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Abstract
The persistent rise of Energy Harvesting Wireless Sensor Networks entails increasing
demands on the efficiency and configurability of energy management. New applications
often profit from or even require user‐defined time‐varying utilities, for example, the
health assessment of bridges is only possible at rushhour. However, monitoring times do
not necessarily overlap with energy harvest periods. This misalignment is often corrected
by over‐provisioning the energy storage. Favourable small‐footprint and cheap energy
storage, however, fill up quickly and waste surplus energy. Hence, EmRep is presented,
which decouples the energy management of high‐intake from low‐intake harvest periods.
Based on the State‐of‐Charge extrema prediction, the authors enhance energy manage-
ment and reduce saturation of energy storage by design. Considering multiple
user‐defined utility profiles, the benefits of EmRep in combination with a variety of
prediction algorithms, time resolutions, and energy storage sizes are showcased. EmRep
is tailored to platforms with small energy storage, in which it is found that it doubles
effective utility, and also increases performance by 10% with large‐sized storage.

K E Y W O R D S
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1 | INTRODUCTION

Over the past years, energy harvesting (EH) has been a vital
competitor for powering Wireless Sensor Networks (WSNs) in
many applications. Devices powered by ambient energy—for
example, solar EH [1], vibration harvesting [2] or temperature
difference harvesting [3]—allow uninterrupted operation
without human intervention. This is especially important in
critical places, for example, bridges [2, 4] and theMatterhorn [5],
where access is time consuming and costly. However, the varying
nature of ambient energy entails careful management of activity,
for example, as presented in [6–8] to use energy efficiently. The
evolving field of Intermittent Computing (IC), that is, devices
that greedily use available energy until shutdown, poses new
challenges on rethinking hardware [9], program design [10, 11],
and energy management [12, 13]. Still, their operation is tied to
sufficient harvest, so the usage of IC is limited to applications
where harvest and times of interest overlap.

Hence, Energy‐Neutral Operation (ENO) devices—which
bridge phases of low energy intake—are indispensable in ap-
plications where uninterrupted operation (depletion safety) is
mandatory, such as bridge health monitoring [2]. Here, Vibro‐
acoustic Modulation (VAM) [4] and others require external
vibrations by trains or cars; hence, measurements are only
possible or meaningful at specific times of the day. This leads
to time‐varying utility which may not correlate with energy
harvest and has to be incorporated into energy management.
Literature [8] knows methods to model year‐around utility but
the performance on a day‐basis is sub‐optimal (c.f. Section 5).
Here, small storage and uncertain harvest estimation may lead
to unexpected shutdowns. Traditional energy management,
however, on day‐basis [7, 14], does not yet model time‐varying
utility.

As stated in Ref. [15], energy‐neutral computing devices
can provide high reliability and utility, since they balance energy
intake and expenses over a certain time window, for example, a
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year or a day. In phases of energy surplus, the storage device is
charged up to the limit, and the stored energy is used in deficit
phases to provide a stable level of activity throughout the
window. In contrast to energy management techniques such as
AsTAR [6], which uses energy until depletion, ENO devices
allow high utility when harvest is low. If the energy surplus is
greater than the storage capacity, however, the storage device
saturates and is cut‐off to prevent over‐charging. Literature
[16–18] has shown that—even potentially erroneous—
adaption to future local harvest conditions is indispensable
to optimise activity. Estimation‐agnostic approaches boil down
to power‐neutral computing [15], which spends energy when it
is available. Harvest estimation bears additional risks: if harvest
is over‐estimated, activity needs to be reduced, which possibly
introduces fluctuating duty‐cycles. If the future harvest is
under‐estimated, the problem of storage saturation is
exaggerated—to save energy for the night, the energy surplus
is wasted since the presence is better than expected. Even if the
application utility could have been improved, current ENO
devices lose the opportunities of high‐intake phases because
depletion in low‐intake phases is feared, c.f. Figure 1. Here, a
depletion‐safe consumption for the next day is calculated. A
consumption slightly higher leads an SoC below the minimum
at the end of a low‐intake phase; hence, the average con-
sumption for the next day cannot be increased. This, however,
misses the opportunities of higher activity in the high‐intake
phase since maximum harvest is well above the average con-
sumption. The energy storage, hence, saturates since the node
unnecessarily limits its activity.

We argue that the requirements of modern applications—
also including industrial context—demand a new way of
managing energy for ENO devices in EH‐WSNs. Hence, we
present EmRep,1 which integrates utility into energy manage-
ment. EmRep uses SoC estimation to identify low‐intake and
high‐intake phases, and then decouples energy management in
these two phases. This allows to utilise the surplus energy in
high‐intake phases—if it increases the application‐defined
utility—without sacrificing depletion safety in low‐intake
phases. In particular, we

� Integrate time‐varying utility into energy management for
ENO systems;

� Exploit energy surplus, which lowers storage saturation by
up to 32% without increasing the risk of depletion;

� Increase performance across exemplaric application‐specific
utility profiles;

� Enable downsizing of storage size even with solar harvest
estimation; and

� Show a case study for VAM in which EmRep increases the
performance by 80%.

Next, we showcase the challenges faced in EH‐WSNs,
highlight related work and present a detailed problem analysis.

2 | BACKGROUND & RELATED WORK

2.1 | Challenges of energy harvesting

The varying nature of ambient energy requires careful adaption
to the currently harvested energy. Sources such as the solar
source allows to learn prevalent patterns, for example, diurnal
patterns influenced by trees or buildings. For solar harvesting, a
plethora of algorithms evolved, for example, EWMA, WCMA
[17], Pro‐Energy [16] and Delta‐T [19]. Although all models
only estimate the future, and hence not being totally accurate,
they improve the performance of ENO drastically. As also
identified by the authors of Ref. [20], intake estimation is of
utmost importance to increase the efficiency for EH‐WSN.
Harvest estimation models typically divide the day into slots
with average harvest at a fixed resolution, that is, time slots that
typically last between 30 min and 240 min. This entails prob-
lems, since average values are not able to replicate the trace
exactly, and over‐ and under‐estimation lead to performance
degradation. We highlight the average replication problem in
Figure 2, where we compare the real harvest to slot average and
EWMA estimation. On days which are very similar to the learnt
pattern, the estimation error is low—c.f. Figure 2a—whilst the
error can be very high, when harvest conditions change
rapidly—c.f. Figure 2b. Even correct slot averages can be
misleading, since they do not take harvest imbalance within the
slot into account. This is especially severe in early mornings

