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ABSTRACT 

This paper proposes a numerical approach to predict the planar motion of a full-scale SUBOFF as well 

as its hydrodynamic coefficients in deep and unlimited water, where the free surface and wall effects are 

neglected. The Euler’s equations of motions are employed to describe the underwater motion of a body in deep 

submergence. Due to the geometrical features of the studied hull form, a simplified form of motion equations 

is obtained through ignoring minor equation terms in the case of planar motions. A linear approach is further 

adopted to estimate the added mass and damping coefficients of the submerged vessel, where the coefficients 

of main components of vessel, such as hull, sail, sail fin, stern fin, and rudder, are separately evaluated and 

then integrated into the simplified motion equations. The turbulent flow around these components are 

numerically calculated to predict their hydrodynamic coefficients, where a grid-independent solution is 

predicted via a successive grid refinement of the computational domain. The solution of the simplified motion 

equations is based on a time-marching scheme. An iterative method is first used to solve the simplified motion 

equations at a given instance and a first-order projection method is then employed to predict the position and 

status of the vessel at the next time step. 

1 INTRODUCTION 

This paper investigates the planar motion characteristics of a Full-Scale SUBOFF (L=68 m) in deep and 

unlimited water [1,2], where the free surface and wall effects are completely ignored. The Euler’s equations 

of motions are employed to describe the trajectory of an underwater body moving in deep submergence. The 

equations of motion equations are further simplified with the negligence of equation terms that are trivially 

contributed to a planar motion [3,4].  A linear approach is adopted to estimate the added mass and damping 

coefficients of a submerged body, where the coefficients of its main components, such as hull, sail, sail fin, 

stern fin, and rudder, Fig.1, are separately evaluated and then integrated into the adopted simplified motion 

equations. The hydrodynamic coefficients of these components are numerically estimated by means of a 

turbulent flow modeling, where the grid-independent solution is obtained through a grid refinement process. 

A time-marching scheme is adopted to solve the coupled simplified motion equations, where the time-

dependent solution of the simplified motion equations is iteratively solved along with the position and status 

of the vessel calculated by a first-order projection method. 

 
Figure 1: Main components of a submerged vessel 
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2 HYDRODYNAMIC COEFFICIENTS 

2.1 Governing Equations 

The incompressible continuity and momentum equations incorporated with an SST 𝑘 − 𝜔  turbulence 

model are adopted to describe the turbulent flow around the submerged body: 
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where 𝑢𝑖 denotes the velocity component in the 𝑥𝑖 direction, 𝑝 the pressure, 𝜈 the kinematic viscosity, 𝑢𝑖
′𝑢𝑗

′̅̅ ̅̅ ̅̅  

the Reynolds stress, 𝑡  the time, 𝑘  the turbulent kinetic energy, the dissipation rate of 𝑘 , 𝜈𝑖  the turbulent 

kinematic viscosity and (𝜎𝑘, 𝜎𝜔, 𝜎𝜔2, 𝛽∗, 𝛽, 𝛿) the turbulence model constants [5,6]. Equation (1) to (4) are 

numerically solved with the flow solver STARCCM+ to obtain the turbulent around the submerged body for 

the purpose to evaluate its hydrodynamic forces under various conditions. 

 

2.2 Resistance Prediction 

Figure 1 compares the measured and predicted model-scale resistance as well as the full-scale resistance 

components between numerical results and ITTC line. Figure 2(a) shows a good agreement of numerical 

prediction with experimental measurements for a bare hull SUBOFF model, whereas Figure 2(b) depicts the 

resistance comparison for a SUBOFF model with full appendages. Similar to the bare hull, the full-ship 

delivers a high resistance prediction accuracy. Figure 2(c) predicts the total resistance coefficient (𝐶𝑇) varying 

between 2.2 × 10−3 and 2.6 × 10−3 for the five calculated velocities. The friction coefficient (𝐶𝐹) following 

a similar tendency of ITTC line is estimated between 2.0 × 10−3  and 1.6 × 10−3 . The definition of the 

resistance coefficients and ITTC line are given in Eq. (5), (6) and (7), where 𝑅 is the total resistance, 𝜌 the 

density, 𝑢  the ship speed, 𝑆  the wetted surface, 𝑅𝑓  the frictional drag. Figure 2 indicated the numerical 

prediction is able to deliver accurate hydrodynamic force exerted on a moving vessel. 

