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Abstract

We are interested in perturbed Hamiltonian systems in a plane, which are damped and excited by an absolutely regular non-white
Gaussian process. We use two methods for the determination of analytical and semi-analytical solutions to such nonlinear stochas-
tic differential equations (SDE). The first method is based on a limit theorem by Khashminskii, from which a class of methods was
derived known as stochastic averaging. From the drift and diffusion of the resulting averaged process, probability density functions
and mean exit times can be easily obtained. The second method enables the determination of a Gaussian mixture representation for
probability density functions of SDE’s. This method was proposed by Pradlwarter and is known as Local Statistical Linearization.
The error evolution of such Gaussian mixture shows promising results for further research.
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1. Introduction

In the presented work, we use two methods for the determination of analytical and semi-analytical solutions of
nonlinear stochastic differential equations (SDE). The first method is based on a limit theorem by Khashminskii, which
was rigorously proven in1. From this work, a class of methods was derived known as stochastic averaging. Depending
on the analyzed nonlinear system and the type of stochastic processes involved, different stochastic averaging methods
were developed2,3,4. The second method that we use was proposed by Pradlwarter5 and is known as Local Statistical
Linearization. This relatively new method is a semi-analytical approach, where the probability density function of the
considered nonlinear SDE is approximated by a sum of Gaussian probability densities.

Let (Ω,F , P) be a probability space, where Ω is the sample space, F is a σ - algebra over Ω and P is a probability
measure. We are interested in perturbed Hamiltonian systems, which are damped and excited by an absolutely regular
non-white Gaussian process ξt := ξ(ω, t) = (ξ1(t), . . . , ξk(t)) ∈ Rk, ω ∈ Ω, with sufficient mixing properties. Here, we
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consider a perturbed Hamiltonian system in a two dimensional state space Zε := (x, y) ∈ D ⊂ R
2 given by

d
dtε

x =
∂H(x, y)
∂y

,

d
dtε

y = −∂H(x, y)
∂x

− ε f (y) +
√
εg(x, ξt),

(1)

where the function H(x, y) is the Hamiltonian, f (y) is a damping function, g(x, ξt) is a function of random excitations
and ε > 0.

2. Stochastic averaging of Hamiltonian

For the case of weakly perturbed systems of type (1) with small ε � 1, a stochastic averaging method is proposed
in the following Theorem, using results by Khashminskii2, Borodin6 and Freidlin and Borodin4. With this method,
the stochastic process of the Hamiltonian H can be obtained, which is the process of total energy of the corresponding
nonlinear oscillator. Such a stochastic averaging procedure was used in7 and can be generalized as follows.

Theorem 2.1. Let Zε = (X, Y) ∈ D ⊆ R
2 be the solution of the SDE

dX
dt
= εF1(X, Y) +

√
εF0(X, Y) ξ, (2)

dY
dt
= G(X, Y), (X(0), Y(0)) = (x0, y0) ∈ D, ε > 0, (3)

and let the following conditions be fulfilled:
i) The stochastic process ξt := ξ(ω, t) = (ξ1(t), . . . , ξk(t))T ∈ R

k is stationary, absolutely regular with sufficient
mixing properties, and E{ξ j(t)} = 0.

ii) The functions F0 and F1 satisfy certain limits in X and in Y, which are specified in Borodin6, in order to ensure
uniqueness of the solution.

iii) Without loss of generality, the functions F0 : D 	→ R
k, F1 : D 	→ R and the solution of the equation Ẏ = G(x, Y)

are periodic with period T (x) for fixed x.
iv) Without loss of generality, the function G(X, Y) has exactly one root at (X, Y) = (0, 0) and has the form G(X, Y) =√

Q with Q := 2X−2U(Y) and the continuously differentiable function U(Y) : R 	→ R. Furthermore, the Hessian
matrix of G(X, Y) evaluated at the root is positive definite.

