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An anisotropic constitutive model is proposed in the framework of finite deformation to

capture several damage mechanisms occurring in the microstructure of dental enamel, a

hierarchical bio-composite. It provides the basis for a homogenization approach for an

efficient multiscale (in this case: multiple hierarchy levels) investigation of the deforma-

tion and damage behavior. The influence of tension–compression asymmetry and fiber–

matrix interaction on the nonlinear deformation behavior of dental enamel is studied by

3D micromechanical simulations under different loading conditions and fiber lengths. The

complex deformation behavior and the characteristics and interaction of three damage

mechanisms in the damage process of enamel are well captured. The proposed constitu-

tive model incorporating anisotropic damage is applied to the first hierarchical level of

dental enamel and validated by experimental results. The effect of the fiber orientation on

the damage behavior and compressive strength is studied by comparing micro-pillar

experiments of dental enamel at the first hierarchical level in multiple directions of fiber

orientation. A very good agreement between computational and experimental results is

found for the damage evolution process of dental enamel.

& 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Dental enamel exhibits both high strength and high tough-

ness simultaneously in spite of a high volume fraction of

fibrous hydroxyapatite (90%), a mineral with generally brittle

fracture behavior (Fratzl and Weinkamer, 2007). Many studies

on the structure–property relationship reveal that nano-sized
Elsevier Ltd. This is an o
nd/4.0/).

Ma).
mineral fibers aligned in a staggered manner in the hierarch-
ical microstructure lead to extraordinary mechanical proper-
ties (Chen et al., 2012; Bechtle et al., 2012). Recently, many
groups mimic the building principle of dental enamel for
developing bio-inspired nano-composites for high perfor-
mance components (Chen and Pugno, 2013; Espinosa et al.,
2009; Humburg et al., 2014). For this purpose, micro-
mechanical models have been proposed and developed to
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clarify the relationship between the unique microstructure

and the high damage resistance of enamel (An et al., 2015;

Scheider et al., 2015).
Due to the anisotropy of the microstructure and complex

damage mechanisms, the deformation and damage modeling
of dental enamel are still challenging tasks. Most research
efforts focus on modeling the deformation and damage
behavior under uniaxial tensile loading perpendicular to the
fiber direction (Jäger and Fratzl, 2000; Gao et al., 2003; Bar-On
and Wagner, 2011). However, enamel is mainly loaded by
compressive and shear forces during mastication and chew-
ing cycles (Yilmaz et al., 2015). Furthermore, the orientation
of mineral fibers strongly depends on the location in the
enamel and the hierarchical level. Therefore, the investiga-
tion of the deformation and damage behavior under com-
pressive loading in fiber direction and inclined to the fiber is
crucial for understanding the structure–property relationship
of enamel. In addition, linking microstructural characteristics
to the macroscopic behavior is necessary for simulating the
(homogenized) mechanical response of enamel at higher
hierarchical levels and estimating the critical loading of
components made by bio-inspired nano-composites. To this
end, in the present work, an anisotropic damage model is
developed in the framework of continuum damage
mechanics and validated by a 3D micro-mechanical model
under different tensile, compressive loadings.

In recent years, extensive experimental and computa-
tional studies at different length-scales contributed to
describe the correlation between high damage tolerance
and micro-structural features of enamel, e.g., the aspect ratio
of mineral fiber, the fraction of protein, the arrangement of
the mineral fiber, as well as the hierarchical structure
(Bargmann et al., 2013; An et al., 2012; Bechtle et al., 2010).
Barthelat (2014) elaborated a step-by-step approach to design
and optimize staggered composites by employing a periodic
micro-mechanical model including a failure criterion for the
mineral fiber based on fracture mechanics. Lu et al. (2012)
introduced a monoclinic anisotropic model based on a 3D
micromechanical analysis, which takes into account the
orientation changes of the hydroxyapatite crystals and their
spatial elastic property variations. An et al. (2012) performed
multiscale numerical simulations and found that the non-
uniform arrangement of mineral crystallites in prisms
enhances the energy dissipation and retains sufficient stiff-
ness for the outer enamel. The majority of these models
focused on modeling tensile behavior of enamel based on the
small deformation theory. Very limited effort was dedicated
to investigate the influence of the mineral fiber orientation on
the damage behavior and strength of enamel in the frame-
work of finite deformation. However, this is important for
developing a general 3D constitutive model of enamel and
must be taken into account to accurately predict the damage
accumulation process at different hierarchical levels.

Since dental enamel can be regarded as a fiber reinforced
bio-composite with a hierarchical structure, constitutive
models for nonlinear anisotropic deformation behavior of
fiber reinforced materials in the finite deformation regime
can be applied. In the past decades, a large number of
phenomenological hyperelastic models have been proposed

(Ogden, 1972; Yeoh, 1993; Ehret and Itskov, 2009) for modeling

the deformation and damage behavior of bio-composites.

deBotton et al. (2006) proposed a transversely isotropic

hyperelastic model accounting for material response under

out-of-plane and in-plane shear loading modes. Peng et al.

(2006) introduced a new term accounting for the fiber–matrix

interaction into the strain energy density function. Gasser

et al. (2006) developed a hyperelastic potential depending on

direction dependent invariants for transversely isotropic

material, in particular soft biological tissues. Guo et al.

(2014) demonstrated a numerical homogenization approach

for predicting the overall mechanical response of the compo-

site under different loading conditions.
In order to simulate the damage behavior of fiber-

reinforced composites, continuum damage mechanics has

widely been applied to describe the damage accumulation

process in different damage modes (Chaboche et al., 1995;

Lapczyk and Hurtado, 2007; Maimí et al., 2007; Peña, 2011;

Mengoni and Ponthot, 2015; Vasiukov et al., 2015). However,

there exists no model capturing the features of matrix

damage, fiber damage and interface debonding simulta-

neously and their interactions with sufficient accuracy. In

the present work, an anisotropic damage model is proposed

in the framework of finite deformation mapping (i) debonding

of interface between mineral fiber and protein, (ii) damage of

matrix and (iii) breaking of mineral fibers. A hyperelastic

model that describes the nonlinear deformation behavior

under various loading condition builds the basis for a proper

damage model. Particularly, the influence of tension–com-

pression asymmetry and fiber–matrix interaction on the

deformation behavior of dental enamel is studied in 3D

micromechanical simulations.
The damage process incorporating different damage

mechanisms is studied numerically for dental enamel as a

role nano-composite with high and low fiber aspect ratios,

which involve two typical failure mechanisms, i.e., the break-

ing of the fiber (for high aspect ratio) and degradation of

interface and matrix (for low aspect ratio). The present model

is applied to the first hierarchy level for investigating its

predictive capability. Further, the simulation results are

compared to experimental results from micro-cantilever

beam and micro-pillar experiments. Finally, the effect of the

fiber orientation on the damage behavior and compressive

strength is investigated.
The novel homogenized damage model, which is devel-

oped based on RVE simulations, is able to predict the

averaged behavior of the microstructure and take into

account the different failure mechanisms by means of dis-

tinct damage variables as internal variables. The numerical

homogenized approach presented in this work can be applied

to higher hierarchical levels for efficiently studying structure–

property relationship at higher hierarchical levels and the

role of the hierarchical level on the damage-tolerance beha-

vior, since dental enamel can be regarded as a bio-composite

with a self-similar structure at each hierarchical level.
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2. Anisotropic hyperelastic damage model of
dental enamel

As outlined in the introduction, dental enamel possesses a
fibrous microstructure with several hierarchy levels. In order
to predict the mechanical response, a homogenized consti-
tutive model based on the microstructure at a lower hier-
archical level is required to capture the anisotropic response
of the material at higher hierarchical levels. The anisotropy
results from the presence of a unidirectional alignment of
mineral fibers. In this section, an anisotropic damage model
is developed to describe the homogenized deformation and
damage behavior of dental enamel at the first hierarchical
level. The model is formulated within the framework of finite
deformation, since the macroscopic fracture strain can reach
up to 10% in micro-pillar tests and the local deformation can
be much larger due to the debonding of interface and
localization of strains.

