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Within a continuum approximation, we present a thermomechanical finite strain plastic-
ity model which incorporates the blended effects of micro-heterogeneities in the form of
micro-cracks and micro-voids. The former accounts for cleavage-type of damage without
any volume change whereas the latter is a consequence of plastic void growth. Limiting
ourselves to isotropy, for cleavage damage a scalar damage variable d ∈ [0, 1] is incor-
porated. Its conjugate variable, the elastic energy release rate, and evolution law follow
the formal steps of thermodynamics of internal variables requiring postulation of an
appropriate damage dissipation potential. The growth of void volume fraction f is incor-
porated using a Gurson-type porous plastic potential postulated at the effective stress
space following continuum damage mechanics principles. Since the growth of micro-voids
is driven by dislocation motion around voids the dissipative effects corresponding to the
void growth are encapsulated in the plastic flow. Thus, the void volume fraction is used
as a dependent variable using the conservation of mass. The predictive capability of the
model is tested through uniaxial tensile tests at various temperatures Θ ∈ [−125◦C,
125◦C]. It is shown, via fracture energy plots, that temperature driven ductile-brittle
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transition in fracture mode is well captured. With an observed ductile-brittle transition
temperature around −50◦C, at lower temperatures fracture is brittle dominated by d
whereas at higher temperatures it is ductile dominated by f .

Keywords: Thermoplasticity; finite strain; void growth; cleavage; ductile–brittle
transition.

1. Introduction

Mechanistically, ductile fracture is explained by nucleation, growth and coalescence
of micro-voids. Brittle fracture, on the other hand, stems from the inter- or intra-
granular cleavage with micro-crack nucleation, growth and coalescence [Anderson,
2004; ASM International, 1996]. Both ductile and brittle fracture is observed in bcc
metals. The transition from one mode to the other is mainly controlled by temper-
aturea: At lower temperatures fracture is brittle whereas at higher temperatures it
is ductile.

One of the most widely used modeling approach for plasticity with microvoid
growth is that of Gurson [1977]. Derived using homogenization over void-rigid plas-
tic matrix aggregates and limit analysis, the yield potential of Gurson’s plasticity
model has hydrostatic stress dependence. A natural outcome of this formulation
is irreversible volume change, i.e., plastic dilatation. This model is modified by
Tvergaard and Needleman, by the introduction of void shape effects as well as
acceleration in the void growth during void coalescence, to be named as Gurson–
Tvergaard–Needleman porous plasticity model [Tvergaard and Needleman, 1984]
and by Chu and Needleman [1980] to account for void nucleation effects along with
other contributors [Tvergaard, 1981, 1982a, 1982b; Needleman and Tvergaard, 1998;
Nahshon and Hutchinson, 2008; Nahshon and Xue, 2009].

There are various modeling approaches for cleavage in metallic materials. The
deterministic model by Ritchie–Knott–Rice [Ritchie et al., 1973] relies on a temper-
ature and rate independent critical stress over the cleavage grain. Once the principal
stresses averaged out over one or two grain-size region exceeds this threshold, the
brittle fracture emanates. This threshold does not necessitate the presence of plastic
flow. Incorporation of plastic flow is realized in Beremin’s statistical model which,
being based on the Weibull weakest link theory, reflects random nature of brit-
tle fracture [Beremin, 1983; Mudry, 1987]. Another simple yet powerful approach
to brittle fracture is the so-called energy limiters [Volokh, 2004, 2007, 2015]. By
enforcing saturation in the strain energy function, energy limiters automatically
bound stresses in the constitutive equations. Although useful, none of these models
postulate an internal damage variable to account for gradual material deterioration
by microcrack nucleation. Thus, dissipation associated with brittle fracture is not
incorporated. Continuum damage mechanics remedies this gap by introducing scalar
or tensorial damage variables and their conjugate variables which allows not only
modeling of stiffness and strength degradation but also determination of inelastic

aStress triaxiality ratio and loading rate may also affect fracture mode.
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dissipation [Lemaitre, 1996; Lemaitre et al., 2013]. For the recent developments in
brittle fracture modeling, we refer to Miehe et al. [2010, 2015], Andrieu et al. [2012]
and Duda et al. [2015].

The present work introduces a thermodynamically consistent continuum approx-
imation of micro-void and/or micro-crack driven failure at finite strains. To this end,
in the spirit of Chaboche et al. [2006] we blend Gurson’s porous plasticity model
with Lemaitre’s continuum damage mechanics. The blended constitutive model has
two damage variables: the void volume fraction f and the brittle damage variable d.
Material fails by evolution of both damage sources. Since the growth of microvoids is
driven by dislocation motion around voids, dissipative effects corresponding to the
void growth are encapsulated in the plastic flow. Thus, the void volume fraction is a
dependent variable using conservation of mass. For cleavage damage, a scalar vari-
able is incorporated whose conjugate variable, the elastic energy release rate, and
evolution law follow the formal steps of thermodynamics of internal variables requir-
ing postulation of an appropriate damage dissipation potential. Hence, the brittle
damage process is realistically reflected on a thermomechanically consistent ground.
By these properties, the proposed model forms an appropriate basis for modeling
fracture with ductile-brittle transitions driven by temperature or triaxiality.

