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—— Abstract

We study the consensus problem among n agents, defined as follows. Initially, each agent holds
one of two possible opinions. The goal is to reach a consensus configuration in which every agent
shares the same opinion. To this end, agents randomly sample other agents and update their opinion
according to a simple update function depending on the sampled opinions.

We consider two communication models: the gossip model and a variant of the population model.
In the gossip model, agents are activated in parallel, synchronous rounds. In the population model,
one agent is activated after the other in a sequence of discrete time steps. For both models we
analyze the following natural family of majority processes called j-Majority: when activated, every
agent samples j other agents uniformly at random (with replacement) and adopts the majority
opinion among the sample (breaking ties uniformly at random). As our main result we show a
hierarchy among majority protocols: (j 4 1)-Majority (for j > 1) converges stochastically faster than
j-Majority for any initial opinion configuration. In our analysis we use Strassen’s Theorem to prove
the existence of a coupling. This gives an affirmative answer for the case of two opinions to an open
question asked by Berenbrink et al. [PODC 2017].
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1 Introduction

We consider the problem of consensus in a distributed system of n identical, anonymous
agents. Initially each agent has one of two opinions and the goal is that all agents agree
on the same opinion. Reaching consensus is a fundamental task in distributed computing
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with a multitude of applications, including fault tolerance in distributed sensor array, clock
synchronization, control of autonomous robots, or blockchains. In computational sciences,
consensus protocols model, e.g., dynamic particle systems or biological processes. In social
sciences, consensus protocols have been studied in the context of opinion formation processes
among social interaction systems. See [8] for a quite recent survey including references and
further applications.

We study the simple and well-known class of j-Majority protocols [10, 35, 12] in two
communication models, the classical gossip model [19, 9, 8] and a sequential model, a variant
of the prominent population model [4]. In the gossip model, all agents are activated in parallel,
synchronous rounds. In the sequential model, one agent is activated after the other uniformly
at random. Every activated agent u considers the opinions of j agents vy,...,v; sampled
uniformly at random (with replacement). It then adopts the majority opinion among the
sampled opinions, breaking ties uniformly at random. We are interested in the time it takes
until the protocol converges such that all agents share the same opinion. Setting 7 = 1 yields
the so-called VOTER process [17]. A variant of 2-Majority with lazy tie-breaking is known as
TWO-SAMPLE VOTING [23] or the TWOCHOICES process [35], and the 3-Majority dynamics is
analyzed in [10].

The main idea of majority processes with j > 1 is to speed up the convergence time. For
the VOTER process in the gossip model, the convergence time is linear in n (independently of
the number of initial opinions) [17], whereas the convergence time of 3-Majority is O(klogn)
for k = o(n) possible initial opinions [35]. In [12] the authors compare the TWOCHOICES
process to 3-Majority. They show a stochastic dominance of the convergence time of 3-
Majority over the convergence time of VOTER and TWOCHOICES, assuming k initial opinions.
For j-Majority, they conjecture a hierarchy of protocols (see Conjecture 6.1 in [12]). In
particular, they ask whether one can couple j-Majority and (j 4+ 1)-Majority for j € N such
that (j 4+ 1)-Majority is stochastically faster than j-Majority.

In this paper, we settle the matter for the case of £ = 2 opinions and prove the existence
of such a hierarchy of majority protocols. Intuitively, this establishes that the processes
converge faster (or at least equally fast) for larger values of j. Let T; be the random variable
for the convergence time of j-Majority. We formally prove that 7 stochastically minorizes
T}, written Tj4; = Tj, assuming both processes start in the same configuration. Formally,
we show that Pr[T;41 > t] < Pr[T; > t] for any ¢t € N. Our main technical contribution is
the formal proof of this stochastic dominance.

Our proof has its foundations in quite natural observations regarding the transition
properties of the j-Majority processes. Similar results for individual steps of the process
have been shown, e.g., in [33]. However, formally proving and maintaining the stochastic
dominance over all possible configurations requires a lot of care, and to the best of our
knowledge, our result is the first proof of stochastic dominance that covers the entire execution
of j-Majority for all j € N in the setting with two opinions. To motivate the obstacles we
have to overcome, observe that the process is influenced by opposing forces. Specifically, in
order to make progress, an agent from the minority opinion must be activated to interact
with at least j/2 agents from the majority opinion. Activating an agent with minority opinion
becomes less likely with increasing majority, while sampling at least j/2 agents with majority
opinion becomes more likely with increasing majority. In our analysis we carefully prove that
these forces balance out in a favorable manner.

