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Abstract

Dynamic programming is a mathematical optimization method
and a computer programming method as well. In this paper, the
notion of sheaf programming in topological spaces is introduced and
it is demonstrated that it relates very well to the concept of dynamic
programming.
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1 Introduction

Dynamic programming is a mathematical optimization method and a com-
puter programming method as well. The method was introduced by Richard
Bellman [1] in the 1950s and has applications in several fields. In each case,
problem is broken down into simpler sub-problems in a recursive way. The
two major properties of dynamic programming are overlapping sub-problems
and optimal substructure. Sub-problems that need to be solved in a recur-
sion again and again are solved only once and for all and stored for future
use. Optimal substructure refers to solving the sub-problems optimally.
This paper introduces the notion of sheaf computation which amounts to
dynamic programming based on sheaves. The paper is organized as follows.
Section 2 contains the background on presheaves and sheaves. Section 3
introduces the notion of sheaf computation. Section 4 provides some known
(and unusual) examples.
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2 Sheaves

In mathematics, sheafs provide a tool for tracking systematically locally de-
fined data associated to the open sets of a topological space [2, 4]. This kind
of data can be restricted to smaller open sets, and the data assigned to an
open set corresponds to all collections of compatible data assigned to collec-
tions of smaller open sets covering the given one. Sheaves are quite abstract
objects and their definition is rather subtle. They come as sheaves of rings
or sheaves of modules depending on the type of assigned data.
Let X be a topological space and let R be a commutative ring with unity. A
presheaf F of rings on X consists of the following data:

• For each open subset U of X , there is a ring F(U) given as the ring of
R-valued functions on U .

• For each inclusion of open sets V ⊆ U of X , there is a ring homomor-
phism ρV,U : F(U) → F(V ).

The elements of F(U) are called sections of F over U . A section over X is
called a global section. The morphisms ρV,U are called restriction maps. We
write σ|V instead of ρV,U(σ) and think of it as restricting the mapping σ ∈
F(U) to the subset V . The restriction maps fulfill the following properties:

• F(∅) = 0.

• For each open set U ofX , the restriction map ρU,U = idU is the identity.

• For each inclusion of open sets W ⊆ V ⊆ U , we have ρW,U = ρW,V ◦ρV,U

A presheaf can be viewed as a contravariant functor from the category C(X),
whose objects are the open sets in X and whose morphisms are the inclusion
mappings, to the category of rings.
A presheaf F of rings on X is a sheaf if it satisfies the following two condi-
tions:

• (Uniqueness) For any open subset U of X , any open covering U =
⋃

i∈I Ui, and any sections σ, τ ∈ F(U), if σ|Ui
= τ|Ui

for all i ∈ I, then
σ = τ on U .

• (Gluing) For any open subset U of X , any open covering U =
⋃

i∈I Ui,
and any family of sections σi ∈ F(Ui) for i ∈ I such that σi|Ui∩Uj

=
σj|Uj∩Ui

for all index pairs (i, j), there exists a section σ ∈ F(U) such
that σ|Ui

= σi for all i ∈ I.

2



These conditions state that sections which are compatible in the sense of the
gluing property can be uniquely glued together.
Sheaves are defined on open sets but the underlying topological space X

consists of points. Fix a point x ∈ X and take pairs (U, σ) where U is an
open subset of X with x ∈ U and σ is a section over U . Two such pairs (U, σ)
and (V, τ) are equivalent if there is an open subset W with x ∈ W ⊆ U ∩ V

and σ|W = τ|W ; this defines an equivalence relation. The set of all such
pairs modulo this equivalence is the stalk Fx of F at x, which inherits a ring
structure from the rings F(U). The elements (equivalence classes) of Fx are
the germs of F at x.
Let F and G be a sheaves on X . A morphism φ : F → G of sheaves is
a collection of homomorphisms φ(U) : F(U) → G(U), where U ⊂ X is
open, such that for each inclusion U ⊂ V of open sets, the following diagram
commutes:

F(V )

ρV,U

��

φ(V )
// G(V )

ρV,U

��

F(U)
φ(U)

// G(U)

3 Sheaf Computations

We describe the notion of sheaf computation in topological spaces.
For this, let X be a topological space, F be a sheaf of rings on X , and R be
a commutative ring with unity.
For each open subset U of X , let F(U) denote the ring of R-valued functions
on U . The following procedure defines inductively sections over X :

1. Base step: Put U = ∅ and take the zero function σ ∈ F(U).

2. Inductive step: Consider the collection (Ui)i∈I of open subsets of X
for which sections σi, i ∈ I, have already been defined. Take the open
covering U ′ =

⋃

i∈I Ui and pick a minimal open subset U of X which
contains U ′ and for which a section over U has not yet been defined.
By glueing and uniqueness, there is a unique section σ′ over U ′ such
that σ′

|Ui
= σi for all i ∈ I. Now extend the section σ′ to a section σ

over U such that σ|U ′ = σ′.

When a global section σ over X is inductively reached, we speak of a sheaf

computation over X and R and the global section σ is called the result of
the computation.
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Proposition 3.1. Sheaf computations are well-defined.

Proof. Suppose U ′ is the open subset of X for which a section σ′ has already
been defined. Let U ′ ⊂ U and U ′ ⊂ V , where U and V are minimal open sets
containing U ′. To show that sheaf computations are well-defined, it would
be enough to prove that the extended sections agree on the intersection. To
see this, take the open covering U ∩ V = U ′ ∪ U ′′ with U ′′ ⊂ U, V . Then
U ′ ⊂ U ′ ∪ U ′′ ⊂ U, V , which contradicts the minimality of U, V . Hence,
U ∩ V = U ′ on the sections coincide.