Among various modeling attempts to the ductile-brittle transition problem in
the literature [Shterenlikht, 2003; Hütter et al., 2014; Needleman and Tvergaard,
2000; Batra and Lear, 2004; Xia and Fong Shih, 1996], the most common one is
based on a collective use of Gurson-type porous plasticity along with either Ritchie-
Knott-Rice or Beremin model [Soyarslan et al., 2015; Needleman and Tvergaard,
2000; Hütter et al., 2014]. However, these approaches suffer from the mentioned
inherent weaknesses pertaining to brittle fracture models. The noteworthy features
of our work can be summarized as follows:

• Since our main motivation stems from modeling temperature driven ductile-
brittle transition of fracture, unlike [Chaboche et al., 2006], we consider thermal
coupling.

• Unlike Chaboche et al. [2006], we consider finite strains making use of a hyper-
elastic plastic type formulation relying on multiplicative decomposition of defor-
mation gradient into recoverable and irrecoverable parts following [H̊akansson
et al., 2006].

• Although in the current study we limit ourselves to thermoelastic, plastic and
damage isotropy, incorporation of brittle anisotropic damage is possible within
the presented formalism.

• Using the kinematic coupling between plasticity and continuum damage, brittle
damage evolution necessitates plastic flow which is consistent for metallic
materials.

• Unlike cited ductile-brittle transition modeling approaches, our modeling
approach accounts for gradual strength and stiffness loss as well as energy dissi-
pation associated with brittle damage.
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• The model framework can also be exploited for fracture development under low
triaxiality regimes for which Gurson’s model is known to be ineffective.

2. Fundamental Kinematics

Let B ∈ R
3 be the material (initial), B ∈ R

3 the intermediate and Bt ∈ R
3 the

spatial (current) configurations of a body.b The motion of the body is described
by a one-to-one nonlinear mapping ϕ : B → Bt ⊂ R

3. The deformation gradient
F := ∂Xϕ, is defined as the linear mapping of referential material tangents on their
spatial counterparts, in which X defines the material coordinates in the reference
configuration. The Jacobian of the deformation gradient is defined as J = det(F) =
ρ0/ρ, where ρ0 and ρ are densities at initial and spatial configurations, respectively.
Multiplicative decomposition of the deformation gradient in recoverable Fr and
irrecoverable Fp parts is postulated such that

F := Fr ·Fp, (1)

with J r := det(Fr) and Jp := det(Fp). The recoverable part is associated with
distortion of the crystal and the plastic part of the deformation gradient Fp encap-
sulates the dislocation movements through its isochoric part [H̊akansson et al., 2006].
Fr is further partitioned into elastic and thermal parts using Fr := Fe · FΘ. With
this decomposition we introduce an additional imagined configuration B̂ which cor-
responds to a stress-free thermoplastic deformation where thermal expansion (or
contraction) is driven by temperature change ∆Θ = Θ − Θ0, where Θ and Θ0 rep-
resent the current and the initial temperature, respectively. The spatial velocity
gradient is given by l := Ḟ · F−1 which is additively decomposed into the rate of
deformation tensor d = sym(l) and the rate of spin tensor w = skw(l) via l = d+w,
respectively. The recoverable and irrecoverable right Cauchy–Green deformation
tensors are defined as Cr = [Fr]� · Fr and Cp = [Fp]� · Fp, respectively. Similar
partition, which proves convenient in the following developments, applies for l as well
via l = lr + lp where lr := Ḟr · [Fr]−1 and lp = Fr ·Lp · [Fr]−1 with Lp := Ḟp · [Fp]−1.
Letting recoverable logarithmic strain tensor defined by er

log := ln (
√

Cr), its parti-
tion into volumetric and isochoric parts reads er

log,vol := 1/3 lnJ r1 = 1/3 tr(er
log)1

and er
log,iso := ln(

√
J r−2/3Cr) = dev er

log, respectively. Configurations and funda-
mental mappings are given in Fig. 1.

bIn this work, the following notations are used. Consistently assuming a, b, and c as three second-
order tensors, together with the Einstein’s summation convention on repeated indices, c = a · b
represents the single contraction product with cik = aijbjk . d = a : b = aijbij represents the
double contraction product, where d is a scalar. C = a⊗b represents tensor product with Cijkl =

aijbkl. a
� and a−1 denote the transpose and the inverse of a, respectively ∂ab denotes the partial

derivative of b with respect to a, that is ∂b/∂a. dev(a) = a − 1/3 tr(a)1 and tr(a) = aii stand
for the deviatoric part of and trace of a, respectively, 1 denoting the identity tensor. sym(a) and
skw(a) denote symmetric and skew-symmetric parts of a. ȧ gives the material time derivative of a.
ba is the rotationally neutralized representation of a. 〈x〉 = 1/2[x+ |x|] describes the ramp function.
Finally, div and grad denote the divergence and gradient operators with respect to the spatial
configurations, respectively.
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Fp

FΘ

Fr

Fe

F

ϕ
(a)

(b)

(c)

B

BB t

B̂

Fig. 1. On the left-hand side, the local multiplicative decomposition of the deformation gradient
F into recoverable Fr := Fe ·FΘ and irrecoverable Fp parts and corresponding configurations are
given. One the right-hand side, possible interpretations of the current framework are listed. (a)
voids at upper scale and cracks at lower scale, (b) voids and cracks at identical scale, and (c) cracks
at upper scale and voids at lower scale.