 
(a)                                             (b)                                                 (c) 

Figure 2: Resistance prediction – (a) Model scale (Bare hull), (b) Model scale (Full ship), (c) Full scale.  
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𝐶𝐹,𝐼𝑇𝑇𝐶 =
0.075

(log(𝑅𝑒)−2)2                                                       (7) 

 

2.3 Added Mass 

Because the bare hull is a slender body, only 𝑚11, 𝑚22 and 𝑚33 are considered for the bare hull. The 

prediction of added mass is determined via the following procedure. The submerged body is modelled in the 

given linear motion with a constant acceleration (𝑎) for a period of time. Then, the resistance experienced at 

different time instances is fitted with a polynomial function. The constant term of this polynomial function (𝑓0) 

represents the force acting on the vessel at t=0 in an acceleration motion from rest. The added mass (𝑚𝑎) of a 

volume 𝑉 corresponding to this motion is given as 

 

𝑚𝑎 =
𝑓0−𝑉∙𝑎

𝑎
                                                                           (8) 

 

An ellipsoid with an axis ratio of 2 is adopted to validate the proposed approach to calculate the added 

mass of a submerged body, where 𝑚22 is selected as the validation target. Figure 3(a) gives the history of 

dimensionless force (Y’) in an acceleration motion of 1.0 𝑚/𝑠2 for various grid numbers, where Y’ is fitted 

through a second-order polynomial. The grid-independent Y’ at t=3 s (dotted line in red, 0.705) along with its 

counterparts with different grid density is illustrated in Figure 3(b), where the grid-independent history of Y’ 

is given in Figure 3(c). The constant term of the fitted equation obtained from numerical prediction is 0.7043, 

which delivers an error less than 0.5% when compared to its theoretical value of 0.7020. Table 1 summarises 

the added mass of bare hull for a full-scale SUBOFF. 

 

 
(a)                                                 (b)                                                  (c)                

Figure 3: Added mass validation – (a) Y’ with different grids, (b) Y’ at t=3 s, (c) Grid-independent Y’. 

Table 1: Added masses of SUBOFF bare hull on full scale 

𝑚11 (106kg) 𝑚22 (106kg) 𝑚33 (106kg) 

0.103 2.43 2.43 

 

2.4 Added Moment of Inertia 

The added moment of inertia 𝑚44, 𝑚55 and 𝑚66 are simply taken account for the bare hull due to its 

axisymmetric shape. The prediction of added moment of inertia is determined via the following procedure. 

The submerged body is modelled in the given rotational motion with a constant angular acceleration (𝜔) for a 

period of time. Then, the moment experienced at different time instances is fitted with a polynomial function. 

The constant term of this polynomial function (𝑚0) represents the moment acting on the vessel at t=0 in an 

angular acceleration motion from rest as well as the added moment of inertia. Table 2 summarises the added 

moment of inertia of SUBOFF bare hull on full scale. 
 

Table 2: Added moment of inertia of SUBOFF bare hull on full scale 
𝑚44(109kg·m2) 𝑚55(109kg·m2) 𝑚66(109kg·m2) 

~0 0.576 0.576 
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2.5 Viscous Drag 

Due to a slim shape of bar hull and comparably small viscous drag in the lateral direction, only the 

longitudinal viscous drag is considered for the bare hull. The prediction of viscous drag is determined via the 

following procedure. The submerged body is modelled in the given linear motion with a constant velocity. 

Then, the resistance experienced at different velocities is fitted with a polynomial function that is employed in 

the motion simulation of the submerged body. Equation 9 gives a second-order polynomial to describe the bare 

hull drag in the longitudinal direction, where 𝐹𝑥 is the longitudinal drag, (𝐴, 𝐵, 𝐶)  the fitting constants. Table 

3 summarises the drag equation constants for the bare hull on full scale. 

