Appendix A

Concrete Properties of Test Beams

BETONZUSAMMENSETZUNG

B1

Betonsorte : 1633736Z

Werk : neuland beton

1. ANFORDE	RUNGEN			ê.						
Expositionski	asse(h) : XC4	XD1XS1XF2XA1	wu	A	rt der V	/erwendu	ng:		Stahlbe	ton
Festigkeitskl.	/ Konsist. : C 30/37	/ F3		S	ieblinier	nummer	:		NL20)A5
Besond. Eige	nschaften :ZTV-Ing	J. XC4; XD1; XS1; XF2;	XA1	S	ieblinier	bereich /	K-Werl	: /	AB 16 / 4	,01
				F	estigkei	tsentwick	lung :		mi	ttel
Eignung :	ZTV- in	g. Widerlager, Stützen;	(Sprühr	nebel) Ü	berwac	hungsklas	sse :			2
			1999 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 - 1979 -	F	estigkei	tsnachwe	is nach	:	28 Tag	jen
w/z-Wert:	0,49			P	umpfäh	igkeit :				ា
2. AUSGANG	SSTOFFE UND Z	JSAMMENSETZUNG		Fe	euchtigk	eitsklass	e :			NA
Ausgangsstoffe	Bezeichnur	10	Anteil	Stoffraum	Dichte	Menge	Oberfl.fe	ucht,	Menge	1
• •	Dezeloinity	5	%	dm³	kg/m ^a	kg trocken	%	1	kg f.	
Zement	CEM III/A 42.5N		1	123	3,00	370		-		1
										Ł
			1							
Zusatzstoff							2 - N			
			1							18
Zusatzmittel	1BV N9	MC - Bauchemie	0,80	2,57	1,15	2,96				
			1 1	C2010-001		-				
Wasser			1	182	1,00	182		1		1
Restwasser			1				ŧ			1
Porenraum				15					_	-
Summen				323		555				
Restraum für	r Gesteinskörnung			677						
FGK 0/2	ELO.EL)F	42.0	284	2.63	748	4.0	30	778	1
GGGK 2/8	FI		20.0	135	2.72	368	1,0	4	372	
GGGK 8/16	EI		38.0	257	2,72	700	0,5	4	704	
			1							
							1 1			
Summen			100	677		1816		38	1854	
2 KENINA/										e.:
J. KENNWE	KIE 40	2 Litor	Containa	k manna t	rocken	18	16 kg			
Gesamtwass	Ser 10		Gesteins	Kinenge u	donçin .		38 kg			
Zugabewass	Set		Eigenfeu	chte						
	·		Gesteins	k.menge f	eucht	18	54 Kg			
Mehikorngeh	nalt 37	4 kg	Mörtelde	halt			97 dm	o/mª		
Mehlkom +F	einstsand 41	7 kg	Friechhe	tonrohdich	te		71 km	/m ^s		
			Theorem							

XF3;ZTV-Ing. Widerlager; Stützen; Pfeiler (Sprühnebel)

Hamburg, den 04.03.2009

Abt. der Abt. der Neuland Beton Prüfstellenleiter telle

A1. Compressive strength

	Sample	Dim	ension (mm)	Weight	Density	Force	$f_{ m c,cube}$
		а	В	h	(kg)	(kg/m ³)	(kN)	(MPa)
	1	151,8	150,1	150,1	8,161	2.386	1.392	61,1
	2	151,2	150,1	150,0	8,158	2.396	1.450	63,9
	3	151,5	150,0	150,0	8,129	2.385	1.442	63,5
		Ν	lean val	2.389		62,8		

3 cubic samples 150 mm preserved in water conditions were tested after 28 days (06/04/2009)

Table A.1-Tests of cubic samples for compressive strength after 28 days

 $f_{c,cube}$ is the mean value of compressive strength of cubic samples tested in the laboratory. The characteristic compressive strength of cylinder at 28 days f_{ck} is determined as follows:

$$f_{ck} = \frac{0.75}{0.95} f_{c,cubic} - 4MPa$$

where : 0,75/0,95: conversion factors from cubic sample to cylindrical sample.