The assumption of a representative volume element with uniformly distributed
spherical voids with a total volume of dV v and plastically incompressible matrix
with a total volume of dV m with dV v + dV m = dV , lets one define the void volume
fraction f = dV v/dV . Now, taking Jv = dV/dV m and letting the initial volume
of the matrix be dV m0 we define Jv0 = dV 0/dV m0. Since the matrix material is
allowed to experience only thermoelastic dilatations we set J r = dV m/dV m0. Thus,
with J = J rJp = dV/dV 0 one has Jp = Jv/Jv0. Taking logarithms and the material

time derivatives of both sides we reach ˙ln(Jp) = ˙ln(Jv). Using ˙ln(Jp) = tr(Lp) one
concludes that

ḟ = [1 − f ]tr(Lp). (2)

Hence, being dependent on tr(Lp), f is part of the problem kinematics; in other
words, the void growth is linked to the dislocation motion around the void. In
this sense, it is not an independent state variable. On the other hand, the rather
brittle micro-crack and micro-cleavage mechanisms are not fully accounted for by
dislocation glide. Hence, in the current thermodynamic formalism, their treatment
requires the introduction of a new state variable whose evolution necessitates pos-
tulation of an independent dissipation potential. To this end, continuum damage
d ∈ [0, 1] phenomenologically reflects the softening response associated with accu-
mulated micro-cracks. The interpretation of the envisioned framework is given on
the right-hand side of Fig. 1. Without loss of generality, independent of the scale
hierarchy depicted the void free matrix is plastically incompressible — hence, above
definitions are valid.

3. Thermodynamical Formulation

3.1. General theory

Let ψ denote the Helmholtz free energy per unit reference mass. Then, the first law
of thermodynamics is expressed in reference configuration as

ρ0Θη̇ = τ : d − ρ0Θ̇η − ρ0ψ̇ − Jdivq + ρ0r, (3)
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where τ is the Kirchhoff stress tensor, Θ is the absolute temperature, η is the
entropy per unit mass, q is the spatial heat flux and r is the body heat source per
unit mass. With an abuse of notation, let ψ = ψ(I), with I being the set of inter-
nal variables, the second law of thermodynamics supplies the following dissipation
inequality represented in the reference configuration [Bargmann and Ekh, 2013]

Dloc = τ : d − ρ0∂Iψ · İ − J
Θ

q · gradΘ ≥ 0. (4)

We further assume an additive decomposition into thermomechanical and conduc-
tive parts Dloc = Dthermech

loc + Dcon
loc with

Dthermech
loc := τ : d− ρ0∂Iψ · İ ≥ 0,

Dcond
loc := − J

Θ
q · gradΘ ≥ 0.

(5)

The latter inequality is satisfied by a generalized Fourier law adapted for the heat
flux even in the presence of damage. The fulfillment of the former requires selection
of the set I and its appropriate evolution laws. With I = {Cr, d, α,Θ}, where
d is the scalar isotropic damage variable and α is the plastic hardening variable,
Eq. (5.1) reads

Dthermech
loc = [τ − 2ρ0[Fr]� · ∂Crψ · Fr] : dr + τ : Fr · Lp · [Fr]−1

− [η + ρ0∂Θψ]Θ̇ − ρ0∂dψḋ− ρ0∂αψα̇ ≥ 0, (6)

with Ċr = 2[Fr]� · dr ·Fr and τ : w = 0 since w = −w�. The following state laws
are derived in order for inequality (6) to be valid for arbitrary dr and Θ̇

τ := 2ρ0[Fr]� · ∂Crψ · Fr, β := ρ0∂αψ,

Y := −ρ0∂dψ, η := −ρ0∂Θψ,
(7)

where Y and β refer to the effective elastic energy release rate and the conjugate
internal force variable of the plastic isotropic hardening. Substituting these back
into the right-hand side of the inequality (6), one has the following reduced purely
mechanical form

Dred
loc = τ : Fr · Lp ·Fr−1 + Yḋ− βα̇ ≥ 0. (8)

Let M := [Fr]� · τ · [Fr]−� denote the Mandel stress tensor. With reference to the
intermediate configuration one has τ : Fr ·Lp · [Fr]−1 = M : Lp and Eq. (8) can be
rearranged to give

Dred
loc = M : Lp − βα̇+ Y ḋ ≥ 0. (9)

This clearly depicts the work-conjugacy of the plastic part of the velocity gradient
Lp defined at intermediate configuration and the Mandel stress tensor M. With the
assumption of elastic isotropy, one has [Fr]� · τ · [Fr]−� = [Rr]� · τ · Rr, where
Rr is the elastic rotation found using the polar decomposition of the recoverable
deformation gradient Fr = Rr · Ur with Ur =

√
Cr representing the recoverable

1650009-6
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stretch tensor. Hence, in the subsequent developments we use M = [Rr]� · τ · Rr.
That is, M amounts to the rotated Kirchhoff stress tensor. Hence, both M and
τ share identical invariants which gains importance while postulating the plastic
potential.

Finally, introducing the dissipation potential Υ as

Υ(M, β, Y, d, f) := φp(M, β; d, f) + φd(Y ; d), (10)

and applying the generalized normality rule one derives the following evolution equa-
tions which satisfy the positiveness of the dissipation along with loading/unloading
conditions λ ≥ 0, φp ≤ 0, λφp = 0

Lp = λ∂MΥ = λ∂Mφp, (11a)

α̇ = −λ∂βΥ = −λ∂βφ
p, (11b)

ḋ = λ∂Y Υ = λ∂Y φ
d, (11c)

where λ is the plastic multiplier. This way, through a kinematic coupling, we link
evolution of brittle damage with plastic flow. This condition expresses the fact
that brittle failure can only occur when plastic deformation occurs which is an
appropriate assumption for cleavage in metallic materials [Beremin, 1983]. On the
contrary, Ritchie–Knott–Rice criterion for brittle fracture, for instance, does not
require plastic flow [Ritchie et al., 1973].

