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The Sixth Georg Weinblum Memorial Lecture

VI Georg- Weinblum-Gedachtnis- Vorlesung

The Shallow Water Effects

Do Steady Disturbances

Always Result in Steady Responses?

by Theodore Yaotsu Wu
California Institute of Technology, Pasadena, California, U. S. A.

A recently identified phenomenon reveals that the wave-making

resistance of a ship model as measured in towing tank experiments can

indeed experience a periodic fluctuation as the model moves steadily with-

in a certain range of the transcritical speeds. In this velocity range, two-

dimensional solitary waves, spanning the tank, are generated, one after

another, and move down the tank ahead of the model forming a sequence of

free solitary waves; the longer the run, the more the solitons that appear,

periodicallyand indefinitely. This process of generating "runaway solitons'

has also been predicted by numerical results based on a nonlinear, dis-

persive long-wave model for a moving surface pressure and a moving

bottom bump. The underlying mechanism of this phenomenon can be

ascribed to an interaction between the nonlinear and dispersive effects,

with a weak resonance "between the system and the external forcing

excitation. It is with this well matched interplay that we encounter this

interesting and beautiful example that steady disturbances do not neces-

sarily always result in steady responses.
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1. Introduction

Shallow water effects on the resistance and motion of a ship have

long been recognized as problems of great importance in naval architecture.

They are of theoretical interest since on linear theory, whether or not it be

derived exclusively for long waves, the calculated wave-making resistance

has certain well-known singular behaviors as the depth Froude number

F h = U / .[gh -. 1, where U is the constant ship velocity and h is the original

uniform water depth. They are also of practical value as actual service

conditions more frequently, than before, encounter those of the shallow

water limit and critical speed. With the modern advances in ocean

engineering, this problem has also become quite acutely related to those

of internal waves in stratified fluids and their dynamic loading on offshore

structures.

Considerable insight into the complexities of the problem has been

acquired experimentally by means of towing-tank studies, though they are

no less challenging a task than theoretical ones. Generally speaking, it

has been found invariably difficult to measure stable values of the flow

Held and wave-making resistance within a transcritical range of the depth

Froude number F h
::: 1. Some of these difficulties and the related per-

plexing nature of the problem have been made explicit in the literature, as

can be found from the included list of bibliography on the subject. However,

no attempt is implied to make the list exhaustive, for it affords a broad

cross reference. No reviews of the literature are attempted here either,

for they have been dealt with by several recent reviews listed. Neverthe-

less, for the present purpose of our discussion we cite in particular the

contribution from Graff, Kracht and Weinblum (1964), which provides us

with a clear delineation of the state of the art, possible sources of
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experimental difficulties and the very nature of the problem. It describes

how in shallow water, both viscous resistance and wave resistance are

changed. The changes begin "as the depth Froude number F
h = O. 7-0. 8

where local velocities in the surface pattern reach the critical value. The

actual magnitude of the limit mentioned depends upon the slenderness of

the ship and upon the depth of water.

"At this point the critical range of speed begins. It is marked by

an essential transformation of the velocity field and of the wave pattern

around the ship. In the model test this state is perceptible by periodical

oscillations of the resistance, which reaches its final value after a long

run only. A steep increase of resistance is connected with a similar in-

crease of trim and sinkage. Finally, the system of diverging and trans-

verse waves develops into one transverse-wave crest at the fore part of the

ship. As the critical speed of this crest depends on its effective depth, the

critical range exceeds somewhat the value (gh)I/2. On the basis of the

linearized wave-resistance theory, essential problems connected with the

critical zone cannot be solved except when the (water depth to ship length)

ratio h/L is no longer small. "

It further pointed out that "the finite width of the model tank poses

serious problems when converting test data to full size in the critical range"

This just mentioned deep insight of Weiblum's and coworkers' has

turned out to be a far foresight, for the issue of there being 'a finite width

of the model tank' is found to playa crucial role in the newly identified

phenomenon which is the theme of this lecture.