F I GURE 1 Illustration of saturation problem for small‐sized energy
storage; when consumption is recalculated, the desired average
consumption is significantly lower than the maximum harvest; however, the
average consumption cannot be increased since depletion in low‐intake
phase is imminent; performance in high‐intake phase is sacrificed for
depletion‐safety

1EmRep is an (energy)‐analogy to the workout type AMRAP, where the goal is to
execute As Many Repetitions As Possible.
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where the SoC in solar‐powered systems is near the minimum
operating level. If the harvest lies well above the average on the
start of the timeslot, the storage can already fill up, and the risk
of depletion subsides. The opposite holds if harvest arrives late
in the time slot; although this distribution has the same average,
energy is taken from the storage which has not been harvested
yet; hence, the risk of depletion increases. Nevertheless, energy
management without harvest estimation and anticipatory
buffering boils down to simply reacting on present harvest
without optimising the complete horizon. While this approach
suffices if activity is bound to high harvest, it fails in phases of
low‐intake since previously harvested energy was already spent.
Hence, times of no to little harvest have to be bridged by
preserving energy. Over the past, batteries [21] and super-
capacitors [22] have become established energy storage. How-
ever, the choice of storage size is non‐trivial: large storage allows
to survive long low‐harvest phases while small storage allows to
recharge quickly and keep outages short [23]. Additionally, times
of interest are not necessarily aligned with times of harvest;
hence, careful energy management is needed to efficiently use
present energy. This need increases if time‐varying utility is
combined with favourable short energy storage.

2.2 | Energy management

Since the introduction of the concept of ENO in Ref. [18],
several energy management algorithms have been developed.
The authors of Ref. [18] aim at finding one duty cycle to ensure
the consumed energy does not exceed the harvested energy for
a finite horizon, for example, 24 h. This calculation is adapted
when an energy surplus or deficit is detected. However, a linear
relationship between duty cycle and utility is assumed and no
support for varying utility is provided. A linear‐quadratic
tracking approach is presented in Ref. [24] in which the au-
thors aim to maintain a stable SoC of the battery. Whilst the
linear‐quadratic tracking outperforms [18] in an average duty
cycle and duty cycle variance, it also lacks support for time‐
varying utility. The task of finding the optimal sensing rate is
transformed into a control problem by the authors of Ref. [14].
While the controller generation is performed offline, sensing
rate adaption is performed online on the node. However, Ref.
[14] neither supports time‐varying utility nor does it give im-
plications on practical performance. Even the new approach

such as AsTAR [6], which aims to offer lightweight dynamic
task rate adaption without the need for prior modelling, limits
the use of energy to high‐intake phases. AsTAR bounds task
execution rates to voltage levels, which allows the node to
execute tasks at high rates during high‐intake phases, low‐
intake phases are spent in shut‐off states to prevent the
depletion of energy storage. This inhibits utility‐based sched-
uling, where high execution rates and high harvest mismatches,
and boils down to best‐effort scheduling. In contrary, authors
of [7] present a lightweight algorithm based on a binary
search. The goal is to find the maximum average node po-
wer consumption restricted by a given policy. Although the
depletion safe policy (DS)—which keeps the SoC above
depletion limit—ensures uninterrupted operation and stable
duty cycle, the approach lacks support for time‐varying utility.

Targetted at long‐term sensing (usually year‐around), the
authors of Ref. [25] present LT‐ENO. It incorporates an as-
tronomical model, which maps changes of solar irradiation
during the year. However, it assumes uniform utility and aims to
maintain a stable duty cycle throughout the year, which is
adapted if harvested energy and predicted energy differentiate.
The authors of Ref. [8] present PreAct, a long‐term energy
management algorithm designed for time‐varying utility. PreAct
outperforms the algorithms presented in Refs. [24, 25], and can
be considered as the state‐of‐the art approach for ENO sys-
tems. It uses an underlying PID controller to follow an optimal
state‐of‐charge curve and dynamically correct harvest
mismatch. However, PreAct performs sub‐optimal with small
energy storage, (short‐term) control horizon on day‐basis and
prediction algorithms, c.f. Section 5.

2.3 | Problem analysis

As stated before, up until now, no energy management algo-
rithm exists, which incorporates time‐varying utility, and is
targeted at small‐sized storage and short‐termed horizon.
Small storage is assumed to charge once per day; hence, the
capacity limits the usable energy during times of low‐intake.
However, even with small solar cells, for example, a
35�35 mm, the harvest during the day often exceeds the node
consumption by a magnitude, c.f. Figure 3b. The energy sur-
plus leads to saturation of the energy storage, typically long
before the low‐intake phases begin. Current energy

(a) (b)

F I GURE 2 Although being inevitable for
activity planning, harvest estimation may be
inaccurate; here, we highlight the effects of slot
averaging on harvest estimation; the slot duration is
60 min; even the real slot average cannot perfectly
represent the harvest trace; the harvest trace is at
5 min resolution
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management schemes, however, aim to maintain the fully
charged storage to safely live throughout the low‐intake phase.
The targetted low‐intake node consumption is much smaller
than high‐intake harvest; hence, the storage is kept saturated.
The incoming energy is wasted, if an application profits from a
higher node consumption. This deficiency is pinpointed in
Figure 1.

Figure 3a showcases one day with different energy man-
agement algorithms. The used energy storage is a 50 F
supercapacitor with 35�35 mm solar panel. The node uses
Pro‐Energy [16], a state‐of‐the‐art solar harvesting forecasting
algorithm. However, both supplied management schemes, that
is, DS [7] and PreAct [8], fail to utilise all the energy in the
afternoon: nearly seven hours of high energy availability is
wasted. Both schemes do not allow for higher node con-
sumption to prevent depletion during the low‐intake phase.

This behaviour adds up, as we highlight in Figure 4. For
small‐sized storage, for example, a 25 F supercapacitor, up to
19% of the time in our simulations surplus energy is wasted. In
total, this adds up to 903 h or an average of 4.65 h/d.