Let the averaging operator M for periodic functions f : R+ 	→ R with period T be defined by

M { f } = 1
T

∫ T

0
f (t)dt (4)

and let Y x be the solution of the ordinary differential equation

dY x =G(X, Y x) dt, X = x, Y x(0) = y.

If the limits

m(Z) =M
{
F1(x, Yx(t)) +

∫ 0

−∞
cov

({
∂F0(X, Y x(t)) ξt

∂X

}
X=x

, F0(x, Yx(t + s)) ξt+s

)
ds

}
,

σ2(Z) =M
{ ∫ ∞

−∞
cov

(
F0(x, Yx(t)) ξt, F0(x, Yx(t + s)) ξt+s

)
ds

}
exist, then the process X(τ), τ = εt, converges, as ε → 0, weakly on the time interval of order O(1/ε) to a diffusion
Markov process Z satisfying the Itô stochastic differential equation

dZ(τ) = m(Z)dτ + σ(Z)dWτ, Z(0) = x0, (5)

with the standard Wiener process Wτ.
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For a proof, the deterministic solution Y x of equation dY x = G(x, Yx) dt has to be determined for arbitrary but fixed
x. Then, Y is replaced by Y x in equation (2). The assertion follows by applying the Theorem from Borodin6 for the
resulting equation. If the functions F0 and F1 are not periodic, then the procedure as described in1 has to be used. The
essential result of Theorem 2.1 is, that the total energy H(Zε(tε)) of system (1) converges in probability at a scale O(t),
t = εtε, to the diffusion Markov process H̄(t) as ε → 0. The resulting stochastic process is given by the Itô equation

dH̄(t) = m(H̄)dt + σ(H̄)dWt, (6)

where Wt is the standard Wiener process.

In the following subsections we exemplarily demonstrate how simplified analytical expressions for the drift m(Z)
and diffusion σ(Z) of the Itô equation (5) from Theorem 2.1 can be obtained for the Hamiltonians

H4(x, y) =
y2

2
+ U4(x), U4(x) := α1

x2

2
− α3

x4

4
, (7)

H6(x, y) =
y2

2
+ U6(x), U6(x) := α1

x2

2
+ α3

x4

4
− α5

x6

6
, (8)

where the coefficients αi are positive. Here, U4 is denoted as a quartic and U6 as a sextic potential, respectively. If the
drift m(Z) and the diffusion σ(Z) are known, then probability density functions and mean exit times of the averaged
process Z can be easily obtained, cf. Dostal et al. 7.

2.1. Duffing oscillator with negative cubic stiffness

Let the Hamiltonian H in system (1) be given by H4 from equation (7) and let ε � 1. Using

Q(x,H) := y2 = 2H − α1x2 + α3
x4

2
, (9)

and the derivative of the Hamiltonian with respect to time, and replacing f (y) and g(x, ξt) by specific functions, we
obtain

d
dtε

x =
√

Q(x,H),

d
dtε

H = εQ(x,H)(−β1 − β2

√
Q(x,H) − β3Q(x,H)) +

√
ε
√

Q(x,H)(ν1ξ1(tε) + ν2x ξ2(tε)).
(10)

The contour lines of H4(x, y) with the quartic potential U4 from equation (7) are shown in Fig. 1. Theorem 2.1 can be
applied to the resulting system of equations (10) and simplifies to

Theorem 2.2. Let ξ1(t) and ξ2(t) in (10) be zero-mean stationary absolutely regular Gaussian process with sufficient

mixing properties. Let further H be the solution of system (10). Then for fixed 0 ≤ H <
α2

1
4α3

the integrals

m(H) =
4

Tq

∫ 0

−∞

{
Rξ1ξ1 (τ)ν

2
1

∫ K(k)

0

cnt+τdnt+τ

cntdnt
du+

+ Rξ2ξ2 (τ)b
2ν22

∫ K(k)