4 MPa : conversion value from mean value to characteristic value in laboratory.

3 cubic samples 150 mm preserved in normal conditions as the test beams was tested after 52 days (30/04/2009)

	Dim	ension (mm)	Weight	Density	Force	$f_{\rm c,cube}$
Sample	а	b	h	(kg)	(kg/m^3)	(kN)	(MPa)
1	150,9	150,0	150,1	8,015	2.359	1.466	64,8
2	151,2	149,9	149,9	8,008	2.357	1.500	66,2
3	151,8	150,0	149,9	8,122	2.380	1.528	67,1
	M	lean valu	2.365		66,0		

Table A.2- Tests of cubic samples for compressive strength after 52 days

3 cubic samples 150 mm preserved in normal conditions as the test beams was tested after 101 days (18/06/2009)

Sample	Dim	ension (mm)	Weight	Density	Force	$f_{\rm c,cube}$
	а	b	h	(kg)	(kg/m ³)	(kN)	(MPa)
1	152,2	150,0	150,0	8,039	2.347	1.669	73,1
2	152,1	150,0	150,0	8,024	2.345	1.637	71,8
3	151,3	149,9	150,0	8,001	2.352	1.699	74,9
	Μ	lean valu	2.348		73,3		

A2. Modulus of elasticity and compressive strength

4 Cylinder samples ϕ 150/300 mm preserved in normal conditions as the test beams were tested after 52 days (30/04/2009).

Sample Dimension (mm)		Weight	Density	σ_{o}	σ_{u}	€₀	ε _u	Ec	Force	f _{c,cyl} (MPa)	
1	ф	h	(kg)	(kg/m ³)	(MPa)	(MPa)	mm/m	mm/m	(MPa)	(kN)	(dry)
1	150,0	299,0	12,46	2.358	-	-	-	-	-	958	54,2
2	149,9	300,0	12,490	2.359	17,8	0,5	0,574	0,033	32.071	957	54,2
3	150,0	299,3	12,478	2.359	17,8	0,5	0,592	0,035	31.098	953	53,9
4	150,0	300,0	12,521	2.362	17,8	0,5	0,603	0,039	30.712	946	53,5
Mean value			2.360					31.294		54,0	

Table A.4– Tests of cylinder samples for modulus of elasticity and compressive strength after 52 days

A3. Tensile strength

3 cylinder samples ϕ 150/300mm preserved in normal conditions as the test beams were tested after 101 days (18/06/2009).

Sample	Dimens	sion (mm)	Weight	Density (kg/m ³)	Force (kN)	$f_{\rm ct,sp}$ (MPa)
Sumple	Ø	h	(118)	(Kg/III)		(dry)
1	150,0	299,8	12,447	2.349	253,2	3,58
2	150,0	299,9	12,462	2.351	244,6	3,46
3	150,0	299,8	12,405	2.341	264,2	3,74
Mean value				2.350	254,0	3,60

Table A.5- Tests of cylinder samples for tensile strength after 101 days

<u>Appendix B</u>

Test Results

9x10 9x10 60 30 9 ϵ_{l3} ϵ_{l2} $\varepsilon_{l1} \sigma_{r1}$ ϵ_{r2} ϵ_{r3} ↓ w_r \mathbf{w}_1 w w_m _ 34

TEST SAMPLE: 1L1

Figure B.1L1.1- The detailed arrangement of the data acquisition system

Figure B.1L1.2- The Time – Load graph

Figure B.1L1.3–The Load – Displacement graph

Figure B.1L1.4- The Load - Strains graph at top surface of beam

Figure B.1L1.5- The Load - Strains graph at mid-depth of beam

Figure B.1L1.6– Crack propagation of beam 1L1 after each load step.

