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Abstract

Adjoint Navier–Stokes methods are presented for incompressible flow. The sensitivity
derivative of scalar hydrodynamic objective functionals with respect to the shape is ob-
tained at the cost of one flow-field computation, so that the numerical effort is practically
independent of the number of shape parameters. The adjoint Navier–Stokes problem
was derived on the level of partial differential equations (PDE) first. According to the
frozen-turbulence assumption, variations of the turbulence field with respect to the shape
control were neglected in the adjoint analysis. Second, consistent discretisation schemes
were derived for the individual terms of the adjoint PDE on the basis of the primal, un-
structured finite-volume discretisation. A unified, discrete formulation for the adjoint wall
boundary condition and the sensitivity equation is presented that supports both low- and
high-Reynolds number boundary treatments. The segregated pressure-correction scheme
used to solve the primal problem was also pursued in the adjoint code. Reusing huge por-
tions of the flow code led to a compact adjoint module, reduced coding effort and yielded
a consistent implementation. Analytical adjoint solutions were tailored to validate the
adjoint approach. Moreover, the adjoint-based sensitivity derivative was verified against
the direct-differentiation method for both internal and external flow cases. The adjoint
method was used for ship-hydrodynamic design optimisation to compute the sensitivity
derivative of a wake objective functional with respect to the hull shape. The sensitiv-
ity map yields considerable insight into the design problem from the objective point of
view. The adjoint-based sensitivity analysis was carried out at model scale to support
a manual redesign of the hull and led to an improved wake field. An explicit, filtering-
based preconditioning of the sensitivity derivative is first-order equivalent to the concept
of “Sobolev-smoothing”. Particularly the sensitivity derivative obtained in conjunction
with the low-Reynolds number treatment of boundary walls needed to be filtered before
applied to the design surfaces. Guided by the adjoint-based sensitivity derivative, auto-
matic shape optimisation runs were performed for 2D and 3D internal flow problems to
reduce the power loss.
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Nomenclature

The subsequent glossary of terms is not exhaustive. Einstein’s sum convention applies to
small-type Latin subscripts unless declared differently. In symbolic notation, the number
of underlines corresponds to the order of a tensor.

Lower-case Greek
αφ under-relaxation factor (0 < αφ < 1)
β, β continuous or discrete (shape) control
βφ factor for UDS-CDS blending (0 < βφ < 1)
γφ diffusion coefficient for scalar variable φ
δ variation operator
δC convective variation operator (with respect to the position)
δG geometric variation operator denoting partial variation with respect to

metrics (surface area, boundary unit vector)
δL local variation operator (with respect to the flow)
δLC material variation operator, consisting of convective and local varia-

tions (δLC = δL + δC)
δn boundary-normal position shift (δn = ni δxi)
δx position shift
δij Kronecker delta
ε rate of dissipation of turbulent kinetic energy
λ linear weighting factor for cell-face interpolation (0 < λ < 1)
µ dynamic viscosity
µeff effective viscosity (µ+ µT )
µlog auxiliary definition of effective viscosity in terms of logarithmic law of

the wall
µT eddy viscosity
ν kinematic viscosity
π hydrodynamic stress tensor
ρ density
σε turbulent Prantl number for dissipation
σk turbulent Prantl number for turbulent kinetic energy
τ viscous portion of hydrodynamic stress tensor
τw wall shear stress magnitude
φ′ turbulent fluctuations
φ, φ continuous or discrete state variable
ω specific dissipation rate or turbulent frequency



xii Nomenclature

Upper-case Greek
Γ boundary of flow domain
ΓD design surface(s) subject to the shape control (active boundaries)
ΓO part of the boundary carrying the objective functional
Ω interior flow domain
ΩC part of the interior domain carrying the control
ΩO part of the interior domain carrying the objective functional

Lower-case Roman
d vector connecting CV centres P and N (d = xN − xP )
d∗ unit vector indicating the force component defined as objective func-

tional
f specific body-force vector
g acceleration of gravity
j objective functional integrand
jΓ boundary-declared objective functional integrand
jΩ volume-declared objective functional integrand
k turbulent kinetic energy
lT turbulent length scale
m number of (discrete) control parameters
n number of (discrete) constraints
n, t, s system of boundary coordinates
n, t, s boundary unit vectors
nO number of objectives
p pressure
s, s source term density
t time
tT turbulent time scale
xi Cartesian coordinates/position vector
y closest wall distance

Upper-case Roman
B boundary condition operator
Cµ turbulent viscosity constant in the k-ε equation
D(·)/Dt substantial derivative (∂/∂t+ U · ∇)(·)
F, F cell-face fluxes
F ∗ hydrodynamic force vector
G complete gradient (G = GL +GC +GG)
GC convective gradient contribution associated with a convective variation

of the flow
GG geometric gradient contribution due to changes of the boundary orien-

tation and surface area
GL local gradient contribution associated with a local variation of the flow



Nomenclature xiii

I unit matrix [3× 3]
J objective function(al)
JΓ boundary-declared objective function(al)
JΩ volume-declared objective function(al)
N Navier–Stokes operator
O(·) order of
P rate of production of turbulent kinetic energy
P matrix projecting onto boundary surface normal (P = nn)
Q residual of continuity equation
Ri residuals of momentum equations
S, S CV source term (S =

∫

∆Ω
s dΩ)

S rate of strain tensor (2S = ∇U + (∇U)T )
S rate of strain (S =

√
2SijSij)

T matrix projecting onto boundary surface (T = I − nn)
T1,2 residual of turbulence equation(s)
U velocity vector
U τ shear velocity (τw = ρ [U τ ]2)
U trg target velocity for inverse design
〈U ′U ′〉 Reynolds stress tensor

Sub- & Superscripts
i, j, k, l, . . . small-type Roman indices according to tensor notation
B boundary face
B(P ) set of boundary faces surrounding CV P
C pointer for convective variations
D downstream CV
DD remote downstream CV
F face index
F ′ auxiliary point used for face interpolation
G pointer for geometric variations
L pointer for local variations
N neighbouring CV
N(P ) set of immediate internal neighbours surrounding CV P separated by

corresponding cell faces
n, s, t superscripts for system of local boundary coordinates (normal, tangen-

tials)
P internal CV
PB boundary face with outward oriented face-normal nPB

PN internal CV face separating CVs P and N with face-normal nPN =
−nNP

r, ϕ, a superscripts for system of physical cylinder coordinates (radial, cir-
cumferential and axial)

U upstream CV



xiv Nomenclature

UU remote upstream CV

Symbols & Specials
φ̂ adjoint variable to φ
〈φ〉 mean of φ
max(a, b) the greater of a and b
min(a, b) the lesser of a and b
(·) · (·) scalar product
(·) : (·) double scalar product
(·)× (·) vector cross product
∆(·) difference operator
∇(·) gradient operator
∇ · (·) divergence operator
∇× (·) curl operator
∇2(·) Laplace operator

Abbreviations
1D, 2D, 3D one-, two- or three-dimensional
AD automatic differentiation (also algorithmic differentiation)
ADV0–3 different treatments of adjoint advection term
ALE arbitrary Lagrangian Eulerian formulation
CAD computer-aided design
CDS central differencing scheme
CFD computational fluid dynamics
CUI cubic upwind interpolation scheme
CV control volume
DDS downwind differencing scheme
FD finite differencing
FreSCo+ in-house RANS solver: Free Surface Code
FV finite volume
high-Re high-Reynolds number turbulence modelling based on the logarithmic

law-of-the-wall
LES large eddy simulation
low-Re numerical integration of boundary layers according to low-Reynolds

number turbulence modelling
LUDS linear upwind difference scheme
MDO multidisciplinary design-optimisation
MPI message passing interface
MUSCL monotone upstream-centred schemes for conservation laws
PDE partial differential equation
QUICK quadratic upwind discretisation
RANS Reynolds-averaged Navier–Stokes
SQP sequential quadratic programming
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TVD total variation diminishing
UDS upwind differencing scheme





1. Introduction

“Assuming that one has the ability to predict the performance, the question then
arises of how to modify the design to improve the performance.” Jameson [61]

1.1. Background and Motivation

Questions related to shape design and optimisation have often challenged the development
of new techniques in computational fluid dynamics. Today’s design in aerospace, auto-
motive or maritime industry is based on computer aided engineering (CAE). It is a mul-
tidisciplinary design-optimisation (MDO) task, including computer-aided design (CAD),
finite-element (FEM) analysis, computational fluid dynamics (CFD) and computer-aided
manufacturing (CAM) amongst others. The industrial design process is dominated by
tight economic constraints, limiting the costs for man-power, equipment, resources etc. In
order to be competitive, the complete process chain needs to be robust and efficient. The
performance of its weakest element determines the strength of the overall design chain.

In practical design optimisation, viscous CFD is a notorious bottleneck. Particularly for
high Reynolds number flow, the turnaround-times from case set-up to result are high, ow-
ing to time-consuming user-input such as grid generation and—of course—computational
costs. Typically, hundreds or thousands of CFD runs are carried out during an iterative
optimisation when a few (or more) shape parameters are involved. The computational
costs of a direct exploration of the entire design space quickly become prohibitive, so that
the whole process chain is waiting for the CFD output. In the framework of optimisa-
tion, the CFD analysis is merely a link in the process chain, providing the fluid-dynamic
information to guide the designer or the design engine. Unless the detailed information
available from CFD can be fed into the optimisation process, it is useless.

The best choice of optimisation strategies depends on the design task and state. Global
techniques such as evolutionary algorithms [44, 17, 71] are usually preferred in the early
stages of the optimisation. These strategies have to be robust in the first instance and
take into account objective function values alone. Referred to as zero-order methods
these approaches are appropriate if the CFD evaluation can be done within seconds on
the computer system available. Otherwise gradient-based optimisation, if applicable, can
significantly enhance the performance of optimisation runs evaluated by cost-intensive
CFD methods. Generally, it requires a more or less smooth distribution of the objective
function over the design space and a reasonable initialisation or starting point. The latter
is usually available in advanced design stages or when the optimisation starts from a
proven design. Standard gradient-based or deterministic techniques search locally around
the current design state, wherein the direction of the steepest descent of the objective
functional is indicated by the approximation of the sensitivity derivative or gradient.
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In industry, the attention turns more and more from pure CFD simulation towards CFD-
based optimisation. Cost-efficient gradient-based optimisation is a natural candidate in
the context of viscous flow simulations. But besides the restriction to local optimisation,
which is inherent to gradient-based optimisation, the industrial application has probably
been impeded by the lacking availability of objective functional derivatives constrained
by viscous flow. The development of tools for the computation of sensitivity deriva-
tives considerably lags behind the development of flow solvers itself [116], particularly for
pressure-based solution schemes widely used in maritime and automotive industry to solve
viscous problems of incompressible flow. Since the CFD evaluation is usually associated
with high numerical costs, efficient algorithms are required to compute the sensitivity
derivatives with respect to the shape. Stability and numerical robustness are premises of
equal importance.

The Jacobian matrix ∂Ji/∂βj, being the tensor of first derivatives of the output quan-
tities or objective functions Ji(β) with respect to the input or control variables βj, can be
calculated in several ways. These can be divided into direct and adjoint methods. Direct
methods follow the straight-forward chain of influence, so that for each parameter vari-
ation a calculation of the flow variation is necessary which, in turn, is used to compute
the variation of the objective functions of interest. When the computational costs are
dominated by the calculation of the flow or state, the computational effort scales with
the number of input parameters nβ. On the contrary, using the adjoint technique, which
was pioneered by Pironneau [118, 119] and Jameson [61], only one dual problem has to be
solved per objective Ji. A different classification of approaches to sensitivity analysis re-
gards the order of differentiation and discretisation of the PDE-constrained optimisation
problem [38, 104]. Accordingly, the methods are subdivided into derive-then-discretise
(continuous) and discretise-then-derive (discrete) approaches. The issue is discussed in
the following sections in the context of segregated pressure-based RANS solvers predom-
inantly used in marine and automotive industry.

In the framework of hydrodynamic shape optimisation, sensitivity calculations can be a
key ingredient to cost-efficient design. But like the CFD evaluation, the sensitivity analysis
must be embedded in the design process, containing—among others—an optimisation
routine or strategy, preconditioning algorithms, tools for an (automatic) geometry update,
mesh adaptation or re-meshing and data interfaces. Sensitivity derivatives can support
both manual and automatic optimisation strategies. However, industrial optimisation is
often carried out manually for different reasons, some of which are:

• No systematic optimisation procedure is available for the problem at hand. Practical
applications can be very different from each other and require different optimisation
strategies.

• The CFD evaluation of different applications requires different numerical simulation
techniques, all of which need to be controlled: pre-processing, validity of models,
numerical parameters, etc.

• The mathematical description of design objectives, constraints and parametrisation
can be cumbersome and very time-consuming. A general mathematical descrip-
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tion of design constraints is often unavailable and design constraints may become
“blurred” when they are considered in the objective function through a weighted
penalty approach. Thus, an experienced designer can often outpace general-purpose
design routines in practical engineering.

• Appropriate data interfaces are required, tailored to the particular optimisation
task.

For many ship-hydrodynamic applications, the RANS equations have steady-state so-
lutions in terms of the mean flow variables, which makes them very attractive in the
optimisation context. Compared to scale-resolving simulations of turbulent flow, such as
large or detached eddy simulations, the steady-state simulation saves computer resources
and simplifies the optimisation case considerably. Steady RANS is often considered a
reasonable versatility-robustness-efficiency tradeoff and enjoys a wide acceptance in the
marine user community. Several general purpose RANS-codes are available and many
companies have years of experience and user-competence.

Most workhorse CFD codes used in industry for incompressible RANS simulations are
based on the finite-volume method. Implicit pressure-velocity coupling is often enforced
by SIMPLE-type pressure-correction algorithms. Parallel 3D calculations on fully un-
structured grids are industrial standard. The physics of the optimisation problem may
involve additional transport equations that have to be solved along with the turbulent
momentum-continuity problem, e.g. accounting for heat transfer or multi-phase flow.

1.2. Starting Point and Direction

The practical trigger for this study was to reduce the excessive numerical costs associated
with a systematic sensitivity analysis based on viscous CFD in the face of many design
parameters. The challenge is to compute the sensitivity derivative of hydrodynamic design
objectives in the adjoint way, so that the computational effort is independent of the number
of parameters involved.

The base-line version of the in-house RANS code FreSCo+ is based on the finite-volume
method and supports 3D unstructured grids of arbitrarily shaped polyhedral cells. The
governing flow equations are solved to second-order accuracy in time and space. Pressure-
velocity coupling is achieved via a SIMPLE-type projection scheme. The method is im-
plemented in parallel using the MPI protocol. For the sake of code efficiency, maintain-
ability and user-friendliness (minimum of data interfaces required), the adjoint solver was
drafted as an add-on module complementing the primal CFD solver. During my work, a
so-called hybrid strategy of the continuous and the discrete adjoint method turned out to
be promising in conjunction with segregated RANS solvers for the following reasons:

• The background knowledge of the adjoint PDE provides a high level of flexibility
regarding adjoint discretisation and solution algorithm where it is required.

• Consistency is ensured by deriving the adjoint discretisation schemes from the cor-
responding primal schemes. The guidance of the discrete adjoint approach is very
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welcome to obtain an appropriate discretisation for the adjoint PDE.

• Coding effort is reduced if the adjoint discretisation and solution schemes can be
taken over from the primal implementation. With moderate modifications, the
primal flow solver could be adapted to solve the corresponding adjoint problem.

1.3. Present Contributions

The specific contributions to adjoint-based sensitivity analysis for viscous, incompressible
flow are summarised as follows:

• Going out from a self-contained derivation of the adjoint Navier–Stokes equations for
incompressible flow, the adjoint discretisation schemes are devised term-wise from
the primal schemes in a so-called hybrid adjoint approach:

– The adjoint problem is specific to the considered objective functional, which is
consistently taken into account in the adjoint discretisation.

– The convection schemes need to be adapted to the inverse transport direction
of the adjoint problem. Blended upstream/central-differencing schemes as well
as limited higher-order schemes (MUSCL-based QUICK, LUDS, CUI schemes)
are considered.

– The linearisation of the primal convection term results in an extra term, referred
to as advection term. Different discretisation schemes are derived, presented
and discussed.

– A unified, discrete formulation is presented to consistently treat wall boundaries
in the adjoint problem. It supports wall boundary conditions based on both
low- and high-Reynolds number (low-/high-Re) models. The adjoint low- and
high-Re schemes apply to the adjoint wall boundary condition and the gradient
equation.

– Based on the primal, SIMPLE-type pressure-projection scheme, a correspond-
ing adjoint pressure-correction scheme is derived, implemented and discussed.

• The adjoint method is implemented within a state-of-the-art finite-volume flow
solver using unstructured grids of arbitrarily shaped polyhedral cells. The parallel
implementation is based on the MPI protocol. A set of standard objective func-
tionals is available. A flexible approach to handle further, user-defined objective
functionals is provided through a user-coding interface.

• Analytic adjoint solutions are derived for an axis-symmetric Couette problem al-
lowing to assess how far the numerical adjoint solution is a valid representation of
the adjoint PDE and how good different adjoint convection and advection schemes
approximate the analytic solution.
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• The adjoint-based sensitivity derivative was verified against the direct-differentiation
method. The hybrid-adjoint strategy was consistently used to discretise the lin-
earised Navier–Stokes problem. The agreement of the sensitivity derivatives based
on the direct-differentiation method and the adjoint method ranges from fair to
good, depending on the application of internal or external flow.

• A gradient preconditioning method is presented based on explicit filtering of the sen-
sitivity derivative. The method is first-order equivalent to the well-known “Sobolev-
smoothing”. It is easy to implement and intuitive to use. The preconditioned
steepest-descent approach guided by the adjoint-based derivative is applied to a
selection of 2D and 3D test cases.

• The adjoint method is introduced to wake optimisation. The adjoint right-hand side
contributions stemming from the wake objective functional are derived, discretised
and discussed. The adjoint-based sensitivity map yields a detailed insight into the
optimisation problem from the objective point of view.

• The adjoint-based sensitivity analysis is used to guide an automatic shape optimi-
sation procedure to reduce the power loss in 2D and 3D cases of internal flow.

The adjoint general-purpose solver developed in this work is also applicable in other
fields beyond shape design. Its formulation independent of the control makes the adjoint
method attractive for other applications, such as topology optimisation, active and passive
flow control (turbulence, separation, etc.), goal oriented error analysis, grid adaptation,
convergence improvement, etc. The body of the adjoint implementation developed in
this work can directly be used for these applications. Minor adaptations are necessary
to tailor the adjoint post-processing to the particular type of control or to account for
different objective functionals.

1.4. Plan of the Thesis

The basic concepts for the calculation of constrained derivatives are introduced in Chapter
2 followed by a review of adjoint-based shape optimisation presented in Chapter 3. The
primal RANS-constrained hydrodynamic optimisation problem is described in Chapter 4.
It is derived on a continuous level according to the concept of material derivative and
subsequently recast in the adjoint form, cf. Chapters 5 and 6. The unstructured finite-
volume method used to solve the primal system is outlined in Chapter 7. In Chapter 8,
the attention turns to the adjoint numerics. The adjoint finite-volume discretisation is
consistently devised from the primal schemes, and the SIMPLE-based pressure-correction
scheme is adapted to solve the adjoint problem. Chapter 9 is concerned with the ver-
ification of the adjoint algorithm comparing the numerical results against analytic test
cases and the direct-differentiation method. A collection of techniques required for au-
tomatic CAD-free shape optimisation is described in Chapter 10, including a filter-based
preconditioning technique for sensitivity derivatives, the steepest-descent method, the
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evaluation of surface metrics, constraint handling and a mesh-deformation approach. An
automatic optimisation procedure is applied to simple optimisation test cases and a 3D
duct in Chapter 11. The adjoint method has successfully been introduced to wake design
as demonstrated for a generic container vessel. The thesis closes with an outlook and
conclusions drawn in Chapter 12.