The new phenomenon to be discussed presently is concerned with

the generation of long waves and solitary waves by some forcing distur-

bances in shallow water, in particular by a ship moving in a canal, under
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the circumstances when both the nonlinear and dispersive effects playa

significant ro1e. The externa1 disturbances can be a surface pressure

distribution, a bottom bump, a submerged obstac1e - either two- or three-

dimensional in shape - and a ship, moving through or on the 1ayer of

shallow water. The phenomenon becomes especially striking, even con-

trary to expectation, in the special case when the disturbance is main-

tained, after an impulsive start, at a steady state of forward motion.

More specifically, when a ship moves at a constant velocity atop a

shallow water contained in a rectangular channe1, it has been observed to

generate. in addition to a train of waves following the ship, a sequence of

two-dimensiona1 solitary waves. one after another spanning the tank and surging

ahead of the ship in succession to form an upstream moving train of solitons.

This phenomenon manifests under a set of appropriate conditions when

first. the depth Froude number lies within a certain transcritica1 range,

F
h

:::1. and second, the disturbance is sufficiently strong, but not too

strong. Virtually the same phenomenon has been found to resu1t from

other forms of forcing excitations. For ship models in towing tank experi-

ments. the phenomenon has been observed and investigated by Huang et al.

(1982a. b) and successive1y by Ertekin (1984). For the case of two-

dimensional surface pressures. the so-called 'runaway solitons' was first

discovered numerically by Wu & Wu (1982) based on the theoretica1 model

deve10ped by Wu (1981. 1982). In addition to these recent deve1opments,

there was the communication from Sun (1982) regarding the towing tank

experiments at the Zhongshan University in Guangzhou, China, on what is

evidently the same phenomenon. As a note added in proof. the reports by

Thews and Landweber (1935, 1936). which were brought to my attention
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on1y shortly before the delivery of this 1ecture in the U. S. A. on March 20,

1984, appear to be the fir st 1aboratory report of such tank- spanning waves.

We shou1d further note that the solitary wave first described by John Scott

Russell (1838, 1845) that formed "in astate of violent agitation", to roll

forward from a canal boat, when the boat drawn by a pair of horses

suddenly stopped, is a elose relative of this family (of runaway solitons).

In effect, it represents a particular case of the more general category

covering the generation of solitary waves by unsteady disturbances, namely,

in Russell' s case, by a forcing excitation which, while underway, was

suddenly turned off. In this regard, some searching questions may well be

raised as to how the mass of water that was accumu1ated round the vesse1

reorganized itself to form a 1arge, smooth solitary wave, and if there

existed any relation between the stoppage of pulling the boat by the working

horses and the resistance on the vessel.

A point of singular interest is the observed result that when upstream

running solitons are generated in a towing tank by a forcing disturbance, they

are a1ways found to be two-dimensiona1, spanning uniform1y across the

tank, whether the disturbance is two-dimensiona1, a correspondance which

wou1d naturally be expected, or three-dimensional in distr ibution, which is

1ess trivial to explain. This naturally leads one to question what happens

as the tank becomes wider and wider, and thus bring the tank width issue

mentioned by Weinblum and coworkers to an accented new light.

While some questions will remain to be clarified, this lecture is

intended to present a recapitulation of the theoretical basis of the fomula-

tion, some computed results for moving surface pressure and bottom bump

as forcing disturbances, a related numerical experiment, and an expository

investigation of the basic mechanism underlying the phenomenon in question.
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2. The generalized Boussinesq equations

To recapitulate the formulation adopted from Wu (1979, 1981) we

consider the generation and propagation of three-dimensionallong gravity

waves of finite amplitude, having the degrees of freedom to propagate in

two horizontal dimensions
1:, =

(x, y) in a layer of water, bounded below

by a possibly deformable floor at a prescribed depth z = -h(,t, t) and

above by a free surface, z = 1;(x.,t), which initially (at time t = 0), ü

unperturbed, is at z = 0, but may be subjected to a free-surface pressure

distribution p (r,t). The surface pressure can represent disturbances of
0"""