Finally, we consider 3-Majority. We show an asymptotically optimal bound in the
sequential model on the convergence time of O(nlogn) activations. This matches a similar
result shown by Ghaffari and Lengler [35] for 3-Majority in the gossip model. Our theoretical
findings are complemented by empirical results. We simulate j-Majority processes for various
values of j and large numbers of agents ranging from n = 10% to n = 108.
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1.1 Related Work

Consensus in the Gossip Model. A simple and natural consensus process is the so-called
VOTER process [37, 43, 22, 17, 38] where every agent adopts the opinion of a single, randomly
chosen agent in each round. The expected convergence time of VOTER in the gossip model
is at least linear [17]. In order to speed up the process, two related protocols have been
proposed, namely the TWOCHOICES process [31, 23, 24, 25] and the 3-MAJORITY dynamics
[10, 35, 12]. In both processes, each agent u takes three opinions and updates its opinion to
the majority among the sample. In the TWOCHOICES process, u takes its own opinion and
samples two opinions u.a.r. Ties are broken towards u’s own opinion. In the 3-MAJORITY
dynamics, u samples three opinions u.a.r. breaking ties randomly. In [35] the authors consider
arbitrary initial configurations in the gossip model. They show that TWOCHOICES with
k = 0(y/n/logn) and 3-MAJORITY with & = O(n!/3/logn) reach consensus in O(k - logn)
rounds, improving a result by Becchetti et al. [10]. For arbitrary k they show that 3-MAJORITY
reaches consensus in O(nz/ 3 log?’/ 2 n) rounds w.h.p., improving a result by Berenbrink et
al. [12].

Schoenebeck and Yu [45] consider a generalization of multi-sample consensus protocols
on complete and Erdés-Rényi graphs for two opinions. Their probabilistic model covers
various consensus processes, including j-Majority, by using a so-called update rule, a function
f:0,1] — [0,1]. In each round, every agent u adopts opinion a with probability f(a(u))
for some function f, where a(u) is the fraction of neighbors of agent u that have opinion
a. Depending on certain natural properties on f, they analyze the convergence time for
complete graphs and Erdés-Rényi graphs.

Another related process is the MEDIANRULE [26], where in each round every agent adopts
the median of its own opinion and two sampled opinions, assuming a total order among
opinions. It reaches consensus in O(log kloglogn + logn) rounds w.h.p. For two opinions
the MEDIANRULE is equivalent to the TWOCHOICES process, and their analysis is tight. For
the case of k > 2 opinions we remark that assuming a total order among the opinions is a
strong assumption that is not required by any of the other protocols.

Finally, considerate amount of work has been spent on analyzing the so-called undecided
state dynamics introduced by Angluin et al. [5]. The basic idea is that whenever two agents
with different opinions interact, they lose their opinions and become undecided, and undecided
agents adopt the first opinion they encounter. Clementi et al. [20] study the undecided
state dynamics in the gossip model. They consider two opinions and show that the protocol
reaches consensus in O(logn) rounds w.h.p. If there is a so-called bias of order Q(y/nlogn),
the initial plurality opinion prevails. The (additive) bias is the difference between the
numbers of agents holding either opinion. Becchetti et al. [9] analyze the undecided state
dynamics for k = O (n/logn)"/* opinions and show a convergence time of O(k - log n) rounds
w.h.p. Bankhamer et al. [36], Berenbrink et al. [16], and Ghaffari and Parter [6] consider a
synchronized variant that runs in phases of length ©(log k). Agents can become undecided
only at the start of such a phase and use the rest of the phase to obtain a new opinion. These
synchronized protocols achieve consensus in O(log? n) rounds w.h.p. and can be further
refined using more sophisticated synchronization mechanisms.

Majority and Consensus in the Population Model. In ezact majority the goal is to
identify the majority among two possible opinions, even if the bias is as small as only
one [30, 41, 3, 42,29, 1, 2, 18, 39, 14, 15, 11, 28]. The best known protocol by Doty et al. [28]
solves exact majority with O(logn) states and O(logn) parallel time, both in expectation
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and w.h.p. This is optimal: it takes at least Q(nlogn) interactions until each agent interacts
at least once, and any majority protocol which stabilizes in expected n' =) parallel time
requires at least Q(logn) states (under some natural conditions, see [2]).

Approzimate majority is easier: a simple 3-state protocol [5, 21] reaches consensus w.h.p.
in O(logn) parallel time and correctly identifies the initial majority w.h.p. if an initial bias
of order Q(v/nlogn) is present. Condon et al. [21] also consider a variant of the 3-Majority
process in (a variant of) the gossip model where three randomly chosen agents interact. They
show a parallel convergence time of O(klogn) w.h.p., provided a sufficiently large initial bias
is present. Furthermore, Kosowski and Uznanski [39] mention a protocol which determines
the exact majority in O(log?n) parallel time w.h.p. using only constantly many states.

Less is known about population protocols that solve consensus among more than two
opinions. One line of research considers only the required number of states to eventually
identify the opinion with the largest initial support correctly. For this problem, Natale and
Ramezani [44] show a lower bound of Q(k?) states via an indistinguishability argument. The
currently best known protocol uses O(k%) states if there is an order among the opinions and
O(k') states otherwise [34]. Sacrificing the strong guarantees of always-correct exact plurality
consensus, Bankhamer et al. [6] achieve approzimate consensus in O(log? n) parallel time
w.h.p. using only O(klogn) states. If there is an initial bias of order Q(y/nlogn), the initial
plurality opinion wins w.h.p. In [7] another variant of the population model is considered
where agents are activated by random clocks. At each clock tick, every agent may open
communication channels to constantly many other agents chosen uniformly at random or from
a list of at most constantly many agents contacted in previous steps. In this model, opening
communication channels is subject to a random delay. The authors show that consensus is
reached by all but a 1/ poly logn fraction of agents in O(loglog,, klog k + loglogn) parallel
time w.h.p., provided a sufficiently large bias is present.