Hence, we design EmRep, which is targeted to mitigate
storage saturation and efficiently use harvested energy under
time‐varying utility.

3 | DESIGN OF EmRep

As highlighted in Section 2.3, we see one dominating problem
with the existing EH management schemes: bridging low‐
intake phases limits the management flexibility in high‐intake
phases. This entails the saturation of energy storage and
hence wastes surplus energy.

3.1 | System model

We employ a system model similar to Ref. [8], which we depict
in Figure 5. In this model, we assume the node to include
microcontroller, radio and other attached hardware such as
sensors and actuators. The EH circuit side consists of two
essential entities: the harvester and the energy storage. External
devices such as Analogue to Digital Converters or coulomb
counters gather information about the harvest H throughout a
time horizon TH, and the SoC of the energy storage.

Although EmRep is designed with solar EH in mind, the
energy source is exchangeable in general. However, using
another source requires that harvest estimation is possible
either from local learning or external knowledge (like weather

(a)

(b)

F I GURE 3 Study of saturated energy storage;
surplus energy is wasted instead of increasing utility
for application; data gathered by the simulation
framework in Ref. [27] and based on real‐world
harvest data collected in Ref. [33]
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forecast). For solar harvesting, this pattern may be influenced
by buildings, trees and the angle to the sun. The energy storage
entity may be one or multiple supercapacitors [23] or a battery
[21]. The generated power at the harvester Ph translates to an
energy transfer into the storage. The node is only attached to
the storage and consumes Pn from the storage. Both Ph and Pn
are influenced by charging and discharging efficiency, which are
highly platform‐dependent. However, correct modelling has to
account for the inefficiencies that have to be obtained prior to
simulations.

The transition between the harvest source, energy storage
and node is highly platform dependent. For maximum effi-
ciency, the storage can be connected directly to the node and,
hence, serves as supply. However, recent literature has shown
that a fluctuating supply voltage affects the clock frequency of
microcontrollers and hence code execution duration [26]. If
conversion losses can be accepted, a boost converter can be
used to stabilise supply voltage. Furthermore, more energy
from the capacitor can be used since it can be discharged to
lower voltage levels. For common supply voltage levels, for
example, V n¼3.3 V, the conversion efficiency is usually above
80% [27] so that benefits outweigh. As a consequence, the
power demand of a sensor node PnðtÞ simplifies to

PnðtÞ ¼ Vn ⋅ InðtÞ; ð1Þ

with InðtÞ being the current drawn by the node. This cur-
rent varies with used peripherals, for example, radio or
MCU, and has to be obtained by in‐lab measurements
[27, 28] or on‐line [29]. Over a time interval Δt, InðtÞ
usually fluctuates but the literature for energy management

[7] has shown that the time average over Δt can be used
without sacrificing accuracy.

The software side of the model consists of four entities:
predictor, utility manager, scheduler and energy manager. As
discussed in Section 1, applications may demand the time‐
varying use of resources, for example, prefer high sampling
rates in the morning. These demands are fed into the energy
manager with a utility profile U*ðsÞ. Since ENO requires spent
energy to be not greater than harvest energy for a finite time
horizon TH, it is crucial to estimate the harvest intake. For
solar energy, numerous algorithms exist, for example, Pro‐
Energy, WCMA and Delta‐T. Such algorithms try to learn
prevalent patterns and estimate future harvest H

ˆ
with as low

error as possible. This information is used by the energy
manager to decide on an appropriate duty cycle dcðsÞ, that is,
the ratio between active times and overall time. Please note that
EH usually divide the horizon TH into slots of fixed time, with
time slots s ∈ 1;…; S usually lasting 30–240 min for a diurnal
cycle. Given a known active node power consumption Pn, the
duty cycle dcðsÞ can be used to calculate the target power
consumption

P*nðsÞ ¼ Vn ⋅ In ⋅ dcðsÞ ¼ Vn ⋅ B: ð2Þ

In literature, the product of active power consumption of
the node and duty cycle is often referred to as budget B. How
budget B is spent is determined by the scheduler. Literature
knows various techniques, for example, by using program
flows [28] or a Lazy Scheduling Algorithm (LSA) [30]. In
contrast to schedulers, which decide when to spend energy,
energy managers decide how much energy to spend. Hence,

F I GURE 4 Percentage of time spent with full
energy storage (saturation); simulation of 194 d;
storage is full upto 19.4% of time for 25 F capacitor;
incoming energy at the harvester is wasted

F I GURE 5 Modelling of the energy harvesting
system; harvested energy is stored and voltage is
converted before used by the node; energy manager
joins harvest estimation bH and utility profile U� to
calculate energy‐aware budget B; budget determines
how much energy is used, the scheduler determines
when to use this energy; time‐dependencies are omitted
for readability
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this work has a different scope than previously published
literature on energy‐aware scheduling, for example, [27].
EmRep implements the energy management entity and thus
merges information about future harvest, current SoC and
instructions for the scheduler.

3.2 | Utility

Literature suggests different definitions of the utility; either as a
relative metric at which a portion of the overall available energy
is distributed. For for example, PreAct implicitly defines the
utility as a portion of the mean expected energy intake. A more
application‐specific approach, for example, as presented in Ref.
[31], directly relates the utility to a sampling rate. Since appli-
cations often require a specific amount of activity, for example,
structural health monitoring with the desired number of
measurements per hour, we see the latter approach as more
promising. Hence, the achieved utility UðsÞ is given by

UðsÞ ¼
BðsÞ
Bmax

; s ∈ 1;…; S ð3Þ

with Bmax denoting the maximum achievable budget and the
corresponding sampling rate and BðsÞ the current average node
consumption. Bmax is the slot average of the node consump-
tion, which directly translates to the sampling rate if the energy
consumption of the sampling activity is known. Correspond-
ingly, we define a utility profile U*ðsÞ, which declares a desired
utility throughout the horizon TH. Next, we introduce the main
characteristics of EmRep.

3.3 | Principle

As briefly introduced in Section 1, EmRep uses SoC estimation
to identify high‐intake and low‐intake phases, manages energy
separately in these phases together aiming at utility
maximisation.