TEST SAMPLE: 1L2

Figure B.1L2.2– The Time – Load graph

Figure B.1L2.3– The Load – Displacement graph

Figure B.1L2.4– The load – crack width graph

Figure B.1L2.5– The Load –Strains graph at top surface of beam

Figure B.1L2.6- The Load -Strains graph at mid-depth of beam

Figure B.1L2.7- Crack propagation of beam 1L2 after each load step.

TEST SAMPLE: 2L1

Figure B.2L1.1- The detailed arrangement of the data acquisition system

Figure B.2L1.2– The Time – Load graph Figure B.2L1.3–The Load – Displacement graph

Figure B.2L1.4– The load – crack width graph

Figure B.2L1.5- The Load -Strains graph at top surface of beam

Figure B.2L1.6- The Load -Strains graph at mid-depth of beam

Figure B.2L1.7- Crack propagation of beam 2L1 after each load step.

TEST SAMPLE: 2L2

Figure B.2L2.1- The detailed arrangement of the data acquisition system

Figure B.2L2.2–The Time – Load graph Figure B.2L2.3–The Load – Displacement graph

Figure B.2L2.4–-The load – crack width graph

Figure B. 2L2.5- The Load -Strains graph at top surface of beam

Figure B.2L2.6- The Load -Strains graph at mid-depth of beam

Figure B.2L2.7- Crack propagation of beam 2L2 after each load step.

84 9x10 209x10 84 41.5 52 75.5 30 75.5 52 41.5 $\varepsilon_{l1} \Box \varepsilon_{r1}$ ϵ_{l2} ϵ_{r2} 10 6 10 6 Π ϵ_{l3} ϵ_{r3} r_m 12 8 4 4 8 12 \mathbf{w}_1 w_r Wm 90 90 368 _34 60 60 _34_ Figure B.3L1.1– The detailed arrangement of the data acquisition system F [kN] F [kN] 160 F 🖌 W_l ↓w_m ↓ w_r 120 160 120 Wr 80 W Wm 80 40 40 0 30 60 90 4 8 120 2 6 10 0 12 Time [min] Displacement [mm]

Figure B.3L1.2– The Time – Load graph Figure B.3L1.3–The Load – Displacement graph

TEST SAMPLE: 3L1

Figure B.3L1.5– The Load –Strains graph at top surface of beam

Figure B.3L1.6- The Load -Strains graph at mid-depth of beam

Figure B.3L1.7– Crack propagation of beam 3L1 after each load step.

TEST SAMPLE: 3L2

Figure B.3L2.4-The load – crack width graph

Figure B.3L2.5-The Load –Strains graph at top surface of beam

Figure B.3L2.6- The Load –Strains graph at mid-depth of beam

Figure B.3L2.7- Crack propagation of beam 3L2 after each load step.

TEST SAMPLE: 4L1

Figure B.4L1.1- The detailed arrangement of the data acquisition system

Figure B.4L1.2-The Time – Load graph Figure B.4L1.3-The Load – Displacement graph F [kN]

Figure B.4L1.4-The load – crack width graph

Figure B.4L1.5-The Load –Strains graph at top surface of beam

Figure B.4L1.6- The Load –Strains graph at mid-depth of beam

TEST SAMPLE: 4L2

Figure B.4L2.2-The Time – Load graph

F [kN]

Figure B.4L2.4-The load – crack width graph

Figure B.4L2.5-The Load –Strains graph at top surface of beam

Figure B.4L2.6- The Load –Strains graph at mid-depth of beam

TEST SAMPLE: 5L1

80

40

0

4 8

Figure B.5L1.2-The Time – Load graph F [kN]

Wr

Displacement [mm]

