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Abstract. Explicit relations between eigenvalues, eigenmatrix entries and matrix elements
are derived. First, a general, theoretical result based on the Taylor expansion of the adjugate of
zI − A on the one hand and explicit knowledge of the Jordan decomposition on the other hand
is proven. This result forms the basis for several, more practical and enlightening results tailored
to non-derogatory, diagonalizable and normal matrices, respectively. Finally, inherent properties of
(upper) Hessenberg, resp. tridiagonal matrix structure are utilized to construct computable relations
between eigenvalues, eigenvector components, eigenvalues of principal submatrices and products of
lower diagonal elements.
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1. Introduction. Eigenvalues and eigenvectors are defined using the relations

Av = vλ and V −1AV = J. (1.1)

We speak of a partial eigenvalue problem, when for a given matrix A ∈ Cn×n we
seek scalar λ ∈ C and a corresponding nonzero vector v ∈ Cn. The scalar λ is called
the eigenvalue and the corresponding vector v is called the eigenvector. We speak
of the full or algebraic eigenvalue problem, when for a given matrix A ∈ Cn×n we
seek its Jordan normal form J ∈ Cn×n and a corresponding (not necessarily unique)
eigenmatrix V ∈ Cn×n.

Apart from these constitutional relations, for some classes of structured matrices
several more intriguing relations between components of eigenvectors, matrix entries
and eigenvalues are known. For example, consider the so-called Jacobi matrices. A
Jacobi matrix is a symmetric tridiagonal matrix T ∈ Rn×n with positive off-diagonal
entries. For these matrices it is well known [23, (Theorem 7.9.2, Corollary 7.9.1)] that
the squares of the last eigenvector components vni to an eigenvalue λi,

Tvi = viλi (1.2)

are given by the algebraic expression

v2
ni =

det (λiI − T̃ )
det′(λiI − T )

, (1.3)

where T̃ denotes the leading principal submatrix of T of dimension n− 1 times n− 1.
A few comments are in order. Given an eigenvalue, we obtain a simple rational

expression for a product of two eigenmatrix entries, in this case, the square of the
last eigenvector component. The numerator is the characteristic polynomial of a
submatrix of T and the denominator is a polynomial made of components of T , to be
precise, the derivative of the characteristic polynomial of T . Both these polynomial
terms are evaluated at the corresponding eigenvalue.
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This case is conceptually simple, since Jacobi matrices are normal, thus have
orthogonal eigenvectors, and moreover have no multiple eigenvalues. Nevertheless, it
already suggests that given information on eigenvalues we might be able to predict
something about eigenmatrix entries. It is for this reason that we have chosen to
use the term eigenvalue-eigenmatrix relation, despite some authors refer to simpler
relations as eigenvector-eigenvalue relations.

In this note we intend to broaden and deepen results of aforementioned type
to apply to more general matrices and to hold for more general cases, like multi-
ple eigenvalues and principal vector components. All the relations we have in mind
typically utilize knowledge on (principal) submatrices of A. This typical occurrence
of submatrices follows upon the basic, broad, yet simple derivation of generalized
eigenvalue-eigenmatrix relations we present in this note. This derivation is heavily
based on the Taylor expansion of the adjugate of zI −A.

We remark that known relations between different submatrices of a specially struc-
tured matrix A often give (possibly not yet known) information on the eigenvector
structure. One of the interesting cases is when structural constraints on A, for instance
the sparsity of A, allow to obtain an explicit expression for the adjugate of zI − A
other than the rather technical definition as transposed matrix of cofactors. This
explicit expression can be obtained for the class of unreduced Hessenberg matrices,
Jacobi matrices being merely a special subclass of this class.

1.1. Overview. This note is organized as follows. In the first section we briefly
touch some historical landmarks in the field of eigenvalue-eigenmatrix relations and its
close relative, the field of inverse eigenvalue problems. Due to the enormous amount of
references, we refuse to be exhaustive and just give some first, subjective impression.
Afterwards, we motivate why we need a rather technical and self-contained note that
gathers and extends the relations. We conclude the first section by introducing the
main portion of notations.

The second section covers the general case of A ∈ Cn×n being a general square
matrix with arbitrary, but known Jordan structure. In this section the (analytic)
Taylor expansion of the adjugate of zI−A is linked to (algebraic) eigeninformation.

The third section specializes the general result to the case of non-derogatory
eigenvalues. Major achievement is the introduction of shortened notation that al-
lows to simplify the statement of the general result to be stated in more intuitive,
straightforward and conceivable manner.

The fourth section is included for the sake of completeness and contains some
rather well known results for diagonalizable matrices. The already thoroughly in-
vestigated subclasses of normal and Hermitean matrices are similarly just briefly
touched.

Sections two, three and four are based on simplifications of the information related
to the algebraic eigeninformation. The fifth section raises the level for the special class
of Hessenberg matrices from a purely theoretical investigation to an applicable
one. This is achieved by rewriting the adjugate, and thus the Taylor expansion
of the adjugate, of zI − A. Section five includes the main results of this note, even
though the results of previous sections may serve as a platform for other important
generalizations.

Some other paths of generalizations as well as some implications and applica-
tions of the Hessenberg eigenvalue-eigenmatrix relations are briefly outlined in the
concluding section six.
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1.2. Historical Remarks. From the variety of references we mention as clas-
sical reference the treatise on determinants by Muir [21] dating back to 1928. Even
though at that time the use of Hessenberg matrices was of no importance due to
the lack of computers and thus of numerical algorithms, part of this famous treatise
is closely related to the field of eigenvalue-eigenmatrix relations. We mention explic-
itly Section 13 on continuants. Continuants are determinants of tridiagonal matrices.
The section contains plenty of results on eigenvalue-eigenvector relations in hidden
form, relying on the intimate connection between determinal recursions and eigenvalue
relations to become obvious in this note.

Another inspiring source is the book by Gantmacher and Krein [14]. Despite
the fact that the main focus is on knot-lines in eigenvectors and eigenfunctions for
so-called oscillation matrices, respectively oscillation kernels, they focus partly on
the already mentioned Jacobi matrices and corresponding relations for eigenvectors.
Such knowledge on Jacobi matrices finds its counterpart in linear functional analysis
in Sturm-Liouville eigenvalue problems. This topic is also covered in their book.

Knowing the intimate relations in more detail enables analysis of what is known
as inverse eigenvalue problems; concerning Jacobi matrices this is part of the work
of Hochstadt [17, 18], Hald [16] and Gragg [15]. For more details on inverse
eigenvalue problems we refer the reader to the extensive list of references compiled in
1998 by Moody T. Chu [11]. An early collection of results for the field of inverse
Sturm-Liouville problems has been compiled in 1946 by Borg [5].