0
sn snt+τ

cnt+τdnt+τ

cntdnt
du

}
dτ+

+
1
T

∫ T

0
Q(x(t),H)G(x(t),H)dt,

(11)

σ2(H) =
4b2q

T

∫ ∞

−∞

{
Rξ1ξ1 (τ)ν

2
1

∫ K(k)

0
cn dn cnt+τ dnt+τdu+

+ Rξ2ξ2 (τ)b
2ν22

∫ K(k)

0
sn snt+τcn dn cnt+τ dnt+τ du

}
dτ

(12)

exist, and the process H converges, as ε → 0, weakly on the time interval of order O(1/ε) to a diffusion Markov
process H̄ satisfying the Itô stochastic differential equation (6).
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The proof of this theorem follows the procedure derived in Dostal et al. 7,8. The expressions in Theorem 2.2 contain
the variables

b =

√√√
−
−α1 +

√
α2

1 − 4α3H

α3
, a =

√
4H

b2α3
, q = a

√
α3

2
, T (H) =

4
q

K(k), (13)

the autocorrelation function Rξtξt (τ) = E{ξτ+tξt}, the Jacobian elliptic functions sn(·, k), cn(·, k), dn(·, k), and the com-
plete elliptic integral of the first kind K(k), see Byrd and Friedmann9, where k = b/a is the elliptic modulus. In
addition, we use the following abbreviations

sn := sn(qt, k), cn := cn(qt, k), dn := dn(qt, k), u := qt. (14)

If the subscript τ or t + τ is used, we refer to the argument qτ or q(t + τ), respectively.

2.2. Oscillator with sextic potential

The accuracy of models of dynamical systems can be increased, if polynomial nonlinearities of higher order are
used in system (1). Therefore, let the Hamiltonian H in system (1) be given by H6 from equation (8), ε � 1 and let
f (y) and g(x, ξt) be specified by the same functions as in equation (10). This yields

d
dtε

x = y,

d
dtε

y = − ∂
∂x

H6(x, y) − ε (β1y + β2 |y|y + β3 y3) +
√
ε (ν1 ξ1 (tε) + ν2 x ξ2 (tε)).

(15)

For ε = 0 equation (15) is reduced to the conservative system

d
dtε

x = y,

d
dtε

y = − ∂
∂x

H6(x, y).
(16)

The total energy of the nonlinear oscillator corresponding to the system (15) is given by the Hamiltonian H6 from
equation (8). Solving this equation for y2 we get

Q6(x,H) := y2 = 2H − 2U6(x,H). (17)

The fixed points of system (16) are

P1 = (bc, 0) ; P2 = (−bc, 0) ; S = (0, 0). (18)

Thereby, the critical oscillation amplitude bc of the considered oscillator is given by

bc =

√√√
α3 +

√
α2

3 + 4α1α5

2α5
, (19)

and the energy Hc
6 at which the critical oscillation amplitude bc is reached is

Hc
6 =

1
3
α1b2

c +
1
12
α3b4

c . (20)

This defines the heteroclinic orbit

γ6(x, y) =
{

x, y ∈ R, |x| < bc : y2 + α1x2 + α3
x4

2
− α5

x6

3
= 2Hc

6

}
(21)
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which connects the saddle points P1 and P2. Only the trajectories inside the phase space domain

Dγ6 :=
{

x, y ∈ R, |x| < bc : y2 + α1x2 + α3
x4

2
− α5

x6

3
< 2Hc

6

}
, (22)

which is bounded by the heteroclinic orbit γ6, lead to oscillations of the oscillator with the potential U6. The contour
lines of H6(x, y) with the sextic potential U6 from equation (8) are shown in Fig. 2. Using Q6(x,H) and the derivative
of the Hamiltonian with respect to time, the resulting system can be stated as

d
dtε

x =
√

Q6(x,H),

d
dtε

H = εQ6(x,H) G6(x,H) +
√
ε
√

Q6(x,H) (ν1 ξ1(tε) + ν2 x ξ2(tε)),
(23)

where

G6(x,H) := −β1 − β2

√
Q6(x(t),H) − β3Q6(x(t),H). (24)