1.2 Models and Results

Gossip Model. 1In the gossip model [19, 9, 8] all agents are activated simultaneously in
synchronous rounds. In each round every agent w opens a communication channel to j
agents v1,...,v; chosen independently and uniformly at random with replacement. (For
simplicity we also allow that v; = u and assume that the v; are sampled with replacement.)
The running time (or convergence time) of a majority protocol is measured in the numbers
of rounds until all agents agree on the same opinion.

Sequential Model. The population model was introduced by Angluin et al. [4] to model
systems of resource limited mobile agents that perform a computation via a sequence of
pairwise interactions. We consider a variant where in each time step one agent u is chosen
uniformly at random to interact with j randomly sampled agents vy, ...,v;. (As before, we
do not rule out that u = v; for some 7). When w is activated it updates its opinion according
to the random sample. The running time is measured in the number of interactions. To
allow for a comparison with the (inherently) parallel gossip model, the so-called parallel time
is defined as the number of interactions divided by the number of agents n. Note that our
processes do not halt: agents do not know that consensus has been reached (see also the
impossibility result in [27]).

Jj-Maijority Processes. In the following we use P; to denote the j-Majority process. When
executing process P;, the system transitions through a sequence of configurations (Ot)teN0~

At time t € Ny the configuration C; € {a,b}" assigns each agent an opinion in {a,b}. In
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our analysis we are interested in the number of agents with majority opinion. We will always
assume w.l.o.g. that a is the majority opinion and we denote a state X; as the number of
agents with majority opinion in configuration C;. The configuration Cy at time 0 is called
the initial configuration and the corresponding state X is called the initial state. The
convergence time T;(Cy) is defined as the first time where all agents have the same opinion
when starting process P; in initial configuration Cjy. Note that the convergence time only
depends on the number of agents with majority opinion since two agents with the same
opinion are not distinguishable. Hence we write T;(Xj) in the following. Formally, T;(Xo) is
a stopping time defined as T;(Xo) = min {¢ € Ny | X; = n}. Each transition of the system
is done according to the following update rule.

» Definition (Process P;). Agents are activated according to either the gossip model or the
sequential model. In process Pj each activated agent u samples j agents with replacement
and adopts the majority opinion among the sample, breaking ties uniformly at random.

Note that tie-breaking is not required in process Psj41 (i.e., when every agent samples an
odd number of agents). Since we have k = 2 opinions we are guaranteed to have a clear
majority in this case.

Stochastic Dominance. Before we formally present our result, it remains to define stochastic
dominance.

» Definition (Stochastic Dominance). Let £ be a Polish space' with a partial ordering <.
Let p,v € P(E) be probability measures on E. If, for every x € £, we have

plye&iyzea}) >v({yely>ea}),

we say that p stochastically dominates v. In this case we also say that p majorizes v (written
as v = v) or v minorizes u (v I v).

We now formally state our main result which applies for both communication models, the
gossip model and the sequential model.

» Theorem 1 (Main Result). Let T;(Xo) be the convergence time of process P; with initial
state X in either the gossip model or the sequential model. Then

Tj+1(X0) =< T](Xo) fOT’ anyg > 1.
Furthermore, for all j > 1,

E[Tyj12(X0)] = E[T2)+1(Xo)] < E[T2;(X0)].

In our second result we show that 3-Majority P3 converges in O(nlogn) time w.h.p.2 To
the best of our knowledge, this is the first analysis of 3-Majority with sequential updates. Our
proof is similar to the proof by Condon et al. [21] for the convergence time of approximate
majority in tri-molecular chemical reaction networks. We emphasize that Theorem 1 implies
that all j-Majority processes with j > 3 converge in O(nlogn) time w.h.p.

LA Polish space is a complete metric space with a countable dense subset.

2 The expression with high probability (w.h.p.) refers to a probability of 1 — n~ 0,
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» Theorem 2. Let T5(Xy) be the convergence time of the 3-Majority process Ps in the

sequential model with initial configuration Xg.

1. It holds that T5(Xop) < O(nlogn) w.h.p.

2. If Xog > n/2+Cy/nlogn for some sufficiently large constant ¢ > 0 then the initial magjority
opinion wins w.h.p.

We remark that the convergence time of O(nlogn) is asymptotically tight. Indeed, for
any number of time steps in o(nlogn) there is a constant probability that two agents with
opposing opinions are not activated even once.

2  Analysis

In this section we formally prove our theorems. We prove Theorem 1 in Section 2.1 and
Section 2.2 for the sequential model and the gossip model, respectively. Theorem 2 is then
shown in Section 2.3. All technical details for the rigorous proofs can be found in the full
version [13].

2.1 Sequential Model

We start our analysis with a comparison of one step of the processes P; and Pj;; at
time ¢t when starting in an identical state X;. We are able to express the differences in the
probabilities of increasing the majority opinion, decreasing it or remaining in the same state
for the both processes. To this end, we visualize a possible coupling by a decision tree that
incorporates all the different possibilities. We will observe that, within this one step, we can
couple both processes such that the supposedly faster process increases the majority opinion
with probability one if the supposedly slower process increases this opinion. This coupling
will be guaranteed by an application of Strassen’s Theorem.