2.1. Kinematics of finite deformation

Following the standard concept for describing the deforma-
tion of material, X and x denote the position vectors of a
material particle in the reference and current configurations,
respectively. The direction vector of fibers in the reference
configuration is denoted by a0. The deformation gradient F is
defined as F¼ ∂x

∂X. The relevant strain invariants of the right
Cauchy–Green deformation tensor C¼ Ft � F used throughout
the investigation are given as:

I1 ¼ tr C; I2 ¼ 1
2 tr2 C�tr C2� �

; I3 ¼ det C¼ J2;

I4 ¼ a0 � C � a0; I5 ¼ a0 � C2 � a0; ð1Þ
A multiplicative decomposition of F into dilatation and

isochoric parts is used here, since damage might act differ-
ently on these deformation modes (Flory, 1961; Gasser et al.,
2006): F ¼ J�1=3F, with J¼ det F. Correspondingly, the right
isochoric Cauchy–Green deformation tensor is defined as
C ¼ F

t � F ¼ J�2=3C. Its first strain invariant reads I1 ¼ tr C.

2.2. Damage model within the framework of
thermodynamics at finite deformation

Based on the knowledge from the small scale testings and
multiscale simulations, an anisotropic damage model is
proposed to describe the damage process of dental enamel.
Regarding the characteristics of deformation and damage
behavior of dental enamel, the Helmholtz free energy density
is divided into four parts:

Ψ ¼ΨmðDm; I1; I3Þ þ Ψ f ðDf ;Dint; I4Þ þ Ψ intðI1; I2; I3; I4; I5;DintÞ
þ ΨDðαÞ; ð2Þ

where Dm, Df and Dint are defined as matrix damage, fiber
damage and interface damage, respectively. Ψm and Ψ f are
the corresponding free energy density terms of matrix and
mineral fiber. Ψ int is the free energy density induced by the
fiber–matrix shear interaction. ΨD is the free energy density
related to the internal variable of the damage strengthening
in the matrix and the interface, α. Internal forces in fibers are
transported by the interface from the matrix and contribute
to the damage of the interface. Thus, the interface damage
Dint occurs in the free energy terms of the fiber as well as the
fiber–matrix interaction.

The constitutive model should be consistent with thermo-
dynamic laws and principles of continuum mechanics. The
material's damage process is an irreversible process obeying
the second law of thermodynamics. This is exploited by
means of the Clausius–Duhem inequality for the dissipation
Dint as (Coleman and Noll, 1963)

Dint ¼ 1
2 S : _C� _Ψ Z0 ð3Þ

in the isothermal case, where S is the second Piola–Kirchhoff
stress tensor. Inserting Eq. (2) into Eq. (3), the Clausius–
Duhem inequality reads

Dint ¼ S�2
∂Ψ
∂C

� �
:
_C
2
� ∂Ψ

∂Dm

_Dm� ∂Ψ
∂Df

_Df �
∂Ψ
∂Dint

_Dint�
∂Ψ
∂α

_αZ0:

ð4Þ
Consequently, the second Piola–Kirchhoff stress tensor

must satisfy

S¼ 2
∂Ψ
∂C

; ð5Þ

since the Clausius–Duhem inequality has to be fulfilled for
admissible cases. The stress derivations for the single energy
terms are given in Appendix C.

The thermodynamic forces with respect to a number of
internal variables incorporating different damage variables
are derived from the Clausius–Duhem inequality condition as

Ym ¼ � ∂Ψm

∂Dm
; Yf ¼ � ∂Ψm

∂Df
; Yint ¼ � ∂Ψ int

∂Dint
; A¼ � ∂ΨD

∂α
; ð6Þ

where Ym, Yf and Yint are the corresponding damage driving
force with respect to matrix damage, fiber damage and
interface damage, respectively. A is the thermodynamic
driving force associated with the damage strengthening α.

2.3. Free energy density functions

The individual parts of the free energy densities in Eq. (2) are
explained in detail, namely those for the matrix Ψm, the fiber
Ψ f , and the matrix-fiber interface Ψ int. The free energy
density related to damage strengthening, ΨD, is not presented
here, since the stress, which is the derivative of Ψ with
respect to C according to Eq. (5), does not have a contribution
from ΨD (ΨD only depends on α, but not on C). However, the
damage driving force AðαÞ affects the damage evolution of the
matrix and the interface, and therefore it will be derived later
in Section 2.4.

2.3.1. Free energy density function of the matrix
The free energy density function of the matrix is formulated
by coupling the hyperelastic behavior with the matrix
damage Dm following Lemaitre:

ΨmðI1; J;DmÞ ¼ 1�Dm½ �Ψ 0
m: ð7Þ

The free energy density of the matrix in the undamaged state
Ψ0

m is split into a purely volumetric part Ψ0
m; vol and an

isochoric part Ψ0
m; iso

Ψ0
m I1; J
� �¼Ψ 0

m; vol Jð Þ þ Ψ0
m; iso I1

� �
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¼ K

β2
1

Jβ
þ βlnJ�1

� �
þ C1 exp C2 I1�3

� �� ��1
� �

; ð8Þ

where K is the bulk modulus and β describes the tension–
compression asymmetry behavior. C1 and C2 are material
parameters in the isochoric part of the strain energy density.
Both parts of the energy density have a strictly convex form,
and the normalization condition, Ψ0

mðI1 ¼ 3; J¼ 1Þ ¼ 0, is satis-
fied by Eq. (8). The isochoric part is written as an exponential
function to reflect the nonlinear deformation behavior of the
matrix. The volumetric part follows the function form pro-
posed by Ogden (1972).

The hydrostatic stress of the matrix is derived from the
volumetric strain energy function by

pm ¼ dΨ0
m; volðJÞ
dJ

¼ K
βJ

1� 1
Jβ

� �
: ð9Þ

The tension–compression asymmetry of the normalized
hydrostatic stress increases with the increasing β as depicted
in Fig. 1.

2.3.2. Free energy density function of the fiber
In bio-composites with a staggered alignment of fibers,
stresses are transported to the fibers by the interfaces from
the matrix – according to the shear-lag model (Gao et al.,
2003). Hence, the damage of the interface reduces the stress
transported to the fibers in addition to the fiber damage itself.
Consequently, the free energy density function of the fiber
should account for this coupling, for example, via

Ψ f ðDf ;Dint; I4Þ ¼ 1�Dint½ � 1�Df½ �Ψ 0
f : ð10Þ

Following the description of the strain energy stored in the
fiber in Holzapfel et al. (2000), the strain energy function of
the fiber in the undamaged state Ψ0

f reads

Ψ0
f ¼

C3

2C4
exp C4 I4�1½ �2� ��1
� �

; ð11Þ

where C3 and C4 are material parameters.

2.3.3. Free energy density function for fiber–matrix interaction
The basic idea of the geometric description for fiber–matrix
interaction, following Peng Peng et al., 2006, is explained
Fig. 1 – Influence of material parameter β on the hydrostatic
stress: the tension–compression asymmetry increases with
increasing β.
briefly in Appendix B. The free energy contribution from the
fiber–matrix interaction is assumed to be related to the
relative shear angle between the fiber and the matrix plane,
cf. also Peng et al. (2006). As shown in Fig. 2, we define a
geometric variable

φ¼ tan 2θ¼ 1
cos 2θ

�1¼ I4
I3

I5� I1I4 þ I2½ ��1 ð12Þ

to quantify the fiber–matrix shear interaction of composites.
The free energy density with respect to the fiber–matrix shear
interaction is formulated as

Ψ int ¼ ½1�Dint�Ψ0
int ¼ ½1�Dint�Cintφ

2; ð13Þ

where the undamaged free energy density of the fiber–matrix
interaction is defined as Ψ0

int ¼Cintφ
2. Cint accounts for fiber–

matrix interaction, and is identified by the micromechanical
simulation of the material response under different shear
loadings based on a 3D RVE.

