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Abstract: This paper presents a comparison and evaluation of two approaches to Nonlinear
Model Predictive Control (NMPC) via quasi-LPV modeling, by means of a benchmark problem:
control of a 4 degree-of-freedom Control Moment Gyroscope (CMG). The use of quasi-LPV
modeling allows us to recast the nonlinear optimization problem arising in NMPC, as a repeated
quadratic program which can be solved efficiently. The difference between the two presented
schemes lies in the modeling paradigm chosen to express the dynamics of the system, namely
state space (SS) or input-output (IO) frameworks. In both cases, quasi-LPV models are obtained
by performing a velocity-based linearization, which results in an exact representation of the
nonlinear dynamics and enables offset free control. Both schemes are successfully implemented
on a laboratory CMG, and the experimental results are compared and discussed. Furthermore,
advantages and disadvantages of each control scheme are examined.

Keywords: Linear parameter-varying systems, model predictive control, control moment
gyroscope, linearization, multivariable control systems.

1. INTRODUCTION

The use of model predictive control (MPC) schemes has
historically been restricted to the process industry, where
the systems generally have large time constants. The rea-
son behind this is that the relatively complex computa-
tions entailed by online solution of optimization problems
led to high computation times, hence precluding real-
time implementation of MPC algorithms to control plants
with fast dynamics. In recent years, this tendency has
shifted partly due to an increase in computational power
but also because of the development of computationally
efficient algorithms e.g. (Diehl et al. (2005)), (Käpernick
and Graichen (2014)), (Cisneros et al. (2016)) which en-
able MPC control laws to be computed in the milli- or
even microsecond range. One such algorithm is the quasi-
LPV MPC (qLMPC) algorithm. This nonlinear control
strategy uses a state space quasi-LPV model of the plant
in order to make predictions, and consequently, it selects
the input that achieves the desired control objectives. A
variant of this algorithm is the velocity qLMPC based on a
state space framework (SS-qLMPC), which was presented
in (Cisneros et al. (2018)). It differs in that it uses a
velocity-based linearization to obtain a quasi-LPV model
in velocity-form. Both strategies assume full knowledge of
the state vector and therefore often require the use of state
observers thus increasing the complexity of the controller.

An alternative approach that uses input-output quasi-LPV
(IO-qLPV) models was presented in (Cisneros and Werner
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Fig. 1. ECP750 control moment gyroscope.

(2019)). This algorithm only needs the output vector to
implement the predictive control strategy, thus simplifying
its design. When compared to its state space counterpart,
it also offers the advantage that when no first principles
model is available, input-output LPV identification tends
to be simpler than LPV subspace identification (Schulz
et al. (2017)).

This paper aims to compare the benefits and shortcom-
ings of each of the aforementioned approaches based on
a benchmark problem: control of a 4 degree-of-freedom
(DOF) Control Moment Gyroscope (CMG). A CMG is a
mechanical device used to generate gyroscopic precession.
CMGs are generally used for attitude control of spacecrafts
(Bhat and Tiwari (2009)) as well as in roll stabilization of
ships. The dynamic equations that describe the motion of
a CMG are nonlinear and highly coupled, for this reason,
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and Graichen (2014)), (Cisneros et al. (2016)) which en-
able MPC control laws to be computed in the milli- or
even microsecond range. One such algorithm is the quasi-
LPV MPC (qLMPC) algorithm. This nonlinear control
strategy uses a state space quasi-LPV model of the plant
in order to make predictions, and consequently, it selects
the input that achieves the desired control objectives. A
variant of this algorithm is the velocity qLMPC based on a
state space framework (SS-qLMPC), which was presented
in (Cisneros et al. (2018)). It differs in that it uses a
velocity-based linearization to obtain a quasi-LPV model
in velocity-form. Both strategies assume full knowledge of
the state vector and therefore often require the use of state
observers thus increasing the complexity of the controller.

An alternative approach that uses input-output quasi-LPV
(IO-qLPV) models was presented in (Cisneros and Werner

� HMC acknowledges support from CONACYT-Mexico.

Fig. 1. ECP750 control moment gyroscope.

(2019)). This algorithm only needs the output vector to
implement the predictive control strategy, thus simplifying
its design. When compared to its state space counterpart,
it also offers the advantage that when no first principles
model is available, input-output LPV identification tends
to be simpler than LPV subspace identification (Schulz
et al. (2017)).

This paper aims to compare the benefits and shortcom-
ings of each of the aforementioned approaches based on
a benchmark problem: control of a 4 degree-of-freedom
(DOF) Control Moment Gyroscope (CMG). A CMG is a
mechanical device used to generate gyroscopic precession.
CMGs are generally used for attitude control of spacecrafts
(Bhat and Tiwari (2009)) as well as in roll stabilization of
ships. The dynamic equations that describe the motion of
a CMG are nonlinear and highly coupled, for this reason,

qLPV Predictive Control - A Benchmark
Study on State Space vs Input-Output

Approach �

Horacio M. Calderón ∗ Pablo S.G. Cisneros ∗

Herbert Werner ∗

∗ Hamburg University of Technology, Hamburg, Germany (e-mail:
horacio.martinez.calderon@tuhh.de; pablo.gonzalez@tuhh.de;

h.werner@tuhh.de).