meterological and naval architectural nature such as in applications to

air-cushion vehicle and ships, while the floor movement can simulate

tsunamic-genic disturbances of the ocean floor or what is apparent to a

vehic1e moving in water of variable depth. In our exposition, we shall

assume the fluid to be inviscid and incompressible, and its motion irrota-

tional, possessing in the flow domain a velocity potential <p(x,y, x, t) =

<p(x., a, t). Further, the forcing functions will be supposed to have such a

scale and strength that the resulting waves will have a typicallength 'l\.,

primarily lar ge compared with the characteristic water depth, ho' and

will have a typical amplitude, a, small relative to h , 1. e. ,
o

E = h IA. « I,
o

a = a/h «I .o
(I)

While the condition of E « 1 holds, by definition, for long waves, special

attention will be given to the case when the Ursell number

2
Ur = alE = 2 3

a'l\.Ih = 0(1) .
o

(2 )
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Under the aforementioned as sumptions a set of basic equations have

been obtained by Wu (1979, 1981, there equations 37 and 38):

St + V
. [(h + S)~.J = - ht '

(3 )

:!!.
t

+ :!!.

2
- 1 h a -

]
h a 2-

'V:!!.+ gV S = - p Vp
0
+ 2" ät V{ht + V. (hW

-""6 ät
Y' :!!.,

(4)

where V = a/a!... = (a/ax, a/ay) is the two-dimensional vector operator in

the horizontal plane of !...= (x, y), :!!.= V(jJ (!J z,t) = (acl>/ax,acl>/ay) is a

vector composed of the two horizontal velocity components, and J,;ldenotes

the layer-mean value of :!!.as defined by

_ rS
J,;lÜ:.,t) =

~ J
-h

:!!.(!...,
z, t )dz , ('1 = h+ s

) . (5 )

Here, equation (3) is exact, while the momentum equation (4) is an approxi-

mation with an error of O(aE 4, eiE 2).

Some simplification is gained (in numerical computation) if use is

made of the layer-mean velo city potential

cl>(~, t) =
~ S

s

-h

cI>(r,z,t)dz
--

(6 )

rather than the 1ayer-mean horizontal velocity
'L

=""(V1): Along this

line of development we have (see Wu 1979, 1981, eqs. 41 and 42):

St +
V. [(h + S )V~ = -ht + V. {[

%(ht +
V.

2
(hVq») - h3 V24)]Vh}

(7)
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2- 1 -2 1 h a [ - ] h 2-
(cJ» + 2: Cv4> ) + g t; +

P Po = 2: at ht + v. (M74>) - 6" " 4>t
(8 )

Equations (7) and (8) may be regarded as an alternative set of bas ic equa-

tions to (3) and (4), now both being approximate, each with an error of

4 2 2 -
O(ae , a E ). We further note that cb and cb are related by

1 - 12122
= - (z + 2" h)[ht + V' (hVcb)] - 2" (z -

3" h )v q; , (9 )

and that (8) is accordingly the first integral of (4) while (3) be comes (7).

From this relation one can readily deduce the velocity distribution as

(cb , cP , cP ) and the pressure Held !rom the Bernoulli equation.
x y z

1 1 2 2 2- P = -gz - cP - - (cb + cP + cJ> )
P t 2 x y z

(10)

The original set of equations (3) and (4), or the alternative set (7)

and (8) can be taken as to form a generalized Boussinesq class, possessing the

new features that (i) the medium is now nonhomogeneous and unsteady (due

to the spatial and temporal variation of h), (ii) the system is mechanically

open (to exchanges of mechanica1 work and energy with externa1 agencies),

and (iii) there are two horizontal dime nsions for wave propagation. In the

special case of two-dimensiona1 homogeneous motion, that is with h = const.