2.4. Damage initiation criteria and evolution laws

In this section, we introduce criteria for activating the
damage process by postulating damage potentials in the
thermodynamic force space for three damage modes, i.e.,
matrix damage, fiber damage and interface debonding. In
addition, evolution laws for the damage variables are derived
for describing the nonlinear damage accumulation process.

Recalling Eq. (6), the thermodynamic forces associated
with the damage variables are derived via the defined strain
energy density in the undamaged state as

Ym ¼ Ψ0
m; Yf ¼ ½1�Dint�Ψ 0

f ; Yint ¼ ½1�Df �Ψ 0
f þ Ψ0

int: ð14Þ

A strong interaction between interface and matrix damage
exists during the damage process in the composites. For
instance, the damage of the interface can cause stress
concentrations in the matrix, which accelerates the initiation
and propagation of matrix damage. In contrast, the fiber is
shielded by interface damage; that is, an accelerated damage
in the fiber is not caused by the development of interface
damage. Therefore, a combined damage potential for matrix
and interface damage Fdammi is defined, while an independent
damage criterion is applied to the initiation of fiber damage
Fdamf . The consistency conditions of the damage potentials
must be fulfilled separately in case of active damage evolu-
tion:

dFdammi ¼ 0; dFdamf ¼ 0: ð15Þ
Fig. 2 – Geometric description of the fiber–matrix interaction.
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2.4.1. Damage potential of matrix and interface
The damage potential of matrix and interface is proposed as

Fdammi ðYm;Yint; αÞ ¼YeqðYm;YintÞ�AðαÞ; ð16Þ

where the equivalent damage driving force Yeq is defined as

Yeq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y2
m þ Y2

int

q
ð17Þ

with respect to the interface damage and matrix damage. The
consistency condition (15) for this damage potential is writ-
ten using Eq. (16) as

∂Fdammi

∂Yeq

_Yeq þ ∂Fdammi

∂A
_A ¼ 0 ) _Yeq� _A ¼ 0: ð18Þ

Damage strengthening α is defined as

_α ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_D
2
int þ _D

2
m

q
; α¼

Z
_α dt; ð19Þ

and an extended exponential evolution law is utilized for its
evolution

α¼ B1 1�exp �b1〈Yeq=Y0�1〉
� �� �

þ B2 1�exp �b2〈Yeq=Y0�1〉
� �� �

; ð20Þ

where 〈 � 〉 are the Macauley brackets, i.e., 〈x〉¼ ½jxj þ x�=2. The
double terms formulation provides a more accurate predic-
tion of damage evolution process; however, at the expense of
introducing more material parameters. The material para-
meters Bi, bi and Y0 with i¼ 1;2 are identified by the stress–
strain curve under tensile loading. Furthermore, the initial
damage threshold Y0 could be different under tensile and
compressive loading. Therefore, Yten

0 and Ycom
0 are used for

tension ðpm40Þ and compression ðpmr0Þ, respectively.
By taking the time derivative of Eq. (20), the rate form of

damage strengthening is derived as _α ¼ ð∂α=∂YeqÞ _Yeq. Using
the relationship between the rate of damage resistance and
the rate of the equivalent damage driving force, _A ¼ _Yeq, Eq.
(18), the evolution of damage resistance _A is related with the
evolution of damage strengthening as

_A ¼ Y0

B1b1exp �b1
Yeq

Y0
�1

	 
� �
þ B2b2exp �b2

Yeq

Y0
�1

	 
� � _α;

ð21Þ
hence,

∂A
∂α

¼ Y0

B1b1exp �b1
Yeq

Y0
�1

	 
� �
þ B2b2exp �b2

Yeq

Y0
�1

	 
� �:
ð22Þ

2.4.2. Damage potential of the fiber
The damage potential of fiber is given as

Fdamf ðYf ;Df Þ ¼ Yf �ZðDf Þ; ð23Þ
where the damage resistance Z of fiber is a function of the
fiber damage Df . The following exponential damage evolution
law is used for modeling the damage evolution process of the
fiber,

Df ¼ 1�exp �b3
Yf

Ycf
�1

	 
� �
; ð24Þ

where Ycf determines the strength of the fiber. The evolution
of the damage resistance of the fiber is derived by taking the
time derivative of Eq. (24) and using the consistency condi-
tion _Y f ¼ _Z

_Z ¼ Ycfb3 exp b3
Yf

Ycf
�1

	 
� �
_Df : ð25Þ

In general, the strength of the material is different under
tensile and compression loading. Therefore, the critical
energy of the fiber Ycf depends on the loading mode:

Ycf ¼
Yten
cf I4Z1

Ycom
cf I4o1

(
; ð26Þ

where Yten
cf and Ycom

cf are the critical energies of the fiber under
tension and compression, respectively.

2.4.3. Damage evolution laws
The evolution of internal variables are deduced by the
normality rule based on the defined damage dissipation
potentials

_Dm ¼ _λmi
∂Fdammi

∂Ym
; _Dint ¼ _λmi

∂Fdammi

∂Yint
; _Df ¼ _λf

∂Fdamf

∂Yf
: ð27Þ

Here, _λmi and _λf are damage multipliers with respect to the
damage potential functions Fdammi and Fdamf , respectively. Con-
sidering the proposed damage potentials, Eq. (27) simplifies to

_Dm ¼ _λmi
Ym

Yeq
; _Dint ¼ _λmi

Yint

Yeq
; _Df ¼ _λf : ð28Þ

_λmi ¼ _α follows from Eq. (28) with Eq. (19).
The consistency conditions of the damage potential func-

tions in Eq. (15) are used in the following to solve the
multipliers _λf and _λmi.

Matrix and interface: Using Eq. (17), the consistency condi-
tion Eq. (18) is reformulated as

Ym

Yeq

_Ym þ Yint

Yeq

_Y int�
∂A
∂α

_α ¼ 0; ð29Þ

where ∂A
∂α is taken from Eq. (22). Substituting the time deriva-

tives of Eq. (14) into above equation, yields

Ym

Yeq

_Ψ
0
m þ Yint

Yeq
1�Df½ � _Ψ 0

f þ _Ψ
0
int�Ψ0

f
_Df

h i
� ∂A

∂α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_D
2
int þ _D

2
m

q
¼ 0:

ð30Þ
Applying the damage evolution equation (27) for _Dm, _Dint

and _Df , one can write

Ym

Yeq

_Ψ
0
m þ Yint

Yeq
1�Df½ � _Ψ 0

f þ _Ψ
0
int�Ψ 0

f
_λf

h i
� ∂A

∂α
_λmi ¼ 0: ð31Þ

Fiber: Analogically, the consistency condition dFdamf ¼ 0 is
reformulated as

1�Dint½ � _Ψ 0
f �Ψ 0

f
Ym

Yeq

_λmi�
∂Z
∂Df

_λb ¼ 0; ð32Þ

where ∂Z
∂Df

¼ Ycfb3exp b3〈
Yf
Ycf

�1〉

 �

follows from Eq. (25).
Combing Eqs. (31) and (32), the unknowns in the damage

evolution equations _λf and _λmi are solved simultaneously.
Then, the rate of damage variables is computed by Eq. (28).

Damage interaction: In the proposed damage model, three
damage variables are used for representing different damage
mechanisms in dental enamel. The interaction between them
is taken into account by using the combined damage poten-
tial of matrix and interface. Furthermore, both damages Df

and Dint are coupled in the fiber hyperelastic energy. In
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addition, the material is assumed to not entirely fail as one
damage variable reaches a critical state. On the other hand,
the other damage mechanisms should be influenced and the
damage accumulation process is accelerated. To this end, a
common critical damage value Dcr1 is defined for the three
damage variables.

If one damage variable of interface damage or matrix
damage Di with i¼ fint;mg reaches the critical state, Di ¼Dc,
the damage evolution process of the other damage variable Dj

is accelerated

Dj ¼Dc
j þ ωKc Yj�Yc

j

h i
ð33Þ

where Dc
j , Yc

j and Kc ¼ dDj

dYj

���
c
are the current damage value,

damage driving force and the tangent of damage evolution
rate of damage variable Dj at the state Di ¼Dc. ω is the
influence factor that accelerates the damage evolution
process.