3.2. Specification of the constitutive forms

The choice of the form of the Helmholtz free energy function ψ constitutes the
basis in deriving the constitutive equations for the representative volume element.
In the current treatment, an additively decomposed Helmholtz free energy into
elastic, plastic and thermal parts is selected via ψ = ψe + ψp + ψΘ. For the elastic
part we further apply a volumetric deviatoric split using ψe = ψe

vol + ψe
iso and,

following a Lemaitre-type formalism, we state couple micro-crack damage only with
thermoelasticity using

ρ0ψ
e
vol = [1 − d]κ

[
1
2
[tr(er

log)]
2 − 3αΘ[Θ − Θ0]tr(er

log)
]
,

ρ0ψ
e
iso = [1 − d]µ[dev er

log : dev er
log],

(12)

in the reference configuration. κ = E/3[1 − 2ν] and µ = E/2[1 + ν] are the elastic
bulk modulus and shear modulus, respectively with E representing the modulus of
elasticity and ν denoting the elastic Poisson’s ratio. For the plastic part we have

ρ0ψ
p = [1 − f0][τm,∞ − τm,0]

[
α+

1
ωm

[exp(−ωmα) − 1]
]

(13)

in the reference configuration. Hence, the isotropic plastic hardening of the repre-
sentative volume element is taken to obey an exponential behavior, where τm,0 and
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τm,∞ denote the initial and saturated Kirchhoff-type matrix yield stresses and ωm is
the matrix hardening saturation rate. The link between the material matrix and the
representative volume element is reflected in the factor [1− f0]. The reason of using
[1−f0] rather than [1−f ] is due to the Kirchhoff stress based hardening formulation
which complies with the space of the postulated yield function [H̊akansson et al.,
2006].

Using the transformation τ = [Rr]� ·M ·Rr, the plastic potential φp(M, β; d, f)
can be reparametrized to give φp(τ , β, f) with the effective stress definition τ =
τ/[1−d]. Based on an analysis of a single spherical void in a spherical shell presented
in Gurson [1977] where the change of void shape is neglected, the effectively isotropic
yield function φp, representing approximate form for the yield surface of a randomly
voided solid containing a volume fraction f of voids is then defined as

φp(τ , β, f) :=
1

2τm

[
τ2

eq + 2fτ2
m cosh

(
tr τ

2τm

)
− τ2

m[1 + f2]
]
≤ 0, (14)

where τ eq is introduced as the effective equivalent Kirchhoff stress through τ eq =√
3/2[devτ : dev τ ]. Note that τ eq = Meq :=

√
3/2[devM : devM] as well as

tr τ = trM. The matrix flow stress is represented by τm = τm,0 + βm with
βm = β/[1 − f0] denoting the matrix hardening.

Remark 1. For fully developed plastic flow, i.e., φp(τ , β) = 0, under traceless
stress state with tr τ/2τm → 0 one has cosh(tr τ/2τm) → 1. Hence, τ2

eq = [1−f ]2τ2
m,

which can be rearranged, using the effective stress definition, to give

τeq = [1 − d][1 − f ]τm.

This depicts the effect of two distinct damage sources on the material response and
the link between the fictitious effective material subscale free of defects and the
mesoscopic behavior as depicted in the scenarios given in Fig. 1.

Remark 2. In the spirit of H̊akansson et al. [2006], the motivation for the evo-
lution laws is considered in the absence of micro-voids, however, with micro-cracks.
Accordingly, the flow potential reduces to φp(τ , β) = τ − τm ≤ 0. Following asso-
ciative plasticity, the evolution laws for Lp and α are governed by the normality
rule

Lp = λ
∂φp

∂M
=

λ

1 − d

3
2

devM
τm

and α̇ = −λ∂φ
p

∂β
= λ.

Defining the equivalent plastic strain rate as ε̇p =
√

2/3Lp : Lp and using α̇ = λ

one reaches ε̇p = α̇/[1 − d]. Hence, the rate of plastic work wp in the reference
configuration reads

wp = devM : Lp = [1 − d]τmε̇p.
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Thus, in comparison to H̊akansson et al. [2006], the effect of the cleavage damage
is also involved in the work equivalence relation.

In the light of the Remark 2, and following H̊akansson et al. [2006], we postulate
the validity of the following definitions for the porous plasticity model as well

α̇ = λ, (15a)

ε̇p =
α̇

1 − d
. (15b)

Hence Eq. (15a) is replaced with Eq. (11b) for the definition of α̇ in the foregoing
developments. We also postulate the following generalization of the plastic work
equivalence

[1 − f0][1 − d]ε̇pτm = M : Lp, (16)

which gains importance in definition of the total mechanical dissipation. Note that
for a Cauchy-type matrix yield stress σm = 1/J rτm one has [1 − f0][1 − d]ε̇pτm =
1/J [1 − f ][1 − d]ε̇pσm.