Wm

12 16 20 24 28 32 36 40 44

Figure B.5L1.4-The load – crack width graph

Figure B.5L1.5-The Load –Strains graph at top surface of beam

Figure B.5L1.6- The Load –Strains graph at mid-depth of beam

80 100 120 140 160 180

40

0

40

20

60

Figure B.5L2.3-The Load – Displacement graph

Figure B.5L2.4-The load – crack width graph

Figure B.5L2.5-The Load –Strains graph at top surface of beam

Figure B.5L2.6- The Load –Strains graph at mid-depth of beam

TEST SAMPLE: 1K1

Figure B.1K1.2-The Time – Load graph

Figure B.1K1.3-The Load – Displacement graph

Figure B.1K1.4-The load – crack width graph

Figure B.1K1.5-The Load –Strains graph at top surface of beam

Figure B.1K1.6- The Load –Strains graph at mid-depth of beam

Figure B.1K1.7- Crack propagation of beam 1K1 after each load step.

TEST SAMPLE: 1K2

W

W_m

3

2.5

Figure B.1K2.1- The detailed arrangement of the data acquisition system

Figure B.1K2.2-The Time – Load graph

Figure B.1K2.3-The Load – Displacement graph

Figure B.1K2.5-The Load –Strains graph at top surface of beam

Figure B.1K2.6- The Load –Strains graph at mid-depth of beam

Figure B.1K2.7- Crack propagation of beam 1K2 after each load step.

TEST SAMPLE: 2K1

Figure B.2K1.1- The detailed arrangement of the data acquisition system

Figure B.2K1.2-The Time – Load graph

Figure B.2K1.3-The Load – Displacement graph

Figure B.2K1.4-The load – crack width graph

Figure B.2K1.5-The Load –Strains graph at top surface of beam

Figure B.2K1.6- The Load –Strains graph at mid-depth of beam

Figure B.2K1.7- Crack propagation of beam 2K1 after each load step.

TEST SAMPLE: 2K2

Figure B.2K2.1- The detailed arrangement of the data acquisition system

Figure B.2K2.2-The Time – Load graph

Figure B.2K2.3-The Load – Displacement graph

Figure B.2K2.4-The load – crack width graph

Figure B.2K2.5-The Load –Strains graph at top surface of beam

Figure B.2K2.6- The Load –Strains graph at mid-depth of beam

Figure B.2K2.7- Crack propagation of beam 2K2 after each load step.

TEST SAMPLE: 3K1

Figure B.3K1.1- The detailed arrangement of the data acquisition system

Figure B.3K1.2-The Time – Load graph

Figure B.3K1.4-The load – crack width graph

Figure B.3K1.5-The Load –Strains graph at top surface of beam

Figure B.3K1.6- The Load –Strains graph at mid-depth of beam

Figure B.3K1.7- Crack propagation of beam 3K1 after each load step.

TEST SAMPLE: 3K2

Figure B.3K2.1- The detailed arrangement of the data acquisition system

Figure B.3K2.2-The Time – Load graph

Figure B.3K2.3-The Load – Displacement graph

Figure B.3K2.4-The load – crack width graph

Figure B.3K2.5-The Load –Strains graph at top surface of beam

Figure B.3K2.6- The Load –Strains graph at mid-depth of beam

Figure B.3K2.7- Crack propagation of beam 3K2 after each load step.

TEST SAMPLE: 4K1

Figure B.4K1.1- The detailed arrangement of the data acquisition system

Figure B.4K1.2-The Time – Load graph

Figure B.4K1.3-The Load – Displacement graph

Figure B.4K1.4-The load – crack width graph

Figure B.4K1.5-The Load –Strains graph at top surface of beam

Figure B.4K1.6- The Load –Strains graph at mid-depth of beam

Figure B.4K1.7- Crack propagation of beam 4K1 after each load step.

TEST SAMPLE: 4K2

Figure B.4K2.1- The detailed arrangement of the data acquisition system

Figure B.4K2.2-The Time – Load graph

Figure B.4K2.3-The Load – Displacement graph

Figure B.4K2.4-The load – crack width graph

Figure B.4K2.5-The Load –Strains graph at top surface of beam

Figure B.4K2.6- The Load –Strains graph at mid-depth of beam

Figure B.4K2.7- Crack propagation of beam 4K2 after each load step.