueing networks · Inventory control · Base stock policy · Product-form
steady state

Mathematics Subject Classification 60K25 · 68M20 · 90B22 · 90B05 · 90B06

1 Introduction

We consider a supply chain consisting of production-inventory systems at several locations
which are coupled by a common supplier. Demand of customers arrives at each production
system and is lost if the local inventory is depleted. To satisfy a customer’s demand a server
at the production system takes exactly one unit of raw material from the associated local
inventory. The supplier manufactures raw material to replenish the local inventories, which
are controlled by a continuous review base stock policy. We focus on the research of the
network’s behaviour, where the supplier consists only of one machine (single server) and
replenishes the inventories at all locations. The items of raw material are indistinguishable
(exchangeable). The routing of items depends on the on-hand inventory at the locations with
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the aim to obtain “load balancing”. More precisely, we consider strict priorities, i.e. the
finished item of raw material is sent to the location(s) with the highest difference between
the on-hand inventory and the capacity of the inventory.

Althoughwe describe our system in terms of production andmanufacturing, there are other
applications where our model can be used, e.g. distributed retail systems where customers’
demand has to be satisfied from the local inventories and delivering the goods to the customers
needs a non-negligible amount of time; the replenishment for the local retail stations is
provided by a production network. Another setting is a distributed set of repair stations
where spare parts are needed to repair the brought-in itemswhich are held in local inventories.
Production of the needed spare parts and sending them to the repair stations is again due to
a production network.

We use queueing theory and inventory theory to analyse the above-described production-
inventory-replenishment system. Queueing theory and inventory theory are fields of
Operations Research with different methodologies to optimise e.g. production processes
and inventory control. In classical Operations Research, queueing theory and inventory the-
ory are often considered as disjoint areas of research. On the other side, the emergence of
complex supply chains calls for integrated queueing-inventory models, where, as usual, the
production systems are modelled by queueing systems and the inventories are modelled by
classical inventories with replenishment policies. These integrated queueing-inventory mod-
els are the focus of our present research. In particular, we develop a Markovian stochastic
model of the production-inventory-replenishment system.

We are able to prove that the stationary distribution has a product form. This means
that the steady states of the production network and the inventory-replenishment complex
decouple asymptotically and the equilibrium for the production subsystem decomposes in
true independent coordinates. This product form structure of the joint stationary distribution
is often characterised as the global process being “separable”. Separability is an important
(but rather rare) property of complex systems.

The paper is organised as follows. In Sect. 2, we describe the related literature. In Sect. 3,
we introduce our integrated model for production and inventory management. To model our
production-inventory-replenishment system as a queueing network, we make a number of
simplifying assumptions. This enables us to compute the stationary distribution and to show
in Sect. 4 that it is of product form. In Sect. 5 we show some structural properties of the
stationary inventory-replenishment subsystem.

2 Related literature and own contributions

Relevant for our research are queueing theory and inventory control, in particular integrated
queueing-inventory models.

Literature on queueing theory is overwhelming, so we point only to the most relevant
sources for our present investigation. Our production systems are classical M/M/1/∞
queueing systems which constitute a network of parallel queues connected to the central
supplier queue, cf. Kelly (1979) and Chao et al. (1999) for general networks of queues.

Special queueing networks, which model multi-station maintenance and repair systems,
are investigated by Ravid et al. (2013) and Daduna (1990) and references therein. In these
systems, circulating items are “exchangeable”. This feature will occur in our model as well.

Literature on inventory theory is, similar to that on queueing theory, overwhelming, so
we only point to some references closely related to our investigations. There are two extreme
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cases of arriving customers’ reactions in the situation that inventory is depleted when demand
arrives [cf. Silver et al. (1998)]: Either backordering, which means that customers are willing
to wait for their demands to be fulfilled, or lost sales, which means that demand is lost when
no inventory is available on hand.

In classical inventory theory it is common to assume that excess demand is backordered
(Silver et al., 1998; Zipkin 2000, p. 40; Axsäter 2000). However, studies by Gruen et al.
(2002) and Verhoef and Sloot (2006) analyse customers’ behaviour in practice and show that
in many retail settings most of the original demand can be considered to be lost in case of a
stockout.

For an overview of the literature on systems with lost sales we refer to Bijvank and Vis
(2011). They present a classification scheme for the replenishment policiesmost often applied
in literature and practice, and they review the proposed replenishment policies, including the
base stock policy. According to Donselaar (2013) “Their literature review confirms that there
are only a limited number of papers dealing with lost sales systems and the vast majority of
these papers make simplifying assumptions to make them analytically tractable.”

Rubio and Wein (1996) and Zazanis (1994) investigated classical single item and multi-
item inventory systems. Similar to our approach they usedmethods andmodels fromqueueing
theory to evaluate the performance of base stock control policies in complex situations.

Reed and Zhang (2017) study a single item inventory system under a base stock policy
with backordering and a supplier who consists of amulti-server production system. Their aim
is to minimise a combination of capacity, inventory and backordering costs. They develop
a square-root rule for the joint decision. Furthermore, they justify the rule analytically in a
many-server queue asymptotic framework.

Becausewe consider queueing-inventory systemswhere inventories are controlled by base
stock policies, wemention here that Tempelmeier (2005, p. 84) argued that base stock control
is economically reasonable if the order quantity is limited because of technical reasons.

The base stock policy is “(...) more suitable for item with low demand, including the case
of most spare parts” (Rego & Mesquita, 2011, p. 661).

Morse (1958, p. 139) investigated (pure) inventory systems that operate under a base
stock policy. He gives a very simple example where the concept “re-order for each item sold”
is useful: Items in inventory are bulky, and expensive (automobiles or TV sets1). He uses
queueing theory to model the inventory systems, analogously to Reed and Zhang (2017), etc.

Literature on integrated queueing-inventory models (i.e. queueing theory in combination
with inventory theory) is also overwhelming. For a recent review we refer to Krishnamoorthy
et al. (2021).

In this paper, we analyse an extension of the complex supply chain from Otten et al.
(2016), where routing of items depends on the on-hand inventory at the locations with the
aim to obtain “load balancing”. It can be differed between two load balancing policies. In
Otten (2017, Section 3.4) we consider weak priorities, i.e. the finished item of raw material
is sent with greater probability to the location with higher difference between the on-hand
inventory and the capacity of the inventory. In this paper, we focus on strict priorities, i.e. the
finished item of raw material is sent to the location(s) with the highest difference between
the on-hand inventory and the capacity of the inventory. Therefore, we mention here some

Literature about load balancing policies with strict priorities: The research of such
systems is motivated by state-dependent routing/branching of customers. “The purpose
of introducing flexible state-dependent routing strategies is to optimally utilize network
resources and to minimise network delay and response times” (Daduna, 1987, p. 1) and

1 The paper is from 1958.
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“Unfortunately it turned out that introducing state-dependent routing into product form net-
works usually destroys the product-form of the steady state probabilities” (Daduna, 1987,
p. 1). Product form solutions under state-dependent routing are, for example, found in Pittel
(1979), Hordijk and Dijk (1984) and Schassberger (1984).

Several other stock allocation policies can, for example, be found in the article of Abouee-
Mehrizi et al. (2014). They consider a two-echelon inventory system with a capacitated
centralized production facility and several distribution centres.Wewill not go into any greater
detail in this allocation policies.

Daduna (1985, p. 624) and Towsley (1980, pp. 327f.) argued that an optimal rout-
ing/branchingpolicy for systemswith identical peripheral processors is by intuitive reasoning:
“Customers enter the peripheral processor with the shortest queue”. This is equivalent to our
strict priorities for load balancing policy.

Chow and Kohler (1977, 1979) analyse the performance of two-processor distributed
computer systems under several dynamic load balancing policies. They compare the perfor-
mance and their results indicate that a simple load balancing policy can significantly improve
the performance (turnaround time) of the system. In (Chow & Kohler, 1977) they analyse
the performance of homogeneous (i.e. identical) two-processor distributed computer sys-
tems under several dynamic load balancing policies. Their analysis is based on the recursive
solution technique, which was first suggested by Herzog et al. (1975) for queueing prob-
lems. Their strategy “join the shorter queue without channel transfer” in Chow and Kohler’s
Model B (Chow & Kohler, 1977, pp. 42f.) is equivalent to our strict load balancing policy.
Additionally, they allow a channel transfer in Model C (Chow & Kohler, 1977, pp. 42f.).

Flatto and McKean (1977) study also Chow and Kohler’s Model B and derive by the
generating function approach a complicated closed form solution (cf. Flatto&McKean, 1977,
Section 3, p. 261), where the interarrival times of customers are exponentially distributed
with rate 1.

Chow and Kohler (1979) present a generalization of the recursive solution technique.
They apply the method to non-homogeneous (= heterogeneous) two-processor systems with
special properties in Chow and Kohler (1979, Section IV, pp. 358f.) and present a sample
system using the algorithm in Chow and Kohler (1979, Appendix, pp. 360f.). They mention
that the generalization of recursive solution “(...) technique for three or more processors does
not appear to be straightforward” (Chow & Kohler, 1979, p. 359).