Newer references include a summarizing paper by Elhay, Gladwell, Golub
and Ram [13], where the authors gathered relations for tridiagonal matrices (Jacobi
matrices) and Sturm-Liouville problems. A large portion of the material on Jacobi
matrices is collected in the book by Parlett on the symmetric eigenvalue problem
[23]. The book covers the same results that are dealt with in Paige’s thesis [22], where
these results find their natural application in the error analysis of the (symmetric)
Lanczos method.

It is interesting that both Paige and Parlett cite a paper by Thompson and
McEnteggert as being the origin of the relations refined by them to the tridiagonal
case. To be more precise, the origin of the relations is a sequel of altogether nine
papers by R. C. Thompson [24, 32, 25, 28, 26, 29, 27, 31, 30]. The second paper
in that row, the only one published with co-author McEnteggert [32], is cited in
the aforementioned book by Parlett and the thesis by Paige. Yet, the results of
interest to us are already contained in the first paper [24].

The Thompson sequel is an inspirational source for results concerning Hermitian
and symmetric matrices, clarifying the relations between eigenvalues and eigenvalues
of principal submatrices. This includes a proof for the well known result that the
eigenvalues of a principal submatrix of a normal matrix are contained in the convex
hull of the eigenvalues. More fascinating, the results are even sharpened to theo-
rems about the position of the other eigenvalues, when additional knowledge on some
eigenvalues is given.

Results have mostly been obtained for Jacobi matrices and Sturm-Liouville
problems. This, of course, can be explained on the one hand by the historical de-
velopment, on the other hand by the importance of these two closely linked areas in
several applications.

One nice exception is the investigation of unitary Hessenberg matrices by Am-
mar et al. ([1, 2]). In this case the relations can not be simply based on principal
submatrices, since a principal submatrix of a unitary Hessenberg matrix in most
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cases is no longer unitary, even if obviously Hessenberg structure is inherited.
The author knows of no result for non-diagonalizable matrices, with the remark-

able exception of knowledge on the Jordan structure of Frobenius companion ma-
trices and so-called double companion matrices.

The full treatment of the former class can be found in Wilkinson’s Algebraic
Eigenvalue Problem, [33], sections 11 and 12 entitled “Non-derogatory matrices”,
pages 13–15, equations (11.6) and (12.6). Parts of it are contained in most textbooks
on ordinary differential equations, see for instance the book by Coddington and
Carlson [12].

The latter class is considered in the construction process of stable general lin-
ear methods for ordinary differential equations, see [8, 34, 9]. It is remarkable that
apart from purely theoretical investigations both non-diagonalizable cases stem from
applications in the context of ordinary differential equations.

1.3. Motivation. The focus of this note lies on a topic in the field of matrix
analysis that appears to be a well researched and quite old one. This suggests that
most things are surely known and raises the question if we really need yet another
paper addressing this topic. There are at least three reasons for this note:

1) Certain instances of eigenvalue-eigenmatrix relations are frequently re-derived
and re-proven. The goal of this note is to gather, unify and generalize the derivation
of the relations in the finite dimensional setting in such a way that a toolkit is at hand
to construct precisely the relation needed without digging through a vast amount of
papers on the subject.

2) When eigenvalue-eigenmatrix relations were first derived, Hessenberg matri-
ces have not been of interest to the matrix analysis community. Nowadays, Hessen-
berg matrices occupy a position at the center of numerical analysis, but the focus of
most matrix analysts has shifted significantly from eigenvalue-eigenmatrix relations to
other topics. Yet, the relations for the Hessenberg case enable better understanding
and error analysis of Krylov subspace methods [35] and might be fruitful in under-
standing properties of modern QR algorithms like multi-shift QR with aggressive early
deflation [6, 7].

3) With the generalizations to multiple eigenvalues and principal vector compo-
nents achieved in the present note, eigenvalue-eigenmatrix relations have entered a
new stage of completeness and can be presented using only simple mathematics in
self-contained form.

For simplicity of presentation two of the possible generalizations, namely, the
generalization to the general eigenvalue problem, i.e., to relations involving matrix
pencils, and to the infinite dimensional setting, i.e., to Sturm-Liouville eigenvalue
problems, have been neglected.

1.4. Notation. We derive and present the results in the field of complex num-
bers denoted by C. Let a matrix A ∈ Cn×n be given. In the following, we are
interested in inherited characteristics and cross-relations of solutions to the algebraic
eigenvalue problem

Av = vλ, 0 6= v ∈ Cn, λ ∈ C. (1.4)

The spectrum of A is denoted by Λ. Let the Jordan decomposition of A be given by
V −1AV = J . The Jordan matrix J is the direct sum of Jordan boxes Jλ, which in
turn are direct sums of Jordan blocks Jλι:

J = ⊕
λ∈Λ

Jλ, Jλ =
γ
⊕

ι=1
Jλι. (1.5)
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Here, γ = γ(λ) denotes the geometric multiplicity of λ and ι ∈ {1, . . . , γ} is the index
of the Jordan block to eigenvalue λ. The algebraic multiplicity of λ is denoted by
α = α(λ). The size of the ιth Jordan block to eigenvalue λ is denoted by σ = σ(λ, ι).
With these definitions the matrices defined in (1.5) have dimensions

Jλ ∈ Cα×α, Jλι ∈ Cσ×σ. (1.6)

Moreover, α, γ and σ satisfy the relations

γ(λ)∑
ι=1

σ(λ, ι) = α(λ) ∀ λ ∈ Λ,
∑
λ∈Λ

α(λ) = n. (1.7)

We need special matrices associated with the Jordan matrices and boxes, respec-
tively. First, nilpotent matrices Nλι are defined by splitting single Jordan blocks Jλι

into diagonal and nilpotent part,

Jλι = λI + Nλι, Nλι ∈ Cσ×σ (1.8)

Here and in what follows, I denotes the identity matrix of appropriate dimension.
When necessary, a subscript is used to denote dimension. The letter O denotes a zero
matrix, while O with double subscript Omn denotes a rectangular m×n zero matrix.
The nilpotent matrix Nλι has elements

[Nλι]ij = δi,j−1, (1.9)

where δij denotes Kronecker delta, i.e., δij denotes the elements of the identity
matrix. Nilpotent matrices Nλ are defined by an analog splitting of Jordan boxes
Jλ into diagonal and nilpotent part,

Jλ = λI + Nλ, Nλ ∈ Cα×α. (1.10)

Obviously, Nλ is the direct sum of all Nλι to the eigenvalue λ,

Nλ =
γ
⊕

ι=1
Nλι. (1.11)

For later purposes, we stress the fact that in any case Nα
λ = 0, and that Nα−1

λ 6= 0
precisely when λ is non-derogatory, in which case Nα−1

λ = e1e
T
α . As usual, ej , j ∈ N

denotes the jth column of the identity matrix of appropriate dimension.
The columns of V are right eigenvectors or right principal vectors (if any). In

order to have access to left eigenvectors and left principal vectors, we define a special
left eigenmatrix V̂ by V̂ ≡ V −H . These matrices satisfy the three relations

AV = V J, V̂ HA = JV̂ H and V̂ HV = I. (1.12)

Later on, we depict the relations for one specific eigenvalue λ. To ease under-
standing we define additional notation with respect to the chosen eigenvalue λ.

