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Abstract: In the dynamic analysis of structures condensation is often used to
reduce the number of degrees of freedom to manageable size. The approx-
imation properties can be improved substantially taking advantage of the
Rayleigh functional or if generalized masters are used. In this note we prove
that substructuring with modal masters is equivalent to the component mode
method with fixed boundaries. This suggests a further reduction of cost for
the component mode method.
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1 Introduction
In the analysis of the dynamic response of structures using finite element
methods very often prohibitively many degrees of freedom are needed to
model the behaviour of the system sufficiently accurate. Static condensation
is frequently employed to economize the computation of a selected group
of eigenvalues and eigenvectors. These methods choose from the degrees of
freedom a small number of master variables. Neglecting inertia terms the
remaining variables (termed slaves) are eliminated leaving a much smaller
eigenproblem for the master variables only.

It has frequently been noted in the literature that the approximation
properties of static condensation is satisfactory only for a small part of the
lower end of the spectrum, and several attempts have been made to improve



them (cf. [5], [6], [11], e.g.). Most of them are very time consuming because
any single eigenvalue has to be corrected by an iterative process, and every
iteration step requires the solution of a large linear system.

In [12] we took advantage of the structure of the exactly condensed eigen-
value problem T'(\)u = 0 which is equivalent to the original problem and
which is nonlinear with respect to the parameter A\. For T" a Rayleigh func-
tional p exists which has similar properties as the Rayleigh quotient for linear
eigenproblems. In particular, the eigenvectors of T'(-) are stationary points of
p. Hence, a first order error of an eigenvector approximation @ yields a sec-
ond order error of p(@) as an approximation of the corresponding eigenvalue.
Since the eigenvectors u/ of the statically condensed problem are usually good
approximations of the master portions of the eigenvectors the approximation
properties of static condensation can be improved substantially.

A different enhancement was derived in [8] incorporating general masters
into the condensation process. Especially, combining substructuring and
modal masters turned out to be successful (c.f. [13]). In this paper we prove
that condensation in the presence of modal masters is equivalent to the com-
ponent mode method introduced by Hurty [3] and by Craig and Bampton
[1]. Moreover, we demonstrate that the cost of the component mode method
can be reduced to that one of static condensation taking advantage of the
Rayleigh functional.

2 Static Condensation
We consider the general matrix eigenvalue problem

Kz =AMz (1)

where K € R™™ and M € IR™™ are symmetric and positive definite matri-
ces which are usually the stiffness and mass matrix of a finite element model
of a structure, and which are usually very large and sparse.

To reduce the dimension of the system to manageable size one chooses m
master variables x,, with m < n, and (after reordering the rows and columns
of K and M) rewrites (1) into block form

Ksm KSS xs Msm MSS J"S
where =, € IR® indicates the slave part of x to be eliminated.
Neglecting inertia terms in the second equation of (2), solving for x,, and
substituting x, into the first equation one obtains the statically condensed

eigenproblem
K()Zb'm = )\M()xm (3)



with

KO = Kmm - KmsKs_lesma
My = My — KoK My — My KK
+KmsKs_slMssKs_le5m

which was introduced by Guyan [2] and Irons [4].

Static condensation is known to be accurate only for a few of the small-
est eigenvalues. To enhance the approximation properties Mackens and the
author in [8] introduced general masters. To this end let Z := (2z1,...,2y)
be a basis of the space of master vectors, and let Y := (ym11, - - -, Yn) be such
that (Z,Y) is a nonsingular matrix.

If we insert the unique represenation z = Zx,, + Y, of € IR" into the
original problem (1) and premultiply it by (Z,Y)” we obtain the following
eigenvalue problem

Ky Ky, Ts | My, My, Ls
where for L € {K, M}
L, =272"L7, L, :=2"LY =L, L, =Y"'LY.

yz

Therefore, the stiffness and the mass matrix have been decomposed with
respect to the spaces Z and Y in a similar way as in (2).