Due to the dependence of φp on the trace of the stress tensor, Lp is not traceless.
Consequently, plastic dilatant effects are incorporated. Hence, the void volume frac-
tion is associated with the plastic dilatant strains through the mass balance relation
ḟ = [1− f ] tr(Lp), also given in Eq. (2). Thus, unlike the isotropic continuum dam-
age variable d, one does not need an additional dissipation potential in evaluation of
the void volume fraction rate since it is plastic flow that accounts for the dissipation
associated. The rate of d, on the other hand, is derived using a dissipation potential
using Eq. (11c). φd is selected to take the form of Lemaitre-type damage dissipation
potential [Lemaitre, 1996]

φd(Y ) =
S

[1 +m][1 − d]n

[ 〈Y − Y0〉
S

]m+1

, (17)

where m, n, S and Y0 are associated material parameters. Y0 represents the thresh-
old value of strain energy release rate governing the initiation of cleavage damage.

Now, using Eqs. (7) along with the defined potentials in Eqs. (12) and (13), we
arrive at explicit forms of the conjugate variables M, β and Y as

M = [1 − d][κtr(er
log)1 + 2µ dev er

log − 3καΘ[Θ − Θ0]1], (18a)

β = [1 − f0][τm,∞ − τm,0][1 − exp(−ωmα)], (18b)

Y = κ

[
1
2
[tr(er

log)]
2 − 3αΘ[Θ − Θ0]tr(er

log)
]

+ µ[dev er
log : dev er

log], (18c)

where the matrix hardening is represented with βm = β/[1−f0] = [τm,∞− τm,0][1−
exp(−ωmα)].

For the plastic flow and the evolution of d, we use Eqs. (11a) and (11c) along
with the dissipation potential components given in Eqs. (14) and (17), respectively.
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The hardening variable rate α̇ obeys Eq. (15a). Collectively, the evolution equations
read

Lp =
λ

1 − d

[
3
2

devM
τm

− 1
2
f sinh

(
q2trM
2τm

)
1
]
,

α̇ = λ, ḋ =
λ

[1 − d]n

[ 〈Y − Y0〉
S

]m

,

(19)

where M = M/[1 − d]. Now, substituting Eqs. (18) and (19) into the right-hand
side of Eq. (9) together with using Eq. (16), the mechanical dissipation reads

Dred
loc = [1 − f0][1 − d]ε̇pτm,0 + ε̇p

1
[1 − d]n−1

Y

[ 〈Y − Y0〉
S

]m

. (20)

The second term reflects the dissipative effect of cleavage-type damage which is
not accounted for in H̊akansson et al. [2006]. Equation (20) is always nonnegative,
hence, the second law of thermodynamics is fulfilled. For convenience, a summary
of the constitutive model is given in BOX 1.

BOX 1. A summary of the proposed model for general 3D stress-state.

(1) Multiplicative kinematics

F = Fr · Fp and Fr = Fe · FΘ.

(2) Thermoelastic stress–strain relationship

M = [1 − d][κtr(er
log)1 + 2µ dev er

log − 3καΘ[Θ − Θ0]1].

(3) State laws for hardening and damage conjugate variables

β = [1 − f0][τm,∞ − τm,0][1 − exp(−ωmα)],

Y = κ

[
1
2
[tr(er

log)]
2 − 3αΘ[Θ − Θ0]tr(er

log)
]

+ µ[dev er
log : dev er

log].

(4) Matrix yield stress and hardening

τm = τm,0 + βm and βm =
β

1 − f0
.

(5) Thermoelastic domain in stress space (single surface)

Eτ = {[τ , β, f ] ∈ S × R
+ × R

+ : φp(τ , β, f) ≤ 0},
where S represents the vector space of symmetric second order tensors and

φp(τ , β, f) =
1

2τm

[
τ2

eq + 2fτ2
m cosh

(
tr τ

2τm

)
− τ2

m[1 + f2]
]
.

(Continued)
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(6) Flow rule (associative model)

Lp =
λ

1 − d

[
3
2

devM
τm

− 1
2
f sinh

(
trM
2τm

)
1
]
.

(7) Evolution equations for hardening, damage and porosity

α̇ = λ and ε̇p =
λ

1 − d
,

ḋ =
λ

[1 − d]n

[〈Y − Y0〉
S

]m

,

ḟ = [1 − f ]tr(Lp).

(8) Kuhn–Tucker loading/unloading (complementarity) conditions

λ ≥ 0, φp(τ , β, f) ≤ 0, λφp(τ , β, f) = 0.

(9) Consistency condition

λφ̇p(τ , β, f) = 0.

4. Application — Uniaxial Tension

In this section we first present a systematic reduction of the theory to monotonic
uniaxial tension. Solution of the resultant reduced equation set allows conduction
of some parametric studies which show predictive capabilities of the model.

4.1. Specification of equations for uniaxial tensile state of stress

Let e1, e2 and e3 denote orthogonal unit vectors associated with x-, y- and z-
directions. We are interested in tensile loading in x-direction where the material
motion is free in y- and z-directions. This corresponds to a uniaxial state of stress
and triaxial state of strain with

τ = τe1 ⊗ e1 (21a)

F = λ1e1 ⊗ e1 + λ2[e2 ⊗ e2 + e3 ⊗ e3], (21b)

where λ1 and λ2 represent principal stretches in x- and y- (equivalently z-) direc-
tions. With Eq. (21a) following equivalences hold: τeq = τ = tr τ . Also, in absence
of rotation, i.e., Rr = 1, one has τ ≡ M. Using Eq. (21b) the Jacobian of the
deformation gradient becomes J = λ1λ

2
2. In analogy to Eq. (21b), the recoverable

and irrecoverable parts of the deformation gradient can be given as

Fr = λr
1e1 ⊗ e1 + λr

2[e2 ⊗ e2 + e3 ⊗ e3], (22a)

Fp = λp
1e1 ⊗ e1 + λp

2 [e2 ⊗ e2 + e3 ⊗ e3]. (22b)

1650009-11

In
t. 