We gather the columns of V and V̂ that span the α-dimensional invariant subspace
corresponding to the eigenvalue λ in the biorthogonal rectangular matrices Vλ ∈ Cn×α

and V̂λ ∈ Cn×α. These matrices satisfy the three relations

AVλ = VλJλ, V̂ H
λ A = JλV̂ H

λ and V̂ H
λ Vλ = I. (1.13)
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Additionally, we define analog biorthogonal rectangular matrices Vλι and V̂λι, con-
sisting only of the columns corresponding to the (not necessarily unique) invariant
subspace to Jordan block Jλι.

We refer to the rectangular submatrices Vλ, Vλι of V (respectively to the rectan-
gular submatrices V̂λ, V̂λι of V̂ ) as right (respectively as left) partial eigenmatrices.

The natural enumeration of left eigenvectors and left principal vectors given by
the column index as columns of V̂ is counter-intuitive to common usage. In order to
stick close to common use, we define the flip matrix Fn ∈ Cn×n by

Fn ≡

 1

. . .

1

 , fij = δi,n−j+1. (1.14)

When the dimension of F ≡ Fn is obvious from the context we leave out the subscript
n. We now use F to define the reordered left eigenvector matrix Wλι ≡ V̂λιF . This
ensures that when W ≡ Wλι, the first column of W is the left eigenvector, the second
column of W is the first left principal vector, and so forth. For this reason we term
W left eigenmatrix with natural ordering.

We define a family of matrices depending on the parameter z by zA ≡ zI−A. Then
by the previous definitions, the family zA has Jordan decomposition V −1(zA)V = zJ ,
where zJ ≡ zI − J . We define the characteristic polynomial such that the leading
coefficient is one, χ(z) ≡ det(zA) = det(zI −A). The resolvent is defined accordingly,
R(z) ≡ (zA)−1 = (zI−A)−1. The set of z ∈ C where the resolvent is defined is known
as the resolvent set and is given explicitely by C\Λ. For ease of understanding we split
the characteristic polynomial into χ(z) ≡ ω(z)(z − λ)α. Obviously, the polynomial
ω(z) defined this way has degree n− α and ω(λ) 6= 0. Multiplication of the Taylor
expansion

ω(z) =
n−α∑
k=0

ω(k)(λ)
k!

(z − λ)k. (1.15)

of ω(z) at λ with (z − λ)α results in the Taylor expansion of χ(z) at λ. Thus, we
can easily switch between Taylor coefficients in terms of χ and in terms of ω,

χ(i)(λ)
i!

= 0, ∀ i ∈ {0, . . . , α− 1},

χ(α+i)(λ)
(α + i)!

=
ω(i)(λ)

i!
, ∀ i ∈ {0, . . . , n− α}.

(1.16)

The adjugate (sometimes named classical adjoint) P (z) ≡ adj(zA) of zA is defined
as the matrix of cofactors, pij(z) ≡ (−1)i+j det(zAji), where the submatrix zAji is
defined to be zA without the jth row and the ith column. The matrix P (z) is, by
definition, polynomial in z. All subsequent analysis and results rely on expansions of
the polynomial matrix P (z) in terms of information stemming from the eigendecom-
position of A.

2. The General Case. We first derive our main result for the case of A being a
general square matrix. We need the explicit knowledge of the Jordan decomposition
of A. The result is of theoretical interest and serves as basis for several improvements.
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Theorem 2.1 (eigenexpansion of P (z)). Let P (z), V and V̂ be defined as above.
Pick an eigenvalue λ of A. Let α, ω(z), Vλ, V̂λ and Nλ be defined with respect to
chosen λ.

Then

P (`)(λ)
` !

= Vλ

(∑̀
k=0

ω(k)(λ)
k!

N
(α−1)−(`−k)
λ

)
V̂ H

λ ∀ 0 6 ` < α (2.1)

and

P (α)(λ)
α!

= Vλ

(
α∑

k=1

ω(k)(λ)
k!

Nk−1
λ

)
V̂ H

λ + V S(λ)V̂ H , (2.2)

where S(λ) is defined by

S(λ) ≡ ω(λ)
(
⊕

µ6=λ
(λJµ)−1 ⊕O

)
. (2.3)

Remark 2.1. The proof follows upon multiplication of the well known represen-
tation of the resolvent as sum of Laurent expansions at the eigenvalues, see [10,
Corollary 2.2.12]. This representation of the adjugate of zA can be viewed as a special
case of utilizing Schwerdtfeger’s formula, see [19, (6.1.39)].

Since the proof based on the representation of the resolvent or on Schwerdt-
feger’s formula is for notational reasons almost as long as a direct proof, we decided
to give a direct proof.

Proof. Applying the Cauchy-Binet formula to zA for all z in the resolvent set,

P (z) = adj(zA) = det(zA)(zA)−1 = χ(z)R(z). (2.4)

Since we are interested in eigenvalues and eigenmatrices, we express the resolvent
using the Jordan decomposition,

R(z) = V (zJ)−1
V̂ H = V

(
⊕

µ∈Λ
(zJµ)−1

)
V̂ H . (2.5)

The inverse of a single block zJµι with block size σ is easily computed as

(zJµι)−1 =

(z − µ)−1 · · · (z − µ)−σ

. . .
...

(z − µ)−1

 =
σ∑

`=1

(z − µ)−`N `−1
µι . (2.6)

Thus, by adding for the sake of simplicity some zero terms in the sum, the inverse of
a single box can be written as

(zJµ)−1 =
γ(µ)
⊕

ι=1
(zJµι)−1 =

γ(µ)
⊕

ι=1

σ(µ,ι)∑
`=1

(z − µ)−`N `−1
µι

 =
α(µ)∑
`=1

(z − µ)−`N `−1
µ . (2.7)

We define the matrix Q(z) by

Q(z) ≡ χ(z)
(
⊕

µ∈Λ
(zJµ)−1

)
. (2.8)
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By preceeding considerations, Q(z) is polynomial in z, since the rational factors in the
inverted blocks cancel with the appropriate factors in the characteristic polynomial.
After canceling terms Q(z) can be expressed as follows:

Q(z) =

(
α∑

`=1

ω(z)(z − λ)α−`(N `−1
λ ⊕O)

)
+ S(z)(z − λ)α. (2.9)

Here we have defined the polynomial matrix S(z) by

S(z) ≡ ω(z)
(
⊕

µ6=λ
(zJµ)−1 ⊕O

)
, (2.10)

compare with equation (2.3).
We insert the Taylor expansion (1.15) of ω(z) at λ. This results in

Q(z) =

(
α∑

`=1

n−α∑
k=0

ω(k)(λ)
k!