Abstract: This paper presents a comparison and evaluation of two approaches to Nonlinear
Model Predictive Control (NMPC) via quasi-LPV modeling, by means of a benchmark problem:
control of a 4 degree-of-freedom Control Moment Gyroscope (CMG). The use of quasi-LPV
modeling allows us to recast the nonlinear optimization problem arising in NMPC, as a repeated
quadratic program which can be solved efficiently. The difference between the two presented
schemes lies in the modeling paradigm chosen to express the dynamics of the system, namely
state space (SS) or input-output (IO) frameworks. In both cases, quasi-LPV models are obtained
by performing a velocity-based linearization, which results in an exact representation of the
nonlinear dynamics and enables offset free control. Both schemes are successfully implemented
on a laboratory CMG, and the experimental results are compared and discussed. Furthermore,
advantages and disadvantages of each control scheme are examined.

Keywords: Linear parameter-varying systems, model predictive control, control moment
gyroscope, linearization, multivariable control systems.

1. INTRODUCTION

The use of model predictive control (MPC) schemes has
historically been restricted to the process industry, where
the systems generally have large time constants. The rea-
son behind this is that the relatively complex computa-
tions entailed by online solution of optimization problems
led to high computation times, hence precluding real-
time implementation of MPC algorithms to control plants
with fast dynamics. In recent years, this tendency has
shifted partly due to an increase in computational power
but also because of the development of computationally
efficient algorithms e.g. (Diehl et al. (2005)), (Käpernick
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and Graichen (2014)), (Cisneros et al. (2016)) which en-
able MPC control laws to be computed in the milli- or
even microsecond range. One such algorithm is the quasi-
LPV MPC (qLMPC) algorithm. This nonlinear control
strategy uses a state space quasi-LPV model of the plant
in order to make predictions, and consequently, it selects
the input that achieves the desired control objectives. A
variant of this algorithm is the velocity qLMPC based on a
state space framework (SS-qLMPC), which was presented
in (Cisneros et al. (2018)). It differs in that it uses a
velocity-based linearization to obtain a quasi-LPV model
in velocity-form. Both strategies assume full knowledge of
the state vector and therefore often require the use of state
observers thus increasing the complexity of the controller.

An alternative approach that uses input-output quasi-LPV
(IO-qLPV) models was presented in (Cisneros and Werner

� HMC acknowledges support from CONACYT-Mexico.

Fig. 1. ECP750 control moment gyroscope.

(2019)). This algorithm only needs the output vector to
implement the predictive control strategy, thus simplifying
its design. When compared to its state space counterpart,
it also offers the advantage that when no first principles
model is available, input-output LPV identification tends
to be simpler than LPV subspace identification (Schulz
et al. (2017)).

This paper aims to compare the benefits and shortcom-
ings of each of the aforementioned approaches based on
a benchmark problem: control of a 4 degree-of-freedom
(DOF) Control Moment Gyroscope (CMG). A CMG is a
mechanical device used to generate gyroscopic precession.
CMGs are generally used for attitude control of spacecrafts
(Bhat and Tiwari (2009)) as well as in roll stabilization of
ships. The dynamic equations that describe the motion of
a CMG are nonlinear and highly coupled, for this reason,

qLPV Predictive Control - A Benchmark
Study on State Space vs Input-Output

Approach �

Horacio M. Calderón ∗ Pablo S.G. Cisneros ∗

Herbert Werner ∗

∗ Hamburg University of Technology, Hamburg, Germany (e-mail:
horacio.martinez.calderon@tuhh.de; pablo.gonzalez@tuhh.de;

h.werner@tuhh.de).

Abstract: This paper presents a comparison and evaluation of two approaches to Nonlinear
Model Predictive Control (NMPC) via quasi-LPV modeling, by means of a benchmark problem:
control of a 4 degree-of-freedom Control Moment Gyroscope (CMG). The use of quasi-LPV
modeling allows us to recast the nonlinear optimization problem arising in NMPC, as a repeated
quadratic program which can be solved efficiently. The difference between the two presented
schemes lies in the modeling paradigm chosen to express the dynamics of the system, namely
state space (SS) or input-output (IO) frameworks. In both cases, quasi-LPV models are obtained
by performing a velocity-based linearization, which results in an exact representation of the
nonlinear dynamics and enables offset free control. Both schemes are successfully implemented
on a laboratory CMG, and the experimental results are compared and discussed. Furthermore,
advantages and disadvantages of each control scheme are examined.

Keywords: Linear parameter-varying systems, model predictive control, control moment
gyroscope, linearization, multivariable control systems.