The proof of the main result will be conducted inductively. We start both processes in the
same initial state and assume that there is a majority opinion a. Now, the aforementioned
coupling ensures that, after the first step, the supposedly faster process will have at least
as many agents of opinion a than the supposedly slower process. Now, we show a kind of
monotony in the studied processes. Assume we have two instances of the same process, one
in state X; = s and one in state X; = s’ where X;, X] denote the number of agents with
opinion a after t steps. If s > &', then the random variable X, will stochastically dominate
X{,,, formally X/ ; = X;;1. This observation is crucial. It allows us to show that in the
second step, we can again construct a coupling such that, if the supposedly slower process
moves, the supposedly faster process does as well almost surely. Indeed, either both processes
are in the same state, then we find the stochastic dominance by the decision trees, or the
fast process has more agents of opinion a. But as stochastic dominance is transitive, we can
construct a coupling via the triangle inequality.

Finally, we will describe the overall coupling of the two processes as the path-coupling
along those couplings per step which will prove the first part of Theorem 1. The second part
will follow analogously as we can show via the decision trees that in the comparison of Ps;_;
and P;, the chance to obtain the same state in the next step is equal under both processes
while in the comparison of P»; and P5;41 those decision trees show that the probability of
increasing the majority opinion is larger in Paj; 1.

» Observation 3. The processes Py and P3 have, almost surely, a finite stopping time.
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number of a opinions seen
in the first 2j draws

uniformly at random

o choose a with probability 0.5
decision of Px;

last opinion seen in the
(24 + 1)th draw, z € {a, b}
decision of Paj41

Figure 1 Decision tree comparing P; and Pojy1.

For the sequential process, we show this for P3 in Section 2.3, while for P; this follows by
the results of Schoenebeck and Yu [45]. For the gossip model, this is proven in [35]. In this
setting, Strassen’s Theorem guarantees the existence of a coupling v € 7)(52) of p and v
with the following property.

» Theorem 4 (Strassen's Theorem [46]). Let u,v be probability measures on a Polish space
endowed with a partial ordering X such that p stochastically dominates v. Let X ~ p and

Y ~ v, then there is a coupling v of u and v such that, if (X, Y) ~ 7y, we have

3

xX4%, vV and Pr[?jf(}:l.

In words, this means that if u stochastically dominates v, X is sampled from pu, and Y is

sampled from v, there is a coupling under which X <Y almost surely (with probability 1).

» Lemma 5. We find for Py, the following. Let X, denote the number of agents with majority
opinion at time t. If s > &', then for alld € {0,1,...,n}

PI'[Xt_;,_l Z d | Xt = S] Z PI"[Xt+1 Z d | Xt = S/].
We provide the detailed calculation in the full version [13] and get the following corollary.

» Corollary 6. For any two processes P, P', we find the following stochastic dominance. Let
X, denote the number of agents with opinion a with respect to process P at time t and let
X| be the analogous quantity with respect to P'. Assume that for any d € [n)

PriXy 1 >d| X, =s] >Pr[X{, >d| X]=5],
then we have also

Pr[Xi1 >d| Xy = s+t ZPr[Xt’_H 2d|Xt’:s]7
for any d € [n] and ¢’ > 0 such that s +t' < n.

Let Xt(k) denote the number of agents with majority opinion after step ¢ of process Py for
any k € N. Furthermore, for a given agent = we denote by xik) its opinion in process Py at
time ¢. In the following we compare two processes with each other. The comparisons of Py;

(even) to Py;y41 (odd) and Ps;_1 (odd) to Pa; (even) require slightly different calculations.

Therefore, we have to show two similar lemmas for these two cases, Lemma 7 for the former
case and Lemma 9 for the latter case.

First we compare two successive processes P»; and Ps;41. The following lemma states
that in process Pyj4; it is more likely for an agent with opinion b to change to a while in
process Py; it is more likely that an agent with opinion a changes to opinion b than in the
other process respectively.
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number of a opinions seen
in the first 2§ — 1 draws

decision of Paj_1
last opinion seen in the
(24)th draw, = € {a, b}
decision of Px;

uniformly at random
choose a with probability 0.5

decision of Pyj

Figure 2 Decision tree comparing Pj_1 and Ps;.

» Lemma 7. Let x© be an agent that is updated in the next step, x,gk) its opinion in process

Py at time t, s € [n] and o = 3. It holds that

Pr [xfﬂ;rl) =a ’ x,(fj“) =b, Xt(2j+1) = s]
= Pr{xﬁ_jl) =a ’ l’§2j) = b,Xt(Qj) = S} + m;”(?)&(l —a)
and
Pr {xfﬂlﬂ) —p ’ (25+1) _ X(21+1) }
= Pr[xgrjl) =b ’ (29) = a,Xt(Qj) = s} - (2a2_1)<213>oﬂ(1 —a).

To prove these equations it is sufficient to study the cases where the two processes have a
different outcome. The probability for these cases directly reflects the difference in probability
for that specific outcome. These cases are highlighted in Figure 1. We provide the detailed
calculation in the full version.

This difference in probabilities allows us to prove that, given the same state, Psji1
stochastically dominates the process P»; in the next step:

» Lemma 8. For each j € Ny and each s € N with s > n/2 and any d € [n] it holds that

Pr[X3Y 2 d | XY = ] = Pe[x3) = a| X =],
Note that this inequality follows trivially for d < s — 1 and d > s + 1. To prove the property
for the cases d = s and d = s + 1 we can directly use the properties from Lemma 7.