J.
 A

pp
l. 

M
ec

ha
ni

cs
 2

01
6.

08
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 H

A
M

B
U

R
G

 U
N

IV
E

R
SI

T
Y

 O
F 

T
E

C
H

N
O

L
O

G
Y

 o
n 

01
/3

1/
19

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



2nd Reading

November 1, 2016 12:59 WSPC-255-IJAM S1758-8251 1650009

C. Soyarslan et al.

The recoverable part given in Eq. (22a) is further decomposed into the elastic and
thermal parts viz. Fr = Fe ·FΘ, where, with the assumption of thermally isotropic
material FΘ is defined as a spherical tensor with FΘ := λΘ1. Accordingly, in the
given orthogonal triad one has

Fe = λe
1e1 ⊗ e1 + λe

2[e2 ⊗ e2 + e3 ⊗ e3],

FΘ = λΘ[e1 ⊗ e1 + e2 ⊗ e2 + e3 ⊗ e3].
(23)

Hence, the right Cauchy–Green deformation tensor C = F� · F computes

C = [λe
1]

2[λp
1 ]2[λΘ]2e1 ⊗ e1 + [λe

2]
2[λp

2 ]2[λΘ]2[e2 ⊗ e2 + e3 ⊗ e3]. (24)

Now, using the definition of the logarithmic strain elog = 1/2 logC we reach

elog = ee
log + ep

log + eΘ
log, (25)

where

ee
log = logλe

1e1 ⊗ e1 + logλe
2[e2 ⊗ e2 + e3 ⊗ e3],

ep
log = logλp

1e1 ⊗ e1 + log λp
2 [e2 ⊗ e2 + e3 ⊗ e3],

eΘ
log = logλΘ[e1 ⊗ e1 + e2 ⊗ e2 + e3 ⊗ e3].

(26)

Equation (25) encapsulates an additive decomposition in logarithmic strains carried
out from a multiplicative decomposition of the deformation gradient. For conve-
nience, we use the notation eelog = logλe

1, e
p
log = logλp

1 and eΘlog = logλΘ. Letting

λΘ := exp
∫ Θ

Θ0
αΘ(θ)dθ and αΘ(Θ) represent the linearc thermal expansion coeffi-

cient, omitting the dependence of αΘ on the temperature we find JΘ := det(FΘ) =
[λΘ]3 = exp(3αΘ[Θ − Θ0]) where λΘ = exp(αΘ[Θ − Θ0]). Thus eΘlog = αΘ[Θ − Θ0].
The elastic stress definition given in Eq. (18) and the vanishing stress components
in y- and z-directions reveal log λe

2 = −ν logλe
1 and supplies

τ = [1 − d]E[erlog − αΘ[Θ − Θ0]]. (27)

Also the total recoverable logarithmic strain tensor er
log = ee

log + eΘ
log reads

er
log = [eelog + eΘlog]e1 ⊗ e1 + [−νeelog + eΘlog][e2 ⊗ e2 + e3 ⊗ e3], (28)

for which the volumetric and the deviatoric parts are computed as

tr er
log = [1 − 2ν]eelog + 3eΘlog,

dev er
log =

2
3
[1 + ν]eeloge1 ⊗ e1 − 1

3
[1 + ν]eelog[e2 ⊗ e2 + e3 ⊗ e3].

(29)

Using Eq. (29) along with Eq. (18c) gives the elastic energy release rate eelog as

Y =
1
2
[E[eelog]

2 − 9κ[αΘ]2[Θ − Θ0]2], (30)

cThe volumetric thermal expansion coefficient, on the other hand, amounts for 3αΘ(Θ) for ther-
mally isotropic materials.
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or in terms of erlog as

Y =
1
2
E[erlog]

2 − EerlogαΘ[Θ − Θ0] − 3κ[1 + ν][αΘ]2[Θ − Θ0]2. (31)

Finally, using Lp := Ḟp · [Fp]−1 we have

Lp =
λ̇p

1

λp
1

e1 ⊗ e1 +
λ̇p

2

λp
2

[e2 ⊗ e2 + e3 ⊗ e3] ≡ ėp. (32)

For convenience, the complete reformulation of the model under uniaxial tension is
given in BOX 2. The rate equations together with the given yield function form
a differential-algebraic equation set which is solved semi-explicitly. To this end, the
vector of unknowns is represented by x = {τ, α, f}. Assuming x = x(∆λ), where
∆λ denotes the incremental plastic multiplier, the yield function is reformulated as
a nonlinear function of ∆λ with φp(x(∆λ)). Applying Taylor series expansion to
φp with backward-Euler integration of the unknowns leads to an iterative solution
with ∆λ〈k+1〉 = ∆λ〈k〉 − [φp]〈k〉/[∂φp/∂x · ∂x/∂∆λ]〈k〉 where 〈k〉 represents the
iteration index. The iterations are run under a desired tolerance where unknowns
updates are realized at each iteration. The integration of d is realized subsequent
to the convergence in a staggered manner using the converged incremental plastic
multiplier.