In the case of total failure of fibers, Df ¼Dc, the parameters
biði¼ f1;2gÞ in the damage evolution equation of Dint and Dm

are replaced by ωbi.
3. Micromechanical model of dental enamel

The material response of the composite under tension,
compression and shear loading is investigated by a micro-
mechanical model with a 3D, periodic RVE which explicitly
takes into account the spatial distribution of the fibers,
matrix and interfaces.

3.1. Setup of the 3D RVE model

Dental enamel has three hierarchical levels: nano-fibers
surrounded by a thin protein layer (intra-rod, level 1), multi-
ple rods of fibers, again surrounded by a protein layer (inter-
Arrangem
at the firs

Intra-rod (the first hierarchical l

Arrangement of intra-rods  
at the second hierarchical level

Fig. 3 – 3D RVE with periodic structure. Stag
rod, level 2), and decussating bundles of rods located near the

dentin (Hunter-Schreger bands, level 3). The first and second

hierarchical levels are illustrated in Fig. 3. On level 1, the

composite is composed of approx. 90% of hard hydroxyapa-

tite nano-fibers which are regarded to be unidirectionally

aligned in the protein matrix. Due to the small size and the

complex arrangement of the fibers, no substantiated infor-

mation about the length of the fibers is available. A finite

length and the discontinuity of the nano-fibers are assumed

based on the presence of the initial defects: the fibers most

probably have weak spots, flaws or imperfections which are a

result, e.g., of biomineralization. These are visible at the first

hierarchical level under high resolution electron microscopy

as shown in Fig. 3. In order to simplify the RVE and reduce the

computational cost without loss of essential information, we

assume that the nano-fibers are periodically arranged in a

staggered manner and represented by prisms with a hexago-

nal cross-section as shown in Fig. 4.
The fibers are aligned in z-direction. The side length S of

the hexagon and thickness t of the protein layer are 29 nm

and 2 nm, respectively. Accordingly, the width W and the

thickness H of the RVE are 165 nm and 95 nm, respectively. In

order to investigate the influence of the aspect ratio of the

mineral fiber on the overall elastic behavior of composite, the

length L of the RVE varies from 290 nm to 3364 nm. The

aspect ratio of fibers ρ¼ L=2S varies from 5 to 58.
The simulations of all RVE models are performed with

ABAQUS/Standard within the framework of finite deformation.

More than 45,000 linear cubic elements (C3D8) are used and

meshes were checked to be a converged finite element

discretization for obtaining accurate simulation results

without mesh-dependence. Periodic boundary conditions

are applied.
ent of nanofibers 
t hierarchical level

evel)

Idealization
to model  

gered aligned mineral fibers and protein.



tension/compression 
mode in x-direction

tension/compression 
mode in y-direction 

tension/compression
mode in z-direction 

 shear model 1:

on x-plane in y-direction

 shear model 2:

on x-plane in z-direction

shear model 3:

on z-plane in x-direction

Fig. 4 – 9 load cases for the validation of the proposed anisotropic hyperelasticity model at the first hierarchical level without
considering damage effect.
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3.2. Load cases

We investigate 9 loading cases for verifying the hyperelastic
behavior of the proposed constitutive model, including uni-
axial tension and compression in three different directions,
shear in the transverse plane, shear along fiber direction,
shear perpendicular to the fiber direction (see Fig. 4). Shearing
perpendicular to the fiber direction (shear mode 3) induces an
additional stretch of the fiber, in contrast to shear along the
fiber direction (shear mode 2).

The average deformation gradient F applied to the RVE has
to satisfy

F ¼ 1
V0

Z
V0

F Xð ÞdX: ð34Þ
The corresponding macroscopic deformation gradient F for

each loading mode is written as

F
xx ¼

κ 0 0

0 1 0

0 0 1

2
64

3
75; F

yy ¼
1 0 0

0 κ 0

0 0 1

2
64

3
75; F

zz ¼
1 0 0

0 1 0

0 0 κ

2
64

3
75;

F
xy ¼

1 κ 0

0 1 0

0 0 1

2
64

3
75; F

zx ¼
1 0 0

0 1 0

κ 0 1

2
64

3
75; F

xz ¼
1 0 κ

0 1 0

0 0 1

2
64

3
75: ð35Þ

The overall behavior of the composite is deduced from the

relations between the average of the resulting stress field and

these boundary conditions. The average of the stress field is

determined from the traction acting on the boundaries of the

RVE. The average 1. Piola–Kirchhoff stress P is obtained as



Table 1 – Summary of material parameters for three
different aspect ratios.

Aspect ratio ρ¼ 5:
C1 ¼ 289:4 MPa; C2¼11.78; C3 ¼ 4563 MPa C4¼4.54
Cint ¼ 10;186 MPa K¼ 9805 MPa β¼ 20

Aspect ratio ρ¼ 10:
C1 ¼ 289:4 MPa; C2¼11.78; C3 ¼ 7829 MPa C4¼1.29
Cint ¼ 15;303 MPa K¼ 9805 MPa β¼ 20

Aspect ratio ρ¼ 58:
C1 ¼ 289:4 MPa; C2¼11.78; C3 ¼ 11; 488 MPa C4 ¼ �2:4
Cint ¼ 19;070 MPa K¼ 9805 MPa β¼ 20
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P ¼ 1
V

Z
V
P Xð ÞdX: ð36Þ

Using the equilibrium equations and the divergence theorem,
the average nominal stress P is computed with the reaction
force of the auxiliary dummy nodes of each face. The average
Cauchy stress of the RVE is calculated by r ¼ J�1P � FT

.

4. Simulation of the anisotropic hyperelastic
behavior

In the RVE simulations, an Arruda–Boyce hyperelastic model
is used to simulate the nonlinear deformation behavior of the
protein, while the deformation behavior of the fibers are
represented by a Neo-Hooke hyperelastic model. The details
of these constitutive models are given in Bargmann et al.
(2013).

The material parameters in the hyperelastic part of the
proposed model are identified by adjusting the analytical
solution for the anisotropic model to the numerical results of
the micromechanical model subjected to four loading condi-
tions: deformation κ of shearing in the transverse plane,
tension in fiber direction, compression in transverse direction
and shearing along the fiber direction. The details of the
identification procedure of the material parameters are found
in Appendix D. The material parameters of the anisotropic
hyperelastic model are listed in Table 1 for three different
aspect ratios.

The comparison between the simulation results of the RVE
and the homogenized hyperelastic model is shown in Fig. 5 in
terms of the Cauchy stress vs. logarithmic strain. The sym-
bols in the figures represent the simulation results of the RVE
model, while the solid lines denote the results using the
analytical expressions of the Cauchy stresses in the aniso-
tropic homogenized hyperelastic model. Whereas the RVE
simulations take several hours of computation time, the
solution of the anisotropic hyperelastic theory is calculated
within seconds.

4.1. Tension and compression response

The tension and compression behavior is studied in the
strain range from �10% to 10% strain.1 Both, the average
1The maximum fracture strain is about 8% during micro-
pillars testing of dental enamel in multiple directions (Yilmaz
et al., 2015).
tension and compression behavior in all loading directions
are accurately predicted by the present hyperelastic model
with the material parameters identified in the previous
section. Further, the material response in the two transverse
directions x and y are nearly identical, justifying the use of a
transversely isotropic hyperelastic model.

As shown in Fig. 5a, c, and e, the material behaves stiffer
under compression than under tension loading. The differ-
ence in transverse direction is apparent for all aspect ratios,
while the difference in fiber direction decreases with the
aspect ratio due to the additional stiffening effect of the fiber.
In order to understand these deformation mechanisms of the
composite, the distributions of the logarithmic strain are
shown in Fig. 6 for the composite with aspect ratio ρ¼ 10 at
a macroscopic average strain 8% in 6 different load cases,
namely tension and compression in three directions.