Parts of the derivation are confined to the appendix to keep the presentation concise.
Throughout the analysis, Einstein’s sum convention applies to small-type Latin subscripts,
unless declared differently. When symbolic notation is used, the number of underlines
corresponds to the order of a tensor. A glossary of terms and abbreviations is provided
on pages xi ff.



2. Calculation of Constrained Derivatives

“A definition of sensitivity analysis: The study of how the uncertainty [varia-
tion] in the output of a mathematical model [objective functional] can be appor-
tioned to different sources of uncertainty [variation] in the model input [shape
parametrisation].” Saltelli et al. [135]

Local optimisation methods are based on the derivative of the objective function(al) with
respect to the control function or parametrisation. “Local” suggests that the derivative
is obtained at a certain point in the design space. The expression “sensitivity analysis” is
used for the calculation of constrained sensitivity derivatives. The existing concepts for
the calculation of sensitivity derivatives can be classified as direct methods following the
Jacobian method, or adjoint methods according to the method of Lagrange. A description
of a generic, PDE-constrained optimisation problem is presented in the following.

The search for a shape β optimal from a hydrodynamic point of view can be consid-
ered as a PDE-constrained control or optimisation problem [118, 119, 61]. The costs are
quantified through the integral, real-valued objective functional, which usually depends
on the state φ and the control β. From a mathematical point of view the subdivision into
state function and control function is arbitrary, from an engineering point of view it is
usually obvious: In the context of hydrodynamic optimisation, the fluid flow is denoted
as state and governed by the equations of state in the fluid domain Ω. In shape opti-
misation, the control (e.g. a shape parametrisation) is applied to a part of the domain
boundary, ΓD ⊂ Γ, called design surface. Alternatively, volume-based control functions
can be applied within the control domain ΩC ⊂ Ω, e.g. distributions of porosity for topol-
ogy optimisation [6, 35, 47, 111, 34, 110] or body forces and mass sources for active or
passive flow control [13, 10, 59, 11, 55, 8, 159, 9, 48, 154].

The objective functional is composed of boundary and volume contributions:

Minimise J(φ) =
∫

ΩO

jΩ(φ) dΩ +
∫

ΓO

jΓ [C (φ, β)] dΓ . (2.1)

Fluid force components acting on the objective surface ΓO ⊂ Γ are typical representatives
for boundary-based objectives. Volume-based criteria declared in the objective volume
ΩO ⊂ Ω are, for instance, the energy dissipation per fluid volume or homogeneity objec-
tives formulated in terms of the fluid velocity. The boundary-based operator C used in
Eqn. (2.1) may be non-linear, e.g. a quadratic norm for the pressure deviation, and may
contain derivatives of the state variables, e.g. in case of force objectives. In many cases
the definition of the volume contribution jΩ is non-linear. The objective functional (2.1)
is subject to the non-linear equations of state, e.g. the Navier–Stokes equations governing
the flow φ

N(φ, β) = 0 in Ω (2.2)
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with the boundary conditions

B(φ, β) = 0 on Γ . (2.3)

Also the boundary condition operator B can be non-linear, e.g. a convective velocity
boundary condition. It is differential for Neumann or Robin boundary conditions.

In order to be solved numerically, this problem is turned into the discrete form:

Minimise J(φ, β) (2.4)

subject to Nj(φ, β) = 0 , j = 1, . . . , n . (2.5)

Like the constraints, the state variables and the control are now in vector form evaluated
at discrete points, elements or volumes in the solution domain

φ = (φ1, . . . , φn)

β = (β1, . . . , βm) .

The solution is unique if the number of independent constraints matches the dimension
of the state vector.

The objective functional is evaluated from the primal, non-linear system in a straight-
forward sequence:

Set β . → Solve Nj(φ, β) = 0 for φ . → Evaluate J(φ, β) . (2.6)

The sequence (2.6) can be traversed for the calculation of the constrained variation of
the objective functional (receiver/output) J with respect to the control (input/sender)
β. Following the direction of (2.6) is referred to as forward or direct mode of sensitivity
analysis. The dependence can be written as δJ [δφ(δβ), δβ] = δJ(δβ). Alternatively, this
chain can be traversed in reverse which is done by adjoint methods.

Four popular techniques for the calculation of constrained sensitivity derivatives are
presented in the following—being the methods of finite differencing (Section 2.1), complex-
step differentiation (Section 2.2), continuous (Section 2.3) and discrete differentiation
(Section 2.4).

2.1. Finite Differencing

Finite differencing (FD) is the simplest approach to calculate constrained objective func-
tion derivatives. It is a direct method, traversing the chain (2.6) in forward direction. A
first-order approximation of the sensitivity derivative is the one-sided divided difference

dJ
dβα

=
J(β ± εeα)− J(β)

±ε +O(ε) , (2.7)

where ε is a small perturbation applied to the α-component of the discrete control vector
β. A second-order FD approximation is obtained from

dJ
dβα

=
J(β + εeα)− J(β − εeα)

2ε
+O(ε2) . (2.8)
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β

J backward

forward

central

exact

β0 − ε β0 β0 + ε

Figure 2.1.: Approximation of the objective functional derivative [∂J/∂β]β0
by divided

differences

The finite-difference approximations (2.7) and (2.8) to the derivative are plotted in Fig-
ure 2.1. For the control vector β [m], a first-order approximation requires m + 1 objec-
tive function evaluations—one for the reference case plus m perturbed solutions. The
second-order approximation (2.8) comes at the price of 2m objective evaluations, i.e. the
computational effort scales with the number of parameters involved. The FD method is
straight-forward and does not require an extra sensitivity code. However, an appropriate
perturbation size ε has to be found:

• Too small a perturbation may lead to erroneous derivatives suffering from cancella-
tion errors.

• In the case of too large perturbation steps the truncation errors in (2.7) and (2.8)
falsify the finite-difference approximations to the derivative.

The state solutions need to be well converged to obtain a good approximation of the
gradient via divided differences. Some computation time may be saved by using the
reference solution to initialise the calculation of the perturbed flow field.

Particularly in automatic optimisation strategies, the success and the efficiency of the
optimisation may depend on the quality of the gradient approximation. The (combination
of the) numerical parameters, such as perturbation step, convergence tolerance, data
precision, etc., must be controlled carefully. Therefore the use of FD techniques—though
they are simple from an implementational point of view and can be executed in a trivially
parallel mode—is not straight-forward in practice. An enormous advantage of the FD
method is that it does not require access to the source codes of the computer programs
involved in the optimisation chain, e.g. CAD tools, mesh generator, flow solver, post-
processor, etc. The whole process chain from input to output can be considered as a
“black box” which is differentiated in one go (Mohammadi [94]). The FD technique
is a popular means for the validation of alternative concepts of sensitivity analysis [e.g.
99, 42, 16, 76, 110, 155, 9, 171]. Alternatively, intermediate derivatives within the chain of
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influence may be determined by finite differencing of proprietary CAD or grid generating
software, which are subsequently multiplied to adjoint-based derivatives according to the
chain-rule of differentiation to close the chain.

2.2. Complex-Step Differentiation

The variables depending on the input β are redefined in the computer program from
real-valued to complex. A perturbation ε is applied to the imaginary part so that a
second-order approximation of the desired sensitivity derivative can be calculated from
the imaginary part of the function

dJ
dβα

=
Im
[
J
(
β + i ε eα

)]

ε
+O(ε2) . (2.9)

The corresponding real part contains the objective function value to second-order accu-
racy. Very small ε-values can be used since cancellation errors are avoided. The gradient
approximation (2.9) still suffers from iteration errors. However, Newman III et al. [105]
state that fully converged solutions are not necessary to obtain sufficiently accurate ap-
proximations of the derivative in conjunction with RANS-based optimisation. Flow and
derivative are calculated together so that m evaluations are required for a complete evalu-
ation of the gradient vector. Note that the source code of all computer programs involved
between input β and output J must be available. Memory and storage requirements al-
most double as complex variables take the equivalent of two real-valued variables. Cusdin
and Müller [16] report that a complex-step gradient computation takes over eight times
the CPU time of a primal simulation for 2D compressible Euler and Navier–Stokes simu-
lations. The implementation effort increases when operations are not declared or have a
special meaning in the complex context. Martins et al. [92] suggest an automated, script-
based precompilation of the input code. Overloading of real functions and operators that
are incompatible with complex arguments by their complex counterpart is a convenient
means to reduce the implementation effort. Müller and Cusdin [97] use the complex-step
differentiation in combination with automatic differentiation to obtain the right-hand side
terms for an adjoint solver. The absence of cancellation errors makes the method also
attractive for verification studies, e.g. Nadarajah [101].

Alternatively, the PDE-constrained optimisation problem can be derived according to
control theory either on the continuous or the discrete level as described in the following.

2.3. Continuous Differentiation

Linear changes in the objective functional, δJ , caused by a shape perturbation are at-
tributed to

• a perturbation of the control, δβ, and

• compatible flow changes δφ satisfying the variation of the PDE-constraints δN = 0.
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A comma notation is used in the continuous analysis to denote the partial derivative,
either with respect to the flow φ or with respect to the control β. The variation of the
objective functional can either be obtained by the Jacobian (direct) or the Lagrangian
(adjoint) calculus.

In order to prepare the following Navier–Stokes based analysis, the descriptions by Giles
and Pierce [39] and Hartmann and Houston [51] are extended to distinguish parts of the
boundary Γ or the internal domain Ω that are either subject to the control (ΓD and ΩC),
carry the objective functional (ΓO and ΩO), or are combinations thereof (ΓO ∩ ΓD and
ΩO ∩ ΩC). The generic formulation derived for the gradient expression (GΓ on ΓD and
GΩ in ΩC) is reused in Chapter 6. The variation of the objective functional can either be
obtained by the Jacobian (direct) or the Lagrangian (adjoint) calculus, both of which are
systematically compared. The issue is presented in a continuous formulation first, followed
by a discussion of the corresponding discrete problem. The brief description provided here
in a consistent notation serves as a prototype for the continuous adjoint Navier–Stokes
analysis presented in Chapter 6, which is reconsidered on the discrete level in Chapter 8
to derive the adjoint discretisation.

Jacobian Method

In the direct or Jacobian method, the first variation of the objective is evaluated in a
straight-forward sequence: First, the variation of the state δφ with respect to a change of
the control δβ is calculated from the variation of the equations of state (δN = 0)

N,φ δφ = −N,β δβ in ΩC

N,φ δφ = 0 in Ω \ ΩC (2.10)

subject to the variation of the boundary conditions

B,φ δφ = −B,β δβ on ΓD

B,φ δφ = 0 on Γ \ ΓD . (2.11)

For instance, for a generic Robin-boundary condition with the coefficients c0, c1 and c2

B(φ) = c0 + c1φ+ c2
∂φ

∂n
= 0 on ΓRobin (2.12)

the full variation reads

B,φ δφ = c1 δφ+ c2
∂

∂n
(δφ) on ΓRobin . (2.13)

In the second step the PDE-constrained, first variation of the objective functional,
namely δJ(δφ(δβ), δβ), has to be evaluated:

δJ = δβJ + δφJ . (2.14)
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The calculation of the leading right-hand side term of Eqn. (2.14), representing the partial
variation with respect to the shape, is straight-forward and requires metric operations
alone

δβJ = δβ

∫

ΓO

jΓ dΓ + δβ

∫

ΩO

jΩ dΩ . (2.15)

With the solution δφ obtained from Eqn. (2.10) the second right-hand side term of
Eqn. (2.14), being the constrained variation with respect to the state, is determined

δφJ =
∫

ΩO

jΩ,φ δφ dΩ +
∫

ΓO

jΓ,C C,φ δφ dΓ , (2.16)

using the chain-rule of differentiation

δφ jΓ [C (φ)] = jΓ,C C,φ δφ . (2.17)

Since the Jacobian method works in direct mode—i.e. the control function β is per-
turbed, the corresponding change in the state δφ(δβ) is evaluated from the linearised
equations of state (2.10), and eventually the change in the objective functional δJ(δφ(δβ))
is evaluated from Eqn. (2.14)—the effort for the sensitivity analysis scales with the number
of perturbations. Alternatively, the method of Lagrange can be pursued, which formally
turns the constrained optimisation problem into an unconstrained problem, so that the
derivative of the objective functional with respect to the control function (infinite number
of degrees of freedom) can be obtained from one calculation.

Method of Lagrange

The method of Lagrange starts out from the so-called Lagrange functional L. It is com-
posed of the objective functional augmented by the constraints N , weighted by the La-
grange multipliers or adjoint variables φ̂:

L = JΓ + JΩ +
∫

Ω

φ̂ N(φ, β) dΩ

=
∫

ΓO

jΓ dΓ +
∫

ΩO

jΩ dΩ +
∫

Ω

φ̂ N(φ, β) dΩ . (2.18)

A complete linearisation with respect to β and φ yields

δL = δβJ +
∫

ΓO

jΓ,C C,φ δφ dΓ +
∫

ΩO

jΩ,φ δφ dΩ

+
∫

Ω

φ̂ (N,φ δφ+N,β δβ) dΩ . (2.19)
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The adjoint operators, N̂,φ, B̂,φ and Ĉ,φ are derived via integration by parts of Eqn. (2.19):

δL = δβJ +
∫

ΩO

δφ jΩ,φ dΩ +
∫

ΓO

C,φ δφ jΓ,C dΓ (2.20a)

+
∫

Ω

δφ
(

N̂,φ φ̂
)

dΩ +
∫

Γ

(D,φ δφ)
(

B̂,φ φ̂
)

dΓ +
∫

Γ

(

D̂,φ φ̂
)

(B,φ δφ) dΓ (2.20b)

+
∫

ΩC

φ̂ (N,β δβ) dΩ . (2.20c)

The operator D,φ and its adjoint complement D̂,φ arise from integration by parts. With
(2.11), the last term of (2.20b) can be expressed in terms of the control β. Provided that
the declaration of the objective functional satisfies

C,φ +D,φ = 0 on Γ , 1 (2.21)

Eqn. (2.20) can be reorganised to read

δL = δβJ +
∫

Ω

δφ
(

N̂,φ φ̂
)

dΩ +
∫

ΩO

δφ jΩ,φ dΩ (2.22a)

−
∫

Γ

(C,φ δφ)
(

B̂,φ φ̂
)

dΓ +
∫

ΓO

(C,φ δφ) jΓ,C dΓ (2.22b)

+
∫

ΩC

φ̂ (N,β δβ) dΩ +
∫

ΓD

Ĉ,φ φ̂ (B,β δβ) dΓ . (2.22c)

The right-hand side terms of line (2.22a) depending on δφ are eliminated by satisfying
the adjoint equations

N̂,φ φ̂ = −jΩ,φ in ΩO

N̂,φ φ̂ = 0 in Ω \ ΩO , (2.23)

and the terms of line (2.22b) are cancelled out by the adjoint boundary conditions

B̂,φ φ̂ = jΓ,C on ΓO

B̂,φ φ̂ = 0 on Γ \ ΓO . (2.24)

Having solved the adjoint PDE above, the constrained first variation of the objective
functional with respect to the state (2.16) can be calculated from the remainder (2.22c),
which is independent of δφ, viz.

δφJ =
∫

ΩC

φ̂ (N,β δβ) dΩ +
∫

ΓD

(

Ĉ,φ φ̂
)

(B,β δβ) dΓ

=
∫

ΩC

GΩ δβ dΩ +
∫

ΓD

GΓ δβ dΓ (2.25)

1Strictly, a proportionality, C,φ + αD,φ = 0, is sufficient. The constant multiplier α is omitted for the
sake of brevity.
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with
GΩ = φ̂ N,β in ΩC and GΓ = Ĉ,φ φ̂ B,β on ΓD . (2.26)

Note that the gradient expressions (2.26) are confined to the partial variation of J with
respect to φ. The evaluation of the partial variation of J with respect to β involves metric
operations alone which are not specific to either the Jacobi method or the method of
Lagrange. It is omitted here for the sake of brevity.

Continuous Adjoint Identity

The first variations obtained from the Jacobian method (2.16) and the method of Lagrange
(2.25) should agree (Giles and Pierce [39]):

δφJ =
∫

ΩO

δφ jΩ,φ dΩ +
∫

ΓO

(C,φ δφ) jΓ,C dΓ (2.27a)

=
∫

ΩC

φ̂ (N,β δβ) dΩ +
∫

ΓD

(

Ĉ,φ φ̂
)

(B,β δβ) dΓ . (2.27b)

The adjoint field equations (2.23) and boundary conditions (2.24) are applied to (2.27a).
The linearised equations of state (2.10) and its boundary conditions (2.11) are substituted
into (2.27b). The resulting expressions define the continuous formulation of the general
adjoint identity

∫

ΩO

δφ
(

N̂,φ φ̂
)

dΩ +
∫

ΓO

(C,φ δφ)
(

B̂,φ φ̂
)

dΓ

=
∫

ΩC

φ̂ (N,φ δφ) dΩ +
∫

ΓD

(

Ĉ,φ φ̂
)

(B,φ δφ) dΓ . (2.28)

Given that Eqn. (2.28) is satisfied, the corresponding first variations of the objective
functionals calculated in the Jacobian and the Lagrangian approach are equivalent on the
continuous level.

2.4. Discrete Differentiation

Alternatively, the sensitivity analysis can be derived on the basis of the discretisation,
Eqns. (2.4) and (2.5), of the underlying PDE-constrained optimisation problem. The lin-
ear variation of the discrete objective is obtained from a truncated Taylor series expansion
about a feasible point (φ, β)

δJ =
n∑

j=1

δφj
∂J

∂φj

+
m∑

j=1

δβj
∂J

∂βj

= δφJ + δβJ . (2.29)
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Accordingly, the linear variation of the discrete constraints reads

δNi = 0 =
n∑

j=1

δφj
∂Ni

∂φj

+
m∑

j=1

δβj
∂Ni

∂βj

=
n∑

j=1

Aij δφj +
m∑

j=1

Cij δβj

=
n∑

j=1

Aij δφj − δsi , (2.30)

or, when rearranged
n∑

j=1

Aij δφj = δsi , i = 1, . . . , n . (2.31)

The matrices A, C represent the Jacobian and the control matrix, respectively.