Our main contributions are the following: We extend the network of queueing-inventory
systems fromOtten et al. (2016) by load balancing. For the systemwith strict priorities for load
balancing policy we develop aMarkov process.We prove that the stationary distribution has a
product form of the marginal distributions of the production subsystem and of the inventory-
replenishment subsystem. We derive an explicit solution for the marginal distribution of
the production subsystem. Furthermore, for the special case with base stock levels equal
to one we have derived an explicit solution for the marginal distribution of the inventory-
replenishment subsystem. For systems with base stock levels greater than one the marginal
distribution of the inventory-replenishment subsystem with two locations can be obtained by
a recursive method which is described by an algorithm. On the other hand, our work is an
extension of the investigations of Chow and Kohler (1977, 1979): Their study is limited to
two processors (= our inventories without production systems). For the heterogeneous case,
our load balancing policy is slightly different from that of Chow and Kohler (1979, Section
IV, pp. 358f.) (for more details see Remark 6). Therefore, we construct a new algorithm.
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Notations and conventions:

• N := {1, 2, 3, . . .}, N0 := {0} ∪ N.
• The vector 0 is a row vector of appropriate size with all entries equal to 0. The vector

e is a column vector of appropriate size with all entries equal to 1. The vector ei =
(0, . . . , 0, 1

︸︷︷︸

i−th element

, 0, . . . , 0) is a vector of appropriate dimension.

• The notation ⊂ between sets means “subset or equal” and � means “proper subset”. For
a set A we denote by |A| the number of elements in A.

• 1{expression} is the indicator function which is 1 if expression is true and 0 otherwise.
• Empty sums are 0, and empty products are 1.
• Throughout this article it is assumed that all random variables are defined on a

common probability space (�,F, P). Furthermore, by Markov process we mean time-
homogeneous continuous-time strong Markov process with discrete state space (=
Markov jump process). Without further mentioning all Markov processes are assumed
to be regular and have cadlag paths, i.e. each path of a process is right-continuous and
has left limits everywhere. We call a Markov process regular if it is non-explosive (i.e.
the sequence of jump times of the process diverges almost surely), its transition intensity
matrix is conservative (i.e. row sums are 0) and stable (i.e. all diagonal elements of the
transition intensity matrix are finite).

3 Description of the general model

The supply chain of interest is depicted inFig. 1.Wehave a set of locations J := {1, 2, . . . , J },
J > 1. Each of the locations consists of a production system with an attached inventory.
The inventories are replenished by a single central supplier, which is referred to as worksta-
tion J + 1 and manufactures raw material for all locations. The items of raw material are
indistinguishable (exchangeable).

Facilities in the supply chain. Each production system j ∈ J consists of a single server
(machine) with infinite waiting room that serves customers on a make-to-order basis under a
FCFS regime. Customers arrive one by one at the production system j according to a Poisson
process with rate λ j > 0 and require service. To satisfy a customer’s demand the production
system needs exactly one item of raw material, which is taken from the associated local
inventory. When a new customer arrives at a location while the previous customers’ order is
not finished, this customer will wait. If the inventory is depleted at location j , the customers
who are already waiting in line will wait, but new arriving customers at this location will
decide not to join the queue and are lost (“local lost sales”).

The service requests at the locations are exponentially distributed with mean 1. All service
requests constitute an independent family of random variables which are independent of the
arrival streams. The service at location j ∈ J is provided with local queue-length-dependent
intensity. If there are n j > 0 customers present at location j , either waiting or in service (if
any), and if the inventory is not depleted, the service intensity is μ j (n j ) > 0. If the server
is ready to serve a customer who is at the head of the line, and the inventory is not depleted,
the service immediately starts. Otherwise, the service starts at the instant of time when the
next replenishment arrives at the local inventory.

The inventory at location j ∈ J is controlled by prescribing a local base stock level
b j ≥ 1, which is the maximal size of the inventory there, we denote b := (

b j : j ∈ J
)

.
The central supplier (which is referred to as workstation J + 1) consists of a single server

(machine) and awaiting roomunder FCFS regime.Atmost
∑

j∈J b j−1 replenishment orders
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Fig. 1 Supply chain with base stock policies and load balancing policies

are waiting at the central supplier. Service times at the central supplier are exponentially
distributed with parameter ν > 0.

Routing in the supply chain.A served customer departs from the system immediately after
service and the associated consumed rawmaterial is removed from the inventory and an order
of one item is placed at the central supplier at this time instant (“base stock policy”).

A finished item of raw material departs from the central supplier immediately and is sent
with probability p j (k), independent of the network’s history, to location j , j ∈ J , if the state
of the inventory-replenishment subsystem is k := (k1, . . . , kJ , kJ+1), i.e. k j is the size of
the inventory at location j ∈ J and kJ+1 the number of replenishment orders at the central
supplier. We consider the following load balancing policy with strict priorities: The finished
item of raw material is sent to location j ∈ J with probability

p j (k) =

⎧

⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎩

1, if { j} = argmax
i∈J

(bi − ki ),

1
|argmax

i∈J

(bi−ki )| < 1, if { j} � argmax
i∈J

(bi − ki ),

0, if j /∈ argmax
i∈J

(bi − ki ),

i.e. to the location(s) with the highest difference between the on-hand inventory and the
capacity of the inventory (= base stock level), if the inventory is not full at this/these loca-
tion(s) (this means that the on-hand inventory level at this/these location(s) is lower than the
base stock level). The routing probabilities out of the central supplier must sum to one if
there is at least one order at the central supplier.

It is assumed that transmission times for orders are negligible and set to zero and that
transportation times between the central supplier and the local inventories are negligible.
The usual independence assumptions are assumed to hold as well.
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To obtain a Markovian process description of the integrated queueing-inventory system,
we denote by X j (t) the number of customers present at location j ∈ J at time t ≥ 0, either
waiting or in service (queue length). By Y j (t) we denote the size of the inventory at location
j ∈ J at time t ≥ 0. ByWJ+1(t)we denote the number of replenishment orders at the central
supplier at time t ≥ 0, either waiting or in service (queue length).

We define the joint queueing-inventory process of this system by

Z = ((X1(t), . . . , X J (t), Y1(t), . . . , YJ (t),WJ+1(t)) : t ≥ 0) .

Then, due to the usual independence and memoryless assumptions Z is a homogeneous
Markov process, which we assume to be irreducible and regular. The state space of Z is
E = {

(n,k) : n ∈ N
J
0 , k ∈ K

}

with

K :=
{

(k1, . . . , kJ , kJ+1)|0 ≤ k j ≤ b j , j = 1, . . . , J , kJ+1 =
J

∑

j=1

(b j − k j )
}

⊂ N
J+1
0 .

Note the redundancy in the state space: WJ+1(t) = ∑

j∈J b j − ∑

j∈J Y j (t). We prefer to
carry all information explicitly with because the dynamics of the system are easier visible.

Discussion of themodelling assumptionsWe have imposed several simplifying assumptions
on the production-inventory-replenishment system to obtain explicit and simple-to-calculate
performance metrics of the system, which give insights into its long-time and stationary
behaviour. This enables a parametric and sensitivity analysis that is easy to perform.

First, the assumption of exponentially distributed inter-arrival and service times are stan-
dard in the literature and are the best first-order approximations. The locally state-dependent
service rates are also common and give quite a bit of flexibility. The lead time is composed
of the waiting time plus the production time at the central supplier. Therefore, it is more
complex than exponential, constant or even zero lead times (which are often assumed in
standard inventory literature). Zero lead times in our systems would result in almost trivial
extensions of the queueing systems.

Second, we assume that the local base stock levels are positive (i.e. b j ≥ 1 at location j).
This assumption can be made without loss of generality. Otherwise, all customers at location
j would be lost, which is the same as excluding location j from the production-inventory-
replenishment system.

Third, the assumption of zero transportation times can be removed by inserting special
(virtual) M/G/∞ workstations into the network.

4 Limiting and stationary behaviour

The queueing-inventory process Z has an infinitesimal generator Q = (q(z; z̃) : z, z̃ ∈ E)

with the following transition rates for (n,k) ∈ E :

q ((n,k); (n + ei ,k)) = λi · 1{ki>0}, i ∈ J ,

q ((n,k); (n − ei ,k − ei + eJ+1)) = μi (ni ) · 1{ni>0} · 1{ki>0}, i ∈ J ,

q ((n,k); (n,k + ei − eJ+1)) = ν · pi (k) · 1{ki<bi }, i ∈ J .

Note that kJ+1 > 0 holds if ki < bi for some i ∈ J .

123



Annals of Operations Research

Furthermore, q(z; z̃) = 0 for any other pair z �= z̃, and

q (z; z) = −
∑

z̃∈E,
z �=z̃

q (z; z̃) ∀z ∈ E .

Proposition 1 There exists a strictly positive measure ˜θ = (˜θ(k) : k ∈ K ), which will be
provided below, such that the measure x := (x (n,k) : (n,k) ∈ E) with

x (n,k) = ˜ξ(n) · ˜θ (k) , (1)

where

˜ξ(n) =
∏

j∈J

˜ξ j (n j ), ˜ξ j (n j ) =
n j
∏

�=1

λ j

μ j (�)
, n j ∈ N0, j ∈ J , (2)

solves the global balance equations x ·Q = 0 and is therefore stationary for Z. Consequently,
x is strictly positive.

Proof The global balance equations x · Q = 0 of the stochastic queueing-inventory process
Z are given for (n,k) ∈ E by

x (n,k) ·
(

∑

i∈J

λi · 1{ki>0} +
∑

i∈J

μi (ni ) · 1{ni>0} · 1{ki>0} +
∑

i∈J

ν · pi (k) · 1{ki<bi }
)

=
∑

i∈J

x (n − ei ,k) · λi · 1{ni>0} · 1{ki>0}

+
∑

i∈J

x (n + ei ,k + ei − eJ+1) · μi (ni + 1) · 1{ki<bi }

+
∑

i∈J

x (n,k − ei + eJ+1) · ν · pi (k − ei + eJ+1) · 1{ki>0}.