1. INTRODUCTION

The use of model predictive control (MPC) schemes has
historically been restricted to the process industry, where
the systems generally have large time constants. The rea-
son behind this is that the relatively complex computa-
tions entailed by online solution of optimization problems
led to high computation times, hence precluding real-
time implementation of MPC algorithms to control plants
with fast dynamics. In recent years, this tendency has
shifted partly due to an increase in computational power
but also because of the development of computationally
efficient algorithms e.g. (Diehl et al. (2005)), (Käpernick
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Fig. 2. Kinematic diagram of the CMG.

the design of controllers for this plant is a complex task,
making it an excellent benchmark test for nonlinear con-
trollers.

In recent years different control schemes for CMGs have
been proposed. A gain scheduled controller that uses LPV
techniques has been presented in (Hoffmann and Werner
(2015)), and a robust nonlinear controller based on sliding
mode control is presented in (Toriumi and Anglico (2018)).
In this paper we present the design and implementation of
two predictive control laws for a CMG. The proposed de-
sign approaches are: the SS-qLMPC, and the IO-qLMPC.
These controllers are experimentally validated, and their
results are compared and discussed.

This paper is structured as follows: Section 2 starts by
giving a description of the CMG dynamics, after this its ve-
locity based linearization is presented. Section 3 describes
the SS-qLMPC and the IO-qLMPC algorithms. Section
4 presents the experimental results and a comparison is
made. Finally Section 5 gives a conclusion of this work.

1.1 Notation

We denote a (block) diagonal matrix with elements
A,B,. . . along the diagonal as diag(A,B,. . . ). The one
vector of length N , [1, 1, . . . 1]� is 1N . The Kronecker
product between to matrices A and B is A ⊗ B. We use
the notation ||x||2Q to denote the weighted 2-norm (i.e.

||x||2Q = x�Qx ).

2. PLANT MODEL

The laboratory test bench to be used is a Model 750
CMG from Educational Control Products (Fig. 1). This
is a 4 DOF CMG which consists of a motorized flywheel
mounted on an actuated gimbal, which is in turn fixed on
a set of two unactuated gimbals. In Fig. 2 a schematic of
the CMG is shown, where body A is the flywheel with
rotational speed ω1, body B is the actuated gimbal, with
rotational angle q2, and the bodies C (angle q3) and D
(angle q4) are the unactuated gimbals. Torque τ1 is used
to spin body A and torque τ2 is used to rotate gimbal
B (i.e. to tilt the flywheel). The equations that govern
the dynamics of the CMG have the form (Hoffmann and
Werner (2015))

M(q)q̈ +Dq̇ +K(q, q̇) = τ, (1)

where q = [q1 q2 q3 q4]
� is the vector of generalized

coordinates, and τ = [τ1 τ2 0 0]� is the vector of applied
torques. The matrixM(q) is the generalized inertia matrix,
the vector K(q, q̇) represents the centripetal and Coriolis
forces, and the matrix D contains the viscous damping
coefficients. In order to facilitate the construction of the
quasi-LPV models, the second order differential equation
(1) is converted into a first order one; to this end, the
state vector x = [q� q̇�]�, and the input u = [u1, u2]

� are
defined, yielding the model

ẋ =

[
q̇

−M(q)−1Dq̇ −M(q)−1k(q, q̇) +M(q)−1Bu

]
, (2)

where Bu = τ and the output is defined as

y =



ω1

q2
q3
q4


 . (3)

2.1 Velocity based linearization.

The derivation of a quasi-LPV model from (1) is not a
trivial task. An ad-hoc quasi-LPV parametrization of a
simplified model of the CMG was presented in (Abbas
et al. (2014)), this model is based on a linearization around
a moving operating point, hence it does not fully represent
the nonlinear dynamics, but rather a continuous family of
Jacobian linearizations. The ad-hoc parametrization aims
to hide the nonlinearities of the dynamic model under
parameter variations. This approach is not systematic,
and can be challenging for complex systems. In this paper
we use velocity linearization, (Leith and Leithead (1998)),
which leads to an exact representation of the nonlinear
dynamics of the model, unlike the approximation given
by a Jacobian linearization around an operating point.
Indeed, a velocity linearization of a nonlinear model

ẋ = f(x, u), (4)

is obtained by calculating its time derivative, yielding

ẍ = ∇xf(x, u)ẋ+∇uf(x, u)u̇. (5)

Notice that the Jacobian matrices ∇xf(x, u),∇uf(x, u),
depend on x and u, and that the model is linear in ẋ and
u̇, this significantly simplifies the effort needed to find a
quasi-LPV parametrization. A consequence of using this
linearization is that information of x is lost, however, it
can be easily recovered by state augmentation. A velocity
based linearization of the model (2) was carried out using
the Symbolic Math Toolbox from Matlab, yielding[

q̈
˙̇q̇

]
= ∇xf(x, u)

[
q̇
q̈

]
+∇uf(x, u)

[
u̇1

u̇2

]
, (6)

where the Jacobian ∇xf(x, u) depends on the state vari-
ables q2, q3, q̇1, q̇2, q̇3, q̇4, and on the inputs u1 and u2.
The Jacobian ∇uf(x, u) only depends on q2 and q3. Due to
their complexity the values of the Jacobians are not shown
here.

