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Abstract

In the context of system function modeling for magnetic particle imaging, computing fast and accurate approxima-
tions to the time evolution of magnetic nanoparticles’ (MNPs) mean magnetic moment is a problem of interest. In
a software toolbox we comprise algorithms and methods that can simulate Brownian and Néel relaxation of MNPs’
magnetic moments that can be used to obtain more accurate model-based system matrices than those relying on
the so-called equilibrium model. We present and discuss results obtained with these implementations which are
made available in the software toolbox under github.com/MagneticParticlelmaging/MNPDynamics.jl to inspire

further research in these directions.

| Introduction

In magnetic particle imaging, a central problem of in-
terest is the accurate modeling of the system function,
reducing or even eliminating the need for “delta probe’”
sampling, which is time-consuming and results in subop-
timal spatial resolution. The system function s; : R3x I —
R for the I’th receive coil in the scanner, describing the
physical behavior of the system, is modeled as

17
sl(x,t)::f—al(t—t’),uopl(x)tarh(x,t)dt’ 1)
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where I =[0, T'] is the measurement time, a; : [T, T] —
R is the analog filter for the ’th receive coil, p; : R® — R3
denotes the sensitivity profile of the receive coil unit, and
m stands for the mean magnetic moment of the mag-
netic nanoparticles (MNPs) [1]. The dependence of the
mean magnetic moment on the applied magnetic field
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H,,, :R*— R® and the physical properties of the MNPs
is the crucial aspect of the system function modeling.

The most common approach to model 7 is to employ
the so-called equilibrium model, i.e. introducing an ap-
propriately parameterized Langevin function L : R — R
and setting m := £ (|H,pp|)Happ /| Happ| [2]. However, as
the name suggests, this model is only a valid approxima-
tion for MNPs that are in or sufficiently close to thermo-
dynamic equilibrium.

A more accurate way to model MNPs’ behavior is to
consider magnetization dynamics of the magnetic mo-
ments, i.e. Brownian (the whole particle rotates in a
viscous fluid) and Néel relaxation (the particle’s mag-
netic moment moves relative to the particle’s position).
In practice, one of each mechanisms is usually domi-
nant [3]. Each case requires either the solution of many
stochastic ordinary differential equations (ODEs) or that
of a parabolic partial differential equation (PDE) on the
sphere. For a detailed overview of the relaxation mech-
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Figure 1: Anumerical simulation for MNP relaxation in a field
of view typical for MPI. Significant differences can be observed
between the equilibrium model and the Néel model. For Q =
[—15,15]? (in mm), we consider the points p, = (-5, 10), p, =
0,2).

anisms and their mathematical description, see [1]. In
this work, we introduce a computational toolbox for Julia
and Matlab to numerically determine a solution of the
mean magnetic moment of an ensemble of MNPs using
the PDE approach and thus for modelling the system
function. The toolbox is available at https://git.io/JertZ.

Il Methods

In order to describe the behavior of an entire ensemble of
MNPs one can consider the probability density function
f: 8% x I — R, with respect to the orientation of the
MNPs and time (S? being the unit sphere in R®). The
computation of the mean magnetic moment m(x, t) =
m fsz mf(m, x,t)dm for each position x € Q c R3 is
based on the solution f to the Fokker-Planck equation

% . 1 L2
Ef:leSz (EVSzf)—dIVSz(bf). (2)

The vector field b : S2 x R® x S2 — R3 is given by

_E(m,H,n)zlex m+p,(m x H)x m+

ps(n-m)nxm+py(n-m)mxn)xm (3)

where n € §2 is the easy axis and we use for Néel re-

laxation py = Pk, py = Fapho, ps = 2F Kis, py = 207 5=
and 7 =5 ks Tgra (7 = 1257). The Brownian case is covered
by an analogous parameterization where in particular
p1 = p3s = ps = 0. Note that the parabolic PDE is para-
metric in x € Q2 enabling more efficient computations in
parallel.

We include two methods to solve the Fokker-Planck
equation numerically. The first one is a Galerkin method
using spherical harmonics. The other one is a grid-based
method which relies on a discretization of the unit sphere
into spherical triangles. In both cases, the idea is to only
discretize in the space variable m in order to approximate
(2) by a system of ordinary differential equations, which
can then be solved by a suitable numerical solver for
ODEs.
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I1.I Expansion into spherical harmonics

The Galerkin method is derived as follows: Choose an
appropriate Hilbert space 2# to search the solution f
in, choose an orthogonal basis for this space, and insert
the expansion of f in this basis into the PDE. Then, the
PDE is multiplied with an arbitrary function from # and
integrated. The discretization part is then simply choos-
ing a finite-dimensional subspace of s, or equivalently,
truncating the expansion of f after a fixed index N. Ex-
panding f(m, t)=3 1o, C*(1)Y,"*(m), where ¥,/* is the
spherical harmonic function for indices gy, i, k €N, we
obtain with this method

ack
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for each k € N. While the evaluation of the second
term on the right-hand side of (4) generally requires com-
puting N integrals numerically for each k =1,..., N, it
can be reduced to a small number of terms belng calcu-
lated in advance for b as in (3) and a fixed easy axis n
(see also [4]). We have extended this result to admit a
time-dependent easy axis.

I1.11 Finite Volume method

For this grid-based method, we assume that we have a
triangulation of the sphere that decomposes it into spher-
ical triangles T;,i =1,...,N. For x € T;, we consider the
. . . . 1
discretization of f such that f(x)~ f; =77 fT,- f(x)dx.
Thus, we obtain the equations

6 1

div(—b f)d —5 5
8t |T|f iv(—=b f) x+|T| fdx (5)
fori=1,...,N. Then, we apply the divergence theorem
and denote the edges of a triangle T; by E; , E;,, E;,, yield-
ing
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'

(6)
where e'{j is the outer surface normal on the j’th edge of
the i’th triangle. These line integrals are then approxi-
mated using the midpoint rule, resulting in an ODE sys-
tem for the values f;.

Il Results

With both proposed methods, a solution to the Fokker-

Planck equation can usually be obtained within a few
minutes. The calculation of a system function for a 30x30
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Figure 2: Computation times for each pixel for a 2D cosine
excitation field. Three complete Langevin periods were com-
puted for K,,,;; = 625 J/m?® on a 30x30 grid. Plotted are the
decadal logarithms of the computation times in seconds for
the spherical harmonics as well as the Finite Volume approach.

pixel region of interest normally takes about two hours
on 20 cores of two Intel Xeon E5-2687W v4 CPUs at 3 GHz.
Since the 900 ODE systems that have to be integrated are
not dependent on one another, parallelization is easy to
achieve. However, the ODE system exhibit significant
stiffness that appears to depend heavily on the physical
parameters used, especially on the particle diameter and
on the anisotropy coefficient K,,,;; but also on the static
offset field as shown in Fig. 2.

Furthermore, the toolbox allows for an easy compari-
son of different models as can be seen in Fig. 1.

IV Discussion

As shown in [5], the particle dynamic models employed
here yield promising results and constitute one step to-
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wards more accurate modeling of the MPI system func-
tion. With this toolbox, we hope to inspire more research
in this direction, with respect to improving the proposed
algorithms as well as their application to the magnetic
particle imaging and calibration problem.
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