BOX 2. A reduction of the proposed model to monotonic uniaxial tension.

(1) Additive kinematics

elog = erlog + eplog and erlog = eelog + eΘlog,

where eΘlog = αΘ[Θ − Θ0].
(2) Thermoelastic stress–strain relationship

τ = [1 − d]E[erlog − αΘ[Θ − Θ0]].

(3) State laws for hardening and damage conjugate variables

β = [1 − f0][τm,∞ − τm,0][1 − exp(−ωmα)],

Y =
1
2
E[erlog]

2 − EerlogαΘ[Θ − Θ0] − 3κ[1 + ν][αΘ]2[Θ − Θ0]2.

(4) Matrix yield stress and hardening

τm = τm,0 + βm and βm =
β

1 − f0
.

(5) Thermoelastic domain in stress space (single surface)

Eτ = {[τ, β, f ] ∈ R
+ × R

+ × R
+ : φp(τ , β, f) ≤ 0},

(Continued)
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where

φp(τ , β, f) =
1

2τm

[
τ2 + 2fτ2

m cosh
(

τ

2τm

)
− τ2

m[1 + f2]
]
.

(6) Flow rule (associative model)

ėplog =
λ

1 − d

[
τ

τm
− 1

2
f sinh

(
τ

2τm

)]
.

(7) Evolution equations for hardening, damage and porosity

α̇ = λ and ε̇p =
λ

1 − d
,

ḋ =
λ

[1 − d]n

[ 〈Y − Y0〉
S

]m

,

ḟ =
3
2
λ[1 − f ]
1 − d

f sinh
(

τ

2τm

)
.

(8) Kuhn–Tucker loading/unloading (complementarity) conditions

λ ≥ 0, φp(τ , β, f) ≤ 0, λφp(τ , β, f) = 0.

(9) Consistency condition

λφ̇p(τ , β, f) = 0.

4.2. Results and discussions

Our derivations correspond to a single material point loaded under uniaxial stress
state. Hence, there is no heat conduction. We also disregard the heat generation
by dissipative inelastic processes and conduct simulations at constant ten different
temperatures Θ1 · · ·Θ10 of equal temperature steps from −125◦C to 125◦C where
Θ1 = −125◦C and Θ10 = 125◦C. All analyses start from a stress-free configuration.
Since T = T0 throughout the loading, no thermal strains occur. Moreover, during
loading the stress triaxiality ratio η defined as η := tr τ/3τeq is constant and equal
to 1/3. Due to lack of sufficient stress triaxiality, void growth occurs slowly. In
order to accelerate void growth and obtain realistic failure strains we select a rather
high initial void volume content with f0 = 0.055. Moreover, following Tvergaard
and Needleman [Tvergaard and Needleman, 1984], f in the yield function definition
given in Eq. (14) is replaced by f∗ which encapsulates acceleration of the void
growth during the void coalescence via

f∗(f) = f + 〈f − fc〉f
∗
u − ff
ff − fc

. (33)

Here, fc and ff describe the critical void volume fraction at incipient coalescence
and the fraction at failure, respectively. Finally, f∗

u = 1/q1. For thermal properties
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Table 1. Selected steel-like material parameters.

Parameter Symbol Value Unit

Thermal expansion coef. αΘ 10−5 K−1

Melting temperature Θmelt 1717 K
Reference temperature Θref 298 K

Young’s modulus E 210 GPa
Poisson’s ratio ν 0.3 [−]

Matrix hardening τm,∞ 1000 MPa
τm,0 500 MPa
ωm 15 [−]

Gurson model f0 0.055 [−]
fc 0.075 [−]
ff 0.10 [−]
f∗
u 1 [−]

Lemaitre model Y0 3 MPa
m 1 [−]
n 2 [−]
S 0.25 MPa

and matrix hardening, steel-like but hypothetical parameters are selected. For con-
venience, Table 1 compiles the material parameters used at reference temperature
Θref = 25◦C.

The temperature effect on the matrix yield stress is adapted using data available
in the literature [Ritchie et al. 1973]. Accordingly, defining homologous tempera-
ture Ω with Ω := [Θ − Θref]/[Θmelt − Θref], we compute the matrix yield stress as
βm(Ω) = ty(Ω)βm where ty(Ω) = 1846Ω4 − 520.36Ω3 + 50.422Ω2 − 1.9124Ω + 1.
Figure 2 depicts the variation of ty as a function of Θ.

Two conditions are used in decision of the material failure: In the first one
local instability condition is considered with dτ/dε < 0, whereas in the second one

−150 −100 −50 0 50 100 150
0.5

1

1.5

2

2.5

3

Temperature [ C]

t y
[−

]