 

𝐹𝑥 = 𝐴𝑢2 + 𝐵𝑢 + 𝐶                                                                 (9) 

 

Table 3: Equation constant of SUBOFF bare hull on full scale 
𝐴 𝐵 𝐶 

1311.00 955.61 -202.08 

 

2.6 Hydrodynamic Centre 

The hydrodynamic force acting on a moving body can be divided into lift and drag components, where 

the pitching moment refers to the combined moment contributed by lift and drag. At the hydrodynamic centre, 

the pitching moment is basically independent of the angle of attack of the inflow. In contrast to the centre of 

pressure, the net moment contributed by lift and drag is zero. According to this assumption, the longitudinal 

location hydrodynamic centre (𝑥𝐻𝐶) is defined in Eq.(10), where is the longitudinal location of the centre of 

gravity, 𝑀0 and 𝑀1 the moment created by an angle of attach of 0° and 1°, respectively, 𝐿0 and 𝐿1 the lift 

created by an angle of attach of 0° and 1°, respectively. 

 

𝑥𝐻𝐶 = 𝑥𝐺 +
𝑀1−𝑀0

𝐿1−𝐿0
                                                                  (10) 

3 EQUATION OF MOTION 

The Euler’s equations of motions based on a body-fixed frame is employed to describe the correlation 

among the velocity, angular and external forces acting on the submerged body, i.e., Eq. (11), (12), (13), (14), 

(15) and (16), Fig.4: 

 

𝑚[𝑢̇ − 𝑣𝑟 + 𝑞𝑤 − 𝑥𝐺(𝑞2 + 𝑟2) + 𝑦𝐺(𝑝𝑞 − 𝑟̇) + 𝑧𝐺(𝑝𝑟 + 𝑞̇)] = 𝑋𝐹                  (11) 

 

𝑚[𝑣̇ − 𝑤𝑝 + 𝑢𝑟 − 𝑦𝐺(𝑝2 + 𝑟2) + 𝑥𝐺(𝑝𝑞 + 𝑟̇) + 𝑧𝐺(𝑞𝑟 − 𝑝̇)] = 𝑌𝐹                     (12) 

 
𝑚[𝑤̇ − 𝑢𝑞 + 𝑣𝑝 − 𝑧𝐺(𝑝2 + 𝑞2) + 𝑥𝐺(𝑟𝑝 − 𝑞̇) + 𝑦𝐺(𝑟𝑞 + 𝑝̇)] = 𝑍𝐹                   (13) 

 
𝐼𝑥𝑥𝑝̇ + (𝐼𝑧𝑧 − 𝐼𝑦𝑦)𝑞𝑟 − 𝐼𝑥𝑧(𝑟̇ + 𝑝𝑞) + 𝐼𝑥𝑦(𝑝𝑟 − 𝑞̇) + 𝐼𝑦𝑧(𝑟2 − 𝑞2)                             

+𝑚𝑦𝐺(𝑤̇ + 𝑣𝑝 − 𝑢𝑞) − 𝑚𝑧𝐺(𝑣̇ + 𝑢𝑟 − 𝑤𝑝) = 𝐾𝐹                                       (14) 

 
𝐼𝑦𝑦𝑞̇ − (𝐼𝑧𝑧 − 𝐼𝑥𝑥)𝑝𝑟 − 𝐼𝑦𝑧(𝑟̇ − 𝑝𝑞) − 𝐼𝑥𝑦(𝑝̇ + 𝑞𝑟) + 𝐼𝑥𝑧(𝑝2 − 𝑟2)                              

−𝑚𝑥𝐺(𝑤̇ + 𝑣𝑝 − 𝑢𝑞) + 𝑚𝑧𝐺(𝑢̇ − 𝑣𝑟 + 𝑤𝑞) = 𝑀𝐹                                     (15) 

 
𝐼𝑧𝑧𝑟̇ + (𝐼𝑦𝑦 − 𝐼𝑥𝑥)𝑝𝑞 − 𝐼𝑥𝑧(𝑝̇ − 𝑞𝑟) − 𝐼𝑦𝑧(𝑞̇ + 𝑝𝑟) − 𝐼𝑥𝑦(𝑝2 − 𝑞2)                              

