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Abstract

DNA computing is a rapidly evolving field utilizing DNA molecules instead of
silicon-based electronic units to perform calculations. The reliability of such
computations strongly depends on the DNA sequences that represent units of
information. Recently, the thermodynamic constraints, based on the free energy
of hybridization between pairs of DNA single strands, are considered as the most
reliable criterion to compose such sequences.

The purpose of this thesis is to provide a contribution to the field of finding
reliable DNA sequences for the encoding of entities in mathematical problems.
The developed methods make use of the nearest neighbor DNA thermodynamic
model as a biological fundament. The modelling method uses graph theory. The
work addresses the following issues.

The first one is a thermodynamic evaluation of a DNA encoding. The per-
formance of predeveloped published sets in vitro differs for particular DNA com-
putations that follow distinct models, since the intended reactions are not the
same. The models using an encoding principle proposed by Adleman [2] imply in-
teractions, that are not taken into account by modern strand design applications.
Therefore, an evaluation method comprising additional restrictions is proposed,
in order to more accurately assess the performance of a candidate DNA encoding
for these models. The evaluation is performed with respect to thermodynamic
restrictions and allows to find weak spots in the encoding set of DNA words.

The second issue is the prediction of the hybridization energy for a pair
of DNA single strands. This comprises finding the secondary structure of the
DNA/DNA complex with minimal free energy (MFE), which is usually referred
to as MFE problem. The effective solution methods for this problem are the main
prerequisites for the thermodynamically based DNA sequence design. Contem-
porary methods are based on the nearest neighbor model to assess the thermal
stability of biomolecular DNA complexes and utilize the paradigm of dynamic
programming to find an energetically optimal complex. In this work, a novel
graph model for DNA/DNA hybridization complexes is developed. Based on
this, two methods for the solution of the MFE problem using the paradigm of
dynamic programming are proposed. The performance of the methods is com-
pared with that of currently used methods for this task.

An additional issue concerns one of the basic problems in algorithmic graph
theory. Namely, the all-pairs shortest path problem that comprises finding of
the paths with minimal weight between each pair of nodes in a graph. There
was developed a memory saving technique to perform the calculations for the
particular case of bipartite graphs. It is based on transformation of the weight
matrix by rules of tropical (min-plus) algebra.
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Chapter 1

Introduction

By means of DNA computations, DNA molecules are exploited as a carrier of
information assigned by humans, as against their biological role as preserver of
inheritance information. Such computation is a sequence of controlled chemical
reactions of DNA manipulations, performed in the molecular biology laboratory.
The molecules in use are mostly artificially synthesized DNA with specially com-
posed sequences that encode the entities (variables) of an assignment to be solved.

The first idea of exploiting biomolecules for computational purposes was put
forward by Feynman [31] in 1961. The first practical implementation of such a
computation was achieved by Adleman [2] in 1994. He solved a seven-vertices
instance of the Hamiltonian path problem with DNA. Since then, this task has
become a benchmark assignment for testing the performance of new models for
DNA computations in the wet laboratory. Thereupon followed many other ex-
plorations in this area; development of further DNA computation models was
followed by their implementation in the wet laboratory.

Practical implementation of a computation scheme in a wet laboratory is a
critical point for a model. First attempts to repeat the Adleman’s experiment
have failed [55]. Other DNA computing schemes have remained purely theoreti-
cal, e.g., the scheme of a DNA computer proposed by Roweis et al. [81].
The main difficulty of implementation is controlling the numerous conditions im-
posed by DNA chemistry. Modeling is based on the assumption, that only pairs
of exactly complementary strands interact (hybridize) with each other. However,
in a reaction tube inexact hybridizations between pairs of strands, which are
only partially complementary, also take place. They hinder the intended flow
of reactions and make the result of computations unreliable. Hence, the DNA
computations require a preliminary step to find the appropriate DNA encoding,
that is, the composition of DNA strands, such that under certain conditions of
reaction the molecules behave in a manner prescribed by a model.
With the increasing size of the tasks, a manual design of strands sufficient for
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2 1 Introduction

early experiments has become complicated. Therefore, the means of traditional
silicon-based computers are employed. Contemporary methods of computer-
aided DNA strand design are based on combinatorial and/or thermodynamic
criteria. The latter are more accurate, as they take into account the free energy
of interacting strands by given reaction conditions, such as temperature and com-
position of the solution. To account for possible undesirable interactions, such
methods require an efficient underlying procedure, which computes the thermo-
dynamic stability of the DNA complexes built during the reaction.

In this thesis some novel computational methods are proposed that help to
find reliable sets of DNA sequences to use in DNA computations. The task is
addressed on two levels. The first one is a thermodynamic evaluation of a DNA
encoding. Currently, there are several methods for DNA strand design [45, 30, 98]
as well as ready sets of DNA words developed for DNA computing [15, 77, 24].
The performance of such sets in vitro differs for particular DNA computations
that follow distinct models, since the intended reactions are not the same. The
models using an encoding principle proposed by Adleman [2] imply interactions,
that are not taken into account by modern strand design applications. Therefore,
an evaluation method comprising additional restrictions is proposed, in order to
more accurately assess the performance of a candidate DNA encoding for these
models.

The second level is an underlying method for such evaluation, which computes
thermodynamic stability of a complex built by hybridization of two arbitrary
DNA strands. Because a structure of hybridization complex for such strands
is initially unknown, this is an optimization problem, known as minimum free
energy (MFE) problem. Contemporary solutions are based on the nearest neigh-
bour model for assessing the thermal stability of the bimolecular DNA complex
and utilize the paradigm of dynamic programming to find the structure of an
energetically optimal one. Current methods implement different modifications
of dynamic programming, such as greedy algorithm [54] and fractional program-
ming approach [59]. This thesis introduces a novel graph model to comprise the
potential structures of a hybridization complex, and computational methods for
finding the MFE structure on such graph. These are also useful as a subroutine
in applications for thermodynamic strand design.

The last issue addressed in this thesis concerns one of the basic problems of
graph theory, the shortest path problem. An improved technique is introduced for
the solution of this problem for a particular class of graphs, the bipartite graphs.
It reduces memory and time requirements of a general solution methods, such as
Floyd-Warshall [32, 101] algorithm.

The development of computational methods for biology belongs to the area of
algorithmic bioinformatics, which focuses on the creation of novel algorithms and
data structures. The first part of this thesis is a work in the field of structural
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bioinformatics, which is concerned with the structure of proteins and nucleic
acids. The second part is a contribution to algorithmic graph theory.

  Graph-based Methods 

Evaluation of DNA 
Encoding

MFE Algorithms for DNA 
Hybridization Complex

Tropical APSP Algorithm 
for Bipartite Graphs

Hybridization Graph Model

Exhaustive Search Algorithm

Vertex Pruning Method

Edge Pruning Method

Performance Analysis

General Workflow 
Evaluation Procedure for 
Brick -based Encoding„ “

Evaluation of Encodings

Weight Matrix Properties

Reduction of the Weight 
Matrix

Improved APSP Algorithm

 Methods for Design of DNA 
Computations

Figure 1.1: Research topics.

The major contributions of this thesis are the following (Figure 1.1):

1. A general workflow is developed for establishing of a procedure, that eval-
uates quality of a DNA encoding considering particular DNA computation
scheme. Such a procedure assesses a temperature-dependent mutual behav-
ior of the ssDNA strands under given reaction conditions. The effectiveness
of the approach is demonstrated by establishing of an evaluation for DNA
computation models, based on a principle proposed by Adleman [2]. The
evaluations of several DNA word sets from the literature is performed.

2. A new approach is developed for solving a minimal free energy (MFE) prob-
lem for the hybridization complex built by a pair of partially complementary
DNA molecules. It introduces a concept of the hybridization graph to repre-
sent whole magnitude of potential secondary structures for the bimolecular
DNA complex. The MFE structure is represented by a path with minimal
weight on this graph. A dynamic algorithm for direct solution, i.e., an ex-
haustive search, is proposed. This was originally presented in [95, 94].

3. Two advanced computational methods for finding the shortest path in a
hybridization graph were developed. They are based on reduction of the
graph by deletion of edges, which lead to suboptimal solutions. For both
methods, the edge deletion criteria are developed so that they deliver the
optimal path.

4. An advanced technique is presented for finding the shortest path for a par-
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ticular class of bipartite graphs. It is based on the Floyd-Warshall algorithm
and extends a tropical algebra form of the method.

The rest of the thesis is organized as follows:
Chapter 2 describes the basic topics of biology and informatics relevant to

this work. It includes the structure of DNA, its hybridization complexes, and
a thermodynamic model that allows assessment of their stability. Next, the
formalisms of graph theory used in this thesis as main modelling framework
are presented. The chapter describes the dynamic programming approach to
developing algorithms, concluding with an outline of the area of DNA computing
and a survey of work in related fields.

Chapters 3, 4 and 5 present the actual achievements of this thesis. Chapter 3
is concerned with the thermodynamic validation of a set of DNA codewords for
a specific type of DNA computations.

Chapter 4 introduces a graph model for secondary structure of DNA/DNA
hybridization complexes. Based on this, a straightforward solution method is
proposed for the minimal free energy problem. Further on, two graph pruning
strategies and implementational aspects of corresponding computational meth-
ods are presented. Their advantage in comparison to the straightforward method
and the comparable existing ones is given.

Chapter 5 presents the special method for solving the all-pairs shortest path
problem on bipartite graphs. Chapter 6 concludes the thesis and outlines direc-
tions for further research.



Chapter 2

Theoretical Basis

Structural bioinformatics is a sub-field of computer science and biology inves-
tigating the structure of proteins and nucleic acids. This chapter introduces
relevant topics from both fields. In the first part, DNA as the central object
of current research is presented. Then the related methods of informatics are
introduced. Section 2.5 describes the field of DNA computation and the main
directions of its evolution. It also presents two specific models of DNA compu-
tations addressed in current research. The last part defines the two problems
addressed by this thesis: the encoding problem for DNA computations and the
minimal free energy problem for two DNA strands. It also gives an overview of
contemporary methods for solving these problems.

2.1 DNA

This section describes a biological basis for methods developed in the scope of
this study. It concerns the structure of single-stranded DNA molecules and their
complexes built by hybridization. Then a state-of-the-art model for quantitative
estimation of stability of such complexes is presented.

A DNA single strand (ssDNA) is a linear biopolymer consisting of nucle-
obases (or simply bases) bound to a sugar-phosphate backbone. The alternation
of phosphate and sugar gives an orientation to the backbone and to the whole
DNA strand. The bases in the strand are usually taken from a phosphate (de-
noted as 5′) to sugar (denoted as 3′) terminus, if corresponding termini are not
explicitely labeled. In DNA four types of nucleobases occur: adenine A, cy-
tosine C, guanine G, and thymine T. The sequence of bases in a strand, e.g.,
CGGATCG, defines its primary structure. Adenine can pair with its comple-
mentary base or Watson-Crick complement thymine by hydrogen bonds. Similar
bonding occurs between the other pair of complements cytosine and guanine.
Binding of complementary bases of the single strand to one another is called

5



6 2 Theoretical Basis

folding. Binding of two ssDNA is called hybridization. The resulting molecule
is a hybridization (or bimolecular) complex. Bonded bases define a secondary
structure for the folded ssDNA or the hybridization complex. Formally, a DNA
single strand is represented as follows.
A DNA alphabet, i.e., a finite set of accepted characters, consists of four letters:
Σ = {A,C,G,T}.
A DNA single strand is represented by an oriented string a= a1 . . . an defined by
this alphabet; its left end corresponds to 5′-terminus of the DNA strand.
The complementarity is a bidirectional relation on pairs A ↔ T and G ↔ C. A
base complementary to ai is denoted ai.
If for two ssDNA a(5′ – 3′) and a′(3′ – 5′) of length n every base ai is complemen-
tary to a′i (a′i = ai for all 16 i6n), the strands are called complementary a= a′.
Hybridization of two complementary strands is called specific. Two piecewise
complementary strands hybridize non-specifically. A bimolecular complex built
by specific hybridization is a Watson-Crick double helix.

Most DNA in living cells has a double helix structure and preserves genetic in-
formation, with the exception of some viruses with ssDNA genomes.

2.1.1 Structure of the Hybridization Complex

In the following section, we observe DNA bimolecular complexes built through
hydrogen bonds between bases of different strands or, in other words, interstrand
pairings. We assume that a base pair comprises two Watson-Crick complemen-
tary bases (A and T, or C and G) from different strands bound by hydrogen
bonds.
Consider two DNA single strands a(5′ – 3′) and a′(3′ – 5′) of lengths n and m
respectively, which are not complementary. In the hybridization complex built
by these strands, two types of structural motifs can be observed: internal, that
is, flanked by a base pair on two sides, and terminal ones, delimited by a base
pair on one side. In Figure 2.1 is shown a complex exhibiting all types of DNA
structural motifs.
The internal motifs are:

– Stem is a sequence of base pairs, where all constituting bases are consecutive
on both strands. A stem is defined by two complementary substrings s
and s′= s of a and a′ respectively, where every base si is paired with its
complementary one s′i. Two consecutive base pairs sisi+1/s

′
is
′
i+1 are also

called stacking; a stem is a sequence of stackings.

– Loop is a region of unpaired bases enclosed between two base pairs. It is
defined by two substrings l= l1 . . . lk and l′= l′1 . . . l

′
k′ , where 26 k6n and

26 k′6m, of the strands a and a′ respectively. The left flanking bases l1
and l′1 = l1 build a base pair, the right flanking ones lk and l′k′ = lk too. The
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k−2 bases between l1 and lk on the strand a and k′−2 ones between l′1 and
l′k′ on the strand a′ are unpaired.
Depending on the number of unpaired bases in each strand, three types of
loops can be distinguished:

- symmetric has an equal number of unpaired bases; that is,
k−2 = k′−2> 1;

- asymmetric has unequal number of unpaired bases: k−2 6= k′−2, with
k−2> 1 and k′−2> 1;

- bulge is a loop, where only one of the strands exhibits unpaired bases;
that is, either k−2 or k′−2 is zero.

The terminal motifs are:

– Blunt end, where the terminal bases of both strands a1 and a′1 (or am and
a′n) are paired with each other.

– Dangling end, where just one of the strands has an overhanging region of
unpaired bases. For instance, a1 is paired with some a′j and j > 1. Due to
strand orientation, the 5′- and 3′-dangling ends are distinguished, dependent
on which terminus of a strand is overhanging.

– Terminal mismatch. Both strands have terminal regions of unpaired bases.

symmetric 
     loop

asymmetric
     loop

bulgedangling end terminal 
mismatch

5' 3'

3' 5'

Figure 2.1: Structural motifs of DNA/DNA hybridization complex. Vertical lines de-
note paired Watson-Crick complementary bases (A-T and C-G).

Bimolecular complexes have two ends and, correspondingly, two terminal motifs.
A quantitative measure of the complex stability is Gibbs free energy 4G in
kcal/mol. It is a thermodynamic potential, minimized when a system reaches
equilibrium at constant pressure p and temperature T (in Kelvin):

4G(p, T ) = 4H − T 4 S, (2.1)

where4H is change of enthalpy showing heat flow of the reaction, that is whether
it is absorbed (positive 4H) or emitted (negative). It is measured in kcal/mol.
The change in entropy of the system 4S shows a degree of disorder, which is
measured in cal/(molK). A DNA hybridization complex with arbitrary strands
acquires secondary structure with minimal 4G.
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RNA

Ribonucleic acid is another representative of the class of nucleic acids. The chem-
ical composition of RNA is very similar to that of single strands of DNA. The
main differences are: the sugar group in backbone is ribose, while in DNA it is
deoxyribose; the base uracil in RNA replaces thymine, so that in RNA adenine
is complementary to uracil.
Due to these distinctions, RNA tends toward self-folding more than DNA. Cor-
respondingly to this, the research on RNA is focused on predicting of its folding
that comprises, beside the structural motifs possible by interstand interactions,
hairpins and multiloops.

DNA manipulations

The main methods of DNA manipulation are:

– Denaturation, which is a separation of a dsDNA molecule to its constituent
single strands without breaking their backbones. By increasing the temper-
ature up to 85◦C or 95◦C the hydrogen bonds between Watson-Crick bases
on different strands break (Figure 2.2a).

– Annealing reaction. It enables ssDNA strands to hybridize with one another,
building dsDNA by intrastrand base pairings. It is achieved by slow cooling
of the reaction tube (Figure 2.2a).

– Ligation, performed by a protein called ligase. It establishes a covalent bond
between sugar and phosphate groups of two neighbouring nucleotides of the
same strand, if their corresponding bases are paired with consecutive ones
on the other strand (Figure 2.2b).

5'

3'

denaturation

annealing

5'

3'

(a) Denaturation, Annealing

5'

3'

5'
5'

3'
ligation

(b) Ligation

Figure 2.2: DNA manipulations. (a) Reaction is reversible. (b) Ligase repairs a break
in backbone.

– Restriction, performed by proteins called restriction enzymes. They bind to
certain sequences of bases inside ssDNA or dsDNA and cleave the strands.
That is, they break covalent bonds in the backbone of a strand between the
sugar and phosphate groups of neighboring nucleotides.
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2.1.2 Thermodynamics: Nearest Neighbour Model

The nearest neighbour model was first introduced for RNA molecules in the
1960s by Crothers and Zimm [21], and DeVoe and Tinoco [25]. This model is
based on the observation that the stacking of bases along a helix is reinforced by
hydrophobic interactions, van der Waals and other forces. The aggregate energy
of these interactions exceeds that of the hydrogen bonding between the paired
bases. From this, it was deduced that the stability of the DNA double helixes can
be predicted from the primary sequences of the two participating strands, where
only the interactions between adjacent base pairs are taken into account [16].

In the 1980s, several laboratories proved that the model is suitable for DNA
and obtained corresponding experimental data for thermodynamic stability of
stackings [16, 41, 100]. That allowed the prediction of the stability for duplexes
built by two complementary DNA single strands.
The model defines nearest neighbours as the stacking of two consecutive base
pairs (aiai+1/a

′
ja
′
j+1) from strands a(5′ – 3′) and a′(3′ – 5′), respectively. That is,

Watson-Crick nearest neighbours, which consist of two adjacent pairs of com-
plementary bases such as (AC/TG) (in the order 5′ – 3′/3′ – 5′). There are ten
types of such nearest neighbours [17], since from 16 possible permutations six are
symmetric, e.g., (CG/GC) or (GT/CA).
Further research extended the data set with stabilities of loops, containing two
unpaired bases of all possible configurations [3, 4, 5, 6]. This allowed the predic-
tion of the stability for hybridization complexes containing such loops, in addition
to plain duplexes.
The actual data set for the nearest neighbour model was developed in 2004
in SantaLucia laboratory [83]. It includes the experimental data for Watson-
Crick nearest neighbours, internal and terminal mismatches (nearest neighbours
with either (ai/a

′
j) or (ai+1/a

′
j+1) unpaired, Figure 2.3), and dangling ends. The

parameters were gathered and extrapolated to predict the stability for DNA
structural motifs with regions of unpaired bases longer than two, such as sym-
metric and asymmetric loops, and also for bulges [84]. This data set allows the
calculation of the Gibbs free energy, enthalpy and entropy of DNA/DNA hy-
bridization complexes.

In this section, the Equations (2.3) – (2.8) for the free energy of DNA structural
motifs are given according to SantaLucia and Hicks [84].

Let E denote the composite Gibbs free energy of a DNA/DNA complex or
motif, and let4G denote the experimental data from the nearest neighbour data
set. Since a DNA/DNA complex can be considered as a linear combination of
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stems, loops, and terminal motifs, the DNA/DNA pairing energy is given by

Etotal = Eadd +
k∑

i=1

Estem(Si) +
m∑
j=1

Eloop(Lj)

+ Eterm(left) + Eterm(right),

(2.2)

where the hybridization complex has stems S1, . . . , Sk and loops L1, . . . , Lm. The
energy term Eadd includes effects from symmetry of the sequences and helix
initiation energy, which are independent from secondary structure of the complex:

Eadd = 4Ginit +4Gsym. (2.3)

The energy term Eterm(left/right) accounts for terminal motifs such as blunt and
dangling ends, terminal mismatches and closing (A/T) pairs at corresponding
ends of the complex:

Eterm(left/right) = 4GAT(left/right)

+


0, blunt end,

4G5′−dEnd(ai, a
′
j), (either i=m or j= 1), 5′-dangling end,

4G3′−dEnd(ai, a
′
j), (either i= 1 or j=n), 3′-dangling end,

4GtermMM(ai, a
′
j), terminal mismatch.

The terminal penalty 4GAT is applied if a terminal motif is closed by the base
pair (A/T) or (T/A). The term 4GtermMM(ai, a

′
j) is a free energy contribution of

a terminal unpaired region. If each strand has more than one unpaired base, this
contribution is that of a single mismatch. For the left end it is a left mismatch
(ai−1ai/a

′
j−1a

′
j) (left pair is unbound). For the right end it is a right mismatch

(aiai+1/a
′
ja
′
j+1). In both mismatches only ai with a′j build a base pair.

The energy terms Estem and Eloop are additive with respect to nearest neigh-
bour pairs. The energy contribution of a stem S= s1 . . . sn/s

′
1 . . . s

′
n is given by

following equation:

Estem(S) =
n−1∑
i=1

4GNN(sisi+1/s
′
is
′
i+1), (2.4)

where 4GNN(sisi+1/s
′
is
′
i+1) denotes the energy of the stacking (sisi+1/s

′
is
′
i+1)

(Figure 2.3).
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right
mismatch

left
mismatch

NN 1
NN 2

stem {{
loop

Figure 2.3: Calculation of Gibbs free energy for loops and stems. Here NN 1 and NN 2
are Watson-Crick nearest neighbours (stackings). The stem consists of eight base
pairs, building seven stackings. The loop is symmetric with eight unpaired bases.

The energy contribution of a loop depends on the loop type:

– A symmetric loop L has an equal number of unpaired bases in both sequences
and its energy contribution amounts to

EsymLoop(L) = 4GrightMM +4Gloop(l) +4GleftMM, (2.5)

where 4GrightMM and 4GleftMM is the Gibbs free energy of neighboring pairs
at the beginning and at the end of the loop, respectively (Figure 2.3). Such
nearest neighbours contain one noncomplementary pair of bases (mismatch).
Moreover, 4Gloop(l) is the Gibbs free energy contribution of l unpaired bases
in the loop (Figure 2.3). The exact values for loops up to ten bases were
found experimentally. For longer loops a Jacobson-Stockmayer extrapolation
is used [51]:

4Gloop(l) = 4Gloop(x) + 2.44×R× 310.15× ln(l/x), (2.6)

where 4Gloop(x) is a free energy increment of the longest loop of length x
with experimental data, and R is the gas constant. The coefficient 2.44 is
based on kinetic measurements in DNA [39].

– An asymmetric loop L has an unequal number of unpaired bases in the se-
quences and its energy contribution is

EasymLoop(L) = 4GrightMM +4Gloop(l) + Easym +4GleftMM, (2.7)

where Easym = |l1− l2| × 0.3 kcal/mol depends on the difference between the
length l1 and l2 of unpaired regions in the strands.

– A bulge loop L has unpaired bases in only one of the strands and its energy
contribution is:

Ebulge(L) = 4Gbulge(l) +4G(intNN) +4GATterm, (2.8)
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where l is the number of unpaired bases in the bulge. The value 4G(intNN)
comprises the contribution of the intervening nearest neighbours for a bulge
of length one base:

4G(intNN) =


0, if l > 1,

4GNN(aiai+1/a
′
ia
′
i+2), if l= 1 and a′i+1 is unpaired,

4GNN(aiai+2/a
′
ia
′
i+1), if l= 1 and ai+1 is unpaired.

The energy of Watson-Crick nearest neighbours is negative and thus stackings
always have a stabilizing effect. On the other hand, the energy of the three types
of loops is predominantly positive, except for symmetric two-base loops of certain
configurations. Thus, loops generally have a destabilizing effect on the overall
structure.

The enthalpy 4H for the complex is calculated similarly. The database contains
the corresponding parameters for all the structural motifs. The only distinction
is that the enthalpy increment for unpaired regions in loops is zero; that is,
4Hloop(l) = 4Hbulge(l) =Hasym = 0.

The calculation of entropy 4S of the hybridization complex abides by the same
scheme as the Gibbs free energy 4G, or it can be obtained as follows:

4S =
4G−4H

T
,

where T is the temperature in degrees Kelvin.