It has to be shown that the stationarymeasure fromProposition 1 satisfies these global balance
equations.

Substitution of (1) and (2) into the global balance equations directly leads to
⎛

⎝

∏

j∈J

˜ξ j (n j )

⎞

⎠ · ˜θ (k)

·
(

∑

i∈J

λi · 1{ki>0} +
∑

i∈J

μi (ni ) · 1{ni>0} · 1{ki>0} +
∑

i∈J

ν · pi · 1{ki<bi }
)

=
∑

i∈J

⎛

⎝

∏

j∈J\{i}
˜ξ j (n j )

⎞

⎠˜ξi (ni − 1) · ˜θ (k) · λi · 1{ni>0} · 1{ki>0}

+
∑

i∈J

⎛

⎝

∏

j∈J\{i}
˜ξ j (n j )

⎞

⎠ ·˜ξi (ni + 1) · ˜θ (k + ei − eJ+1) · μi (ni + 1) · 1{ki<bi }

+
∑

i∈J

⎛

⎝

∏

j∈J

˜ξ j (n j )

⎞

⎠ · ˜θ (k − ei + eJ+1) · ν · pi · 1{ki>0}.

123



Annals of Operations Research

By substitution of (2) we obtain
⎛

⎝

∏

j∈J

˜ξ j (n j )

⎞

⎠ · ˜θ (k)

·
(

∑

i∈J

λi · 1{ki>0} +
∑

i∈J

μi (ni ) · 1{ni>0} · 1{ki>0} +
∑

i∈J

ν · pi · 1{ki<bi }
)

=
∑

i∈J

⎛

⎝

∏

j∈J

˜ξ j (n j )

⎞

⎠ · ˜θ (k) · μi (ni ) · 1{ni>0} · 1{ki>0}

+
∑

i∈J

⎛

⎝

∏

j∈J

˜ξ j (n j )

⎞

⎠ · ˜θ (k + ei − eJ+1) · λi · 1{ki<bi }

+
∑

i∈J

⎛

⎝

∏

j∈J

˜ξ j (n j )

⎞

⎠ · ˜θ (k − ei + eJ+1) · ν · pi · 1{ki>0}.

Cancelling
(
∏

j∈J
˜ξ j (n j )

)

and the sums with the termsμi (ni ) ·1{ni>0} ·1{ki>0} on both sides
of the equation leads to

˜θ (k)
(

∑

i∈J

λi · 1{ki>0} +
∑

i∈J

ν · pi (k) · 1{ki<bi }
)

=
∑

i∈J

˜θ (k + ei − eJ+1) · λi · 1{ki<bi }

+
∑

i∈J

˜θ (k − ei + eJ+1) · ν · pi (k − ei + eJ+1) · 1{ki>0}. (3)

An inspection of the system (3) reveals that it is a “generator equation”, i.e. the global
balance equation ˜θ · Qred = 0 for a suitably defined ergodic Markov process on state space
K with “reduced generator” Qred = (

qred(k;˜k) : k,˜k ∈ K
)

with the following transition
rates for k ∈ K :

qred (k;k − ei + eJ+1) = λi · 1{ki>0}, i ∈ J ,

qred (k;k + ei − eJ+1) = ν · pi (k) · 1{ki<bi }, i ∈ J .

The Markov process generated by Qred is irreducible on K and therefore (3) has a solution
which is unique up to a multiplicative constant, which yields˜θ . 
�

Remark 1 In Sect. 4.1.1, the marginal measure ˜θ is derived in explicit form for the special
case with base stock levels b j = 1, j ∈ J .

For systems with two locations and base stock levels greater than one (b j > 1, j ∈ J ),
the marginal measure ˜θ can be obtained by a recursive method which is described by the
algorithm given in Sect. 4.1.2.

Recall that the system is irreducible and regular. Therefore, if Z has a stationary and limiting
distribution, this is uniquely defined.
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Definition 1 For the queueing-inventory process Z on state space E , whose limiting distri-
bution exists, we define

π := (π (n,k) : (n,k) ∈ E) , π (n,k) := lim
t→∞ P (Z(t) = (n,k))

and the appropriate marginal distributions

ξ :=
(

ξ (n) : n ∈ N
J
0

)

, ξ (n) := lim
t→∞ P ((X1(t), . . . , X J (t)) = n) ,

θ := (θ (k) : k ∈ K ) , θ (k) := lim
t→∞ P ((Y1(t), . . . , YJ (t),WJ+1(t)) = k) .

Theorem 2 The queueing-inventory process Z is ergodic if and only if for j ∈ J

∑

n j∈N0

n j
∏

�=1

λ j

μ j (�)
< ∞.

If Z is ergodic, then its unique limiting and stationary distribution is

π (n,k) = ξ(n) · θ (k) , (4)

with

ξ(n) =
∏

j∈J

ξ j (n j ), ξ j (n j ) = C−1
j

n j
∏

�=1

λ j

μ j (�)
, n j ∈ N0, j ∈ J , (5)

and normalisation constants

C j =
∑

n j∈N0

n j
∏

�=1

λ j

μ j (�)

and θ is the probabilistic solution of (3).

Proof Z is ergodic if and only if the strictly positive measure x of the global balance equation
x · Q = 0 from Proposition 1 can be normalised (i.e.

∑

n∈N0

∑

k∈K x(n,k) < ∞). Because
of Proposition 1 it holds

∑

n∈N0

∑

k∈K
x(n,k) =

∑

n∈N0

˜ξ(n) ·
∑

k∈K
˜θ (k) =

⎛

⎝

∏

j∈J

∑

n j∈N0

n j
∏

�=1

λ j

μ j (�)

⎞

⎠ ·
∑

k∈K
˜θ (k) .

Hence, since K is finite, the measure x from Proposition 1 can be normalised if and only if
∑

n j∈N0

∏n j
�=1

λ j
μ j (�)

< ∞ for all j ∈ J .
Consequently, if the process is ergodic, the limiting and stationary distribution π is given

by

π(n,k) = x(n,k)
∑

n∈N0

∑

k∈K x(n,k)
,

where x(n,k) is given in Proposition 1. 
�
Remark 2 The expression (4) shows that the two-component production-inventory-
replenishment system is separable, the steady states of the production network and the
inventory-replenishment complex decouple asymptotically.
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Representation (5) shows that the equilibrium for the production subsystem decomposes
in true independent coordinates. A product structure of the stationary distribution as

ξ(n) =
∏

j∈J

ξ j (n j ) =
∏

j∈J

C−1
j

n j
∏

�=1

λ j

μ j (�)

is commonly found for standard Jackson networks (cf. Jackson (1957)) and their relatives. In
Jackson networks servers are “non-idling”, i.e. they are always busy as long as customers are
present at the respective node. In our production network, however, servers may be idle while
there are customers waiting because a replenishment needs to arrive first. Consequently, the
product form (4) has been unexpected to us.

Our production-inventory-replenishment system can be considered as a “Jackson network
in a random environment” in Krenzler et al. (2016, Section 4).We can interpret the inventory-
replenishment subsystem, which contributes via θ to Theorem 2, as a “random environment”
for the production network of nodes J , which is a Jackson network of parallel servers. Taking
into account the results of Krenzler et al. (2016, Theorem4.1)we conclude from the hindsight
that decoupling of the queueing process (X1, . . . , X J ) and the process (Y1, . . . , YJ ,WJ+1),
i.e. the formula (4), is a consequence of that Theorem 4.1.

Our direct proof of Proposition 1 is much shorter than embedding the present model into
the general framework of Krenzler et al. (2016).

Structural properties of the integrated system The investigations in this section rely on the
fact that the product form of the stationary distribution (= separability) makes structures
easily visible that are hard to detect by simulations or by direct numerical investigations. As
a byproduct we demonstrate the power of product form calculus.
Ergodicity: As shown in Theorem 2, ergodicity is determined by

∑

n j∈N0

∏n j
�=1

λ j
μ j (�)

< ∞,

j ∈ J , because K is finite. Hence, ergodicity is determined by the parameters of the isolated
queueing system without the inventory system at the locations. For instance, if μ j (�) =
μ j ,∀�, then λ j < μ j ,∀ j , is the correct condition for stabilizing the entire system.

Noteworthy is that the extra idle times of the servers at the production systems do not
destroy ergodicity due to the necessary replenishments. The reason behind this is that the
local lost sales at the individual servers at these locations automatically balance a possible
bottleneck behaviour of the central supplier.
Insensitivity and robustness: Sensitivity analysis is an important topic in classical inventory
theory and is often hard to perform. In our model the stationary distribution π (n,k) =
(
∏

j∈J ξ j (n j )
)

· θ (k) reveals strong insensitivity properties of the system which make

sensitivity analysis amenable: The steady state behaviour of the subnetwork consisting of
inventories and the central supplier does not change when the service rates at the locations
are changed as long as the global system remains ergodic. Therefore θ is robust against
the estimation errors in determining the μ j (·). Vice versa, the distribution ξ j (n j ) is robust
against changes in the inventory-replenishment network as long as the demand intensity and
the service rates are maintained.