(z − λ)α+k−`(N `−1
λ ⊕O)

)
+ S(z)(z − λ)α. (2.11)

Changing the order of summation by introducing variable j = α + k − `, i.e., ` =
α + k − j, we arrive at

Q(z) =

n−1∑
j=0

(∑
k

ω(k)(λ)
k!

(Nα+k−j−1
λ ⊕O)

)
(z − λ)j

+ S(z)(z − λ)α, (2.12)

where k in the second sum runs from max{0, j − (α − 1)} to min{j, n − α}. We can
safely replace the upper bound by j, since ω has degree n−α and all additional terms
are zero. The first α terms in the Taylor expansion

Q(z) =
n∑

`=0

Q(`)(λ)
` !

(z − λ)` (2.13)

of Q(z) at λ are given as corresponding terms in the inner brackets of (2.12), the
(α + 1)th term has an additional summand S(λ),

Q(`)(λ)
` !

=
∑̀
k=0

ω(k)(λ)
k!

(Nα+k−`−1
λ ⊕O), ∀ ` ∈ {0, . . . , α− 1} (2.14)

Q(α)(λ)
α!

=
α∑

k=1

ω(k)(λ)
k!

(Nk−1
λ ⊕O) + S(λ). (2.15)

We compare the Taylor coefficients on both sides of P (z) = V Q(z)V̂ H ,

P (`)(λ) = V Q(`)(λ)V̂ H ∀ ` > 0. (2.16)

Inserting the explicit expressions (2.14) and (2.15) and restricting attention to the
invariant subspace of interest where possible,

V (N j
λ ⊕O)V̂ H = VλN j

λV̂ H
λ , (2.17)

finishes the proof.
The proof reveals that proceeding in this manner, relations may also be derived

for the higher derivatives. Focusing on the leading α coefficients in the Taylor
expansion gives rise to very simple and intuitive relations.
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3. The Non-derogatory Case. In what follows, we assume without loss of
generality that the eigenvalue of interest corresponds to the first Jordan box. Explicit
knowledge of the Jordan decomposition is usually not at hand. So, we may ask
for improvements for the most prominent classes of matrices. First, we still allow
eigenvalues to be multiple. These matrices are non-derogatory with probability one
[3]. To proceed, we need additional notations and a few definitions.

For the sake of simplicity, we introduce the notion of natural restrictions of the
Jordan block Jλ and the corresponding right and left eigenmatrices Vλ, V̂λ. These
natural restrictions are identified by a superscript [`], where ` is the number of prin-
cipal vectors involved. We define the natural restrictions of the Jordan block to be
a Jordan block to the same eigenvalue λ that has only ` principal vectors, i.e.,

J
[`]
λ ≡

(
I`+1 O`+1,α−(`+1)

)
Jλ

(
I`+1

Oα−(`+1),`+1

)
∈ C(`+1)×(`+1) (3.1)

is a Jordan block of dimension ` + 1. The natural restrictions of the partial eigen-
matrices Vλ and V̂λ are defined to be the matrices

V
[`]
λ ≡ Vλ

(
I`+1

Oα−(`+1),`+1

)
∈ Cn×(`+1),

V̂
[`]H
λ ≡

(
O`+1,α−(`+1) I`+1

)
V̂ H

λ ∈ C(`+1)×n.

(3.2)

We stress the fact that the ordering of the principal vectors as columns of the restric-
tions is the converse of each other.

Corollary 3.1 (non-derogatory eigenexpansion of P (z)). Let A ∈ Cn×n. Let λ
be non-derogatory, i.e., geometrically simple. Let α denote the algebraic multiplicity
of λ. Let Jλ denote the unique Jordan block, Vλ the corresponding right eigenbasis
and V̂ H

λ the corresponding biorthogonal left eigenbasis. Let natural restrictions of
Jordan block, right, and left eigenbasis be defined as above for all ` < α.

Then, for all ` < α

P (`)(λ)
` !

= V
[`]
λ ω

(
J

[`]
λ

)
V̂

[`]H
λ . (3.3)

We denote the columns of the right eigenbasis and the columns of the flipped left
eigenbasis by

Vλ ≡
(
v1, . . . , vα

)
and V̂λF ≡ Wλ ≡

(
w1, . . . , wα

)
. (3.4)

Then, for all ` < α

P (`)(λ)
` !

=
ω(`)(λ)

` !
v1w

H
1 +

ω(`−1)(λ)
(`− 1)!

(
v1w

H
2 + v2w

H
1

)
+ · · ·

+ ω(λ)

(
`+1∑
k=1

vkwH
(`+1)−k+1

)
. (3.5)

Proof. Theorem 2.1, equation (2.1) shows that

P (`)(λ)
` !

= Vλ

(∑̀
k=0

ω(k)(λ)
k!

N
(α−1)−(`−k)
λ

)
V̂ H

λ ∀ 0 6 ` < α.
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Since λ is non-derogatory, Nλ is given by one single nilpotent matrix Nλ1. The powers
of Nλ are given by shifted unit diagonal matrices,

N (k) ≡ Nk
λ , n

(k)
ij = δi,j−k. (3.6)

Carefully looking at the term in brackets reveals that

∑̀
k=0

ω(k)(λ)
k!

N
(α−1)−(`−k)
λ =



0 · · · 0
...

. . .
...

0 · · · 0
ω
(
J

[`]
λ

)
0 · · · 0
...

. . .
...

0 · · · 0

0 · · · 0
...

. . .
...

0 · · · 0


, (3.7)

where

ω
(
J

[`]
λ

)
≡

ω(λ) · · · ω(`)(λ)/` !
. . .

...
ω(λ)

 ∈ C(`+1)×(`+1) (3.8)

is the polynomial ω evaluated at the natural restriction of the Jordan block Jλ of
dimension `+1. The zero blocks ensure that only the `+1 leading columns of Vλ and
the ` + 1 trailing columns of V̂λ play a rôle. This is where the natural restrictions of
the left and right partial eigenmatrices emerge. Stripping off zero blocks proves the
first claim of equation (3.3). The second claim, equation (3.5), follows upon splitting
the polynomial matrix in the middle into rank-one matrices and sorting terms by the
degree of the derivative of ω.

Remark 3.1. The relation for ` = 0, namely,

adj(λI −A) = P (λ) = ω(λ) · vwH =
(∏

µ6=λ

(λ− µ)
)
vwH , (3.9)

is well known and states that the adjugate of λI − A in case of a non-derogatory
eigenvalue λ is a rank-one matrix whose columns and rows are multiples of the right
eigenvector and left eigenvector, respectively.