On the other hand, when comparing the processes P»;_1 and P»; with respect to the
difference in probability for an agent to change its opinion, we note that there is no difference
in the probabilities given that all agents are in the same state.

» Lemma 9. Let x be an agent that is updated in the next step, x ( )

Py at time t, and s € [n]. It holds that

its opinion in process

Pr {‘Tgrjl 1) _ CL‘ (27-1) _ b X(QJ 1) ] = Pr [zgijl) 701’ (25) _ b X(QJ) ]
and

Pr [xgijl D=y ‘ (25=1) X(QJ Q- ] = Pr[wiijl) =b ’ :c§2j) = a,Xt(Zj) = s].
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A similar statement has previously been shown by Fraigniaud and Natale [33] for a related
model. The proof of Lemma 9 is analogous to the proof of Lemma 7. For completeness, it
can be found in the full version

» Lemma 10. For each j € Ny and each s € N with s > n/2 and any d € [n] it holds that

Pr|x(3) > d‘ X =] =P XY 2 a | XY =

The proof can be found in the full version. We are now ready to put everything together and
prove our main result for the sequential model.

Proof of Theorem 1. We prove Theorem 1 by induction given the initial state Xy and start
with the case Th;(X¢) = Toj4+1(Xo). Given Xy, Lemma 8 guarantees that for all s >0

Pr[X?j“) > s ‘ XO} > Pr[X1(2j) > 5 XO]

Therefore, by Theorem 4, we find a coupling ; such that, under v, X 1(2j +1) > X 1(2j ) almost
surely. Now, assume that we constructed a coupling v =~; @ ... ® v, of (ij, e ,ij)

and (ijﬂ, e ,ijﬂ), where ® denotes the product measure. Under 4 we have by
induction hypothesis that

Pr [ij“ > XQJ} —1
ROl R .

Therefore, by Corollary 6 and Lemma 8, we find given Xt(zj +b > Xt(zj ) that
Pr [Xﬁjﬁ D> ‘ X7+ 1)} > Pr [Xfijf > s ‘ ij)]

Thus, Theorem 4 implies, given Xt(2j b > Xt(2j )

Pr[7t+1]XHj»J1r1 > therl =1

We define v+ = ~(®) @ ;1 and Ty;(Xo) =< Taj+1(Xo) follows by induction.

Next, we need to prove that Th;_1(Xo) < T2;(Xp). This follows completely analogously
with Lemma 8 replaced by Lemma 10.

Finally, we need to construct the bounds on the expectation. Given the coupling
ATEi+1)(Xo) of P11 and Py, we find that, under this coupling, for every stept =1...7T5;11,
we have Xt(zjﬂ) > Xt(2j) almost surely and therefore E[T5;41(Xo)] < E[T%;(Xo)]. In more
detail, due to the coupling ~, we know that

X

the existence of a coupling 7;41 such that

Pr[ ﬁjl+1) >

XO} > Pr [Xt(?gl) > s

and hence
Pr[x(3 < s ‘ Xo| < Pr[x) <5 ’ Xo|
for each s > n/2 and t € N. Furthermore, for the first possible convergence time it holds that
Pr[X(zj <n ‘ Xo = s} =1- Pr[X(zj) =n ‘ Xo = 8:|
=1- HPr[X( D= s+t ‘ X(QJ) =s5+1i— 1]
=1

n—s

Lemma 7 ; :
ST Pe[x ) = s+ ) XZ = svi-1]

:1—Pr[XT(sz:1):n‘XO:5] PI‘[X(2J+1 <n‘Xo—s}

23:9
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Therefore,

B[ (Xo)] = > PrlT3;(Xo) > ] = > Pr[ X < n | Xo

t>0 t>0
> ZPI‘|: (2j+1) <n ‘ X0:| = ZPI‘[TQJ'+1(X0) > t] = E[T2j+1(XQ)].
t>0 t>0

Next we prove the equality in expectation for the convergence time of the processes Pa;_1
and P»;. To this end, we get from Lemma 10 that

Pr [Xt(Qj_l) <n ‘ X1 = S] =Pr |:Xt(2j) <n ‘ X1 = S]~
Therefore, inductively,

Pr[Xt(zj_l) <n ‘ Xo = s] = Pr[Xt(Qj) <n ’ Xo= s].
But then

E[Ty1(Xo)] = > PrlT3;1(Xo) > ] = > Pr[ X < n | Xo

t>0 t>0
=Y pe[x < ‘ Xo| = 7 Pr{T;(Xo) > 1] = E[Ty;(Xo)]. <
>0 >0

2.2 Gossip Model

We now extend the previous analysis to the gossip model. Recall that in this model all
agents are activated in parallel rounds. In such a round, all agents sample j other agents
v1,...,v; w.a.r. Then they compute their new opinion as the majority opinion among the
sample, breaking ties u.a.r. Here, the agents use the opinions of the other agents from the
beginning of the round. At the end of the round (once all agents have computed the new
opinion) all agents synchronously update their opinion to the new value.

Proof of Theorem 1 for the Gossip Model. In our extended analysis we use a coupling of
the two parallel processes similarly to the coupling of one step of the sequential model.
Observe that in process P»; every agent samples 2j agents u.a.r., while in process P»j41 every
agent samples 2j + 1 agents. Therefore, process P»; makes 2j - n random choices from [n]
in each round, while P5;1; makes (2j 4+ 1) - n random choices. We use the straight-forward
coupling and define that the 2j choices of every agent u in P»; are identical to the first 2j
choices of agent w in process Ppj41.