Remark 3 A cost analysis can be performed as for the model without load balancing in Otten
et al. (2016, pp. 11f.). Note a corrected version of the definition of the cost function can be
found in Otten (2017, Section 2.5, pp. 25f.).
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4.1 Calculation of ˜�

4.1.1 Special case: bj = 1, j ∈ J

In this section, we will solve the global balance equation ˜θ · Qred = 0 for the special case
with base stock levels b j = 1, j ∈ J . In this special case, our model with strict priorities is
identical to the model with weak priorities in Otten (2017, Section 3.4), where the finished
item of raw material is sent with a greater probability to the location with higher difference
between the on-hand inventory and the capacity of the inventory. For the sake of completeness
we present the proof here.

We recall the notation for the inventory-replenishment subsystem

˜θ(

inventories
at locations

︷ ︸︸ ︷

k1, k2, . . . , kJ ,

supplier
︷︸︸︷

kJ+1 ).

Furthermore, in this special case it holds pi (k) = 1
J−∑

j∈J k j
if ki = 0, i ∈ J .

Proposition 3 The strictly positive measure ˜θ = (

˜θ(k) : k ∈ K
)

of the inventory-
replenishment subsystem with base stock levels b1 = · · · = bJ = 1 is given by

˜θ(k) = ˜θ(k1, k2, . . . , kJ , kJ+1) =
⎛

⎝

(
∑

j∈J k j )−1
∏

�=0

1

J − �

⎞

⎠ ·
⎛

⎝

∏

j∈J

(

1

λ j

)k j
⎞

⎠ ·
(

1

ν

)kJ+1

(6)

Remark 4 As we have mentioned before (3) has a solution which is unique up to a multi-
plicative constant, which yields˜θ . In Otten (2017, Proposition 3.3.6, p. 50) another stationary
measure˜θ1 is presented which differs from our stationary measure up to a multiplicative con-

stant, i.e. ˜θ = ( 1
ν

)J · ˜θ1.
Proof It has to be shown that the stationary measure (6) satisfies the global balance equations
˜θ · Qred = 0, which are given for k ∈ K by

˜θ (k) ·
(

∑

i∈J

λi · 1{ki=1} +
∑

i∈J

ν · pi (k) · 1{ki=0}
)

=
∑

i∈J

˜θ (k + ei − eJ+1) · λi · 1{ki=0}

+
∑

i∈J

˜θ (k − ei + eJ+1) · ν · pi (k − ei + eJ+1) · 1{ki=1}

⇔ ˜θ (k) ·
(

∑

i∈J

λi · 1{ki=1} +
∑

i∈J

ν · pi (k) · 1{ki=0}
)

=
∑

i∈J

⎛

⎝

(
∑

j∈J k j )−1
∏

�=0

1

J − �

⎞

⎠ ·
⎛

⎝

∏

j∈J

(

1

λ j

)k j
⎞

⎠ ·
(

1

ν

)kJ+1

︸ ︷︷ ︸

˜θ(k)

· 1

J − ∑

j∈J k j
︸ ︷︷ ︸

=pi (k)

· 1
λi

· ν · λi · 1{ki=0}
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+
∑

i∈J

⎛

⎝

(
∑

j∈J k j )−1
∏

�=0

1

J − �

⎞

⎠ ·
⎛

⎝

∏

j∈J

(

1

λ j

)k j
⎞

⎠ ·
(

1

ν

)kJ+1

︸ ︷︷ ︸

˜θ(k)

·
⎛

⎝J + 1 −
∑

j∈J

k j

⎞

⎠

︸ ︷︷ ︸

= 1
pi (k−ei+eJ+1)

·λi · 1
ν

· ν · pi (k − ei + eJ+1) · 1{ki=1}

The right hand-side of the last equation is
∑

i∈J

˜θ (k) ν · pi (k) · 1{ki=0} +
∑

i∈J

˜θ (k) λi · 1{ki=1}.


�
Remark 5 We make a distinction between homogeneous and heterogeneous locations.

We mean by homogeneous locations that the inventories have identical base stock levels
b1 = b2 = · · · = bJ and identical arrival rates λ1 = λ2 = · · · = λJ > 0. Service rates
μ j (·) > 0, j ∈ J , obey no such restrictions.

Wemean by heterogeneous locations that theremaybe different arrival ratesλ j > 0, j ∈ J
(and any service rateμ j (·) > 0, j ∈ J ) and for the base stock levels hold b1 ≥ b2 ≥ · · · ≥ bJ .

As a consequence of the preceding Proposition 3 the following symmetry property for
homogeneous locations with base stock levels b1 = b2 = · · · = bJ = 1 is valid.

For all permutations σ of {1, . . . , J } it holds

˜θ(

inventories
at locations

︷ ︸︸ ︷

k1, k2, . . . , kJ ,

supplier
︷︸︸︷

kJ+1 ) = ˜θ(

inventories
at locations

︷ ︸︸ ︷

kσ(1), kσ(2), . . . , kσ(J ),

supplier
︷ ︸︸ ︷

kσ J+1).

For b1 = b2 = · · · = bJ > 1 the global balance equations (3) reveal directly that this
symmetry property holds in this case as well.

4.1.2 Special case: two locations and bj > 1, j ∈ J

In this section, we assume that there are two heterogeneous locations with base stock levels
b1 ≥ b2, where b1, b2 > 1 and arrival rates λ1, λ2, ν > 0. The state transition diagram for
such a system is presented in Fig. 2.

To obtain ˜θ(k), k ∈ K , from the global balance equations ˜θ · Qred = 0 (cf. Eq. (3)) we
use the recursive solution technique. This technique uses the fact that the steady state proba-
bilities of the system can sometimes be expressed in terms of other steady state probabilities.
Consequently, this leads to a reduction of the number of unknowns in the global balance
equations. For our system the recursive method is described by the following algorithm.

κ is a variable which represents a temporarily unknown probability and GBE is used to
denote a global balance equation. We will henceforth use an abbreviated notation because
kJ+1 = ∑J

j=1(b j − k j ) and the base stock levels b j , j ∈ J , are fixed parameters:

˜θ
(

inventories
at locations
︷ ︸︸ ︷

k1, k2
)

:= ˜θ
(

inventories
at locations
︷ ︸︸ ︷

k1, k2,

supplier
︷︸︸︷

k3
)

123



Annals of Operations Research

Fig. 2 State transition diagram of a system with two heterogeneous locations

and hence,

pi (k − ei ) := pi (k − ei + eJ+1), pi (k + ei ) := pi (k + ei − eJ+1), i ∈ J .

A few steps of the algorithm are visualised in the state transition diagram in Fig. 3 and
the algorithm is illustrated by an example in Appendix A, which is motivated by the compu-
tational example in Chow and Kohler (1979, Appendix, pp. 360f.). Furthermore, a detailed
explanation of the algorithm can be found in Otten (2017, Appendix C.1, pp. 275–311).

ALGORITHM (b1 ≥ b2 with b1 > 1, b2 > 1 and λ1, λ2 > 0)

� Set˜θ(b1, 0) = 1
� For k2 = b2, . . . , 1

(1) if k2 = b2,
(a) set ˜θ(0, b2) = κ

(b) for � = 0, . . . , b2 − 2
use the GBE of state (b1, �)
to find an expression for ˜θ(b1, � + 1) independent of κ

(c) for k1 = 0, . . . , b1 − 2
use the GBE of state (k1, b2)
to find an expression for ˜θ(k1 + 1, b2) as a function of κ

(d) use the GBE of state (b1, b2)
to find an expression for ˜θ(b1, b2) as a function of κ

(e) use the GBE of state (b1 − 1, b2)
to find an expression for ˜θ(b1 − 1, b2 − 1) as a function of κ

(f) use the GBE of state (b1, b2 − 1) to solve for κ

(g) substitute the value of κ into the equations in the above steps (1)(a) and (1)(c)-(e)

(2) if b2 > k2 ≥ 2 (i.e. b1, b2 ≥ 3),
(a) set ˜θ(0, k2) = κ
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(b) for k1 = 0, . . . , b1 − (b2 − k2) − 1
(i) if k1 < b1 − (b2 − k2) − 1,

use the GBE of state (k1, k2)
to find an expression for ˜θ(k1 + 1, k2) as a function of κ

(ii) if k1 = b1 − (b2 − k2) − 1,
use the GBE of state (k1, k2)
to find an expression for ˜θ(k1, k2 − 1) as a function of κ

(c) for � = k2, . . . , 1
use the GBE of state (b1 − (b2 − k2), �)
to find an expression for ˜θ(b1 − (b2 − k2), � − 1) as a function of κ

(d) use the GBE of state (b1 − (b2 − k2), 0) to solve for κ

(e) substitute the value of κ into the equations in the above steps (2)(a)-(c)

(3) if b2 > k2 = 1
(a) set ˜θ(0, 1) = κ

(b) for k1 = 0, . . . , b1 − b2 + 1
(i) if k1 < b1 − b2 (if b1 − b2 > 0),

use the GBE of state (k1, 1)
to find an expression for ˜θ(k1 + 1, 1) as a function of κ

(ii) if k1 ∈ {b1 − b2, b1 − b2 + 1},
use the GBE of state (k1, 1)
to find an expression for ˜θ(k1, 0) as a function of κ

(c) for k1 = b1 − b2, . . . , 1 (if b1 − b2 > 0),
use the GBE of state (k1, 0)
to find an expression for ˜θ(k1 − 1, 0)

(d) use the GBE of state (b1 − (b2 − 1), 0) to solve for κ

(e) substitute the value of κ into the equations in the above steps (3)(a)-(c)

� Normalise all ˜θ(k1, k2) by setting

˜θ(k1, k2) ← ˜θ(k1, k2)
∑b1

k1=0

∑b2
k2=0

˜θ(k1, k2)

Remark 6 Chow and Kohler apply a recursive solution technique to non-homogeneous (=
heterogeneous) twoprocessor systems with special properties in (Chow&Kohler, 1979, Sec-
tion IV, pp. 358f.). One special property of the load balancing policy that enables to use their
technique for the two-processor heterogeneous systems is that the policy line (= continuous
chain of arrival transitions starting at state (0, 0) given that no departure occurs) partitions
the states of the state transition rate diagram into two regions. Our load balancing policy
is slightly different from that of Chow and Kohler because of 1

2ν (since if both inventories
have the same difference between the on-hand inventory and the capacity of the inventory, it
enters either with equal probability) as can be seen in the state transition diagram in Fig. 2.