2.2 Velocity based quasi-LPV model

In order to build a state space quasi-LPV model out of
(6) the vector xv = [y� ẋ�]� and the vector of scheduling
parameters ρ = [q̇1 q2 q3 q̇2 q̇3 q̇4 u1 u2] are defined,
resulting in
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rotational speed ω1, body B is the actuated gimbal, with
rotational angle q2, and the bodies C (angle q3) and D
(angle q4) are the unactuated gimbals. Torque τ1 is used
to spin body A and torque τ2 is used to rotate gimbal
B (i.e. to tilt the flywheel). The equations that govern
the dynamics of the CMG have the form (Hoffmann and
Werner (2015))

M(q)q̈ +Dq̇ +K(q, q̇) = τ, (1)

where q = [q1 q2 q3 q4]
� is the vector of generalized

coordinates, and τ = [τ1 τ2 0 0]� is the vector of applied
torques. The matrixM(q) is the generalized inertia matrix,
the vector K(q, q̇) represents the centripetal and Coriolis
forces, and the matrix D contains the viscous damping
coefficients. In order to facilitate the construction of the
quasi-LPV models, the second order differential equation
(1) is converted into a first order one; to this end, the
state vector x = [q� q̇�]�, and the input u = [u1, u2]

� are
defined, yielding the model

ẋ =

[
q̇

−M(q)−1Dq̇ −M(q)−1k(q, q̇) +M(q)−1Bu

]
, (2)

where Bu = τ and the output is defined as

y =



ω1

q2
q3
q4


 . (3)

2.1 Velocity based linearization.

The derivation of a quasi-LPV model from (1) is not a
trivial task. An ad-hoc quasi-LPV parametrization of a
simplified model of the CMG was presented in (Abbas
et al. (2014)), this model is based on a linearization around
a moving operating point, hence it does not fully represent
the nonlinear dynamics, but rather a continuous family of
Jacobian linearizations. The ad-hoc parametrization aims
to hide the nonlinearities of the dynamic model under
parameter variations. This approach is not systematic,
and can be challenging for complex systems. In this paper
we use velocity linearization, (Leith and Leithead (1998)),
which leads to an exact representation of the nonlinear
dynamics of the model, unlike the approximation given
by a Jacobian linearization around an operating point.
Indeed, a velocity linearization of a nonlinear model

ẋ = f(x, u), (4)

is obtained by calculating its time derivative, yielding

ẍ = ∇xf(x, u)ẋ+∇uf(x, u)u̇. (5)

Notice that the Jacobian matrices ∇xf(x, u),∇uf(x, u),
depend on x and u, and that the model is linear in ẋ and
u̇, this significantly simplifies the effort needed to find a
quasi-LPV parametrization. A consequence of using this
linearization is that information of x is lost, however, it
can be easily recovered by state augmentation. A velocity
based linearization of the model (2) was carried out using
the Symbolic Math Toolbox from Matlab, yielding[

q̈
˙̇q̇

]
= ∇xf(x, u)

[
q̇
q̈

]
+∇uf(x, u)

[
u̇1

u̇2

]
, (6)

where the Jacobian ∇xf(x, u) depends on the state vari-
ables q2, q3, q̇1, q̇2, q̇3, q̇4, and on the inputs u1 and u2.
The Jacobian ∇uf(x, u) only depends on q2 and q3. Due to
their complexity the values of the Jacobians are not shown
here.

2.2 Velocity based quasi-LPV model

In order to build a state space quasi-LPV model out of
(6) the vector xv = [y� ẋ�]� and the vector of scheduling
parameters ρ = [q̇1 q2 q3 q̇2 q̇3 q̇4 u1 u2] are defined,
resulting in
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[
ẏ
ẍ

]
=

[
0 C
0 ∇xf(x, u)

]

︸ ︷︷ ︸
Av(ρ)

[
y
ẋ

]
+

[
0

∇uf(x, u)

]

︸ ︷︷ ︸
Bv(ρ)

u̇, (7)

yv = [I 0]

[
y
ẋ

]
,

where C = [I 0]. Since predictive control laws work in
discrete time, the model (7) is discretized using Euler’s
method. This yields the discrete-time model

xv,k+1 = A(ρk)xv,k +B(ρk)∆uk (8)

where

A(ρk) = I +Av(ρk)Ts, B(ρk) = Bv(ρk),

∆uk = uk − uk−1,

and Ts = 0.01s is the sampling period.

2.3 Input-Output quasi-LPV model

To obtain an input output model we now turn our atten-
tion to equation (6), particularly to the equation of ˙̇q̇. We
discretize this equation using backward Euler’s method,
yielding the IO-qLPV model

yk = −
3∑

i=1

Ai(ρk)z
−iyk +B1(ρk)∆uk−1, (9)

where Ai(ρ(k)) : Rnρ → Rl×l and B1(ρ(k)) : Rnρ →
Rl×m are continuous maps on ρk, the output is yk =
[ω1,k, q2,k, q3,k, q4,k]

�, and z−1 is the backward time-
shift operator. In the process of discretization for the IO
model, ˙̇q̇1 is integrated only up to the angular velocity ω1,
i.e. excluding its angular position. The angle q1 is not of
interest since it is dynamically irrelevant (as the flywheel
is perpetually in motion). The velocities ω2,k, ω3,k, ω4,k,
which are also part of ρk, are not included in the output
because they can be estimated with yk.