We now analyze the deviation of the two processes that stems from the 25+ 1th additional
choice in process P»jy1. Here we observe the following. In each round of process P»; there
are three disjoint sets of agents, M,, My, and M,. The sets M, and M, are comprised of
agents that sample at least j + 1 agents of the majority opinion a and the minority opinion
b, respectively. All other agents are in M,. The agents in M, will adopt opinion a at the
end of the round in both processes: the j + 1 samples of opinion a is larger than the winning
margin in both processes, which is j in Py; and (2j +1)/2 in Py;1;1. Analogously, the agents
in M, will adopt opinion b in both processes. Finally, the interesting group are the M,
agents. These agents have sampled a tie in process P»;, meaning they have sampled j agents
with opinion a and another j agents with opinion b. This means, in process P»; all agents in
M,, adopt either opinion @ or opinion b with probability 1/2 each. In process Py;11, however,
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the 2j + 1th sample makes the decision. (Recall that in a process Pa;41 with an odd number
of samples and k = 2 opinions no ties are possible.) Therefore, in process P»j;1 all agents in
M, adopt opinion a with probability « and opinion b with probability (1 — «).
Summarizing, we have the following. Due to the coupling of P»; with Paj;1, all agents in
M, or M, behave exactly the same in both processes. We use Z, = |M,| and Z, = |Mp]| to
denote their respective numbers.(Observe that Z, and Z; are the same in Py; and Py, due
to the coupling.) In the following, we condition on the event that |M,,| = m,,. For the agents
in M, the outcome can be described by binomial random variables: let Z27 in process Pa;
and Z2T1 in process Psj+1 be the numbers of agents in M, that adopt opinion a. Then

727 ~ Bin(m,, 1/2) and Z2T ~ Bin(m, )

with a > 1/2. Trrespective of the value of m, we observe from well-known properties of
binomial distributions that Z2/ is stochastically dominated by Z2/*1 and hence

X2 = Z,+ 2% < Z, + 72+ = x0TV,

The proof for the dominance of P; over Ps;_1 uses similar definitions and follows
analogously, with exception that M, represents the agents that are undecided after the first
2j — 2 draws and that Z2~1 and Z% follow the same binomial distribution Bin(m,,, «).

The only ingredient that is left to prove is the monotonicity within one specific process.

Indeed, if an analogous result as Lemma 5 in the sequential model can be proven, the path
coupling argument follows the same lines as in the previous section.

» Lemma 11. We find for Ps; and Psji+1 in the gossip model the following. Let X denote
the number of agents with majority opinion at time t. If s > s, then for alld € {0,1,...,n}

PI'[Xt_;,_l Z d | Xt = S] Z PI"[Xt+1 Z d | Xt = S/].

Proof. As before, let M, and M, denote the sets of agents that sample at least j + 1 agents
of the majority opinion a and the minority opinion b, respectively. If s > s’, the monotonicity
of the binomial distribution yields

|Ma|\Xt:s t |Ma|\Xt:s’ and |Mb‘|Xt:s j ‘Mtht:s’-
Therefore, the lemma follows from Strassen’s theorem. <

Now the path coupling follows analogously to the previous section. <

2.3 Analysis of 3-Majority

In this section we analyze 3-Majority in the sequential model. We start with an overview
of the proof of Theorem 2. The proof consists of three parts. The first part follows along
the lines of the proof by Condon et al. [21] for the related approximate majority process
in tri-molecular chemical reaction networks. It shows that we preserve the initial majority
(assuming a bias of v/nlogn) and reach a bias of en within O(nlogn) time w.h.p. (Recall
that the bias is defined as the difference of the numbers of agents supporting opinion a and
opinion b.) The proof is based on the following result for gambler’s ruin from [32].

» Lemma 12 (Asymmetric one-dimensional random walk, [32, XIV.2], version from [21]). If we
run an arbitrarily long sequence of independent trials, each with success probability at least p,
then the probability that the number of failures ever exceeds the number of successes by b is

b
at most (1_—”) )
P
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In the second part we use a drift analysis based on [40] to show that we reach consensus
on the initial majority opinion quickly once we have a bias of order Q(n). The proof is based
on a carefully conducted drift-analysis, where we use the following fairly recent result.

» Theorem 13 (Special case of Theorem 18 of [40]). Let {Y: },~ be a sequence of non-negative
random variables with o finite state space S C R>o such that 0 € S. Define

Smin = min(S\ {0}) and T=inf{t>0|Yy=0}.

If Yo = so and there is 6 > 0 (independent from t) such that for all s € S\ {0} and allt >0
we have

E[Y, — Yip1 | Y; = 8] > 6s,

then, for allT >0,

pelr > [ B0/ )] o

In the third part we again show that the analysis from [21] is applicable in our setting

if we do not have an initial bias. All three parts together prove the first statement of our
theorem. The second statement follows from part one together with part two.

Part 1. We start with the first part. We follow along the lines of [21] and use Lemma 12 to
show the following statement.

» Lemma 14. Let A, be the additive bias at time t. With probability 1 — e_Q(A?/"), the bias
A, does not drop below A/2 and increases to min { 2A;,n } within 2n time steps.