Special case: twohomogeneous locationsOur algorithm for two locations can also be applied
to obtain ˜θ for a system with two homogeneous locations, i.e. where the inventories have
identical base stock levels b1 = b2 > 1 and identical arrival rates λ1 = λ2 > 0 (and any
service ratesμ1, μ2 > 0). The state transition diagram for such a system is presented in Fig. 4.
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(a)

(b)

(c)

Fig. 3 Visualisation of a few steps of the algorithm
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Fig. 4 State transition diagram (left) and folded state transistion diagram (right) of a system with two homo-
geneous locations

However, the algorithm can be simplified for the case of two homogeneous locations, since
in the state transition diagram of a system with two homogeneous locations is symmetric
about the diagonal elements (k1, k2). Hence, the state transition diagram can be folded to
obtain a triangle as shown in Fig. 4. Consequently, it holds ˜θ(k1, k2) = ˜θ(k2, k1).

We can extend our model with two locations by a channel transfer and obtain a stationary
distribution of product form. Then, the inventories at the locations are connected through
a transfer channel. The transfer time of the channel is exponentially distributed with rate
β > 0. If the difference between the number of items in location i and the number of items at
location j is equal to or greater than two (= disbalance condition), then the transfer channel
initiates a transfer from items from location i to location j . There can be only one transfer at
a time and the transfer of an item is discontinued if the disbalance condition changes before
the transfer is completed. The state transition diagram can still be folded into a triangle, so
that the symmetry property holds. Second, because the channel transfer leads to a further
summand on the left side of the GBE (flow into the state). The state transition diagram as
well as the folded state transition diagram for such a system with two locations are presented
in Fig. 5.

Fig. 5 State transition diagram (left) and folded state transition diagram (right) of a system with two homo-
geneous locations and transfer channel

123



Annals of Operations Research

5 Structural properties of the stationary inventory-replenishment
subsystem

In this section, we assume that the queueing-inventory process Z is ergodic.Wemake again a
distinction between homogeneous and heterogeneous locations. Furthermore, in this section,
we will use an abbreviated notation because kJ+1 = ∑J

j=1(b j − k j ) and the base stock

levels b j , j ∈ J , are fixed parameters:

θ(

inventories
at locations

︷ ︸︸ ︷

k1, k2, . . . , kJ ) := θ(

inventories
at locations

︷ ︸︸ ︷

k1, k2, . . . , kJ ,

supplier
︷︸︸︷

kJ+1 ).

Homogeneous locationsLet (Y1, Y2, . . . YJ ,WJ+1)be a randomvariablewhich is distributed
according to the marginal steady state probability for the inventory-replenishment subsys-
tem.2

Proposition 4 For the inventory process holds

P (Y1 = �) = P
(

Y j = �
)

, j ∈ J \ {1} , � ∈ {0, . . . , b1},
P (Y1 = �) · λ1

= P
(

Y j = � − 1 for j ∈ J
) · ν

J

+
J−1
∑

i=1

P
(

Y j = � − 1 for j = 1, . . . , i and � − 1 < Yk ≤ bk for k = i + 1, . . . , J
)

·
(

J − 1

i − 1

)

· ν

i
, � ∈ {1, . . . , b1}. (7)

Proof It holds

P (Y1 = �) = P
(

Y j = �
)

, j ∈ J \ {1} , � ∈ {0, . . . , b1}
because of the symmetry property for homogeneous locations (see Remark 5) and because

P (Y1 = �) =
b2

∑

k2=0

· · ·
bJ
∑

kJ=0

θ(�, k2, . . . , kJ ).

The Eq. (7) can be proven by the cut-criterion for positive recurrent processes (see Kelly,
1979, Lemma 1.4, p. 8).

For � ∈ {1, . . . , b1}, it can be proven by a cut, which divides E into complementary sets
according to the size of the inventory at location 1 that is less than or equal to �−1 or greater
than � − 1, i.e. into the sets
{

(k1, k2, . . . , kJ ) : k1 ∈ {0, 1, . . . , � − 1}, k j ∈ {0, . . . , b j }, j ∈ {2, . . . , J }
}

,

{

(˜k1,˜k2, . . . ,˜kJ ) : ˜k1 ∈ {�, . . . , b1}, ˜k j ∈ {0, . . . , b j }, j ∈ {2, . . . , J }} , � ∈ {1, . . . , b1} .

2 It should be noted that θ(k1, k2, . . . , kJ , kJ+1) = P(Y1 = k1, Y2 = k2, . . . , YJ = kJ ,WJ+1 = kJ+1) =
P(Y1 = k1, Y2 = k2, . . . , YJ = kJ ) because the base stock levels b j , j ∈ J , are fixed parameters and

kJ+1 = ∑J
j=1(b j − k j ).
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Then, it follows for � ∈ {1, . . . , b1}
�−1
∑

k1=0

b2
∑

k2=0

· · ·
bJ
∑

kJ=0

b1
∑

˜k1=�

b2
∑

˜k2=0

· · ·
bJ
∑

˜kJ=0

θ(k1, k2, . . . , kJ )

· qred
(

(k1, k2, . . . , kJ ); (˜k1,˜k2, . . . ,˜kJ )
)

=
b1

∑

˜k1=�

b2
∑

˜k2=0

· · ·
bJ
∑

˜kJ=0

�−1
∑

k1=0

b2
∑

k2=0

· · ·
bJ
∑

kJ=0

θ(˜k1,˜k2, . . . ,˜kJ )

· qred
(

(˜k1,˜k2, . . . ,˜kJ ); (k1, k2, . . . , kJ )
)

⇔ θ(� − 1, � − 1, . . . , � − 1) · ν

J
(8)

+
J−1
∑

i=1

bi+1
∑

ki+1=�

· · ·
bJ
∑

kJ=�

θ(� − 1, � − 1, . . . , � − 1, ki+1, . . . , kJ ) ·
(

J − 1

i − 1

)

· 1
i

· ν

=
b2

∑

˜k2=0

· · ·
bJ
∑

˜kJ=0

θ(�,˜k2, . . . ,˜kJ ) · λ1. (9)

The only possible transitions from the set, where the size of the inventory at loca-
tion 1 is less than or equal to � − 1, to the set, where the inventory at location 1
is greater than � − 1, are transitions according to a replenishment. In particular, tran-

sitions from
{

(� − 1, k2, . . . , kJ ) : k j ∈ {� − 1, . . . , b j }, j ∈ {2, . . . , J }
}

, to
{

(�,˜k2, . . . ,˜kJ ) : ˜k j ∈ {� − 1, . . . , b j }, j ∈ {2, . . . , J }} , � ∈ {1, . . . , b1} .

A replenishment at location 1 is only possible if {1} ⊆ argmax
j∈J

(b j − k j ). This means

that there is no other location with higher difference between the on-hand inventory and the
capacity of the inventory (= base stock level). Consequently, all possible states where the
other locations have � − 1 items or more items in the inventory have to be considered.
In Eq. (8) all locations have exactly � − 1 items in the inventory and in Eq. (9) i states how
many locations have exactly � − 1 items in the inventory. This results in the factor 1

i , which
is the probability that the finished item is sent to location i . The symmetry property leads to
the factor

(J−1
i−1

)

.
Hence, we have shown for � ∈ {1, . . . , b1}
P (Y1 = �) · λ1

= P
(

Y j = � − 1 for j ∈ J
) · ν

J

+
J−1
∑

i=1

P
(

Y j = � − 1 for j = 1, . . . , i and � − 1 < Yk ≤ bk for k = i + 1, . . . , J
)

·
(

J − 1

i − 1

)

· ν

i
.


�

123



Annals of Operations Research

Heterogeneous locations
Let (Y1, Y2,W3) be a random variable which is distributed according to the marginal

steady state probability for the inventory-replenishment subsystem.3

Remark 7 From Eq. (10) in the following proposition follows

P(Y1 = �1) = P(Y1 = 0) ·
(

ν

λ1

)�1

, �1 ∈ {1, . . . , b1 − b2} .