Stability of DNA motifs under different experimental environment

The parameters in the thermodynamic database can be adapted to various ex-
perimental conditions. The published thermodynamic database was established
under 37◦C and NaCl concentration of 1 mol/l. For a different temperature T ,
the corresponding set of Gibbs free energy contributions is calculated using Equa-
tion (2.1): 4GT = 4H − T 4 S.
It is assumed that 4H and 4S are temperature independent [84].
There are also formulae for the change of salt concentration [84]:

4G37[Na+] = 4G37[1mol/lNaCl]− 0.114× N/2× ln[Na+],

4S[Na+] = 4S[1mol/lNaCl] + 0.368× N/2× ln[Na+],

where N is the total number of phosphates in the hybridization complex, and
[Na+] is the total concentration of monovalent positively charged particles.

An important parameter for controlling the hybridization reaction is the DNA
melting temperature. It is the temperature, by which 50% of the molecules are



2.1 DNA 13

in single strand state. It is calculated from the changes of enthalpy and entropy
as follows:

TM =
4H × 100

4S +R× ln(CT/x)
− 273.15, (2.9)

where CT is the total molar strand concentration; R is the gas constant, and x
accounts for the self-complementarity of the duplex.

Terminal mismatch parameters

Several laboratories have measured Gibbs free energy, enthalpy and en-
tropy for Watson-Crick nearest neighbours. Comparative analysis provided
in SantaLucia [82] shows compatibility of their results. The differences in mea-
sured values are issued by distinct reaction conditions such as salt concentration
of solution and strand concentration. Further on, the parameters for single mis-
matches and destabilizing energies for loops of different length were developed
in SantaLucia laboratory [83]. Such terminal effects as terminal mismatches are
still a matter for research. In particular, there are currently two ways to calculate
the energy of terminal mismatches:

– as the sum of dangling ends energies;

– using the energies of internal mismatches.

According to Peyret [78], both these methods give ambiguous results and more
basic research is required to obtain better precision. Hence, by implementation of
the algorithms described in Chapter 4 the second method is employed to account
for the terminal effects in DNA complexes.

2.1.3 Minimum Free Energy Problem

The nearest neighbour thermodynamic model provides the equations and a data
base of parameters to calculate the stability of DNA structural motifs. However,
for a hybridization complex built by two arbitrary strands, the secondary struc-
ture and, correspondingly, the motifs present are initially unknown. According
to molecular thermodynamics, the complex tends to acquire the conformation
with lowest free energy. So, such conformation should be found among all po-
tential structures. The corresponding optimization problem is usually stated as
follows:

Minimum Free Energy Problem : Given two nucleic acid sequences and a ther-
modynamic model, find the secondary structure with smallest free energy change
under this model, to which the sequences can hybridize.
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This implies the search over the space of all admissible structures (combinations
of base pairs) for two given strands. According to interstrand model, the struc-
ture is admissible if in strands a and a′ there are no intrastrand pairings and for
all base pairs (ai/a

′
j) and (ai1/a

′
j1

) holds: if i < i1, then j < j1.
According to the nearest neighbour thermodynamic model, the objective is to
find the minimal value of Etotal given by Equation (2.2). Since the first term
Eadd of this expression is constant for a pair of given strands, the objective value
for MFE problem has the following form:

Emin = min

{
k∑

i=1

Estem(Si) +
m∑
j=1

Eloop(Lj) + Eterm

}
, (2.10)

where the minimum ranges over all admissible structures of bimolecular complex
for two given DNA strands; Si and Lj are potential stems and loops, respectively;
the term Eterm accounts for energy contribution of the both left and right termini
of the complex.

2.2 Dynamic Programming

This paradigm was introduced by Bellman [11] in 1957. It is a method for design-
ing algorithms to solve optimization problems. The main principle is to break
down the initial problem into smaller subproblems in a recursive manner. Then,
starting with the solution to the smallest subproblems, the solutions for enclosing
subproblems are found. The approach is widely used in bioinformatics to detect
homology between molecules, find genes, and predict the secondary structure for
nucleic acids.
These tasks are typically solved by finding an optimal alignment between se-
quences, that represent the primary structure of molecules, i.e., proteins or nu-
cleic acids. An alignment is an arrangement of the sequences one over another by
insertion of spaces, so, that they have the same length. To assess the quality of
alignment a score is assigned to each column, dependent on whether it contains
a space, two different (mismatch) or equal (identity) letters. This assignment is
called a scoring scheme/function.

The computation course of the algorithms following this paradigm is based
on establishing of a dynamic programming (DP) matrix (Figure 2.4a). Its rows
and columns are labeled with letters of the corresponding sequences. The cells
represent columns of alignment and retain optimal scores found for subproblems,
which are alignments of substrings from first positions to the current ones in the
strings. So the whole matrix contains the optimal scores for each subproblem.
In most cases, an optimal alignment in addition to the score is also of interest.
To obtain it, the transitions leading to the optimal score in every cell are usually
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retained while filling the matrix. By tracing back the stored transitions from the
cell with the optimal score, the optimal alignment is recovered.
Hence, the dynamic programming algorithms are usually divided into two parts:
forward and backward (Figure 2.4b).

(a) dynamic programming matrix
Di,j – iterative function
σ – scoring function end

start

2 Sequences

optimal score
alignment (structure)

Dynamic Programming 
algorithm

filling
of the DP 

matrix

restore
alignment 

Backward
Iteration

Forward
Iteration

(b) general flow chart for dynamic program-
ming algorithm

Figure 2.4: Implementation of the dynamic programming approach.
(a) The equation is given according to Needleman-Wunsch algorithm. The symbol
”–” denotes a space (extension to the accepted alphabet for alignment algorithms).
(b) Two parts of DP algorithm.

The forward part consists of the following three steps:

1. Initialization of the DP matrix, that is, assigning the scores to the smallest
subproblems, which are represented by cells of the first row and column.
Their scores are usually constant.

2. Filling of the matrix, that is, finding the optimal score for each cell and saving
it for further computation. The scores of smaller subproblems are used to
find the cost of enclosing ones according to recursive formulae and the given
scoring scheme.

3. Finding the optimal score. In simple cases, such as global alignment, the
score of last cell in a matrix is the optimal one. In more complex ones, the
optimal score is found amongst a number of cells.

The design of algorithms following the paradigm consists of specification of each
step according to a problem. The first and third steps are usually simple compu-
tations. The second step is the most elaborate one. A particular implementation
of each step depends strongly on the scoring scheme.
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Basic dynamic programming algorithms for pairwise sequence alignment that
use simple scoring functions are the ones from Needleman and Wunsch [74], and
Smith and Waterman [88], the method from Gotoh [40] employs more complex
affine scoring.
The dynamic programming approach is also used to find the secondary structure
of nucleic acids. The main scheme of computations is similar to that of alignment
algorithms.

2.3 Graph Theory

2.3.1 Basic Definitions

A graph G= (V,E) is an ordered pair of non-empty set V and a set E of two-
element subsets of V . The elements of V are called vertices and that of E are
called edges. The edges e= {vi, vj}, where vi 6= vj, of a graph are denoted by a
pair of vertices as vivj. A graph is commonly described by a diagram, in which
the vertices are points and edges are lines joining them pairwise (Figure 2.5a).
The cardinality of V is the order of the graph, and the cardinality of E is the
size of the graph.
Two vertices are adjacent if they define an edge; it is also said that they are
incident with this edge. The number of incident edges (or adjacent vertices) for
every vertex vi is its degree d(vi). All adjacent vertices of a vertex vi build its
neighbourhood NG(vi).

v1

v2

v3

v4

v5

e1

e2

e3

e4

e5

e7
e6

(a) a graph G

v1

v2

v3

v4

e1e3

e7
e6

(b) a subgraph of G

v1

v2

v3

v4

v5

e1e3

e4

e5

e6

(c) a spanning subgraph of G

Figure 2.5: A graph with its subgraph and spanning subgraph.
(a) A graph G= (V,E) with the vertex set V = {v1, v2, . . . , v5} and the edge set
E= {e1, e2, . . . , e7}= {v1v2, v2v5, . . . , v4v1}. The order of the graph is |V |= 5, its
size is |E|= 7.
(b) A subgraph G′ with V ′= {v1, v2, v3, v4} and E′= {e1, e3, e6, e7} of the graph G.
(c) Spanning subgraph contains all vertices of the graph G. The edges e5 and e7 are
deleted from the supergraph.

One of the forms to represent a graph is an adjacency matrix A= (ai,j). It
is a two-dimensional Boolean matrix, in which the rows and columns represent
source and destination vertices respectively, and its entries indicate whether an
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edge exists between the vertices associated with that row and column. For simple
graphs the matrix is symmetric; its main diagonal contains zeros:

ai,j =

{
1, if vivj ∈ E,
0, otherwise.

A subgraph G′= (V ′, E ′) of a graph G= (V,E) consists of sets V ′ ⊆ V and
E ′ ⊆ E (Figure 2.5b). The graph G is then a supergraph for G′. If V ′=V ,
then G′ is called spanning subgraph of G. So, the spanning subgraph for a given
graph is obtained by possibly deleting of some edges.

In graph theory, some types (or classes) of graphs, which exhibit special prop-
erties are defined. For the thesis the two following graph classes are important.
The first class is complete graphs, where each pair of vertices is adjacent, e.g., a
four-vertex complete graph in Figure 2.6a. The second class is bipartite graphs.
For them, the set V can be divided in two parts, such that no vertex is adjacent
to another one in the same part. Figure 2.6b demonstrates a bipartite graph
with five vertices, where one part contains three and another part two vertices.

(a) complete graph (b) bipartite graph

Figure 2.6: Special graphs. (a) Complete graph with four vertices. (b) The three
vertices on the left build one part of the graph, the two ones on the right – the
second part.

A sequence of adjacent vertices P (v1, v2, . . . , vk), where vivi+1 ∈ E for every
i and 16 i < k, is a path through the graph. The first vertex in a path v1 is the
start vertex, and the last one is the end vertex; they both are terminal vertices.
A path with coinsident starting and ending vertices is called cycle.

A graph, where all pairs (vi, vj) in E are ordered, is a directed graph or
digraph. Directed edges are denoted in the diagram by arrows (Figure 2.7a).
The first vertex in a pair is called the initial or tail (of an arrow); the second
one is the terminal or head. The edge vivj leaves the vertex vi and enters vj.
For the vertices of a digraph, in- and out-neighbourhoods are distinguished. The
in-neighbourhood N−G (vi) of a vertex consists of all vertices incident to it by edges
entering vi. These vertices are also called direct predecessors of vi. The vertices
in the out-neighbourhood N+

G (vi) are joined by edges leaving a vertex vi. They
are direct successors to the vertex vi. For directed graphs, the adjacency matrix
is asymmetric.
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(a) a digraph
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(b) a digraph with half-edges

Figure 2.7: Digraphs. (a) Digraph for the graph in Figure 2.5a. (b) Digraph with
three half-edges. Vertices v1 and v3 are incident to entering half-edges, vertex v4 has
a leaving one.

If edges of a graph are associated with real numerical values, that is, there is
a mapping E→R for the edges, the graph is called weighted. For such a graph,
a path weight W (P ) is the sum of weights of the edges constituting that path.

For some applications, the classical graph theory is extended with additional
structures.
Half-edges are edges defined by a single vertex. They reflect some additional
properties (e.g., colouring) for single vertices or their groups. Direction and
weight can be assigned to half-edges. Therefore, in some directed graphs a vertex
can be incident to an entering or leaving half-edge (Figure 2.7b).

2.3.2 Path Problems in Graph Theory

Shortest path problem

The shortest path between two nodes in a graph is the one with the lowest weight.
For an unweighted graph, the weight of all edges is assumed to be one. So the
shortest path in such a graph is that with the lowest number of edges. Depending
on particular practical tasks, there are four general forms of the problem:

1. If both starting and ending vertices of a path are given, it is a single-pair
shortest path problem. The popular heuristic method for this problem is an
A* search algorithm.

2. If only the starting vertex is given, it is a single-source shortest path problem.
The shortest paths from the given vertex to all other vertices in the graph
must be found.

3. If only the ending vertex is given, it is a single-destination shortest path
problem. The shortest paths from all vertices in the graph to the given
one must be found. This can be reduced to the single-source shortest path
problem by reversing the edges in the graph. This problem and the two
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previous ones are solved by Dijkstra’s [26] algorithm.

4. If the terminal vertices are unknown, then it is an all-pairs shortest path
(APSP) problem. The shortest paths between every pair of vertices in the
graph must be found. This problem can be solved by Floyd-Warshall [32, 101]
or Johnson’s [52] algorithm. The latter one is faster on sparse graphs.

The last form of the problem is the most general one.

For the purposes of this thesis, another form of the problem is relevant:

X−Y shortest path problem : If a set X ⊆V of start vertices and a set Y ⊆V of
end vertices are given, then the objective is to find from all paths with a start in
X and an end in Y the single shortest one.

Hamiltonian path problem

A path through a graph is Hamiltonian if it contains all vertices of the graph
exactly once. Detecting such a path for a given graph or its absence is a Hamil-
tonian path problem. It is defined on both undirected graphs and digraphs; for
example, in Figure 2.7a the paths P (v2, v1, v3, v4, v5) and P (v4, v5, v2, v1, v3) are
Hamiltonian.
The problem is important for many practical tasks, such as root planning, clus-
tering problems [96], and optimization of manufacturing processes [8].

2.4 APSP Algorithms

2.4.1 Floyd-Warshall Algorithm

The algorithm was introduced by Floyd [32] and extended by Warshall [101] in
1962 to solve the all-pairs shortest path problem for a weighted graph. Another
important application of the algorithm is the finding of a transitive closure for
a graph (or binary relation), that is, a set of points reachable from every other
point.

The weighted graphs are described by the weight matrix M = (mij), which is
analogous to the adjacency matrix, but contains as entries the weights wij for
the corresponding edges:

mij =


0, if i= j,

∞, if i 6= j and vivj /∈E,
wij , otherwise.

The algorithm follows the paradigm of dynamic programming and consists of
several steps, each of which updates the whole dynamic programming (DP) ma-
trix. The DP matrix D is initialized by the weight matrix of the graph. At every
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step k, the cell Di,j retains the lowest weight of a path from the vertex vi to vj,
which uses intermediate vertices from v1 to vk. After |V | steps, the matrix con-
tains the weights of the shortest paths between all pairs of vertices. Procedure 1
shows the pseudocode of the algorithm.

Procedure 1 Floyd-Warshall Algorithm

Given: Graph G= (V,E) with the weight matrix M
D=M
for k = 1 to |V | do

for i = 1 to |V | do
for j = 1 to |V | do

/* Update the weight of the shortest path between vertices vi and vj */

Dij = min(Dij, Dik +Dkj)
end for

end for
end for
return D

A restriction on the algorithm is that a graph should not contain any cycles
with negative weight. If such cycle exists in the graph, one of the cells on the
main diagonal of the resulting matrix D has negative value, since these cells
represent the paths with the coinsident terminal vertices. The time complexity
of the algorithm is O(|V |3).

2.4.2 APSP Algorithm in Tropical Algebra

Tropical algebra

The field of tropical algebra, also known as min-plus algebra, was pioneered
by Simon [87] in the late 1980s. In the last decade, it has gained closer atten-
tion with the progress of such areas of applied mathematics as control theory,
optimization and statistics. Tropical representation was found to be extremely
useful for optimization problems. A number of DP algorithms for optimization
problems, e.g., Floyd-Warshall and Dijkstra’s, have much simpler forms in this
representation.

In tropical algebra, the basic arithmetic operations of addition and multiplication
on extended real numbers R ∪ {∞} are redefined as follows:

x⊕ y := min(x, y) and x� y := x+ y.

Thus, the tropical sum of two numbers is their minimum, and the tropical product
is their sum. The neutral element for addition is infinity, for multiplication – zero:

x⊕∞=x and x� 0 =x.
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The tropical scalar product of a row vector with a column vector is the scalar

(r1, r2, . . . , rn)� (c1, c2, . . . , cn)T = r1 � c1 ⊕ r2 � c2 ⊕ · · · ⊕ rn � cn
= min(r1 + c1, r2 + c2, . . . , rn + cn).

Tropical APSP algorithm

Consider the weight matrix M for a graph with n vertices without negative
cycles. The tropical multiplication of its row i with column j gives the following
value:

(mi1,mi2, . . . ,min)� (m1j,m2j, . . . ,mnj)
T

= mi1 �m1j ⊕mi2 �m2j ⊕ · · · ⊕min �mnj

= min(mi1 +m1j,mi2 +m2j, . . . ,min +mnj).

Each sum in the last expression represents the weight of a path from vertex i to
j, which contains maximal two edges. The tropical product of these elements of
the weight matrix is the length of the shortest path containing two edges at most.
Thus, the second tropical power M�2 of a weight matrix contains such weights
for every pair of vertices. By induction on the power, every further power M�k

holds the weights of the shortest paths containing k edges at most. Hence, the
matrix M�n−1 represents a solution to the all-pairs shortest path problem.
This means the solution to APSP problem is found in tropical algebra by multi-
plication of the weight matrix with itself n−1 times:

D = M �M � · · · �M︸ ︷︷ ︸
n−1 times

= M�n−1.

Similarly to the matrix of the Floyd-Warshall algorithm, the tropical solution
matrix M�n−1 contains negative entries on the main diagonal, if the graph has
negative cycles.

2.5 DNA Computing

This section gives a general description of the field of DNA computations and
the main directions of research. Then it demonstrates two coding principles of-
ten used in DNA computation models. The section is concluded with detailed
description of seminal Adleman’s experiment, which became a benchmark for
research in this area and constitutes a basis of the one presented in Chapter 3.

The field of DNA computing emerged in 1994 after the first experiment of
Adleman [2] and its generalization by Lipton [61]. Adleman [2] solved a seven-
vertices instance of the Hamiltonian path problem (HPP) with DNA molecules
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in a wet laboratory. Lipton [61] proved the feasibility of the approach for the
solution of the satisfyability (SAT) problem and generalized it for contact net-
works. Since then, the HPP and SAT problem have become benchmark tasks in
the field of DNA computing, that are used to prove the consistency of other mod-
els of DNA computation. Many other works in the area have followed. Detailed
classification is provided, for instance, by Hinze [48].
The main problems approached by DNA computations are:

– computationally hard mathematical problems, such as Hamiltonian path,
satisfyability, vertex coloring [64, 62, 106];

– implementation of computational models from computational theory, such
as finite state automata [12] and Turing machine;

– implementation of binary logic circuits [43, 44, 102, 80, 109];

– logical control of gene expression [13, 63, 107].

Ignatova et al. [50] describe three historical waves of DNA computing experi-
ments:

– Manual. To obtain the answer, a sequence of operations performed by hu-
mans is required. These computations were mainly concerned with the solu-
tion of computationally hard mathematical problems.

– Autonomous. The manipulations on DNA strands in vitro are fulfilled by
enzymes and do not require a human operator.

– Cellular. These computations are also autonomous. The main strain is to
develop DNA automatons, which function in living cells and control gene
expression products, e.g., substituting mutated protein with a correct one.
This direction comprises a wider area than just DNA computation, since it
involves further interactions with RNA.

The evolution of the field of DNA computing can be observed from the two
characterizations given above. At first, DNA-based computations were consid-
ered as solvers of the hard computational problems due to their high parallelism
compared to silicon-based computers. Later, that perspective became unclear,
since the uncertainty of biochemical reactions makes the implementations hardly
scalable [60]. Thus, the focus changed to optimization of the DNA computation
process. That has been successfully achieved by employing additional catalytic
agents (e.g., restriction enzymes) [12], that digest DNA molecules without in-
tervention from the operator. The restriction depends on short subsequences
present in strands. The intended manipulations can be encoded into DNA se-
quences. Cellular models are now in the development stage: there are some
in vitro implementations of such automata [13, 47, 46]. An in vivo automaton
was achieved for E. coli bacteria [73]. The ultimate objective is to use them in
medicine to repair dangerous mutations that lead to diseases, such as cancer or
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diabetes, caused by genetic defects. An example of such implementation is a
model of computational genes proposed by Mart́ınez-Pérez et al. [70].

Thus, the evolution of DNA computations has discarded the initial incentive of
outperforming the silicon-based ones. Modern research set perspectives on appli-
cations in medicine and the life sciences for a better understanding of mechanisms
of life and practical exploitations of DNA automata for diagnosis and cure.

The general scheme of a DNA computing experiment is given in Figure 2.8.
Each step involves several techniques of molecular biology, based on biochemical
reactions involving DNA, such as hybridization, ligation, or restriction.

detection

pool of candidate 
solutions answer poolcalculation

generation

initial pool

- manual
-autonomous

Figure 2.8: General flow chart for DNA computations.

The initial pool contains ssDNA or dsDNA molecules that represent the en-
tities of a problem assignment under computation,– for instance, variables for
mathematical problems or states and transition rules for automata. This pool
is used mainly by self-assembly models, that exploit hybridization and follow-
ing ligation (hybridization/ligation) to build a candidate solution molecules from
separate units. A candidate solution pool can also be manually designed and
generated separately; then the initial pool is not involved as an independent
unit.

The calculation step starts with a pool of candidate solutions and results in an
answer pool. This step is a sequence of DNA manipulations, that yield molecules
representing the correct answer. The manipulations are performed manually or
in an autonomous manner.

The last detection step is done manually, e.g., by gel electrophoresis.

A model of DNA computation defines all steps of the experiment. This re-
quires: a data representation scheme or coding principle, an algorithm for the
calculation step, and detection method. For manual models the algorithm is a
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sequence of operations. For autonomous ones it is an intended mechanism of
reaction, i.e., the interactions of DNA blocks with catalytic agents, that lead to
DNA molecules representing the answer.
To perform a DNA computation in a wet laboratory, particular substances (DNA
sequences and particular catalytic agents) and reaction conditions are selected,
including a mapping of problem entities into DNA sequences. The coding prin-
ciple reflects both the entities of a problem and their intended interactions under
a given computation model.

Coding principles in self-assembly models

In the scope of this work the following two coding principles are relevant. They
use single stranded DNA molecules as interacting units. These principles are
mainly used in linear self-assembly models, where the initial pool is built by
hybridization/ligation.

1. A sticker principle was initially introduced by Roweis et al. [81] and found
its use in further computation experiments [15] and extended models [68].
It defines two types of strands: memory strands, which encode a sequence
of bits; and stickers – the short strands complementary to every bit
(Figure 2.9). Intended interactions are binding of a sticker to a memory
strand on a region corresponding to its bit. The memory complexes are built
in this manner.

stickersmemory strands

memory complexes

5'
3'

3'

3'

3'

bit 1 bit 2 bit 3 bit 4 bit 1'
bit 2'

bit 4'
bit 3'

5' bit 1 bit 2 bit 3 bit 4

3' 3'

5' bit 1 bit 2 bit 3 bit 4

3' 3'

Figure 2.9: Sticker-based scheme.

2. A brick-based principle was introduced by Adleman [2] for his manual model
and reapplied in the next generation of computations, i.e., autonomous
ones [69, 110]. It is employed to solve the computational problems, that
involve two types of entities, e.g., vertices and edges. Such entities
are encoded interdependently. Every DNA sequence encoding an edge
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consists of two parts. The first one is the complement to the second
half of the sequence representing its tail. The second one is the comple-
ment to the first half of its head (Figure 2.10). Intended interactions are
the binding of one strand from a set to a pair of the strands from another set.

vi vj

eij

{{ {{5' 3'

3'

3'5'

5'

Figure 2.10: Brick-based coding. The words vi and vj represent vertices. The word eij
encodes the edge, joining these vertices.

Adleman’s solution of the Hamiltonian path problem

In the Figure 2.11, a seven-vertices instance of a Hamiltonian path problem
solved by Adleman [2] is shown. Additional conditions in the assignment is the
fixed start v0 and end v6 vertices for the path. The computational model exploits
the brick-based coding principle for data representation.

2 5

6

1

4

3

0

Figure 2.11: Graph considered by Adleman [2]. It comprises seven vertices and 14
edges. Dashed path is Hamiltonian.

The initial pool contains ssDNA of length 20 nt for five vertices v1, . . . , v5

and ten edges of the given graph. The strands encoding the edges starting
at v0 or ending at v6 are 30 nt long; there are four such edges in the given
graph. The pool of candidate solutions is build from the initial one through
hybridization/ligation. This pool contains dsDNA molecules that represent all
paths in the given graph. These strands are at first separated by starting and
ending vertex via PCR: only the strands starting with v0 and ending with v6

are amplified. From the resulting pool, the strands with the length of 140 nt are
extracted that represent all seven-vertex paths of the graph. The computation
step comprises denaturation of dsDNA to single strands consisting of vertex-
and edge-strands, and five consecutive rounds of manual extractions. At the
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first round, the edge-strands containing a sequence complementary to v1 are
extracted from the common pool, then, the extracted strands are objected to
a second round with v2 as detection sequence. After the last round with v5 as
detection sequence, the tube contains all molecules representing paths through
all the vertices, that is, Hamiltonian paths. If the resulting tube is empty, the
graph does not contain such a path.