Under transverse tensile loading, the logarithmic strain of
the protein layer is less than 0.5 at a macroscopic average
elongation of 8%, while it exceeds 1.5 at a same average strain
level under transverse compression. This is due to the fact
that the deformation of the composite is induced by the soft
protein layer under transverse loading. Furthermore, the thin
protein layer and the high fiber volume fraction result in
quite different strains of the protein layer under transverse
tension and compression. The deformation mechanism
under loading in fiber direction is different: the logarithmic
strain of the protein layer exceeds 1.0 at a macroscopic
elongation of 8% for both tension and compression loading
cases, since the load between mineral fibers is transmitted by
the shear deformation of protein layer parallel to fiber
direction. In other words, the tension–compression asymme-
try results from the unique microstructural features of dental
enamel, i.e., the staggered alignment of fibers surrounded
by an extremely thin soft protein layer of only a few
nanometers.

4.2. Shear response

The simulation results of the shear loading cases are depicted
in Fig. 5b, d and f. Generally, the stress–strain curves in all
shear loading cases are accurately predicted by the present
hyperelastic model. In the case of transverse shear (shear
mode 1), fiber–matrix interaction is not activated during the
deformation. Therefore, the stress is significantly lower
compared to the other two shear modes. Furthermore,
transverse shear is independent of the aspect ratio of fiber.
In addition, the shear stress for the case of longitudinal shear
(shear mode 2, Fig. 4e) is slightly lower than for shear in the
plane perpendicular to the fiber direction (shear mode 3,
Fig. 4f), since an additional stretch of fiber occurs in the latter.

The shear stress contours for all 3 shear loading modes are
shown in Fig. 7 for aspect ratio ρ¼ 10 at the macroscopic
shear strain level 20%. It is seen that the shear stress value in
the fiber for shear mode 1 is lower than the other two shear
modes at identical load levels. This difference indicates a
significant fiber–matrix interaction during the deformation
process for the latter.

In order to study the influence of the fiber–matrix inter-
action on the deformation behavior under different shear
modes, the fraction of the free energy density induced by



Fig. 5 – Comparison of the overall stress-logarithmic strain response between the anisotropic hyperelastic model (solid lines)
and the micromechanical simulations of the RVE (symbols) with three different aspect ratio under various loading conditions.
The present anisotropic hyperelastic model provides a suitable description of hyperelastic behavior of dental enamel.
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Fig. 6 – Strain distribution in loading direction at a macroscopic average strain of 8%. 6 different loading cases incorporating
tension and compression for the composite with the aspect ratio ρ¼ 10. Tension and compression asymmetry results from
different deformation mechanisms.
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Fig. 7 – Shear stress distribution. Aspect ratio ρ¼ 10. 3 different shear loadings. The simulation results indicate that more
fiber–matrix interaction is present for shear modes 2 and 3.
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fiber–matrix interaction
Ψ0

int

Ψ0
total

is plotted in Fig. 8 for different
aspect ratios. The total free energy density is defined as
Ψ 0

total ¼ Ψ0
m þ Ψ 0

f þ Ψ0
int. The simulation results clearly show

that the fiber–matrix interaction plays an important role in
the deformation behavior under shear mode 2 and 3. For
shear mode 1, no fiber–matrix interaction occurs. The shear
interaction is more prominent for high aspect ratios: in case
of a composite with ρ¼ 58,

Ψ0
int

Ψ0
total

is nearly 20%.
The validation of the proposed hyperelastic model under

different shear loadings confirms that the effect of fiber-
interaction on deformation behavior of the dental enamel is
captured by the present fiber–matrix interaction function.
Fig. 8 – Fraction of fiber–matrix interaction free energy
density for aspect ratios 5, 10 and 58 under different shear
loadings. The fiber–matrix interaction significantly
influences the deformation behavior of dental enamel under
shear loadings.
5. Simulation of damage behavior of the
dental enamel

Based on the previous results, the present anisotropic hyper-
elastic model is extended to simulate the damage behavior of
dental enamel.

5.1. Damage modeling in the micromechanical simulation

The (homogenized) anisotropic damage model is compared to
the micromechanical damage models proposed in Ma et al.
(2016). The interface between protein and mineral is modeled
by the same cohesive zone model that has previously been
used in Scheider et al. (2015), since this is the most appro-
priate model for physical interfaces. The constitutive model
for the material separation is based on a bi-linear traction
separation law, which is defined by two parameters for each
direction, the cohesive strength T0 and the fracture energy Γ0.
The critical separation, at which the interface has completely
failed, δc, is then given by δc ¼ 2Γ0=T0.

Identical material parameters for the first hierarchical
composite of dental enamel as used in Ma et al. (2016) are
employed for the fiber, matrix and interface damage in
the present micromechanical simulations. The resulting
strengths of fiber and matrix in the continuum damage
model are 2000 MPa and 200 MPa, respectively. Furthermore,
the strength and fracture energy of interface between fiber
and matrix are T0 ¼ 60 MPa and Γ0 ¼ 1:5 J=m2, respectively. For
detailed information the interested reader is referred to
Scheider et al. (2015) and Ma et al. (2016).

5.2. Parameter identification of the anisotropic damage
model

In addition to the hyperelastic part identified in the previous
section, the material parameters of damage initiation and
evolution in the proposed damage model are to be calibrated.
For this purpose, the same 3D RVE is subjected to uniaxial
tension loading in the fiber direction. In dental enamel, it is
found that the main damage mechanism is closely related to



Fig. 9 – Comparison of stress–strain curves from the experiment, micromechanical simulation and the anisotropic damage
model for the composite with the aspect ratio ρ¼ 58; (a) stress–strain curves under tension in fiber direction, (b) stress–strain
curves from micromechanical simulations under compression in transverse direction for identifying the initial damage
threshold Ycom

0 .

Table 2 – Material parameters in damage model for
composite with high aspect ratio ρ¼ 58.

b1 ¼ 0:025, b3¼2.0, B1 ¼ 1:0, B2¼0.0,

Yten
0 ¼ 0:98 MPa, Ycom

0 ¼ 2:95 MPa; Yten
cf ¼ 7:2 MPa

Fig. 10 – Damage evolution process calculated by the
anisotropic damage model for aspect ratio ρ¼ 58. The
interface damage develops more rapidly than matrix
damage and dominates for the degradation process of
material until the fiber damage is activated.
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the aspect ratio of the mineral fiber (Bechtle et al., 2012).
Therefore, it is necessary to study the applicability of the
proposed damage model for different aspect ratios which
involve different damage mechanisms. Two aspect ratios
ρ¼ 10 and ρ¼ 58 are selected for studying the damage process
of the bio-composites. We have previously shown in Ma et al.
(2016) that the failure mechanism differs significantly
between these aspect ratios.

5.2.1. Composite with a high aspect ratio
In Fig. 9, the homogenized tension stress–strain curve
obtained from the micromechanical simulation including
damage is denoted by black symbols for the composite with
aspect ratio ρ¼ 58. The numerical results are compared to the
experimental data from micro-cantilever beam testing
(Bechtle et al., 2012), showing that the micromechanical
simulation results are in good accordance with the experi-
mental result.