Intuitively, function-like objects form a presheaf; they give rise to a sheaf if
the functions exhibit a local behaviour [2].
Sheaf computations are deterministic when a total ordering on the minimal
open subsets U of X containing U ′ is given.
Sheaf computations are finite if the underlying topological space X is Noethe-
rian. A Noetherian topological space is a topological space X in which the
closed subsets fulfill the descending chain condition. Equivalently, the open
subsets of X satisfy the ascending chain condition, since each open subset is
the complement of a closed subset. Equivalently, each open subset U of X is
compact, i.e., each open cover of U has a finite open subcover. For instance,
each affine variety is a Noetherian topological space [2].

Proposition 3.2. If X is a Noetherian topological space, the procedure of

sheaf computation provides a global section over X.

A topology on X indudes a subspace topology on any subset Y of X . For
this, the open subsets of Y are of the form Y ∩U where U is an open subset
of X . Note that if Y is open, the open subsets of Y in the subspace topology
are exactly the open subsets of X contained in Y . From this perspective,
a sheaf computation of a global section σ over X follows the paradigm of
dynamic programming.

4 Examples

In the following examples, the topological spaces are built up from bases. The
base B for a topological space X is a collection of open sets in X such that
each open set in X can be written as a union of elements of B. Bases have
two important properties: (1) The base elements cover X . (2) Let U1 and
U2 be base elements and let U be their intersection. Then for each element
x ∈ U , there is a base element U3 with U3 ⊆ U and x ∈ U3. In particular, if
the base B is closed under intersection, then U is also a base element.

4



Example 4.1. Let n ≥ 0 be an integer. The set X = [n] = {i | 0 ≤ i ≤ n}
forms a topological space in which (except U−1 = ∅ and X) the subsets
Ui = {0, . . . , i} for 0 ≤ i ≤ n are open. For each integer i ≥ 0, the open
subset Ui of X has Ui−1 as unique maximal open subset. Thus an already
defined section σi−1 over Ui−1 can only be extended to a section σi over Ui,
where σi(u) = σi−1(u) for each u ∈ Ui−1. ♦

Example 4.2. Let m,n ≥ 0 be integers. Consider the cartesian product set
X = [m]× [n] = {(i, j) | 0 ≤ i, j ≤ n}. For each pair (i, j) ∈ [m]× [n], define
the rectangular set

Ui,j = {(k, l) ∈ X | 0 ≤ k ≤ i, 0 ≤ l ≤ j}.

Take the sets Ui,j as basis of the topological space X . Put Ui,−1 = ∅ and
U−1,j = ∅ for all i ∈ [m] and j ∈ [n]. Each open subset U of X has the shape
of an irregular staircase (Fig. 1).

0

Figure 1: Open subset as staircase.

Given an open subset U ′ of X , a minimal open subset U containing U ′ has
the form U = U ′ ∪ Ui,j = U ′ ∪ {(i, j)}, where (i, j) ∈ X is the only point
not contained in U ′. In this way, the section σ′ on U ′ can be extended to a
section σ on U by assigning (i, j) a value σ(i, j).
For instance, consider the dynamic programming algorithm of Needleman-
Wunsch [3] for the alignment of two sequences of length m and n. This
algorithm defines a function σ : X → R by setting σ(0, 0) = 0 and for all
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Figure 2: Staircase U ′ = Ui−1,j ∪ Ui,j−1.

(i, j) ∈ X ,

σ(i, j) = min







σ(i− 1, j) + c(i− 1, j),
σ(i, j − 1) + c(i, j − 1),
σ(i− 1, j − 1) + c(i− 1, j − 1)







,

where c : X → R is a function depending on the two sequences to be aligned.
This is a sheaf algorithm defining a global section σ over X . Here a section
σ′ over U ′ = Ui−1,j ∪ Ui,j−1 is extended to a section σ over Ui,j by defining
the value σ(i, j) in dependence of σ′ and c (Fig. 2). ♦

Example 4.3. Let A
n denote the affine n-space over a field K. Consider

the zero set X ⊆ A
4 given by the equation x1x4 = x2x3 [2]. The underlying

topology is the Zariski topology and the distinguished open sets form a basis
of the Zariski topology on X .
Let U ⊂ X denote the open subset of all points in X where x2 6= 0 or x4 6= 0.
The quotient x1

x2

is defined on the set U2 of all points of X where x2 6= 0,
and the quotient x3

x4
is defined on the set U4 of all points of X where x4 6= 0.

The sets U2 and U4 are distinguished open sets, but U = U2 ∪ U4 is not a
distinguished open set. Both quotients are the same when they are both
defined, since then

x1

x2
=

x3

x4
.

Consider a monadic function f : K → K. Define the sections σ2 : U2 → K

and σ4 : U4 → K as σ2(x1, x2, x3, x4) = f(x1

x2

) and σ4(x1, x2, x3, x4) = f(x3

x4

),
respectively. It is clear that both functions are equal on the intersection
U2 ∩ U4. Since U = U2 ∪ U4, we have a section σ′ : U → K where σ′

|U2
= σ2

and σ′
|U4

= σ4. A global section σ : X → K can be defined say by defining

σ(x1, x2, x3, x4) = 1 for all points in X which are not in the union U2 ∪ U4

and σ|U = σ′. ♦
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