2.6 Related Work

The success of DNA computation in wet laboratory strongly depends on correct
representation of information units (e.g., variables) through the encoding by DNA
molecules. This section outlines the problems of encoding evaluation and free
energy calculation for DNA computing addressed in this thesis in the context of
modern research.

2.6.1 Evaluation of a DNA Word Set

The importance of proper encoding was recognized in early stages of develop-
ment of DNA computing [2, 9]. The random encoding, used in early small-size
computations such as Adleman’s first experiment [2], has been shown to be in-
appropriate to solve the assignments of larger size [22]. Hence, the finding of
reliable sets of DNA strands (words) is recognized as separate problem, which is
solved by the methods of DNA strand design.

A DNA word set is considered reliable when the strand interactions proceed
as defined by the DNA computation model and produce detectable amount of an-
swer molecules under conditions of experiment [38, 37]. The predominant models
require specific hybridization of DNA strands with their complementary counter-
parts in order to build correct solution molecules; the non-specific hybridizations
may lead to false positives or decrease the effectiveness of computation by waste
of strands in byproducts of the intermediate reactions. Thus, the objective of
the majority of the strand design methods is to compose a DNA word set, where
specific hybridization (between each word and its complement) is significantly
more stable than the non-specific interactions (of a word with other words and
their complements) in a set. This properties can be ensured by in silico strand
design by setting certain criteria and evaluating DNA words according to them.

Evaluation criteria

Currently, two types of criteria are applied by strand design methods. The
combinatorial criteria comprise the pairwise distances or similarities, analogous
to those in information theory, for instance, Hamming or Levenshtein distance
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between the words; and GC-content of the strands (so that specific hybridizations
have similar stability). In 1997, Garzon et al. [34] introduced the H-measure,
which is the lowest Hamming distance for a pair of DNA words considering
all possible mutual shifts. This gives more exact estimation for likelihood of
hybridization than Hamming distance. The combinatorial constraints allow to
achieve the desired difference or similarity in base composition of the strands.

The criteria of another type, the thermodynamic ones, give an estimation of
hybridization behaviour of DNA strands.

The very basic criterion is a melting temperature (TM) of the specific hy-
bridizations. It is often used in combination with combinatorial constraints to
ensure the uniform melting point by in vitro reactions [22, 66].

The most reliable criteria developed so far are based on the Gibbs free en-
ergy of specific and non-specific hybridizations. Since they reflect hybridiza-
tion propensity between all molecules in a DNA pool. It has been shown
that such constraints are preferable over Hamming distance [91] and H-measure
constraints [92] for separation of the specific hybridizations from the non-
specific ones. Tanaka et al. [91] and Deaton et al. [24] implemented the free
energy criteria as predefined energy bounds for non-specific hybridizations.
Penchovsky and Ackermann [77] introduced free energy gap criterion that com-
prises the difference in free energy between the weakest specific hybridization
and the strongest non-specific hybridization for every word within the set. In
order to reduce the amount of non-specific hybridizations it should be as large
as possible.

The values of the evaluation criteria attained after the design process char-
acterize the quality of a DNA word set.

Evaluation process

By DNA strand design three kinds of evaluations are to consider:

1. Internal evaluation of fitting of a candidate word into a set.

2. Evaluation of quality of a word set.

3. Evaluation of performance of a word set for certain type of computations.

The internal evaluation is a built-in procedure for strand design methods that
computes the pairwise relations according to selected design criteria for every new
candidate word concerning the rest of the set. Considering the exponential space
of the words of the length n and the number of possible sets, such computations
are highly intense. In this regard, some strand design methods that avoid the
complex internal evaluation are worth to describe.

Deaton et al. [23] proposed an in vitro approach that allows to obtain a pool of
non-interacting strands via PCR selection. This technique delivers high quality
sets that can be directly used for a wet laboratory experiment [18]. However, the
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base composition of the molecules is unknown, and the sequencing of all the pro-
duced molecules is expensive. These factors constitute a significant disadvantage
for application of these method for DNA computations.

Other methods are graph-based approaches using rational design rather than
traditional constraint-driven selection of sequences. These methods discard the
explicit evaluation of a word against the whole set calculating only properties
depending on a current candidate, such as GC-content and melting temperature.

Feldkamp et al. [30] describe a method to generate a set of sequences such
that each subsequence longer than a given threshhold t<n would be unique
throughout the set. For this, a digraph with vertices labeled by DNA strings of
length t+1 is established. The edges are drawn between vertices, where the last
t symbols of the first subsequence coinside with the first t symbols of the second
one. The DNA words in a set are then found as superimpositions of the strings
at the vertices along the vertex-disjoint paths in the graph. The resulting words
are checked for meeting the GC-content and melting temperature constraints.
The method is implemented in DNASequenceGenerator [30].

Pancoska et al. [75] proposed an approach based on the generation of the per-
mutated sequences for a given one, such that the strands have similar melting
temperature. The authors map a given strand to an unweighted four-vertex Eu-
lerian digraph (with the same in- and out-degree for each vertex) with vertices
corresponding to the four nucleotides and edges representing the connection of
consecutive bases in a given strand. This graph contains multiple edges between
two vertices, since two bases can be neighboured in a strand several times. Such
a graph with its adjacency matrix defines a family of sequences containing the
same nearest neighbour pairs that leads to the similar free energy and melting
temperature for specific hybridizations. The single words are found by construct-
ing Eulerian paths (containing all edges exactly ones) in the graph.

Kurniawan et al. [57] represent all possible DNA sequences as complete four-
vertex digraph, whose edges are weighted by free energy of the Watson-Crick
nearest neighbours. The words are then found as paths of length n; for this, an
artificial intelligence approach (intelligent agents) is employed. After this, the
paths are filtered out according to their weight (converted to melting tempera-
ture) and GC-content.

The evaluation of quality of a DNA word set is performed in vitro or in silico
to prove the effectiveness of certain design criteria. For instance, the advances
of the free energy criteria over Hamming distance and H-measure was shown by
Tanaka et al. [92] through in vitro investigation of hybridization specificity of the
sequences designed under each of these three criteria. Deaton et al. [24] showed
by gel electrophoresis the absence of hybridization between the sequences of a
word set developed by method proposed in their work.

By in silico evaluation the characteristics of a predesigned word set are cal-
culated. Recent methods employ mostly free energy boundaries and free energy
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gap as quality measures for comparative evaluation [98, 36, 108]. The size of de-
signed sets ranges from several words (e.g., given in [30, 85]) to several thousand
ones (e.g., described in [36, 108]) and is much smaller than the whole space of
strands (4n) considered by internal evaluation. Thus, the evaluation of quality
is computationally less intense than the internal one.

Certain models of DNA computation impose additional or even distinct re-
quirements on participating strands, such as interdependence of strands for brick-
based or tile assembly models [104], or longer strands for special vertices (e.g., ter-
minal vertices by Adleman’s [2] computation). Morover, the results of in vitro
computations depend on conditions of chemical environment, such as salinity,
temperature, presence of enzymes. Such additional conditions are complicated
to cover by strand design alone. For such cases, the reliability of encoding can
be assessed through evaluation of performance. It can be executed in vitro by
setting appropriate test cases and proving the correctness of result without ex-
ecuting the actual computation. For instance, Penchovsky and Ackermann [77]
developed a word set for sticker based models and employed four configurations
of 12-bit memory strands to show the absence of unintended interactions.

The other way is in silico simulation of a particular computation performed
with the help of special software applications, the simulators. They are de-
signed to imitate by conventional computers the chemical reactions in a test
tube, thus giving an option of pilot experiments without waste of wet labora-
tory resources and saving the corresponding time and money. There are simula-
tors handling only certain types of DNA computations, such as Xgrow Simula-
tor [105] and ISU TAS [76] for tile assembly models [104], or a simulator described
by Pfannkuche [79] and Kummerfeldt [56] for sticker-based models and automata
proposed in Benenson et al. [12].
The more general simulator is EdnaCo [35], which models the tube environment
(solution conditions and volume) and random local interactions for single or
double stranded DNA typical for biomolecular reactions. It runs on a cluster of
24 PCs. It was reported to successfully simulate such reactions as PCR selection
protocol of Deaton et al. [23], Adleman’s experiment, tile assembly computation
and some others [36].

2.6.2 Computation of Thermodynamic Criteria for DNA
Strand Design

By DNA strand design two kinds of thermodynamic criteria are used:

– Melting temperature is a measure of the stability of specific hybridizations;

– Gibbs free energy is more general one comprising stability of both specific
and non-specific interactions.
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Finding the melting temperature is a straightforward consecutive addition of
corresponding parameters (enthalpy and entropy) for each pair of Watson-Crick
nearest neighbours present in a given DNA strand and applying the Equa-
tion (2.9). The respective software applications, such as DAN and MeltTemp,
were developed after publication of the corresponding thermodynamic parame-
ters.

The finding of the Gibbs free energy for hybridization of arbitrary strands
requires more intricate algorithms, since the secondary structure of a bimolecu-
lar complex is initially unknown. In this case, the minimal free energy (MFE)
problem (Section 2.1.3) should be solved for a given pair of strands.

For rigorous MFE computations, the correspondingly adapted RNA-folding
methods are applied, such as RNAcofold provided by Vienna RNA package [42],
PairFold from RNAsoft [7] suite, or mfold from server DINAMelt [67]. These
methods extend the dynamic programming algorithm of Zuker and Stiegler [112],
which finds the optimal folding for single RNA molecule, to the case of bimolec-
ular hybridization.
In RNAcofold, the two given strands are concatenated into one, and several
abstract bases that can not pair with any other are placed between them. Then,
the optimal folding of resulting strand is found by Zuker and Stiegler algorithm.
In PairFold the strands are connected without additional bases and the dynamic
algorithm is extended with special equations for structural motifs if they contain
a junction point.
PairFold was used in thermodynamically based strand design methods
of Tulpan et al. [98], and Zhang et al. [108]; Penchovsky and Ackermann [77],
and Ackermann and Gast [1] used RNAcofold.

The time complexity of the Zuker and Stiegler’s folding algorithm is O(n4);
restriction of the maximal loop length to 30 nt yields a reduction to O(n3) [49].
In PairFold the later option is implemented, so for a pair of strands with lengths
n and m its complexity is O((n+m)3).

Due to the cubic time complexity of rigorous MFE algorithms, their employ-
ment considerably slows down the large-scale internal evaluation by DNA strand
design [91, 98]. To overcome this problem, approximative calculations for free
energy are often applied, for instance, by Deaton et al. [24], Kaderali [53], and
Garzon et al. [36].
Kaderali and Schliep [54] and Deaton et al. [24] developed approximative meth-
ods that extend the basic alignment algorithms. Kaderali and Schliep [54] used
the Needleman-Wunsch [74] algorithm applying melting temperature as objec-
tive function. This approach misses the optimum in definite cases [53, 59]. Their
method was improved by Leber et al. [59] through employment of fractional pro-
gramming approach. Deaton et al. [24] used the Smith-Waterman [88] algorithm
for local alignment with free energy as objective function.
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Both methods provided sufficient precision for separation of specific from non-
specific hybridizations according to in vitro evaluations shown in the respective
works. The complexity of the respective algorithms is that of the background
alignment algorithms, namely O(n2).
Tanaka et al. [91] employed a two-stage thermodynamic evaluation: first filter-
ing proves the estimated energy value of candidate words and the second one an
exact energy. At the first stage, the method assess the free energy by finding the
most stable helix between given strands and then the paired bases in its flanking
regions. Only the candidate words, which met the threshhold of the first filter,
are subjected to the exact MFE calculation. The complexity of the first-stage
energy calculations is O(n2), of the second-stage ones –O(n3).

These approximative methods are based on the interstrand hybridization
model [91, 53]. Tulpan et al. [98] showed that for short DNA molecules used
in DNA computations, the results of rigorous methods and that using this as-
sumption correlate well: for strands of the length 25 nt the Pearson’s coefficient
is r = 0.83; for 50-mers r = 0.58.

There are also simplified versions of rigorous MFE algorithms that perform
calculations under the interstrand model. In the Vienna RNA package the cor-
responding method is called RNAduplex, in server DINAMelt [67] – HYBRID.

2.6.3 All Pairs Shortest Path Algorithms

The all-pairs shortest path (APSP) problem is one of the fundamental al-
gorithmic graph problems. The basic methods for solving this problem are
Floyd-Warshall [32, 101] and Johnson’s [52] algorithms. The computational
complexity of the first one is O(|V |3), of the second O(|V |2 log |V |+|V ||E|).
The main strain of the recent methods in this field is to achieve the sub-cubic
complexity. A number of proposed solution methods are based on special data
structures and/or properties of computer architecture, such as table lookup [33]
or bit-level parallelism [27]. Other methods follow the heuristic approach, for
instance, by solving the all-pairs almost shortest path problem, which is a
relaxation of the initial one and allows certain one-sided deviation from the
optimal weight [28]. There are a number of approaches that exploit the option of
parallel computations, like the methods proposed by Takaoka [89] or Chen [19].
The detailed survey of the methods developed so far can be found in Dragan [29]
or Zwick [113].

With the progress of such application fields as networking systems or logistics,
the practical importance of specific methods for restricted classes of graphs has
increased. Such methods exploit the regularities of the graph geometry exhibited
by certain types of graphs, e.g., chordal, permutation, or distance-hereditary
graphs. The restriction on the edge weights, such as unit cost (unweighted
graph) or bounded positive values, are considered prospective.
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The solutions for specific case of bipartite graphs were proposed by Chen [19],
and Chin-Wen and Chang [20]. The first work presented sequential and parallel
algorithms for unweighted bipartite permutation graphs. The method exploits
the symmetry of the adjacency matrix and strong ordering of the vertices
characteristical for such graphs. The second one proposed the solution for
unweighted chordal bipartite graphs.



Chapter 3

Evaluation of DNA Encoding

DNA word sets designed by corresponding methods satisfy the general require-
ment, that is, higher stability of the specific hybridizations compared to the
non-specific ones (Section 2.6.1). However, different models of DNA computa-
tion impose additional conditions that may cause unexpected interactions of the
strands. Such effects can be assessed in silico through simulation of the DNA
computations with appropriate software, such as Xgrow Simulator [105] or Ed-
naCo [35].

In this chapter, a lightweight software module is proposed that evaluates
the performance of a candidate encoding under conditions of the particular
DNA computation. Such module computes thermodynamic characteristics of
the strands omitting the computationally intense full-scale simulation. By the
state-of-the-art, the most reliable measure for the evaluation is Gibbs free energy
of hybridization between DNA molecules.
Further, a general workflow for the development of such evaluation modules is
formulated. Following this workflow, an evaluation procedure is developed for
DNA computions that use Adleman’s [2] encoding principle, i.e., the brick prin-
ciple. The method is demonstrated on several DNA word sets from literature for
the instance of the Hamiltonian path problem (HPP) first solved by Adleman [2]
(Section 2.5).
The presented workflow was used implicitly in other work (Kummerfeldt [56]) to
employ thermodynamic evaluation for simulation of other models of DNA com-
putations.

This chapter uses a terminology common for the area of DNA strand de-
sign. The DNA words are sequences over DNA alphabet that encode entities
of a mathematical problems, e.g., variables. All DNA words in the same word
set have the same length. DNA strands involved in computations can comprise
several words. The DNA encoding for a particular computation is a set of se-
quences, corresponding to the variables of a given instance of a problem. The
encoding is build from the elements of a DNA word set. Moreover, the encoding

33
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can contain sequences of different length according to the requirements of specific
DNA computation model.

3.1 A Workflow for Development of Evaluation

Procedure

The evaluation is based on exact calculation of the Gibbs free energy and takes
into account the specificity of a particular computation experiment. The main
steps by establishing of such procedure are the following:

1. description of a DNA pool;

2. definition of intended and unintended interactions between DNA molecules
under a given computation model;

3. definition of the thermodynamic quality measure for this model to assess the
performance quantitatively;

4. implementation of the procedure for calculation of the measure defined in
previous step for an encoding from input.

The evaluation procedure requires as input a candidate DNA-encoding and a
formalized description for a given problem instance. For example, for Hamilto-
nian path problem, a problem instance is a particular graph, in which that path
should be found. Its formalized description may contain a list of edges given by
their starting and ending vertices.

3.2 Evaluation Method for Brick-based Com-

putations

To demonstrate the effectiveness of the proposed evaluation approach, the brick-
based computations were selected for the following reasons. Firstly, in the
calculation phase, Adleman [2] used polymerase chain reaction to amplify the
molecules, representing the paths with intended terminal vertices, and a reaction
similar to the sticker-based one was applied to extract the answer strands from
the pool of candidate solutions (Section 2.5). Thus, employment of one of the
published DNA word sets ensures the correctness of this phase. Secondly, in the
hybridization/ligation phase, the reaction differs from the sticker-based scheme;
and the words may interact in undesirable manner. The evaluation of a candi-
date DNA-encoding from predesigned sets helps to answer this question and to
avoid the generation of the encoding from scratch.

The next sections follow the presented workflow for the development of the
evaluation procedure. In Section 3.3, the results of the evaluation for several
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DNA word sets from the literature are demonstrated.

Analysis of DNA pool and reaction scheme

In this section, the first two steps of the workflow are demonstrated.

The brick-based computations comprise two phases, which employ distinct
reaction schemes: hybridization/ligation and calculation phases.

Consider the hybridization/ligation phase (Figure 3.1). It requires an initial
DNA pool with two interdependent subsets such that each word in one subset
relates to a pair of words in another one. The brick-based computations are
typically applied to the problems represented by graphs. Thus, the words in the
subsets are further denoted as vi(5

′ – 3′) and eij(3
′ – 5′), for the ones encoding

vertices and edges respectively. A word eij that encodes the edge connecting
two vertices i and j, is composed from the sequences encoding these vertices as
follows: eij = vi,l/2+1 . . . vi,l vj,1 . . . vj,l/2, where l is the word length and vi,k is the
k-th base in sequence vi.

5'

3'

5'

3'

ligation

v1 v2 v3 v4 v5

v
1 v2 v3 v4 v5

hybridization

e12 e23 e34 e45

e12 e23 e34 e45

Figure 3.1: Hybridization/ligation reaction.

The brick-based coding principle implies as intended interaction the joining
of one word from the one subset (e.g., edge) with two corresponding words from
the other subset (e.g., vertices) (Figure 3.2a).

(a) trimolecular complex (b) bimolecular complex (c) bimolecular complex

Figure 3.2: Intended hybridization complexes for brick-based computations in the
hybridization/ligation phase.
(a) Edge eij joining two adjacent vertices.
(b) Bimolecular complex between vertex vi and edge eij .
(c) Bimolecular complex between vertex vj and edge eij .

The pairwise hybridizations involve the corresponding halves of a vertex- and
an edge-word:

1. the second (3′-) part of the word vi is paired with the first (3′-) one of the
word eij (Figure 3.2b);
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2. the first (5′-) part of the word vj is paired with the second (5′-) one of the
word eij (Figure 3.2c).

As unintended are considered complexes differing from intended ones. For
the brick-based coding scheme, the unintended interactions occur between the
pairs of words of the same subset or between words representing non-incident
vertex and edge. The secondary structure of such complexes contains mismatches
(unpaired bases) and/or features shifted frame relative to the intended complex
(Figure 3.3).

(a) mismatch (b) frame shift

Figure 3.3: Unintended hybridizations in hybridization/ligation phase of brick-based
computations.
(a) Complex contains mismatch, where k 6= j.
(b) Complex with shifted frame, where k may equal j.

Consider the calculation phase. Its course is similar to the sticker-based
reaction (Figure 2.9, Section 2.5). It involves the vertex-words as stickers and
the resulting strands from the hybridization/ligation phase as memory strands.
The latter may contain both vertex-words (in 3′ – 5′ direction) and edge-words
in the same strand, since in hybridization/ligation phase the molecules are freely
floating and indistinguishable in a tube. The interactions between the vertex-
words and the concatenation of the two words representing its incident edges
are intended (Figure 3.4a). The examples of unintended structures are given in
Figures 3.4b and 3.4c.

(a) intended complex

(b) mismatch (c) frame shift

Figure 3.4: Intended and unintended hybridizations in the calculation phase.
(a) Hybridization of vj at junction site of corresponding edge-words.
(a) Hybridization complex contains two mismatches (two-base loops).
(c) Hybridization complex demonstrates frame shift.
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The intended and unintended hybridizations for brick-based computations
are summarized in Table 3.1; the hybridizations typically taken into account by
DNA strand design are given for reference.
The DNA pool considered by strand design applications consists of the words
wi(5

′ – 3′) and their corresponding complements ci(3
′ – 5′), i.e., ci =wi. The hy-

bridization complex of two strands is denoted as wi/cj. The expression (wiwj)
denotes concatenation of two words into one strand. The expression rev(wi)
denotes the reversed word to ensure the correct direction of DNA molecules by
hybridization.

Table 3.1: Intended and unintended hybridizations.

Method
hybridizations

intended unintended

common strand design wi/ci wi/cj , where i 6= j,
methods wi/rev(wj), rev(cj)/ci
extended [98, 86] (wiwj)/ck*

brick-based

hybridization phase vi/eij , vi/ejk, for i 6= j and i 6= k
vj/eij vi/rev(vj), for all i, j

rev(ecd)/eij , for all i, j, c, d

calculation phase vk/(eikekj), vk/(eijecd), where k 6= j or k 6= c,
vk/rev(vivj),
vk/(rev(vi)ecd),
vk/(ecdrev(vi)).

* - additional interactions taken into account by some strand design
applications.

As can be seen from Table 3.1, the predominant methods of DNA strand
design consider pairwise interactions between words. The specific hybridiza-
tion between a word and its complement is the intended one; the non-specific
hybridizations are unintended. The extended methods regard additionally un-
intended hybridizations for sticker-based reaction: between two concatenated
words and a complement.

The brick-based models consider a different DNA pool, which contains the in-
terdependent sets of vertex- and edge-words; the specific hybridizations between
any two words are unintended.

These differences between the two reaction schemes lead to the conclusion
that the values of the quantitative characteristics attained by design for a DNA
word set, will differ under conditions of brick-based computations.
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Evaluation criteria and quality measures

The third step in the workflow is the establishment of the set of conditions that
allow to assess the performance of DNA encoding for brick-based computation
in silico.

Consider that in a DNA pool for brick-based computations the subset of
vertex-words unambiguously defines the corresponding edge-words and vice
versa. Assume that the vertices are encoded by n distinct DNA-words of length l
bases and the edge-words are built correspondingly. The following combinatorial
conditions prove the absence of specific hybridizations between the words in the
pool:

– vi 6= rev(vj) – excludes specific hybridizations between vertex-words;

– eij 6= rev(ecd) – excludes specific hybridizations between edge-words;

– vi 6= ecd – excludes specific hybridizations between vertex- and edge-words;

– eij 6= ecd, where c 6= i and d 6= j, – ensures the uniqueness of edge-words;

where i, j, c, and d are indices for vertices, so their range is from 1 to n; the
expression rev() means the reversed word to ensure the correct direction of DNA
molecules by hybridization. If an encoding set violates any of this conditions, it
is obviously inappropriate for brick-based computations.

The free energy gap

By thermodynamically based DNA strand design, the free energy gap between
intended and unintended hybridizations is widely employed as a quality measure
of a DNA word set. It is calculated as the smallest difference between the MFE
of unintended hybridization complexes and the MFE of intended ones for a word:

δ = min
{
Eunint(wi)− Eint(wi)

}
, (3.1)

where the minimum is taken over all words wi in the set, Eunint is the lowest MFE
of unintended complexes, and Eint is an MFE value of the intended complex for
a word wi.
It should be noted that in literature the above formula is given in rather different
form and use distinct notation for MFE (4G), but the essence is the same.
The exact definition of the terms Eunint and Eint depends on design method.
Usually Eint =E(wi/ci) for each word, where E(wi/ci) is an MFE of hybridization
of the two given strands; the unintended hybridizations can be defined differently
(Table 3.1).