3.3.1 | SoC curve

The SoC of harvesters with the supercapacitor depends on the
usable energy in the capacitor. Ideally, the energy in the
capacitor with nominal capacity C can be calculated by
E*cap ¼

1
2 ⋅ C ⋅ V cap

2. In practice, however, energy from the
capacitor below Vmin is not feasible, c.f. [32], because the
employed boost converter needs a minimum input voltage to
provide a stable output voltage at a high load. Hence, the us-
able energy in the capacitor is

Ecap ¼ E�cap − Emin
cap ¼

1
2

⋅ C ⋅ Vcap
2 − Vmin

2� �
: ð4Þ

For the used system model, the SoC is the ratio between
Ecap and Emax

cap , hence is calculated by

socðV capÞ ¼
Ecap

Emax
cap
¼
Vcap

2 − Vmin
2

Vmax
2 − Vmin

2: ð5Þ

EmRep uses the SoC estimation of Ref. [7], which solves the
underlying differential equation with the Newton's method.

The simplified equivalent circuit, found in Figure 6, allows
the authors to simulate the SoC course of the energy storage.
The coherence between model, simulation, and real‐world
performance has already been shown in Refs. [7, 27]. We
also use this model in the simulation framework detailed in
Section 4.1 for fair and reproducible testing.

When the Sun shines on the solar panel, the harvesting
current is Ih > 0. The consumption part consists of a boost
converter with efficiency η In;Vcap

� �
, which provides the

output voltage Vn. The sensor node draws a current In from
the boost converter output; the boost converter draws the
current I r at its input. If Ih exceeds I r, the capacitor is charged
with current Ic. To prevent overcharging, the switch Sh dis-
connects the solar panel whenever V cap > Vmax is detected.

Since the current flowing into the reserve is the difference
between harvest current and boost converter current,

Ic ¼ Ih − I r ð6Þ

holds. Together with the converter efficiency equation (equal
power at in‐ and output side)

I r ⋅ Vcap ⋅ η In;Vcap
� �

¼ In ⋅ Vn ð7Þ

and the capacitor model from Ref. [33] giving Ic ¼ C ⋅ _V cap,
the final formula for the system model is as follows:

C ⋅ _V cap þ Ih ¼
In ⋅ Vn

Vcap ⋅ η In;Vcap
� �: ð8Þ

Simulating the time‐dependent capacitor voltage coursewith
this formula, however, is not feasible due to the additional
hardware characteristics. The boost converter is only able to
provide a stable output voltage if a capacitor voltageV cap > Vmin
is achieved; additionally, V cap ≤ Vmax due to the overcharging
protection. The solution, however, is possible for discrete time
intervals (timeslots) since Ih and In can be assumed to be piece‐
wise constant within the timeslot. This results in a first‐order
differential equation whose solution is approximated with the
Newton's method and a binary search algorithm.

The load maximisation algorithm finds the maximum power
consumption P�nðsÞ ¼ I�n ⋅ V n ¼ Pds of the node throughout the
complete horizon without depleting the energy storage. This
behaviour is also shown in Figure 3, where DSmaintains a stable
power consumption neglecting the energy surplus. EmRep uses
this power consumption as the baseline in the DS region. Based
on Pds, the SoC curve for the next prediction horizon is
calculated. The SoC curve of devices equipped with solar
harvesters often follow the trend depicted in Figure 7: a
minimum—usually at the end of the low‐energy intake phase—
and a maximum—during or at the end of the high‐energy intake

96 - HANSCHKE AND RENNER



phase. When energy storage charges once per day, two extrema
naturally divide the prediction horizon TH into two regions. In
the low‐energy region, little or no harvest can be expected; thus,
preventing depletion of the energy storage is the key. In the
second region, the harvesting intake often exceeds node con-
sumption, which either saturates energy storage or gives more
freedom to spend energy. In EmRep, we call these two regions
the DS region and the Free region; cf. Figure 7.

Directly after passing tmax
n , EmRep estimates the SoC for

the next prediction horizon TH. The employed SoC estimation
strategy highly depends on the used platform; for example, if a
supercapacitor or regular battery is used. Two two‐tuples for
the next minimum ðtmin

nþ1; soc
min
nþ1Þ and maximum ðtmax

nþ1; soc
max
nþ1Þ

are stored.

3.3.2 | Regions

In the DS region, the node consumes the previously calculated
Pds. Up until tmin

nþ1, EmRep only checks if the target socmin
nþ1 will

be reached and slightly lowers/increases Pds if necessary, that
is, the SoC estimation reruns until tmin

nþ1 if estimation and reality
differentiate.

After tmin
nþ1 passed, the Free region starts with a new itera-

tion of the algorithm of Ref. [7]; still, not for TH but for

Tfree ¼ tmax
nþ1 − tmin

nþ1: ð9Þ

The algorithm decrements the power consumption for the
SoC calculation until a consumption is found that (a) maintains
an SoC above socmin within Tfree and (b) reaches socmax

nþ1 at t
max
nþ1.

Here, to maintain depletion safety for the whole horizon TH, it
is crucial that socmax

nþ1 is met at tmax
nþ1. We allow for a certain SoC

deviation socΔ to increase consumption flexibility. Large values
of socΔ allow for a higher power consumption during the Free
region but increase the risk of downtime, and lower the power
consumption in the following DS region. Our parameter
evaluation shows that socΔ should range between 1% and 19%;
above and below these limits, performance suffers significantly.
We found that socΔ ¼ 5% offers a good balance across the
storage size and prediction methods.

As stated in Section 1, EmRep is tailored to small size
storage, which is assumed to recharge significantly during the
horizon. If Tfree is small, or the margin between SoC extrema is
small, the flexibility for EmRep is small and hence Pfree is only
slightly higher than Pds. For harvesting patterns, which may
lead to two SoC peaks, EmRep still works and the DS region
and the Free region occur multiple times per horizon. How-
ever, in such situations Tfree and the difference between SoC
extrema is small and so is the surplus energy; hence, the benefit
of EmRep towards DS decreases.

3.3.3 | Utility optimisation

As stated in Section 3.2, utility is defined as a ratio between a
maximum budget and achieved budget. This linear correlation
allows for optimisation of the budget; hence, a maximum
budget also maximises the utility. Additionally, it is not bene-
ficial for the application to provide a budget higher than Bmax.
In the SoC curve estimation, EmRep takes this into account
and uses the utility profile U�ðsÞ together with Bmax as upper
bound for the budget in slot s.