3. PREDICTIVE CONTROLLERS

The procedures to obtain the predictive control laws
used in this paper, as well as the theory and stability
results were presented in (Cisneros et al. (2018)) and
(Cisneros and Werner (2019)). Both schemes consider a
given quadratic cost function, which is minimized online
by solving an optimization problem in the form of QPs.
The solution gives the optimal input that complies with
the input and output constraints.

3.1 SS-qLMPC

The performance index of the SS-qLMPC control law is

Jk =

N−1∑
i=0

(
||ek+i||2T + ||ẋk+i||2Q + ||∆uk+i||2R

)
+ ||ek+N ||2TN

,

(10)

where ek+i = rk+i − yk+i is the tracking error, ẋk+i is the
velocity state, ∆uk+i is the input increment and N is the
prediction horizon. The weighting matricesQ ∈ Rn×n, T ∈
Rl×l and TN = αT are positive semi-definite, R ∈ Rm×m

is positive definite and α is a positive scalar. Using (10)
the online optimization problem is defined as

min
∆u

Jk (11a)

subject to

xv,k+j+1 = A(ρk+j)xv,k+j +B(ρk+j)∆uk+j , (11b)

uk+j = uk−1 +

j∑
i=0

(∆uk+i) ∈ U , (11c)

for j ∈ [0, . . . , N − 1],

ẋk+N = 0. (11d)

where U is the input constraint set. Note that the dynamic
constraint (11b) is nonlinear due to the dependence on the
scheduling trajectory ρk, which is in turn a function (x, u).
To circumvent this issue we make use of the qLMPC algo-
rithm presented in (Cisneros et al. (2016)). This algorithm
turns the problem (11) into a repeated quadratic program
(QP); see Section 3.3. It is based on iteratively determining
the optimal scheduling trajectory

Pk =




ρk
ρk+1

...
ρk+N−1


 ,

and using it along with the prediction equation

Xk+1 = Λ(Pk)xv,k + S(Pk)∆Uk, (12)

where

Xk+1 =




xk+1

xk+2

...
xk+N


 , ∆Uk =




∆uk

∆uk+1

...
∆uk+N−1




and

Λ(Pk) =




A(ρk)

A(ρk+1)A(ρk)
...

A(ρk+N−1) . . . A(ρk+1)A(ρk)




S(Pk) =




B(ρk) 0 . . . 0

A(ρk+1)B(ρk) B(ρk+1) . . . 0
...

...
. . . 0

A(ρk+N−1) . . . A(ρk+1)B(ρk) . . . . . . B(ρk+N−1)


 .

With the scheduling trajectory {ρk+i} fixed, the dynamic
constraint is linear, and the optimization problem can be
efficiently solved by solving a QP repeatedly (typically 1
or 2 times).

3.2 IO-qLMPC

The IO-qLMPC control law is obtained by solving at each
sampling instant the optimization problem

min
∆u

N−1∑
j=0

(
||ek+j ||2T + ||∆uk+j ||2R

)
+ ||yk+N ||2TN

(13a)

subject to

yk+j = −
na∑
i=1

Ai(ρk+j)q
−iyk+j +

nb∑
i=1

Bi(ρk+j)q
−iuk+j

(13b)

uk+j = uk−1 +

j∑
i=0

(∆uk+i) ∈ U (13c)

for j = [0, . . . , N − 1]

As before, the optimization problem (13) can be turned
into a repeated QP by using the future scheduling trajec-

tory and a prediction equation, which for the input output
case is given by

Ca(Pk)Yk+1 +Ha(Pk)Y
p
k = Cb(Pk)∆Uk +Hb(Pk)∆Up

k−1.
(14)

where

Yk+1 =




yk+1

yk+2

...

yk+N


 , Y

p
k

=




yk

yk−1

...

yk−na+1


 ,∆U

p
k−1

=




∆uk−1

∆uk−2

...

∆uk−nb+1




and

Ca(Pk) =




I 0 0 . . . 0

A1(ρk+1) I 0 . . . 0

A2(ρk+2) A1(ρk+2) I
. . . 0

...
. . .

...

Ana (ρk+na ) Ana−1(ρk+na ) . . .

0
. . . . . .

. . . 0
... 0 Ana (ρk+N−1) . . . I




,

Ha(Pk) =




A1(ρk) A2(ρk) A3(ρk) . . . Ana (ρk)

A2(ρk+1) A3(ρk+1) A4(ρk+1) . .
.

0

A3(ρk+2) . .
.

. .
.

0 0
... Ana (ρk+na−2) . .

.
. .

. ...

Ana (ρk+na−1) 0 0 . . . 0

0 0 0 . . . 0
... 0 0 . . . 0




,

Cb(Pk) =




B1(ρk) 0 0 . . . 0

B2(ρk+1) B1(ρk+1) 0 . . . 0

B3(ρk+2) B2(ρk+2) B1(ρk+2)
. . . 0

...
. . .