Consider the brick-based computations. Regarding Table 3.1 the free energy
gap is calculated separately for each of the two phases. Since they are performed
consecutively and follow two different reaction schemes.
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In the hybridization/ligation phase, the calculation of the energy for intended
complexes differs for vertex- and edge-words:

Eb
int(eij) = max

(
E(vi/eij), E(vj/eij)

)
for all vi, vj ∈ V ,

and
Eb

int(vi) = max
{
E(vi/eij), E(vi/eji)

}
for all eij , eji ∈ E,

where the superscript b denotes that parameters are calculated for the brick-
based models.
The sets of unintended hybridizations are also distinct for the two types of words:

Eb
unint(eij) = min

{
E(vk/eij), E(rev(ecd)/eij)

}
for all vk ∈ V with k 6= i, k 6= j, and ecd ∈ E,

and

Eb
unint(vi) = min

{
E(vi/ecd), E(vi/rev(vj)

}
for all ecd ∈ E with c 6= i, d 6= i, and vj ∈ V .

Then the energy gap for the hybridization/ligation phase of brick-based compu-
tations is calculated as follows:

δb = min
{
Eb

unint(vi)− Eb
int(vi), E

b
unint(eij)− Eb

int(eij)
}
, (3.2)

where the minimum ranges over all vertex- and edge-words in the encoding.

In the computation phase, the participating strands are the vertex-words as
stickers and the strands consisting of vertex and edge-words concatenated in arbi-
trary order as memory strands. The corresponding free energy gap is calculated
between stickers and pairwise concatenated words and is usually denoted as τ
for strand design methods. Considering the intended and unintended interac-
tions for this phase from Table 3.1, the respective free energy gap for brick-based
computations τ b is found as follows:

τ b = min
{
Eb

unint(vk)− Eb
int(vk)

}
, (3.3)

where the minimum ranges over all vertex-words; and

Eb
int(vk) = max

{
E(vk/eikekj)

}
, for all eij , ejk ∈ E,

and

Eb
unint(vj)=min


min{E(vk/rev(vivj)}, for all vi, vj ∈ V ,

min{E(vk/(eijecd)}, for all eij , ecd∈E with j 6=k and c 6=k,

min{E(vk/(rev(vi)ecd)}, for all vi ∈ V and ecd ∈ E,

min{E(vk/(ecdrev(vi))}, for all vi ∈ V and ecd ∈ E.
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Evaluation procedure

The evaluation procedure computes the MFE for all intended and unintended
hybridization complexes and the corresponding energy gap. To perform the eval-
uation, the graph representation of an assignment and candidate encoding for the
vertices are required. The encoding for the edges is generated correspondingly.
The procedure consists of the following steps:

1. After reading the n initial sequences as input, generation of the vertex- and
edge-words according to the scheme proposed in Adleman [2].

2. Check of the combinatorial conditions for the given encoding. If this fails,
the encoding is classified as inappropriate for brick-based computation and
the procedure terminates.

3. Combination of DNA words into pairs, representing intended and unintended
complexes.

4. Calculation of the MFE for each pair. It can be performed with the help of ex-
ternal software, such as PairFold [7] or HYBRID from server DINAMelt [67].

5. Calculation of the free energy gaps δb and τ b according to Equations (3.2)
and (3.3).

The worst case performance of an encoding can be assessed by computing the
energy gap for a complete directed n-vertex graph with n(n−1) edges. To obtain
the performance for a particular assignment, given by a formal description, only
the existing edges are considered for the calculation of δb and τ b.

The presented evaluation method was implemented in C++. For energy calcu-
lations, the method described in Chapter 4 was employed. Reaction conditions
such as temperature and salinity (NaCl) are adjustable. For a given DNA word
set, the procedure delivers the free energy gaps for the worst case (complete
graph) and for a particular assignment.

3.3 Evaluation of DNA Encoding

The developed evaluation procedure was applied to the benchmark task in
the field of DNA computing, that is, Hamiltonian path assignment solved by
Adleman’s [2] first experiment. The corresponding graph is given in Figure 3.5.
It consists of seven vertices and 14 edges and contains a single Hamiltonian path.

The evaluation settings correspond to the conditions of Adleman’s original
computation [2], namely: the vertex-words v0 and v6 do not participate in the
hybridization/ligation phase; words for edges starting at v0 or ending at v6 are
30 nt long: e0i = v0,1 . . . v0,l vj,1 . . . vj,l/2 and ei6 = vi,l/2+1 . . . vi,l v6,1 . . . v6,l. For the
encodings with the word length l 6= 20, the length of these edges is l+l/2.
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Figure 3.5: Graph considered by Adleman [2]. The path built by dashed edges is
Hamiltonian.

The spot check evaluation was performed for a number of sets of DNA words
from the literature and the randomly generated ones. The random sets were
generated with RandomDNASequenceGenerator [99]. From each set containing
more than seven words the ten seven-word subsets were randomly selected for
evaluation.

Table 3.2 shows the results of this evaluation. The evaluated word sets are
grouped into three blocks according to their word lengths of 12, 16 and 20 nt;
the fourth block (sets 15 – 17) shows the performance of the benchmark encoding
used in Adleman [2] and specially designed negative control sets. The words
in the negative control set 16 were designed to produce overlapped unintended
complexes similar to that in Figure 3.4c. The words in the negative control
set 17 exhibit one mismatch without frame shifts in unintended complexes in the
calculation phase (Figure 3.4b).

The first four columns of the table give general information about the evalu-
ated DNA word sets, such as sources, word length, and set size. The fifth column
shows the free energy gap δ, if it is given in a source; ”+” indicates that other
thermodynamic constraints were used for the design of the word set (e.g., MFE
threshold); ”–” means that only combinatorial and the melting temperature con-
straints were applied. The last four columns present the results of the performed
evaluation. The columns six and seven show the performance of the encodings in
the hybridization/ligation phase; the columns eight and nine – in the calculation
phase. In the sixth column the value ranges of δb for the complete graph with
42 edges are given. The seventh column shows the largest value of the free energy
gap δb for the assignment graph with 14 edges; the corresponding lowest value
is mainly the same as for the complete graph. The last two columns present the
values of τ b for the complete and assignment graphs, respectively.

A negative value of δb indicates the building of unintended hybridization
complexes that are more stable than the intended ones for certain words in the
encoding. This means that higher amount of molecules would be wasted in
building of unintended complexes in the hybridization/ligation phase. Hence,
the negative δb is a sign of the low efficiency of the DNA computation.
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Table 3.2: Evaluation results for DNA encodings.

Reaction conditions: temperature 25◦C, strand concentration 0.2 mmol/l, salt concentration 1 mol/l NaCl.

δ δb(kcal/mol) τ b(kcal/mol)

DNA word set/ source
word set (kcal/mol) complete Adleman’s complete Adleman’s

length size graph graph graph graph
(nt) 42 edges 14 edges 42 edges 14 edges

1 random 12 12 21 – -9.19 – -1.35 1.06 -0.73 – 4.6 5.91
2 Shortreed et al. [86] 12 64 2.84 -4.35 – -2.52 -2.1 1.95 – 2.41 4.01

3 random 16 16 21 – -4.74 – 0.61 1.94 3.17 – 7.62 9.29
4 Shortreed et al. [86] 16 64 6.39 -4.31 – 1.25 1.37 1.13 – 5.63 6.43
5 Penchovsky and Ackermann [77] 16 24 8.12 -4.33 – -0.84 0.52 2.03 – 6.07 6.75
6 Ackermann and Gast [1] 16 24 14.7 -9.83 – -1.53 2.87 4.31 – 7.64 8.38

7 random 20 20 21 – -3.3 – 3.82 4.35 3.58 – 10.06 10.69
8 Deaton et al. [22] 20 7 – -1.05 – 2.57 5.31 6.47 – 8.8 10.26
9 Deaton et al. [24] 20 40 + -1.62 – 3.48 4.99 5.83 – 8.71 9.89
10 Feldkamp et al. [30] 1 20 7 – 1.43 – 3.21 4.5 7.19 – 9.51 11.09
11 Feldkamp et al. [30] 2 20 7 – -2.87 – 1.64 5.08 7.67 – 8.79 11.09
12 Feldkamp et al. [30] 3 20 14 – -5.09 – 2.1 5.15 6.98 – 11.63 11.93
13 Tanaka et al. [90] 20 14 + -8.28 – 2.05 3.82 4.5 – 8.47 8.83
14 Shin et al. [85] 20 7 – 1.43 – 2.5 3.36 5.04 – 8.05 8.86

15 Adleman [2] 20 7 – -0.38 -0.38 9.27 10.81
16 negative control 1 20 7 – -18.6 -12.23 -1.53 -1.53
17 negative control 2 20 7 – 0.4 0.87 1.59 1.59

* negative energy gap indicates overlapping in energy range of intended and unintended complexes,
that means some unintended complexes are more stable than intended ones.
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A negative or small positive value of τ b, such as for one of the encodings in
set 1 or negative control encodings 16 and 17, indicates the high likelihood of
false positives, i.e., strands that do not represent a valid path, but are recognized
as the ones in the result of the DNA computation.

In general, the evaluation shows the expected results, namely: significant
distinctions between energy gap measured by internal evaluation in the process
of strand design δ and energy gap for brick-based scheme δb, and the improved
performance of the encodings for the assignment graph (columns seven and nine)
compaired to that for the complete one (columns six and eight) in both phases.
Thus, the energy gaps δb and τ b for the complete graph are good estimations for
highly dense graphs (with number of edges close to the maximum). The den-
sity of the assignment graph is 0.3, which is the ratio between number of edges
present in a graph and the maximum.

The performance of each word set was analyzed with the help of an ad-
ditional procedure that retrieved the unintended hybridization complexes with
MFE smaller than Eb

int(vi) or Eb
int(eij) for a given encoding. Since all the pre-

designed sets are PCR-optimizing, it is to expect that the vertex-words do not
hybridize with each other, that is, the complexes vi/vj have high MFE. The sub-
ject of interest is the behaviour of the edge-words, since they are not present in
predesigned word sets. The additional source of undesired behaviour (negative
energy gaps) are the edges e0i, ei6 and e06. Since these edges are l+l/2 nucleotides
long, they have a capacity to attain by interaction with the other molecules an
energy value smaller than that of l/2 base pairs in intended hybridizations be-
tween edge- and vertex-strands of length l.

The common feature of the encodings from the literature is that the hybridiza-
tion energy between sequences contained in sets (vertex-words) is higher than the
upper range of intended hybridizations Eb

int(vi), as expected. The out-of-range
energy values (negative δb) are exhibited mostly by hybridizations of the strands
representing edges with each other or with vertex-strands. For the encodings
from the set 5 such hybridizations occur only between edge- and vertex-strands;
for the set 9 – by interaction of e0i and ei6 with other edge-strands.

For Adleman’s computation the performance of randomly generated encod-
ings is comparable with that of the published word sets for each word length.
As can be seen from the performance of the seven-word sets 8, 10, 11, and 14,
the order of words is an important factor in Adleman’s experiment, due to the
special encoding of the terminal edges. From the evaluation of the encoding used
by Adleman, it can be seen that a small negative value of δb is compensated by
the next phase of computation reflected by high τ b.

The 12 nt encodings are hardly appropriate for Adleman’s experiment, due
to low negative δb and relative low τ b. However, encoding of this word length
specifically generated for the given experiment settings may show better perfor-
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mance. The performed evaluation shows that 16- and 20 nt encodings are more
appropriate. This result conforms to that of the other works in the area of DNA
computations.

3.4 Discussion

In this chapter an evaluation subroutine for a DNA encoding as a separate stand-
alone module has been proposed and the detailed workflow for development of
such modules was presented. Such an approach allows to assess the in vitro
performance of the encoding for DNA computing experiments according to spe-
cial requirements of the particular protocol. The main features of the proposed
approach are:

1. the evaluation is performed for a particular reaction scheme;

2. the implemented module exploits external software for MFE calculations.

The first feature allows to prove applicability of the available DNA word
sets – published or generated by certain strand design methods, for the intended
DNA computation. For instance, the word sets developed under combinatorial
constraints [22, 66] can be evaluated considering thermodynamic properties; or
to check whether the sets of fixed-length words can be used as a basis for com-
putations that require strands of different lengths.

The second feature simplifies the implementation of the evaluation procedure.
Moreover, it allows to evaluate the performance of the encoding in chemical
environment with different salinity and temperature. This option can be used
to refine the protocol of intended DNA computations.

The computational model of Adleman was analyzed by Deaton et al. [22]
in 1996. However, their approach considers only mismatched hybridizations and
is based on Hamming distance. The performed evaluation scheme considers
additionally the possibility of the frame shifts, and the assessment is based on
more exact free energy criteria.

An alternative approach to evaluation of encoding for brick-based computations
presented in this chapter would be considering of trimolecular complexes
(Figure 3.2a) in hybridization/ligation phase. Then the composition of the
memory strands participating in the calculation phase can be more accurately
assisted. However, the available MFE computation methods do not consider
such composition of molecules. Even with available corrections for intended
complexes, the energy calculations for unintended ones would imply heavy
approximations that make the evaluation results ambiguous.

The proposed evaluation modules can be applied as part of more complex
software. The module has significantly lower computational complexity than
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full-scale simulation with EdnaCo [35] or similar software (Section 2.6.1). Thus,
it can be employed for preliminary selection of the candidate encoding in such
applications. Furthermore, the evaluation modules can be applied for refinement
of the range values of the constraints that are used by internal evaluation in
strand design methods.





Chapter 4

Graph-based MFE Algorithms
for DNA Hybridization Complex

This chapter describes a new method for solving the minimal free energy (MFE)
problem for two piecewise complementary single strands of DNA. Its basic con-
cept – the hybridization graph – is introduced in Section 4.1. This graph is built
to comprise unambiguously all possible secondary structures of a DNA/DNA
complex. Thus, the MFE problem is the same as that of finding a path with
minimal weight in this graph. This task is solved using the paradigm of dy-
namic programming. First, a direct exhaustive search of the graph is described.
This leads to dimensional explosion with the increasing length of input DNA se-
quences. Consequently, there were developed two advanced methods, which are
demonstrated later in the chapter. They employ principally distinct techniques
for dynamical pruning of the graph to decrease the computational complexity of
the direct approach.

4.1 Hybridization Graph

Hybridization model

Prior to the description of computational methods, a biological model is pre-
sented.
For pairing of two DNA molecules, an interstrand DNA hybridization model is
considered. This model states that two DNA single strands will anneal in parallel
without preliminary or a posteriori self-folding (Figure 4.1). So, the model con-
siders exceptionally intermolecular interactions between two single stranded DNA
molecules. As both ssDNA are only piecewise complementary, the DNA/DNA
hybridization complexes under consideration contain structural motifs of three
types: stems (i.e., consecutive regions of paired bases); loops (i.e., regions of un-
paired bases including bulges, symmetric and asymmetric loops); and terminal

47
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motifs (i.e., dangling ends and terminally unmatched bases) (Figure 4.2).

ssDNA

ssDNA

DNA/DNA complex

+
T

Figure 4.1: Interstrand DNA hybridization. The DNA/DNA complex contains a single
mismatch.

symmetric 
     loop

asymmetric
     loop

bulgedangling end terminal 
mismatch

5' 3'

3' 5'

Figure 4.2: Structural motifs of DNA/DNA hybridization complex. Vertical lines
denote paired Watson-Crick complementary bases (A-T and C-G).

Hairpins (Figure 4.3a), multibranched loops (Figure 4.3b), and pseudoknots are
subject to folding algorithms and not considered under the interstrand hybridiza-
tion model.

(a) hairpin (b) multibranched loop

Figure 4.3: Example of hairpin and multibranched loop structures.

To assess the stability of potential secondary structures of DNA/DNA com-
plexes, the nearest neighbour thermodynamic model (Section 2.1.2) is employed.
So, the objective value of the MFE problem is given as follows:

Emin = min

{
k∑

i=1

Estem(Si) +
m∑
j=1

Eloop(Lj) + Eterm

}
, (4.1)

where the minimum is to find over all admissible structures of the bimolecular
complex for two given DNA strands; Si and Lj are potential stems and loops,
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respectively; the term Eterm accounts for energy contribution of the both left and
right termini of the complex. The structure is admissible if in strands a and a′

for all base pairs (ai/a
′
j) and (ai1/a

′
j1

) holds: if i < i1, then j < j1. That is, the
self-folding of the molecules is not allowed.

Hybridization graph

The background of the graph model developed is the representation of all possi-
ble structures of the hybridization complex for two ssDNA as a directed weighted
graph – the hybridization graph. The main idea of constructing the graph is to
enrich the base pairing matrix, which incorporates all pairs of complementary
nucleotides for two given DNA sequences, with information about all possible
contained DNA structural motifs. In this graph, each edge represents such a mo-
tif. In this way, a path corresponds to the secondary structure of the DNA/DNA
complex. In particular, a path with minimal weight describes secondary struc-
ture with lowest free energy.

Given two sequences over the DNA alphabet a= a1 . . . am and b= b1 . . . bn, let
assume without restriction that m6n. The bases in b are denoted in 5′ – 3′ order,
while the bases in a are in reverse 3′ – 5′ order to comprise the opposite direction
of DNA strands by hybridization. For them, a hybridization graph G= (V,E) is
a weighted directed graph built as follows.

Vertices are located on a two-dimensional m×n grid (Figure 4.4). The rows
and columns are labelled by the nucleotides of the DNA sequences a and b, re-
spectively. A node (i, j) on the grid defines a vertex of the hybridization graph
if the bases ai and bj are Watson-Crick complementary, 16 i6m and 16 j6n.
The vertices of the hybridization graph form a subset of the nodes in the grid
and directly correspond to the base-pairing matrix used in early approaches for
RNA folding [93, 103].

Each edge (i′,j′
i,j ) links vertex (i′, j′) with vertex (i, j), provided that the following

two conditions are met:

– i′< i and j′<j; that is, there are no horizontal or vertical edges on the grid,
so each base is uniquely paired in a DNA/DNA complex;

– there is no vertex (i′′, j′′) with i′< i′′< i and j′<j′′<j, such that i′′= i′+1
and j′′= j′+1 or i′′= i−1 and j′′= j−1; that is, (i′, j′) has no succeeding
vertex on the diagonal i′−j′, and (i, j) has no preceding vertex on the cor-
responding diagonal; this ensures that each edge corresponds to exactly one
structural motif.

Half-edges, that is, edges with either an initial or a terminal vertex, are set as
follows:

– half-edge h−(i, j) enters a vertex (i, j) if the node (i−1, j−1) is not a vertex;
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they represent terminal motifs on the left end of a DNA/DNA complex;

– half-edge h+(i, j) leaves a vertex (i, j) if the node (i+1, j+1) is not a vertex;
they represent terminal motifs on the right end of a DNA/DNA complex.

The graph, built in this way, is acyclic, since each edge (i′,j′
i,j ) satisfies i′< i and

j′<j.
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(b) optimal DNA/DNA complex structure

Figure 4.4: Example of hybridization graph and corresponding bimolecular complex.
(a) The hybridization graph for the sequences a= 3′-GCGGCATTCACGA-5′ and
b= 5′-CGCTACGTGGGGTGC-3′ on the two-dimensional grid (not all edges are
shown). The total number of edges is 378. The potential stackings are marked by
solid arrows. The optimal path goes from the upper left vertex (1,1) to the lower
right vertex (12,15) and is shown in bold.
(b) Optimal DNA/DNA hybridization complex corresponding to the graph. It con-
tains three stems, one bulge, one asymmetric loop, blunt end at the left termi-
nus and dangling end at the right one. Minimum free energy of the complex is
Etotal = -4.46 kcal/mol.
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Weights of edges and half-edges are assigned according to the free energy of
the associated structural motifs (Equations (2.3) – (2.8) in Section 2.1.2). More-
over, the hybridization graph exhibits a one-to-one correspondence of the geom-
etry of its edges with DNA structural motifs (Figure 4.4). Thus, the weights we

and wh for edges e and half-edges h, respectively, are also associated with their
geometry as follows:

– Diagonal edges with i−i′= j−j′= 1 provide Watson-Crick nearest neighbours
or stackings. Their weights are

we

(
i−1,j−1

i,j

)
= ws(i, j) = 4GNN(bj−1bj/ai−1ai).

The weights ws are always negative for thermodynamic reasons. Consecutive
stackings form a potential stem.

– Diagonal edges with i−i′= j−j′> 1 form symmetric loops with the weight

we

(
i′,j′

i,j

)
= wsLoop

(
i′,j′

i,j

)
= EsymLoop(Li′,j′

i,j ).

– Nondiagonal edges with i−i′ 6= j−j′, where j−j′> 1 and i−i′> 1 form asym-
metric loops with weight

we

(
i′,j′

i,j

)
= waLoop

(
i′,j′

i,j

)
= EasymLoop(Li′,j′

i,j ).

– Nondiagonal edges with i−i′= 1 and j−j′> 1 build bulged loops with weight

we(i−1,j′
i,j ) = wbulge(i−1,j′

i,j ) = 4Gbulge(B
i−1,j′

i,j );

the ones with j−j′= 1 and i−i′> 1 build bulged loops with weight

we(i′,j−1
i,j ) = wbulge(i′,j−1

i,j ) = 4Gbulge(B
i′,j−1
i,j ).

– For edges representing loops, there is also a correlation between their length
and weight. Since the corresponding energy terms 4Gloop increase with
the number of unpaired bases between the flanking base pairs, the positive
constituents of the weight of corresponding edges increases with their length.

– Half-edges represent the following terminal motifs:

- blunt ends for vertices (1, 1) or (m,n);

- 5′- or 3′- dangling ends for other vertices on the grid boundaries;

- terminal mismatches for inner vertices on the grid.
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Their weights are assigned according to the represented motif as follows:

wh(i, j) =



4GbEnd(bj, ai), if (i, j) = (1, 1) or (i, j) = (m,n),

4G5′−dEnd(bj, ai), if j=n and 1<i<m

or i= 1 and 1<j <n,

4G3′−dEnd(bj, ai), if i=m and 1<j <n

or j= 1 and 1<i<m,

4GtermMM(bj, ai), otherwise.

Paths in the hybridization graph

The model of the hybridization graph describes uniquely and completely all pos-
sible structural motifs for the DNA/DNA hybridization complex. A path in this
graph represents a sequence of consecutive structural motifs, so the shortest path
(with the lowest weight) corresponds to the MFE structure of the bimolecular
complex. However, the hybridization complex is flanked on both sides with ter-
minal motifs. So, not all the paths in the graph can represent a proper secondary
structure. The developed graph model complies with the property of the bimolec-
ular complex without additional restrictions; that is, the terminal vertices of the
shortest path always define the terminal DNA motifs.
Namely, if a path P ((i1, j1), . . . ) starts at some vertex (i1, j1) not incident to
entering half-edge, then the node (i1−1, j1−1) represents a vertex. Then there
exists a path P1((i1−1, j1−1), (i1, j1), . . . ), that coincides with P from the vertex
(i1, j1), with the weight W (P1) = ws(i1, j1) +W (P ). This weight is smaller than
that of P , since the term ws is negative, according to the energy of Watson-Crick
nearest neighbours. Thus, the path P is a priori not the shortest one.
Similarly, if some other path Q(. . . , (ik, jk)) ends at vertex (ik, jk), not incident
to a leaving half-edge, then the node (ik+1, jk+1) is a vertex. The weight of
a path Q1(. . . , (ik, jk), (ik+1, jk+1)), that coincides with Q up to (ik, jk), is:
W (Q1) =W (Q) + ws(ik+1, jk+1), and smaller than W (Q). Hence, such a path
Q is also suboptimal.
Thus, both computational and structural reasons allow to restrict the number of
separately considered paths as follows.
The proper paths representing the structure of a DNA bimolecular complex
starts at some vertex (i1, j1), for which a node (i1−1, j1−1) is not a vertex, and
ends at a vertex (ik, jk) if the node (ik+1, jk+1) is not a vertex. The weight of
such path is

W (P ) = wh−(i1, j1) +
t=k−1∑
t=1

we

(
it,jt

it+1,jt+1

)
+ wh+(ik, jk).

As only such paths in the hybridization graph are considered, they are referred
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further on simply as paths. The other consecutive sequences of edges are denoted
as subpaths or path segments.

Special properties of the elements in the hybridization graph

Considering the special role of the terminal vertices of the paths, the following
vertex classification is introduced:

– Left terminal vertices, denoted (i, j)L, for which (i−1, j−1) /∈V ; for example,
vertices (1, 1), (6, 4), and (9, 7) in Figure 4.4. They are incident to entering
half-edges and open potential stems.

– Non-left-terminal vertices (i, j), for which (i−1, j−1)∈V , are denoted as
(i, j)nL; for example, vertices (2, 2), (5, 7), and (11, 14) in Figure 4.4.

– Right terminal vertices, denoted (i, j)R, for which (i+1, j+1) /∈V ; for ex-
ample, vertices (2, 7), (5, 2), and (7, 5) in Figure 4.4. They are incident to
leaving half-edges and close potential stems.