3.3.4 | Schedule generation

As detailed in Figure 5, EmRep implements the energy man-
ager entity. To develop a schedule, which can be executed by
the application; however, a scheduler is needed, similarly to the

F I GURE 6 Simplified equivalent circuit of the resembled harvester; a
supercapacitor serves as the reserve, which is charged by the solar panel
(current source); sensor node is supplied via boost converter; model
obtained from Ref. [7]

F I GURE 7 Behaviour of EmRep; management regions are
determined using SoC estimation; in DS region power consumption Pds

ensures uninterrupted operation leads storage saturation; in Free region the
energy surplus is exploited by increasing node consumption to Pfree with a goal
to provide higher utility
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one presented in Ref. [27]. EmRep is compatible with sched-
ulers that keep a target average consumption B, equivalent to a
duty cycle as stated in Equation (2). For evaluation, we use a
scheduler that transforms the average consumption into a
uniformly distributed set of activities within the timeslot. The
simple scheduler, which we call classical scheduler, assumes a
program consisting of only one part with duration dtask and an
average power consumption Ptask. Both parameters have to be
obtained by in‐lab measurements of the real hardware and fed
into the scheduler. First, the classical scheduler determines the
overall energy available in the slot and calculates the maximum
number of repetitions N ∈ Nþ of the program which can be
executed so that the assumption

B ⋅ Vn ⋅ T S ≥ N ⋅ dtask ⋅ Ptask
þ T S − N ⋅ dtaskð Þ ⋅ Pq

ð10Þ

holds. Here, T S denotes the length of the timeslot and Pq the
power drawn in the used sleep mode. Afterwards, starting
times for N tasks are generated by distributing the times uni-
formly throughout the slot. Prior simulations show that the
influence of the task distribution within the timeslot is limited
as long as the average consumption is met; hence, the classical
scheduler is used in favour of the computational‐expensive
scheduler presented in Ref. [27].

4 | EVALUATION SETUP & METRICS

In this section, we briefly elaborate on energy managers used
for comparison, introduce the simulation tools and hardware,
outline the used metrics and motivate relevancy of utility
profiles. For comparison, the authors of PreAct [8] have kindly
provided us with an implementation of their state‐of‐the‐art
energy manager for long‐term ENO systems. Since
depletion‐safety is key for EmRep, a natural competitor is the
DS algorithm presented in Ref. [7]. Please note that DS is
utility‐agnostic whilst both PreAct and EmRep include time‐
varying utility into their management by design.

4.1 | Hardware & simulation toolkit

We use our prototype harvester which is presented in detail in
Ref. [27]. The sensor node is powered by a solar cell generating
35 mA at 4 V. The power generated at the solar panel is directly
fed into a supercapacitor; hence, the voltage level of the
capacitor influences the power point of the solar panel. To
provide a stable supply voltage of V n ¼ 3.3 V for the sensor
node, the harvester is supplied with a TI TPS61021 A boost
converter. We have shown [27] that the conversion circuit
offers an efficiency between 78% and 93% across output
currents between 1 and 330 mA.

Real‐world experiments for EH‐WSN are time
consuming and equal conditions for all nodes are hard to
obtain. Hardware‐specific variances, shadowing conditions

and wireless medium access make fair comparison of energy
management techniques nearly impossible. Various testbeds
[34–36] exist which emulate harvesting conditions. Still,
wireless transmission conditions may change due to inter-
ference and influence the power consumption of a sensor
node, for example, connecting time to a WiFi access point
increases with the surrounding traffic [37]. Furthermore, the
variety of parameters, for example, energy manager, sched-
uler, capacitor size, and harvest estimation, increases the
number of experiments and hence the time needed for the
whole experiment is increased drastically. Hence, we use a
thoroughly designed simulation toolkit, which ensures
repeatable conditions and a fair comparison. To demonstrate
that the used simulation toolkit is on par with the real world,
we have conducted an experiment with the testbed as pre-
sented in Ref. [34]. The testbed uses controlled LEDs to
replay previously recorded or artificial traces to investigate
corner cases or the general behaviour of energy‐aware algo-
rithms. We replicate attached sensors of the node by switched
resistors that lead to similar power consumption. The same
artificial light trace is used for the testbed and the simulation
toolkit and the sensor node activity and SoC are compared.
We found that simulation and real‐world test lead to the same
outcome and hence conclude coherence between simulation
and real‐world performance.

In Ref. [27], the simulator has been validated by comparing
the simulations to real‐world tests.

The data set is 194‐day real‐world solar trace recorded with
a similar miniature harvester at a time resolution of 5 min.
These values are fed into the simulation toolkit and are used
for slot averaging and harvest estimation. In addition to the
provided EWMA harvest estimation, we implement the
WCMA estimation as well as the state‐of‐the art estimation
algorithm Pro‐Energy. Furthermore, we extend the simulation
framework to a utility manager, which gives a control about the
utility profiles. Please note that the framework also simulates
node shutdown, that is, a voltage dropping below Vmin; the
utility is consequently set to zero. It is also assumed that a
shutdown leads to loss of harvest estimation; hence, prevalent
patterns have to be learnt again. Table 1 gives an overview of
the used simulation parameters. The parameters for WCMA
and Pro‐Energy are chosen based on suggestions in the cor-
responding papers. However, our goal is not to compare
prediction methods but to investigate the influence of differ-
ently designed prediction methods on energy managers. For
brevity, we only show a subset of the simulation results.

4.2 | Metrics

To evaluate the performance of the different energy managers,
we use utility as the primary metric as presented in Section 3.2.
The utility is used to define the specific amount of activity for
the sensor node; hence, we can assume that a utility in a
timeslot s greater than the specified utility U�ðsÞ is not bene-
ficial. Hence, we define the effective utility
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UeffðsÞ ¼
minðUðsÞ;U*ðsÞÞ

U*ðsÞ
: ð11Þ

Enabled by this metric, we can judge how well the desired
utility profile is met. As stated in Section 3.2, we define the
utility based on a maximum budget Bmax which can be ach-
ieved by the sensor node. Defining Bmax is non‐trivial: since the
sensor has to fulfil the ENO condition, it cannot spend more
than it harvested. Hence, we set it to the average current fed
into the capacitor resulting in Bmax = 2.73 mA. However, this
value can also be changed to an application‐specific value, for
example, representing a budget needed for the desired sam-
pling rate. To reveal differences between configurations, we
also define a relative utility

U relðsÞ ¼
UrefðsÞ − UeffðsÞ

UrefðsÞ
: ð12Þ

The reference effective utility UrefðsÞ is specific to a
configuration, for example, for a specific capacitor size.