In principle equation (4) could be employed to reduce the eigenvalue prob-
lem (1) using {21,..., 2y} as master degrees of freedom. However, since in
practice only the small set of masters is available, but the large set of slave
vectors {Ym+1,...,Yn} is definitely not the matrices K,,, Ky, M,,, M, are
usually not at hand. Hence, the straightforward transfer of static conden-
sation to perform the reduction in the presence of general masters does not
apply. In [8] it has been shown how to generate the condensed problem cor-
responding to the decomposition (4) using the masters zy, ..., 2, only, but
not the complementary vectors ¥,,11, - - -, Yn-

Theorem 1 Let V. € R™" be a symmetric and positive definite metric
matriz, and let 7 = (21,...,2m) € R™™ and Y € R™™™ such that
2"W7Z =1, and Z"VY = O.

Then the condensed problem with general masters zq, ..., 2, 1S given by

P"K Pz, = \P"M Pz,
with the projection matriz

P=K'X[X"K'x] ', Xx:=VZ (5)



Since [)(TK*U(]_1 is a nonsingular matrix the condensed problem is
equivalent to the projection of the eigenproblem to the space spanned by the
columns of K=V Z. Hence, choosing V = M it is equivalent to one step of
simultaneous inverse iteration.

Nodal condensation is often combined with substructuring, i.e. the struc-
ture under consideration is subdivided into substructures, and the masters
are chosen to be the interface degrees of freedom. If the substructures are
connected through the master variables only and if the slave variables are
numbered appropriately, then the stiffness matrix is given by

Kmm Kmsl KmsZ S Kmsr
Ksml Kssl O . O
K = Ksm2 O KSSQ . O (6)
| Kgww O O ... K |

and the mass matrix M has the same block form. Hence the matrices K,
and M, obtain block diagonal form and the cost of the condensation process
can be reduced substantially. In particular it can be performed completely
in parallel (cf. [10]).

For general masters condensation can be executed in parallel as well if
in substructuring interface masters are accompanied only by general masters
such that the support of each of them is contained in exactly one of the
substructures (cf. [7]). This result suggests to use modal masters in a similar
way as in component mode methods.

Assume that the original structure is subdivided into r components as
above, and let K ; and M,,; be the stiffness and mass matrix of the j-th
substructure, respectively, where the boundaries of the substructures corre-
sponding to interfaces between substructures are assumed to be fixed. For
each substructure let the columns of the matrix ®; contain eigenvectors cor-
responding to a few of the smallest eigenvalues of

Kssj¢j = WMssj¢j'

Then the general condensation process with mastervectors

In O O ... O
0O & O .. O o

_|lo o & .. 0|_|nC

g 3132'.1 l0¢]
0 0 O ... 9|




and scalar product defined by the matrix

L. O
V‘lo Mss]

is called modal condensation method. It is reasonable to choose the matrix V'
above since condensation can be interpreted as simultaneous inverse iteration
(cf. (5)).

Modal condensation was applied successfully to membrane and plate
problems in [13] where the approximations of eigenvalues from nodal con-
densation were improved considerably. In the next section we will prove that
modal condensation is identical to the component mode method with fixed
interfaces.

3 Component Mode Method

Component mode methods have been used extensively in the dynamic anal-
ysis of complex structures during the last three decades. The basic idea is to
treat the structure as an assembly of connected components of substructures
each of which is analyzed separately. The space of physical degrees of freedom
of each substructure is projected to a mode subspace spanned by a selected
set of a few lower mode shapes and other supplementary modes yielding a
reduced system of much smaller dimension than the original finite element
model. Three types of component mode methods are in use depending on
the type of boundary conditions at the interfaces: fixed-interface methods,
free-interface methods and hybrid methods. In this paper we concentrate
on fixed-interface methods which were introduced by Hurty [3] and by Craig
and Bampton [1].

As in the previous section we consider the partition of the eigenvalue
problem (1) given in (2) describing the free vibrations of a complex structure
which is divided into r substructures, i.e. the stiffness matrix has the block
form given in (6). As before x,, denotes the vector of degrees of freedom on
the interfaces of the substructures and x, corresponds to the interior degrees
of freedom.