Proposition 5 For the inventory process holds for �1 = 1, . . . , b1 − b2

P(Y1 = �1) · λ1 = P(Y1 = �1 − 1) · ν, (10)

for �1 = b1 − b2 + 1, . . . , b1 − 1

P(Y1 = �1) · λ1 = P(Y1 = �1 − 1, Y2 = �1 − 1 − b1 + b2) · 1
2
ν

+ P(Y1 = �1 − 1, Y2 > �1 − 1 − b1 + b2) · ν, (11)

for �1 = b1

P(Y1 = b1) · λ1 = P(Y1 = b1 − 1, Y2 = b2 − 1) · 1
2
ν

+ P(Y1 = b1 − 1, Y2 = b2) · ν, (12)

for �2 = 1, . . . , b2

P(Y2 = �2) · λ2 = P(Y1 = b1 − b2 + �2 − 1, Y2 = �2 − 1) · 1
2
ν

+ P(Y1 > b1 − b2 + �2 − 1, Y2 = �2 − 1) · ν. (13)

Proof The equations can be proven by the cut-criterion for positive recurrent processes (see
Kelly, 1979, Lemma 1.4, p. 8).

For �1 ∈ {1, . . . , b1 − b2}, Eq. (10) can be proven by a cut, which divides E into com-
plementary sets according to the size of the inventory at location 1 that is less than or equal
to �1 − 1 or greater than �1 − 1, i.e. into the sets

{

(k1, k2) : k1 ∈ {0, 1, . . . , �1 − 1}, k2 ∈ {0, . . . , b2}
}

,

{

(˜k1,˜k2) : ˜k1 ∈ {�1, . . . , b1}, ˜k2 ∈ {0, . . . , b2}
}

, �1 ∈ {1, . . . , b1 − b2} .

Then, it follows for �1 ∈ {1, . . . , b1 − b2}
�1−1
∑

k1=0

b2
∑

k2=0

b1
∑

˜k1=�1

b2
∑

˜k2=0

θ(k1, k2) · qred
(

(k1, k2); (˜k1,˜k2)
)

=
b1

∑

˜k1=�1

b2
∑

˜k2=0

�1−1
∑

k1=0

b2
∑

k2=0

θ(˜k1,˜k2) · qred
(

(˜k1,˜k2); (k1, k2)
)

⇔
b2

∑

k2=0

θ(�1 − 1, k2)

︸ ︷︷ ︸

=P(Y1=�1−1)

·ν =
b2

∑

˜k2=0

θ(�1,˜k2)

︸ ︷︷ ︸

=P(Y1=�1)

·λ1.

3 It should be noted that θ(k1, k2, k3) = P(Y1 = k1, Y2 = k2,W3 = k3) = P(Y1 = k1, Y2 = k2), because
the base stock levels b1 and b2 are fixed parameters and k3 = (b1 + b2) − (k1 + k2).
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Hence, we have shown for �1 ∈ {1, . . . , b1 − b2}
P(Y1 = �1 − 1) · ν = P(Y1 = �1) · λ1.

For �1 ∈ {b1 − b2 + 1, . . . , b1 − 1}, Eq. (11) can be proven by a cut, which divides E into
complementary sets according to the size of the inventory at location 1 that is less than or
equal to �1 − 1 or greater than �1 − 1, i.e. into the sets

{(k1, k2) : k1 ∈ {0, 1, . . . , �1 − 1}, k2 ∈ {0, . . . , b2}} ,
{

(˜k1,˜k2) : ˜k1 ∈ {�1, . . . , b1}, ˜k2 ∈ {0, . . . , b2}
}

, �1 ∈ {b1 − b2 + 1, . . . , b1 − 1} .

Then, it follows for �1 ∈ {b1 − b2 + 1, . . . , b1 − 1}
�1−1
∑

k1=0

b2
∑

k2=0

b1
∑

˜k1=�1

b2
∑

˜k2=0

θ(k1, k2) · qred
(

(k1, k2); (˜k1,˜k2)
)

=
b1

∑

˜k1=�1

b2
∑

˜k2=0

�1−1
∑

k1=0

b2
∑

k2=0

θ(˜k1,˜k2) · qred
(

(˜k1,˜k2); (k1, k2)
)

⇔
b2

∑

k2=b2−(b1−�1)

θ(�1 − 1, k2)·
︸ ︷︷ ︸

=P(Y1=�1−1,Y2>b2−(b1−(�1−1))

ν + θ(�1 − 1, b2 − (b1 − (�1 − 1)))
︸ ︷︷ ︸

=P(Y1=�1−1,Y2=b2−(b1−(�1−1))

·1
2
ν

=
b2

∑

˜k2=0

θ(�1,˜k2)

︸ ︷︷ ︸

=P(Y1=�1)

·λ1.

Hence, we have shown for �1 ∈ {b1 − b2 + 1, . . . , b1 − 1}

P(Y1 = �1) · λ1 = P(Y1 = �1 − 1, Y2 = b2 − (b1 − (�1 − 1))) · 1
2
ν

+ P(Y1 = �1 − 1, Y2 > b2 − (b1 − (�1 − 1))) · ν

= P(Y1 = �1 − 1, Y2 = �1 − 1 − b1 + b2) · 1
2
ν

+ P(Y1 = �1 − 1, Y2 > �1 − 1 − b1 + b2) · ν.

For �1 = b1, Eq. (12) can be proven by a cut, which divides E into complementary sets
according to the size of the inventory at location 1 that is less than or equal to b1 − 1 or
greater than b1 − 1, i.e. into the sets

{

(k1, k2) : k1 ∈ {0, 1, . . . , b1 − 1}, k2 ∈ {0, . . . , b2}
}

,

{

(˜k1,˜k2) : ˜k1 = b1, ˜k2 ∈ {0, . . . , b2}
}

.

Then, it follows for
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b1−1
∑

k1=0

b2
∑

k2=0

b1
∑

˜k1=b1

b2
∑

˜k2=0

θ(k1, k2) · qred
(

(k1, k2); (˜k1,˜k2)
)

=
b1

∑

˜k1=b1

b2
∑

˜k2=0

b1−1
∑

k1=0

b2
∑

k2=0

θ(˜k1,˜k2) · qred
(

(˜k1,˜k2); (k1, k2)
)

⇔ θ(b1 − 1, b2)
︸ ︷︷ ︸

=P(Y1=b1−1,Y2=b2)

·ν + θ(b1 − 1, b2 − 1)
︸ ︷︷ ︸

=P(Y1=b1−1,Y2=b2−1)

·1
2
ν =

b2
∑

˜k2=0

θ(b1,˜k2)

︸ ︷︷ ︸

=P(Y1=b1)

·λ1.

Hence, we have shown

P(Y1 = b1) · λ1 = P(Y1 = b1 − 1, Y2 = b2 − 1) · 1
2
ν + P(Y1 = b1 − 1, Y2 = b2) · ν.

For �2 ∈ {1, . . . , b2}, Eq. (13) can be proven by a cut, which divides E into complementary
sets according to the size of the inventory at location 2 that is less than or equal to �2 − 1 or
greater than �2 − 1, i.e. into the sets

{

(k1, k2) : k1 ∈ {0, . . . , b1}, k2 ∈ {0, 1, . . . , �2 − 1}
}

,

{

(˜k1,˜k2) : ˜k1 ∈ {0, . . . , b1}, ˜k2 ∈ {�2, . . . , b2}
}

, �2 ∈ {1, . . . , b2} .

Then, it follows for �2 ∈ {1, . . . , b2}
b1

∑

k1=0

�2−1
∑

k2=0

b1
∑

˜k1=0

b2
∑

˜k2=�2

θ(k1, k2) · qred
(

(k1, k2); (˜k1,˜k2)
)

=
b1

∑

˜k1=0

b2
∑

˜k2=�2

b1
∑

k1=0

�2−1
∑

k2=0

θ(˜k1,˜k2) · qred
(

(˜k1,˜k2); (k1, k2)
)

⇔ θ(b1 − (b2 − (�2 − 1)) , �2 − 1)
︸ ︷︷ ︸

=P(Y1=b1−(b2−(�2−1)),Y2=�2−1)

·1
2
ν

b1
∑

k1=b1−(b2−�2)

θ(k1, �2 − 1)

︸ ︷︷ ︸

=P(Y1>b1−(b2−(�2−1)),Y2=�2−1)

·ν

=
b1

∑

˜k1=0

θ(˜k1, �2)

︸ ︷︷ ︸

=P(Y2=�2)

·λ2.

Hence, we have shown for �2 ∈ {1, . . . , b2}
P(Y2 = �2) · λ2 = P(Y1 = b1 − (b2 − (�2 − 1)) , Y2 = �2 − 1) · 1

2
ν

+ P(Y1 > b1 − (b2 − (�2 − 1)) , Y2 = �2 − 1) · ν

= P(Y1 = b1 − b2 + �2 − 1, Y2 = �2 − 1) · 1
2
ν

+ P(Y1 > b1 − b2 + �2 − 1, Y2 = �2 − 1) · ν.


�
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6 Conclusion

The paper investigated a supply chain where routing of items depends on the on-hand inven-
tory at the locations with the aim to obtain “load balancing”. The main result of the paper
is to prove that the stationary distribution has a product form. This means that the steady
states of the production network and the inventory-replenishment complex decouple asymp-
totically, and the equilibrium for the production subsystem decomposes in true independent
coordinates. For the marginal distribution of the production subsystem an explicit solution
was derived and for the marginal distribution of the inventory-replenishment subsystem an
explicit solution or a recursive algorithm were deduced for some special cases.

To extend the results to queueing-inventory systems with other replenishment policies is
part of our ongoing research. First results for queueing-inventory systems with (r , S)-policy
with location specific items can be found in Otten (2017, Chapter 7).
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Appendix A Computational example

Motivated by the computational example in Chow and Kohler (1979, Appendix, pp. 360f.)
we consider an example with two locations, base stock levels b1 = 4, b2 = 3 and arrival
rates λ1, λ2 > 0. The state transition diagram is presented in Fig. 6.