– Non-right-terminal vertices (i, j) with (i+1, j+1)∈V , are denoted as (i, j)nR;
for example, vertices (5, 7), (5, 12), and (10, 13) in Figure 4.4.

The given classification of vertices contains overlaps. The set of non-left-terminal
vertices includes the right terminal ones. Some vertices (i, j) are simultaneously
left and right terminal if they have no consecutive predecessor and ancestor on
diagonal of (i, j), e.g., vertices (2, 9), (2, 10), and (4, 3) in Figure 4.4. Note that
the definitions of the first two types vs. the last two ones are made in different
contexts, namely, regarding their entering and leaving edges respectively. In the
context of edges entering (i, j) the presence of predecessor (i−1, j−1) only is sig-
nificant. Similarly, the context of leaving edges gives significance to the presence
of a successor vertex (i+1, j+1). These contexts are treated independently in the
course of calculations and the overlaps do not raise any actual contradictions.

The vertex differentiation leads to the following basic properties for edges and
paths:

– symmetric and asymmetric loops start at the right terminal vertex and end
at the left terminal vertex, according to the edge setting;

– a proper path has the form P ((i1, j1)L, . . . , (ik, jk)R), where 16 k6m.

Regarding the last property, the shortest path problem for the hybridization
graph can be restated as reduced shortest path problem with a set L of the start
vertices and a set R of the end vertices, which contain the left and right terminal
vertices, respectively. So, the MFE problem for DNA/DNA hybridization com-
plex can be solved as L−R shortest path problem in the hybridization graph.

Considering the definition of the edges, vertices of each type exhibit characteristic
neighbourhoods shown in Figures 4.5 and 4.6:
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– the in-neighbourhood of (i, j)L consists of vertices (i, j)R in the area, shaded
in Figure 4.5a, and all vertices on the right and bottom borders of the area;

– the in-neighbourhood of (i, j)nL consists of all vertices on the two segments,
shown in Figure 4.5b;

(a) in-neighbourhood area of (i, j)L (b) in-neighbourhood area of (i, j)nL

Figure 4.5: Characteristic in-neighbourhood for (a) left terminal and (b) non-left-
terminal vertices.

– the out-neighbourhood of (i, j)R consists of vertices (i, j)L of the area, shaded
in Figure 4.6a, and all vertices on the left and upper borders of the area;

– the out-neighbourhood of (i, j)nR consists of all vertices on the two segments,
shown in Figure 4.6b.

(a) out-neighbourhood area of (i, j)R (b) out-neighbourhood area of (i, j)nR

Figure 4.6: Characteristic out-neighbourhood for (a) right terminal and (b) non-right-
terminal vertices.

Notation

To keep the further explanations brief and precise, the following conventions are
defined for some expressions used throughout this chapter:

– Index i is used to denote rows, so 16 i6m. Index j is for columns and
ranges in interval 16 j6n.
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– Superscripts, such as i′ or j′ are used to denote indexes preceding i or j, and
subscripts, such as i1 or j1 for indexes succeeding i or j.

– A pair (i, j) denotes a vertex of the hybridization graph, if it is not stated
explicitly as a grid node.

– Rectangle (i, j):(i1, j1) describes the rectangular area of the two-dimensional
grid with corners at nodes (i, j), (i, j1), (j, i1), and (i1, j1); in notation, only
upper left and lower right corners are given.

4.2 Shortest Path Algorithms for Hybridization

Graph

Dynamic programming is applied as a basic approach for solving the L−R short-
est path problem for the hybridization graph. Section 4.2.1 describes the direct
application of this method, while Sections 4.2.3 and 4.2.4 demonstrate two ad-
vanced algorithms that reduce the complexity of the direct application.

The general steps of an algorithm following the paradigm of dynamic pro-
gramming were described in Section 2.2. Such an algorithm consists of a forward
and a backward part. The forward one evaluates the data (e.g., edge weights) that
are used by the back tracing to determine the optimal sequence (e.g., path) [11].
Next, the general steps of the dynamic programming algorithm are restated in
the context of the L−R shortest path problem for the hybridization graph.

The forward part associates an optimal score Ti,j with each vertex (i, j) of
the hybridization graph. This score represents the lowest weight of a subpath
(starting at left terminal vertex) to this vertex.
The initiation of the DP matrix consists in assigning to the vertices on the first
row and column the weights of their entering half-edges h− (Equation (4.2)):

Ti,j = wh−(i, j), if i= 1 and 16 j <n, or j= 1 and 1<i<m. (4.2)

The matrix filling procedure consists in finding the minimal score for every vertex,
using previously calculated scores of its direct predecessors. For this, from all the
entering edges of the vertex the one providing the optimal score for it is found.
In other words, we search for the best direct predecessor for every vertex. So,
the recursion for dynamic programming is given as follows:

Ti,j = min

{
min

{
Ti′,j′ + we

(
i′,j′

i,j

) }
, for all (i′, j′)∈N−G (i, j),

wh−(i, j), if (i, j) has an entering half-edge h−,
(4.3)

where minimum ranges over all in-neighbours (i′, j′) of the vertex (i, j).
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The weight of the L−R shortest path is found as the lowest weight score among
all right terminal vertices after the filling of the DP matrix:

Wmin = min
(i,j)R

{
T(i,j) + wh+(i, j)

}
,

where the minimum ranges over all right terminal vertices (i, j)R, and wh+(i, j)
is the weight of a half-edge leaving the corresponding vertex (i, j)R.

The backward part restores the sequence of edges in the path with the lowest
weight found Wmin. This operation delivers an ordered list of vertices. For this,
the best predecessor for every vertex is stored in addition to its minimal score,
while filling the matrix. The backtrace consists of consecutive extraction of such
predecessors, starting from the right terminal vertex with the lowest path weight
Wmin, found after the filling step of forward iteration.

The initiation of the DP matrix, finding of optimal path weight, and back
tracing procedure are implemented in the same way for all the three developed
computational methods. The Sections 4.2.1 to 4.2.4 describe the approach in
general and the matrix filling procedure for each of them. All three methods
exploit the vertex differentiation according to the types given above.

4.2.1 Exhaustive Search

In general, an exhaustive search is a brute force approach which goes per defini-
tion through the complete solution space to find the optimal one. The calculation
course presented exploits the dynamic programming paradigm reusing optimal
solutions of subproblems, that means the total solution space is already reduced.
However, in the given case all edges entering a vertex are considered to find the
best score. Hence, the approach is exhaustive in this respect.

The general scheme of the matrix filling step is given in Figure 4.7. The
procedure is similar to the common DP approach for sequence alignment. The
main distinction is that, by those methods the predecessors are always one node
away, whereas now they are one edge away.
Computation of the optimal score Ti,j for vertex (i, j) is performed by iterating
over all its direct predecessors (i′, j′) to find the shortest subpath to this vertex.
As the method is based on exploring the in-neighbourhood, and considering that
the in-degree of left terminal vertices (i, j)L is usually higher than that of the
non-left-terminal ones (i, j)nL, it is reasonable to establish separate procedures
for each of these vertex types.
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yes

no

Figure 4.7: Flow chart for filling the DP matrix by forward iteration. It describes calcu-
lation flow for an exhaustive search and vertex pruning methods. Conditional block 1
shows the additional calculation of the weight of entering half-edge for the left ter-
minal vertices. To find the optimal score for every vertex (i, j) its in-neighbourhood
is explored (block 2).

Filling of the matrix

After initialization of the vertices in the first column (i, 1) and in the first row
(1, j) as given in Equation (4.2), the remaining vertices of the hybridization
graph are differentiated by their in-neighbourhoods. Thus, two different iteration
courses are defined for the left terminal vertices (i, j)L and the non-left-terminal
ones (i, j)nL as follows:

1. A left terminal vertex (i, j)L (Figure 4.8a) has entering edges of the following
groups:

– bulges with initial vertex (i′, j′), so that either i−i′= 1 or j−j′= 1;

– symmetric or asymmetric loops, their starting vertices (i′, j′)R are found in
the rectangle (1, 1):(i−2, j−2);

– a half-edge.
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(a) left terminal vertex (i, j)L
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(b) non-left-terminal vertex (i, j)nL

Figure 4.8: Entering edges for left terminal and not left terminal vertices. Both belong
to the same stem and are placed consecutively on the diagonal, so (b) shows an area
one row and column larger than (a). Diagonal edges represent stackings and are
marked by bold lines.
(a) Entering edges of a left terminal vertex (shaded). This is vertex (9,7) of the
graph given in Figure 4.4. The direct predecessors are in the dashed area. There is
one entering half-edge; the remaining edges provide loop motifs.
(b) Entering edges for a non-left-terminal vertex (10,8) in the graph of Figure 4.4.
Only the vertices on the dashed lines are its direct predecessors. There is one entering
stacking edge; the remaining edges provide bulges.

Thus, the optimal weight of subpath to the vertex (i, j)L is given by the
following equation:

T(i,j)L = min


wh−(i, j),

TbestBulge(i, j),

TbestLoop(i, j),

(4.4)

where wh− is the weight of entering half-edge; TbestBulge is the lowest weight
provided by entering bulge; and TbestLoop is the lowest weight provided by entering
loop. They are calculated as follows:

TbestBulge(i, j) = min

 min
16i′6i−2

( Ti′,j−1 + wbulge(i′,j−1
i,j ) ),

min
16j′6j−2

( Ti−1,j′ + wbulge(i−1,j′
i,j ) ).
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The value for TbestLoop is calculated from each vertex (i′, j′)R in rectangle
(1, 1):(i−2, j−2), according to the definition of N−G (i, j)L:

TbestLoop(i, j) = min
16i′6i−2,
16j′6j−2

( Ti′,j′ + wloop((i′,j′)R
i,j ) ),

where wloop is the weight of a corresponding loop e((i′,j′)R
(i,j)L

). The type of the loop

and the edge weight calculation depends on the first vertex (i′, j′)R in the loop
and the last one (i, j)L:

wloop((i′,j′)R
i,j ) =

{
wsLoop(i′,j′

i,j ), if i−i′= j−j′> 2,

waLoop(i′,j′
i,j ), otherwise.

2. If a vertex (i, j) is not left terminal (Figure 4.8b), it has entering edges of the
following groups:

– stacking edge from the vertex (i−1, j−1);

– bulges with initial vertex (i′, j′), so that either i−i′= 1 or j−j′= 1.

Thus, the weight score for the vertex (i, j)nL is defined as

T(i,j)nL
= min

{
Ti−1,j−1 + ws(i, j), TbestBulge(i, j). (4.5)

The general weight score of the vertex (i, j) is then given as

Ti,j =

{
T(i,j)L , if (i, j) is a left terminal vertex,

T(i,j)nL
, otherwise.

Complexity of exhaustive search

As can be seen from the course of computation, by finding the shortest path
through the hybridization graph all edges are observed once. Thus, the graph
size is a main factor for the algorithm complexity, which amounts to O(|E|).
The worst case constitutes a graph with all left terminal vertices, due to their
higher in-degree compared to that of the other vertices. A vertex layout of such
a graph with maximal vertex coverage on the grid exhibits the pattern shown
in Figure 4.9. Shifting it one column horizontally or rotating it 90◦ corresponds
with swapping of the sequence a with b and results in a graph of the same size.
The DNA sequences producing the pattern comply with the following scheme:

– sequence a is a repetition of the same nucleobase N , that is a= (N)m, with
N ∈Σ = {A,C,G, T };
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– sequence b contains on every odd position a base N complementary to N ; its
even positions are occupied with bases bj, where bj ∈Σ = {A,C,G,T }\{N};
that is, with any base except the complement of N .

Figure 4.9: Vertex layout for worst case hybridization graph.

Such base composition exhibits maximal coverage of the grid with n2/2 left
terminal vertices, where n is the length of DNA sequence. Each of them has
(i−1)×(j−1)/2 entering edges. Thus, the graph size amounts approximately to
n4, and worst case complexity of exhaustive search is O(n4).

4.2.2 Reduction of the Hybridization Graph

The exhaustive search described in the previous section is a direct application
of the dynamic programming paradigm to the shortest L−R path problem on
the hybridization graph. The computational complexity O(|E|) of this approach
amounts in the worst case to O(n4) for DNA sequences of length n. This is com-
parable with the complexity of Zuker and Stiegler’s algorithm [112]. However, for
the purposes of large-scale applications of DNA strand design, such complexity is
impractical. This section outlines a general approach, that reduces the amount
of calculations for every particular graph. Two distinct computational methods,
based on the approach, are presented further in Sections 4.2.3 and 4.2.4.

The exhaustive search method considers all edges of the hybridization graph.
However, the main factor defining the shortest path is the weight of the edges,
assigned according to their length and the bases of the input sequences. So, to
reduce the amount of calculations for particular graphs, the general suggestion
is to find the edges with a weight disadvantageous in a given context and delete
them from the hybridization graph. The resulting spanning subgraph must re-
tain the shortest path of the initial graph. Such subgraphs are further denoted
as the consistent ones.

In the rest of this section a formal description for this approach is developed to
allow its practical application.

Consider the dynamic programming expression for the L−R shortest path prob-
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lem in the hybridization graph:

Ti,j = min

{
min

{
Ti′,j′ + we

(
i′,j′

i,j

) }
, for all (i′, j′)∈N−G (i, j),

wh−(i, j), if (i, j) has an entering half-edge h−,
(4.6)

where the minimum ranges over all in-neighbours (i′, j′) of the vertex (i, j). The
first sum in the expression represents a set of alternative arguments, which are
defined by incoming edges of the vertex (i, j). An argument, corresponding to a
particular edge e=

(
i′,j′

i,j

)
is further denoted as Te(e) – a contribution of the edge

e to the function Ti,j at its head:

Te(e) = Ti′,j′ + we

(
i′,j′

i,j

)
. (4.7)

As can be seen from Equation (4.6), only the edges with the lowest contribution
Te(e) at each vertex are necessary to fill the DP matrix. It is obvious, that
the number of such edges equals |V | or slightly exceeds it, if there are multiple
equal optima at some vertices. Hence, the rest of the edges can be considered as
auxiliary ones. Deletion of the latter from the hybridization graph results in a
consistent subgraph, since all edges leading to optimal score at the vertices and,
consequently, the optimal path, are preserved. However, to ascribe a certain
edge to one of these categories, a complete calculation of the optimal score for
its head is often required. Hence, for establishing of a consistent subgraph, the
a priory detectable auxiliary edges are of interest. They can be subsumed into
the following class:

Inefficient edges : An edge e= (i
′,j′
i,j ) is inefficient, if the contribution of this edge to

the function at its head Te(e) =Ti′,j′ + we(i
′,j′
i,j ) is not optimal and this feature can

be detected in advance, that is, without explicit computation of the term Te(e), or,
more exactly, of the edge weight we(e).

Detection of such edges is based on the following criteria:

1. The edge with positive contribution Te(e) is likely to be inefficient. Since
the function Ti,j is a minimum, a positive argument hardly constitutes an
optimum value for the head.

2. The longer the edge, the higher the positive constituent of its weight. Since
the geometric length of the edge on the grid reflects the number of unpaired
bases in respective loop, there is direct dependence between the edge length
and the corresponding positive energy constituents.

3. The edge with negative weight we(e) is not considered as inefficient. Since the
weight of such edge depends on respective bases only (according to parameter
database), it is hard to discard the possible optimality of its contribution
Te(e) without calculation of the weight.
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4. The inefficient edges can represent the following structural motifs: bulges
or symmetric/asymmetric loops with more than two unpaired bases. Con-
sider the quantitative features of the thermodynamic parameters for DNA
structural motifs gathered in Table 4.1.

Table 4.1: Quantitative features of the thermodynamic parameters (given ac-
cording to SantaLucia and Hicks [84])

Parameter type Notation
Energy range

(kcal/mol)

Watson-Crick nearest neighbours 4GNN : ws -2.24 – -0.58
terminal mismatches 4GtermMM : wh− ,wh+ -1.23 – -0.21

lowest energy of a bulge
(
GGC
C−G

)
min(wbulge) 1.76

internal mismatches 4GintMM 4GrightMM or 4GleftMM -1.11 – 1.33
loop length penalty (l= l1 + l2> 2)a 4Gloop(l) 0, 3.2, . . .
loop asymmetry penalty (s= l1−l2) Easym(s) = |s| × 0.3 0, 0.3, . . .

a l1 and l2 – number of unpaired bases in loop for sequences b and a, respectively;
l – loop length, s – loop asymmetry.

As can be seen, the stackings and half-edges always have negative weights;
the weight of the two-base loops represented by edges of the type ( i,j

i+2,j+2)
may be positive or negative, as shown by the example below. So, according
to the previous point, the inefficient edges represent the remaining motifs.

Example of the symmetric loops with the length two bases; they are repre-
sented by edges of the type ( i,j

i+2,j+2) (green arrows in Figure 4.10):

Eloop(GGC
ĊAĠ) =4GrightMM(GG

ĠC)+4GleftMM(GC
AĠ) = − 0.52− 0.25 = -0.77 kcal/mol.

Eloop(TAC
ȦCĠ) =4GrightMM(TA

ȦC)+4GleftMM(AC
CĠ) = 0.92 + 0.47 = 1.39 kcal/mol.

The base pairs are marked by dots.

Thus, a consistent subgraph is obtained by deletion of inefficient edges, which
represent bulges or symmetric/asymmetric loops longer than two bases. The
finding of the shortest path in the reduced graph requires less calculations than
that in the initial hybridization graph. The consistent subgraph is established
dynamically while filling the DP matrix, that is, the calculations of the contri-
butions for inefficient edges are omitted.

For obtaining of the spanning subgraph two approaches were developed:

– Deleting all leaving edges for certain vertices. This strategy is implemented
by the vertex pruning method shown in Section 4.2.3.

– Deleting of the certain leaving edges for every vertex. This strategy is im-
plemented by the edge pruning method described in Section 4.2.4.
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4.2.3 Vertex Pruning

This strategy is based on finding certain vertices, whose leaving edges are all
inefficient. So, knowing that an edge starts at such vertex, the former can be
skipped by the search of the optimal score for its head. As this method isolates
certain vertices from their out-neighbours, it is called vertex pruning.

To illustrate further explanations, Figure 4.10 reproduces the hybridization graph
from Figure 4.4. It shows some edges omitted for clarity in the initial figure.
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Figure 4.10: Extended representation of the hybridization graph from Figure 4.4. The
edges ( i,j

i+2,j+2) representing two-base symmetric loops are shown in green. For the
filled vertices all leaving edges are inefficient, except those in green.

The basic reasoning for this method is as follows. Consider the hybridization
graph in Figure 4.10. It can be seen that some vertices, such as the ones in the
first two rows and columns, or the vertices (3,6), (10,4), (5,9) – (5,11) possesses
sparse/scarce or distant in-neighbours. Due to this, they acquire the score close
to zero (positive or negative). On the other hand, their out-neighbours are
more numerous and also distant, especially for the right terminal vertices. The
combination of the small score (in absolute value) and the long leaving edges at
such vertices (i, j) results in positive contribution Te(e) for their leaving edges
e= ( i,j

i1,j1
). Thus, the leaving edges of such vertices (i, j) are likely to be inefficient,

according to the first criterion defined in Section 4.2.2. The criterion allowing
to recognize such vertices (i, j) is stated by Proposition 4.2.1; its proof shows
the inefficiency of the corresponding leaving edges. So, a consistent subgraph is
established by deletion of the latter.
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Pruning criterion for vertices

The criterion allowing to recognize such vertices (i, j) is stated as follows:

Proposition 4.2.1

If for some right terminal vertex (i, j)R the term C =Ti,j + 4GrightMM(bj, ai)
is positive, then the contribution Te(e) of each of its leaving edges e= ( i,j

i1,j1
) is

not optimal at their respective heads, with the exception of the edge ( i,j
i+2,j+2)

if it exists.

The assertion can be illustrated by the vertex (10,4) in Figure 4.4. It possesses
nine leaving edges, and the one drawn in green (10,4

12,6) represents the exception to
the proposition – a two-base symmetric loop.

Proof : To prove that the contribution Te(e) of an edge e= ((i,j)Ri1,j1
) is not optimal

for its head vertex (i1, j1), it should be shown, that the expression Ti1,j1 contains
an alternative case with the value lower than this contribution Te(e).

So, the following reasoning shows for all edges ((i,j)Ri1,j1
) leaving a right terminal

vertex, except the edge ( i,j
i+2,j+2), that:

1. if for the tail (i, j)R the term C is positive, the respective contribution
Te((i,j)Ri1,j1

) is positive;

2. the expression Ti1,j1 at the head contains an alternative case with a neg-
ative value.

This implies, that the positive contributions of the edges ((i,j)Ri1,j1
) are not optimal

for their respective heads and proves the assumption.

1. The edge e= ((i,j)Ri1,j1
) leaving the right terminal vertex represents either a

bulge or symmetric/asymmetric loop.

– Consider the leaving bulges for the vertex (i, j)R. The contribution of the
bulge e= ((i,j)Ri1,j1

) is: Te(e) =Ti,j + wbulge( i,j
i1,j1

). If C > 0, this contribution is
positive:

Te(e) = Ti,j + Ebulge(B
i,j
i1,j1

)

= Ti,j +4GrightMM(bj , ai)︸ ︷︷ ︸
C>0

+Ebulge(B
i,j
i1,j1

)︸ ︷︷ ︸
>1.76

−4GrightMM(bj , ai)︸ ︷︷ ︸
61.33

> 0,

where the ranges for Ebulge and 4GrightMM are given according to the pa-
rameter database (Table 4.1).

– Consider the leaving edges representing symmetric or asymmetric loops
with more than two unpaired bases. If C is positive, their contributions are
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positive:

Te(e) = Ti,j + Eloop(Li,j
i1,j1

)

=Ti,j +4GrightMM(bj , ai)︸ ︷︷ ︸
C

+ Eloop(l, s) +4GleftMM(bj1 , ai1)

= C︸︷︷︸
>0

+4Gloop(l)︸ ︷︷ ︸
>3.2

+Easym(s)︸ ︷︷ ︸
>0

+4GleftMM(bj1 , ai1)︸ ︷︷ ︸
>−1.11

> 0,

where Eloop(l, s) is a composite term combining penalties of the loop length
4Gloop(l) and its asymmetry Easym(s); their ranges are given for the case
l> 3, excluding the symmetric loop with two unpaired bases (Table 4.1).

Thus, the the contributions Te((i,j)Ri1,j1
) of the edges leaving vertex (i, j)R,

which complies to the condition of the proposition, are positive.

2. Consider the out-neighbours of the vertex (i, j)R. They are either left termi-
nal (i1, j1)L or non-left-terminal (i1, j1)nL vertices as shown in Figure 4.11
according to the definition of out-neighbourhood for right-terminal vertices
(Figure 4.6).

Figure 4.11: Two types of out-neighbours of (i, j)R. For each type the elements with
alternative lower contribution are shown in green (thin edges).

– For the first type, the function T(i1,j1)L (Equation (4.4)) contains an alter-
native case wh−(i1, j1), its highest value is -0.21 kcal/mol (Table 4.1). The
case is shown in Figure 4.11 by the vertices (i+1, j1)L and (i1, j1)L. So, for
such heads, the positive contribution Te((i,j)Ri1,j1

) is not optimal.

– For the second type, the function T(i1,j1)nL
(Equation (4.5)) contains

the alternative case Ti1−1,j1−1 + ws(i1, j1). The highest value for the term
Ti1−1,j1−1 is achieved, when (i1−1, j1−1) is a left terminal vertex, and equals
wh−(i1−1, j1−1). This case is shown by the vertex (i1, j+1)nL in Figure 4.11.
Otherwise, the term Ti1−1,j1−1 contains weights of stackings besides that
of the half-edge, and its value is even lower. According to the parameter
database, the values of wh− and ws are always negative (Table 4.1). Hence,
the non-left-terminal heads (i1, j1)nL feature a negative alternative case.
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Thus, for each head (i1, j1) of an edge leaving (i, j)R the function Ti1,j1 contains
an alternative case with a negative value and the respective positive contribu-
tion Te(e) is not optimal for the head.

At last, consider the exception edge e= ( i,j
i+2,j+2) representing symmetric loop

with two unpaired bases. The condition of the proposition (C > 0) does not
ensure the positive contribution Te(e) for such edges, since

Te( i,j
i+2,j+2) = C︸︷︷︸

>0

+4Gloop(l)︸ ︷︷ ︸
=0

+Easym(s)︸ ︷︷ ︸
=0

+4GleftMM(bj1 , ai1)︸ ︷︷ ︸
>−1.11

.