An analytical solution for the conservative system with the sextic potential from equation (8) in the region Dγ6 for the
energy H ∈ (0,Hc

6) can be written as

x(t) =
sn (qt, k)√

c − dsn2 (qt, k)
, (25)

dx
dt
= y(t) =

c q cn (qt, k) dn (qt, k)(
c − dsn2 (qt, k)

)3/2 . (26)

The coefficients used in these equations for each energy level H are given by

c =
6 Hw − α1 +

√
−12 H2w2 + 4 Hwα1 + α1

2 + 4 Hα3

4H
, (27)

d = c − w, q =
√

2cH. (28)

Here, w refers to the root of the function

W(z) = −1
3
α5 +

1
2
α3z + α1z2 − 2 Hz3, (29)

which is given by

w =
v

12H
+

3α3H + α1
2

3v
+
α1

6H
, (30)

where

v =
(
36α3α1H − 144α5H2 + 8α1

3 + 12 H
√
−12α3

3H − 3α3
2α1

2 − 72α3α1Hα5 + 144α5
2H2 − 16α5α1

3
) 1

3
.

(31)
The elliptic modulus k of the Jacobi elliptic functions is obtained from equation

k2 = 1 + 4

(
4α1w − 12 Hw2 + α3

)
H(

6 Hw − α1 +
√
−12 H2w2 + 4 Hwα1 + α1

2 + 4 Hα3

)2
. (32)

With the solutions (25) and (26) of the conservative system of equations (16), we can state the following theorem.
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Figure 1. Contour lines of H4(x, y) from equation (7).
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Figure 2. Contour lines of H6(x, y) with the sextic potential U6 from
equation (8).

Theorem 2.3. Let ξ1(t) and ξ2(t) in (23) be zero-mean stationary absolutely regular Gaussian process with sufficient
mixing properties. Let further H be the solution of system (23). Then for fixed 0 ≤ H < Hc

6 the integrals

m(H) =
4

Tq

∫ 0

−∞

{
Rξ1ξ1 (τ)ν

2
1

∫ K(k)

0

cnt+τdnt+τ

(
c − dsn2

)3/2

cntdnt
(
c − dsnt+τ

2
)3/2

du+

+ Rξ2ξ2 (τ)ν
2
2

∫ K(k)

0
sn snt+τ

cnt+τdnt+τ

(
c − dsn2

)
cntdnt

(
c − dsnt+τ

2
)2 du

}
dτ+

+
1
T

∫ T

0
Q6(x(t),H)G6(x(t),H)dt,

(33)

σ2(H) =
4c2q

T

∫ ∞

−∞

{
Rξ1ξ1 (τ)ν

2
1

∫ K(k)

0

cn dn cnt+τ dnt+τ(
c − dsn2

)3/2 (
c − dsnt+τ

2
)3/2

du+

+ Rξ2ξ2 (τ)ν
2
2

∫ K(k)

0

sn snt+τcn dn cnt+τ dnt+τ(
c − dsn2

)2 (
c − dsnt+τ

2
)2

du
}
dτ

(34)

exist, and the process H converges, as ε → 0, weakly on the time interval of order O(1/ε) to a diffusion Markov
process H̄ satisfying the Itô stochastic differential equation (6).

The proof follows from Theorem 2.1 in analogy to the proof of Theorem 2.2. Contour lines of the Hamiltonian H6 are
shown in Fig. 2, where the separatrix γ6 separates regions with different phase space structure.