Inside the following equations, we use cyan colour for the expressions which are known
independent of κ , green colour for the expressions which are known as a function of κ and
red colour for the expressions which are unknown.

The solution steps for this system using the algorithm follow:

� Set ˜θ(4, 0) = 1.
� For k2 = 3:

(1)(a) Set ˜θ(0, 3) = κ .
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Fig. 6 State transition diagram of a system with two locations and b1 = 4, b2 = 3 and λ1, λ2 > 0

(b) For � = 0: Use the GBE of state (4, 0) to find an expression for ˜θ(4, 1) independent
of κ:

˜θ(4, 0) · (λ1 + ν) = ˜θ(4, 1) · λ2,

which is equivalent to

˜θ(4, 1) = λ1 + ν

λ2
=: c(4,1) (λ1, λ2, ν) .

For � = 1: Use the GBE of state (4, 1)
to find an expression for ˜θ(4, 2) independent of κ:

˜θ(4, 1) · (λ1 + λ2 + ν) = ˜θ(4, 2) · λ2,

which is equivalent to

˜θ(4, 2) = (λ1 + λ2 + ν)

λ2
· c(4,1) (λ1, λ2, ν) =: c(4,2) (λ1, λ2, ν) .

(c) For k1 = 0: Use the GBE of state (0, 3)
to find an expression for ˜θ(1, 3) as a function of κ:

˜θ(0, 3) · (λ2 + ν) = ˜θ(1, 3) · λ1,

which is equivalent to

˜θ(1, 3) = λ2 + ν

λ1
· κ =: c(1,3) (λ1, λ2, ν) · κ.

For k1 = 1: Use the GBE of state (1, 3)
to find an expression for ˜θ(2, 3) as a function of κ:

˜θ(1, 3) · (λ1 + λ2 + ν) = ˜θ(2, 3) · λ1 + ˜θ(0, 3) · ν,

which is equivalent to
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˜θ(2, 3) = ˜θ(1, 3) · (λ1 + λ2 + ν) − ˜θ(0, 3) · ν

λ1

= c(1,3) (λ1, λ2, ν) · (λ1 + λ2 + ν) − ν

λ1
· κ =: c(2,3) (λ1, λ2, ν) · κ.

For k1 = 2: Use the GBE of state (2, 3)
to find an expression for ˜θ(3, 3) as a function of κ:

˜θ(2, 3) · (λ1 + λ2 + ν) = ˜θ(3, 3) · λ1 + ˜θ(1, 3) · ν,

which is equivalent to

˜θ(3, 3) = ˜θ(2, 3) · (λ1 + λ2 + ν) − ˜θ(1, 3) · ν

λ1

= c(2,3) (λ1, λ2, ν) · (λ1 + λ2 + ν) − c(1,3) (λ1, λ2, ν) · ν

λ1
· κ

=: c(3,3) (λ1, λ2, ν) · κ.

(d) Use the GBE of state (4, 3)
to find an expression for ˜θ(4, 3) as a function of κ:

˜θ(4, 3) · (λ1 + λ2) = ˜θ(3, 3) · ν + ˜θ(4, 2) · ν

which is equivalent to

˜θ(4, 3) = ˜θ(3, 3) · ν + ˜θ(4, 2) · ν

λ1 + λ2
= c(3,3) (λ1, λ2, ν) · ν

λ1 + λ2
· κ + c(4,2) (λ1, λ2, ν) · ν

λ1 + λ2

=: c(4,3)
1 (λ1, λ2, ν) · κ + c(4,3)

2 (λ1, λ2, ν) .

(e) For k1 = 3: Use the GBE of state (3, 3)
to find an expression for ˜θ(3, 2) as a function of κ:

˜θ(3, 3) · (λ1 + λ2 + ν) = ˜θ(4, 3) · λ1 + ˜θ(2, 3) · ν + ˜θ(3, 2) · 1
2

· ν

which is equivalent to

˜θ(3, 2)

= ˜θ(3, 3) · (λ1 + λ2 + ν) − ˜θ(4, 3) · λ1 − ˜θ(2, 3) · ν
1
2 · ν

= c(3,3) (λ1, λ2, ν) · (λ1 + λ2 + ν) − c(4,3)
1 (λ1, λ2, ν) · λ1 − c(2,3) (λ1, λ2, ν) · ν

1
2 · ν

· κ

− c(4,3)
2 (λ1, λ2, ν) · λ1

1
2 · ν

=: c(3,2)
1 (λ1, λ2, ν) · κ + c(3,2)

2 (λ1, λ2, ν) .

(f) Use the GBE of state (4, 2) to solve for κ .

˜θ(4, 2) · (λ1 + λ2 + ν) = ˜θ(4, 3) · λ2 + ˜θ(3, 2) · 1
2

· ν + ˜θ(4, 1) · ν

123



Annals of Operations Research

which is equivalent to

c(4,2) (λ1, λ2, ν) · (λ1 + λ2 + ν)

=
(

c(4,3)
1 (λ1, λ2, ν) · κ + c(4,3)

2 (λ1, λ2, ν)
)

· λ2

+
(

c(3,2)
1 (λ1, λ2, ν) · κ + c(3,2)

2 (λ1, λ2, ν)
)

· 1
2

· ν + c(4,1) (λ1, λ2, ν) · ν

⇔ c(4,3)
1 (λ1, λ2, ν) · κ · λ2 + c(3,2)

1 (λ1, λ2, ν) · κ · 1
2

· ν

= c(4,2) (λ1, λ2, ν) · (λ1 + λ2 + ν) − c(4,1) (λ1, λ2, ν) · ν

− c(3,2)
2 (λ1, λ2, ν) · 1

2
· ν − c(4,3)

2 (λ1, λ2, ν) · λ2

⇔ κ =
[

c(4,2) (λ1, λ2, ν) · (λ1 + λ2 + ν) − c(4,1) (λ1, λ2, ν) · ν

−c(3,2)
2 (λ1, λ2, ν) · 1

2
· ν − c(4,3)

2 (λ1, λ2, ν) · λ2

]

· 1

c(4,3)
1 (λ1, λ2, ν) · λ2 + c(3,2)

1 (λ1, λ2, ν) · 1
2 · ν

if the denominator is not equal to zero.
(g) Substitute the value of κ into the equations in the above steps (1)(a) and (1)(c)–(e).

� For k2 = 2:

(2)(a) Set ˜θ(0, 2) = κ .
(b)(i) For k1 = 0: Use the GBE of state (0, 2)

to find an expression for ˜θ(1, 2) as a function of κ (˜θ(0, 3) is known independent of
κ from step (1)):

˜θ(0, 2) · (λ2 + ν) = ˜θ(0, 3) · λ2 + ˜θ(1, 2) · λ1,

which is equivalent to

˜θ(1, 2) = ˜θ(0, 3) · λ2 − ˜θ(0, 2) · (λ2 + ν)

λ1

= ˜θ(0, 3) · λ2

λ1
− (λ2 + ν)

λ1
· κ =: c(1,2)

1 (λ1, λ2) + c(1,2)
2 (λ1, λ2, ν) · κ.

For k1 = 1: Use the GBE of state (1, 2)
to find an expression for ˜θ(2, 2) as a function of κ (˜θ(1, 3) is known independent of
κ from step (1)):

˜θ(1, 2) · (λ1 + λ2 + ν) = ˜θ(2, 2) · λ1 + ˜θ(1, 3) · λ2 + ˜θ(0, 2) · ν,

which is equivalent to

˜θ(2, 2) = ˜θ(1, 2) · (λ1 + λ2 + ν) − ˜θ(1, 3) · λ2 − ˜θ(0, 2) · ν

λ1

= c(1,2)
1 (λ1, λ2) · (λ1 + λ2 + ν) − ˜θ(1, 3) · λ2

λ1

+
[

c(1,2)
2 (λ1, λ2, ν) · (λ1 + λ2 + ν) − ν

]

λ1
· κ
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=: c(2,2)
1 (λ1, λ2, ν) + c(2,2)

2 (λ1, λ2, ν) · κ.

(b)(ii) For k1 = 2: Use the GBE of state (2, 2)
to find an expression for ˜θ(2, 1) as a function of κ (˜θ(3, 2) and ˜θ(2, 3) are known
independent of κ from step (1)):

˜θ(2, 2) · (λ1 + λ2 + ν) = ˜θ(3, 2) · λ1 + ˜θ(2, 3) · λ2 + ˜θ(1, 2) · ν + ˜θ(2, 1) · 1
2
ν,

which is equivalent to

˜θ(2, 1)

= ˜θ(2, 2) · (λ1 + λ2 + ν) − ˜θ(3, 2) · λ1 − ˜θ(2, 3) · λ2 − ˜θ(1, 2) · ν
1
2ν

= c(2,2)
1 (λ1, λ2, ν) · (λ1 + λ2 + ν) − ˜θ(3, 2) · λ1 − ˜θ(2, 3) · λ2 − c(1,2)

1 (λ1, λ2) · ν

1
2ν

+ c(2,2)
2 (λ1, λ2, ν) · (λ1 + λ2 + ν) − c(1,2)

2 (λ1, λ2, ν) · ν

1
2ν

· κ

=: c(2,1)
1 (λ1, λ2, ν) + c(2,1)

2 (λ1, λ2, ν) · κ.