To the authors knowledge, the similarly simple relations for ` 6= 0 did not appear
in the open literature.

4. Diagonalizable Matrices. Matrices with principal vectors form a zero-set.
Thus, it is natural to restrict the investigations to the diagonalizable case. This
implies that Nλ = 0, and only terms with N0

λ = I are of interest.
Corollary 4.1. Let A ∈ Cn×n be diagonalizable. Let λ be an eigenvalue of A

with multiplicity α. Let P (z), χ(z), Vλ and V̂λ be defined as above.
Then, the first α− 1 derivatives of P (z) at λ are all zero,

P (`)(λ) = 0 ∀ ` 6 α− 2, (4.1)

and the derivative α− 1 of P at λ is a scalar multiple of the spectral projector,

P (α−1)(λ)
χ(α)(λ)

=
1
α

VλV̂ H
λ =

1
α

∑
i

viv̂
H
i . (4.2)
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Proof. This is an immediate consequence of Theorem 2.1, equation (2.1). Due to
Nλ = 0, the only terms that are non-zero in the sum in equation (2.1) are the terms
such that (α − 1) − (` − k) = 0. This can only be solved for nonnegative k when
` > α − 1, which proves equation (4.1). The only solution for ` = α − 1 is given for
k = 0:

P (α−1)(λ)
(α− 1)!

= Vλ

(
ω(λ)I

)
V̂ H

λ .

Rewritten in terms of χ instead of ω and sorted according to polynomials in λ and
constant matrices this is equation (4.2).

4.1. Normal Matrices. Now we restrict our attention to the case that A is a
normal matrix. This implies that we can choose the eigenmatrix such that V̂ = V
is unitary and that Nλ = 0. Normal matrices are members of the best investigated
class of matrices concerning behavior of eigenvalues and eigenvectors. In order not to
double any work, we just briefly touch this large and interesting area. Since we have
no need for an artificial left eigenmatrix with natural ordering, we use the letter W
in this subsection to denote a nonnegative doubly stochastic matrix.

An immediate consequence of Corollary 4.1 is the following remark:
Remark 4.1. Let A ∈ Cn×n be normal. Then the diagonal elements of equa-

tion (4.2) give information where the eigenspace is “thin” or “thick”, i.e., where the
eigenvalue “lives” in the following strict mathematical sense:(∑α

i=1 |vi1|2

α
, . . . ,

∑α
i=1 |vin|2

α

)T

= diag
(

P (α−1)(λ)
χ(α)(λ)

)
. (4.3)

This gives information, since the columns of Vλ are all scaled to unit length, because
we assume V H

λ Vλ = Iα.
Another, more useful consequence was used by Thompson in his sequel of nine

principal submatrices papers.
Corollary 4.2 (Thompson, [24], equations (7) and (8)). Let A ∈ Cn×n be

normal. Denote the characteristic polynomial by χ(z) = det(zA) = det(zI − A) and
define characteristic polynomials χi(z) ≡ det(zAii) = det(zI − Aii) for the principal
submatrices Aii, i = 1, . . . , n of A. Define the nonnegative and doubly stochastic
matrix W by wij ≡ |vij |2.

Then χ1(z)
...

χn(z)

 = W


χ(z)
z−λ1

...
χ(z)
z−λn

 (4.4)

Proof. Row i of equation (4.4) is given by

χi(z) =
n∑

j=1

|vij |2
χ(z)

z − λj
. (4.5)

But this is just the element in position i in the diagonal of the equation P (z) =
V Q(z)V H for the special case of A being diagonalizable, where Q(z) defined in equa-
tion (2.8) takes the simple form

Q(z) = χ(z)
(
⊕

λ∈Λ
(zIα − λIα)−1

)
. (4.6)
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Thompson used this result and more general results for smaller principal sub-
matrices to derive several statements on the positions of eigenvalues of normal, Her-
mitean and symmetric matrices. This includes among various other results an alter-
native simple proof of Cauchy’s interlacing inequalities, see [32], page 213. Since
most results obtained by Thompson are based on the fact that W is nonnegative and
doubly stochastic, they can not be easily adopted to a more general case.

5. Hessenberg Matrices. In this section we denote the matrix of interest by
H instead of A to emphasize that we restrict attention to unreduced upper Hessen-
berg matrices. Before we proceed, we briefly remind of the structure of inverses of
Hessenberg matrices. This knowledge in mind we might suspect similar knowledge
on the structure of the resolvent and thus of the adjugate of zH.

Beginning with the pioneering work by Asplund [4] in 1959 on matrices that
satisfy aij = 0 for j > i+p, much knowledge has been gained for inverses of Hessen-
berg matrices. The main branch of research soon specialized to tridiagonal matrices,
see the 1992 review [20] by Meurant.

Summarizing their results in a simplified manner, we may state that the lower
triangular part of the inverse is the lower triangular part of a certain rank-one matrix.
Similarly, the Hessenberg eigenvalue-eigenmatrix relations turn out to be concep-
tually simple for the lower triangular part of the adjugate of zH.

Instead of merely doubling the work for inverses to fit for the adjugate, we give
a full expression for the adjugate in terms of principal submatrices and products of
lower diagonal elements. To be more precise, we intend to show that P (z) ≡ adj(zH)
is expressible in terms of what we refer to as leading, trailing and middle characteristic
polynomials of the underlying Hessenberg matrix.

To state the result in full generality, we first prove two lemmata and introduce
additional notations. We define polynomial vectors ν(z) and ν̌(z) by

ν(z) ≡
(

χi+1:n(z)∏n
l=i+1 hl,l−1

)n

i=1

and ν̌(z) ≡

(
χ1:j−1(z)∏j−1
l=1 hl+1,l

)n

j=1

, (5.1)

with the usual convention that the empty product is one and where χi:j(z) is defined
by

χi:j(z) ≡

{
det (zHi:j) , 1 6 i 6 j 6 n,

1, i− 1 = j.
(5.2)

Here, zHi:j is the principal submatrix of zH consisting of the elements indexed by
rows and columns i to j. Thus,

det (zHi:j) ≡ det (zI −Hi:j)

is a characteristic polynomial which we term leading, when i = 1 and j < n, trailing,
when i > 1 and j = n, and middle, when i > 1 and j < n. Hence, ν(z) consists of
all (scaled) trailing and ν̌(z) of all (scaled) leading characteristic polynomials. Let
constant hΠ be given by

hΠ ≡
n−1∏
l=1

hl+1,l. (5.3)
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Now we are able to state and prove the first lemma.
Lemma 5.1 (row index less than column index). Let H ∈ Cn×n be unreduced

upper Hessenberg. Let P (z) denote the adjugate of zH ≡ zI − H. Let ν(z), ν̌(z)
and hΠ be defined as denoted above. Furthermore, let tril(A) denote the restriction of
A to its triangular lower part.