...

Bnb
(ρk+nb−1)

. . . . . .

0
. . . . . .

. . . 0
... 0 Bnb

(ρk+N−1) . . . B1(ρk+N−1)




,

Hb(Pk) =




B2(ρk) B2(ρk) B3(ρk) . . . Bnb
(ρk)

B3(ρk+1) B3(ρk+1) B4(ρk+1) . .
.

0

B4(ρk+2) . .
.

. .
.

0 0
... Bna (ρk+na−3) . .

.
. .

. ...

Bnb
(ρk+na−2) 0 0 . . . 0

0 0 0 . . . 0
... 0 0 . . . 0




.

3.3 Scheduling trajectory approximation

A key element of both predictive control laws is the use of
quasi-LPV modelling to schedule the prediction equations
turning them into LTV, thus allowing the transforma-
tion of the nonlinear optimization problems into repeated
QPs. The prediction equations require the knowledge of
the future scheduling parameters Pk, which is not avail-
able. However, by exploiting the fact that for quasi-LPV
systems the scheduling parameters depend on the states
and/or inputs, Pk can be determined iteratively. The pro-
cedure for the state space case is implemented as follows:

(1) At time step k = 0, the values xk and uk−1 are known,
and the optimization problem (11) is solved using
the quasi-LPV model (8) and the frozen parameter
trajectory P s=0

k=0 = 1N ⊗ �(xk, uk−1), where s indi-
cates the iteration step in the search for the optimal
scheduling sequence P ∗

k and ρk = �(xk, uk−1).
(2) Solving the problem (11) yields the vector of future

control inputs 1 Us=1
k . Using this vector, we can cal-

1 Recall that Uk depends on uk−1 and ∆Uk.

culate the future statesXs=1
k with (12), and by exten-

sion the parameter trajectory P s=1
k = �(Xs=1

k , Us=1
k ).

Now we can solve again problem (11) and obtain
the vectors Xs=2

k , Us=2
k and P s=2

k = �(Xs=2
k , Us=2

k ).
Note that the quasi-LPV model is now a linear time
varying (LTV) system, since the sequence P s=1

k is not
constant. Finally the scheduling P s

k is then iteratively
driven towards its optimal value P ∗

k = �(X∗
k , U

∗
k ),

where U∗
k denotes the input sequence of the optimal

solution to problem (11).
(3) After the final iteration step s , Xs

k and Us
k are saved

to calculate in the next step P 0
k+1 = �(Xs

k, U
s
k). This

allows for faster convergence.

Note that for this algorithm to work in the input output
case slight modifications have to be made. Such as the
use of a different prediction equation, and the estimation
of scheduling variables that are not in yk. The complete
algorithms for both predictive strategies are shown in the
Appendix.

4. EXPERIMENTAL RESULTS

This section presents the results of the experimental imple-
mentation of the two control schemes discussed throughout
the paper. Two different experiments are to be carried out:
The first one is the tracking of step changes, which were
chosen such that cross coupling between the two channels
is to be suppressed. The second experiment is to track
a combination of ramps and sinusoidal signals, which are
meant to test the situation when the outputs q3 and q4,
move in opposite directions at the same time.

4.1 Experimental setup

To perform the experiments, the CMG is first brought to
the operating point q̇1 = 45 rad

s , q2 = 0◦, q3 = 0◦, q4 = 0◦.
This is achieved by a PI regulator, and after 15s the control
authority is given to the MPC controller through a time
switch. The controllers were implemented using Matlab
& Simulink on a 3.5GHz Intel Core-i5 4670 CPU. The
angles q2, q3, q4, are measured using encoders and the
corresponding velocities and accelerations are estimated
using differential filters.

The prediction horizon for both controllers is N = 30. The
tuning matrices for the SS-qLMPC are T = diag(800, 100),
R = diag(1500, 1500) and Q = diag(0, 5, 2, 2, 0, 0, 0, 0); and
for the IO-qLMPC are T = diag(0,0,1500,1500) and R =
diag(2500, 2500). The input constraints are |τ1| ≤ 0.66Nm
and |τ2| ≤ 2.44Nm. The tuning for both designs was made
such that rapid changes in the input are avoided (recall
that R weights input increments) in order to avoid exciting
unmodelled high frequency dynamics. In the SS-qLMPC
design, the weight Q is used to provide additional damping
by weighting velocities.