The initial damage threshold of matrix and interface, Y0, is
directly calculated at the strain level of damage initiation,
which is determined by comparing the simulated stress–
strain curves from the RVE simulations with and without
damage. The damage initiation of matrix and interface is
found at ε¼ 0:007, which gives Yten

0 ¼ 0:98 MPa. The critical
damage resistance of fiber Yten

cf is adjusted based on the strain
at damage initiation of the fiber. Since the fiber is brittle, this
point corresponds to the point of maximum stress. For a high
aspect ratio, it is found that a single exponential function for
α (Eq. (20)) is sufficient to describe the damage evolution
process, since the damage of the interface and matrix devel-
ops gradually in this case. Therefore, B2 ¼ 0 is set and only
five parameter are left for the identification (b2 has no effect if
B2 is zero). The material parameters b1 and B1 are obtained
by iteratively fitting the stress–strain curve from the micro-
mechanical simulation. The initial damage threshold of
matrix and interface under compression Ycom

0 ¼ 2:95 MPa is
identified based on stress–strain curves from
micromechanical simulations under compression in trans-

verse direction, which is different from the value under

tension Yten
0 . The identified material parameters are listed

in Table 2 for the composite with aspect ratio ρ¼ 58.
In the anisotropic damage model, the different damage

mechanisms are distinguished. Therefore, the specific

damage evolution curves from the simulation for fiber,



Fig. 11 – Damage distribution within the RVE with aspect ratio ρ¼ 58 at end of simulation: (a) in the fiber, (b) at the interface
(cohesive separation), (c) in the matrix. Three damage mechanisms are activated, but eventually the fiber damage in the
middle of the RVE leads to the breaking of the composite.
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matrix and interface are displayed separately in Fig. 10. Under

tensile loading in fiber direction, the matrix and interface

damage initiate simultaneously at the strain level 0.7%. The

interface damage develops more rapidly than matrix damage

and dominates for the degradation process of material until

fiber damage is activated. Once the loading reaches a critical

state, the fiber damage is activated and leads to a rapid loss of

loading bearing capacity of the composite, which results in

the failure of the composite.
The development of multiple damage variables computed

by the anisotropic damage model has to be consistent with

the computational results of the micromechanical simula-

tion. Considering the micromechanical simulation results,
the fiber, interface and matrix damage distribution at an

average strain level of 2% are shown in Fig. 11a, b and c,

respectively. It is observed that all three damage mechanisms

are activated and fiber damage in the middle of the RVE leads

to the breaking of the composite. The zones of interface

damage are mainly located near the fiber ends. The interface

perpendicular to the loading direction (at the fiber ends) is

significantly separated and damaged. It is indicated that the

interface damage has a higher value than matrix damage.

These observations in the micromechanical simulation con-

firm that the damage evolution process of the composite with

a higher aspect ratio is captured by the proposed anisotropic

damage model.



Fig. 12 – Comparison of stress–strain curves from the
micromechanical simulation and the anisotropic damage
model for the composite with aspect ratio ρ¼ 10. The
proposed damage model with these material parameters
provides a reasonable prediction.

Table 3 – Material parameters in the damage model for
the composite with aspect ratio ρ¼ 10.

b1 ¼ 0:255, b2¼0.036, B1 ¼ 0:775, B2¼0.383,

Yten
0 ¼ 0:6 MPa, Ycom

0 ¼ 2:95 MPa
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5.2.2. Composite with a low aspect ratio
In specimen with a low aspect ratio, interface and matrix
damage are dominating the failure of the composites (Yilmaz
et al., 2015; Bargmann et al., 2013). In order to provide a
proper constitutive description for composites with different
microstructures, the applicability of the proposed damage
model to the composite with shorter fibers is investigated
using the composite with aspect ratio ρ¼ 10.

The stress–strain relationship from the RVE simulation is
illustrated by black symbols in Fig. 12. The identical strategy
for identifying the material parameters is applied to the
composite with aspect ratio ρ¼ 10. The damage initiation of
matrix and interface for this composite under tension is
found Yten

0 ¼ 0:62 MPa. Since the material response in trans-
verse direction is independent of the aspect ratio, Ycom

0 equals
the value of the composite with a large aspect ratio. In
specimens with small aspect ratios fiber breaking does not
occur, hence, the parameter Yten

cf is set larger than the value
according to the maximum experienced stress of the fiber,
which leads to the absence of fiber damage. The set of
material parameters for the anisotropic damage model is
summarized in Table 3. In general, the proposed damage
model with these material parameters provides a reasonable
prediction in the stress–strain response of the composite with
a low aspect ratio under tensile loading.

The damage evolution curves computed by the proposed
anisotropic damage model are displayed in Fig. 13a. In
contrast to the composite with a high aspect ratio, the fiber
damage is not activated in the composite with a low aspect
ratio due to the higher value of Yten
cf , which matches the stress

distribution in the micromechanical analysis shown in

Fig. 13b. It is seen that the stress level in the fiber is much

lower than the strength of fiber. The interface and matrix

damage distributions are illustrated in Fig. 13c and f, respec-

tively. Compared to the interface and matrix damage dis-

tributions in the composite with ρ¼ 58, the interface and

matrix damage are responsible for the failure of the compo-

site with ρ¼ 10. Furthermore, due to the introduction of Eq.

(33), matrix damage is accelerated as interface damage

reaches the critical state at the average strain level 6% in

the computation of the anisotropic damage model.
The proposed damage model is applied to composites with

the two different aspect ratios. The computational results are

validated by the micromechanical analysis and experimental

data. It is shown that the main damage mechanisms under

tension loading are well predicted by the proposed anisotro-

pic damage model.
5.3. Comparison to micro-pillar experiments in multiple
directions

The anisotropic microstructure of dental enamel indicates a

dependence of the material strength on the fiber orientation

or loading direction. It is crucial that a successful constitutive

model incorporating damage is able to predict this depen-

dence. Therefore, the anisotropic damage model is compared

to the micro-pillar tests of Yilmaz et al. (2015) including

multiple fiber orientations. According to Bechtle et al. (2012),

it is experimentally found that the composite in the first

hierarchical level of dental enamel has a very high aspect

ratio. The computational investigation suggests that the

composite with aspect ratio ρ¼ 58 can reproduce the material

behavior and damage mechanisms of the realistic bio-

composite in the first hierarchical level of dental enamel

(Ma et al., 2016). Hence, for the computation we resort to an

aspect ratio ρ¼ 58 for representing the bio-composite in the

first hierarchical level of dental enamel.
The stress–strain curves under compression with respect

to four different fiber orientations are computed by the

proposed anisotropic damage model with the material para-

meters identified for the composite with the aspect ratio

ρ¼ 58 (Table 2). In addition, the initial damage resistance of

fiber under tension and compression are identical,

Ycom
cf ¼Yten

cf . The four fiber orientations include the angle

between mineral fiber and the loading direction

θ¼ 01; 231; 651; 901, where θ¼ 01 represents the fiber orienta-

tion parallel to the loading direction, the mineral fiber is

aligned perpendicular to loading direction for θ¼ 901. The

different fiber orientation result in significantly different

stress–strain curves under compression, cf. Fig. 14. For θ¼ 01

and θ¼ 231, a brittle fracture behavior and a small fracture

strain is observed. In contrast, for θ¼ 651 and θ¼ 901

the stress–strain responses exhibit a gradual damage devel-

opment and a much lower stiffness. These computation

results are consistent with the experimental findings of

Yilmaz et al. (2015).
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Fig. 13 – Damage evolution process from micromechanical simulation and the anisotropic damage model for the composite
with aspect ratio ρ¼ 10. Interface and matrix damage are responsible for failure. The stress level in the fiber is much lower
than the strength of fiber.

Fig. 14 – stress–strain curves under compression in four
different loading directions. The four fiber orientations
include the angle between mineral fiber and the loading
direction θ¼ 0deg; 23deg; 45deg; 90deg.
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Moreover, it is noted that fiber damage leads to the final

failure for the cases with θ¼01 and θ¼231 under compression,

while some interface and matrix damage exist, but these are
not dominant (Fig. 15). For the case of the fiber orientation
θ¼651, the protein damage develops rapidly and fiber damage
is activated at an average strain level of 11%. Fiber and matrix
damage mainly contribute to the failure of the composite.
Different to the other cases, only matrix damage is activated
for compression perpendicular to fiber direction (θ¼901)
leading to collapse of the composite. Regarding the depen-
dence of damage mechanisms on the fiber orientation, the
computation prediction is in good agreement with the experi-
mental observation in the micro-pillar experiments by
Yilmaz et al. (2015), where protein damage leads to the failure
of sample with θ¼901 and the fiber damage results in the
collapse of the sample with θ¼01.