Then

tril (P (z)) = tril
(
hΠν(z)ν̌(z)T

)
. (5.4)

Especially, we have validity of the relations

(zH)ν(z) =
χ(z)
hΠ

e1, ν̌(z)T (zH) =
χ(z)
hΠ

eT
n . (5.5)

Proof. By definition of P (z), the matrix elements pij(z) can be expressed for the
lower triangular part (i > j) in terms of cofactors as follows:

pij(z) = (−1)i+j

∣∣∣∣∣∣
zI −H1:j−1 ?

Rj:i−1

0 zI −Hi+1:n

∣∣∣∣∣∣ (5.6)

= χ1:j−1(z)

i−1∏
l=j

hl+1,l

χi+1:n(z) (5.7)

=

(
χi+1:n(z)∏n−1
l=i hl+1,l

)
︸ ︷︷ ︸

≡ νi(z)

(
n−1∏
l=1

hl+1,l

)
︸ ︷︷ ︸

≡ hΠ

(
χ1:j−1(z)∏j−1
l=1 hl+1,l

)
︸ ︷︷ ︸

≡ ν̌j(z)

(5.8)

= hΠeT
i

(
ν(z)ν̌(z)T

)
ej , (5.9)

This establishes equality between triangular lower parts of P (z) and the outer product
representation (5.9). We know (by definition) that the adjugate satisfies the relations

zHP (z) = P (z)zH = χ(z)I. (5.10)

Since the first column and last row are included in the triangular lower part and
ν̌1 ≡ νn ≡ 1,

P (z)e1 = hΠν(z)ν̌(z)T e1 = hΠν(z),

eT
nP (z) = eT

nν(z)ν̌(z)T hΠ = hΠν̌(z)T .

Now, (5.5) follows upon multiplication of (5.10) with e1 and eT
n .

Corollary 5.2. Let H, ν(z) and ν̌(z) be defined as before. Let λ denote an
eigenvalue of H with (algebraic) multiplicity α.

Then, complete chains of (unscaled) right and left principal vectors of H to the
eigenvalue λ are given by{

ν(`)(λ)
` !

}α−1

`=0

and
{

ν̌(`)(λ)T

` !

}α−1

`=0

. (5.11)
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The last (first) ` entries in the right (left) unscaled principal vector of step ` are zero.
The entry n−` of the unscaled right principal vector and the entry `+1 of the unscaled
left principal vector are nonzero and these are given explicitely by

ν
(`)
n−`(λ)

` !
≡ 1

` ! ·
∏n

n−`+1 h`,`−1
and

ν̌
(`)
`+1(λ)

` !
≡ 1

` ! ·
∏`

1 h`+1,`

. (5.12)

Proof. The result stated in equation (5.5) already proves that the vectors ν(λ)
and ν̌(λ)T are left and right eigenvectors, respectively, since z = λ is a zero of χ(z).
We have to show that the consecutive terms in the Taylor expansion of ν(z) and ν̌(z)
at λ provide specially scaled chains of principal vectors. With zH ′ = I and zH ′′ = 0
and Leibniz identity we conclude that

(zH)
ν(`)(z)

` !
+

ν(`−1)(z)
(`− 1)!

=
χ(`)(z)
` ! · hΠ

e1 and

ν̌(`)(z)T

` !
(zH) +

ν̌(`−1)(z)T

(`− 1)!
=

χ(`)(z)
` ! · hΠ

eT
n ∀ ` > 1.

Thus, for every 1 < ` < α we have at z = λ that χ(`)(λ) = 0, and thus

(λI −H)
ν(`)(λ)

` !
+

ν(`−1)(λ)
(`− 1)!

= 0 and

ν̌(`)(λ)T

` !
(λI −H) +

ν̌(`−1)(λ)T

(`− 1)!
= 0.

Reordering terms finishes the proof of claim (5.11). Inserting the explicit representa-
tion (5.1) of the polynomial vectors ν and ν̌, and using the fact that the characteristic
polynomials involved have leading term one, proves equations (5.12).

We have found complete chains of right and left principal vectors. We have not
clarified yet the relation of the chains to the biorthogonal matrices Vλ and V̂λ, even
if they might be constructed from explicit knowledge of the chains. This fault is
removed by constructing an explicit formula for the adjugate P (z) of zH. First, we
take a closer look at the elements of P (z) to grasp some intuitive understanding why
we only could determine the entries in the lower triangular part.

Corollary 5.3. The polynomials pij(z) have (maximal) degree

deg (pij(z)) = n− 1 + j − i, i > j,

deg (pij(z)) 6 n− 2, i < j.
(5.13)

The latter inequality is an equality precisely when hij is nonzero.
Proof. Equality (5.13) follows from (5.7) since the elements are products of char-

acteristic polynomials of degrees n− i and j − 1 (with leading coefficient one) and a
nonzero constant (due to the unreduced Hessenberg structure). Inequality (5.13)
follows since when i 6= j in the expansion of the determinant of zHji the maximal
number of occurrences of the variable z is given by n − 2. When i < j, the only
element in the submatrix zHji where no variable z occurs in the corresponding row
and column is given by −hij in the shifted position (i, j − 1). Thus, for i < j, pij(z)
has an expansion

pij(z) = (−1)i+j · (−1)i+(j−1) · (−hij) zn−2 ± · · · = hijz
n−2 ± · · ·
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The elements in the strictly upper part of P (z) have a lower degree than the
corresponding elements in the outer product of ν and ν̌T . Still, it turns out that we
can relate P (z) to the outer product in such a way that they are equal precisely at
the eigenvalues (counting algebraic multiplicity). To proceed, we need the following
auxiliary lemma, in which the middle characteristic polynomials first enter the scene.

Lemma 5.4. The elements of the inverse M4(z) of the regular upper triangular
matrix H4(z) ∈ C(n−1)×(n−1) obtained from zH upon deletion of the first row and the
last column are given by

m4
ij (z) =

 − χi+1:j(z)∏j
l=i hl+1,l

, i 6 j,

0, i > j.

(5.14)

Proof. We express the inverse of H4(z) using the adjugate and the determinant:

m4
ij (z) = (−1)i+j

∣∣∣∣∣∣
R1:i−1 ?

zI −Hi+1:j

0 Rj+1:n−1

∣∣∣∣∣∣
/(n−1∏

l=1

−hl+1,l

)
(5.15)

= (−1)i+j

(∏i−1
l=1 −hl+1,l

)
χi+1:j(z)

(∏n−1
l=j+1−hl+1,l

)
∏n−1

l=1 −hl+1,l

(5.16)

= (−1)i+j χi+1:j(z)∏j
l=i−hl+1,l

= − χi+1:j(z)∏j
l=i hl+1,l

. (5.17)

Now we are able to give an explicit simple expression for the adjugate P (z) of zH
in terms of characteristic submatrices and products of sub-diagonal elements. This is
one of our main results, since it allows us to switch from purely analytic properties
of (characteristic) polynomials to purely algebraic properties of eigen- and principal
vectors, once an eigenvalue λ is known.