The controllers were tested in simulation using the non-
linear model (1). This simulation provided us with esti-
mates of the execution times of the algorithms. Figure 3
shows the algorithm’s execution time when the reference
of Experiment 2 is to be tracked using horizons N = 30
and N = 70. When the horizon N = 30 is selected, both
algorithms are executed in each sampling interval in less
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tory and a prediction equation, which for the input output
case is given by

Ca(Pk)Yk+1 +Ha(Pk)Y
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k = Cb(Pk)∆Uk +Hb(Pk)∆Up

k−1.
(14)

where
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3.3 Scheduling trajectory approximation

A key element of both predictive control laws is the use of
quasi-LPV modelling to schedule the prediction equations
turning them into LTV, thus allowing the transforma-
tion of the nonlinear optimization problems into repeated
QPs. The prediction equations require the knowledge of
the future scheduling parameters Pk, which is not avail-
able. However, by exploiting the fact that for quasi-LPV
systems the scheduling parameters depend on the states
and/or inputs, Pk can be determined iteratively. The pro-
cedure for the state space case is implemented as follows:

(1) At time step k = 0, the values xk and uk−1 are known,
and the optimization problem (11) is solved using
the quasi-LPV model (8) and the frozen parameter
trajectory P s=0

k=0 = 1N ⊗ �(xk, uk−1), where s indi-
cates the iteration step in the search for the optimal
scheduling sequence P ∗

k and ρk = �(xk, uk−1).
(2) Solving the problem (11) yields the vector of future

control inputs 1 Us=1
k . Using this vector, we can cal-

1 Recall that Uk depends on uk−1 and ∆Uk.

culate the future statesXs=1
k with (12), and by exten-

sion the parameter trajectory P s=1
k = �(Xs=1

k , Us=1
k ).

Now we can solve again problem (11) and obtain
the vectors Xs=2

k , Us=2
k and P s=2

k = �(Xs=2
k , Us=2

k ).
Note that the quasi-LPV model is now a linear time
varying (LTV) system, since the sequence P s=1

k is not
constant. Finally the scheduling P s

k is then iteratively
driven towards its optimal value P ∗

k = �(X∗
k , U

∗
k ),

where U∗
k denotes the input sequence of the optimal

solution to problem (11).
(3) After the final iteration step s , Xs

k and Us
k are saved

to calculate in the next step P 0
k+1 = �(Xs

k, U
s
k). This

allows for faster convergence.

Note that for this algorithm to work in the input output
case slight modifications have to be made. Such as the
use of a different prediction equation, and the estimation
of scheduling variables that are not in yk. The complete
algorithms for both predictive strategies are shown in the
Appendix.

4. EXPERIMENTAL RESULTS

This section presents the results of the experimental imple-
mentation of the two control schemes discussed throughout
the paper. Two different experiments are to be carried out:
The first one is the tracking of step changes, which were
chosen such that cross coupling between the two channels
is to be suppressed. The second experiment is to track
a combination of ramps and sinusoidal signals, which are
meant to test the situation when the outputs q3 and q4,
move in opposite directions at the same time.

4.1 Experimental setup

To perform the experiments, the CMG is first brought to
the operating point q̇1 = 45 rad

s , q2 = 0◦, q3 = 0◦, q4 = 0◦.
This is achieved by a PI regulator, and after 15s the control
authority is given to the MPC controller through a time
switch. The controllers were implemented using Matlab
& Simulink on a 3.5GHz Intel Core-i5 4670 CPU. The
angles q2, q3, q4, are measured using encoders and the
corresponding velocities and accelerations are estimated
using differential filters.

The prediction horizon for both controllers is N = 30. The
tuning matrices for the SS-qLMPC are T = diag(800, 100),
R = diag(1500, 1500) and Q = diag(0, 5, 2, 2, 0, 0, 0, 0); and
for the IO-qLMPC are T = diag(0,0,1500,1500) and R =
diag(2500, 2500). The input constraints are |τ1| ≤ 0.66Nm
and |τ2| ≤ 2.44Nm. The tuning for both designs was made
such that rapid changes in the input are avoided (recall
that R weights input increments) in order to avoid exciting
unmodelled high frequency dynamics. In the SS-qLMPC
design, the weight Q is used to provide additional damping
by weighting velocities.

The controllers were tested in simulation using the non-
linear model (1). This simulation provided us with esti-
mates of the execution times of the algorithms. Figure 3
shows the algorithm’s execution time when the reference
of Experiment 2 is to be tracked using horizons N = 30
and N = 70. When the horizon N = 30 is selected, both
algorithms are executed in each sampling interval in less
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Fig. 3. Simulation: Execution time of the algorithms.
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Fig. 4. Experiment 1: Tracking of step changes.

that 2ms; it can be observed that the IO-qLMPC is slightly
faster than the SS-qLMPC. Moreover, when the horizon
is increased to N = 70, it is clear that the IO-qLMPC
is faster. A possible reason of this is that the operations
entailed by the calculation of the prediction equations (12),
(14) scale better for the IO case.

4.2 Trajectory Tracking

In Figure 4 the results of the first experiment are shown.
The response of both controllers is remarkably fast, and
the IO-qLMPC exhibits vibrations. A possible cause of
this behaviour is that the rapid response of the closed-
loop system induces vibrations in the system. In the IO-
qLMPC case the cost function does not provide a way to
straightforwardly add damping (as in the SS case, where
a penalty on velocities can be implemented) consequently,
vibrations are difficult to damp. Both of the controllers
exhibit cross coupling, but in the IO-qLMPC it is more
pronounced. In Figure 5 the control inputs related to this
experiment are shown. Notice that both controllers exploit
the available torque and saturate when rapid changes are
required. Figure 6 illustrates the results of the second
experiment. In this case the IO-qLMPC achieves a very
small steady state error for the ramps and sine references,
when compared to its SS-qLMPC counterpart, although
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Fig. 5. Experiment 1: Input signals.

the latter still achieves outstanding performance. Notice
that in this experiment the amplitude of the references is
almost twice as of the first experiment. This demonstrates
the tracking capabilities of the controllers over a wide
operation range.
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Fig. 6. Experiment 2: Tracking of the ramps and sinusoidal
references.