2.3. Stochastic averaging of Hamiltonian for arbitrary polynomial potentials

If the nonlinearity of the weakly perturbed Hamiltonian system (1) is given by a polynomial, then an explicit
solution of the corresponding conservative differential equation might be obtained by solving Jacobi’s inversion prob-
lem. For cases with polynomials of high order, this requires in general explicit solutions to hyperelliptic integrals, cf.
Baker10.

3. Gaussian mixture by Local Statistical Linearization

For the general case with an arbitrary polynomial non-linearity and large ε a solution of the random systems (1)
might be difficult to obtain. For such cases, we transform (1) into an Itô equation and approximate the non-white
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Gaussian process ξt by an ARMA process in continuous time, cf. 11, such that the resulting system of equations has n
state space variables X1, . . . , Xn. Then the probability density p(X, t), X = (X1, . . . , Xn)T ∈ Rn, t ∈ R, is approximated
by a sum of Gaussian densities pi which yields

p(X, t) =
∑

i

Ai pi(X, t),
∑

i

Ai = 1, Ai ≥ 0. (35)

Such a Gaussian mixture for the probability density function can be determined by means of the Local Statistical
Linearization method, which was proposed by Pradlwarter5.

The time evolution of mean vectors μi and covariance matrices Ci of each local density pi, are determined by the
derivatives of the first and second order moments of X

d
dt
μ j =

d
dt

E{X j}, d
dt

C jk(X j, Xk) =
d
dt

E{X jXk} − E{X j} d
dt

E{Xk} − E{Xk} d
dt

E{X j}. (36)

The original method uses Itô’s differential rule and Gaussian closure for the calculation of the first and second order
moments of X, more details can be found in12. However, other well known methods can be used for the determination
of the time evolution of local Gaussian densities. Such well known methods for calculation of the local density
evolution are: Statistical linearization13, equivalent linearization13, closure schemes14, generalized polynomial chaos
expansion? 15 (gPC). Indeed, we can use the well developed error estimations on the first and second order moments of
local Gaussian densities from the gPC theory and obtain by this means a reliable iterative method for the determination
of probability density functions for system (1).

3.1. Decomposition

Due to the diffusion of the stochastic differential equations, the local densities pi(X, t) will spread. If their variance
exceeds a certain level σ2

lim, then they have to be decomposed into densities with a smaller variance in order to capture
the local system dynamics. In this case some of the weighted densities (A j, p j(X, t)) have to be decomposed into
2m + 1 densities according to

A j p j(X, t) =
m∑

k=−m

A jk p jk(X, t),
m∑

k=−m

A jk = 1, A jk ≥ 0. (37)

If the covariance matrix is diagonalized, then the Gaussian density can be represented as a product of univariate
Gaussian densities. It is sufficient to decompose only one univariate Gaussian density with the highest variance,
say pd, into 2m + 1 densities with variance σ0. After retransformation of densities to the original coordinates the
decomposition is finished. This procedure results in the following equations for the decomposition. The density pd is
represented as

pd(Xd) =
m∑

k=−m

Bdk pdk(Xd), (38)

where Xd = φ
T
d · (X− μ j) is the coordinate in direction of the highest variance and the coefficients Bdk are solutions to

a least squares minimizing problem. The optimal solution is given by
m∑

k=−m

α jkBdk = b j, j = −m, . . . ,m, α jk =
1

2σ0
√
π

exp
(
− ( j − k)2

4

)
, b j =

1√
2π(σ2

d + σ
2
0)

exp

⎛⎜⎜⎜⎜⎝− j2σ2
0

2(σ2
d + σ

2
0)

⎞⎟⎟⎟⎟⎠ .
(39)

This solution could result in negative amplitudes Bdk and thus negative densities, which are not defined. In order to
circumvent a constrained minimizing problem, we introduce

σmax
0 = max

σ0∈R+
min

k
Bdk(σ0) (40)

and find the proportionality constant κ at which σmax
0 = σd/κ, where σmax

0 > 0. The retransformation of the decom-
posed densities to the original coordinates is done by

A jk = A j · B jk, μ jk = μ j + kσ0 · φ jk, C jk = σ
2
0 · φ ji · φT

ji +
∑
s�i

σ2
jsφ js · φT

js. (41)
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The eigenvectors φ js to the eigenvalues σ2
js have unit length and μ j, C j and μ jk, C jk denote mean vectors and covari-

ance matrices to the corresponding densities p j or p jk.