Jacobian Method

Assuming that the Jacobian matrix is non-singular, Eqn. (2.30) can be multiplied by A−1

δφi = −
n∑

j=1

m∑

k=1

A−1
ij Cjk δβk , i = 1, . . . , n , (2.32)

in order to express the first variation of the objective function (2.29) in terms of δβ:

δJ = −
n∑

j=1

n∑

l=1

m∑

k=1

A−1
jl Clk δβk

∂J

∂φj

+
m∑

k=1

δβk
∂J

∂βk

. (2.33)

The corresponding derivative form reads

δJ

δβk

= −
n∑

j=1

n∑

l=1

A−1
jl Clk

∂J

∂φj

+
∂J

∂βk

, k = 1, . . . ,m . (2.34)

Expression (2.34) is the discrete form of the constrained derivative of J with respect to
β. It represents the rate of change of J that is induced by explicit perturbations indi-
vidually applied to βi and the corresponding flow variations δφ(δβ) compatible with the
hydrodynamic constraints N = 0. Mind that the evaluation of the constrained derivative
either requires the inversion of matrix A according to Eqn. (2.34), or the direct calculation
of δφ(δβ) from Eqn. (2.30), which is subsequently applied to (2.29). In either case, the
numerical effort scales with the number of control parameters m.
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Method of Lagrange

In the discrete adjoint approach the Lagrangian is constructed as

L = J(β, φ) +
n∑

j=1

φ̂j Nj , (2.35)

with the discrete adjoint variables φ̂. By construction, the system of equations (2.5)
corresponds to

∂L

∂φ̂j

= 0 , j = 1, . . . , n . (2.36)

When the constraints are satisfied, i.e. Nj = 0, the Lagrangian matches the objective
function value. The linear objective function variation

δL =
n∑

j=1

δφj
∂L

∂φj

+
m∑

j=1

δβj
∂L

∂βj

=
n∑

j=1

δφj
∂J

∂φj

+
m∑

j=1

δβj
∂J

∂βj

+
n∑

k=1

φ̂k

(
n∑

j=1

δφj
∂Nk

∂φj

+
m∑

j=1

δβj
∂Nk

∂βj

)

(2.37)

can be reorganised as follows:

δL =
n∑

j=1

δφj

(

∂J

∂φj

+
n∑

k=1

φ̂k
∂Nk

∂φj

)

+
m∑

j=1

δβj

(

∂J

∂βj

+
n∑

k=1

φ̂k
∂Nk

∂βj

)

. (2.38)

The first right-hand side expression can be eliminated for arbitrary δφ by solving

n∑

j=1

∂Nj

∂φi

φ̂j = − ∂J
∂φi

, or

n∑

j=1

AT
ij φ̂j = ŝi , i = 1, . . . , n . (2.39)

The equation system (2.39) contains the transpose of the Jacobian matrix obtained by
linearisation of the constraints with respect to the state variables, Eqn. (2.30). It is in-
teresting to note, that the boundary terms associated with the adjoint boundary control
problem appear as source terms in the discrete adjoint system (e.g. Nadarajah and Jame-
son [102], Nadarajah [101]). Having solved Eqn. (2.39) for the adjoint variables φ̂, it
is possible to evaluate the constrained first variation of the objective function from the
remainder of Eqn. (2.38), viz.

δJ =
m∑

i=1

n∑

j=1

δβi φ̂j
∂Nj

∂βi

, (2.40)
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or in derivative form
δJ

δβi

=
n∑

j=1

φ̂j
∂Nj

∂βi

, i = 1, . . . ,m . (2.41)

The evaluation of the inner product (2.41) is inexpensive from a computational point of
view. In the Lagrange method, the main numerical effort is spent solving the adjoint
problem (2.39) for the adjoint multipliers φ̂. Each objective function is associated with
a corresponding adjoint problem, so that the numerical effort scales with the number of
objectives nO. The computational costs are practically independent of the number of
control parameters since the adjoint Eqn. (2.39) does not depend on the variation of the
state δφ.

Discrete Adjoint Identity

Equivalence of the sensitivity derivatives obtained via the Jacobian and the Lagrangian
calculus can also be postulated on the discrete level. A valid, consistent approximation to
the adjoint PDE (2.23) and its boundary conditions (2.24) should also satisfy the discrete
adjoint identity (Giles and Pierce [39]):

δφJ =
n∑

i=1

δφi
∂J

∂φi

=
n∑

i=1

δφi ŝi (2.42a)

=
n∑

i=1

n∑

j=1

δφi A
T
ij φ̂j (2.42b)

=
n∑

i=1

n∑

j=1

φ̂i Aij δφj (2.42c)

=
n∑

i=1

φ̂i δsi . (2.42d)

Confined to real numbers, the transposed matrix AT is equivalent to the adjoint Â.

Automatic Differentiation

Algorithmic or automatic differentiation (AD) is a special case of discrete differentiation.
The differentiation is carried out on the code level by source-to-source precompilation.
The (nonlinear) input code is considered as a process of numerical operations

Z(n)(X) = f (1) ◦ . . . ◦ f (n) , (2.43)

connecting the input parameter(s) X with the output of the computer code Z(n), e.g.
Giering and Kaminski [37]. It is derived according to the chain rule of differentiation

dZ(n)

dX
=

∂f (n)

∂Z(n−1)
· . . . · ∂f

(1)

∂Z(0)
, (2.44)
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wherein
Z(i)(X) = f (1) ◦ . . . ◦ f (i) and Z(0) = X . (2.45)

The chain (2.44) can either be traversed in

• forward mode starting from f (1), or in

• reverse mode from f (n).

These are the AD-equivalents to the direct or adjoint techniques introduced above. Giering
and Kaminski [37] and Griewank [45] give a general introduction, supported by rules and
examples illustrating the use of AD techniques. AD has been applied for fluid dynamic
design optimisation in several studies [e.g. 94, 97, 41, 82, 16, 42, 43, 111, 69, 112, 9]. The
non-commercial community portal Autodiff.org [3] gives an overview of recent trends and
developments in AD.

In the context of CFD sensitivity analysis, some crucial AD-characteristics are:

• AD precompilers are specific to the programming language of the input code. The
source code of the entire process chain (between input and output) must be avail-
able in order to be precompiled. Among others Fortran-based AD tools are TAF
(Fortran77/90), TAC (C), TAC++ (C++ subset), ADIFOR (Fortran77) and TAPE-
NADE (Fortran77/90 and C) and Treeverse (C, C++ subset).

• Application of AD to modern, object-oriented code structures is not straight-forward.
However, features such as operator overloading are supported by some AD tools.

• Input and output of the computer program have to be declared to the AD pre-
compiler. Often, manual code-preparation is required before the source code is
differentiated “automatically”. Depending on the precompiler, non-differentiable
code-statements or unsupported language features need to eliminated or rewritten
in the input code.

• Particularly in reverse mode some human intervention is necessary to derive efficient
AD-code [94, 97, 16, 69, 9]. It requires a profound user-knowledge of AD principles,
the specific AD precompiler and the structure of the input code.
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A selection of central issues observed in the context of adjoint CFD is discussed in the
following. The focus is on incompressible hydrodynamics. Aerodynamic applications are
considered insofar of interest for the current study since, in large part, the development
of the adjoint method has been driven through the aerospace community.

3.1. Continuous and Discrete Differentiation

Adjoint CFD-codes can be subdivided into continuous and discrete adjoint approaches,
which are obtained following the derive-then-discretise and the discretise-then-derive strat-
egy, respectively. In the context of compressible aerodynamics, the pros and cons of either
method have been discussed by several authors [38, 104, 99, 101, 116]. Though the so-
lution strategy is usually density-based and (partially) coupled, many conclusions drawn
in the context of compressible aerodynamics are also valid for pressure-based, segregated
algorithms used in incompressible hydrodynamics.

The discrete adjoint system is derived from the discretisation of the primal by transpos-
ing the linearised operators. Thus it provides the exact derivative of the discrete objective
function, so that the discrete adjoint identity (2.42) is satisfied. When the full Jacobian
system matrix is available and stored in the reference code, the corresponding adjoint
system matrix is obtained by transposition, cf. Section 2.4. This can be easily coded in a
computer program. The right-hand side is assembled depending on the definition of the
objective function. However, most non-trivial, coupled finite-volume solvers avoid to store
the complete Jacobian matrices of the second-order discretisation [e.g. 96, 113, 109, 116].
Usually, only the adjacent neighbours are considered implicitly in (unstructured) face-
based finite-volume schemes. If the Jacobian system matrix is unavailable in explicit
algorithms or only a simplified lower-order estimate of the residual is available on the left-
hand side, an explicit defect correction is required in the adjoint code [e.g. 38, 109, 113].
Nadarajah [101, Chapter 4] reports that the effort for a manual derivation of the discrete
adjoint system grows rapidly with the size of the numerical stencil. This is obvious since
the adjoint schemes have to be individually devised from the primal ones according to
Eqns. (2.37) and (2.38). The adjoint schemes involving remote neighbours can be eval-
uated sequentially in reverse order as done by automatic differentiation, cf. Giles [38].
Alternatively, a simplified version of the original primal can be transposed so that the
discrete derivative of a reduced description is calculated [21].

Some of the inconveniences and limits of hand-coded discrete adjoints can be circum-
vented through automatic differentiation in reverse mode [37, 45], a special case of the
discrete adjoint method. Source-to-source transformation is generally independent of the
underlying physics or solution algorithms. Adjoint codes generated by automatic differ-
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entiation traverse the trajectory of the primal (input code) in reverse. Generally, the full
trajectory of the primal state is required in the reverse run. Storing the trajectory to
disk can be prohibitively expensive for large-scale computations. So-called check-pointing
directives are used in order to trade memory storage for CPU-time [e.g. 37, 46, 163]. A
number of states, so-called check-points, are stored in the primal run at given intervals.
During the reverse run, the state is restored from the closest checkpoint and recomputed
to the current (time) step by restarting the primal code. According to Christianson [12],
convergent loops, such as iterations against steady state, may be linearised about the
converged primal state so that the adjoint converges at the rate of the primal. Though
the sensitivity code is derived on the basis of the input code alone, so-called AD-directives
have to be added by the user in order to enhance the performance of the AD code. Mem-
ory and CPU consumptions of adjoint, AD-based CFD codes have been discussed and
optimised by several authors [e.g. 97, 41, 16, 42]. A number of studies on aerodynamic,
AD-based shape optimisation have been performed [94, 95, 41, 97, 16, 43]. Hydrodynamic
applications of viscous CFD are presented by Othmer et al. [111], Özkaya and Gauger [112]
and Carnarius et al. [9]. Huge software projects such as industrial general-purpose solvers
typically use modern code structures and consist of different programming languages. Of-
ten external libraries are involved, sophisticated numerical toolkits for preconditioning
and solving large systems of equations. For parallel algorithms, the corresponding paral-
lel code structures have to be created automatically. A considerable amount of manual
preparation of the input code can be required, as explained e.g. by Giering and Kaminski
[37], Müller and Cusdin [97], and Cusdin and Müller [16]. The applicability of AD in
reverse mode for the differentiation of the full design chain in one go is expected to be
limited for such problems.

In the continuous adjoint approach, the adjoint PDE are derived from the PDE gov-
erning the primal problem according to Section 2.3. Subsequently, the adjoint PDE are
discretised. The continuous adjoint formulation allows for a mathematical and physical
interpretation of the adjoint problem, including field equations, boundary conditions and
initialisation. The background knowledge of the adjoint PDE can also be helpful to obtain
analytic solutions, e.g. for validation, or for the numerical treatment of discontinuities as
discussed by Giles and Pierce [40]. The flexibility of the continuous adjoint method can
considerably facilitate adjoint code development [67]. Adjoint discretisation schemes and
iterative solution algorithms can be derived for the adjoint PDE independently of the pri-
mal schemes. Its flexibility is expected to be one of the main reasons why the continuous
adjoint method is often used in conjunction with incompressible, segregated pressure-
based solvers widely used in automotive and marine industry, see Section 3.2. When
higher-order schemes are required, the continuous adjoint approach allows to freely derive
and implement discretisation schemes of higher order. Special care is needed to provide
a certain level of consistency of the discrete objective functional value and its derivative
[102, 99, 21, 50, 39]. Consistency of the discretisation according to Eqn. (2.42), if not
considered explicitly, will probably be violated. The formulation of adjoint boundary con-
ditions is related to the definition of boundary-declared objective functionals. According
to Eqn. (2.21), there are restrictions on the possible formulations of objective functionals
that can be addressed through the continuous adjoint calculus, i.e. the declarations of the
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objective functional and the state equations must be compatible. Some RANS closure
models have a singularity next to the boundary or include complex source terms, imped-
ing a continuous adjoint formulation. In primal CFD, the problem can be tackled in the
discrete space, e.g. Wilcox [166, Sections 4.7 and 4.9], which directly leads to hybrids of
continuous and discrete adjoint techniques. Hybrid methods can be pursued to combine
the individual advantages [99] of the continuous and the discrete adjoint method. In the
practical development of adjoint production codes, the consistency of the discrete method
can be traded for the flexibility of the continuous approach. Certain formulations that
cannot be handled in the continuous adjoint calculus can be addressed on the basis of the
discrete. The knowledge of the underlying adjoint PDE allows to accept or justify certain
inconsistencies which may facilitate the algorithmic implementation.

According to Kim et al. [74] and Jameson and Kim [64], the derivatives obtained through
both the discrete and the continuous gradients should match in the continuous limit
of infinitesimally fine mesh resolution. Ideally, the discretisation of the adjoint PDE
satisfies the adjoint identity, Section 2.4, so that the derive-then-discretise method and
the discretise-then-derive methods lead to the same adjoint discretisation.

3.2. Primal and Adjoint Algorithms

The most obvious strategy, for both the discrete and the continuous adjoint method, is
to reuse the architecture and the data-structure of the primal solver in the adjoint code.1

The features of the primal code are usually re-employed to solve the adjoint as regards
the iterative solution strategy, the discretisation, the concepts for parallel computation,
preconditioning, convergence acceleration, time-stepping, etc.

Unsteady adjoint solution schemes are required for unsteady optimisation problems.
After integration by parts (continuous adjoint) or summation by parts (discrete adjoint)
with respect to time, the direction of the time integration changes. Hence, the adjoint
runs in reverse direction from the end of the primal simulation back to the initialisation
of the primal, i.e. the adjoint “initialisation” is prescribed at the end of the primal sim-
ulation. As the adjoint is linearised about the unsteady primal, the flow solution has
to be restored or recomputed every adjoint time-step, which is inconvenient and costly
from a computational point of view. To optimise the shape of airfoil-sections in invis-
cid transonic flow for a time-varying angle of attack, Nadarajah [101] investigates three
methods of different numerical effort: “unsteady-flow unsteady-adjoint”, “unsteady-flow
steady-adjoint” and “time-averaged-flow steady-adjoint”. Nadarajah et al. [100] apply an
adjoint method, formulated in the non-linear frequency domain, to optimise a wing in pe-
riodic three-dimensional inviscid flow. Several checkpointing strategies have been devised
in the context of automatic or manual differentiation [e.g. 37, 46, 163]. A checkpointing
algorithm for adaptive time-stepping schemes is proposed by Wang and Moin [164]. A
strongly unsteady adjoint analysis for blast flows is carried out by Stück et al. [153] to
aid in the design of shock-mitigation devices. A combination of measures is proposed by
Stück et al. [154] to optimise the adjoint efficiency, including two-level check-pointing,

1Unless the goal is a stand-alone or solver-independent adjoint solver.
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data-compression and a reduced data precision together with a case-dependent memory
management to reduce the I/O operations.

Implicit or explicit time-stepping schemes can also be used to drive the flow against the
limit of steady-state. First-order Euler schemes are often applied if the time history is
not important. The corresponding adjoint scheme can be linearised about the converged
steady-state solution, so that the trajectory of the primal convergence does not need to be
restored. Aerodynamic, density-based applications are usually formulated in a (partially)
coupled system of conserved variables. The Jacobian system matrix is assembled of point-
wise [5× 5] sub-matrices, formulated in the conservative variables for density (ρ), density
times velocity components (ρUi) and density times specific energy (ρe). Jameson et al.
[66] suggest a bundle of methods to efficiently iterate flow and adjoints to steady state.
Based on a generalised Runge–Kutta scheme, in which the convective and diffusive terms
are treated differently to enlarge the stability region, they use residual averaging and a
multigrid procedures. Convergence is further accelerated by the use of locally varying time
steps or matrix preconditioning. Further improvements are presented by Kim et al. [79].
Implicit methods generally allow for large time steps or efficient steady-state simulations.
Nielsen et al. [109] and Dwight and Brezillon [23] apply implicit time-stepping. Implicit
methods often use a simplified Jacobian on the left-hand side. To obtain an accurate
linearisation in the linearised code, the implicit low-order approximations have to be
compensated by explicit defect corrections. The hand-written discrete adjoint code for
transonic Navier–Stokes flow presented by Nielsen et al. [109] ensures duality with the
direct-differentiation method throughout the convergence history. This is achieved by
a fully-consistent discretisation together with a reverse implementation of the implicit,
extended line-Gauss–Seidel scheme used for the primal. The dual algorithm is manually
devised from the primal so that the convergence rates are asymptotically equivalent. An
overview of recent adjoint aerodynamics is given by Peter and Dwight [116].

An artificial compressibility term can be added to the continuity equation in order
to solve incompressible flow problems. This strategy is pursued for adjoint-based shape
optimisation by several research groups in combination with multigrid methods for con-
vergence acceleration [90, 19, 68, 91].

So-called pressure-projection schemes, based on pressure- or pressure-correction algo-
rithms, are predominantly used in industry to solve incompressible flow problems, e.g.
Ferziger and Peric [30, Sections 7.4 and 8.8]. A Poisson-type pressure equation or pressure-
correction equation is obtained by applying the divergence operator to the momentum
equations either on a continuous or a discrete level. Usually, an incomplete linearisation
is used. The individual transport equations for the velocity components, the pressure-
correction scheme and turbulence variables are solved sequentially. If necessary, the se-
quence is extended to additional transport equations for energy, multi-phase flow, etc. The
individual iteration matrices and right-hand side terms are updated during the iteration
based on the “known” quantities. It is not straightforward to manually derive the exact
adjoint algorithm for segregated schemes such that the primal convergence process is ex-
actly traversed in reverse. It requires forward-reverse consistency of the solution sequence
(momentum → pressure → turbulence → multi-phase, etc.), including deferred correc-
tions for second-order accuracy, pressure and velocity corrections, time-stepping scheme,
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etc. The continuous adjoint technique generally allows to re-employ the segregated primal
algorithm and its discretisation for the adjoint problem with slight modifications. A com-
pact implementation is obtained by reusing huge portions of the flow solver in the adjoint
code [147, 110, 155]. It reduces coding effort, avoids code redundancies and facilitates code
maintenance. The functionality of complex production codes is provided in the adjoint
code as regards the parallel concept, the unstructured bookkeeping or the discretisation
schemes. It may be the main reason why many non-trivial hand-coded adjoint solvers for
segregated primal codes follow the continuous adjoint approach [8, 110, 170]. Soto and
Löhner [147] present an implicit pressure-correction approach based on the finite-element
method for both continuous and discrete adjoint problems.

3.3. Gradient Evaluation

Adjoint methods eliminate the partial variation of the augmented objective functional
with respect to the state via the adjoint variables found from the adjoint equations. The
gradient can subsequently be evaluated from metric terms alone, either in the continuous
or the discrete adjoint way, cf. Eqns. (2.26) and (2.41), respectively.

In the discrete adjoint approach, the evaluation of Eqn. (2.41) generally involves the
calculation of the displacements of the interior mesh nodes with respect to the boundary
deformations associated with every shape parameter; it is called mesh sensitivity. On
structured grids the dependence can be evaluated at a moderate effort following the grid
lines. On unstructured grids, the mesh sensitivity has to be evaluated through a mesh de-
formation approach. The application of finite-differencing or complex-step differentiation
techniques is straight-forward, however, the effort scales with the number of parameters
involved. For a large number of parameters the calculation of mesh sensitivities may
become a bottleneck in the adjoint-based sensitivity analysis. Nielsen et al. [109] sug-
gest to apply decomposition techniques to the coefficient matrix of the mesh deformation
approach, so that the problem can efficiently be solved for several right-hand sides. An
alternative approach is used by Nielsen and Park [108] who set up the discrete adjoint to
the mesh deformation algorithm to compute the sensitivity derivatives at a computational
effort that is practically independent of the number of shape parameters.

The continuous, PDE-constrained shape optimisation problem is boundary-controlled
suggesting a boundary-based gradient evaluation. Based on a linear development of the
boundary condition to a modified position, a boundary-based gradient expression is ob-
tained, cf. Eqn. (2.26). A boundary-based gradient calculation was first shown by Enoks-
son and Weinerfeld [25], and subsequently pursued by several authors in the context of
adjoint-based shape optimisation [e.g. 64, 149, 110, 170]. In conjunction with unstructured
grids, a boundary-based gradient equation is particularly attractive since the volume mesh
does not need to be adapted to the infinitesimal deformations.
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3.4. Turbulence Treatment

In general, the complete flow field changes when the shape is modified. The considered
hydrodynamic objective functional is, directly or indirectly, affected by changes in all state
variables. The transport equations associated with the turbulence variables have to be
derived in order to calculate the full gradient of the objective functional.