and p = 0, (3) and (4) reduce to the cla.ssic Boussinesq equations, which
o

admit solitons (either right or 1eft running) as exact solutions. For three-

dimensional homogeneous and steady motions, (7) and (8) can be combined

to give the equation of Mei (1976), which is a theoretical model for non-

linear steaciy flow around a thin body moving in shallow water.
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Finally, we note that our set of generalized Boussinesq equations

contains the Korteweg-de Vries equation (or the KdV equation) as a sub set

for the case of unidirectional (in x, say) wave motion in shallow water of

uniform depth, since in this case one can follow Whitham (1974, p. 466)

to derive from (3) and (4) the KdV equation (with normalization ) for

right-running waves:

3 1
St + Sx + '2 sSx + '6 Sxxx = 0 . (11 )

We further note that (11) has for solitons a one-parameter family of solutions

2 3 1/2
S = a sech U a

3' (x - ct - x )} , (12a)
'4n"

0

2
c = g(h+ a). (12b)

Here and in the sequel, the gravity constant g, the undisturbed water h

and the fluid density p can be normalized to unity, as in (11), and can be

restored for clarity of physical interpretation, as in (12a) and (12b).

It is of significance to point out that while the KdV equation (11), as

weIl as the basic equations (3) and (4) for the more general case are

originally meant to hold valid under conditions (1) and (2), that is,

E «1, oe« 1, and oe/e2 = 0(1), the validity of (11) has been tested

experimentally as a model for moderate-amplitude, unidirectional waves

in shallow water of uniform depth. Hammack & Segur (1974) found the

the
agreement between experiment ancY KdV equation predictions to lie within

about 200/0over the entire range of experiments examined, inc1uding those

with initial data for which the non-decayed amplitudes (i. e. with corrections

for the viscous decay of the measured wave amplitudes) of the leading

soliton exceed half the fluid depth, that is, up to oe = a/h = O. 5 at least,o
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implying that E < 0.7. Also, Boussinesq's profile fits both observation

and the more accurate theoretical calculations rather well for Cl < O. 5

and appears to be superior to the other models (see Miles, 1980). Such

a moderate val~e of Cl is only slightly less than the highest solitary wave

that can be maintained without breaking (see Miles, 1980, p. 21)

Cl = 0.827max (with corresponding F
h = 1. 286).

(13 )

Based on the extended range of validity established for the KdV and the

Boussinesq models, it would be reasonable to presume the same to hold

for the more general case of equations (3) and (4), though such a conjecture

must still require experimental verification.

3. Numerical results

For the general case, it is possible to obtain solutions of (3) and

(4), or (7) and (8) by numerical computation. In our calculations, we

primarily followed the original method of Wu & Wu (1982), while adopting

further improvements (including replacement of the iterative step by a

direct calculation after suitable rearrangements of the equations as weIl as

new modifications for increased accuracy) by Lee (1983-1984) for the case

of two~Hmensional initial-boundary problems. Thus we integrate (3) and

(4) using a modified Euler's predictor-corrector method in advancing the

time and the central difference approximation for the spatial derivatives.

A mixed implicit-explicit scheme is adopted for the forward difference

computation of t; and u in the fluid frame of reference, the implicit part

being incorporated in order to achieve the desired numerical stability and

accuracy with relatively large time step ~t. The open boundary condition

of Wu & Wu (1982) has proven successful, so that the region of computation
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can be taken relatively smaH. We present below some typical numerical

results so obtained.

For the surface pressure we consider the distribution

1 [ x+ Ut ]= Pom '2 1 - cos (21T--y;-J (0 < x+ Ut< L, t > 0) (14)

with P = O. 15, h = 1, L = 2,om Fh=U/[gh=U=l.O, (15 )

and p = 0 elsewhere for t > 0 as weH as for all x, t < O. And atom

t = 0, the water was at rest. The transient motion resulting from the

application of this p moving at the critical speed was computed by using
o

the present numerical method over the region -30 < x + Ut < 40, with

~x = 0.2 and ~ t = 0.2. The numerical result for the free surface

elevation I; is shown in figure I, here plotted with reference to the moving

pressure disturbance, marked by two verticallines for its extent, over the

time per iod (normalized vs. IJ,Jgh) in 0 < t < 80.