Theorem 5.5. Let H ∈ Cn×n be unreduced upper Hessenberg. Let polyno-
mial vectors ν(z), ν̌(z) and constant hΠ be defined as above. Let the strictly upper
triangular polynomial matrix M(z) be defined by

M(z) ≡

0
...

M4(z)

0 · · · 0

 . (5.18)

Then

P (z) = hΠν(z)ν̌(z)T + χ(z)M(z), i.e., (5.19)

pij(z) =


χ1:j−1(z)

(∏i−1
l=j hl+1,l

)
χi+1:n(z) j 6 i,

χ1:j−1(z)χi+1:n(z)− χi+1:j−1(z)χ1:n(z)∏j−1
l=i hl+1,l

i < j.
(5.20)
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Remark 5.1. The theorem implies the slightly weaker, but easier to remember
and thus remarkable result

P (z) = hΠν(z)ν̌(z)T (mod χ(z)). (5.21)

Proof. The adjugate of zH is uniquely defined by property (5.10), i.e., it suffices
to prove that [

hΠν(z)ν̌(z)T + χ(z)M(z)
]

zH = χ(z)I

and zH
[
hΠν(z)ν̌(z)T + χ(z)M(z)

]
= χ(z)I.

We use equation (5.5) to simplify:

χ(z)
[
ν(z)eT

n + M(z) (zH)
]

= χ(z)I,

χ(z)
[
e1ν̌(z)T + (zH) M(z)

]
= χ(z)I.

Thus, we have to show that M(z) satisfies the following singular systems of equations:

M(z) (zH) = ν(z)eT
n − I, (zH) M(z) = e1ν̌(z)T − I (5.22)

These singular systems have a very special structure. For convenience, we give a
pictorial impression of the first system of equations (5.22):


0
...
0

M4(z)

0 0 · · · 0




z − h11 −h12 · · · −h1n

H4(z)

...
−hn−1,n

z − hnn



=

 I

−ν1(z)
...

−νn−1(z)
0 · · · 0 0

 (5.23)

We can now safely remove the last rows of the first and the last matrix in this equation,
since they correspond to blocks that are trivially satisfied due to the zero elements.
We can also remove the first column of the first matrix and the first row of the second
matrix, since multiplication in these positions only introduces zero elements. We end
up with the following simpler system of equations:

M4(z)

 H4(z)

−h2n

...
−hn−1,n

z − hnn

 =

 I

−ν1(z)
...

−νn−1(z)

 (5.24)

The first block collapses to the definition of M4(z), i.e., to M4(z)H4(z) = I. We
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only have to prove consistency by proving that also the second block equation

M4(z)


−h2n

...
−hn−1,n

z − hnn

 =

 −ν1(z)
...

−νn−1(z)

 (5.25)

⇔


−h2n

...
−hn−1,n

z − hnn

 = H4(z)

 −ν1(z)
...

−νn−1(z)

 (5.26)

holds true. This follows trivially by reordering, since νn(z) ≡ 1 and thus we only have
to prove that  H4(z)

−h2n

...
−hn−1,n

z − hnn




ν1(z)
...

νn−1(z)
νn(z)

 = 0 (5.27)

But these equations correspond to the second to last row of the first equation of (5.5),
which finishes the proof for the first singular system of equations in (5.22). The proof
for the second singular system of equations in (5.22) is analogous.

To express the final relations in matrix form we gather the derivatives of the
vectors ν and ν̌ into matrices. We define rectangular matrices V`(z) and V̌`(z) by

V`(z) ≡
[
ν(z), ν′(z), . . . ,

ν(`)(z)
` !

]
, V̌`(z) ≡

[
ν̌(`)(z)

` !
, . . . , ν̌′(z), ν̌(z)

]
. (5.28)

Now we can prove the main theorem stating the explicit relation between the
(analytic) polynomial and the (algebraic) subspace point of view for unreduced Hes-
senberg matrices.

Theorem 5.6 (Hessenberg eigenvalue-eigenmatrix relations). Let H ∈ Cn×n

be an unreduced Hessenberg matrix. Let λ be an arbitrary eigenvalue of H. Let α be
the multiplicity of λ. Let ω be the corresponding reduced characteristic polynomial. Let
natural restrictions of the Jordan block and the partial eigenmatrices corresponding
to the chosen λ be defined by (3.1) and (3.2). Let the constant hΠ be defined by (5.3)
and let V` and V̌` be defined by (5.28).

Then

V
[`]
λ ω

(
J

[`]
λ

)
V̂

[`]H
λ = hΠ · V`(λ)V̌`(λ)T . (5.29)

Proof. Theorem 2.1 is already tailored to the non-derogatory case, see Corol-
lary 3.1. This is the left hand side of equation (5.29). It only remains to prove that
the terms in the Taylor expansion of P (z) around λ are indeed given by the outer
product of the matrices gathering the derivatives. But this is again Leibniz identity,



18 J.-P. M. ZEMKE

this time applied to the consecutive derivatives of ν(z)ν̌(z):(
ν(z)ν̌(z)T

)(`)
` !

=
1
` !

∑̀
k=0

(
`

k

)
ν(z)(k)(ν̌(z)T )(`−k) (5.30a)

=
∑̀
k=0

ν(z)(k)

k!
· (ν̌(z)T )(`−k)

(`− k)!
= V`V̌T

` (5.30b)

To proceed, we need two additional simple lemmata. The first clarifies uniqueness
issues of partial eigenmatrices to non-derogatory eigenvalues, the second investigates
square roots of upper triangular (regular) Toeplitz matrices.