4.3 | Utility profiles

To highlight the influence of time‐varying utility on energy‐
management, we select four different utility profiles, which
we depict in Figure 8, and motivate their relevancy in the
following. Please note that we keep the average throughout TH

equal for all profiles since it directly influences the results of
the effective utility. All utility profiles are defined with hourly
resolution, which we found to be most intuitive. If higher
resolution is required, it can easily be changed in the
simulation.

TheConst profile serves as the baseline for management, as
it replicates utility‐agnostic behaviour. Each slot is equally
important and hence no saving of energy is performed. How-
ever, it is totally different from greedy algorithms or IC devices as
the goal is to provide a constant duty cycle—also in night time.
An example application is a weather surveillance station which
constantly gathers temperature and humidity in the air.

The Workday profile represents a classic case at which
harvest is aligned with the interest of the application. Between 8
and 20 h, the interest of the application is very high, while eve-
ning, night and very early mornings are out of interest. This
should be the profilewhereEmRep performs best since it profits
most from the application interest in theFree region.An example
application is a gas sensor at outside work plants, for example,
harbours. Here, during normal work hours, the interest is high to
ensure safe working conditions for employees while interest
outside the working hours is of limited interest.

The Worknight profile is the most demanding for energy
managers working on solar harvesting system since application
interest is misaligned with harvest. An example application is a
surveillance camera system. During the day, workers are pre-
sent so risk by burglars is limited, while night times are lonely,
hence gathering images is important.

The Rushhour profile is used by our VAM case study. Here,
early mornings and evenings are of most interest. This applies
also to traffic surveillance systems since traffic is highest during
these times. For energy managers, providing high utility at the
end of low‐intake phases is usually most challenging since the
energy storage is at very low levels.

Please note that the shown utility profiles are examples to
highlight the abilities and opportunities of utility‐based man-
agement for EH‐WSN. The utility profiles can be freely
defined based on applications' needs at hourly resolution and
for values U�ðsÞ ∈ ½0; 1�.

5 | RESULTS

In this section, we showcase the following:

� The influence on the SoC curve and saturation times
(Section 5.1)

� The interplay of energy storage capacity, absolute and rela-
tive utility (Section 5.2)

� The effect of application utility profiles on different energy
managers (Section 5.3)

� The impact of non‐ideal prediction harvest forecast
(Section 5.4)

� A case study for structural health monitoring based on VAM
on bridges (Section 5.5)

� The limitations of EmRep (Section 5.6)

5.1 | Benefits of decoupling

To highlight the benefits of decoupling low‐ and high‐energy
intake periods for energy management, we analyse SoC

TABLE 1 Summary of simulation parameters

Parameter Value(s)

Simulation duration 194 d

Harvest resolution 5 min

Solar cell Up to 35 mA (and 4 V)

EWMA parameters α¼ 0:8

WCMA parameters α¼ 0:8, D¼ 10, K ¼ 5

Pro‐energy parameters α¼ 0:5, D¼ 14, K ¼ 3, G¼ 5

Number of time slots 6, 12, 24

Supercapacitor size 25, 50, 100, 200, 400 F

Supercapacitor voltage V cap Up to 2.7 V

Supercapacitor leakage current 16 to 261 µA

Shutdown voltage Vmin 1.3 V

Turn‐on voltage 1.6 V

Conversion efficiency η¼ 0:78 to 0.93

Maximum budget Bmax 2.73 mA
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curves and resulting utilities in Figure 9. We compare all
energy managers with the same EWMA filtered harvest
prediction for our data set. The day is divided into S ¼ 24
slots; hence, the accuracy of forecast and utility calculation is
60 min. For completeness, we also show the harvest at the
solar panel of the four‐day excerpt. The size of the capacitor
is 50 F.

At the beginning of day 35, all energy managers share a
nearly equal utility of around U ¼ 0:15, which is limited by the
amount of energy stored in the capacitor. The latter was fully
charged before and since no harvest is expected during night
time, it equals an average consumption of In¼0.45 mA. Since
the predicted harvest is slightly lower than expected, all man-
agers have to correct their average consumption slightly
immediately following the minimum SoC.

At position (a), EmRep evaluates the choice of B again
to reach the maximum at 17 h, position (b). Since SoC is
still low at 0.1, B is even lower than before to the mini-
mum. This, however, changes with the increasing harvest at
which B can be adjusted so that an average utility of
U ¼ 0:32 between 11 and 17 h is reached. Still, after 17 h at
Day 35, position (b), the utility during the night is on par
with the other energy managers since the SoC is similar
during late in the afternoon.

The same trend follows for day 36 − 38: the time with full
energy storage roughly decreases by 1 h per day. This translates
to a reduction of saturation time by 20% compared with the
five hours of DS. More importantly, the ability to optimise B
only towards the end of the high harvest phase at 18 h allows
EmRep to increase utility to U ¼ 0:63 between 11 and 18 h at

Day 37. At the same time, PreAct averages U ¼ 0:2 and DS
achieves U ¼ 0:17.

This advantage also manifests when comparing the satu-
ration times with different energy managers. In Figure 10, we
depict the number of hours in the 194 d lasting data set, which
is spent at full storage. The effect of reducing saturation by
design is clearly visible: EmRep decreases time in saturation by
up to 37:3% at 25 F compared with PreAct. This yields an
absolute reduction of 391 h or an average of 2.01 h/d. As the
storage size increases, the problem of saturation lessens, for
example, at 200 F EmRep reduces saturation time by 19:1%
compared with DS. Next, we highlight the influence of the
storage size on utility.