From figure 1 it is clear to see that the first solitary wave emerges

at about t = 20, then surges ahead to become a runaway soliton while a new

solitary wave starts being generated and subsequently 'born', at about

t = 40, only to be followed by another, and still another, in succession.

There are nearly three solitons having run away by the end of this compu-

tation period of t = 80. The slowly increasing phase velocity of the run-

away solitons and of the trailing cnoidal-like waves reflects the nonlinear

and dispersive effects; there is, however, an ever prolonging region of

depression in water depth just behind the disturbance. This numerical

result bears the improved accuracy of the present numerical code over its

previous version of Wu & WU (1982); in one respect, the rate of growth of
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the solitons after separation is in this case negligib1e, much weaker than

the earlier resu1t of Wu & Wu (1982).

The wave resistance, D , experienced by the surface pres surew

(per unit width) has the coefficient

CDw
1

= Dw/pghL = - pg-. ~

L

Po (x. t) ~ dx .
o

(16 )

And the coefficient of rate of working by p iso

L· - 1 \
CrW/U) = W/pghLU=ApghLU .J

BI;
po{x, t) at dx . (17)

o

The resu1t of CDw and CrW/U) corresponding to (14) and (15) is given in

figure 2, in which also shown is the coefficient C
('\n tU) = C ("WtU) - CD'

The wave resistance is thus seen to vary considerab1y during the course

when each soliton is generated and runs away. The per iod of CDw

variations provides an excellent indicator of the 'generation period' of

runaway solitons, for it gives very uniform readings of the generation

period in succession, which is T = 20 for p = 0.15.om

The phenomenon of generation of runaway solitons is found to mani-

fest over a range of the depth Froude number from as low as F h = 0.2

to about F
h = 1. 2, depending on the form and extent of Po distribution.

At low subcritica1 speeds (0.3 < F
h < O. 7), the solitons generated are

re1atively weak, but definitely discernible both numerically and experimen-

tally, and the period of generation is relatively short. The periodically

generated solitons gain in magnitude with increasing F
h'

whereas the

trailing wave train becomes gradually weaker and the period of generation

becomes somewhat more pro1onged, especially when F
h

increases beyond 1.
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As Fh reaches a certain value of about 1. 2, the leading soliton was found

experimentally to break into a turbulent bore and numerically to evanesce

for still higher values of Fb:

Generation of solitons has also been investigated for a bottom bump,

having a curved top surface and flat base and moving along the bottom of a

water layer. Figure 3 presents the numerical result of the free surface

elevation l; produced by the motion öf the cosine bump:

1
[

X + Ut
]h = ho - hl' hl = 2"Ho 1 - cos (2'11'

L
), (18)

with Ho = 0.2, h = 1, L = 2, F
h = U = 1.0 , (19)

the qualifying conditions for (18) and the initial conditions for l; and u

are the same as that for (14). To calculate the wave resistance and the

rate of working required for maintaining the bump motion we simply

replace, in (16) and (17), P by the pressure at the bump surface, and l;
o

by h1 (x, t); the result for the drag coefficient is given in figure 4.

From these figures we find that the free solitons generated ahead and the

cnoidal-like waves trailing the moving bump closely resemble those pro-

duced by a surface pressure having the same strength distribution and

moving at the same transcritical speed. Comparisons between the

numerical solutions and the preliminary experimental results obtained by

Lee (1983, 1984) have shown that the present theoretical model appears to

be very satisfactory in predicting the overall results such as the generation

per iod and amplitudes of the runaway solitons and the wave pattern over a

wide range of the Froude number F hand forcing strength Ho.

Having thus acquired a general estimate of the validity of the present

theoretical model, we can make use of numerical experimentation as a
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powerfu1 too1 to ascertain the role p1ayed by various physical effects. For

instance, by removing from (3) and (4), or from (7) and (8) separately the

nonlinear terms and in turn all the highest order derivatives, the latter

being responsible for causing waves to disperse, the phenomenon of soliton

generation was found by Wu & Wu (1982) to cease to occur. Hence the

assertion follows that the phenomenon arises only from the interaction

between the nonlinear and dispersive effects.