+𝑚𝑥𝐺(𝑣̇ + 𝑢𝑟 − 𝑤𝑝) − 𝑚𝑦𝐺(𝑢̇ − 𝑣𝑟 + 𝑤𝑞) = 𝑁𝐹                                      (16) 
 

where 𝑚 denotes the mass of the body, (𝑢, 𝑣, 𝑤) the velocity of the body, (𝑝, 𝑞, 𝑟) the angular velocity of the 

body, (𝑥𝐺 , 𝑦𝐺 , 𝑧𝐺) the gravity centre of the body, (𝐼𝑥𝑥, 𝐼𝑦𝑦, 𝐼𝑧𝑧, 𝐼𝑥𝑦, 𝐼𝑦𝑧, 𝐼𝑥𝑧) the moment of inertia of the body, 

(𝑋𝐹 , 𝑌𝐹 , 𝑍𝐹) the external force acting on the body and (𝐾𝐹 , 𝑀𝐹 , 𝑁𝐹) the external moment acting on the body. 

Equation (1) to (6) is numerically solved with the help of a first-order projection method to predict the position 

and status of the submerged body. A time-marching scheme is adopted to solve the coupled simplified motion 
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equations, where the time-dependent solution of the simplified motion equations is iteratively solved along 

with the position and status of the vessel calculated by a first-order projection method. [1,2] 

 

 

Figure 4: Definition of a six degree-of-freedom motion 

4 MANOEUVRING SIMULATIONS 

The propulsion characteristics identical to an affine hull form (L=66.9 m) [2] is adopted in this study to 

investigate the full-scale SUBOFF performance in a turning circle test as well as in a zigzag test. Figure 5(a) 

depicts the full-scale trajectory comparison between the studied SUBBOFF and an affine hull given in [2]. The 

turning circle test is simulated under a rudder angle of 15° and a propeller speed of 40 RPM. Table 4 

summarises the key parameters of the turning circle test between SUBOFF and an affine vessel, where the 

former obtains a higher service speed with a smaller turning radius. Figure 5(b) shows the simulation of a 

zigzag test with a rudder angle of 20° that is identical to the executive heading angle, where the red line denotes 

the rudder angle and the green line the heading angle. The overshoot is predicted about 10 sec for SUBOFF, 

whereas the affine vessel is approximate 7.4 sec. Table 5 summarises the simulated result of a Zigzag test. 

 

 
(a)                                                                              (b)                                       

Figure 5: Manoeuvring simulations – (a) Turning circle test, (b) Zigzag test. 
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Table 4: The comparison of turning circle test between two hull forms. 

Hull 

Form 

Speed 

 (kn) 

Advance 

(m) 

Transfer 

(m) 

Turning 

Radius 

(m) 

Tactical 

Radius 

(m) 

Affine 3.6 258 217 429 431 

SUBOFF 3.9 231 183 365 368 

 
Table 4: The comparison of turning circle test between two hull forms. 

Hull 

Form 

Initial 

Turning 

Time (s) 

Overshoot  

(°) 

Time to 

check yaw 

(s) 

Reach 

(s) 

Time of a 

complete 

cycle (s) 

SUBOFF 100 10 10 135 195 

5 CONCLUSION 

This paper proposes a numerical approach to model the motion of a submerged vessel along with its 

hydrodynamic coefficients in deep and unlimited water, where the planar motion of a full-scale SUBOFF is 

predicted as an example. The resistance comparisons on model and full scale indicate that the adopted flow 

solver is capable of delivering accurate hydrodynamic loads around a submerged vessel as well as reliable 

hydrodynamic coefficients. This study suggest that the predicted turning diameter is 365 m along with a speed 

of 3.9 kn for a turning circle test of SUBOFF under a rudder angle of 15° and a propeller speed of 40 RPM, 

which is consistent with the performance of an affine vessel under the same condition. In the zigzag simulation, 

the full-scale SUBOFF gives an overshoot similar to its time to check yaw, 10 s, where its initial turning time, 

reach and time of a complete circle are 100s, 135s and 195s, respectively.  
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