5.2 | Influence of storage capacity

5.2.1 | Absolute results

We highlight the influence of the supercapacitor capacity on
the effectiveness of the different energy managers in Figure 11.
The ordinate shows the average of the slot‐wise computed
effective utility. The different subplots show an increasing
number of timeslots, which affects utility and prediction ac-
curacy as well as management reactivity. Figure 11 showcases
the situation with ideal slot‐wise prediction. This means that
energy managers work on the correct slot average; however,
the misalignment of harvest throughout the timeslot can affect
the results, c.f. Figure 2. For example, the slot average can be
equal if high harvest arrives late in the slot compared with

(a) (b)

(c) (d)

F I GURE 8 Examples for potential utility
profiles used for simulation; average requested utility
is equal for all profiles; profiles can be freely defined
on hourly resolution
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stable (lower) harvest throughout the slot—the effect on the
sensor node, however, can be totally different since it could
have been shutdown before the end of the slot. This is espe-
cially critical at early mornings as SoC is at a very low level. We
also depict a realistic limit in our simulations: as stated in
Section 4, the capacitor voltage influences the power point of
the solar panel. Our limit shows the average power which
could have been generated at the solar panel if the SoC was
always soc¼ 0:5. The closer an energy manager is able to get
to this line, the better the performance is.

Clearly, only increasing the energy storage does not linearly
increase the effective utility. Increasing the capacity by eight,
yields an increase in the utility of 2:03� for EmRep, of 2:41�
for PreAct, and 3:60� for DS at S ¼ 24. Interestingly, both

PreAct and EmRep show an increase up until a capacity of
200 F. Doubling the storage capacity additionally does not
increase the utility effectively for all energy managers. The
reason behind this is the size, and the power, respectively, of
the solar panel. The small 35�35 mm panel does not suffice to
recharge the capacitor completely; hence, no benefit in utility
can be seen. This underlines again that solely increasing the
storage capacity—over‐dimensioning—only makes sense when
the size of the solar panel is increased as well.

The number of timeslots, however, appears to have a
minimal effect, at least at ideal prediction, for EmRep and DS.
Although the slot length increases from 1 to 4 h, the effective
utility only decreases by 7% for DS and 2% for EmRep for a
100 F capacitor. PreAct on the other hand is quiet sensitive to
reduction in slot length which manifests in a loss of 32%. This,
however, is mainly caused by extreme reactions of the under-
lying PID‐controller. These high fluctuations in the duty cycle
can be corrected with short timeslots and high‐capacity stor-
age, c.f. Figure 11c, but otherwise can have severe conse-
quences. We try to adjust PID parameters accordingly, but were
not able to improve results. However, these configurations are
a bit out of scope since PreAct is mainly designed for long‐
term ENO systems with large‐sized storage.

5.2.2 | Relative results

Typically, small‐sized energy storage saturates during the times
of high energy intake. With EmRep, we aim to mitigate this
effect and enhance the effective utility. Hence, we highlight the
influence of the capacitor size on the performance of energy

F I GURE 9 Comparison of SoC curve and utility for different energy managers; simulation uses EWMA prediction with S¼ 24 and C¼ 50 F; DS shows
nearly constant utility while PreAct pushes towards the benefits of surplus energy; still EmRep is the only energy manager that achieves full utility together with
higher average utility

F I GURE 1 0 Average saturation duration of energy storage for small
capacitors is significantly reduced; the results include prediction methods
and slot sizes as shown in Table 1 and Const profile; with a small 25 F
capacitor, EmRep decreases time with a saturated storage at minimum by
31:5%
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managers in Figure 12. Here, we show the difference in
effective utility in our simulation setup compared with the
reference, a 200 F capacitor. We choose the 200 F capacitor as
reference, since increasing the storage further offers only little
improvements for two of the three energy managers.

Across all simulation runs, the energy managers lose be-
tween 13:6% and 60:3% of their performance when decreasing
the size of the capacitor from 200 to 25 F. However, while DS
and PreAct lose 58:7% and 60:3%, EmRep only loses 44:4%.
Still, EmRep keeps an average utility level of 0.36 which is
1:42� higher than DS and 1:7� higher than PreAct.

Interestingly, DS is not able to improve the utility in the use
of a 400 F capacitor. This is a direct consequence of the

depletion safe algorithm, which tends to operate at lower SoC
levels. In a direct charge circuit, the operating point of the solar
panel is, hence, sub‐optimal, and the generated power is lower.
PreAct, however, tends to keep high SoC levels, which enable
the system to profit from over‐sized storage. EmRep sits in the
middle; building up on DS, it also tends to favour low SoC but
profiting also from non‐saturating storage.

5.3 | Utility profiles

Next, we highlight the influence of the different utility profiles
presented in Section 3.2 and showcase the resulting utility in
Figure 13. Each bar incorporates 60 different simulation
configurations with varying predictor, cap size, and number of
time slots.

The baseline for the other profiles is the Const profile.
Here, EmRep outperforms both DS and PreAct. In this pro-
file, each time of the day is equally important; hence, surplus
activity during daytime is beneficial. However, as visible by the
performance of PreAct, spending available energy too greedily
harms the overall performance.

The performance of the Worknight profile shows how
well the energy managers are able to maintain activity during
night time. Here, the DS algorithm as a base serves very well
since it aims at maintaining an equal performance level
throughout the day. Although this profile structure contrasts
with the design of EmRep—being designed to use surplus
energy—it still matches or outperforms the utility level of DS.
However, increasing the utility withWorknight profile requires
a larger cap; for example, with a 50 F capacitor DS and EmRep
both reaching at the utility of 0.48. This image changes with a
400 F capacitor at which DS reaches U ¼ 0:6 and EmRep
achieves 0.65. Please note, that in this profile, saturation times
are generally higher since the surplus energy during daytime is
not used to increase activity.

F I GURE 1 1 Average effective utility with different storage capacity
and timeslot lengths with ideal slot‐wise prediction; Const utility is required
throughout the day; EmRep outperforms PreAct and DS at long timeslots
and small‐sized storage; benefits diminish at 400 F and S¼ 24; best
performance should meet the practical limit (average harvest power)

F I GURE 1 2 Relative difference in utility, compared with 200 F
capacitor; EmRep loses significantly less utility with capacitors smaller than
100 F
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The Workday and Rushhour profiles are ideally suited for
algorithms that make use of surplus energy. EmRep is able to
increase utility by 0.13 (Workday) and 0.10 (Rushhour). Also,
PreAct reaches its best performance here, although it still
suffers to match the performance of DS.