4.3 Comparison

To evaluate the controllers performance the root mean
square value of the tracking error signals was calculated.
Table 1 shows the results for each experiment. It can
be seen that SS-qLMPC outperforms the IO-qLMPC for
Experiment 1, but only for a small fraction. On the other
hand the performance of the IO-qLMPC is clearly better
in Experiment 2. The main advantage of the SS-qLMPC is
its ability to penalize velocities, thereby providing a simple
way to include damping. In the case of the IO-qLMPC a
faster execution time is achieved, which allows to have a
longer horizon, and consequently better performance. The
main disadvantage of this controller lies in the exclusion
of the velocities from the output, since this entails a lack
of damping. On the other hand, this allows for a reduction
in the controller’s complexity.

Table 1. RMS values of the tracking errors

Controller RMS Value RMS Value
Exp. 1 [◦] Exp. 2 [◦]

SS-qLMPC 3.38 8.37
IO-qLMPC 3.7 0.9484

5. CONCLUSION

In this paper the design and implementation of two predic-
tive control laws for the trajectory tracking of a CMG was
presented. Both controllers utilize the velocity lineariza-
tion in order to obtain a suitable quasi-LPV model which
allows for a wide operation range. Experimental results
show the efficacy and efficiency of the qLMPC algorithm,
which is essential for the presented control strategies. At
the same time these results highlight the main benefits and
drawbacks of each controller.

The IO-qLMPC can penalize velocities, if they are in-
cluded in the output. However, in this case it was con-
sidered impractical. The IO-qLMPC is faster than the SS-
qLMPC, and its execution time scales better when the
horizon is increased. Both predictive controllers achieve
zero steady state error for set point tracking, and high
performance is achieved through the exploitation of the
explicit definitions of input constraints, which allow the
controllers to use the maximum input value when required.
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Appendix A. QLMPC ALGORITHMS

The IOqLMPC is summarized in Algorithm 1, and the
SS-qLMPC in Algorithm 2.

Algorithm 1. IO-qLMPC algorithm.

Initialize T ,R,N , U and smax

for k = 0 to Tsim do
Read yk and uk−1

if k=0 then
Define P 0

k = 1N ⊗ f(yk, uk−1)

end
for s = 0 to smax or stop criterion do

Calculate Ha(P
s
k ), Ca(P
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k )
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k , ∆Us
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Define P s+1
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end
Define P 0
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Apply uk = ∆uk + uk−1 to the system

end

Algorithm 2. SS-qLMPC algorithm.

Initialize T ,Q,R,N ,α, U , smax

for k = 0 to Tsim do
Read xv,k and uk−1

if k=0 then
Define P 0
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Table 1. RMS values of the tracking errors

Controller RMS Value RMS Value
Exp. 1 [◦] Exp. 2 [◦]

SS-qLMPC 3.38 8.37
IO-qLMPC 3.7 0.9484

5. CONCLUSION

In this paper the design and implementation of two predic-
tive control laws for the trajectory tracking of a CMG was
presented. Both controllers utilize the velocity lineariza-
tion in order to obtain a suitable quasi-LPV model which
allows for a wide operation range. Experimental results
show the efficacy and efficiency of the qLMPC algorithm,
which is essential for the presented control strategies. At
the same time these results highlight the main benefits and
drawbacks of each controller.

The IO-qLMPC can penalize velocities, if they are in-
cluded in the output. However, in this case it was con-
sidered impractical. The IO-qLMPC is faster than the SS-
qLMPC, and its execution time scales better when the
horizon is increased. Both predictive controllers achieve
zero steady state error for set point tracking, and high
performance is achieved through the exploitation of the
explicit definitions of input constraints, which allow the
controllers to use the maximum input value when required.
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Appendix A. QLMPC ALGORITHMS

The IOqLMPC is summarized in Algorithm 1, and the
SS-qLMPC in Algorithm 2.

Algorithm 1. IO-qLMPC algorithm.

Initialize T ,R,N , U and smax

for k = 0 to Tsim do
Read yk and uk−1

if k=0 then
Define P 0

k = 1N ⊗ f(yk, uk−1)

end
for s = 0 to smax or stop criterion do

Calculate Ha(P
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end
Define P 0

k+1 = f(Y s
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Apply uk = ∆uk + uk−1 to the system

end

Algorithm 2. SS-qLMPC algorithm.

Initialize T ,Q,R,N ,α, U , smax

for k = 0 to Tsim do
Read xv,k and uk−1

if k=0 then
Define P 0

k = 1N ⊗ f(xv,k, uk−1)

end
for s = 0 to smax or stop criterion do

Calculate H(P s
k ) and S(P s
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