The predicted strength is compared to the experimentally
determined strength in Table 4. The dependence of the
compressive failure strength on the fiber orientation is
reasonably well captured by the damage model. The highest
strength at the first hierarchical level in dental enamel is
found in case of the fiber orientation θ¼901, which involve a
large deformation ð415%Þ and gradual development of
matrix damage. The failure strength in the cases of θ¼01
and θ¼231 are nearly identical, where the damage mechan-
isms occurring in the simulation are similar. The compres-
sive strength is overpredicted for all loading cases compared
to the experimental results. It probably results from the



Fig. 15 – Damage evolution curves under compression in different loading directions. Regarding the dependence of damage
mechanisms on the fiber orientation, the computation prediction is in good agreement with the experimental observation in
the micro-pillar experiments by Yilmaz et al. (2015).

Table 4 – Comparison of experimental and numerical
failure strength.

Loading mode sf from
simulations

sf from experiments (Yilmaz
et al., 2015)

Longitudinal 1101 MPa 7907112 MPa
Transversal 1453 MPa 13627333 MPa
Oblique (231) 1058 MPa 848 MPa
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idealization of fiber orientation in the simulation that all

fibers are aligned unidirectionally in the micro-pillar sam-

ples, while the experimental observation reveals that HAP

crystallites do not align perfectly parallel to each other and

seem rather randomly entangled (Yilmaz et al., 2015). In

addition, the statistical distributions of the mechanical and

geometrical properties of the fibers are not taken into

account in the simulation.
6. Conclusions

The present work focuses on proposing the efficient homo-

genization approach for describing the deformation and

damage behavior of the composite at a hierarchical level.

For this purpose, an anisotropic damage model has been

developed within the framework of finite deformation to

capture the deformation and damage mechanisms of dental

enamel. In the present damage model, the effect of fiber–

protein interaction is taken into account for describing the

deformation behavior of bio-composites under general load-

ing conditions. In addition, the tension–compression asym-

metry in the hyperelastic deformation behavior is considered

in the formulation of the volumetric part of the strain energy.

In addition, three different damage mechanisms, namely

matrix, interface and fiber damage, are incorporated in the

model. The damage potential of matrix and interface
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accounts for the interaction between matrix and interface
damage.

The anisotropic hyperelastic model coupled with con-
tinuum damage mechanics has been applied to the
first hierarchical level of dental enamel. To this end, a
numerical homogenization scheme has been applied.
Micromechanical simulations of a 3D RVE model of dental
enamel have been carried out under different loading
conditions for identifying the material parameters of the
proposed model, first for the deformation parameters, and
then for the damage parameters. Afterwards, the damage
model has been validated by comparing the stress–strain
curve from micro-cantilever beam tests on dental enamel.
Additionally, the predicted strength and damage mechan-
isms under compression in different directions are vali-
dated by micro-pillar experiments of dental enamel in
multiple directions.

The simulation results show that the proposed damage
model is able to predict the deformation and damage beha-
vior of hard bio-composites with different microstructural
features under various loading conditions. The progressive
damage accumulation law of matrix, interface and fiber
damage is in good accordance with the initiation and devel-
opment of damage in the micromechanical simulations.
Moreover, the activated damage mechanisms in the compu-
tation under different loading directions are in good agree-
ment with experimental observations of the micro-pillar
experiments on dental enamel performed by Yilmaz et al.
(2015). The effect of the microstructure characteristics of
dental enamel on the mechanical response is captured by
the proposed anisotropic damage model with a proper set of
material parameters.

With the presented model, which contains explicit descrip-
tion of fiber, matrix and interface behavior, and a physically
based parameter identification procedure, we have developed
a sound method, which can be employed for predicting the
homogenized constitutive behavior of bio- and bio-inspired
fiber-reinforced composites also in large scale simulations
without explicitly considering and modeling the microstruc-
ture. The present model provides a modeling approach to
study, understand the structure–property relationship over
different hierarchical levels and the role of the hierarchical
level on the damage-tolerance behavior of dental enamel.
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Appendix A. Nomenclature

A.1. Scalars
A
 damage resistance function of matrix and
interface
B1; B2
 parameter for evolution equation of α

C1; C2
 parameter for Ψm

0

C3; C4
 parameter for Ψf
0

Cint
 fiber–matrix interaction parameter for Ψ 0
int
Dm
 matrix damage

Df
 fiber damage

Dint
 interface damage

I1; I2; I3
 invariants of C

I4,I5
 anisotropic invariants of C

K
 parameter for ψm

0

J
 detðFÞ

T0
 parameter of the cohesive interface: fracture

strength

Y
 damage driving force

Y0
 initial damage resistance of the matrix

Ym
 damage driving force of the matrix

Yeq
 equivalent damage driving force
Yf
 damage driving force of the fiber

Ycf
 parameter for the fiber damage evolution (initial

resistance)

Yint
 damage driving force of the interface

Z
 damage resistance function of the fiber

b1; b2
 parameter for evolution equation of α

b3
 parameter for evolution equation of Df
pm
 partial hydrostatic pressure of the matrix
Γ0
 parameter of the cohesive interface: fracture
energy
Ψ
 free energy density

Ψ0
 free energy density of undamaged material

Ψm
 free energy density of matrix material

Ψ f
 free energy density of fiber

Ψ int
 free energy density of interface

α
 damage strengthening for matrix and interface

β
 tension–compression asymmetry parameter for ψm

0

λmi
 damage multiplier for matrix and interface

λf
 damage multiplier for fiber

ϕ
 fiber–matrix shear interaction

θ
 fiber angle with respect to loading direction
A.2. Vectors and tensors
B
 left Cauchy–Green deformation tensor

C
 right Cauchy–Green deformation tensor

F
 deformation gradient

S
 second Piola Kirchhoff stress tensor

a0
 fiber direction (reference configuration)

a
 fiber direction (current configuration)
Appendix B. Fiber–matrix interaction

As shown in Fig. 2, the fiber orientation vector a0 coincides
with the normal direction n0 of matrix plane with the
differential area element dS0 in the reference configuration,
i.e., a0 ¼n0. After a deformation F, the normal direction n of
the deformed differential area element dS is calculated by
using Nanson's relation
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n¼ 1 ���n0 � F�1
���n0 � F�1 ¼ 1 ���a0 � F�1

���a0 � F�1 ðB:1Þ

with the norm of the vector
���a0 � F�1

���
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a0 � F�1 � F�T � a0

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a0 � C�1 � a0

p
. The deformed fiber

direction vector a is calculated with the deformation gradient
tensor F as

a¼ 1
λF

F � a0; ðB:2Þ

where λF is the fiber stretch during the deformation.
The fiber–matrix interaction between the matrix and the

fiber is measured by the relative angle θ illustrated in Fig. 2

cos θ¼n � a¼ 1 ���n0 � F�1
��� 1
λF

a0 � F�1 � F � a0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

a0 � C�1 � a0
1
I4

s
: ðB:3Þ

Following the Cayley–Hamilton theorem, the following
characteristic equation of the right Cauchy–Green deforma-
tion tensors C should be satisfied,

C3� I1C2 þ I2C� I3I¼ 0; ðB:4Þ
where I is the second order identity tensor. By multiplying Eq.
(B.4) with C�1, one has

C�1 ¼ 1
I3

C2� I1Cþ I2I
� � ðB:5Þ

Substituting this expression into Eq. (B.3), we obtain

cos θ¼n � a¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

I3
I5� I1I4 þ I2½ �I4

s
: ðB:6Þ
Appendix C. Stress tensor derivation based on
the hyperelastic energy coupled with damage

According to Eq. (5), the second Piola–Kirchhoff stress tensor
is obtained via

S¼ 2
∂Ψ
∂C

¼ 2 1�Dm½ � ∂Ψ0
m

∂J
∂J
∂C

þ ∂Ψ0
m

∂I1

∂I1
∂C

� �
þ 2 1�Df½ � 1�Dint½ � ∂Ψ

0
f

∂I4
∂I4
∂C

þ2 1�Dint½ � ∂Ψ0
int

∂I1
∂I1
∂C

þ ∂Ψ0
int

∂I2
∂I2
∂C

þ ∂Ψ0
int

∂I3
∂I3
∂C

þ ∂Ψ0
int

∂I4
∂I4
∂C

�
þ ∂Ψ0

int

∂I5
∂I5
∂C

�
:

ðC:1Þ
The derivatives of the strain invariant with respect to the
right Cauchy–Green tensor are derived as follows:

∂J
∂C

¼ J
2
C�1;

∂I1
∂C

¼ J�2=3 I� 1
3
C � C�1

� �
: I

∂I2
∂C

¼ I1I�C;
∂I3
∂C

¼ I3C�1;

∂I4
∂C

¼ a0 � a0;
∂I5
∂C

¼ a0 � C � a0 þ a0 � C � a0 ðC:2Þ

where I¼ δikδjl is the fourth-order identity tensor and I¼ δij is
the second-order unit tensor.