5.4 | Prediction influence

Since a fundamental basis of EmRep is the time of SoC
extrema, the used harvest prediction method is important for
the overall performance. We conduct simulations for three
different short‐term prediction methods for solar EH and
depict the results in Figure 14. For comparison, we also show
the results with original data, that is, ideal prediction. However,
even the ideal prediction uses slot averages; hence, the devia-
tion within the time slot is still affecting the results.

Under ideal conditions but also with all used prediction
methods, EmRep maintains the top‐end performance across
the simulation configurations. WCMA and EWMA only pro-
duce a small drop in utility—for all energy managers—but with
Pro‐Energy prediction, the performance drops notably. This is
due to the fact that the prediction of Pro‐Energy may
completely change throughout the day. Out of a pool of similar
harvest profiles, Pro‐Energy continuously selects the profile
most similar to the already observed profile. While this de-
creases the prediction error, it also changes the SoC curve
completely; hence EmRep works sub‐optimal. This is on par
with the findings presented [16] where error rates increase with
the increasing forecast horizon up to 2.5 h.

Interestingly, PreAct shows a very stable performance
across prediction methods and is even capable of improving its
performance with the use of an EWMA‐filtered prediction.
This effect occurs with long timeslots, that is, 4 h, at which
harvest deviation has a high impact. In early mornings, the

harvest may rise only at the very end of the timeslot, which
increases the slot average. Since PreAct often uses a vast part
of incoming energy directly, it suffers from shut‐downs in early
mornings with little capacitors. This effect is softened by an
EWMA filter since the slot average generally is lower; and
hence also the used budget.

In general, the influence of the prediction algorithm is
rather limited for all energy managers. Although prediction‐
error‐centric work [19] found difference in Mean Absolute
Percentage Error (MAPE), the actual implications onto a
deployed system remains unclear. This is due to the fact that
prediction errors often cancel out throughout the day; that is,
the difference for the SoC is smaller than that of the MAPE.
Hence, our investigations imply that simple prediction
methods often suffice, even if their MAPE is higher.

5.5 | Case study: VAM

Structural health monitoring of bridges or buildings offers
great insights to ageing or possible defects of materials but
entails a high installation cost of wired power supply and high
maintenance effort. Supplying these sensor nodes with solar
energy lowers maintenance costs with low impact on mea-
surement performance. VAM, as presented in Refs. [4, 38], uses
piezo‐electric inducers to generate high frequency pulses. The
measurement method requires structural vibration at low fre-
quencies, which are typically caused by cars or trains. Hence,
only with a combination of low and high frequency pulses,
useful measurements can be obtained. Therefore, it is ideally
suited for the Rushhour utility profile, at which energy is spent
when high traffic, and hence low frequency vibrations are
present. Each measurement contains the stimulation of
different frequencies typically lasting 100 ms each. Good
quality results can be obtained with 50 different frequencies,

F I GURE 1 3 Mean utility with different profiles; mean includes cap
sizes, prediction methods and slot length as stated in Table 1; EmRep
profits most from valued activity at daytime; EmRep matches the
performance of DS at sub‐optimal profile Worknight and outperforms
PreAct

F I GURE 1 4 Mean utility with different predictors; influence of
prediction algorithm is minor, implicating that simple algorithms (EWMA)
may be favoured; although EmRep performs worst in combination with
Pro‐Energy, it still tops the performance of other energy managers with
ideal prediction
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but the quality of the measurements strongly increases with the
number of tested frequencies.

The deployed piezo‐electric transducer uses sinusoidal
signals with an amplitude upto 12 V. The signal generator
typically draws a current of 20 mA. We feed these parameters
into the simulation framework and highlight the results in
Figure 15. For simplicity, we simulate hourly resolution and
simple harvest prediction with EWMA. The box plot shows the
number of individual frequency measurements per hour for
different capacitor sizes. With the small 25 F capacitor, DS
achieves 110 measurements in 50% of the cases whilst PreAct
provides 280 and EmRep 380 measurements. Hence, EmRep
enables the VAM method either to increase frequency depth by
35% or upto two additional complete readings with 50 fre-
quencies each, compared with PreAct. Even more interestingly,
EmRep achieves a higher median performance with a 50 F
capacitor than that of DS and PreAct with a 100 F capacitor.
This allows for a much smaller package—supercapacitor vol-
ume usually scale linearly with capacity—without sacrificing any
performance.

5.6 | Limitations & discussion

EmRep shows a strong performance across various harvest
estimation patterns, slot sizes, utility profile and capacitor sizes.
Our investigations, however, also reveal deficiencies. The
performance benefit in the Worknight profile is quite limited,
compared with DS. This is dominated by diminishing benefits
at small size storage, although EmRep is tailored to small size
storage. However, buffering energy for the night requires a
certain size, for example, a 50 F capacitor only allows for an
average budget of 0.8 mA during the night. The options of
shifting energy here are very limited. Furthermore, in-
vestigations on the estimation methods reveal that EmRep
needs an estimator with stable prediction for TH. In particular,

Pro‐Energy, which achieves very low MAPE for forecasts up
until 2 h, is no good partner for EmRep since varying extrema
prediction hurts performance. Also, large‐size storage lets the
benefits of EmRep fade: relatively small solar cells combined
with large capacitors lead to low variations in SoC. If energy
storage is held at 50% of SoC, all incoming energy can be
stored and no energy surplus can be used for increasing utility
additionally.

6 | CONCLUSION & OUTLOOK

In this study, we presented EmRep, a new energy manager for
ENO systems. It uses SoC extrema prediction to decouple
energy management in phases where depletion safety is
important from phases where energy surplus exists. This allows
EmRep to increase the effective utility across a plethora of
combinations, for example, doubling utility with 25 F and long
timeslots. Our VAM case study also showed that the mea-
surement frequency can be increased by 2:5� for small size
storage. EmRep paves the way for smaller sensor nodes
powering the EH‐WSN. In future, we plan to test EmRep with
different harvest sources and perform real‐world test at
harbour bridges.
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