Fig. 2. Temperature effect on the yield stress as a scaling factor adapted from Ritchie et al.
[1973]. Room temperature is taken as 25◦C at which the yield stress factor is unity. Beyond
room temperature there occurs only a slight decrease within the range of selected temperature
interval. The curve is represented by a continuous function of the homologous temperature Ω with
ty(Ω) = 1846Ω4 − 520.36Ω3 + 50.422Ω2 − 1.9124Ω + 1.
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a sufficient loss of the stress bearing capacity of the material point is taken into
account with τ < TOL where TOL = 0.01 × τm,0. The former could be seen as a
consequence of Drucker’s stability postulate or more elaborate discontinuous bifur-
cation analyses which locates the initiation of localization as a precursor to fracture
through the vanishing determinant of the acoustic tensor. For both failure criteria
the absorbed energy to failure, i.e., the area under the stress–strain curves, are com-
puted and plotted for corresponding temperatures. The results are shown in Figs. 3
and 4. In each figure the stress, damage and void volume fraction plots as a func-
tion of the axial logarithmic strain are given for Θ1 · · ·Θ10. Also the failure energy
plots are given. The stress plots for both criteria show that at higher temperatures
plastic strains are considerably larger than those at lower temperatures. It is seen
that, in agreement with the presented results of Doghri [1995], the accumulation of
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Fig. 3. Results for criterion dτ/delog < 0 at 10 different temperatures Θ1 · · ·Θ10 of equal tem-
perature steps from −125◦C to 125◦C, where Θ1 = −125◦C and Θ10 = 125◦C: (a) stress–strain
curves, (b) energy per unit (reference) volume computed using

R
τdelog, as seen a sharp ductile–

brittle transition is observed in energy density demand until neck where the ductile–brittle tran-
sition temperature is around −50◦C, (c) damage d accumulation until neck, and (d) void volume
fraction f accumulation until neck. The markers show f values reached at each temperature.
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Fig. 4. Results for criterion τ < TOL where TOL = 0.01 × τm,0 at 10 different temperatures
Θ1 · · ·Θ10 of equal temperature steps from −125◦C to 125◦C, where Θ1 = −125◦C and Θ10 =
125◦C: (a) stress–strain curves, (b) energy per unit (reference) volume computed using

R
τdelog,

as seen a sharp ductile–brittle transition is observed in energy density demand until complete loss
of load carrying capacity where the ductile–brittle transition temperature is around −50◦C, (c)
damage d accumulation until neck, and (d) void volume fraction f accumulation until neck. The
markers show f values reached at each temperature.

damage components d and f at the point of stability loss are lower than that of
loss of complete load carrying capacity. Note that for due to lack of sufficient void
volume fraction accumulation for Θ1 · · ·Θ3 with the criterion τ < TOL × τm,0, d
reaches close to its theoretical limit d = 1. The occurrence of a kink and subsequent
rather accelerated drop of the stress response for increased temperatures is due to
the enforced void coalescence condition.

It is notable that, although a drastic difference is observed in continuum damage
variable evolution for different temperatures the void volume fraction is less sensi-
tive to the yield value changes. Two main differences are observed in d evolution
curves for different temperatures: First the damage initiation strains and second
the damage evolution rates. The former is due to the fact that the evolution of
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d requires the damage driving force Y reach the threshold Y0. Higher yield stress
at lower temperatures allows fulfillment of this requirement easily. At higher tem-
peratures, i.e., Θ5 · · ·Θ10, Y never reaches Y0, and thus d ceases to evolve. Then,
the whole softening mechanism is controlled by the void growth, hence failure is
ductile. With the same token, higher Y observed at lower temperatures results in
an increased rate of damage evolution. Then, the whole softening mechanism is
controlled by the evolution of d, hence failure is brittle.

In both material failure assumptions, the failure energy density plots show a
sharp increase in the energy demand with temperature around −50◦C. Hence, the
desired ductile-brittle transition in the failure mode was possible where −50◦C
point amounts for the ductile–brittle transition temperature. The energy demand
until complete stress loss is slightly over double the energy demand until neck, but
the main characteristics of the curve is not changed. There results show that the
proposed framework proves useful in modeling temperature driven ductile-brittle
transition of the fracture mode in metallic materials.

5. Conclusion

A theoretical framework for coupled porous thermoplasticity and continuum damage
mechanics has been formulated preserving isotropy, within a thermodynamic con-
sistency at finite strains. Multiplicative split of the deformation gradient in elastic,
plastic and thermal parts has been utilized as a basis for finite strain kinemat-
ics. The framework aims at modeling blended mechanisms of simultaneous micro-
void and micro-crack driven material degradation. Hence, the building blocks are
selected as the Gurson-type porous plasticity model and Lemaitre-type continuum
damage mechanics. Considering the possible application of the proposed model as
the ductile-to-brittle transition of the fracture mode, the main advantage that the
proposed model shows over the widely-used framework (e.g., porous plasticity for
ductile failure and Ritchie–Knott–Rice or Beremin local approaches to cleavage) is
that the energy dissipation associated with the cleavage-type of fracture is accounted
for within the formalism of continuum damage mechanics. The isotropic damage
variable d introduced via Lemaitre formalism is able to take care of the strength
and stiffness degradation related to the micro-cracks without volumetric changes,
whereas void volumetric changes are encapsulated in the evolution of the void vol-
ume fraction f . The evolution of d is formulated by a damage dissipation potential
which devises the energy release rate Y0 as a threshold for cleavage damage to ini-
tiate at the process zone. The evolution of f follows the mass conservation relation
which does not necessitate an additional dissipation potential. Extension of the
model to anisotropic cleavage damage is possible through a fully intermediate con-
figuration formulation of the yield function. The predictive capability of the model
is demonstrated through application problems assuming uniaxial state of stress. It
is shown by absorbed energy plots for different temperatures that for the presented
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parameter set remedying the limited stress triaxiality conditions, the model predicts
the temperature driven ductile-brittle transition of fracture mode sufficiently well.
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