In this case, to have a positive contribution from the edge ( i,j
i+2,j+2) to Ti+2,j+2,

the relation C > − GleftMM(bj1 , ai1) should hold. According to the ranges in
the above expression, this is not always the case. Hence, the out-neighbour
(i+2, j+2) constitutes an exception.

Consequence of Proposition 4.2.1 : The condition of the proposition can be
proved for a vertex without computation of the weights of its leaving edges. For a
vertex complying with the proposition, its leaving edges exhibit a non-optimal con-
tribution Te(e) and are detectable in advance. Hence, they are inefficient according
to definition.

Filling of the matrix

The forward iteration follows in general the same flow as the exhaustive search
(Figure 4.7). That is, it traverses the in-neighbourhood for each vertex (i1, j1).
However, the number of the traversed in-neighbours is reduced – the vertices
complying with the condition of Proposition 4.2.1 are excluded. For this, for
each vertex (i, j)R, after finding of its optimal score Ti,j, the condition term of
the proposition is calculated. If it is positive, this vertex is marked and skipped
by further calculations. The exceptional edge, defined in the proposition, is
handled separately. In this manner, all inefficient edges starting at such vertices
are removed from the hybridization graph.

The method allows to prune seven vertices for the graph in Figure 4.4, they
are shaded in the Figure 4.10. As can be seen, this method trims mostly vertices
that are left and right terminal simultaneously. The resulting spanning subgraph
contains 304 edges out of 378 of the initial hybridization graph. The systematic
analysis of the performance is given in Section 4.3.

4.2.4 Edge Pruning

This method detects the inefficient leaving edges based on their length for all
vertices in a given graph.
For this approach, the basic reasoning is the following. Consider a vertex (i, j)
and its leaving edges e= ( i,j

i1,j1
). For the edges representing loops, a penalty
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4Gloop(l) outweights at certain length l = L the corresponding score Ti,j, and
the contribution Te(e) becomes positive and hardly optimal at the respective
head (i1, j1). Consequently, the contributions of the edges representing even
longer loops with length l >L would be also not optimal, since 4Gloop(l) is a
non-decreasing function of loop length l (Equation (2.6)). The heads of edges
corresponding to the loops of length L are placed in the grid on the line passing
through nodes (i, j+L+2) and (i+L+2, j) (Figure 4.12a). This allows division
of the out-neighbourhood area of the vertex (i, j) into two parts (Figure 4.12b):

– effective area N+
effG(i, j) contains vertices (i1, j1) connected to (i, j) by edges

with length at most L bases, for which the contribution Te( i,j
i1,j1

) is still neg-
ative, so its optimality at the respective heads is uncertain.

– ineffective area contains the out-neighbours (i1, j1) connected to (i, j) by
edges with the length greater than L; their contributions are positive.

(a) constant loop length (b) division of out-neighbourhood area
for (i, j)R

Figure 4.12: The effective out-neighbourhood for (i, j)R. For non-right-terminal vertex
(i, j)nR the effective area is restricted to the segments of the row i+1 and of the
column j+1 from the vertex (i+1, j+1) and up to the respective intersection points
with the line L.
(a) All edges representing loops with L= 10 unpaired bases terminate at vertices
belonging to the shown line.
(b) Effective area is restricted by the line l=L. The heads of the longer edges lie in
the ineffective area.

The important issue is that these two areas exhibit a distinct border. The
criterion allowing to separate these areas in out-neighbourhood of (i, j) is stated
by Proposition 4.2.2, that also shows that the edges terminating in the ineffective
area are inefficient. Thus, deletion of such edges results in a consistent subgraph.
Figure 4.12b shows an approximated representation of the effective area, regard-
ing only the number of unpaired bases in corresponding loops. Actually, the area
is not exactly trapezoidal, since the weight of the loop comprises several other
factors. The detailed review of this subject is given later by the description of
the matrix filling step.
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As can be seen, the proposed method implies the traversal of the out-
neighbourhood for each vertex unlike the methods introduced previously. Fig-
ure 4.13 shows the corresponding general scheme for the matrix filling step.

yes

no

Figure 4.13: Flow chart for filling the DP matrix of the edge pruning method. Con-
ditional block 1 takes into account the weight of entering half-edges for the left
terminal vertices. Block 2 shows the traversal of the effective out-neighbourhood
for every vertex (i, j); the scores for respective direct successors (i1, j1) are updated.
The terms T [i, j] with the indices in square brackets designate intermediate values
at corresponding vertices, to distinguish them from Ti,j denoting the optimal score.

The implementation of this scheme requires certain modification of the tradi-
tional calculation flow applied by the dynamic programming algorithms. More-
over, for the traversal of the effective out-neighbourhood a more subtle approach
is preferable than straightforward considering of every vertex in the triangle in
Figure 4.12b. These aspects and the respectively developed solutions are detailed
by the description of the matrix filling step in the last part of this section.
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Pruning criterion

For the edge e= ( i,j
i1,j1

) its contribution can be estimated by the following expres-
sion:

Test(e) = Ti,j + west( i,j
i1,j1

), (4.8)

where west is the estimation of a lowest weight of the edge e. It depends on the
represented structural motif:

west( i,j
i1,j1

) =

{
wbulge( i,j

i1,j1
), if the edge ( i,j

i1,j1
) represents a bulge,

westLoop( i,j
i1,j1

), if ( i,j
i1,j1

) represents a sym./asym. loop.
(4.9)

The lowest weight of the loop westLoop is estimated as follows:

westLoop( i,j
i1,j1

) = 4GrightMM(bj, ai) + Eloop(l, s) + min(4GintMM), (4.10)

where Eloop(l, s) is a composite term combining contributions from loop length l
and its asymmetry s, and min(4GintMM) is the minimal value of the free en-
ergy of internal mismatch in the thermodynamic database. Based on the Equa-
tions (4.8) – (4.10), the following assertion gives a criterion for the separation of
the effective area.

Proposition 4.2.2
If for some edge e= ( i,j

i1,j1
) representing a loop the estimated lowest contribu-

tion Test(e), given by Equation (4.8), is positive, then its actual contribution
Te(e) is not optimal at its head.

Proof : The edge e= ( i,j
i1,j1

) represents either a bulge or symmetric/asymmetric
loop. The following reasoning shows for each of these types that:

1. Equation (4.8) gives the lowest possible value for the corresponding con-
tribution, that is, Te(e)>Test(e) for both types of edges;

2. the function Ti1,j1 at the head of an edge contains an alternative case with
the negative value.

The presence of negative alternative case for Ti1,j1 while the value of Te(e) is
positive would prove that the latter is not optimal for the head (i1, j1).

1. Consider the edges according to their types.
– If the edge e= ( i,j

i1,j1
) represents a bulge, then Test(e) = Ti,j + wbulge( i,j

i1,j1
),

according to Equation (4.9). Since we( i,j
i1,j1

) = wbulge( i,j
i1,j1

), the estimated con-
tribution of the edge equals its real contribution. This means, if Test(e) is
positive, so is Te(e).

– If the edge e= ( i,j
i1,j1

) represents a symmetric or asymmetric loop, then its
weight equals wloop( i,j

i1,j1
), and the corresponding contribution Te(e) is:

T (e) = Ti,j + wloop(Li,j
i1,j1

)

= Ti,j +4GrightMM(bj , ai) + Eloop(l, s) +4GleftMM(bj1 , ai1),
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where Eloop(l, s) is a composite term combining penalties from the loop
length and its asymmetry.
The estimated minimal loop weight given by Equation (4.10) is:

westLoop( i,j
i1,j1

) = 4GrightMM(bj , ai) + Eloop(l, s) + min(4GMM).

Since 4GleftMM(bj1 , ai1)> min(4GMM), the actual contribution Te(e)
is greater or equals the estimation and is positive by hypothesis:
Te(e)>Test(e)> 0.

2. Consider the head (i1, j1) of the edge ( i,j
i1,j1

). The edge representing bulge can
terminate at a left terminal (i1, j1)L or non-left-terminal (i1, j1)nL vertex.
The edge representing other type of loop terminates only at the left terminal
vertex (i1, j1)L (Figure 4.11). The existence of the alternative case with a
negative value in function Ti1,j1 has been shown by the proof of Proposi-
tion 4.2.1 for both types of vertices:
– for (i1, j1)L the alternative case is wh−(i1, j1),
– for (i1, j1)nL it equals Ti1−1,j1−1 + ws(i1, j1).

Thus, all edges e= ( i,j
i1,j1

) that abide the proposition exhibit positive contribu-
tion Te(e), which are not optimal for their respective heads (i1, j1), since the
corresponding expression Ti1,j1 of the latter contains an alternative case with
the negative value.

Consequence of Proposition 4.2.2 : For each vertex (i, j) the border of the effec-
tive area can be found by solving the equation: Test(e) = Ti,j + west( i,j

i1,j1
) = 0.

Consider the term west( i,j
i1,j1

). It depends on the loop penalty, and its other factors
are constant for the given vertex (i, j). Since the loop penalty is an increasing func-
tion of the loop length, the contributions of the longer edges with the heads beyond
this border are positive and not optimal according to the proposition. Hence, all
such edges are inefficient.

Filling of the matrix

The two practical tasks by implementation of the edge pruning method are:
– traversal of the out-neighbourhood for each vertex instead of its in-
neighbourhood,
– separation of the effective area based on the condition described previously.

To handle the first task, it is sufficient to change the typical succession of
elementary calculations by filling of the DP matrix. Usually, the matrix filling
step of DP algorithms is organized as nested iteration with two levels:

– A global cycle prescribes the order of proceeding from one cell to another in
the matrix. It is usually started at the second row and finished at the row
m, the cells are processed from the cell [i, 2] to [i, n].
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– Each local iteration actually finds the optimal score at the cell [i, j]
currently selected by the global cycle according to iterative formula
Di,j = opt{f(Di′,j′)}, where opt() is either minimum or maximum and ranges
over all predecessors [i′, j′] defined by particular algorithm for the current
cell [i, j].

This computation flow is demonstrated in Figure 4.14a by example of the Needle-
man-Wunsch algorithm. Figure 4.14b shows the required alternative flow that
considers successors in the local cycle. Main precondition for this is that the
current cell [i, j] contains its optimal score at the time of performing the local
cycle for it.

(a) conventional local cycle (b) alternative local cycle

Figure 4.14: Two schemes of computation for the dynamic programming approach.
The formulae are shown according to the Needleman-Wunsch algorithm for sequence
alignment. The symbol ”–” denotes a gap (extension to the accepted alphabet for
alignment algorithms). Each figure shows a local cycle of computations for a current
cell [i, j] marked by a bigger square. Initial state for the cycle: the cells in the
first i−1 rows and the first j−1 cells of the row i contain optimal scores. For the
alternative cycle (b), the cell [i, j] also contains its optimal score at the initial state.
(a): Result: optimal score at the cell [i, j].
(b): Result: updated intermediate values at the cells [i+1, j] and [i+1, j+1], optimal
score at [i, j+1]. The notation D[i, j] with indices in square brackets designates
intermediate values in the respective cells of the DP matrix to distinguish them
from the optimal score denoted by subscripted form Di,j .

The implementation of the alternative flow implies the following technical
changes that do not influence the total result of calculations:

– The initialization of the matrix is the same as for the conventional DP algo-
rithm.

– The global iteration starts at the first row and traces the cells from [i, 1]
instead of [i, 2] and up to [i, n−1] instead of [i, n]. Consider that after ini-
tialization the cells in the first row and column contain their optimal values.
Then, by starting the global iteration from these cells the main precondition
is ensured for the whole matrix.



72 4 Graph-based MFE Algorithms for DNA/DNA Complex

– The local cycle updates intermediate value for each successor [i1, j1] of
the current cell [i, j] using already found optimal value Di,j by formula
D[i1, j1] = opt(D[i1, j1], f(Di,j)).

The resulting optimal values in all the cells after the filling of the DP matrix
are the same as by conventional DP algorithm. For the alignment algorithms
the both computation orders are equivalent. For the edge pruning method, in
contrary, the alternative order is essential, since only in this way the reduction
of the out-neighbourhood can be implemented.

The second issue is the implementation of the local cycle so that it considers
only the out-neighbours in the effective area N+

effG(i, j) for a vertex (i, j).
The trapezoid shown in Figure 4.12b is an overestimated approximation for such
area, based on loop length penalty 4Gloop(l). The actual area is defined by
the criteria of Proposition 4.2.2. Hence, they are used as cut-off conditions to
exclude the out-neighbours, which belong to the ineffective area. These criteria
depend on the loop type, thus, two separate Procedures 2 and 3 were developed
to traverse the out-neighbours in the effective area connected to (i, j) by edges
representing bulges and loops of the other types, respectively.

Procedure 2 Calculation of bulges from vertex (i, j) with heads in row i+1

Ranges: j+1<j16n and (i+1, j1)∈V
while Te(e) = Ti,j + wbulge( i,j

i+1,j1
) < 0 do

/* Update weight score at vertex (i+1, j1) */

T [i+1, j1] = min
(
T [i+1, j1], Te(e)

)
take next vertex (i+1, j1) in row i+1

end while

where

Te(e) – contribution of the edge e( i,j
i+1,j1

) to the function at its head (i+1, j1),

T [i+1, j1] – current (intermediate) value at (i+1, j1).

The traversal of the out-neighbours connected by bulges is implemented by
considering the vertices in the row i+1 and column j+1 in assending order, and
employing the criteria Te( i,j

i+1,j1
)> 0 as a cut-off condition. Procedure 2 shows

the calculation for all out-neighbours (i+1, j1) of the vertex (i, j) in the effec-
tive segment of the row i+1. The computations for the effective segment of
the column j+1 is similar. All the vertices in the effective segment are traced
consequently starting from the left most one, while the respective contributions
Te( i,j

i+1,j1
) remain negative. According to the consequence of Proposition 4.2.2, the

rest segment of the row belongs to the ineffective area.

To find all the out-neighbours in the effective area of (i, j) connected by edges
representing symmetric/asymmetric loops, a special traversal order is required.
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Consider the cut-off condition for these loop-edges: Ti,j + westLoop > 0. After
substitution of westLoop according to Equation (4.10) it has the following form:

Ti,j +4GrightMM(bj, ai) + Eloop(l, s) + min(4GintMM) > 0.

It is defined by loop penalty Eloop(l, s) = 4Gloop(l) +4Easym(s), where l is loop
length and s is its asymmetry, since all other terms are constant for a given vertex
(i, j). To avoid the loss of information by applying of the cut-off condition, the
traversal of the vertices should proceed so that both arguments of Eloop increase
simultaneously. For two given vertices they are calculated as follows:

l= (i1 − i− 1) + (j1 − j − 1) = i1 + j1 − (i+ j)− 2;

s= |(i1 − i− 1)− (j1 − j − 1)|= |(i1 − j1)− (i− j)|.

The nodes in the grid are usually traced row- or column-wise. The corresponding
regions of increase for l and s each are given in Figure 4.15a. The resulting regions
of their simultaneous increase are shown in Figure 4.15b:

1. for a fixed row i1 = i+k, the interval is j1 ∈ [j+i1−i, n] = [j+k, n], with
26 k < min(n−j,m−i) (segments 1 in Figure 4.15b);

2. for a fixed column j1 = j+k, the interval is i1 ∈ [i+j1−j,m] = [i+k,m] (seg-
ments 2 in Figure 4.15b).

Thus, westLoop( i,j
i1,j1

) is also non-decreasing along these intervals.

(a) regions of increase for l and s (b) superimposition

Figure 4.15: Regions of increase of the loop length and asymmetry for right terminal
vertex (i, j)R. Arrows denote the direction of increase. Short-dashed line represents
diagonal of (i, j)R.
(a) The region for l is in green, for s – in blue. Asymmetry has zero point at each
node (i+k, j+k), for 26 k < min(n−j,m−i), on diagonal of (i, j)R and increases in
four directions along the corresponding row and column.
(b) Segments of the simultaneous increase of the loop length and asymmetry.

Both intervals meet pairwise for the same k at the point (i+k, j+k). Hence,
by consecutive pairwise traversal of these intervals for the whole range of k, the
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out-neighbourhood N+
G (i, j)R in the grid is covered completely.

Application of the cut-off conditions excludes the head vertices in the ineffective
area, and so reduces the traversed area to the effective one N+

effG(i, j)R.

Procedure 3 Traversal of out-neighbours in effective area of the vertex (i, j)
connected by loop-edges

k= 2 increment counter

Ranges: 16 i6m−2, 16 j6n−2, i+k6 i16m, j+k6 j16n

while Test( i,j
i+k,j+k) = Ti,j + westLoop

(
Li,j
i+k,j+k

)
< 0 do

/* Update score for vertices in row i+k right of or at the diagonal of (i, j) */

take first left terminal vertex (i+k, j1)L, s.t. j1> j+k
while Test( i,j

i+k,j1
) = Ti,j + westLoop

(
Li,j
i+k,j1

)
< 0 do

Te(e) = Ti,j + wloop

(
Li,j
i+k,j1

)
T [i+k, j1] = min

(
T [i+k, j1], Te(e)

)
take next vertex (i+k, j1)L in row i+k

end while

/* Update score for vertices in column j+k below the diagonal of (i, j) */

take first left terminal vertex (i1, j+k)L, s.t. i1> i+k
while Test( i,j

i1,j+k) = Ti,j + westLoop

(
Li,j
i1,j+k

)
< 0 do

Te(e) = Ti,j + wloop

(
Li,j
i1,j+k

)
T [i1, j+k] = min

(
T [i1, j+k], Te(e)

)
take next vertex (i1, j+k)L in column j+k

end while

k++ // proceed to the next pair of column and row

end while

where

Test( i,j
i1,j1

) – estimated contribution of the edge ( i,j
i1,j1

) to the function at its head (i1, j1),

Te(e) – actual contribution of the edge e = ( i,j
i1,j1

),

T [i1, j1] – current (intermediate) value at vertex (i1, j1).

According to the different out-neighbourhood of the vertices, there are again
two distinct procedures respective to the vertex types. For the right terminal
vertices, both above described procedures are applied; for the non-right-terminal
vertices only Procedure 2 applies.

The edge pruning method reduces the example hybridization graph in Fig-
ure 4.4 to 86 edges from the initial 378. The systematic comparison of its per-
formance with that of both previously introduced methods is given in the next
section.
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4.3 Performance and Implementation

In the first part of this section, the performance of the three described methods for
finding the shortest path in the hybridization graph is compared. The advantages
compared to the modern RNA methods that follow the same hybridization model
are also shown. The second part presents some practical aspects of implementing
the proposed algorithms. For this, the key points are storage organization and
filling order of the dynamic programming matrix.

All three methods presented were implemented in C++ and compiled under Linux
SUSE v.10.0 with the GNU compiler version 4.2. The software uses only the
standard C++ library STL and thus should also run on other operating systems
supporting this programming language.

4.3.1 Performance

Benchmark tests

As a benchmark, the proposed methods were applied to predict the MFE
structures of 195 DNA/DNA complexes used in the works of Allawi and
SantaLucia [3, 4, 5, 6] to establish appropriate thermodynamic parameters. The
lengths of the DNA sequences in the set ranged from 9 to 16 bases. These lengths
are generally appropriate for DNA strand design in DNA computing [50]. This
set of DNA/DNA complexes includes the hybridization complexes with single
and double internal loops with a length of two bases and also single symmetric
loops with a length of four bases. The predicted energies and secondary struc-
tures completely agree with those of the sources.

Particular complexes constituting a challenge for prediction [59, 84] are shown
in Figures 4.16a and 4.16b. The hybridization complex in Figure 4.16a is a break
point for the greedy method of Kaderali and Schliep [54] that finds a suboptimal
structure depicted in Figure 4.16c. The second challenging complex is taken
from SantaLucia and Hicks [84]. Figures 4.16b and 4.16d show the correct and
false predicted structures, respectively, for this complex. The critical point by
both pairings is to find the terminal motifs correctly. The methods of this thesis
predict the correct structures for both cases.

Another set of DNA/DNA complexes was developed based on the Random
Sequence Generator [99]. The predictions provided by algorithms of this thesis
were compared with those made by the PairFold and DINAMelt server [67] that
adopted a DNA version of the Zuker and Stiegler’s RNA folding algorithm [112].
All three algorithms predicted the same structures, while the total minimum
energy scores of the structures differed slightly due to different sets of thermo-
dynamic parameters and counting the terminal effects (Section 2.1.2).
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t c c t a t a g t g c g t a c

gtacgcactataga

(a) correct structure

a g t g a g c t c a t t

agtgagctcatt

(b) correct structure

t c c t a t a g t g c g t a c

gtacgcactataga

(c) incorrect structure

a
g

t g a g c t c a
t

t

a
g

tgagctca
t

t

(d) incorrect structure

Figure 4.16: Challenging cases for MFE prediction from Leber et al. [59] (a) and
SantaLucia and Hicks [84] (b).
(a) Correct structure of the complex; Etotal = -12.59 kcal/mol.
(c) Best structure found by greedy method [54] for sequences at the Figure (a);
Etotal = -10.7 kcal/mol.
(b) Correct structure with free energy Etotal = -7.77 kcal/mol.
(d) Incorrect structure with penultimate mismatches (two-bases loops) for sequences
in Figure (b); Etotal = -6.26 kcal/mol.

Average performance

Dynamic pruning allows the reduction of the number of edges considered in the
hybridization graph during calculations, thus truncating unfeasible edges and
path segments. The average improvement gained by both pruning methods is
shown in Table 4.2.

Table 4.2: Average size of random hybridization graph and its subgraphs reduced
by two pruning methods.

Method
length of DNA sequences (nt)

30 100 200 300

smallest and largest graph size (edges)

×102 ×104 ×104 ×104

exhaustive search 23 – 103 77 – 101 1306 – 1493 6761 – 7441
vertex pruning 8 – 87 30 – 86 556 – 1309 2890 – 6894
edge pruning 0.4 – 30 0.1 – 16 0.8 – 287 6 – 1430

smallest and largest subgraph size (%)

vertex pruning 35 – 85 39 – 85 43 – 88 43 – 92
edge pruning 1.7 – 29 0.13 – 16 0.06 – 19 0.09 – 19

To quantify the effect of pruning techniques, four datasets of 50 sequences
each were generated with Random DNA Sequence Generator [99]. The length of
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sequences in the sets are 30, 100, 200, and 300 nucleotides. The sequences in each
set were hybridized all-against-all. As a measure for the effectiveness of the three
methods, the size of the graphs, i.e., the number of edges, is taken. The number
of edges considered by exhaustive search corresponds to the size of hybridization
graph; for the pruning methods, the sizes of the spanning subgraphs are given.

The upper half of Table 4.2 demonstrates minimal and maximal sizes of the
hybridization graphs, produced by pairs of random sequences. The lower half
shows the corresponding amount of reduction achieved by the pruning tech-
niques.
As can be seen from the first row of the table, graph size grows rapidly with the
length of input sequences. This makes the exhaustive search, though computa-
tionally manageable, impractical for large-scale applications. The most effective
method in the case of a random graph is edge pruning.

Worst case performance

The worst case of the hybridization graph is described in Section 4.2.1. To as-
sess the performance of the pruning methods in this case, a set of pairs of DNA
sequences was developed with the length of 30 nt. Each pair in the set obeys
the scheme given in Section 4.2.1; namely, a= (N)30, even positions b2k 6=N ,
and odd ones b2k−1 =N , with 16 k6 15. Figure 4.17a shows the vertex lay-
out corresponding to such base composition of the input sequences. For each
hybridization graph, defined by a pair of sequences in the test set, the size of
subgraphs reduced by both pruning methods was found.

(a) worst vertex layout
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(b) typical MFE structures

Figure 4.17: Vertex layout for the worst case hybridization graphs and representative
MFE structures resulting from corresponding inputs.

Representative pairs of DNA sequences with free energy of their complexes
and size of spanning subgraphs relative to the full one are shown in Table 4.3.
These pairs are separated into three groups according to the base composition
of the strands; each of them exhibits a certain type of MFE structure given in
Figure 4.17b.
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The first group, given by the first two lines of the Table 4.3, comprises strand
pairs, where a is a repetition of base A,C or T , and b is regular, that is, b2k are
all the same base. Such strands do not build a bimolecular complex (the two
upper separate strands in Figure 4.17b), since their MFE is positive.

Table 4.3: Sequences producing worst case hybridization graph

Sequences stability Etotal size of subgraph (%)
b(5′ – 3′) ; a(3′ – 5′) (kcal/mol) pruning1 pruning2

1 b= (TA)15
a; a= (A)30 positive 6.67 0

2 b= (AT )15; a= (T )30 positive 19.11 0.03

3 b= (CT )15; a= (G)30 -2.36 100 2.36
4 b= (CA)15; a= (G)30 -6.16 100 6.8
5 b= (CG)15; a= (G)30 -15.57 100 25.23

6 b=cactcgcacgctcgcacgctcacgctcgca;
a= (G)30 -9.54 100 12.8

a – (TA)15 is a 30-mer, consisting of alternating T and A bases;
the same notation is used for the other sequences.