(c) For � = 2: Use the GBE of state (3, 2)
to find an expression for ˜θ(3, 1) as a function of κ (˜θ(3, 2), ˜θ(4, 2) and ˜θ(3, 3) are
known independent of κ from step (1)):

˜θ(3, 2) · (λ1 + λ2 + ν) = ˜θ(4, 2) · λ1 + ˜θ(3, 3) · λ2 + ˜θ(2, 2) · ν + ˜θ(3, 1) · ν,

which is equivalent to

˜θ(3, 1) = ˜θ(3, 2) · (λ1 + λ2 + ν) − ˜θ(4, 2) · λ1 − ˜θ(3, 3) · λ2 − ˜θ(2, 2) · ν

ν

=
˜θ(3, 2) · (λ1 + λ2 + ν) − ˜θ(4, 2) · λ1 − ˜θ(3, 3) · λ2 − c(2,2)

1 (λ1, λ2, ν) · ν

ν

− c(2,2)
2 (λ1, λ2, ν) · κ

=: c(3,1)
1 (λ1, λ2, ν) + c(3,1)

2 (λ1, λ2, ν) · κ.

For � = 1: Use the GBE of state (3, 1) to find an expression for˜θ(3, 0) as a function
of κ (˜θ(4, 1) and ˜θ(3, 2) are known independent of κ from step (1)):

˜θ(3, 1) · (λ1 + λ2 + ν) = ˜θ(4, 1) · λ1 + ˜θ(3, 2) · λ2 + ˜θ(2, 1) · 1
2
ν + ˜θ(3, 0) · ν,

which is equivalent to

˜θ(3, 0)

=
˜θ(3, 1) · (λ1 + λ2 + ν) − ˜θ(4, 1) · λ1 − ˜θ(3, 2) · λ2 − ˜θ(2, 1) · 1

2ν

ν

= c(3,1)
1 (λ1, λ2, ν) · (λ1 + λ2 + ν) − ˜θ(4, 1) · λ1 − ˜θ(3, 2) · λ2 − c(2,1)

1 (λ1, λ2, ν) 12ν

ν

+ c(3,1)
2 (λ1, λ2, ν) · κ(λ1 + λ2 + ν) − c(2,1)

2 (λ1, λ2, ν) · 1
2ν

ν
· κ
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=: c(3,0)
1 (λ1, λ2, ν) + c(3,0)

2 (λ1, λ2, ν) · κ.

(d) Use the GBE of state (3, 0) to solve for κ

(˜θ(4, 0) is known independent of κ from step (1)):

˜θ(3, 0) · (λ1 + ν) = ˜θ(4, 0) · λ1 + ˜θ(3, 1) · λ2,

which is equivalent to
(

c(3,0)
1 (λ1, λ2, ν) + c(3,0)

2 (λ1, λ2, ν) · κ
)

· (λ1 + ν)

= ˜θ(4, 0) · λ1 +
(

c(3,1)
1 (λ1, λ2, ν) + c(3,1)

2 (λ1, λ2, ν) · κ
)

· λ2

⇔ c(3,0)
2 (λ1, λ2, ν) · κ · (λ1 + ν) − c(3,1)

2 (λ1, λ2, ν) · κ · λ2

= ˜θ(4, 0) · λ1 + c(3,1)
1 (λ1, λ2, ν) · λ2 − c(3,0)

1 (λ1, λ2, ν) · (λ1 + ν)

⇔ κ =
[

˜θ(4, 0) · λ1 + c(3,1)
1 (λ1, λ2, ν) · λ2 − c(3,0)

1 (λ1, λ2, ν) · (λ1 + ν)
]

· 1

c(3,0)
2 (λ1, λ2, ν) · (λ1 + ν) − c(3,1)

2 (λ1, λ2, ν) · λ2

if the denominator is not equal to zero.
(e) Substitute the value of κ into the equations in the above steps (2)(a)–(c).

(3)(a) Set ˜θ(0, 1) = κ .
(b)(i) For k1 = 0: Use the GBE of state (0, 1) to find an expression for˜θ(1, 1) as a function

of κ (˜θ(0, 2) is known independent of κ from step (2)):

˜θ(0, 1) · (λ2 + ν) = ˜θ(0, 2) · λ2 + ˜θ(1, 1) · λ1,

which is equivalent to

˜θ(1, 1) = (λ2 + ν)

λ1
· κ − ˜θ(0, 2) · λ2

λ1
=: c(1,1)

1 (λ1, λ2) · κ + c(1,1)
2 (λ1, λ2) .

(b)(ii) For k1 = 1: Use the GBE of state (1, 1) to find an expression for˜θ(1, 0) as a function
of κ (˜θ(2, 1) and ˜θ(1, 2) are known independent of κ from step (2)):

˜θ(1, 1) · (λ1 + λ2 + ν) = ˜θ(2, 1) · λ1 + ˜θ(1, 2) · λ2 + ˜θ(0, 1) · ν + ˜θ(1, 0) · 1
2
ν,

which is equivalent to

˜θ(1, 0) = ˜θ(1, 1) · (λ1 + λ2 + ν) − ˜θ(2, 1) · λ1 − ˜θ(1, 2) · λ2 − ˜θ(0, 1) · ν
1
2ν

= c(1,1)
1 (λ1, λ2) · (λ1 + λ2 + ν) − ν

1
2ν

· κ

+ c(1,1)
2 (λ1, λ2) · (λ1 + λ2 + ν) − ˜θ(2, 1) · λ1 − ˜θ(1, 2) · λ2

1
2ν

=: c(1,0)
1 (λ1, λ2, ν) · κ + c(1,0)

2 (λ1, λ2, ν) .

For k1 = 2: Use the GBE of state (2, 1) to find an expression for˜θ(2, 0) as a function
of κ (˜θ(2, 1),˜θ(3, 2) and˜θ(2, 2) are known independent of κ from steps (1) and (2)):

˜θ(2, 1) · (λ1 + λ2 + ν) = ˜θ(3, 2) · λ1 + ˜θ(2, 2) · λ2 + ˜θ(2, 0) · ν + ˜θ(1, 1) · ν,
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which is equivalent to

˜θ(2, 0) = ˜θ(2, 1) · (λ1 + λ2 + ν) − ˜θ(3, 2) · λ1 − ˜θ(2, 2) · λ2 − ˜θ(1, 1) · ν

ν

= −c(1,1)
1 (λ1, λ2) · ν

ν
· κ

+
˜θ(2, 1) · (λ1 + λ2 + ν) − ˜θ(3, 2) · λ1 − ˜θ(2, 2) · λ2 − c(1,1)

2 (λ1, λ2) · ν

ν

=: c(2,0)
1 (λ1, λ2, ν) · κ + c(2,0)

2 (λ1, λ2, ν) .

(c) For k1 = 1: Use the GBE of state (1, 0) to find an expression for˜θ(0, 0) as a function
of κ:

˜θ(1, 0) · (λ1 + ν) = ˜θ(2, 0) · λ1 + ˜θ(1, 1) · λ2 + ˜θ(0, 0) · ν,

which is equivalent to

˜θ(0, 0) = ˜θ(1, 0) · (λ1 + ν) − ˜θ(2, 0) · λ1 − ˜θ(1, 1) · λ2

ν

= c(1,0)
1 (λ1, λ2, ν) · (λ1 + ν) − c(2,0)

1 (λ1, λ2, ν) · λ1 − c(1,1)
1 (λ1, λ2) · λ2

ν
· κ

+ c(1,0)
2 (λ1, λ2, ν) · (λ1 + ν) − c(2,0)

2 (λ1, λ2, ν) · λ1 − c(1,1)
2 (λ1, λ2) · λ2

ν

=: c(0,0)
1 (λ1, λ2, ν) · κ + c(0,0)

2 (λ1, λ2, ν) .

(d) Use the GBE of state (2, 0) to solve for κ (˜θ(3, 0),˜θ(2, 1) are known independent of
κ from steps (2)):

˜θ(2, 0) · (λ1 + ν) = ˜θ(3, 0) · λ1 + ˜θ(2, 1) · λ2 + ˜θ(1, 0) · 1
2
ν

⇔
(

c(2,0)
1 (λ1, λ2, ν) · κ + c(2,0)

2 (λ1, λ2, ν)
)

· (λ1 + ν)

= ˜θ(3, 0) · λ1 + ˜θ(2, 1) · λ2 +
(

c(1,0)
1 (λ1, λ2, ν) · κ + c(1,0)

2 (λ1, λ2, ν)
)

· 1
2
ν

⇔ κ ·
(

c(2,0)
1 (λ1, λ2, ν) − c(1,0)

1 (λ1, λ2, ν)
)

= ˜θ(3, 0) · λ1 + ˜θ(2, 1) · λ2 − c(2,0)
2 (λ1, λ2, ν) · (λ1 + ν) + c(1,0)

2 (λ1, λ2, ν) · 1
2
ν

⇔ κ

=
˜θ(3, 0) · λ1 + ˜θ(2, 1) · λ2 − c(2,0)

2 (λ1, λ2, ν) · (λ1 + ν) + c(1,0)
2 (λ1, λ2, ν) · 1

2ν

c(2,0)
1 (λ1, λ2, ν) − c(1,0)

1 (λ1, λ2, ν)

if the denominator is not equal to zero.
(e) Substitute the value of κ into the equations in the above steps (3)(a)–(c).

�Normalise all ˜θ(k1, k2) by setting

˜θ(k1, k2) ← ˜θ(k1, k2)
∑b1

k1=0

∑b2
k2=0

˜θ(k1, k2)
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