Proof. Let X; denote the number of agents with the majority opinion at time ¢ and let
Y; = n — X; denote the number of agents with the minority opinion at time ¢t. We analyze
our process as a variant of gamblers’ ruin and apply Lemma 12. We only consider productive
steps in which the number of agents of a specific opinion changes. For X; € (%, % +¢en) it
holds that Pr[X:+1 # X¢] = (1) and hence conditioning on productive steps only increases
the constants hidden in the asymptotic notation.

In each productive step, the success probability reads p = Pr[Xy1 > X; | X1 # Xy
and the failure probability reads 1 — p = Pr[X; 1 < X; | Xpy1 # Xy]. Let Ay = X — 5
denote the bias at time t. We have for any A that

3
op_ 2(3-8)-3G-2°+(-2) _, A "
4 3 2 :
P G- s -2 a3 2) "

Unfortunately, the success probabilities vary over time as they depend on the bias. We
proceed to bound the probabilities from below.

Let Ag be the bias at time ¢t = 0 and let R denote the following event: during 2n productive
steps we always have at least half of the initial bias, i.e., R = {V1 << 2n: A; > Ap/2}.
From Lemma 12 we get with b = Ay/2 that

Pr[R] > 1 — ¢ A0/, (2)

Similarly to [21], we couple the productive steps of the 3-Majority process with a biased
random walk with (fixed) success probability p > 1+22. As (1) is monotonously decreasing in
A, the number of steps required by the biased random walk to increase the bias stochastically
dominates the number of steps that 3-Majority requires. It follows from Chernoff bounds
that the random walk reaches 2A, within 2n time steps with probability 1 — e~2(A7/n),
Together with (2) the statement follows. <
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We now use Lemma 14 and show that if there is a small bias of size v/nlogn then within
O(nlogn) rounds there will be a bias of size Q(n) w.h.p.

» Corollary 15. Assume Xo = 4 + /nlogn. Then there is a time t = O(nlogn) such

that Xy > %n for some constant € > 0 w.h.p. Moreover, the initial majority opinion is

preserved.

Proof. The proof follows by applying Lemma 14 O(logn) times. We remark that the initial
majority opinion is preserved since the random walk modeling the bias never returns to
Zero. <

Part 2. We now show the second part, where we prove that the process converges within
O(nlogn) further steps once we have a bias of en. Let Y; denote the number of agents of the
minority opinion at time ¢ and assume that Yo < 5 —en. In a first step, we claim that the
process will not improve the minority opinion severely if only Cnlogn steps are conducted
for some large constant C.

» Lemma 16. Assume Yy < § —en. Then there is a time t = O(nlogn) such that Y; =0
w.h.p. Moreover, Yy < l%an for all t’ < t.

Proof. We start the proof by showing the following claim:
> Claim. Yy < 155n for all ¢/ = O(nlogn) w.h.p.

This is an immediate consequence of the following coupling. Let R; be the (unbiased) random
walk on Z. It is a well known fact that after T" steps the random walk R; has distance at
most O(log2 n -+/n) from the origin w.h.p. By construction, R; < Y; and the claim follows.

We now calculate E[Y; — Y;41 | Yz = 5] for P3 in the sequential model. Given Y; = s, let
ps(a,b) be the probability to increase the minority opinion by one and let ps(b,a) be the
probability to decrease the minority opinion by one. Then,

E[)/t — }/t-i,-l | Y, = 5] :ps(bva) 7ps(a,b).

We observe
n

ps(a,b) = T_LS Pr {Bin(?), %) > 2], ps(b,a) = %Pr[Bin(& %) < 1},

and therefore

ps(b,a) — ps(a,b)  2s* — 3sn + n?

b n3
We define §; = M and observe
4s —3n — 2
b =61 = =172 <0 if 5<0.T5n.
n
Therefore, since s < 1;571 by the previous claim, J, is monotonously decreasing in s.
Furthermore,
1 2
01—, = M and &; =n"t —|—O(n*2).
2 In
Thus, we apply Theorem 13 with
1 2 1
6=M, so=|=—¢€¢|n, r=logn, and spp,=1
in 2
and the statement follows. <
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Part 3. It remains to show the third part of the proof. We observe the following. We use
the same checkpoint states g; as in [21] where go = 0 and g; = 2773 . \/n. A checkpoint state
can be intuitively described as follows. We let P3 run in packages of 2n productive update
steps and monitor the majority opinion. Suppose we are in checkpoint state g1 = 8+/n. After
2n productive updates, Lemma 14 guarantees that with probability at least 1 —1/(27 4+ O(1))
the majority opinion exceeds go. Now we interpret this process as a (biased) random walk on
the checkpoint states { g; }j in which every conducted step consists of 2n productive update
steps of 3—Majority. Analogously to the analysis of [21], it holds that
1. the transition between checkpoint states go and g; has probability ©(1), and
2. for j > 1 the transition between checkpoint states g; and g; 4+ 1 has probability at least
1—1/(27 +0(1)).
As in [21], the first statement follows from a coupling with an unbiased random walk, and
the second statement follows from Lemma 14. It follows from the analysis in [21, Section 3.2]
that 3-Majority reaches a bias of v/nlogn within O(nlogn) time. This proof is based on a
careful trade-off between the geometrically increasing success probability 1 — 1/(27 4+ O(1))
to get into the next checkpoint state and the number of trials that are necessary to indeed
reach the next state instead of falling back.