The assumption of frozen-turbulence is the most convenient simplification and is con-
sidered industrial standard for both continuous [143, 151, 110, 156] and discrete adjoint
methods [106, 101]. The optimisation problem is partially linearised about the current
state neglecting the variation of the turbulence field. Only changes of the mean flow are
taken into account, described through the system for continuity and momentum for incom-
pressible flow problems—or mass, momentum and energy for compressible flow problems.
Accordingly, the gradient obtained by freezing the turbulence field is incomplete.

In the framework of the continuous adjoint method, the full variation and the adjoint
problem are derived on a PDE level. Zero-, one- and two-equation turbulence models
usually include several non-linear source terms described through turbulence quantities
and the mean velocity field. The number of terms in the fully-linearised problem or the
full adjoint problem can be significantly higher and the cross-coupling usually densifies.
The character of the cross-coupling between the individual equations can be very different
in primal and dual problems. Several limiters or physical constraints (e.g. positiveness,
boundedness) and switches (e.g. based on the wall distance) are included in most turbu-
lence models, for which a continuous differentiation is not obvious. Some RANS closure
models have a singularity along the boundary, which is often circumvented by the decla-
ration of “pseudo boundary conditions” for the turbulence variables in the control volume
next to the boundary face [166]. Such techniques are difficult to translate in the contin-
uous adjoint context. Only a few continuous adjoint RANS solvers feature a complete
adjoint formulation. Zymaris et al. [170] have derived the adjoint Spalart–Allmaras tur-
bulence model and the adjoint of the Wilcox k-ω turbulence model in conjunction with
wall functions [171]. Both adjoint formulations are very complex in terms of the number
of source terms and the adjoint cross-coupling. Also the gradient equation is lengthy (ap-
proximately ten boundary terms, in parts differential) and partly difficult to evaluate in a
finite-volume environment. The authors identify the dominating terms in order to reduce
the effort and show the differences compared to the frozen-turbulence prediction. They
report that the effort of solving the adjoint problem is comparable to that of the primal
RANS problem. The method is applied to 2D incompressible, internal-flow problems,
where the power loss is considered as objective functional.

In the majority of fully turbulent adjoint methods, the hand-coded discrete-adjoint
approach is used in combination with coupled, compressible solvers for aerodynamic flow.
Several authors have derived and solved the compressible, discrete adjoint RANS problem
for a Baldwin–Lomax zero-equation turbulence model [e.g. 74, 96, 117]. Examples for a
discrete adjoint of a one-equation Spalart–Allmaras turbulence model with application to
compressible flow problems can be found in [1, 2, 103, 109]. The adjoint system including
the additional adjoint turbulence variable and the corresponding equation is solved in
a tightly-coupled way; Nielsen et al. [109] use a strictly reverse implementation of the
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primal code to solve the corresponding adjoint problem including the turbulence equation.
Hand-coded discrete-adjoint implementations for two-equation RANS solvers of k-ε/ω-
type feature two additional adjoint variables and the corresponding adjoint equations;
such adjoint implementations for compressible, aerodynamic problems can be found in
[73, 125, 124].

Using automatic differentiation, the turbulence procedures of a CFD-code can be dif-
ferentiated all at once along with the main routines of the solver. The lengthy algebraic
expressions associated with the discrete adjoint formulation are created more or less au-
tomatically following the chain rule of differentiation as described in Section 2.4. Parts
of the turbulence model, which are indifferentiable in the continuous formulation—e.g.
singularities in the boundary formulations of several turbulence models [166]—are algo-
rithmically differentiable. Turbulent adjoint examples for aerodynamic applications are
presented by Mohammadi [93] and Giles et al. [41]. Carnarius et al. [9] apply AD to a seg-
regated, incompressible Navier–Stokes solver in conjunction with the SST k-ω turbulence
model. The method is used to control the flow control around a rotating cylinder.

The adjoint method has also been used in conjunction with scale-resolving simulations
of turbulent flow. The analysis is inherently unsteady and requires a backwards time-
integration of the adjoint system. Chang and Collis [10] use adjoint-based LES for flow
control to reduce the resistance of the bounding walls of a straight channel by means of
wall transpiration. The adjoint system is build for the Smagorinsky subgrid-scale model.
The adjoint time integration is carried out in reverse mode. Due to the strong coupling
of the adjoint PDE system, the adjoint equations are more expensive to solve than the
flow equations. Aeroacoustic adjoint LES is carried out for jet noise minimisation by Kim
et al. [75] and Freund [32].

3.5. Accuracy and Consistency

The computed gradient is considered accurate if it is the exact, complete derivative of
the primal discretisation, which is in principle assured by the discrete adjoint method.
In that sense, a derivative based on a consistent discretisation—which may be of low
order or suffer from substantial modelling insufficiency—is accurate. A different question
is whether the adjoint discretisation obtained in the discretise-then-derive approach is a
valid approximation to the adjoint PDE devised in the continuous (derive-then-discretise)
approach. It requires that an adjoint PDE formulation exists and that the primal PDE
and the objective functional are discretised consistently in the primal code. Following the
continuous adjoint approach requires to choose an appropriate, stable discretisation for
the adjoint PDE. When such an approximation is found, the question is how accurate
it is compared to the gradient of the discrete objective function of primal solver. Direct
comparisons of the continuous and the discrete adjoint method for aerodynamic inviscid
and viscous cases have been performed by Nadarajah and Jameson [102, 99]. In a hybrid
adjoint approach pursued in this work, the discretisation for the adjoint PDE, which has
been derived beforehand, is found by analysis of the primal discretisation. In that way,
the discretisation schemes for the individual terms of the adjoint PDE can be chosen
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consistently with the primal schemes so that ideally both the discrete adjoint identity
(2.42) and the continuous adjoint identity (2.28) are satisfied. Such schemes are denoted
adjoint-consistent in this work, compare for instance Hartmann [50].

Ideally, both primal and adjoint problems share the same turbulence modelling. A
major source of inconsistencies is the widely accepted assumption of frozen turbulence
described above. Since the turbulence field is considered to be independent of the shape
variations, an incomplete derivative is obtained. The resulting mismatch between ob-
jective functional values and derivatives can affect the performance of the optimisation.
However, a continuous update of the primal turbulence field during the iterative optimi-
sation identifies if the optimisation is led into the wrong direction; i.e. the optimisation
does not converge any further.

In the shape optimisation process, gradient accuracy is required insofar it affects the
performance of the selected optimisation strategy in terms of robustness and speed. Con-
sistency of the discrete objective function and its derivative is a premise for an optimisation
procedure to fully converge. Simple steepest descent methods have proven robust to poor
gradient input [22]. When surrogate models are used, gradient errors can deteriorate the
local model of the design space; Dwight and Han [24] observed a poor performance of
gradient-based surrogate models—such as co-kriging [168, 77]—based on erroneous gradi-
ents.

Preconditioning of sensitivity derivatives is often used in combination with CAD-free
optimisation to enhance the performance of the optimisation procedure, and to obtain
shapes that are desirable from a technical point of view. The preconditioning is a man-
ifest manipulation of the sensitivity derivative, posing the question whether an accurate
derivative is required or only general trends should be reflected in the derivative. Smooth-
ing techniques based on “Sobolev smoothing” [65, 138], filtering [152] or multigrid methods
[69] damp out unwanted, high-frequency oscillations, which are often present in the mesh-
based sensitivity derivative with respect to the shape. Such irregularities may also have
a numerical origin: Sakamoto and Kawahara [134] note that they obtained a rough sen-
sitivity derivative on unstructured grids using a finite-element discretisation, whereas the
same approach yielded a smooth derivative on structured grids.

Pironneau [120], Laporte and Tallec [82] make a much more restrictive assumption. In
a reduced gradient formulation only the partial variation with respect to the shape is
considered. The partial variation with respect to the flow is neglected, so that no adjoint
problem has to be solved at all. The validity and the success of such assumptions is
considered to strongly depend on the optimisation problem at hand.

Gradient inaccuracies can be a consequence of incomplete iterations. However, the
constraints represented by the flow equations are only required to be satisfied by the final
converged solution of the optimisation process. This can be exploited in order to reduce
the overall optimisation effort by limiting the number of flow and adjoint iterations per
optimisation cycle. In the limit of one flow and adjoint iteration per design cycle, it leads
to the one-shot (or piggyback) algorithm—i.e. the optimisation problem, the state and the
dual are iterated in just one integrated loop [81, 36, 54]. Özkaya and Gauger [112] use a
one-shot strategy to minimise the drag of a NACA4412 section in incompressible flow using
the k-ω turbulence model. The CAD-free process chain is automatically differentiated in
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reverse mode.
Approximation and modelling errors usually change while the design evolves during

an optimisation. Re-generation or adaptation of the computational grid for instance, is
accompanied by a change of the numerical error. Also the validity of the CFD model can
be questionable in critical points. The appropriate numerical input parameters may differ
in different locations in the design space. Automatic monitoring of such influences during
the optimisation is a difficult task and depends on the particular application. Looking at
the evolution of the objective functional alone, it is possible that the evaluation error is
“optimised” by the procedure instead of the physical quantity of interest.

3.6. Integration into Shape Optimisation

Both the continuous and the discrete adjoint method provide the derivative of the objective
functional with respect to the position of the surface mesh nodes as an intermediate
solution. For complex industrial shapes the discrete derivative contains a couple of (ten)
thousand degrees of freedom on the design surface(s), offering a detailed insight into the
design opportunities from the objective point of view. The “raw” sensitivity derivative
with respect to the shape can be used to drive a deterministic, gradient-based shape
optimisation in different manners:

Global shape functions, such as a number of Hicks–Henne basis functions [56], analytic
descriptions of foil-sections (e.g. NACA) or free-form deformation techniques [139, 123,
130, 20], are associated with a predefined set of parameters. Noisy shapes are prevented
by limiting the design space a priori. The global support inherent to many techniques
is problematic in the context of complex 3D geometries. Soto et al. [150, 151] present a
pseudo-shell approach based on local shape functions (finite-element method) that couples
the perturbation of an arbitrary mesh point to the other points on the design surface.
The coupling of points is inherently smooth, works in an implicit manner and suppresses
undesirable modes in the shape.

If a CAD-model is involved and the connectivity between the CAD-parameters and
the surface mesh is available, the mesh-based derivatives can be linked to the CAD-
parametrisation using the chain rule of differentiation [89, 128]. Moreover, the grid
sensitivity, representing the derivatives of the position of the interior mesh nodes with
respect to the position of the boundary nodes, must be determined. Unless a reduced,
boundary-based gradient formulation is used, the grid generator (re-meshing strategy)
or the mesh-deformation algorithm—e.g. tension spring analogy [5, 162], torsion spring
analogy [27, 98], linear elasticity analogy [107] or explicit approaches based on inverse
distance weighting [82, 33, 167]—must be differentiated. An appropriate CAD parametri-
sation ensures suitable shapes—however, a rigid, low-dimensional setup limits the shapes
that can be generated and different CAD-models may lead to different optimal shapes.
The CAD-systems predominantly used in industry are proprietary, so that the underlying
shape definitions are not available explicitly. This requires the numerical differentiation
of the black-box CAD-method.

The most obvious strategy is to directly employ the mesh-based derivatives to the de-
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sign surface [95, 65, 69, 138, 26]. The method is referred to as CAD-free since no external
geometry description beyond the computational mesh is involved. The approach retains
all information that is contained in the derivative. As the mesh nodes on the design
surface are (independent) degrees of freedom, some regularisation requirements have to
be fulfilled to provide sufficiently smooth shapes which are feasible and desirable from
a technical point of view. The suitability of shapes is linked to the performance of the
optimisation process in terms of robustness and speed. In local shape optimisation, the
convergence rate of gradient iterations strongly depends on the (local) condition of the
Hessian of the objective functional. Through preconditioning operations, the indepen-
dent variables can be rescaled so that the condition number of the Hessian and thus
the convergence rate of the optimisation algorithm increases. In this context, the Riesz
representative of the objective functional derivative with respect to the shape is usually
denoted as the gradient of the objective functional. It assumes smooth distributions for
appropriate choices of inner products. Accordingly, different gradients are associated with
different transformations applied to the derivative. Several preconditioning techniques are
proposed to increase the level of regularity or smoothness of the derivative with respect to
the shape. Jameson and Vassberg [65] apply an implicit, continuous smoothing operator
to the derivative, based on elliptic second-order damping derived from an extended def-
inition of the inner product (frequently called “Sobolev gradient”). Jaworski and Müller
[69] compare several strategies including implicit, explicit Laplacian smoothing and multi-
grid techniques in the context of adjoint-based CAD-free shape optimisation. Different
smoothing operations based on shape Hessian preconditioners are investigated in conjunc-
tion with potential flow by Eppler et al. [26] and Euler flow by Schmidt et al. [138].

3.7. Hydrodynamic and Marine Applications

In the 1970s and 1980s potential flow techniques were explored for hydrodynamic and
marine design. Potential flow simulations are attractive where the flow features of interest
are predominantly irrotational and solenoidal, such as gravity waves or hydrodynamic
lift. Early applications of optimal flow control for hydrodynamic shape optimisation are
discussed by Pironneau [120]. Söding [140, 141, 142] presents a discrete adjoint potential-
flow solver that calculates the sensitivity derivative of the resistance of a ship hull. The
sensitivity derivative is calculated with respect to surface-normal deformations of the
hull form. The influences of hydrodynamic trim and sinkage as well as modelled skin
friction are considered in the sensitivity analysis. Guided by the sensitivity derivative,
a manual, CAD-based hull redesign is carried out. Ragab [121, 122] uses a continuous
adjoint potential flow method to optimise a simplified submarine operating near the free
surface and a surface-piercing Wigley-like hull. He calculates the sensitivity derivative of
the wave drag with respect to the hull shape, which is controlled via B-spline curves. Also
the quadratic deviation from a target pressure distribution over the hull is considered
in a so-called “inverse-design” approach. The shape optimisation is carried out by the
steepest-descent algorithm.
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Dreyer and Martinelli [19] solve the 3D incompressible Euler equations in rotating
Cartesian coordinates by a pseudo-compressibility approach. The methodology is used
in an “inverse-design” approach, applied to a rotor-stator propulsor configuration. Soto
and Löhner [146] and Soto et al. [151] optimise the bow-shape of a Kriso-Container Ship
(KCS) by means of an adjoint solver for incompressible Euler flow. The elevation of the free
water-surface is taken into account in the primal state by solving a surface equation on the
still-water surface. The free-surface elevation is neglected in the sensitivity analysis and
the authors conclude, that it needs to be considered to further reduce the resistance force.
In the same study, hydrofoils are optimised for different pressure-based criteria using the
adjoint Euler method. The wave resistance of a surface-piercing Wigley-hull is addressed
by Martinelli and Jameson [91]. They use a continuous adjoint, block-structured Euler
method that accounts for the shape-dependency of the free water surface by an interface-
tracking approach [28]. The optimisation follows the direction of steepest descent.

Hino [58] combines RANS-based discrete adjoint sensitivity analysis and sequential
quadratic programming (SQP) to reduce the viscous drag of a generic tanker hull. More-
over, a Series-60 hull is optimised with respect to the drag. The RANS solver is based on
structured multi-block grids. The dependence of both the turbulent viscosity and the free
water-surface on the shape is neglected in the sensitivity analysis. A continuous adjoint
method for incompressible Euler and RANS flow is presented by Martinelli and Cowles
[90]. They calculate the shape sensitivity to minimise the deviation from a target pressure
distribution for wings and wing-sections. The inverse design is carried out in a steepest-
descent approach. Flow and adjoint solvers are based on structured grids and use the
artificial-compressibility method. The sensitivity analysis assumes that the turbulence
is “frozen” with respect to the shape. Stück et al. [155, 156] and [80] use the adjoint
RANS method to calculate the derivative of a wake objective functional with respect to
a local change of the hull displacement. In the adjoint analysis, the eddy viscosity is
frozen with respect to the shape. Guided by the sensitivity derivative, a generic PanMax
container vessel is redesigned manually to improve the quality of the velocity wake field.
RANS-based finite differencing is applied by Tahara et al. [158] to calculate the desired
sensitivity derivatives with respect to the shape. Bow and aft-ship of a surface combatant
are optimised via an SQP algorithm taking into account the water surface. The authors
conclude that the performance of the costly optimisation can be improved in combination
with adjoint-based techniques.
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4. Hydrodynamic Optimisation Problem

“From simulation to optimization. . . ” Corliss et al. [14]

Design configurations are evaluated in terms of scalar, integral, hydrodynamic design
criteria denoted as objective functionals. The integrand of the hydrodynamic objective
functional depends on the flow which, in turn, is governed by the incompressible RANS
equations for steady state. These are considered a reasonable efficiency vs. accuracy
tradeoff for many hydrodynamic optimisation problems.

The RANS-constrained optimisation problem is described in the following including the
governing field equations for momentum, continuity and turbulence, the corresponding
boundary conditions and a base-line collection of hydrodynamic objective functionals.
The presentation is not exhaustive. The focus is on the features that are of interest for
the derivation of the variation of the Navier–Stokes problem and its adjoint counterpart
in Chapters 5 and 6.

4.1. Governing Field Equations

Inside the flow domain Ω, the fluid flow is governed by the incompressible, steady-state
RANS equations complemented by the turbulence equations.

Navier–Stokes Equations

The incompressible, steady-state RANS equations read

ρ〈Uj〉
∂〈Ui〉
∂xj

=
∂

∂xj

[

µ

(
∂〈Ui〉
∂xj

+
∂〈Uj〉
∂xi

)

− 〈p〉δij − ρ〈U ′
iU

′
j〉
]

+ fi (4.1)

and

−∂〈Ui〉
∂xi

= 0 . (4.2)

Eqns. (4.1) and (4.2) are written in terms of the Reynolds-averaged velocity and pressure
values (〈U〉, 〈p〉), which are related to the corresponding fluctuating quantities (U, p) and
the fluctuations (U ′, p′) by

Ui = 〈Ui〉+ U ′
i and p = 〈p〉+ p′ . (4.3)

The fluid density ρ, the dynamic and the kinematic viscosity, µ and ν = µ/ρ, are not
subject to turbulent fluctuations. The Reynolds-stress tensor ρ〈U ′U ′〉 is symmetric and
consists of six independent, unknown entries. In order to compute the mean turbulent
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flow, a prescription or modelling for the Reynolds-stresses in terms of the mean flow
variables is required. The body-force vector f represents, for example, the acceleration of
gravity

fi = −ρ g δi3 , (4.4)

with the Kronecker delta δij. According to the Boussinesq eddy-viscosity hypothesis, the
deviatoric portion of the Reynolds stress tensor is proportional to the mean rate of strain

−ρ〈U ′
iU

′
j〉+

2
3
ρkδij = 2µT 〈Sij〉 , (4.5)

where the turbulent kinetic energy is defined as half the trace of the Reynolds stress tensor

k =
1
2
〈U ′

iU
′
i〉 . (4.6)

The strain-rate tensor represents the symmetric portion of the velocity gradient

〈Sij〉 =
1
2

(
∂〈Ui〉
∂xj

+
∂〈Uj〉
∂xi

)

. (4.7)

The proportionality constant µT introduced in Eqn. (4.5) is called eddy viscosity. Eqn. (4.1)
can be rewritten to read

ρ〈Uj〉
∂〈Ui〉
∂xj

=
∂

∂xj

[

2µeff 〈Sji〉 −
(

〈p〉+
2
3
ρk

)

δij

]

+ fi , (4.8)

with the effective viscosity µeff = µ+ µT and the modified mean pressure
(
〈p〉+ 2

3
ρk
)
. In

the following description, the Reynolds-averaged values are simply referred to as velocity or
stress components for the sake of brevity. The modified mean pressure, 〈p〉 ←

(
〈p〉+ 2

3
ρk
)
,

is denoted as pressure and the angular brackets are left out except for the Reynolds stress
tensor.