Another nurnerical experiment of interest is to remove the surface

pressure disturbance (14), (15) shortly before the natural separation of the

first soliton. On physical ground, we expect that the rnass of water

accumu1ated around the pressure disturbance will be left on its own to

continue to evolve, after the removal of p , eventually appearing as ao

single soliton, with in general an undular tail. In fact, this large-time

picture readily follows from the asymptotic solution of Harnmack & Segur

(1974) reached after long evolution from known initial data, since the wave

profile at the instant of removal of p can be used as the initial data.o

Chly when the initial data satisfy certain characteristic equations can we

expect to see finally a single s:rnooth solitary wave (i. e. without an undular
(1838, 1845)

tail) as the one John Scott Russell/first encountered. There could not be

more than one leading soliton to appear in the final result because the

initial Ursell number was not even large enough to induce a natural soliton

separation prior to the removal of Po' See figure 5 for the details.

4. Basic underlying principles

The conservation equations and some basic principJe s can be used

to develop an alternative method for evaluating an approximate solution to

the water wave problem just described and now illustrated in figure 6.
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For simplicity, we shall confine ourselves to the case of two-dimensional

motion depending on x and z, but not on the horizontal axis of y, as the

basic princip1es invo1ved will remain essentially the same. To begin with,

we have the 1ayer-mean equations expressing conservation of mass,

momentum and energy (see Wu, 1979, 1981) as

aN/at + aQ/ax = 0 (N = P1l = p(h + ~»,

aQ/at + as/ax = x

alb/at + aF/ax = W,

where
~

Q = S
pu(x, z, t)dz ,

-h

5 = r
~

(puZ + p)dz .

-h

(20)

(21 )

(22)

(23 )

(24)

x = poa~/ax + Phah/ax ,

I~
1 2 2 a

&, = p[ '2 (u + w ) + gz]dz (w =a:)

-h

S

~
1 2 2F = [p + '2 p(u + w ) + pgz] udz

"
-h

W = - (poa~/at + Phah/at)

(25 )

(26 )

(27)

(28 )

Here, Q signifies the mass flux across a vertica1 section, which is also

the x-component of momentum density. S may be called the 'total

momentum flux' across a vertica1 section, and X is the x-component of
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the differential force arising from the boundary pressure acting on the fluid,

Po at the top, and Ph at the bottom surface. (j, is the 1ayer energy density,

F is the total energy flux through a vertica1 section and W represents the

rate of working on the fluid by the boundary pressure.

These equations are exact and applicab1e to open systems that can
.

have exchanges of momentum, X, and energy, W, with externa1 agencies.

If h =ho(x) + h1 (x, t) and if h1 + ~ is abso1utely integrab1e at infinity,

bounded for all x and t, (20) has the first integral stating that the 'excess

massl is conserved,

m =
~oo

p(~ + h,)dx =

-00

const. (29)

With similar conditions on the integrability of Sand F, we obtain the

conservation of horizontal momentum

. roo

I == d~ J
-00

00

Qdx =
~

X(x, t)dx

-00

(30)

where I is the x component of mo mentum impulse. We also have the

cons ervation of the total ener gy as

S

oo. d
E = dt C, dx =r Wdx

-00

(31 )

-00

If the surface pressure is uniform, p = 0, and if everywhere
o.

h = const., then X = W = 0 and the system becomes c1osed, with the

corresponding momentum impulse and total energy both conserved,

00 ~

I=S dXS
-00 -h

pu(x, z, t)dz = const., (32 )
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E = S
"'&

dx = const. (33)

-co

In particular, the soliton solution (12) is a closed system.

Substituting (12) in (29), (32) and (33) readily yields

m = 4h
2 a 1/2

s
p ( -)

3 '
a(a = h) (34)

2
= ms c (1 + 3" a) (35 )

E s = pc2h2 4a
3/2

(3) (36 )

where c is given by (12b) and the subscript S signifies the quantity of a

soliton. All three quantities m , I , and E depend on one parameter,s s s

namely, a.