With all three parts, we are now ready to put everything together and prove Theorem 2.

Proof of Theorem 2. Assume there is no bias. From the analysis in [21] we obtain (see
above) that we reach a bias of size v/nlogn within O(nlogn) time w.h.p. From Corollary 15
we obtain that within further O(nlogn) time the bias is amplified to en for some constant
€ > 0 w.h.p. Finally, from the drift analysis in Lemma 16 we get that we converge in further
O(nlogn) time once we have a constant-factor bias w.h.p. Together, this shows the first part
of the theorem.

The second part of the theorem follows from Lemma 14 and Lemma 16, where we observe
that the initial majority opinion is preserved w.h.p. This concludes the proof. |

3 Empirical Analysis

In this section we present simulation results to support our theoretical findings. Our simulation
software is implemented in the C++ programming language. As a source of randomness
it uses the Mersenne Twister mt19937_64 provided by the C++11 <random> library. Our
simulations have been carried out on machines with two Intel(R) Xeon(R) E5-2630 v4 CPUs
and 128 GiB of memory each running the Linux 5.13 kernel. The simulation software and all
required tools to reproduce our plots are publicly available in our Github repository.

In Figure 3 we plot the required number of rounds until j-Majority converges when each
opinion is initially supported n/2 agents. The data show the average convergence time over
100 independent simulation runs for j = 3,...,12. The number of agents n is shown on the
z-axis, and the normalized convergence time is shown on the y-axis. The left plot shows
the data for the gossip model, where the normalization means that the required number of
rounds is divided by logn. The right plot shows the data for the sequential model, where
the normalization means that the required number of interactions is divided by nlogn.

Our empirical data confirm our theoretical findings. In particular, we observe that
the processes exhibit a running time of ©(logn) rounds (gossip model) or O(nlogn) in-
teractions (sequential model) for the values of j we consider. Furthermore, we clearly see
that E[T5;42(X0)] = E[T5;4+1(Xo)] (i-e., 3-Majority converges as quickly as 4-Majority, 5-
Majority converges as quickly as 6-Majority, and so on) and E[T5,11(Xo)] < E[T%;(X0)] (i-e.,
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Figure 4 Boxplots for the normalized convergence time of j-Majority without initial bias. The
plots show details of the distribution of the same data as in Figure 3 for n = 10°.

5-Majority is faster than 4-Majority, 7-Majority is faster than 6-Majority, and so on). This
empirically confirms our results from Theorem 1 for both models, and it shows that the
known results from the gossip model for 3-Majority [35] carry over to the sequential model
as predicted in Theorem 2.

In the left plot in Figure 3 for the gossip model we additionally observe that the required
number of rounds to reach consensus is slightly larger for smaller values of n. This appears
to be a consequence of the discrete rounds in the synchronous model: the observed deviation
scales as O(1/logn), which is of the same size as the rounding error that arises when reporting
the running time in discrete rounds of n interactions each.

Finally, in Figure 4 we show additional detail for the distribution of the convergence
times of the j-Majority processes with n = 106 and j = 3,...,12. Our boxplots show that
the running times are strongly concentrated around the mean, and the constants hidden in
the asymptotic analysis are small: the running time is less than 3logn rounds in the gossip
model and less than 3nlogn interactions in the sequential model. The small constants hint
at the practical applicability of the simple 3-Majority process.
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4 Conclusions and Open Problems

We analyze the family of j-Majority processes in two communication models with parallel
and sequential activations. In both models our results affirmatively answer an open question
from [12] for the case of two opinions and prove the existence of a hierarchy: our results
show the stochastic dominance of the convergence time of the (j + 1)-Majority process over
the j-Majority process. For 3-Majority in the sequential model we show an asymptotically
optimal bound of O(nlogn) sequential activations. This matches the well-known bounds for
the corresponding process in the gossip model.

An open question is whether a similar hierarchy exists for lazy processes where agents
keep their previous opinion if there is a tie among the sampled opinions. A coupling between
3-Majority and the (lazy) TWOCHOICES process was analyzed in [12]. However, their general
framework cannot be adapted to lazy processes for larger value of j: their analysis requires
so-called AC-Processes in which the next state of an agent depends only on the global opinion
distribution but not on the agent’s current state. This is obviously not the case for lazy
processes. Note that our analysis also cannot be applied to lazy processes directly: Lemmas 8
and 10 do not hold for lazy processes.

Another interesting open question considers the communication complexity of a protocol
instead which counts the number of interactions. Note that in j-Majority each activated
agent interacts with j agents. It would be interesting to rigorously analyze the trade-off
between the convergence time and the communication complexity.

Finally, the most interesting open question is whether similar results can be shown
for more than two opinions. Unfortunately, our majoritzation-based approach does not
generalize to k > 2. The main reason is that natural monotonicity properties do not hold:
the probability to increase the majority opinion does not only depend on the size of the
majority opinion itself but instead on the entire opinion distribution. This aligns well with a
conjecture from [12] that states that counterexamples exist for any majorization attempt
that uses a total order on opinion state vectors. We believe that in order to show a hierarchy
of majority protocols for more than two opinions different techniques will be needed.
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