3.2. Combination of Adjacent Densities

So far the algorithm would produce an exponential growth of densities because of the diffusion term in the stochas-
tic differential equation. In order to obtain a feasible algorithm adjacent densities pi(X, t), p j(X, t) have to be combined
to pc(X, t). This is done by combining densities with a small difference between their mean vectors ‖μ j − μi‖ < TOL,
μ ∈ Rn, using the following equations

Ac = Ai + A j, μc =
μiAi + μ jA j

Ac
, Cc =

Ai(Ci + (μi − μc)(μi − μc)
T ) + A j(C j + (μ j − μc)(μ j − μc)

T )

Ac
. (42)

If the distances of all N densities have to be determined, then N(N + 1)/2 distance evaluations are needed. This
produces the highest computational cost in the Local Statistical Linearization routine, since adjacent densities have to
be combined in each iteration step. An alternative approach is to cover the state space with boxes and limit the number
of distributions within a box as described by Ellermann16. This approach reduces the computational cost for smaller
system dimensions. Of course the number of boxes grows exponentially with the system dimension. Such a hybrid
combination of the different methods is suggested to be computationally more efficient. More details on Gaussian
mixture by local statistical linearization can be found in12.

3.3. Result for Duffing oscillator

For validation, the invariant probability density of the Duffing oscillator with additive excitation by white noise
was calculated with the Local Statistical Linearization method. Such stochastic Duffing oscillator can be written as

dx = y dt, dy = (α1x + α2x + α3x3) dt + ν1 dWt, (43)

where αi, ν1 ∈ R. If the parameters α1 = 1, α2 = −0.2, α3 = −1, ν1 =
√

0.025 are chosen, then the exact stationary
probability density function for this Duffing oscillator is given by p(x, y) = c exp(4x2 − 2x4 − 4y2), with the normal-
ization constant c = 0.108234406, cf. Pradlwarter5. At time t = 0 the initial probability density is a Gaussian density
with mean μ and covariance matrix C

μ(0) =
(
0
0

)
, C(0) =

(
0.01 0

0 0.01

)
. (44)

At t = 40, the unsteady probability density of the considered Duffing oscillator consists of 507 local Gaussian den-
sities. At t = 200, the probability density converged to a stationary state and the Gaussian mixture consists of 907
Gaussian densities. The error evolution is measured by the Kullback-Leibler divergence in Fig. 3 and in Fig. 4 by
the least squares error between the exact probability density function and the Gaussian mixture obtained by Local
Statistical Linearization. In Fig. 3b) and in Fig. 4b) the error evolution can be seen in more detail. Further refinement
of the Gaussian mixture leads to 1199 Gaussian densities at t = 320, which decreases the error slightly.

4. Conclusions

New procedures for the analysis of nonlinear dynamics of randomly perturbed Hamiltonian systems are presented.
Thereby, the method of stochastic averaging of energy is developed further, and error evolution of Gaussian mixture
by Local Statistical Linearization shows promising results for further research. The results enable the determination
of functional relationships between the parameters of the considered Hamiltonian system and probability measures
such as probability density functions and mean first passage times. Our results are applicable to various engineering
problems, such as random vibrations of mechanical systems with nonlinear springs and dampers. Since the roll motion
of a ship in random seas can be modelled as a nonlinear random dynamical system including nonlinear damping and
a nonlinear softening spring, the results are also significant for the determination of new criteria for ship stability.
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Figure 3. (a) Kullback-Leibler divergence; (b) zoom into figure a).
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