For the problem at hand concerning soliton generation from rest by

a steadily moving bottom bump with a transcritical velocity U, we explore

the motion illustrated in figure 6a. In the fluid frame of reference, we

have (i) the forward surging solitons moving with velocity C given by
a

(12b) for solitons with height a, (H) a stretch of depressed layer of

water of constant depth h1, say, immediately behind the moving bump,

followed by (Hi) a train of cnoidal-like waves with amplitude very

gradually decreasing with increasing distance (equal to (U - Cg )t frome

the bump), but slowly increasing with time, whose back end advances at

the velocity equal to the group velocity Cg at the end. For smoothly
e

shaped bumps, any initial disturbance that would propagate outwards in

both directions with velocity [gb must be very weak and can be neglected.

Relative to the bump, the motion apparent to the body frame of reference
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is shown in figure 6b. On physica1 ground, we shall assume that the varia-

tions in wave properties are sufficiently gradual, and the stretch of depressed

water and the trailing wave train are great enough in 1ength for the local

motion to be considered as quasi-steady over the period large with respect

to that of the trailing wave but small compared with the generation period

of the runaway solitons. The method has been deve10ped by Whitham (1962)

for water waves to second order; similar idea will be employed for the

present purpose.

Based on the assumptions just stipulated, the conservation equations

(20).(22) can be integrated with respect to x from a section upstream of

the 1eading solitary wave to a section of the uniform flow within the stretch

of depressed water, of depth h1, behind the bump. We note that the flow

is locally uniform at both sections. Integrals of the time-derivative terms

in (20)-(22) may be approximated by the respective quantities of a single

soliton, of amplitude a, divided by T, the period of generating a runaway

soliton. Thus we obtain

pU1h1 + ms/T = pUh (37)

2 1
p(Ul + 2 gh1)h1 + Is/T

2 1= p (U + '2 gh)h - D (38 )

1 2 ~
(2 pU + pgh)(U1h1 - Uh) + Es/T + (Do(U - Cg) = DU , (39)

D = -5 1),
ah dxAn ax (over the bump) , (40)

where the subscript 1 refers to the section of depressed water, m, Is s

and E are given by (34)-(36), D is the drag on the bump, and &s 0

denotes the energy density per unit area of water surface for the trailing

wave train. In addition, since the pressure is constant at the water surface,



19

1 2 1 2
Z U1 + gh1 = 2 U + gh == B . (41 )

Equations (37)-(39) and (41) are four equations for five unknowns, U1, h1,

T, D, and Cl = a/h, noting that & is known for given amplitude, ando

we are left with the problem of finding an additional equation.

For a smooth bump with a base chord, L, large compared with the

water depth h, the required equation can be acquired by taking an approxi-

mate account of the drag D. As a first approximation, we assume that

the free-surface flow above the bump, with thickness profile z = ~(x),

is quasi-one-dimensional and steady, taking place in the flow region

~(x) < z < hex) , O<x<L. (42 )

The continuity condition along the channel requires the velocity U to be

such that

U(x) [hex) - ~(x)] = Uh . (0 < x < L) (43 )

Since the pressure is constant at the water surface,

1 -2 - 1 2
2' U (x) + gh (x) = 2' U + gh =.B. (44)

The pressure at the bump surface is then given by the Bernoulli equation

1~ -
Ph = p[B -ZU (x) - g~(x)] = pg[h (x) - ~(x)] , (45 )

after making use of (44). Substituting (45) in (40) yields
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L

D = pg
5

[h (x) - ~(x)](a~/ax)dx

o

S

L
a~

= pg hex)
ax

dx

o

(46)

since ~(O) = ~(L) = 0 as assurned. With this solution for D, calcula-

tion of the other quantities can now be carried out.
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Figure 1. The free solitary waves generated ahead and cnoidal-like waves

produced behind the free-surface pressure distribution (14) and
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COSINE PRESSURE, P~=~.J5, U=J.~, EP=~.5

FORCING STOPS AT T = J4
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Figure 5. Evolution of the free wave after the forcing pressure given by

(14), (15) was removed at t = 14.
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