A local residual formulation of the Reynolds-averaged equations for momentum and
continuity, Eqns. (4.8) and (4.2), reads

Ri = ρUj
∂Ui

∂xj

− ∂πij

∂xj

− fi = 0 in Ω (4.9)

and

Q = −∂Ui

∂xi

= 0 in Ω . (4.10)

The hydrodynamic stress tensor

πij = −p δij + τij , (4.11)

can be decomposed into the pressure stress, p, and the viscous stress tensor

τij = 2µeff Sij . (4.12)
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Turbulence Models

Depending on the turbulence model, the turbulent viscosity is determined from the tur-
bulent length and time scales (lT , tT )

νT = l2T/tT . (4.13)

One of the most popular eddy-viscosity turbulence models is the two-equation k-ε model
by Jones and Launder [70]. The eddy viscosity is determined from the turbulent length
and time scales according to Table 4.1. The turbulent kinetic energy k and its dissipation
rate ε are obtained from the transport equations

T1 =
Dk
Dt
− ∂

∂xj

[(

ν +
νT

σk

)
∂k

∂xj

]

− P + ε = 0 (4.14)

and

T2 =
Dε
Dt
− ∂

∂xj

[(

ν +
νT

σε

)
∂ε

∂xj

]

− Cε1
Pε

k
+ Cε2

ε2

k
= 0 . (4.15)

The production of turbulent kinetic energy is

P = −〈U ′
iU

′
j 〉
∂Ui

∂xj

= νT S2 , (4.16)

with the rate of strain defined as S =
√

2SijSij. The involved closure coefficients are

Cε1 = 1.44 , Cε2 = 1.92 , Cµ = 0.09 , σk = 1.0 and σε = 1.3 . (4.17)

The Wilcox k-ω model [166] solves a transport equation for the specific dissipation rate
or turbulent frequency ω in addition to the turbulent kinetic energy equation (4.14). The
kinematic eddy viscosity is determined according to Table 4.1. The associated transport
equations are

T1 =
Dk
Dt
− ∂

∂xj

[(

ν +
νT

σ∗

) ∂k

∂xj

]

− P + β∗kω = 0 (4.18)

and

T2 =
Dω
Dt
− ∂

∂xj

[(

ν +
νT

σ

) ∂ω

∂xj

]

− αω
k
P + βω2 = 0 . (4.19)

The model coefficients and auxiliary relations read:

α =
13
25

; β = βofβ ; β∗ = β∗
ofβ ; σ = σ∗ = 2 ; (4.20)

βo =
9

125
; fβ =

1 + 70χω

1 + 80χω

; χω =

∣
∣
∣
∣

WijWjkSki

(β∗
o ω)3

∣
∣
∣
∣

; (4.21)

β∗
o =

9
100

; fβ∗ =

{

1 ; χk ≤ 0
1+680χ2

k

1+400χ2
k

; χk > 0
; χk =

1
ω3

∂k

∂xj

∂ω

∂xj

. (4.22)
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Table 4.1.: Length scale, time scale and eddy viscosity for k-ε and k-ω turbulence models

model lT tT νT = l2T/tT

k-ε C
3

4
µ k

3

2/ε
√
Cµk/ε Cµk

2/ε

k-ω k
1

2/ω 1/ω k/ω

4.2. Boundary Conditions

The following description of boundary conditions is formulated in a local system of bound-
ary coordinates (n, t, s). The unit boundary vector n points outwards of the fluid domain
Ω. The system is completed by the in-plane unit vectors t and s = t×n. The correspond-
ing local velocity coordinates are defined by

U = Unn+ U tt+ U ss . (4.23)

On no-slip walls, the in-plane unit vector t is aligned with the local direction of strain

t = n · S · T/|n · S · T | with T = I − nn . (4.24)

A zero relative velocity is prescribed

U = U |wall , (4.25)

which reads in the local system of boundary coordinates

U t = U t|wall , U s = U s|wall and Un = 0 on Γwall . (4.26)

For negligible curvature, the incompressible equation of continuity formulated in the sys-
tem of local boundary coordinates reads

∇ · U ≈ ∂Un

∂n
+
∂U t

∂t
+
∂U s

∂s
= 0 on Γwall . (4.27)

Eqn. (4.26) implies

0 =
∂U t

∂t
=
∂U s

∂s
, i.e. 0 =

∂Un

∂n
on Γwall . (4.28)

In line with first-order boundary-layer theory, a Neumann boundary condition is imposed
on the pressure

0 =
∂p

∂n
on Γwall . (4.29)

The numerical approximation of boundary conditions for the turbulence quantities k, ε
and ω is beyond the scope of this Chapter. In-depth descriptions are given by Wilcox
[166, Sections 4.7 and 4.9] or Rung [131]. The approximations are asymptotically correct
and in line with boundary-layer theory either
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(a) prescribing a boundary condition on the boundary, or

(b) explicitly prescribing their values in the CV next to the wall, which circumvents the
numerical integration of singular surface fluxes.

For boundaries with a non-zero velocity, the in-plane unit vectors t and s are defined
as

t = T · U/
∣
∣T · U

∣
∣ and s = t× n . (4.30)

Under the assumption of zero curvature, the subsequent symmetry boundary condition
is obtained

0 = Un =
∂U t

∂n
=
∂U s

∂n
on Γsym . (4.31)

A zero-gradient Neumann boundary condition is applied to the pressure, cf. Eqn. (4.29),
and any further variables φ such as turbulence, heat, etc.:

0 =
∂φ

∂n
on Γsym . (4.32)

At the inlet a Dirichlet boundary condition, φ|in = D, is defined for the velocity
components, the turbulence variables and further scalar variables, along with a Neumann
condition (4.29) for the pressure.

A prescribed pressure value at the outlet, p|out = D, is referred to as pressure outlet
boundary condition. The normal derivatives of the remaining velocity, turbulence and
scalar variables are assumed to vanish at the pressure outlet, see Eqn. (4.32).

4.3. Hydrodynamic Objectives

The hydrodynamic optimisation problems are formulated as minimisation problems unless
described differently. Hence, a reduction of the objective functional leads to an improved
design. The objective functionals are classified as boundary- or volume-based

J = JΓ + JΩ =
∫

ΓO

jΓ dΓ +
∫

ΩO

jΩ dΩ . (4.33)

The boundary- and volume-based integrands jΓ and jΩ are integrated over the objective
surface (ΓO ⊂ Γ) or volume (ΩO ⊂ Ω), respectively. The objective functional integrands
depend on the flow which, in turn, is subject to the RANS equations

Ri = 0 , Q = 0 and T1,2 = 0 in Ω .

A base-line collection of objective functionals is presented below, which is extended for
the particular applications in Chapter 11.
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Force Components

A typical representative of a boundary-declared objective functional is the hydrodynamic
force component acting on the objective functional surface ΓO. The force direction is
defined by the unit vector d∗:

JΓ =
∫

ΓO

jΓ dΓ with jΓ = −πij nj d
∗
i , (4.34)

wherein n dΓ = dΓ. Often the drag is to be minimised to improve the design. A lift-
maximisation problem can be turned into a minimisation problem multiplying the direc-
tion vector by −1.

Power Loss

A typical criterion used in combination with internal flow problems is the power loss in
pipe networks or its components such as ducts, bends, diffusers, nozzles, valves, junctions
etc. The budget of kinetic energy is governed by the energy equation which, for incom-
pressible flow, is a consequence of the momentum equation. In the absence of heat sources
and adiabatic boundary conditions, the differential energy equation is obtained by scalar
multiplication of the momentum equation and the velocity:

0 = E = Ui Ri

= Ui

[

ρUj
∂Ui

∂xj

− ∂

∂xj

(2µeffSij − p δij)− fi

]

=
∂

∂xj

[

Uj

(ρ

2
U2

i + p
)

− 2µeffSijUi

]

+ 2µeffSijSij − fiUi in Ω .(4.35)

Integration over the flow volume Ω according to Gauss’ theorem yields

0 =
∮

dΓj

[

Uj

(ρ

2
U2

i + p
)

− 2µeffSijUi

]

+
∫

dΩ [2µeffSijSij − fiUi] . (4.36)

In the absence of body forces, f = 0, the volume-based dissipation of energy can be
expressed in terms of the boundary fluxes by virtue of Eqn. (4.36). The corresponding
objective functional declared over inlet and outlet boundaries, ΓO = Γin ∪ Γout, is

JΓ =
∫

2µeffSijSij dΩ

= −
∫

ΓO

[

Uj

(ρ

2
U2

i + p
)

− 2µeffSijUi

]

dΓj . (4.37)

The underlined term in Eqn. (4.37) represents the energy-transport by viscous and turbu-
lent stresses over the boundaries with a non-zero velocity and is neglected in the following.
According to the eddy-viscosity hypothesis, the mean energy is dissipated by two mecha-
nisms:
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• Direct viscous dissipation of kinetic energy which reappears as heat or kinetic energy
of molecular motion;

• Shear production of turbulence by interaction of the Reynolds-stresses and the mean
flow; this term generally results in a loss of mean kinetic energy or a gain (produc-
tion) of turbulent kinetic energy. It reappears with inverse sign in the budget of the
turbulent kinetic energy (4.14) and (4.18).

At high Reynolds numbers, the dissipation of mean kinetic energy in the primal budget of
energy (4.36) is usually dominated by the production of turbulent kinetic energy k which,
in turn, is dissipated by means of viscosity. The boundary-based power-loss criterion
(4.37) can be formalised according to (4.33) with the objective surface(s) ΓO being the in-
and outflow faces

JΓ =
∫

ΓO

jΓ dΓ with jΓ = −njUj

(

p+
ρ

2
U2

i

)

. (4.38)

Inverse Design Criteria

The quadratic deviation from a target velocity distribution U trg is considered as a sample
for a volume-declared objective functional

JΩ =
∫

ΩO

jΩ dΩ with jΩ =
1
2

(
Ui − U trg

i

)2
. (4.39)

The search for a shape that optimally reproduces a predefined flow is often called “inverse
design”.

Weighted Criteria

Provided that the weights α are fixed, a multi-objective optimisation problem can be
turned into a scalar problem

J =
nO∑

k=1

αkJk with
nO∑

k=1

αk = 1 . (4.40)

The individual contributions Jk may either share the same objective surface (volume), or
may be declared on different surfaces (volumes).

Having defined the hydrodynamic integral objectives and the PDE constraints, the
following sections focus on the calculation of the objective functional derivatives with
respect to the boundary shape. The direct (Jacobian) and adjoint (Lagrangian) techniques
introduced in Section 2 are applied to the RANS-based shape control problem in order to
derive the continuous adjoint RANS problem.
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5. Variation of the Optimisation Problem

This chapter provides the main building blocks for the subsequent derivation of the con-
tinuous adjoint Navier–Stokes equations in Chapter 6. The calculus of variations for shape
optimisation is based on the concept of material derivative introduced in Section 5.1. The
variation of the base-line objective functionals is described in Section 5.2, followed by
the linearisation of the Navier–Stokes equations and boundary conditions (Section 5.3).
The chapter closes with a brief description of a direct algorithm for Navier–Stokes based
sensitivity analysis (Section 5.4).

5.1. Concept of Material Derivative

The shape is controlled via a “black-box” parametrisation based on a set of parameters
β [m]. The shape parametrisation itself is beyond the scope of this thesis. The approach
presented here is generic insofar it is applicable to any shape representation that is contin-
uous and differentiable. The parametrisation is assumed to produce only feasible shapes
that do not overlap or intersect.

A small perturbation of the shape parametrisation, δβ [m], implies a continuous shift
δx of the design surface ΓD and the fluid domain Ω:

δxk =
m∑

i=1

(

δβi
∂xk

∂βi

)

+O
(

m∑

i=1

δβ2
i

)

on/in ΓD , Ω . (5.1)

The rest of the boundaries, Γ \ ΓD, remains unchanged. The distribution of the shift vector
δx corresponds to a particular realisation or combination of shape parameter variations.
Imposing the linear, spatial perturbation (5.1) on the old position x0 yields the new
position

x1 = x0 + δx on/in ΓD , Ω . (5.2)

A truncated Taylor series expansion of the old flow φ(0) about the old grid position x0

yields the old flow at the new position x1, viz.

φ(0)|x
1

= φ(0)|x
0

+ δxj
∂φ(0)

∂xj

∣
∣
∣
x

0

+O(δx2
j) . (5.3)

A modification of the domain induces a change of the flow. The new flow φ(1) at the new
position x1 can be approximated to second order:

φ(1)|x
1

= φ(0)|x
0

+
m∑

i=1

δβi

[
∂φ

∂βi

+
∂xk

∂βi

∂φ

∂xk

](0)

x
0

+O
(

m∑

i=1

δβ2
i

)

. (5.4)
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The subsequent analysis is carried out on the old grid, thus the indicators x0 are left out
for brevity. φ refers to the old flow φ(0) unless declared differently. Two contributions can
be identified from (5.4), being the local and the convective variations of φ. The former
linearly accounts for the flow change at the old grid position, whereas the latter describes
the spatial variation of the old flow due to a nodal position shift δx:

m∑

i=1

δβi

(
∂φ

∂βi

+
∂xk

∂βi

∂φ

∂xk

)

=
(

δ + δxk
∂

∂xk

)

φ = δφ
︸︷︷︸

local

+ δxk
∂φ

∂xk
︸ ︷︷ ︸

convective

. (5.5)

When the concept is applied to the gradient of a field variable, ∇φ(x), it leads to
(

δ + δxk
∂

∂xk

)(
∂φ

∂xi

)

=
∂δφ

∂xi

+ δxk
∂

∂xk

(
∂φ

∂xi

)

=
∂

∂xi

(

δφ+ δxk
∂φ

∂xk

)

− ∂δxk

∂xi

∂φ

∂xk

. (5.6)

A development of the Laplacian reads
(

δ + δxk
∂

∂xk

)(
∂2φ

∂x2
i

)

=
∂2δφ

∂x2
i

+ δxk
∂

∂xk

(
∂2φ

∂x2
i

)

(5.7)

=
∂2

∂x2
i

(

δφ+ δxk
∂φ

∂xk

)

− ∂

∂xi

(
∂δxk

∂xi

∂φ

∂xk

)

− ∂δxk

∂xi

∂2φ

∂xk∂xi

.

This is known as the concept of material derivative [57, 18, 53, 144]. The nomenclature
is analogous to the transport theorem with the substantial derivative defined as

D
Dt

(·) =
∂

∂t
(·) + U · ∇(·) . (5.8)

Both material and substantial derivatives, Eqns. (5.5) and (5.8), are evaluated at the
original (or old) positions, which is characteristic of Eulerian, mesh-based methods.

5.2. Variation of the Objective Functional

Like the flow, the objective functional experiences a change through a perturbation of the
boundary shape. The variation of the objective functional samples introduced in Section
4.3 is presented below.

An example for a volume-based objective functional is the inverse design criterion (4.39)

JΓ =
∫

ΩO

jΩ dΩ with jΩ =
1
2

(
Ui − U trg

i

)2
. (5.9)

Given that the objective volume ΩO does not undergo a spatial shift or deformation, the
objective functional variation has a local character indicated by the δL(·) notation; that is
changes in the objective functional are induced by changes in the flow variables (δU, δp):

δLJΓ =
∫

ΩO

δLjΩ dΩ with δLjΩ = δUi

(
Ui − U trg

i

)
. (5.10)
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Optimisation problems with boundary-based objective functionals can be subdivided in
two basic scenarios:

(a) Objective functional surface(s) and design surface(s) are separate, i.e. ΓO ∩ ΓD = ∅.

(b) The objective functional surface ΓO is (in parts) subject to shape variations, i.e.
ΓO ∩ ΓD 6= ∅.

An example of type (a) is the power loss criterion (4.38). The corresponding variation
reads

δJ =
∫

Ω

dΩ
[

2 δµT SijSij + 4µeffSij δSij

]

. (5.11)

If the turbulence field is frozen with respect to the shape control, the underlined term of
Eqn. (5.11) is zero. In the boundary-based formulation (4.38), the objective functional is
evaluated on inlet and outlet, ΓO = Γin ∪ Γout. When the shape control is confined to the
channel walls ⊂ ΓD, i.e. ΓO ∩ ΓD = ∅, only local objective functional variations have to be
evaluated

δLJΓ =
∫

ΓO

δLjΓ dΓ

with δLjΓ = −nj δUj

(

p+
ρ

2
U2

i

)

− njUj (δp+ ρUi δUi)

= −δUi

(ρ

2
U2

j ni + pni + ρUjUinj

)

− δp (Ujnj) . (5.12)

A typical representative of scenario (b) is the hydrodynamic force criterion (4.34)

JΓ =
∫

ΓO

jΓ dΓ with jΓ = −πij nj d
∗
i . (5.13)

The objective functional is declared on the body surface that is subject to the shape
design, i.e. the objective functional surface and the design surface coincide fully or in
parts, ΓO ∩ΓD 6= ∅. In a linear approach, three different contributions to the total change
of the objective functional can be identified: (i) a local change δLJΓ due to a local change
of the flow (δU, δp); (ii) a convective shift δCJΓ accounting for a boundary-normal position
shift δn = n · δx; and (iii) a geometric change δGJΓ due to a change of the surface area
and orientation:

δLCGJ = (δL + δC + δG)JΓ . (5.14)

The local variation of the objective functional is

δLJΓ =
∫

ΓO

δLjΓ dΓ with δLjΓ = (ni δp− nj δτij) d∗
i .

Convective and geometric variations of the objective functional are discussed in the fol-
lowing based on the force criterion (5.13).
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Convective Derivative

For contour-normal perturbations, δn = n · δx, the hydrodynamic stress tensor in the
integrand of the force criterion (5.13) can be developed to the new position:

δCJ =
∫

ΓO∩ΓD

δCjΓ dΓ (5.15a)

=
∫

ΓO∩ΓD

δn
∂

∂n
[ni p− njτij] d∗

i dΓ . (5.15b)

Eqn. (5.15b) can be rewritten as

δCJ =
∫

ΓO∩ΓD

δn GC dΓ , (5.16)

with the convective derivative of the objective functional

GC =
∂

∂n
[ni p− njτij] d∗

i on ΓO ∩ ΓD . (5.17)

For no-slip walls, the convective variation of the force objective is zero according to first-
order boundary-layer theory, since both pressure and shear stress are assumed to be
constant in the boundary-normal direction:

0 ≈ ∂τnt

∂n
≈ ∂p

∂n
on ΓD . (5.18)

Geometric Derivative

The geometric variation of the objective functional accounts for variations of the surface
area and orientation. It can be evaluated according to differential geometry, e.g. Hill
[57], Dems and Mróz [18], Sokolowski and Zolésio [145]. Schmidt [137] calculates the
geometric variation via a surface-divergence formulation

δGJ = d∗
i δG

∫

ΓO∩ΓD

πij nj dΓ (5.19a)

= d∗
i

∫

ΓO∩ΓD

πij δ(nj dΓ) (5.19b)

=
∫

ΓO∩ΓD

δn
∂

∂xΓ
j

(πij d
∗
i ) dΓ . (5.19c)

The surface divergence, ∂(·)j/∂x
Γ
j , is the projection of the corresponding Cartesian opera-

tor onto the boundary surface, cf. Appendix C. According to Schmidt [137], Eqn. (5.19c)
can be rewritten in terms of the geometric derivative GG

δGJ =
∫

ΓO∩ΓD

δn GG dΓ (5.20)

with

GG =
∂

∂xΓ
j

(πij d
∗
i ) on ΓO ∩ ΓD . (5.21)
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A Note on Local, Geometric and Convective Variations

The convective and the geometric variations of the objective functional δCGJ are “local”
in character (not to be confused with the term “local variation” motivated by the concept
of material derivative). It means that it is possible to locally evaluate the influence
of a shape perturbation on the objective functional. From a computational point of
view this is both convenient and cost-efficient. The opposite is the case for the local
variations of the objective functional δLJ . The flow perturbation (δU, δp) is propagated
through the domain by the variation of the Navier–Stokes equations derived in the next
section. The elliptic character of the incompressible Navier–Stokes equations implies that
a perturbation applied at any position in the flow domain causes a global change in the
flow field. Assuming that the numerical effort spent for solving the non-linear and the
linearised Navier–Stokes equations is comparable, it is prohibitively expensive to calculate
the sensitivity derivatives with respect to many degrees of freedom in direct mode; the
adjoint approach described in Chapter 6 is more efficient in that case.