Lemma 5.7. Let λ be a non-derogatory eigenvalue of algebraic multiplicity α of
A ∈ Cn×n. As before, let Jλ ∈ Cα×α denote the unique Jordan block and let Vλ

denote a fixed partial eigenmatrix.
Then the set of all partial eigenmatrices is given by the α-dimensional set{

VλT : T ∈ Cα×α is upper triangular regular Toeplitz
}

. (5.31)

Proof. Let Ṽλ ∈ Cn×α denote an arbitrary partial eigenmatrix. This together
with the assumption that λ is non-derogatory implies that Ṽλ has full rank and spans
the same space as Vλ, i.e., Ṽλ = VλT , where T ∈ Cα×α is regular. Additionally, the
relation

AṼλ = ṼλJλ. (5.32)

holds true, since Ṽλ by definition is a partial eigenmatrix. This implies that

AṼλ = AVλT = VλJλT = VλTJλ = ṼλJλ, (5.33)

i.e., the set of all T is the subset of regular matrices described by the additional
constraint JλT = TJλ. In other words, we are looking for the regular matrices T in
the centralizer of the Jordan block Jλ. The centralizer of a Jordan block is easily
computed regardless of the value of λ, since

0 = JλT − TJλ = (λI + N)T − T (λI + N) = NT − TN. (5.34)

When we interpret the nilpotent matrix N as a shift matrix, we observe that T has to
be upper triangular Toeplitz. Thus, the set of matrices T we are looking for consists
of the upper triangular regular Toeplitz matrices. The dimension of the set follows
upon the parameterization of the Toeplitz matrices by their first row.

Now, having parameterized the set of all partial eigenmatrices to a non-derogatory
eigenvalue, we can choose in light of Theorem 5.6 left and right partial eigenmatrices
such that they are biorthogonal. This could be achieved by setting

Vλ = Vα−1(λ) and V̌λ = hΠ V̌α−1(λ) (ω(Jλ))−T
, (5.35)

or

Vλ = hΠ Vα−1(λ) (ω(Jλ))−1 and V̌λ = V̌α−1(λ). (5.36)
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Here, we have used for purely esthetic reasons the notation

V̌λ ≡ V̂λ. (5.37)

To obtain a more symmetric and more appropriate choice, we need the following
lemma on square roots of regular upper triangular Toeplitz matrices. It is easy to
see that a regular upper triangular Toeplitz matrix has exactly two upper triangular
Toeplitz square roots. The square roots can be distinguished by the usual scalar
square root of the diagonal element.

We remark that in the proof of the following lemma, σ is used to denote the first
row of a upper triangular Toeplitz matrix, instead the size of a Jordan block.

Lemma 5.8 (Toeplitz square roots). Let T ∈ Cn×n be an upper triangular
Toeplitz matrix. Let T be parameterized by the first row denoted by τ , such that
tij = τj−i+1 for all i 6 j.

Then, when T is regular, which is precisely when τ1 6= 0, exactly two upper trian-
gular Toeplitz square roots S1, S2 ∈ Cn×n exist. These square roots are both regular
and are related by S1 = −S2.

When T is singular, i.e., when τ1 is equal zero, no upper triangular Toeplitz
square root exists.

Proof. We give a constructive proof. Let S be upper triangular Toeplitz. Let
S be parameterized by first row, denoted by σ, sij = σj−i+1. For S being a square
root of T , i.e., a matrix such that SS = T , necessarily

τi = (T )1i = (SS)1i =
n∑

j=1

s1jsji =
i∑

j=1

σjσi−j+1. (5.38)

Thus, for i = 1, σ1σ1 = τ1. Here, we can choose one of the two branches of the square
root, denoted by σ1 = ±√τ1. Then we can successively compute uniquely all other
σi, i = 2, . . . , n using the triangular structure, precisely when σ1 6= 0:

σi =
τi −

∑i−1
j=2 σjσi−j+1

2σ1
(5.39)

It is easy to verify that both computed S indeed satisfy SS = T . Since the branch
±1 of the square root enters only linearly, S1 = −S2. Since σ1 6= 0 precisely when
τ1 6= 0, we have proven all assertions of the lemma.

In the following, we will denote the square roots S1 and S2 of Lemma 5.8 simply
by ±

√
T .

Since ω(λ) is non-zero, ω(Jλ) is regular. ω(Jλ) is upper triangular Toeplitz.
Thus, we can utilize the last two lemmata to define unique biorthogonal matrices Vλ

and V̂λ. This is achieved by the following definition:
Definition 5.9 (Hessenberg natural eigenbasis). We define the natural eigen-

basis of an unreduced Hessenberg matrix H ∈ Cn×n by defining the special partial
left and right eigenmatrices

Vλ =
√

hΠ Vα−1(λ)
(√

ω(Jλ)
)−1

(5.40)

V̌λ =
√

hΠ V̌α−1(λ)
(√

ω(Jλ)
)−T

(5.41)

for all eigenvalues λ of H.
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We note the interesting fact that the conditioning of the eigenspaces concerning
the angles between the subspaces depends only on the leading and trailing character-
istic polynomials and the eigenvalue λ, i.e., the point of evaluation. The distance to
the other eigenvalues enters the scene afterwards in some sort of normalization of the
eigen- and principal vectors by the inverse of the square roots of ω(Jλ).

5.1. Particular Cases. We briefly collect implications on some particular cases
of Hessenberg matrices. When the Hessenberg matrix H is diagonalizable all
eigenvalues are simple and the results collapse to a very simple special case. When H
is furthermore normal, V̂ = V and we can utilize all results on normal matrices, e.g.,
the results of Thompson, and insert the explicit representation of P .

At first glance, it seems difficult to find unreduced normal Hessenberg matri-
ces. Two known remarkable exceptions are unitary (or real orthogonal) Hessenberg
matrices and Hermitean (or real symmetric) tridiagonal matrices.

The former naturally arise as the Q factor from the QR decomposition of a Hes-
senberg matrix and when we use the Arnoldi method to compute a Hessen-
berg normal form of an arbitrary unitary matrix. Unitary Hessenberg matrices
are treated in more detail in several articles by Ammar et al., [1, 2]. In this context,
what we named leading characteristic polynomials are known as Szegő polynomials.

The latter are not only upper Hessenberg matrices, but at the same time also
lower Hessenberg matrices. Thus, we obtain forward and backward expressions for
the eigenvectors. This symmetric case (up to scaling) corresponds to the aforemen-
tioned Jacobi matrices.

Two conceptual simple cases of special Hessenberg matrices deserve some at-
tention. These are the Frobenius companion and doubly companion matrices. The
first case has already been mentioned in the historical remarks and is exemplified in
great detail in the classical work of Wilkinson [33] and in less detail applied in the
context of ordinary differential equations in several textbooks, see for instance [12].
The latter case arises in the construction of stable general linear methods for ordinary
differential equations, see [8, 34, 9].

6. Conclusion and Outlook. We have shown how to construct eigenvalue-
eigenmatrix relations. The main new contribution is the construction of explicit re-
lations in case of Hessenberg matrices. These relations may be generalized to the
case when we have a matrix pencil that still has Hessenberg form.

It remains an open and challenging question how to generalize the results, espe-
cially those involving principal vectors to the infinite dimensional setting.

To develop eigenvalue-eigenmatrix relations for other matrix structures, we only
need an explicit representation of the adjugate P (z) = adj(zA) = adj(zI − A) for the
matrix structure of interest, of course in terms of quantities that might be of interest
in applications. This is the area of future research.
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