With the push-forward operation s¼ J�1F � S � FT , the Cau-
chy stress tensor that measures the internal force in the
deformed configuration reads

r¼ 2J�1 1�Dm½ � ∂Ψ 0
m

∂J
J
2
Iþ ∂Ψ0

m

∂I1
B� 1

3
I1I

� �� �

þ2J�1 1�Df½ � 1�Dint½ � ∂Ψ
0
f

∂I4
I4a � a

þ2J�1 1�Dint½ � ∂Ψ0
int

∂I1
Bþ ∂Ψ0

int

∂I2
I2I� I3B�1� ��
þ ∂Ψ 0
int

∂I3
I3Iþ

∂Ψ0
int

∂I4
I4a � aþ ∂Ψ 0

int

∂I5
I4 a � B � aþ a � B � a½ �

�
:

ðC:3Þ
Here, the left Cauchy–Green deformation tensors is defined as

B¼ F � Ft and its isochoric part as B ¼ F � F t ¼ J�2=3B with

I1 ¼ tr C ¼ tr B.
Appendix D. Hyperelastic model: material
parameter identification

Young's modulus and Poission ratio of the protein are given

by E¼ 900 MPa; ν¼ 0:495, whereas we have E¼ 80 GPa; ν¼ 0:23

for the mineral fibers. There are 7 material parameters to be

identified in the hyperelastic part of the proposed model:

C1; C2; C3; C4; K; β; Cint. They are identified by adjusting the

analytical solution for the anisotropic model to the numerical

results of the micromechanical model subjected to four

loading conditions: deformation κ of shearing in the trans-

verse plane, tension in fiber direction, compression in trans-

verse direction and shearing along the fiber direction.
The material parameters C1 and C2 related to the isotropic

part of strain energy density are obtained from the simula-

tion results of shear in transverse plane case (shear mode 1,

Fig. 4d). For this loading case, the Cauchy shear stress reads

τ¼ 2C1C2exp C2κ
2� �
κ: ðD:1Þ

The parameters K and β in the volumetric part of the free

energy are fitted by the simulation under compression in any

transverse direction (Fig. 4b and c). The Cauchy stress is

calculated by

s¼ K
β

1
κ
� 1

κβþ1

� �
þ 4

3
C1C2exp C2 κ4=3 þ 2κ�2=3�3

h i
 �
κ1=3�κ�5=3
h i

:

ðD:2Þ

In the case of tension in fiber direction (Fig. 4a), the fourth

strain invariant I4 is computed by I4 ¼ a0 � C � a0 ¼ κ2 with the fiber

orientation a0 ¼ ½0;0;1�. The material parameters C3 and C4 in the

strain energy density of the fiber can, thus, be obtained from

s¼ K
β

1
κ
� 1

κβþ1

� �
þ 4
3
C1C2exp C2 κ4=3 þ 2κ�2=3�3

h i
 �
κ1=3�κ�5=3
h i

þ2C3C4exp C4 κ2�1
� �2
 �

κ κ2�1
� �

: ðD:3Þ

Finally, the material parameter Cint in the strain energy term of

the fiber–matrix interaction is obtained by fitting the simulated

average stress–strain curve in the micromechanical analysis

under shear along fiber direction (shear mode 2, Fig. 4e). The

Cauchy stress is computed as

τ¼ 2C1C2 exp C2κ
2� �
κ þ 4Cintκ

3: ðD:4Þ

The material parameters of the anisotropic hyperelastic

model are listed in Table 1 for three different aspect ratios.

We set identical material parameters of the isotropic part of

the strain energy density function, C1; C2 for composites with

different aspect ratios, since the aspect ratio has minimal

influence on the isotropic part of strain energy density

function.



j o u r n a l o f t h e m e c h a n i c a l b e h a v i o r o f b i o m e d i c a l m a t e r i a l s 6 2 ( 2 0 1 6 ) 5 1 5 – 5 3 3 533
r e f e r e n c e s

An, B., Wang, R., Arola, D., Zhang, D., 2015. Damage mechanisms
in uniaxial compression of single enamel rods. J. Mech. Behav.
Biomed. Mater. 42, 1–9.

An, B., Wang, R., Zhang, D., 2012. Role of crystal arrangement on
the mechanical performance of enamel. Acta Biomater. 8,
3784–3793.

Bar-On, B., Wagner, H.D., 2011. Mechanical model for staggered
bio-structure. J. Mech. Phys. Solids 59, 1685–1701.

Bargmann, S., Scheider, I., Xiao, T., Yilmaz, E., Schneider, G.A.,
Huber, N., 2013. Towards bio-inspired engineering materials:
modeling and simulation of the mechanical behavior of
hierarchical bovine dental structure. Comput. Mater. Sci. 79,
390–401.

Barthelat, F., 2014. Designing nacre-like materials for simulta-
neous stiffness, strength and toughness: optimum materials,
composition, microstructure and size. J. Mech. Phys. Solids 73,
22–37.

Bechtle, S., Ang, S.F., Schneider, G.A., 2010. On the mechanical
properties of hierarchically structured biological materials.
Biomaterials 31, 6378–6385.

Bechtle, S., Ozcoban, H., Lilleodden, E.T., Huber, N., Schreyer, A.,
Swain, M.V., Schneider, G.A., 2012. Hierarchical flexural
strength of enamel: transition from brittle to damage-tolerant
behavior. J. R. Soc. Interface 9, 1265–1274.

Chaboche, J.L., Lesne, P.M., Maire, J.F., 1995. Continuum damage
mechanics, anisotropy and damage deactivation for brittle
materials like concrete and ceramic composites. Int. J.
Damage Mech. 4, 5–22.

Chen, P.Y., McKittrick, J., Meyers, M.A., 2012. Biological materials:
functional adaptations and bioinspired designs. Prog. Mater.
Sci. 57, 1492–1704.

Chen, Q., Pugno, N.M., 2013. Bio-mimetic mechanisms of natural
hierarchical materials: a review. J. Mech. Behav. Biomed.
Mater. 19, 3–33.

Coleman, B.D., Noll, W., 1963. The thermodynamics of elastic
materials with heat conduction and viscosity. Arch. Ration.
Mech. Anal. 13, 167–178.

deBotton, G., Hariton, I., Socolsky, E.A., 2006. Neo-Hookean fiber-
reinforced composites in finite elasticity. J. Mech. Phys. Solids
54, 533–559.

Ehret, A.E., Itskov, M., 2009. Modeling of anisotropic softening
phenomena: application to soft biological tissues. Int. J. Plast.
25, 901–919.

Espinosa, H.D., Rim, J.E., Barthelat, F., Buehler, M.J., 2009. Merger
of structure and material in nacre and bone – perspectives on
de novo biomimetic materials. Prog. Mater. Sci. 54, 1059–1100.

Flory, P.J., 1961. Thermodynamic relations for highly elastic
materials. Trans. Faraday Soc. 57, 829–838.

Fratzl, P., Weinkamer, R., 2007. Nature’s hierarchical materials.
Prog. Mater. Sci. 52, 1263–1334.
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