5.3. Variation of the Navier–Stokes Equations

Following the concept of material derivative, the governing flow equations (4.9) and (4.10)
have to be satisfied for a slightly modified domain, resulting in the variation of the field
equations and boundary conditions.

Field Equations

A linearisation of the Navier–Stokes equations about a steady-state solution leads to

0 =
(

δ + δxj
∂

∂xj

)

Ri in Ω , (5.22)

and

0 =
(

δ + δxj
∂

∂xj

)

Q in Ω . (5.23)

Thanks to the material derivative approach, the variation of the Navier–Stokes equations
is solved on the original domain, i.e. the non-deformed computational mesh. Since the
primal Navier–Stokes equations are satisfied on the old grid, Ri = Q = 0, the respective
gradients of the primal residuals vanish

0 = δxk
∂Ri

∂xk

= δxk
∂Q

∂xk

in Ω . (5.24)

Therefore, Eqns. (5.22) and (5.23) reduce to

0 = δRi = δQ in Ω . (5.25)

The expanded form of Eqn. (5.25) is provided in Appendix A.1. Since the convective flow
variation inside the domain does not need to be evaluated, a variation of the interior grid
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is not necessary. For incompressible flow the density shows no variation. Also the body-
force density f does not undergo variations. A possible variation of the eddy viscosity
with respect to the shape is not taken into consideration, neither in terms of a convective
nor a local variation. The so-called frozen-turbulence assumption is common practice for
complex applications [66, 149, 151, 110, 22, 116].

The variation of the boundary conditions for the Navier–Stokes equations are presented
in the next section.

Boundary Conditions on ΓD

The shape design problem is “boundary-controlled”. The shape variation is applied to
the design surfaces ΓD, which are subject to both convective and local variations (δ +
δn ∂/∂n)φ. The variation of the boundary conditions is developed so that the original
boundary conditions are satisfied for the new boundary x1 in a linear sense.

A Dirichlet boundary condition postulated for the old flow φ(0) at the old (non-
perturbed) boundary position x0

D = φ(0)
∣
∣
x

0

, (5.26)

also needs to be satisfied by the new flow φ(1) on the new geometry x1. For boundary-
normal shape perturbations, δn = n · δx, the boundary condition can be developed to
second-order accuracy about the old position

D = φ(1)
∣
∣
x

1

≈
[

φ(0) + δφ+ δn
∂φ(0)

∂n

]

x
0

. (5.27)

Subtracting (5.27) from (5.26) yields

δφ
∣
∣
x

0

≈ −δn ∂φ
(0)

∂n

∣
∣
∣
x

0

on ΓD . (5.28)

The subsequent analysis is carried out on the old grid. The pointers x0 and x1 are left
out for the sake of brevity. φ refers to the old flow unless declared differently.

A Neumann boundary condition

N =
∂φ

∂n
on ΓD , (5.29)

can be developed for a boundary-normal perturbation δn on the old grid according to
Eqn. (5.6):

∂δφ

∂n
= −δn ∂

∂n

(
∂φ

∂n

)

on ΓD . (5.30)

A Robin-type boundary condition

R = φ+ α
∂φ

∂n
on ΓD , (5.31)
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subject to a boundary-normal perturbation δn reads

δφ+ α
∂δφ

∂n
= −δn∂φ

∂n
− α δn∂

2φ

∂n2
on ΓD . (5.32)

The variation of the boundary conditions for the velocity vector is derived on the basis
of a local, boundary-oriented system of coordinates (n, t, s). The design surfaces ΓD are
confined to solid walls with a no-slip boundary condition, which can be linearly developed
according to Eqn. (5.28):

δUi = −δn∂Ui

∂n
on ΓD . (5.33)

By virtue of Eqn. (4.27), Eqn. (5.33) simplifies to

δU t = −δn∂U
t

∂n
and 0 = δUn = δU s

or

δUi = −δn∂U
t

∂n
ti = −δn∂U

t
i

∂n
. (5.34)

Boundary Conditions on Γ \ ΓD

The boundaries that are not subject to shape variations, Γ \ ΓD, experience local variations
alone.

Hence, the variation of a Dirichlet boundary condition is zero by definition

D = φ  0 = δφ on Γ \ ΓD . (5.35)

For Neumann boundary conditions the prescribed gradient remains unchanged

N =
∂φ

∂n
 0 =

∂δφ

∂n
on Γ \ ΓD . (5.36)

A Robin-type boundary condition implies

R = φ+ α
∂φ

∂n
 0 = δφ+ α

∂δφ

∂n
on Γ \ ΓD . (5.37)

The variation of the boundary conditions derived above is compiled for a scalar variable
δφ and for the variation of the Navier–Stokes problem (δU, δp) in Tables 5.1 and 5.2,
respectively.

5.4. Direct Evaluation of Constrained Derivatives

A direct evaluation of the objective functional sensitivity according to the Jacobian cal-
culus, cf. Section 2.3, requires the following steps:

(i) Calculate the reference solution, (U, p)[β], from the non-linear equations of state.
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Table 5.1.: Variation of the boundary conditions for a scalar φ formulated on the old
boundary

boundary φ δφ

Dirichlet ⊂ ΓD D = φ δφ = −δn φ,n

Dirichlet 6⊂ ΓD D = φ δφ = 0

Neumann ⊂ ΓD N = φ,n δφ,n = −δn φ,nn

Neumann 6⊂ ΓD N = φ,n δφ,n = 0

Robin ⊂ ΓD R = φ+ αφ,n δφ+ α δφ,n = −δn (φ,n + αφ,nn)

Robin 6⊂ ΓD R = φ+ αφ,n δφ+ α δφ,n = 0

Table 5.2.: Variation of the boundary conditions for the Navier–Stokes equations formu-
lated on the old boundary

boundary δU δp

no-slip wall ⊂ ΓD δU = −δn(n · ∇U t) δp = −δn p,nn = 0

no-slip wall 6⊂ ΓD δU = 0 δp,n = 0

symmetry δUn = δU t,n = 0 δp,n = 0

inflow δU = 0 δp,n = 0

pressure outflow n · ∇(δU) = 0 δp = 0
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(ii) For i = 1, . . . ,m, perturb the shape by δβi.

(iii) Evaluate the distribution of the boundary-normal offset δn[δβi] over the design sur-
face ΓD.

(iv) Solve Eqns. (5.25) for the local flow variation, (δU, δp)[δβi], subject to the variation
of the boundary conditions (5.34).

(v) Evaluate the variation of the objective functional, δLCGJ [δβi], according to Section
5.2.

(vi) i← i+ 1 and go to (ii).

In order to compute the complete sensitivity vector δJ/δβi, the steps (ii) to (v) have to
be carried out m times. Assuming that step (iv) dominates the computational effort, the
costs of an evaluation of the full gradient vector scale with the number of design variables
m. In the face of many parameters, the sensitivity analysis should be conducted in the
adjoint or Lagrange manner as outlined in Section 2.3. The adjoint calculus is applied to
the Navier–Stokes problem on a PDE level in the next chapter.
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6. Continuous Adjoint Navier–Stokes Concept

“Additionally, the design method, which is greatly accelerated by the use of con-
trol theory, has been further enhanced by the use of a new continuous adjoint
method, which reduce the volume integral part of the adjoint gradient formula
to a surface integral [64], thus eliminating the dependence of the gradient for-
mulas on the mesh perturbation.” Jameson [63]

The continuous adjoint Navier–Stokes problem is devised from the augmented objective
functional or Lagrangian as described in Section 6.1. Its material derivative is re-organised
and separated into two parts, either

(i) depending on the variation of the state (δU, δp); or

(ii) on the control δn, which is applied to the boundary ΓD of the flow domain.

The former (i) defines the adjoint Navier–Stokes equations and boundary conditions,
Section 6.2, whereas the adjoint sensitivity equation is obtained from (ii) as described in
Section 6.3. Similar derivations of the adjoint Navier–Stokes equations for hydrodynamic
shape optimisation are, for instance, presented by Soto and Löhner [147, 148, 149] and
Othmer [110].

6.1. Augmented Objective Functional

The optimisation problem subject to the incompressible Navier–Stokes equations can be
turned into an unconstrained problem via the Lagrangian calculus as shown in Section
2.3. The objective functional is extended by the domain integral of the Navier–Stokes
constraints weighted by the so-called Lagrange multipliers or adjoint variables (Ûi, p̂):

L = J +
∫

dΩ
[

Ûi Ri + p̂ Q
]

. (6.1)

The adjoint variables are field variables like their primal counterparts. Given that the
Navier–Stokes equations are satisfied for the investigated design state or reference case,
expression (6.1) exactly meets the value of the objective functional J . The first variation
of the extended objective functional reads

δLCGL = δLCGJ +
∫

Ω

dΩ
[

Ûi δRi + p̂ δQ
]

. (6.2)

Given that the variation of the Navier–Stokes equations (5.25) is satisfied, 0 = δQ = δRi,
the variation of the Lagrangian δLCGL equals the variation of the objective functional
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δLCGJ . The subsequent analysis is confined to the local variation of the Lagrangian, δLL
in order to derive the adjoint PDE. The remaining contributions, δCGL = δCGJ , have been
discussed in Section 5.2. Expansion of the local variation terms of Eqn. (6.2) yields:

δLL =
∫

ΓO

δLjΓ dΓ +
∫

ΩO

δLjΩ dΩ (6.3a)

+
∫

dΩ

[

Ûi

(

ρ δUj
∂Ui

∂xj

+ ρUj
∂δUi

∂xj

(6.3b)

+
∂

∂xj

[

δij δp− µeff

(
∂δUi

∂xj

+
∂δUj

∂xi

)])

− p̂
(
∂δUi

∂xi

)]

. (6.3c)

The basic idea is to chose the adjoint multipliers (Ûi, p̂) such that any contribution to
Eqn. (6.3) depending on any admissible local flow variation (δUi, δp) is eliminated. This
particular choice (Ûi, p̂) requires to satisfy the adjoint Navier–Stokes equations, which
are specific to the objective functional. After solving the adjoint problem associated with
the objective functional of interest, its derivative is evaluated from the remaining terms
of Eqn. (6.3) in the so-called adjoint post-processing described in Section 6.3.

6.2. Adjoint Navier–Stokes Equations

The subsequent expression is obtained from Eqn. (6.3) via integration by parts, cf. Ap-
pendix A.2. It constitutes the adjoint field equations and boundary conditions:

δLL =
∮

dΓj

[(

ρ δUi Uj + δp δij − µeff

[
∂δUi

∂xj

+
∂δUj

∂xi

])

Ûi (6.4a)

+
(

−p̂ δij + 2µeff Ŝji

)

δUi

]

(6.4b)

+
∫

dΩ
[(

ρ Ûj
∂Uj

∂xi

− ρUj
∂Ûi

∂xj

− ∂

∂xj

[

2µeff Ŝij − p̂ δij

])

δUi −
∂Ûj

∂xj

δp

]

(6.4c)

+
∫

ΩO

δLjΩ dΩ +
∫

ΓO

δLjΓ dΓ (6.4d)

with Ŝ = (∇Û + [∇Û ]T )/2. Note that the leading term in (6.4c), called “advection” in
this work, has not been integrated by parts. This advection treatment is referred to as
ADV1 and is used for the subsequent analysis. It is also followed by Hinze [59], Carnarius
et al. [8, 9]. An alternative formulation, ADV2, is obtained via integration by parts as
described in Appendix B. This strategy was, among others pursued by Soto and Löhner
[149], Othmer [110] and Zymaris et al. [170, 171]. Soto and Löhner [149] also suggest to
neglect the advection term (ADV0) so that the adjoint PDE are similar to the primal
ones, which facilitates the numerical solution.
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Adjoint Field Equations

The adjoint field equations eliminate the volume contributions to (6.4c) and (6.4d) for
arbitrary, admissible choices (δUi, δp). The adjoint equations of momentum and continuity
are







−ρUj
∂Ûi

∂xj

=
∂

∂xj

(

2µeff Ŝij − p̂ δij

)

− ρ Ûj
∂Uj

∂xi

− ∂jΩ

∂Ui

in ΩO

−ρUj
∂Ûi

∂xj

=
∂

∂xj

(

2µeff Ŝij − p̂ δij

)

− ρ Ûj
∂Uj

∂xi

in Ω \ ΩO

(6.5)

and 





∂Ûi

∂xi

=
∂jΩ

∂p
in ΩO

∂Ûi

∂xi

= 0 in Ω \ ΩO .

(6.6)

The source terms in ΩO originate from the linear variation of the integrand of the consid-
ered objective functional

δLjΩ = δp
∂jΩ

∂p
+ δUi

∂jΩ

∂Ui

. (6.7)

Formulation (6.7) is only valid for algebraic terms and requires a reformulation if the
volume-declared integrand of the objective functional contains differential expressions.

Adjoint Boundary Conditions

In order to derive the adjoint boundary conditions, the boundary types used in the primal
code have to be redivided depending on their contribution to the considered objective
functional. The design surfaces ΓD, which may undergo spatial perturbations, are con-
fined to no-slip wall boundaries in this work. The remaining boundaries, Γ \ ΓD, are not
affected by the shape control, i.e. they keep their original position and experience local
flow variations alone.

Inflow boundaries and no-slip walls on Γ \ ΓD have a Dirichlet-type boundary condi-
tion for the velocity

Di = Ui on Γin and Γwall 6⊂ ΓD . (6.8)

The local variation is zero by definition

0 = δUi on Γin and Γwall 6⊂ ΓD . (6.9)

The pressure is extrapolated to the boundaries. If no contributions to the objective
functional are declared over wall or inlet boundaries, the remaining terms of the boundary
integral (6.4a/6.4b)

0 = −µeff

(
∂δUi

∂n
+
∂δUn

∂xi

)

Ûi + δp Ûn on Γin 6⊂ ΓO and Γwall 6⊂ (ΓD ∪ ΓO) (6.10)
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define the adjoint boundary condition

0 = Ûi on Γin 6⊂ ΓO and Γwall 6⊂ (ΓD ∪ ΓO) . (6.11)

In case the considered boundary wall carries an objective functional, such as the force
criterion (4.34/5.14) [e.g. 147, 148, 8], the non-zero boundary terms of (6.4a/6.4b/6.4d)
depending on the local variation of the flow (δUi, δp) are

[

δp δij − µeff

(
∂δUi

∂xj

+
∂δUj

∂xi

)](

Ûi + d∗
i

)

= 0 on Γwall ⊂ (ΓO \ ΓD) , (6.12)

requiring
Ûi = −d∗

i on Γwall ⊂ (ΓO \ ΓD) . (6.13)

If the power-loss criterion (4.38/5.12) is declared on the inlet [e.g. 110, 170, 171], the
adjoint boundary condition is deduced from the boundary terms

nj

[

δp δij − µeff

(
∂δUi

∂xj

+
∂δUj

∂xi

)]

Ûi − njUj δp = 0 on Γin ⊂ ΓO (6.14)

which, in conjunction with (a) 0 = TijUi|in and (b) 0 = ∂δUn/∂n|in, implies

Ûi = Ui on Γin ⊂ ΓO . (6.15)

Condition (a) is satisfied for the internal flow problems considered in this study; (b) is
feasible given that the inlet flow is developed. It is interesting to note that (a) and (b)
can be abandoned when the underlined term in the power-loss criterion (4.37) is taken
into account.

The adjoint symmetry boundary condition is derived from the boundary terms
(6.4a/6.4b) in conjunction with

0 =
∂U t

∂n
=
∂U s

∂n
=
∂δU t

∂n
=
∂δU s

∂n
on Γsym

and
0 = Un = δUn on Γsym . (6.16)

It leads to

0 = δp Ûn − µeff Ûi

(
∂δUi

∂n
+
∂δUn

∂xi

)

+ µeff δUi

(

∂Ûi

∂n
+
∂Ûn

∂xi

)

(6.17)

=
(

δp− 2µeff
∂δUn

∂n

)

Ûn + µeff

(
δU ttδ + δU ssδ

)
·
(

∂Û t

∂n
t̂+

∂Û s

∂n
ŝ

)

on Γsym

with the boundary unit vectors on Γsym

t = U/|U | ; s = n× t ;

t̂ = Û/|Û | ; ŝ = n× t̂ .
tδ = δU/|δU | ; sδ = n× tδ . (6.18)
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It implies

0 = Ûn =
∂Û t

∂n
=
∂Û s

∂n
on Γsym . (6.19)

A pressure outlet boundary condition states

D = p  0 = δp on Γout . (6.20)

The velocity is extrapolated to the outlet with a zero-gradient, viz.

0 =
∂Ui

∂n
=
∂δUi

∂n
on Γout . (6.21)

The remaining boundary terms in the extended objective functional (6.4a/6.4b) are

0 = δUi

[

ρUnÛi + µeff

(

∂Ûi

∂n
+
∂Ûn

∂xi

)

− p̂ni

]

− µeff
∂δUn

∂xi

Ûi on Γout 6⊂ ΓO . (6.22)

Assuming 0 = ∇νeff in the vicinity of the outlet, e.g. Othmer [110], leads to

0 = δUi

[

ρUnÛi + µeff
∂Ûi

∂n
− p̂ni

]

on Γout 6⊂ ΓO . (6.23)

For arbitrary δUi|out, Eqn. (6.23) implies

p̂ni = ρUnÛi + µeff
∂Ûi

∂n
on Γout 6⊂ ΓO . (6.24)

In a local system of boundary coordinates (6.18), the following boundary conditions are
obtained on the pressure outlet

p̂ = ρUnÛn + µeff
∂Ûn

∂n
,

0 = ρUnÛ t + µeff
∂Û t

∂n
,

0 = ρUnÛ s + µeff
∂Û s

∂n
on Γout 6⊂ ΓO . (6.25)

In case the power-loss criterion (4.38/5.12) is declared on the outlet with p|out = δp|out = 0
[e.g. 110, 170, 171], the adjoint boundary condition is defined by the non-zero boundary
terms of (6.4a/6.4b/6.4d)

0 = δUi

[

ρUnÛi + µeff
∂Ûi

∂n
− p̂ni −

ρ

2
niU

2
j − ρUnUi

]

on Γout ⊂ ΓO , (6.26)

i.e.

p̂ni = ρUnÛi + µeff
∂Ûi

∂n
− ρ

2
niU

2
j − ρUnUi on Γout ⊂ ΓO . (6.27)
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The adjoint boundary conditions for wall boundaries subject to shape variations,
ΓD, need a closer look. The no-slip type Dirichlet boundary condition implies

0 = Ui on Γwall . (6.28)

Due to the position shift δn = n · δx both local and convective variations are present.
According to Eqn. (5.28), the Dirichlet boundary condition can be linearly developed to
the new position, i.e.