The second group corresponds to pairs with sequence a, consisting of G-s,
and a regular b sequence (rows 3 – 5 in the table). These pairs have negative free
energy, so they build a DNA/DNA complex similar to the second complex in
Figure 4.17b. This complex is built by sequences in the 5th row and represents
the most stable case.
The third group contains b-sequences with different nucleotides at the even po-
sitions, e.g., the 6th pair in the table. In this group the complexes are also more
stable if a= (G)30 and their structure is similar to the second complex in Fig-
ure 4.17b. For differently composed sequence a the stands do not hybridize.
Both pruning methods show a high level of graph reduction for the first group
of sequence pairs. For the second group and stable hybridizations in the third
one, the vertex pruning method is completely ineffective, since it computes the
whole graph. The edge pruning shows the graph size reduction of at least 75 %;
that is comparable to its performance for random sequences of the same length
(Table 4.2). The edge pruning method produces the largest spanning subgraph
for the fifth pair of sequences in the table. That pair builds the most stable
hybridization complex for the worst case hybridization graph.

Figure 4.18 shows the real size of the hybridization graph and corresponding
spanning subgraphs for the sequences in Table 4.3. Both pruning methods exhibit
an increase in the subgraph size with increasing stability of DNA/DNA complex.
The vertex pruning is ineffective for all sequence pairs with negative free energy.
For some graphs in the first group, the edge pruning method computes only
half-edges; in the diagram it is shown as zero edges in the third category for the
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left-most group of bars.
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Figure 4.18: Number of observed edges for the worst case hybridization graph (category
”full graph”) and its subgraphs, reduced by vertex pruning (category ”pruning 1”)
and edge pruning (category ”pruning 2”) methods for six pairs of input sequences
from Table 4.3. The length of input DNA sequences is 30 nt.

The demonstrated results show that both pruning methods can considerably
improve the performance of exhaustive search for the worst case hybridization
graph. The vertex pruning method reduces the graph for pairs of sequences with
positive hybridization energy. The edge pruning technique exhibits for the worst
case graph the performance comparable to its results in a random case. This
technique is the most effective for both random and worst case hybridization
graphs.

Comparison with other tools

To asses the effectiveness of the developed methods relative to that of other
modern ones, two applications were selected that exploit the same hybridization
model, i.e., they also consider only intermolecular base pairings. Those are HY-
BRID from server DINAMelt [67] and RNAduplex from Vienna package [42].
They utilize solution strategies different from that presented in this work and
were initially developed for RNA. With integration of DNA thermodynamic pa-
rameters they became applicable to the DNA hybridization problem. The edge
pruning method was taken for the evaluation as the most effective one.
For this, the test sets are the same as for the comparison of graph pruning meth-
ods with the exhaustive search in an average case. There are four sets of DNA
sequences (30, 100, 200, and 300 nt long) and an all-to-all pairing scheme inside
each set. Due to basic differences between approaches, the best criterion for
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comparing their performance is runtime. The runs for RNAduplex and the edge
pruning method were performed on 4*Dual Core AMD Opteron 2.6 GHz com-
puter. The runtimes for HYBRID are given as reported by server DINAMelt.
The average runtimes are shown in Table 4.4.

Table 4.4: Comparison of different methods for intermolecular interaction.
The average runtimes are as reported by the Unix time command on 4*Dual
Core AMD Opteron.

Method
length of DNA sequences (nt)

30 100 200 300

average runtime (ms)

HYBRID (DINAMelt) a 11.5 57.2 218.8 480.0
RNAduplex (Vienna) 1.5 35.9 176.5 377.6
edge pruning 0.9 28.0 170.5 1203.2

speed-up b 40% 27% 4 % -218%

a – time reported by server DINAMelt.
b – the speed-up of edge pruning is given related to RNAduplex performance.

The second pruning method achieves an average speed-up of 40% for sequences
of length 30 nt and of 27% for sequences of length 100 nt, when compared with
RNAduplex. Moreover, both these methods exhibit comparable performance
for sequences of length 200 nt. For longer sequences, the hybridization graphs
become more complex and the other approaches become more appropriate.

4.3.2 Implementation Features

For usability of any algorithm an important aspect is a practical implementa-
tion of computation flow and storage management. In the case of the dynamic
programming approach it concerns memory allocation and filling order of the
dynamic programming (DP) matrix. Zuker and Sankoff [111] explored the top-
ics for RNA folding applications. This section investigates some special features
of these issues for the hybridization graph. It also describes some methods for
reducing the number of intermediate computer operations.

Properties of the grid

As the graph layout is defined by two DNA sequences, the corresponding grid
exhibits the following properties:

1. The number of vertices in every row is lower than n.
Every row i, defined by a nucleotide ai =N , with N ∈Σ = {A,C,G,T}, con-
tains vertices at positions j, where bj =N is complementary to N . The num-
ber of such complements is lower then n, since in most cases the sequence b
contains bases of distinct types.
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2. The positions of all vertices on the grid are defined by four arrays containing
positions of the same bases in one of the input sequences, since the nucleotide
alphabet has four letters and each base has a single complementary one.

Storage organization

The first matter is the organization of storage for the vertices of the hybridization
graph. Based on the first property of the grid, the vertices can be stored in an
array of m linear arrays of complementary positions, each of them shorter than
n (Figure 4.19b).

m

n1

m

1

...

(a) regular array

n

m

n1

...

(b) irregular storage

Figure 4.19: Possible storage organization of DP matrix for hybridization graph.

However, extra storage would be required for each vertex to hold its initial
column position j on the grid. This option also takes additional time for allo-
cation of such an irregular array for every pair of input sequences (Table 4.5).

Table 4.5: Comparison of initiation time for two types of data structures. Time
is measured for initiation of 1000 data structures of m= 300, n= 360 units
length in C++.

Data structure initiation time (s)

m×n rectangular array (Figure 4.19a) 5,34
m arrays of 4 different lengths (Figure 4.19b) 10,60

In case of a single pairing of two sequences, the time is negligible. On the con-
trary, for large-scale applications, where the allocation is repeated thousands of
times, it slows down the total performance significantly. Following this criterion,
the grid is organized as regular two dimensional m×n array (Figure 4.19a).

DP matrix filling order

The specific design of the hybridization graph leads to some novel ways of orga-
nizing the global iteration over the DP matrix. These filling orders are distinct
from that suitable for RNA folding or for common sequence alignment algorithms,
such as ones from Smith and Waterman [88] or Needleman and Wunsch [74].
Zuker and Sankoff [111] described three possible filling orders for RNA folding,
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where a triangular matrix is used (Figure 4.20a). They correspond up to the rect-
angularity of the matrix to the cases 1, 2, and 3 for DNA hybridization graph
(Figure 4.20b). For the common sequence alignment, the schemes 1, 2, 3, 3a, 3b,
and 4 in Figure 4.20b are appropriate. Thus, there are six new possibilities 1a,
1b, 2a, 2b, 4a, 4b (Figure 4.20b) for filling the DP matrix by computation of the
hybridization graph.

1

2

3

(a) RNA folding

1

2

3 3a

1b

2b

3b

1a

2a

1

4 4a 4b

(b) DNA hybridization graph

Figure 4.20: Possible filling orders of dynamic programming matrix. The solid arrows
indicate the direction of consecutive computations. The dashed arrows indicate
transition from one solid arrow to the next.
(a) Three filling orders for RNA triangular DP matrix
(from Zuker and Sankoff [111]).
(b) Four main filling orders for ssDNA rectangular DP matrix and their variants.

The main restriction on the order for both RNA and DNA cases is that of
dynamic programming: to find a score at some cell in the matrix, the scores of
its direct predecessors, i.e., the cells it depends on, should already be computed.
The main distinction of the methods that leads to the new filling orders is the
following. For RNA folding and sequence alignment methods, a cell [i, j] has
direct predecessors in row i and column j. Therefore, the rows i can be filled only
in ascending order of columns 16 j6n (schemes 1 in Figure 4.20a and 4.20b).
The ascending row order 16 i6m by column j filling (schemes 2 in Figure 4.20a
and Figure 4.20b) abides the same restriction. For the hybridization graph, on
the contrary, the vertices are independent of those in the same row or column.
This property allows the descending filling orders and the switching from one
to another after transition to the next row or column. The descending filling
flows as follows: for rows – from cell [i, n] to [i, 1]; for columns – from cell (m, j)
to (1, j). These are depicted in the schemes 1a and 2a (Figure 4.20b). The
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switching from ascending to descending flow is shown by the schemes 1b and 2b
(Figure 4.20b).

The variants of diagonal filling shown in schemes 3a and 3b (Figure 4.20b) for
sequence alignment and DNA hybridization methods arise due to the rectangu-
larity of the matrix. Scheme 4 and its variants (Figure 4.20b) depict an option of
segmental filling of rows and columns. A row i is filled in a segment from cell [i, i]
to [i, n] and corresponding column j= i – from [i+1, j] to [m, j]. The transition
is made consecutively to the next pair of segments. The sequence of segments,
i.e., first the segment in row i, then the respective one in column j= i, or vice
versa, remains the same by transition. This order is also appropriate for the
sequence alignment methods. The scheme 4a differs only by descending filling of
the segments: in row i from cell [i,m] to [i, i], and similarly for the segment in
column j= i.
The scheme 4b demonstrates the option of switching between ascending and de-
scending flows by filling the segments in row and column. For this, the segments
in row i and column j= i are filled in opposite orders. By transition from one
row-column pair to another, the sequence of segments also changes. If at first
round the sequence is row then column, then at the second one, the segment in
column is filled first, then the one in the respective row.

All described filling orders are applicable to both exhaustive search and prun-
ing methods. Although the new filling orders for the hybridization graph are
possible in principle, they are impractical regarding the consecutive storage or-
ganization of modern computers. Therefore, current software implements simple
row-wise filling order given by scheme 1a (Figure 4.20b).

Optimization of access to the vertices

The technique is based on the second property of the grid. To iterate over ver-
tices, the positions of ai in b were stored in eight index arrays: one for each
base type A,C,T,G for both sequences. Following the row filling order, to ad-
dress every vertex in a row its position is taken from the array of complements
corresponding to nucleotide ai. This provides consecutive access exactly to each
vertex in a given row or column without considering every node of the grid.

Finding the lowest energy

A final step of the forward iteration consists of finding a right terminal vertex
with the lowest weight after the filling of the DP matrix. Since such vertices
are spread irregularly over the grid, it requires an additional traversal of the
whole matrix. This can be avoided by retaining the actual lowest path weight
separately and updating its value after the finding of the optimal score for the
next right terminal vertex while filling the matrix. The update step considers
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the corresponding half-edge leaving the right terminal vertex as follows:

W = min
(
W, T(i,j)R + wh+(i, j)R

)
.

After the matrix filling, W contains the lowest path weight.

Exceptional cases of the graph

For practical reasons, the following two cases are handled separately, that is, the
hybridization graph is not established for two input sequences a and b:

1. If the sequences are completely complementary, that is a= b, the optimal
structure of their complex per default is a single uninterrupted double helix;
its energy Emin =

∑
4GNN is computed in a straightforward manner.

2. If one of the sequences does not contain any base complementary to the
bases of the other sequence, that is, all ai, bj satisfy ai 6= bj, the base pairing
matrix is empty, and the sequences cannot hybridize with one another; their
hybridization free energy is set to zero.

Practical limitation of implemented software

The actual implementation exploits the database of DNA thermodynamic pa-
rameters from SantaLucia and Hicks [84]. Currently it is the most complete one,
containing the parameters for Watson-Crick nearest neighbours, single internal
mismatches, loops and dangling ends. An alternative parameter set used by
adapted RNA applications is that from Mathews [71].
The edge pruning method is independent of the particular parameters, so it is
compatible with the other database.
The vertex pruning technique is based on the value ranges for mismatches (Sec-
tion 4.2.3). Thus, its cut-off condition may require appropriate modification for
exploitation with other mismatch parameters. However, the main principle of
the technique holds.

According to Peyret [78], the exact thermodynamic parameters for terminal mis-
matches are still a research matter. Moreover, the up-to-date parameters for
these motifs from SantaLucia [83] laboratory remain unpublished. Hence, for the
current implementation the free energy values of the internal mismatches were
also used for weighting the terminal mismatches. This constitutes a limitation
for the application of the software in practice, but does not impact the essence
of the developed methods.
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4.4 Discussion

The introduced hybridization graph model for a DNA/DNA complex allows the
application of the shortest path algorithms developed in graph theory. The basic
methods for this are Floyd-Warshall [32, 101] and Johnson [52] algorithms.
The first method has complexity of O(|V |3). For input sequences with equal dis-
tribution of nucleotides, the number of vertices in hybridization graph amounts
to n2/4, where n is a length of the strand. Thus, the complexity of this algo-
rithm for such graphs is O(n5). The complexity of the Johnson’s method [52] is
O(|V |2 log |V |+|V ||E|). In both cases, the value is higher than the worst case
complexity of O(n4) or O(|E|) (Section 4.2.1) for the exhaustive search method
presented in this chapter.
The special features of the hybridization graph, such as mapping to the grid and
absence of cycles, have yielded more effective methods than the general ones for
solving the shortest path problem for this particular type of graphs.

The direct implementation of the dynamic approach demonstrated by ex-
haustive search is inefficient for long input sequences due to rapid increase of
the graph size. Both pruning methods are designed to reduce the complexity of
the direct approach without loss of the optimal solution. The comparison of the
results of computations has shown complete agreement in found structures and
energy with that found through exhaustive search. The edge pruning method
exhibits better reduction of the hybridization graph for both average and worst
case graph than the vertex pruning.

The basic programs for DNA/DNA hybridization, such as Dan [14], Melt-
ing [58], and MeltTemp [72], take into account either perfect duplexes or sym-
metric internal loops with a length of two bases. The proposed methods gener-
alize these algorithms by including more complex DNA structural motifs.
An advanced MFE finding method developed by Leber et al. [59] requires two
to four iterations over the whole dynamic programming matrix, while the algo-
rithms described above need only one iteration over a reduced set of cells in the
matrix. They also exhibit better reliability in finding the terminal motifs than
the greedy method of Kaderali and Schliep [54] (Section 4.3).

The basic method for RNA folding applications, which were adapted for
DNA/DNA hybridization, is the Zuker and Stiegler’s algorithm [112]. Its com-
plexity O(n4) is comparable to that of the exhaustive search method. Some
refinements of the Zuker and Stiegler’s algorithm reach a complexity of O(n3).
For this, one of the ways is restriction of the maximal loop length to 30 nt, as by
Hofacker et al. [49]. One of the advantages of the developed pruning methods is
that loop length remains unrestricted, namely, it is bound only by energy. So,
a loop of any length would not be excluded from a complex if it is energetically
acceptable.
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The main limitation on the application of the proposed algorithms comes
from the hybridization model employed. This model is inappropriate for
DNA/DNA complexes that form hairpins. For shorter DNA sequences up to
30 nt, DNA/DNA hybridization complexes rarely contain hairpins and multi-
branched loops [97]. In this case, the proposed methods yield optimal solutions
that correspond to biological structures. For longer sequences, the methods can
be used as a subroutine to calculate optimal internal loops. However, they are
less effective for RNA sequences, since the corresponding hybridization graphs
eventually become much larger due to wobbling G-U pairings.

The main targeted application fields for the developed methods are DNA
strand design software for DNA computing and PCR or microarray probe de-
sign. The edge pruning technique allows the acceleration of a number of large-
scale software applications that take into account free energy of hybridization by
generating of DNA sequence sets with the restrictions on strand pairings. Such
applications depend on calculation of hybridization energy for pairs of ssDNA
while searching for the best set of sequences. These calculations are considered
as one of the main bottle necks in thermodynamic DNA strand design, as they
take the most of time [98, 54]. The state of the art is codes with word length
from 16 to 32 nt, which find further use in DNA-based computations. For the
sequences of these lengths the restrictions of the hybridization model, such as
exclusion of hairpins and multiloops, are biologically viable.
The runtime comparison of the proposed edge pruning method with light-weight
RNA tools HYBRID and RNAduplex shows that its integration into large-scale
applications for DNA strand design, like those provided by Mann and Noble [65]
and Tulpan et al. [98], would significantly speed up their performance.

The edge pruning method proposed in this thesis improves existing
DNA/DNA hybridization methods by handling longer loops (more than two
bases) and loops of different types. As the density of vertices of the hybridization
graph is generally smaller than the density of nodes in the grid, the algorithm
attains lower average runtime than comparable RNA algorithms for sequences
up to 200 nt. It accelerates the general performance with the same exactness of
results.



Chapter 5

Tropical APSP Algorithm for
Bipartite Graphs

Bipartite graphs are widely used for modeling of complex networks found in biol-
ogy, technology, and computer science. Finding of the shortest path is one of the
basic subroutines with a high number of executions in these applications. Hence,
there is high demand for the optimization of these procedures. In Section 2.4,
the general algorithms for finding the shortest path in all types of graphs are de-
scribed. This chapter presents the special version of the tropical APSP algorithm
for the specific case of bipartite graphs. It optimizes the general algorithm by
taking into account the properties of this class of graphs. It halves the space com-
plexity and reduces the runtime about tenfold compared to the general tropical
algorithm.

5.1 Properties of Bipartite Graphs

A bipartite graph or bigraph G= (V,E) with parts V1 and V2 can be depicted in
the form shown in the Figure 5.1 by grouping together the vertices in each part.

V1 V2

Figure 5.1: Example of a bipartite graph.

In the adjacency matrix of a bigraph, let the first |V1| rows and columns be
labeled with the vertices of set V1, and the rest with the vertices of set V2. This

87
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matrix can then be divided into the following four blocks:

A=

(
0 A1

A2 0

)
,

where A1 is an |V1|×|V2| matrix and A2 is an |V2|×|V1| matrix. The two 0-blocks
represent square zero matrices, since the vertices in the same parts are not adja-
cent to each other. In the case of a complete bipartite graph, the blocks A1 and
A2 contain only ones. For an undirected bigraph, A2 =AT

1 ; for a directed one,
this equality does not hold.

The corresponding weight matrix M for a weighted bipartite graph exhibits
a similar block structure:

M =

(
U M1

M2 U

)
.

The blocks M1 and M2 have the same dimensions as A1 and A2, respectively.
Their entries are weights of the edges or ∞, if there is no edge between cor-
responding vertices. For undirected bigraphs, M1 =MT

2 ; for directed ones, this
equality does not hold. The upper left and lower right square blocks U contain
zeros on the main diagonal and all their other entries equal∞, since the vertices
in the same part are not adjacent to each other:

U =


0 ∞ · · · ∞
∞ 0

. . .
...

...
. . . . . . ∞

∞ · · · ∞ 0

 .

Now, consider that the tropical APSP algorithm consists in exponentiation
of the weight matrix of a graph to the power |V |−1 (Section 2.4.2). For each
n∈N, the exponentiated weight matrix M�n of the bigraph can be divided into
four blocks with the same sizes as in the initial weight matrix M :

M�n =

(
L

(n)
1 M

(n)
1

M
(n)
2 L

(n)
2

)
,

where L
(n)
1 and L

(n)
2 are the upper left and lower right blocks of M�n, and M

(n)
1

and M
(n)
2 are the upper right and lower left blocks, respectively.

Due to the special structure of the U -blocks, the higher tropical powers of the
matrix M exhibit certain regularities that are shown in the next two sections.
These are used further to optimize the tropical APSP algorithm for the specific
case of bipartite graphs.
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Tropical operations on the matrix blocks

In this section, the properties of the U -blocks of the matrix M in tropical algebra
are considered. First, it is shown that the matrix U is similar to the identity
matrix of linear algebra. Then, the properties of the matrix U by tropical matrix
multiplication and addition are introduced. The important formulae for manip-
ulation of blocks of the weight matrix M are gathered at the end of this section.

First, consider the neutral elements of the tropical operations:

x⊕∞ = min(x,∞) = x and x� 0 = x+ 0 = x.

It should be noted, that the main diagonal of the square matrix U consists of
the neutral element of tropical multiplication and all other elements are neutral
for tropical addition. In this manner, the matrix U is similar to the identity
matrix I of linear algebra. The later one contains ones (neutral elements for
regular multiplication) on the main diagonal and zeros (neutral elements for
regular addition) in all other positions. Such a composition makes identity matrix
to neutral element for matrix multiplication with an m×n matrix B in linear
algebra:

I =


1 0 · · · 0

0 1
. . .

...
...

. . . . . . 0
0 · · · 0 1

 , ImB = BIn = B.

The similarity in the structure of the U -matrix and identity matrix leads to the
assumption of the similar role of U in tropical matrix multiplication.

The following reasoning shows that the tropical multiplication of matrix Um

with an arbitrary m×n matrix B results in the same matrix B, that is,

U �B=B.

Consider the row vectors ui,∗= (ui1, . . . , uim) of the matrix Um. Their elements
are: uij = 0 for j= i and uij =∞ for all j 6= i. Note that x �∞=x +∞=∞.
The tropical product of ui,∗ and an arbitrary column vector c gives a scalar:

(ui1, . . . , uii, . . . , uim)�(c1, c2, . . . , cm)T

= (∞, . . . , 0, . . . ,∞)� (c1, c2, . . . , cm)T

=∞� c1 ⊕ · · · ⊕ 0� ci ⊕ · · · ⊕∞� cm
= min(∞, . . . , ci, . . . ,∞)

= ci.
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Then the tropical product of a row ui,∗ and the m×n matrix B is a row bi,∗ of
this matrix:

(ui1, ui2, . . . , uim)�

 b1,1 · · · b1,n
...

. . .
...

bm,1 · · · bm,n

 = (ui � b∗,1, ui � b∗,2, . . . , ui � b∗,n)

= (bi1, bi2, . . . , bin) = bi,∗,

where b∗,1, b∗,2, . . . are the corresponding columns of the matrix B.
Hence, the tropical product of all the rows ui,∗ with the matrix B is a matrix
consisting of all rows of B, i.e., B itself. Therefore,

Um �B = B.

The neutrality of the U -matrix for the right-side tropical multiplication, that is,
B � Un =B, can be shown in the same manner. �

Since the matrix U exhibits the same properties in tropical algebra as the identity
matrix does in linear algebra, it can be considered as a tropical identity matrix.

A further point is the tropical addition of the matrix Um with an m×n ma-
trix B. Consider the following identity for the neutral element of tropical multi-
plication:

x⊕ 0 =

{
0, if x > 0,

x, if x < 0.

Then the tropical sum of U and B is:

U ⊕B = B ⊕ U = (bij ⊕ uij)m×m =

{
bij, if i 6= j or i= j and bij < 0,

0, otherwise.
(5.1)

As can be seen, this operation affects only positive elements on the main diagonal
of the matrix B setting them to zero. Such a sum is further denoted as (B)0.

The properties of tropical operations on matrices are similar to those in linear
algebra. The Equations (5.2a) – (5.3b) sum up the rules used for mathematical
derivations in the next section.
For the matrices A, B, C and the tropical identity matrix U with appropriate
dimensions the following equations hold:

for addition:

A⊕ A=A, A⊕B=B ⊕ A, (A⊕B)⊕ C =A⊕ (B ⊕ C); (5.2a)

for multiplication:

A�B 6= B � A, A�0 =U, B � U =U �B=B; (5.2b)

distributivity (for explicit proof see Appendix B.1):

A� (B ⊕ C) =A�B ⊕ A� C, (5.2c)

(A⊕B)� C =A� C ⊕B � C. (5.2d)
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The matrix (B)0 =U ⊕B exhibits the following properties:

(B)0 ⊕B=B ⊕ U ⊕B 5.2a
= (B)0; (5.3a)

(B)0 ⊕ U =B ⊕ U ⊕ U 5.2a
= (B)0. (5.3b)

Tropical powers of the weight matrix for bipartite graphs

In this section, the detailed structure of the four blocks is given for the n-th
tropical power, where n∈N, of the weight matrix of a bigraph. At the end of
the section, it is shown that one of the blocks of M�n is sufficient to obtain the
rest of them, avoiding the explicit exponentiation of the whole matrix M .

In this section the following notations are used:

– The matrices L
(n)
1 and L

(n)
2 denote upper left |V1|×|V1| and the lower right

|V2|×|V2| blocks of the matrix M�n respectively.