Let ® € IR*) be the modal matrix of the substructure eigenvalue prob-
lem

K¢ = wMs¢p (7)

normalized by ®T M,,® = I,, and denote by Q := diag{wi, ...,w,} the diago-
nal matrix containing the eigenvalues of problem (7) in its diagonal. Then it
holds that ®7 K,,® = Q, and it is easily seen that the variable transformation

T | 1, O T
T N _Ks_lesm q) Ys
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transforms problem (1) to the equivalent eigenvalue problem

KU O Tm MO Mms Tm
=\ ~
KT e A S B
where Ky and M, are the reduced matrices in (3) obtained by static nodal
condensation, and

Mips = Myp® — Ky Ko My ® = M7 . 9)

Since the high frequencies of the subtructures do not influence the low fre-
quencies of the entire structure very much the dimension of the eigenvalue
problem (8) can be reduced considerably if we delete rows and columns cor-
responding to high frequencies of the slave eigenproblem (7). This is exactly
the component mode method in [3] and [1]. Obviously, it is equivalent to
applying the Rayleigh-Ritz method to problem (1) using as ansatz vectors
the columns of

I, 0] (10)

R = =

l ~K 'K, @
where ® contains only a small number of modes of the slave eigenvalue prob-
lem (7) corresponding to small eigenvalues.

Theorem 2 The component mode method with fized boundaries and the
static modal condensation method are identical, i.e. they yield the same ap-
proximations to eigenvalues and eigenvectors of problem (1).

Proof: By Theorem 1 static modal condensation is nothing else but the
Rayleigh — Ritz method with ansatz vectors

K'XXTK'X), X =V_Z,

and since (XTK1X)™! is a nonsingular matrix this is equivalent to the
projection of problem (1) to the subspace V; spanned by the columns of

ImO]

~1 _ g1 _
K VZ=K lo M..&

Let V4 be the space spanned by the columns of R in (10). We are done if
Vi = V5, and since both spaces are of the same dimension it suffices to show
Vi C V.

Taking advantage of the block structure of K in (2) it can easily be verified

that
—1 Im _ Im
5] s
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where S := (Kpm — Kns K,  Kon) ! and

) I o1 =~
-1 _ m -~ -1
e | = | i, 7[5 )
with o
T=—-SK,,, Q7!

and Q is a diagonal matrix containing the eigenvalues of (7) corresponding
to the columns of ® in its diagonal. Hence V; C V5. q.e.d.

4 Rayleigh Functional

It is well known that often only very few of the eigenvalues at the lower
end of the spectrum are approximated with reasonable accuracy using static
condensation. Several attempts have been made to increase the accuracy
most of them being iterative and therefore very time consuming (cf. [5], [11],
e.g.).

In [12], [9] we took advantage of the properties of the exactly condensed
problem which is obtained from problem (4) by solving the second equation
of (4) for x5 and inserting z into the first equation. Obviously, one obtains
a nonlinear eigenproblem

TNz, = 0.

It is well known that T'(\) can be given a convenient form if modal properties
of the slave problem are exploited.
Let ¥ € R®* and I' := diag{v;} € R®* be the modal matrix and the

spectral matrix of the slave eigenvalue problem

Ky = v Myyi), (11)

respectively, such that W' M,, ¥ = I; and V" K, U =T'. Then T'()\) can be
rewritten as (cf. Leung [5])

T(\) = =Ko+ AM;, + SD(A\) ST (12)

where Ky and M, are the reduced stiffness and mass matrix of the statically
condensed problem,

)\2
S = M,V — K,,9I'"" and D()\) := diag{ } :
V= A
Let v be the smallest eigenvalue of the slave eigenproblem (11), and let
J :=(0,7). Then for every fixed vector v € IR™, u # 0, the real valued
function

fGouw) « J—=TR, A f(\u) = u' T\,
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le. a2
fOu) = —u"Kou+ M Mou + Y —2
=17 — A

with X
Q= w]TMyzu — ?wJ-TKyzu,
J

is strictly monotonely increasing. Hence, the nonlinear equation f(\,u) =0
has at most one solution. Therefore, it implicitly defines a functional

p : R" D D(p) = J, f(p(u),u)=0,

which is called the Rayleigh functional of the nonlinear eigenproblem (12).

The Rayleigh functional has similar properties as the Rayleigh quotient
for linear eigenproblems. In particular the eigenvectors of T'(-) are stationary
vectors of p. Thus, if u € D(p) is a first order approximation of an eigenvector
then p(u) will be a second order approximation of the corresponding eigen-
value. Evaluating the Rayleigh functional at the eigenvectors of the statically
condensed problem (which are actually contained in D(p)) therefore should
improve eigenvalue approximation considerably.