δUi = −δn∂Ui

∂n
on Γwall ⊂ ΓD . (6.29)

When a force criterion (4.34/5.14) is considered on ΓD∩ΓO, the specific contributions (6.4d)
must be taken into account together with the non-zero boundary terms of (6.4a/6.4b)

nj

[(

− p̂ δij + 2µeff Ŝij

)

δUi (6.30a)

+
(

ρδUi Uj + δp δij − µeff

[
∂δUi

∂xj

+
∂δUj

∂xi

])

Ûi

]

Γwall⊂ΓD

(6.30b)

+ nj

[(

δp δij − µeff

[
∂δUi

∂xj

+
∂δUj

∂xi

])

d∗
i

]

Γwall⊂(ΓD∩ΓO)

. (6.30c)

By virtue of Eqn. (6.29), the terms (6.30a) can be rewritten in terms of the control
δn. These contributions are considered in the adjoint gradient equation in Section 6.3.
The remaining boundary terms (6.30b) and (6.30c) are to be eliminated by the adjoint
boundary conditions. With the primal no-slip Dirichlet boundary condition (6.28), the
only remaining boundary terms, depending on local flow variations (δUi, δp), are

[

δp δij − µeff

(
∂δUi

∂xj

+
∂δUj

∂xi

)]

Ûi = 0 on Γwall ⊂ (ΓD \ ΓO) (6.31)

and
[

δp δij − µeff

(
∂δUi

∂xj

+
∂δUj

∂xi

)](

Ûi + d∗
i

)

= 0 on Γwall ⊂ (ΓD ∩ ΓO) . (6.32)

These terms are eliminated by the adjoint boundary conditions

Ûi = 0 on Γwall ⊂ (ΓD \ ΓO) (6.33)

and

Ûi = −d∗
i on Γwall ⊂ (ΓD ∩ ΓO) . (6.34)

The adjoint boundary conditions derived above are compiled in Table 6.1.
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Table 6.1.: Boundary conditions for the adjoint Navier–Stokes equations (ADV1)

boundary objective Û p̂

no-slip wall 6⊂ ΓO – Û = 0 p̂,n = 0

no-slip wall ⊂ ΓO force Û = −d∗ p̂,n = 0

inflow 6⊂ ΓO – Û = 0 p̂,n = 0

inflow ⊂ ΓO power loss Û = U p̂,n = 0

symmetry – Ûn = Û t,n = 0 p̂,n = 0

pressure outflow 6⊂ ΓO – ρUnÛi + µeff
∂Ûi

∂n
= p̂ni

pressure outflow ⊂ ΓO power loss ρUnÛi + µeff
∂Ûi

∂n
− ρ

2
U2

j ni − ρUnUi = p̂ni

6.3. Adjoint Gradient Equation

Having eliminated the local flow variations in the augmented objective functional by
satisfying the adjoint Navier–Stokes equations and boundary conditions, the remaining
terms of Eqn. (6.4) state the local portion of the objective functional derivative [e.g.
149, 110, 170, 171]:

δLL = δLJ =
∫

ΓD

dΓj

[(

−p̂ δij + 2µeff Ŝij

)

δUi

]

. (6.35)

These are the contributions (6.30a), which have been transferred to the sensitivity equa-
tion. Substituting the linearised boundary condition on ΓD, Eqn. (6.29), into Eqn. (6.35)
yields:

δLL =
∫

ΓD

dΓj

[(

p̂ δij − 2µeff Ŝij

)

δn
∂Ui

∂n

]

=
∫

ΓD

dΓ
[

δn

(

p̂
∂Un

∂n
− 2µeff Ŝij

∂Ui

∂n

)]

≈
∫

ΓD

dΓ

[

−δn µeff
∂Û t

∂n

∂U t

∂n
t̂iti

]

. (6.36)

The local wall coordinate systems for flow (n, t, s) and adjoints (n, t̂, ŝ) are defined through
the outward boundary unit vector n and the in-plane components

t = n · S · T/|n · S · T | ; s = n× t ;

t̂ = n · Ŝ · T/|n · Ŝ · T | ; ŝ = n× t̂ . (6.37)

The final expression of Eqn. (6.36) is obtained with 0 = ∂Un/∂n|wall according to Eqn. (4.28).
Note that the integration (6.36) is restricted to the design surface ΓD, which is subject to
the shape control δn. Eqn. (6.36) can be rewritten as

δLL =
∫

ΓD

δnGL dΓ , (6.38)
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with the distribution of the local component of the sensitivity derivative

GL = −µeff
∂Û t

∂n

∂U t

∂n
t̂iti on ΓD . (6.39)

Note that the approximation of GL is of first-order accuracy, O(δn), since the underlying
linear development of the wall boundary condition (5.28) is second-order accurate, O(δn2).

6.4. Complete Gradient Equation

The complete variation of the objective functional can be expressed as

δJ = (δL + δC + δG) J

=
∫

ΓD

δnGL dΓ +
∫

ΓO∩ΓD

δn (GC +GG) dΓ . (6.40)

Accordingly, the distribution of the complete gradient G, or GLCG = GL + GC + GG, can
be decomposed into the following portions:

• The local gradient contribution accounts for local variations of the flow

GL = −µeff
∂U t

∂n

∂Û t

∂n
ti t̂i on ΓD . (6.41)

For an optimisation problem constrained by elliptic PDE, it is non-zero over the
entire design surface ΓD. It is efficiently obtained from the adjoint calculus (6.39).

• The convective gradient contribution obtained from a truncated Taylor series ex-
pansion is associated with a convective variation of the flow

GC =
∂jΓ

∂n
on ΓO ∩ ΓD . (6.42)

This contribution is practically zero for the force objective functional (4.34), cf.
Eqns. (5.15) through (5.18).

• The geometric gradient contribution originates from changes of the boundary orien-
tation and surface area. According to Eqn. (5.19), the distribution of the geometric
gradient of the force objective functional (4.34) reads

GG =
∂

∂xΓ
j

(πij d
∗
i ) on ΓO ∩ ΓD . (6.43)

Convective and geometric gradient contributions, GC and GG, only exist if the boundary
surface is subject to the control, i.e. ΓO ∩ΓD = ∅. Otherwise GC and GG are not declared.
As suggested by Söding [140] in the context of a discrete-adjoint potential flow method,
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the surface gradient can be interpreted as the sensitivity of the objective functional with
respect to a local volume change:

δJ =
∫

ΓD

δnG dΓ or G =
δJ

δn dΓ
=
δJ

δV
on ΓD . (6.44)

A positive gradient G implies that a local increase in fluid (solid) volume δV ≈ δn dΓ
leads to a positive (negative) objective functional increment δJ .

6.5. Example: Interior vs. Exterior Evaluation of Forces

A simple model illustrates how two different formulations of the same objective functional
lead to two different adjoint setups. The objective functional is the component of the
force F ∗ acting on the surface ΓD of a submerged body into the direction of d∗, viz.

J = d∗
iF

∗
i . (6.45)

It can be evaluated in two different ways, referred to as interior (i) and exterior (ii)
strategy:

(i) According to Figure 6.1 (left), the integration is carried out over the body of interest
(dashed line=ΓO):

J = d∗
i F

∗
i = −d∗

i

∫

ΓO

πij dΓj . (6.46)

The complete body surface is subject to the shape design, so that ΓO and ΓD are
equivalent. The corresponding boundary conditions obtained for the adjoint problem
are (cf. Table 6.2, ADV2):

Û = −d∗ on body surf. (ΓD = ΓO) .

The external boundary conditions on inlet and wall faces, where the primal velocity
is prescribed, are:

Û = 0 on ext. walls, inlet (6⊂ ΓO) .

Note that, for ΓO ∩ ΓD 6= ∅, the partial variation of the objective functional with
respect to the shape is non-zero, δCGJ 6= 0.

(ii) According to Figure 6.1 (right), the force acting on the body is evaluated by inte-
gration over the exterior boundaries of the flow domain (dashed line=ΓO):

J = d∗
i F

∗
i = −d∗

i

∮

ΓO

[ρUj Ui − πij] dΓj . (6.47)

The objective surface is not subject to shape perturbations ΓO ∩ ΓD = ∅, so that
the partial variation of the objective functional with respect to the shape is zero,
δCGJ = 0. The variation of Eqn. (6.47) is

δLJ = d∗
i δLF

∗
i = −d∗

i

∮

ΓO

[ρ δ (Uj Ui)− δπij] dΓj . (6.48)
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The adjoint boundary conditions for this declaration of the objective functional in
conjunction with the advection treatment ADV2 are compiled in Table 6.3:

Û = 0 on body surf. (ΓD = Γ \ ΓO) .

The adjoint velocities imposed on the exterior inlet and wall boundaries are

Û = d∗ on ext. walls, inlet (⊂ ΓO) .

A comparison of (i) and (ii) reveals two interesting aspects:

(a) An adjoint transpiration boundary condition is obtained in configuration (i) on
the body surface (ΓO). On the exterior boundaries, where the primal velocity is
prescribed (inlet, walls), the adjoint velocity sticks to the boundary surface. The
situation is inverse for configuration (ii). The adjoint velocity sticks to the body
surface and flows through the outer domain boundaries (inlet, walls, outlet).

The boundary conditions of configuration (ii) remind of the Navier–Stokes equations
formulated in an arbitrary Lagrangian Eulerian (ALE) frame of reference for moving
grids. For incompressible flow, the convection velocity is replaced by the relative
velocities U r = U − U g observed on a grid moving with the velocity U g:

ρU r
j

∂Ui

∂xj

=
∂πij

∂xj

+ fi ,

−∂U
r
j

∂xj

= 0 in Ω . (6.49)

With the free-stream velocity U0, two standard ALE configurations are:

(a.i) With U g = −U0, the frame of reference moves with the body. The correspond-
ing inlet velocity is U = 0 in conjunction with U = −U0 applied to the body
surface.

(a.ii) The standard Eulerian description is recovered for U g = 0, along with U = U0

on the inlet and U = 0 on the body surface.

Both descriptions (a.i/ii) are fully equivalent and lead to the same effective fluxes.
The adjoint formulation (i) obviously resembles the moving grid method (a.i), whereas
(ii) is similar to the Eulerian description (a.ii).

(b) Formulation (i) requires to evaluate the complete gradient, G = GL + GC + GG,
including local, convective and geometric contributions as described in Section 6.4.
In formulation (ii), the variation of the objective functional consists of local varia-
tions alone, so that the gradient can be evaluated from Eqn. (6.38). This feature is
very welcome as it significantly simplifies the gradient evaluation. It is remarkable
that the adjoint systems (i/ii) are equivalent from a quasi-ALE point of view (a). A
difference is observed in the outlet boundary condition for the following reason: In
configuration (ii) the flux of adjoint momentum convected through the inlet re-enters
at the outlet. On the contrary, an adjoint “do-nothing” or no-flux outlet boundary
condition is found in configuration (i), so that no adjoint momentum is convected
through the exterior boundaries of the domain.
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inletinletinletinletinletinletinletinletinlet outlet

wall

wall

foil
d∗

inletinletinletinletinletinletinletinletinlet outlet

wall

wall

foil
d∗

Figure 6.1.: Force integration. Left: integration of surface stress over dashed line (ΓO =
ΓD = foil). Right: external flux integration over dashed line (ΓO = hold-all)

Table 6.2.: Adjoint boundary conditions for “interior” force evaluation (ADV2)

boundary Û p̂

wing surf. ⊂ ΓO Û = −d∗ p̂,n = 0

ext. walls 6⊂ ΓO Û = 0 p̂,n = 0

inflow 6⊂ ΓO Û = 0 p̂,n = 0

pressure outflow 6⊂ ΓO p̂ ni ≈ ρUnÛi + ρUjÛj ni + µeffÛ
,n
i

Table 6.3.: Adjoint boundary conditions for “exterior” force evaluation (ADV2)

boundary Û p̂

wing surf. 6⊂ ΓO Û = 0 p̂,n = 0

ext. walls ⊂ ΓO Û = d∗ p̂,n = 0

inflow ⊂ ΓO Û = d∗ p̂,n = 0

pressure outflow ⊂ ΓO p̂ ni ≈ µeffÛ
,n
i
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7. Finite-Volume Discretisation

The discretisation schemes used to solve the non-linear and the linearised Navier–Stokes
equations are introduced in this chapter. These standard discretisation schemes for incom-
pressible flow, which are described below for completeness, are the basis for the derivation
of the adjoint discretisation schemes presented in Section 8. Elementary discretisation
techniques are described in terms of a scalar transport equation first (Section 7.1) before
the method is extended to the requirements of the non-linear Navier–Stokes equations
(Sections 7.2 to 7.6) and their linearised form (Section 7.7). Special attention is given to
the discretisation features that are of interest for the derivation of the adjoint discreti-
sation considered in the next chapter. A detailed description of the underlying primal
numerics can be found in Ferziger and Peric [30] or Rung [132, 133].

7.1. Scalar Transport Equation

A finite-volume (FV) discretisation of second-order accuracy is used to approximate the
RANS equations. The computational mesh subdivides the fluid domain completely into
convex polyhedra called control volumes (CVs). The mesh is organised in a fully unstruc-
tured manner. The CVs consist of a number of cell faces, which are either internal or
lie on the boundary of the fluid domain. The faces, in turn, are closed polygons con-
necting the associated grid vertices. The flow variables are stored in the CV centres in
a collocated arrangement. The presentation is based on the following conventions: The
internal faces separating CVs P and N are denoted by PN, cf. Figure 7.1. The associated
face unit-vectors, nPN , are oriented from P to N . Looking from N to P , the face normal
and the face fluxes are negative, i.e. nNP = −nPN and FNP = −FPN . In a face-loop
over all internal faces PN of the computational mesh each face is visited only once. The
flux contributions FPN and FNP are added to the balances of CVs P and N , respectively.
Another face-loop runs over the boundary faces PB. According to Figure 7.2 the outward
boundary unit-vector nPB points from the centre of the boundary-adjacent CV P to the
boundary node B. The corresponding boundary flux FPB is added to the balance of CV
P . The set of immediate internal neighbours surrounding CV P is denoted N(P ). The
corresponding set of surrounding boundary faces is B(P ).

A steady-state advection-diffusion equation is considered first with a prescribed, solenoidal
velocity field U :

R(φ) = ρUi
∂φ

∂xi

− γφ
∂2φ

∂x2
i

− s = 0 in Ω . (7.1)

γφ and s denote the diffusion coefficient distributed homogeneously and the source term,
respectively. Eqn. (7.1) is transferred to a weak, integral form in order to be solved on
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P P

N N

nPN
nNP

Figure 7.1.: Cell face PN (NP) separating CVs P and N on the left-hand (right-hand)
side

P

B

nPB

Figure 7.2.: Boundary cell-face PB and boundary unit-vector nPB
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the cell-level:

0 =
∑

N(P )

∫

∆ΓPN

[

ρUi φ− γφ
∂φ

∂xi

]

dΓi +
∑

B(P )

∫

∆ΓPB

[

ρUi φ− γφ
∂φ

∂xi

]

dΓi −
∫

∆ΩP

s dΩ

=
∑

N(P )

FPN +
∑

B(P )

FPB − SP for each CV P . (7.2)

The face fluxes F can be subdivided into convective and diffusive portions denoted F c

and F d, respectively. The source term in the balance of CV P is SP . For the sake of
brevity, the following presentation is confined to internal faces PN; the cell-face indices
PN and PB are omitted unless required for clarity.

Face and Cell Integrals

According to Figure 7.3, the centre of the considered cell is P , the cell centre of its
neighbour is N , and the cell-face centre is denoted by F . The corresponding position
vectors are xP , xN and xF , respectively. The face-adjacent CV centres are connected by

d = xN − xP . (7.3)

The flow variables φ are computed and stored in the centre of each CV. In order to evaluate
the flux balance for every cell, it is necessary to

• interpolate the face values from the values in the adjacent CV centre, and subse-
quently

• integrate them over the CV faces.

Unless declared differently, the CV-face values are obtained by linear interpolation from
the neighbouring cell centres

φF ≈ (1− λ)φP + λφN + (xF − xF ′) · ∇φ|F ′ , (7.4)

with the interpolation factor

λ =
(xF − xP ) · d

d · d . (7.5)

According to Figure 7.3, the auxiliary point F ′ is located in

xF ′ = xP + λ d . (7.6)

In general, xF ′ does not coincide with the position of the cell-face centre xF . The correction
term in Eqn. (7.4) is treated explicitly using the gradient of φ interpolated to the cell faces.

Volume and face integrals are calculated to second-order accuracy from the midpoint
rule: ∫

∆Ω

φ dΩ ≈ φP ∆Ω and
∫

∆Γ

φ dΓ ≈ φF ∆Γ . (7.7)
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A conservative approximation to the gradient in the internal cell P is obtained through
Gauss’ method

∇φ|P ≈
1

∆Ω

∑

N(P )

(φF ∆Γ) , (7.8)

approximating the face value φF according to Eqn. (7.4).

Convective Fluxes

The development of convection schemes has been a major field of research in CFD over the
past decades [e.g. 160, 161, 49, 157, 129, 84, 85]. If the transport equations are dominated
by convection, accuracy and stability of the discretisation scheme are decisive for the
quality of the prediction and the robustness of the algorithm. Face integration is carried
out according to the midpoint rule (7.7)

F c =
∫

∆Γ

ρUj φ dΓj ≈ [ρ∆ΓjUj]F φF = ṁ φF . (7.9)

Standard techniques are used to approximate the face value φF :

Upstream discretisation scheme (UDS):

F c ≈ ṁ φF ≈ ṁ φU = max [ṁ, 0] φP + min [ṁ, 0] φN (7.10)

Only the UDS contribution is treated implicitly, whereas the subsequent higher-order
schemes are evaluated explicitly in a deferred-correction approach based on the values of
the previous iteration.

Downstream discretisation scheme (DDS):

F c ≈ ṁ φF ≈ ṁ φD = max [ṁ, 0] φN + min [ṁ, 0] φP (7.11)

Up- and downstream cell-face interpolations are first-order accurate.

Central differencing scheme (CDS): φF is obtained by linear cell-face interpolation
according to Eqn. (7.4). UDS and CDS approximations can be blended in a deferred
correction approach by 0 < βφ < 1:

φF =
[
φUDS

]impl
+ βφ

[
φCDS − φUDS

]expl
. (7.12)

Like UDS and DDS, CDS leads to a compact stencil that is confined to the nearest cell
neighbours. The CDS approximation is second-order accurate. However, it is not limited
and prone to produce oscillating solutions.

Unified high-order schemes (MUSCL): Several higher-order schemes can be stated
in a unified formulation. Higher-order polynomials used to approximate the cell-face value
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P

N

d

n

F

F ′

Figure 7.3.: Vicinity of CV face: d connecting CV centres P and N ; face unit normal n

φF tend to produce oscillating solutions, particularly in conjunction with steep gradients
or discontinuities in the flow field. Such schemes can be limited [160, 161, 49, 157, 129, 85]
to be monotonicity preserving or total variation diminishing (TVD), so that new extrema
are avoided and existing extrema are not amplified. Through a damping function ψ
the spatial derivatives are limited dynamically by locally decreasing the approximation
order. The cell-face value φF is interpolated according to Leer’s MUSCL scheme [161] and
can be written as a combination of first-order upstream and higher-order approximations
characterised by the parameter κ (see Table 7.1)

φF ≈ φU +
1
4

[
(1 + κ) (φD − φU)ψ(r) + (1− κ) (φU − φUU )ψ

(
r−1
)]

≈ φU +
1
2

(φD − φU) ϕ(r) (7.13)

with

ϕ(r) =
[

1 + κ

2
ψ(r) +

1− κ
2

rψ
(
r−1
)
]

. (7.14)

A potential non-monotonicity in the interval [UU -D] is detected by negative values of the
sensor

r =
φU − φUU

φD − φU

. (7.15)

The scheme is nonlinear since ψ depends on φ. Several interpolation schemes are obtained
depending on the choice of κ as listed in Table 7.1 for the unlimited case with ψ = 1 [e.g.
84, 136, 133]. The corresponding unlimited distributions ϕ(r) are plotted in the Sweby
diagram 7.4 [157]. Over the region shaded in light grey, the TVD property is satisfied.
Second-order TVD schemes are limited to the area plotted in dark grey.