– The matrices M
(n)
1 and M

(n)
2 denote upper right |V1|×|V2| and the lower left

|V2|×|V1| blocks of the matrix M�n respectively.

– Superscripts in parentheses for the four blocks above, e.g., L
(n)
1 , denote the

corresponding tropical power of the matrix M .

– The matrix U denotes the tropical identity matrix.

– The matrix product M1M2 denotes tropical matrix multiplication M1 �M2,
i.e., juxtaposition is used for tropical matrix multiplication to save space and
increase readability.

The detailed composition of the four blocks in the matrix M�n is given as follows:

Proposition 5.1.1
For the weight matrix M of a bipartite graph with no negative cycles and
k > 1, the four blocks of the matrix M�n have the following properties:

L
(n=2k)
1 = L

(2k+1)
1 = (M1M2)�k0 ,

L
(n=2k)
2 = L

(2k+1)
2 = (M2M1)�k0 , (5.4)

M
(n=2k)
1 = M

(2k−1)
1 = L

(2(k−1))
1 M1 = (M1M2)�k−1

0 M1,

M
(n=2k)
2 = M

(2k−1)
2 = L

(2(k−1))
2 M2 = (M2M1)�k−1

0 M2,

where (M1M2)0 =M1M2⊕U|V1| and (M2M1)0 =M2M1⊕U|V2|. The products
M1M2 and M2M1 are square matrices, so the sum (B)0 is defined for both of
them.
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Proof : The assumptions are shown by induction on n.
For k= 1, the second power n= 2 of the matrix is:

M�2 =

(
U M1

M2 U

)
�
(
U M1

M2 U

)
=

(
U ⊕M1M2 M1 ⊕M1

M2 ⊕M2 M2M1 ⊕ U

)
.

Regarding that U ⊕M1M2 = (M1M2)0 and M1 ⊕M1
5.2a
= M1, the four blocks

are:

L
(2)
1 = (M1M2)0, L

(2)
2 = (M2M1)0, M

(2)
1 = M1, and M

(2)
2 = M2.

According to the assumption for k= 1:

L
(2)
1 = (M1M2)�1

0 , L
(2)
2 = (M2M1)�1

0 ,

M
(2)
1 = (M1M2)�0

0 M1
5.2b
= M1 and M

(2)
2 = (M2M1)�0

0 M2
5.2b
= M2.

Thus, the assumption holds for n= 2.

Assume the proposition holds for all tropical powers of M up to even n−1 = 2k.

The n-th tropical power M�n for n= 2k+1 is calculated as follows:

M�n=2k+1 =

(
L

(n)
1 M

(n)
1

M
(n)
2 L

(n)
2

)
=

(
L

(n−1)
1 M

(n−1)
1

M
(n−1)
2 L

(n−1)
2

)
�
(
U M1

M2 U

)

=

(
L

(n−1)
1 ⊕M (n−1)

1 M2 L
(n−1)
1 M1 ⊕M (n−1)

1

M
(n−1)
2 ⊕ L(n−1)

2 M2 M
(n−1)
2 M1 ⊕ L(n−1)

2

)
.

After substitution of the corresponding values for the four blocks we get by
induction:

L
(n=2k+1)
1 = L

(2k)
1 ⊕M (2k)

1 M2 = (M1M2)�k0 ⊕ (M1M2)�k−1
0 M1M2

= (M1M2)�k−1
0

(
(M1M2)0 ⊕M1M2

)
5.3a
= (M1M2)�k−1

0 (M1M2)0

= (M1M2)�k0 , that equals L
(2k)
1 ;

L
(n=2k+1)
2 = M

(2k)
2 M1 ⊕ L(2k)

2 = (M2M1)�k−1
0 M2M1 ⊕ (M2M1)�k0

= (M2M1)�k−1
0

(
M2M1 ⊕ (M2M1)0

)
= (M2M1)�k0 , that equals L

(2k)
2 ;

M
(n=2k+1)
1 = L

(2k)
1 M1 ⊕M (2k)

1 = (M1M2)�k0 M1 ⊕ (M1M2)�k−1
0 M1

=
(
(M1M2)0 ⊕ U

)
(M1M2)�k−1

0 M1

5.3b
= (M1M2)�k0 M1, that equals L

(2k)
1 M1;
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M
(n=2k+1)
2 = M

(2k)
2 ⊕ L(2k)

2 M2 = (M2M1)�k−1
0 M2 ⊕ (M1M2)�k0 M2

=
(
(M2M1)0 ⊕ U

)
(M2M1)�k−1

0 M2

= (M2M1)�k0 M2, that equals L
(2k)
2 M2.

From Equation group (5.4), it can be seen that all blocks of the matrix M�n

depend on two products: (M1M2)0 and (M2M1)0. The following equations show
how to obtain the values of the four blocks after exponentiation of one of these
products.

At first, consider the equation

(M2M1)0M2 = M2(M1M2)0, (5.5)

obtained by following transformation:

(M2M1)0M2 = (M2M1 ⊕ U)M2
5.2d
= M2M1M2 ⊕ UM2

5.2b
= M2M1M2 ⊕M2U

5.2c
= M2(M1M2 ⊕ U) = M2(M1M2)0.

Consequent application of Equation (5.5) yields:

(M2M1)�k0 M2 = (M2M1)�k−1
0 (M2M1)0M2︸ ︷︷ ︸

M2(M1M2)0

5.5
= (M2M1)�k−2

0 (M2M1)0M2︸ ︷︷ ︸
M2(M1M2)0

(M1M2)0 = . . .

5.5
= (M2M1)�1

0 M2︸ ︷︷ ︸
M2(M1M2)0

(M1M2)�k−1
0

= M2(M1M2)�k0 .

(5.6)

This allows the computation of the blocks M
(n)
1 and M

(n)
2 from (M1M2)�k0 .

The next equation allows L
(n)
2 to be obtained from (M1M2)�k−1

0 (for explicit proof
see Appendix B.2):

(M2M1)�k0 = M2(M1M2)�k−1
0 M1 ⊕ U (5.7)

From the Equations (5.6) and (5.7), it can be seen that for obtaining the whole
matrix M�n it is sufficient to find (M1M2)�k−1

0 .
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5.2 Tropical APSP Algorithm for Bigraphs

In this section, the established properties of the bipartite graphs are used to
formulate a special version of the tropical APSP algorithm for these graphs.

First, it is shown that the maximal number of edges in an acyclic path for a
bipartite graph is less than that for a general graph.
For a directed bigraph G= (V,E) with the parts V1 and V2, let assume without
restriction that |V1|6 |V2|.
The maximal number of edges in an acyclic path in G is bound by the cardinality
of the smaller subset of vertices, that is, |V1|. This number differs depending on
the sets to which the terminal vertices belong.

– For acyclic paths with both terminal vertices in the same subset:

- if the subset is V2, then a path contains at most 2|V1| edges;

- if the subset is V1, then a path contains at most 2(|V1|−1), as it requires
two edges for transition between two vertices of the same part.

– For acyclic paths with terminal vertices in different subsets, the maximal
length is 2(|V1|−1) + 1 = 2|V1|−1.

Hence, the maximal number of edges in the acyclic path in a bipartite graph is
2|V1|, that is, less than |V |−1 edges in general one. �

This means that the 2|V1|-th tropical power of the weight matrix M represents
the solution of the all-pairs shortest path problem for a bipartite graph.

All four blocks of the matrix M�2|V1| can be obtained from the matrix
(M1M2)

�|V1|−1
0 by the Equations (5.6) and (5.7) established in the previous sec-

tion. So, the smaller |V1|×|V1| matrix (M1M2)0 can be used in calculations in-
stead of the (|V1|+|V2|)×(|V1|+|V2|) weight matrix M without loss of information.
This leads to the specific APSP algorithm for the bipartite graphs represented
by Procedure 4.
The dynamic programming matrix is initialized with the matrix (M1M2)0. Then
the |V1|−1-th power of this matrix is found. Finally, the matrix M�2|V1|, which
contains the shortest paths between all the pairs of vertices in a bipartite graph
is restored.
For better readability, Procedure 4 shows a straightforward variant of the matrix
exponentiation, which requires |V1|−2 multiplications. Actually, the n-th power
of a number can be found in O(log2 n) time using exponentiation by squaring
(for implementation see Appendix B.3). This leads to O(n3 log2 n) complexity for
matrix exponentiation, since every matrix multiplication requires n3 operations.
This algorithm exhibits the following features:

– The dimensions of the dynamic programming matrix are |V1|×|V1|.



5.2 Tropical APSP Algorithm for Bipartite Graphs 95

– The six additional matrix multiplications are used to initialize the DP matrix
and restore the resulting blocks of M�2|V1|.

– The storage required is 2|V1|2, for the matrix (M1M2)0 and the DP matrix.

Procedure 4 BipartiteAPSP

Input: two blocks of the weight matrix: M1, M2

Output: four blocks of M�2|V1|: L
(2|V1|)
1 , L

(2|V1|)
2 , M

(2|V1|)
1 , M

(2|V1|)
2

D = D1 = (M1 �M2 ⊕ U) // DP matrix initialization

/* Find (M1M2)
�|V1|−1
0 */

for k = 2 to |V1|−1 do
D = D �D1

end for

/* Restore the four blocks for the resulting matrix */

L
(2|V1|)
1 = D �D1

L
(2|V1|)
2 = M2 �D �M1 ⊕ U

M
(2|V1|)
1 = D �M1

M
(2|V1|)
2 = M2 � L(2|V1|)

1

return L
(2|V1|)
1 , L

(2|V1|)
2 , M

(2|V1|)
1 , M

(2|V1|)
2

where U is the |V1|×|V1| tropical identity matrix

Consider that the original APSP algorithm delivers meaningful results for the
all-pairs shortest path for the graphs without negative cycles. If a graph contains
such cycles, their existence is detected by finding the negative elements on the
main diagonal of the final DP matrix (Section 2.4.2).
The proposed version in this case exhibits the same behaviour for the bipartite
graphs. Since the blocks L

(2|V1|)
1 and L

(2|V1|)
2 , containing the main diagonal of the

resulting matrix, depend on the block (M1M2)0 = (M1�M2⊕U), and the sum of
the tropical identity matrix U and an arbitrary one retains the negative entries
on the main diagonal according to Equation (5.1).

5.2.1 Time and Space Requirements

The space requirements for the general tropical APSP algorithm and the pro-
posed one are given in Table 5.1. Due to the special structure of the bipartite
graphs, the two U -blocks do not require separate memory, as their elements can
be acquired dynamically from the corresponding vertices. This reduces the stor-
age space for the weight matrix of a bipartite graph compared to the general one.
The proposed version optimizes the general algorithm in two ways:
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– the dimensions of the dynamic programming matrix are reduced from
(|V1|+|V2|)2 to |V1|2. This leads to acceleration of computations, as the
smaller matrices require less time to multiply.

– by direct exponentiation, the number of multiplications for the dynamic pro-
gramming matrix is reduced from |V |−1 = |V1|+|V2|−1 in general case to
|V1|−2 in the inner for-cycle and six additional ones to restore the whole
matrix.

In the case of an undirected bigraph, the computations take even less memory.
Since the block M2 of the weight matrix is a transposition of M1, the latter does
not require separate storage.

Table 5.1: Space requirements of the tropical APSP algorithms.

Method matrix dimensions
weight matrix DP matrix

tropical APSP algorithm
directed graph |V |×|V | |V |×|V |
undirected graph 1/2(|V |×|V |) |V |×|V |

tropical APSP algorithm for bigraphs
directed bigraph 2(|V1|×|V2|) 2(|V1|×|V1|)∗
undirected bigraph |V1|×|V2| 2(|V1|×|V1|))∗

where |V |= |V1|+ |V2|;
* – two matrices are required: (M1M2)0 and D, since (M1M2)0 differs from
the weight matrix.

The worst case for the proposed version comprises bipartite graphs with the
vertex subsets of the same cardinality, i.e., |V1|= |V2|. So, the DP matrix takes
|V |2/4 cells and the required tropical power of the weight matrix is |V |/2. In this
case, by direct exponentiation the computations are performed 16 times faster
than by the general tropical APSP algorithm.

The developed version reduces the problem dimensions to |V |/2 in the worst case;
the O(|V |3 log2 |V |) order of time complexity remains the same as in original
tropical APSP algorithm. In practical terms, it means shorter computation time
of the proposed version for the same size input, and accelerates the performance
of the large-scale applications correspondingly.

5.3 Discussion

Graphs are widely used in computer science to represent the systems of inter-
connected objects. Many such systems naturally implicate a division into two
groups of mutually unconnected entities. For instance, numerous hierarchical
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systems, such as electric circuits or workflows. Such systems are often modeled
with the help of the bipartite graphs. Morover, such popular models as Petri
nets, neuronal nets, and trees represent actually bipartite graphs.
For the applications based on these models, the finding of the shortest path in
a graph is an underlying procedure. Due to the high number of calls it exhibits
significant influence on the performance of the large-scale applications, which
operate with high number of graphs.

It may be possible to optimize the Floyd-Warshall algorithm using analysis
similar to the presented one for the respective DP matrix. However, the dif-
ference in data contained in the DP matrix of the tropical and regular versions
should be taken into account.

The proposed technique reduces the dimensions of the associated DP ma-
trix and consequently, the execution time. For the worst case, when a bipartite
graph contains the vertex subsets of the same cardinality |V1|= |V2|, the algo-
rithm requires the DP matrix one-quarter of the size of that used in the tropical
APSP algorithm for general graphs. This makes it highly usefull subroutine
for large-scale applications based on bipartite graphs. The algorithm comprises
the general case of directed weighted bipartite graphs, unlike the other exist-
ing methods for this class of graphs that handle more specific cases: restricted
by weight and/or topology. Full advantages of this approach can be unfolded
by using the repeated squaring technique for matrix multiplication and software
libraries optimized for matrix computations, such as CUDA.





Chapter 6

Conclusion

This thesis has provided reliable and efficient computational methods in the field
of DNA computing and has addressed one of the fundamental graph problems,
the APSP problem. The methods introduced in Chapters 3 and 4 describe un-
derlying techniques for the design of DNA computations. Chapter 5 concerns
the shortest path problem in the graph theory.

In Chapter 3 a specific approach for in silico evaluation of the DNA encod-
ing has been proposed that considers requirements of the protocol for particular
DNA computations. A comprehensive workflow for development of the corres-
ponding software modules has been further provided. The performance of the
encoding is assessed by finding its thermodynamic characteristics, e.g., free en-
ergy gap, for the hybridization complexes built during the DNA computation.
The outstanding characteristic of the proposed approach in comparison with the
available similar methods is that it provides sufficient precision to assess the re-
sults of the particular DNA computation, while remaining lightweight regarding
the full-scale simulation. Such modules can be used separately or as a part of
large-scale software. The approach enhances the precision of the preliminary in
silico simulations and allows to refine the protocol conditions of in vitro exper-
iments. The protocol-specific evaluation is especially valuable for DNA compu-
tations that exploit DNA strands of unequal lengths, since it allows to select the
encoding based on fixed-length DNA word sets developed by conventional DNA
strand design methods.

Chapter 4 has introduced a new graph-based approach to the solution of
the minimal free energy problem for the hybridization of two arbitrary single
stranded DNA. The novel model of hybridization graph has been developed to
represent all potential structural motifs of the DNA hybridization complex. On
this model the MFE of the hybridization complex can be found as the weight
of the shortest path in the graph. For solving the latter problem, three com-
putational methods based on the paradigm of dynamic programming have been
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introduced; all of them provide the optimal solution. Their comparison has
shown that edge pruning technique is the most efficient one. The comparison of
its runtime with that of analogous MFE methods has shown a significant speed
up for the sequences with the length of up to 100 nt. Since the length of the
strands currently used for the DNA computations is 16 to 32 nt, the integration
of the proposed MFE method into large-scale applications for DNA strand design
that use thermodynamic criteria allows to significantly improve the performance
of the design software.

In Chapter 5 a new algorithm for solving the all-pairs shortest path prob-
lem for particular class of bipartite graphs has been developed. The algorithm
is based on tropical multiplication of the weight matrix. The proposed tech-
nique reduces the dimensions of the associated DP matrix and consequently, the
execution time. For the worst case, when the bipartite graph contains the sub-
sets of vertices with the same cardinality, the method requires the DP matrix
one-quarter of the size of that used in the tropical APSP algorithm for general
graphs. The algorithm comprises the general case of directed weighted bipar-
tite graphs, unlike the other existing methods for this class of graphs that handle
more specific cases: restricted by weight and/or topology. Full advantages of this
approach can be unfolded by using the repeated squaring technique for matrix
multiplication and software libraries optimized for matrix computations, such as
CUDA.

In this thesis a number of novel graph-based algorithms for the design of DNA
computations, and for solving the APSP problem have been presented. A direc-
tion for further work concerning the first case is rather practical. For instance,
extending of the MFE algorithm to a more general hybridization model including
DNA self-folding.
Computational implementation of the proposed APSP algorithm has also prac-
tical importance. Moreover, the analysis similar to that presented in Chapter 5
can be applied to reduce the DP matrix of the Floyd-Warshall algorithm for
the bipartite graphs. Since the latter does not employ matrix multiplication, a
sub-cubic complexity for APSP algorithm on bipartite graphs can be attained.

The long term purpose of bioinformatics has two following aspects. The
practical one is the enhancement of the efficiency of the biologically relevant
computations; this eventually saves wet laboratory resources, time, and associ-
ated finances. The scientific one is gaining of new knowledge of the mechanisms
of life. We hope the presented work would contribute to both these directions.
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thesis, Köln, 2001.

[54] L. Kaderali and A. Schliep. Selecting signature oligonucleotides to identify



BIBLIOGRAPHY 105

organisms using DNA arrays. Bioinformatics, 18:1340–1349, 2002.

[55] P. Kaplan, G. Cecchi, and A. Libchaber. Molecular computation: Adle-
mans experiment repeated. Technical report, NEC research Institute, 1995.

[56] N. Kummerfeldt. In silico autonomous DNA computing. Master’s thesis,
Hamburg Univ. Tech., 2010.

[57] T.B. Kurniawan, N.K. Khalid, Z. Ibrahim, M. Khalid, and M. Middendorf.
An Ant Colony System for DNA sequence design based on thermodynam-
ics. In Proceedings of the Fourth IASTED Int. Conference on Advances in
Comp. Science and Technology, pages 144–149. ACTA Press, 2008.

[58] N. Le Novere. Melting, computing the melting temperature of nucleic acid
duplex. Bioinformatics, 17:1226–1227, 2001.

[59] M. Leber, L. Kaderali, A. Schönhuth, and R. Schrader. A fractional
programming approach to efficient DNA melting temperature calculation.
Bioinformatics, 21(10):2375–2382, 2005.

[60] D. Li, X. Li, H. Huang, and X. Li. Scalability of the surface-based DNA
algorithm for 3-SAT. BioSystems, 85(2):95–98, 2006.

[61] R.J. Lipton. DNA Solution of Hard Computational Problems. Science,
268:542–545, 1995.

[62] W. Liu, F. Zhang, and J. Xu. A DNA algorithm for the graph coloring
problem. J. Chem. Inf. Comput. Sci, 42(5):1176–1178, 2002.

[63] X. Liu and S. Wang. Development of an in vivo computer for SAT problem.
Mathematical and Computer Modelling, 2010.

[64] Y. Liu, J. Xu, L. Pan, and S. Wang. DNA solution of a graph coloring
problem. J. Chem. Inf. Comput. Sci, 42(3):524–528, 2002.

[65] T.P. Mann and W.S. Noble. Efficient Identification of DNA hybridisation
partners in sequence database. Bioinformatics, 22:e350–e358, 2006.

[66] A. Marathe, A.E. Condon, and R.M. Corn. On combinatorial DNA word
design. Journal of Computational Biology, 8(3):201–219, 2001.

[67] N.R. Markham and M. Zuker. DINAMelt web server for nucleic acid melt-
ing prediction. Nucleic Acids Research, 33, 2005.

[68] I.M. Martinez-Perez. Biomolecular computing models for graph problems
and finite state automata. PhD thesis, Hamburg Univ. Tech., 2007.

[69] I.M. Martinez-Perez, Z. Ignatova, G. Zhang, and K.-H. Zimmermann.
Biomolecular autonomous solution of the Hamiltonian path problem via



106 BIBLIOGRAPHY

hairpin formation. IJBRA, 1:389–398, 2006.
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Appendix A

Negative control DNA encodings

Table A.1: Negative control encodings 16 and 17 from Table 3.2

vertex set 16 set 17

v0 ggctggcatgcctagactgt tactcatatggggttatacg
v1 ggctgggtaatagaacctgt ctccgcctgggcttagctta
v2 catgcctagactgtacgcac gatcctctgtttcctcagct
v3 ctaaggacatctgtggctgg ggctccacttgcttcgctta
v4 gtaatagaactcgacggtcg tatgggctagcggtccggtt
v5 acgcacacattagcgacttc gcccttgtagtctcgggtcc
v6 acattcgacggtcgggctgg ttcctgtaacttgcctctaa
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Appendix B

Expressions used in Chapter 5

B.1 Distributive property of tropical matrix

multiplication

A� (B ⊕ C) = A�B ⊕ A� C,
where A,B, and C are the matrices with the appropriate dimensions.
Proof:
The following reasoning shows that the general element of the left hand side is
the same as that of the right hand side.
Consider the following basic issues:
distributivity of the tropical multiplication for the real numbers:

a� (b⊕ c) = a+min(b, c) = min(a+ b, a+ c) = a� b⊕ a� c,

and the definition of the tropical matrix multiplication:

A�B =
⊕
k=1..n

Aik �Bkj.

The following transformation proves the ojective.

(A�(B ⊕ C))ij =
⊕

(Aik � (B ⊕ C)kj)– definition of matrix multiplication

=
⊕

(Aik � (Bkj ⊕ Ckj))– definition of matrix addition

=
⊕

(Aik �Bkj ⊕ Aik � Ckj)– distributivity of the real numbers

=
⊕

Aik �Bkj ⊕
⊕

Aik � Ckj– commutativity of the real numbers

= (A�B)ij ⊕ (A� C)ij – definition of matrix multiplication

where the sum
⊕

is taken from 1 to n. �
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B.2 Proof for Equation (5.7) in Section 5.1

(page 93)

(M2M1)�k0 = M2(M1M2)�k−1
0 M1 ⊕ (M2M1)0 (5.7)

Consider that
(
M2M1 ⊕ U

)
is denoted as (M2M1)0.

According to Equation (5.5) (page 93):

(M2M1)0M2 = M2(M1M2)0, (5.5)

thus, (M2M1)0M2M1 equals M2(M1M2)0M1.

The objective is obtained through the following transformation:

(M2M1)�k0 = (M2M1)�k−1
0

(
M2M1 ⊕ U

)
= (M2M1)�k−1

0 M2M1 ⊕ (M2M1)�k−1
0︸ ︷︷ ︸

(M2M1)�k−2
0 (M2M1⊕U)

= (M2M1)�k−1
0 M2M1︸ ︷︷ ︸

M2(M1M2)�k−1
0 M1

⊕ (M2M1)�k−2
0 M2M1︸ ︷︷ ︸

M2(M1M2)�k−2
0 M1

⊕ . . .⊕ (M2M1)�1
0 M2M1︸ ︷︷ ︸

M2(M1M2)�1
0 M1

⊕ (M2M1)�1
0︸ ︷︷ ︸

M2M1⊕U

= M2

[
(M1M2)�k−1

0 M1 ⊕ (M1M2)�k−2
0 M1 ⊕ . . .⊕ (M1M2)�1

0 M1 ⊕M1

]
⊕ U

= M2

[
(M1M2)�k−1

0 ⊕ (M1M2)�k−2
0 ⊕ . . .⊕ (M1M2)�1

0 ⊕ U︸ ︷︷ ︸
B0⊕U=B0 (5.3a)

]
M1 ⊕ U

= M2

[
(M1M2)�k−2

0 ⊕ (M1M2)�k−3
0 ⊕ . . .⊕ (M1M2)�1

0 ⊕ U︸ ︷︷ ︸
B0⊕U=B0 (5.3a)

]
(M1M2)0M1 ⊕ U

...

= M2

[
(M1M2)�1

0 ⊕ U
]
(M1M2)�k−2

0 M1 ⊕ U

= M2(M1M2)�k−1
0 M1 ⊕ U

�
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B.3 Exponentiation by Squaring

Algorithm for finding xn with O(log2(n)) time complexity

Procedure 5 O(log2(n)) algorithm for finding xn

Input: x, n
Output: xn

res = 1
while n 6= 0 do

if n mod 2 6= 0 then
res = res · x
n = n− 1

end if
x = x · x
n = n/2

end while
return res
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