A considerable saving of work can be made by the observation that usu-
ally the substructures are much stiffer than the entire structure. Hence,
only very few substructure modes have to be considered in the evaluation
of the Rayleigh functional to achieve an eigenvalue approximation of good
accuracy. Consequently we need not solve the complete eigenvalue problems
(11). Instead only a very small number of the smallest eigenvalues 7;; and
corresponding eigenvectors z/N)ji (j=1,...,r,1=1,...,5;) have to be deter-
mined. With these we compute the improved eigenvalue approximation p(u)
as the root of the truncated rational function

fO @) = =i Kot + Maf My

ro 5 A2 . i o s
+]z::1 ; Fii — A (Q/inMsmju - %T/inKsij)
r Sj )\2
= —Ko+ Ak + Z Z o T— (13)
j=ti=1 Vi~ A

For a given eigenvector approximation @ the function A — f(\, @) is mono-
tonely increasing and convex, and therefore the solution p(a) of f(A,a) =0
can be computed easily with Newton’s method.



5 Component Mode Method and Rayleigh Functional

Again we consider the eigenvalue problem (1) reduced by the component

mode method to
KO O Tm MO Mms Tm
=\ = ) 14
el ]
Applying exact condensation with interface masters x,, only we obtain
TNy = (=Ko + AMy + M, ®D(\)®T M) = 0 (15)
where M, is given in (9),

D(A):diag{ X }

wj—)\

and w; are the slave eigenvalues kept in the component mode method.

Obviously, the Rayleigh functional of (15) is the truncation of the Rayleigh
functional of problem (12) considered in (13). This observation suggests the
following modification: Instead of solving the eigenvalue problem (14) ob-
tained by the component mode method one should solve the corresponding
statically condensed eigenvalue problem (3) (which is much smaller) and eval-
uate the curtailed Rayleigh functional (13) at the eigenvectors of problem (3).
The loss of accuracy should be marginal.

To demonstrate that the loss of accuracy replacing the component mode
method by the static nodal condensation combined with the evaluation of the
truncated Rayleigh functional actually is not very severe we consider the free
vibrations of a uniform thin clamped plate covering the rectangular region
Q:=(0,4) x (0,3) which are governed by the eigenvalue problem

Au=)u in Q, u:%:0 on 09. (16)

on

We discretized this problem by Bogner-Fox-Schmidt elements (with node
variables u, u,, u, and u,,) on a quadratic mesh of meshsize h = 0.1 and
obtained a discrete problem of dimension n = 4524. Dividing €2 into twelve
identical substructures each of them being a square of sidelength 1 and choos-
ing all interface degrees of freedom as masters we obtained a reduced problem
of dimension m = 636.

Table 1 contains the relative errors of the 10 smallest eigenvalues if we add
1, 2, 4, 8 and 16 modal masters in each substructure obtaining problems of
dimension 648, 660, 684, 732 and 828, respectively. Table 2 shows the relative
errors if we improve the approximations of the static nodal condensation by
the curtailed Rayleigh functional taking into account 1, 2, 4, 8 and 16 modes
of each substructure.



Table 1: Clamped plate: componend mode method

# of modes
0 1 2 4 8 16
3.7e-3 2.1e-4 1.4e-4 1.1e-4 1.6e-5 9.6e-6
9.6e-3 8.3e-4 6.5e-4 2.6e-4 b5.4e-5 2.4e-5
1.4e-2 2.5e-3 6.4e-4 4.5e-4 1.3e-4 4.7e-5
1.8¢-2 3.9e-3 3.6e-3 5.8¢-4 2.1le-4 6.2¢-5
2.2e-2 4.2e-3 1.7¢e-3 6.4e-4 2.3e-4 6.8e-5
2.9e-2 88e-3 5.9e-3 9.5e-4 5.0e-4 1.2e-4
9.3e-2 4.3e-3 2.7e-3 1.4e-3 2.2e-4 9.2e-5
1.0e-1 3.7e-3 2.4e-3 1.5e-3 1.9e-4 9.6e-5
1.2e-1 7.6e-3 6.2e-3 1.6e-3 3.7e-4 1.1e-4
1.1e-2 1.5e-2 3.2e-3 1.6e-3 6.6e-4 1.4e-4
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