An extension of the scheme by Lien and Leschziner [84], e.g. documented by Schatz
[136], was used in this study to limit the unified description (7.13) to the shaded area

ψ(r) = minmod[1, ω2r] ; rψ
(
r−1
)

= minmod [r, ω1] . (7.16)
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The minmod-operator is defined as

minmod(A, ωB) = sgn(A) max [0,min (|A|, ω B sgn[A])] (7.17)

with the argument values

ω1 = max
(

1, 0.9
3− κ
1− κ

)

; ω2 = max
(

1, 0.9
3 + κ

1 + κ

)

. (7.18)

On unstructured grids, the variable value φUU of the remote node UU is not directly
available (Figure 7.5). Instead, the difference (φU − φUU ) is reconstructed according to

φU − φUU = φU − φD + φD − φUU ≈ φU − φD + 2 dF · ∇φ|U . (7.19)

The substitute φD − φUU ≈ 2 dF · ∇φ|U is second-order accurate with an effective mesh-
size of 2|d|. The gradient ∇φ|U is determined explicitly from the solution of the previous
iteration.

Mind that the approximation of face integrals is limited to second-order accuracy since
the mid-point rule is used for integration (7.7).

Diffusive Fluxes

The diffusive face-flux is approximated as

F d = −
∫

∆Γ

γφ
∂φ

∂n
dΓ ≈ −

[

γφ
∂φ

∂n

]

F

∆Γ . (7.20)

When the grid is non-orthogonal, i.e. the face normal n is not aligned with d as shown in
Figure 7.6, the face-normal derivative, ∂φ/∂n = n · ∇φ, is decomposed as follows

∂φ

∂n

∣
∣
∣
F

=
(
∂φ

∂xj

dj

)

F

dini

d2
l

+
(
∂φ

∂xj

)

F

(

nj − dj
dini

d2
l

)

≈ (φN − φP )
dini

d2
j

+
(
∂φ

∂xj

)

F

(

nj − dj
dini

d2
l

)

. (7.21)

A relaxation exponent α is introduced to control the implicit contribution

∂φ

∂n

∣
∣
∣
F
≈ (φN − φP )

√

d2
m

(

dini
√

d2
l

)α

+
(
∂φ

∂xj

)

F

[

nj −
dj
√

d2
m

(

dini
√

d2
l

)α]

. (7.22)

Table 7.1.: Unified formulation for unlimited convection schemes [84, 136, 133]

scheme κ deferred correction ϕ(r)

CDS 1 (φD − φU) /2 1

LUDS −1 (φU − φUU )/2 r

QUICK 1/2 (3φD − 2φU − φUU ) /8 3/4 + r/4

CUI 1/3 (2φD − φU − φUU ) /6 2/3r + r/3
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ϕ(r)

r

0

1

1

2

2 3−1

LUDS (κ = −1)

QUICK (κ = 1/2)

CUI (κ = 1/3)

CDS (κ = 1)

Figure 7.4.: Unified formulation of higher-order convection schemes; the TVD property is
satisfied over the area shaded in light grey. Second-order TVD schemes are
restricted to the dark grey zone (Sweby [157]).

DD
D

U
F

UU
face

d

U

Figure 7.5.: Reconstruction of remote virtual nodes DD and UU on unstructured grids
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Eqn. (7.21) is reproduced for α = 1. The leading right-hand side term is treated implicitly,
whereas the second is evaluated explicitly based on the interpolated cell-face gradient.

Algebraic Equation System

In the previous sections, the PDE (7.1) has been discretised in terms of the variable
values stored in the CV centres. The number of cell faces varies in a fully unstructured
grid topology. A compact discretisation leads to the algebraic equation for CV P

APφP +
∑

N(P )

ANφN = S . (7.23)

The corresponding system of equations is

Aii φi +
∑

j∈N(i)

Aij φj =
∑

j

Aij φj = Si , i = 1, . . . , n (7.24)

or
A · φ = S . (7.25)

According to Eqn. (7.24), A [n× n] is a sparse coefficient matrix. On unstructured grids,
the non-zero entries are distributed in an irregular pattern. φ [n] and S [n] represent the
vector of unknowns and the right-hand side vector, respectively.

7.2. Momentum Equations

The techniques introduced in Section 7.1 are tailored to the non-linear, vector-valued
Navier–Stokes equations (4.9) and (4.10). The linearised system matrix for the momentum-
continuity problem is

(

A B

C 0

)

·
(

U

p

)

=

(

S

Q

)

, (7.26)

wherein the first line represents the discrete momentum equations, and the discrete conti-
nuity constraint is treated in the second line. An incomplete Picard linearisation is used,

NP

face

n

dF

Figure 7.6.: Face-based definition of mesh non-orthogonality
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so that the Cartesian components of the momentum equations decouple. The resulting
sub-matrices A

ij
[n× n] and B

i
[n× n] are

A =






A
11

0 0

0 A
22

0

0 0 A
33




 ; B =






B
1

B
2

B
3




 . (7.27)

The corresponding variable and right-hand side vectors are

U =






U1

U2

U3




 ; S =






S1

S2

S3




 .

The discrete continuity constraint is described by the sub-matrices C
i

[n× n]

C =
(

C
1
C

2
C

3

)

. (7.28)

For solenoidal velocity fields, the right-hand side vector Q is zero. Instead of solving the
coupled system (7.26), the sub-systems are solved sequentially in a segregated approach.
The underlying FV discretisation for the momentum equations is presented below, followed
by a description of the SIMPLE-type pressure-correction scheme that is used to compute
the pressure.

The balance of momentum for each CV P is
∑

N(P )

Fi|PN +
∑

B(P )

Fi|PB = Si|P . (7.29)

The face-fluxes contain convective, diffusive and pressure contributions. Discarding the
cell and face indices, these are:

Fi = F c
i + F d

i + F p
i . (7.30)

The source term S hosts any source of momentum, or flux terms discretised in a non-
conservative manner.

The convective flux of momentum through a cell face is non-linear in the velocity U .
Using a Picard iteration, the mass fluxes ṁ are explicitly evaluated from the cell-centre
velocities of the previous iteration by linear cell-face interpolation (7.4):

F c
i =

∫

∆Γ

ρUj Ui dΓj ≈ [ρ∆Γj Uj]F Ui|F = ṁ Ui|F . (7.31)

The cell-face velocity UF is calculated from the convection schemes described in Eqns. (7.9)
to (7.19).

The viscous diffusion flux through a CV face is

F d
i = −

∫

∆Γ

2µeff Sij dΓj = −
∫

∆Γ

µeff

(
∂Ui

∂xj

+
∂Uj

∂xi

)

dΓj . (7.32)
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The first term, n · ∇U , equivalent to the corresponding term of the scalar transport
equation is treated implicitly. The additional contribution, ∇U ·n, is calculated explicitly.
The gradient calculated in the CV centre is interpolated to the face centre according to

[∇U ]F ≈ λ [∇U ]N + (1− λ) [∇U ]P . (7.33)

The pressure term is calculated in a conservative manner by summation over the sur-
rounding faces for each internal CV P

∫

∆Ω

∂p

∂xi

dΩ ≈ ∆Ω
[
∂p

∂xi

]

P

=
∑

N(P )

F p
i |PN , (7.34)

wherein the pressure face flux is

F p
i =

∫

∆Γ

p dΓi ≈ pF ∆Γi . (7.35)

The face value pF is linearly interpolated between the neighbouring cell-centres according
to Eqn. (7.4).

7.3. Pressure-Correction Scheme

In an incompressible flow regime, the treatment of the pressure is not as obvious as
the calculation of the velocity. The equation of continuity, which is left to determine
the pressure, does not contain the pressure itself. The problem is overcome through a
pressure-Poisson equation that is obtained by taking the divergence of the momentum
equation:

∂Ri

∂xi

=
∂

∂xi

[

ρUj
∂Ui

∂xj

− ∂πij

∂xj

− fi

]

= 0 in Ω . (7.36)

Assuming that viscosity and density are distributed homogeneously, 0 ≈ ∇ρ ≈ ∇µeff , and
f is solenoidal, Eqn. (7.36) reduces to

1
ρ

∂2p

∂x2
i

= −∂Uj

∂xi

∂Ui

∂xj

in Ω . (7.37)

Following the notation of Ferziger and Peric [30], the SIMPLE algorithm by Caretto et al.
[7] is devised from the semi-discrete equations of momentum and continuity. It leads to
a consistent, discrete pressure-correction equation corresponding to the analytical form
(7.37).

The starting point for the iterative scheme is the divergence-free velocity field Ui|m−1

and the compatible pressure field p|m−1 of the previous iteration (m−1). In the first step,
a velocity prediction U∗

i |mP is calculated from the semi-discrete, Picard-linearised equations
of momentum

APU
∗
i |mP +

∑

N(P )

ANU
∗
i |mN = −∆Ω

∂p

∂xi

∣
∣
∣

m−1

P
+ Si|m−1

P . (7.38)



7.3. Pressure-Correction Scheme 71

The discrete source term of the momentum equations, Si, is considered to be independent
of Ui and p, so that the iteration counter is omitted in the following. The velocity predic-
tion U∗

i obtained from Eqn. (7.38) is not necessarily solenoidal. The corrections U ′
i and p′

applied to the velocity field and the corresponding pressure field

Ui|mP = U∗
i |mP + U ′

i |mP and p|mP = p|m−1
P + p′|mP , (7.39)

lead to a divergence-free velocity field Ui|mP . An equation for the velocity correction U ′
i is

obtained subtracting Eqn. (7.38) from the momentum equation for the corrected flow

APUi|mP +
∑

N(P )

ANUi|mN = −∆Ω
∂p

∂xi

∣
∣
∣

m

P
+ Si|P , (7.40)

viz.

APU
′
i |mP +

∑

N(P )

ANU
′
i |mN = −∆Ω

∂p′

∂xi

∣
∣
∣

m

P
. (7.41)

The underlined term is neglected in the following, cf. for example Patankar [114], resulting
in the pressure-velocity correlation

U ′
i |P ≈ −

∆Ω
AP

[
∂p′

∂xi

]

P

. (7.42)

Postulating continuity of mass for the corrected velocity field Ui|m

0 =
∂

∂xi

(ρUi|mP ) =
∂

∂xi

(ρU∗
i |mP ) +

∂

∂xi

(ρU ′
i |mP ) , (7.43)

in conjunction with Eqn. (7.42) leads to a Poisson-type pressure-correction equation

∂

∂xi

[

ρ
∆Ω
AP

(
∂p′

∂xi

)

P

]

=
∂

∂xi

(ρU∗
i |P ) . (7.44)

The iteration counter has been dropped for brevity. A FV approximation reads

∑

N(P )

∫

∆ΓPN

(
ρ∆Ω
AP

)
∂p′

∂xi

dΓi =
∑

N(P )

∫

∆ΓPN

ρU∗
i dΓi for each CV P . (7.45)

The fluxes need to be evaluated at the cell faces, so that the overlined term including
the central coefficient of the momentum equation AP has to be interpolated at the face
centres F . The volume of the auxiliary CV, indicated by the dashed line in Figure 7.7, is
determined via

∆Ω|F ≈ dj ∆Γj . (7.46)

The pressure-correction p′ obtained from Eqn. (7.45) is used to correct the pressure field
according to (7.39). The corresponding velocity correction for the volume or mass flux
update is obtained from (7.42)
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N

P

n

d

F

Figure 7.7.: Auxiliary CV ∆Ω|F outlined by dashed line

Rhie and Chow Interpolation

On collocated, cell-centred grids, the discretisation of first derivatives contained in gra-
dient and divergence operators is prone to produce oscillations. A straight-forward ap-
proximation of the first derivative in the CV centres, based on 2∆x-differences, does not
resolve the oscillation shown in Figure 7.8. The implications for the momentum-continuity
problem of the Navier–Stokes equations are:

• The pressure gradient in the momentum equation does not detect potential pressure
oscillations.

• The divergence operator on the right-hand side of Eqn. (7.44) does not resolve
oscillations in the velocity field, so that they are not considered in the calculated
pressure correction.

To obtain smooth solutions, the interpolated cell-face velocity in Eqn. (7.45) is augmented
by a third derivative of the pressure as suggested by Rhie and Chow [127]:

U∗
i |F = (U∗

i )F + [∆Γj dj]F

(
1
AP

)

F

[(
∂p

∂xi

)

F

−
(
∂p

∂xi

)

F

]

. (7.47)

The over-lined terms are linearly interpolated from the neighbouring cell-centres. The
leading pressure gradient is a CDS approximation based on the adjacent cell-centre values.

i− 2 i− 1 i i+ 1 i+ 2

Figure 7.8.: Chequer-board distribution on collocated grids; oscillating distribution (solid
line) and its slope resolved by a 2∆x derivative approximation (dashed line)
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Adding a third derivative to the face fluxes can be interpreted as a fourth-order damping
term [e.g. 115] applied to the pressure-Poisson equation. The associated error is reduced
quadratically when the mesh is refined. If the pressure oscillates, the damping term
becomes large and inhibits the oscillation.

Matrix-Vector Interpretation

A matrix-vector interpretation of the SIMPLE algorithm according to Eqn. (7.26) is very
instructive for the discrete-adjoint analysis presented in Chapter 8. The inverse of the
system matrix A−1 is approximated by Ã

−1
with

Ãij =

{

Aij , if i = j

0 , else.
(7.48)

According to Eqn. (7.38), a velocity prediction U∗ is calculated from the Picard-linearised
momentum equations, which are solved for each velocity component individually:

A · U∗ = −B · pm−1 + S . (7.49)

Subsequently, a pressure-correction p′ is determined from the matrix-vector equivalent to
Eqn. (7.45):

(

C · Ã−1 ·B
)

· p′ = C · U∗ . (7.50)

Eqn. (7.50) represents a discrete continuity constraint on the corrected velocity field in
combination with U ′ = −Ã−1 ·B · p′, cf. Eqn. (7.42). Finally, velocity and pressure fields
are corrected according to Eqns. (7.39), i.e.

pm = pm−1 + αp p
′ and Um = U∗ − Ã−1 ·B · p′ . (7.51)

An under-relaxation factor 0 < αp < 1 is applied in the pressure update and the system
is iterated until convergence. For interior CVs, the gradient operator B applied to the
pressure is the transposed of the negative divergence operator C for the velocity. This
verifies the symmetry property of the approximation to the Schur complement or the
Laplace operator (C · Ã−1 ·B).

7.4. Boundary Conditions

A local system of boundary coordinates (n, t, s) is used for the formulation of boundary
conditions:

U = Un n+ U t t+ U s s . (7.52)

The in-plane unit vector t is computed from

t = n · S · T/|n · S · T | ≈ T ·∆U/|T ·∆U | (7.53)
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with
∆U ≈ UB − UP and T = I − nn . (7.54)

According to Figure 7.9, UB and UP represent the velocity vectors in the centres B of
the boundary face and the adjacent interior CV P , respectively. I [3 × 3] denotes the
unit matrix. The local coordinate system is completed by the second in-plane unit vector
s = t× n.

As shown in Section 4.2, a no-slip wall boundary condition, U = Uwall, implies

0 = Un =
∂Un

∂n
, (7.55)

so that the convective flux through a wall face, F c|wall, is null. In a strong conservation
formulation, the force acting on a wall surface is equal to the flux of momentum through
the boundary:

F |wall = [F d + F p]wall = −
∫

∆Γ

(
2µeff S − p I

)
· dΓ . (7.56)

The viscous diffusive flux of momentum F d|wall is applied to the balance of the wall-
adjacent CV. The discrete integration of the wall shear stress should avoid to generate a
normal stress component τnn, which does not exist over no-slip wall boundaries due to
0 = U t,t = U s,s = Un,n. This is considered in the following for both low- and high-Re
boundary conditions by means of the projection matrix T = I − nn.

When a low-Re strategy is employed, the governing flow equations are integrated
numerically right up to the wall. A fine grid resolution is required in the normal direction
to resolve the wall boundary layer numerically. The wall distance of the first cell centre,
yP = n · (xB − xP ), is non-dimensionalised according to

y+
P = yP U

τ/ν with U τ =
√
τw/ρ . (7.57)

The first interior node should be placed in the viscous sublayer, i.e. y+
P should be of the

order of one. The diffusive flux of momentum through a no-slip wall face contained in

P

B

UB

UP

n

t

Figure 7.9.: Grid topology next to the wall
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Eqn. (7.56) is calculated via

F d|wall = −
∫

∆Γ

2µS · dΓ ≈ −µ∆Γ
yP

T ·∆U . (7.58)

The boundary condition for the k-ε and k-ω type turbulence models were taken from
Wilcox [166, Sections 4.7 and 4.9]. On the wall, y = 0, the turbulent kinetic energy k is
zero which is asymptotically consistent with

0 =
∂k

∂n
on the wall surface, i.e. kB ≈ kP . (7.59)

A consistent formulation for the dissipation rate ε reads

ε ≈ ν
∂2k

∂n2
≈ 2ν

(

∂
√
k

∂n

)2

. (7.60)

A pseudo boundary-condition is implemented defining the dissipation rate in the first cell
layer

εP ≈ 2ν
kP

y2
P

. (7.61)

The specific dissipation rate ω, which is required in conjunction with k-ω type turbulence
models, has a singularity at the wall boundary since k asymptotically tends to zero for
y → 0:

ω =
ε

Cµ k
. (7.62)

The problem is resolved setting ωP = ω(yP ) in the first cell layer to its analytical near-wall
solution in the absence of convection and turbulent viscosity:

ωP = 80 ν/y2
P . (7.63)

Alternatively, a high-Re implementation based on logarithmic wall functions can
be used to model the velocity distribution in the boundary layer. Over the logarithmic
region, 20 < y+ < 300, the velocity profile is well described by the velocity profile sketched
in Figure 7.10:

U+ = −U
t

U τ
=

1
κ

ln
(
Ey+

)
with κ = 0.41 ; E = 8.432 . (7.64)

The negative sign in Eqn. (7.64) is a consequence of the definition of the wall coordinate
system (7.52) and (7.53). The pseudo boundary conditions for U t and the turbulence
variables k, ε, ω in the logarithmic layer are:

U t = −U
τ

κ
ln (Ey+) ;

∂k

∂n
= 0 ; εP =

[

C
3/4
µ k3/2

κ y

]

P

; ωP =

[ √
k

C
1/4
µ κ y

]

P

. (7.65)
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Based on the assumption of the logarithmic law of the wall (7.64), these quantities can
be expressed in terms of the shear velocity U τ :

U t = −U
τ

κ
ln (Ey+) ; k =

(U τ )2

C
1/2
µ

; εP =
(U τ )3

κ yP

; ωP =
U τ

C
1/2
µ κ yP

. (7.66)

Instead of prescribing the boundary values explicitly, the diffusive flux of momentum
through the wall (shear forces applied to the left-hand side of the momentum equations)
is applied to the momentum equations in a conservative cut-free strategy:

F d
i |wall = −

∫

∆Γ

2µeff Sij dΓj = −
∫

∆Γ

τwti dΓ = −
∫

∆Γ

ρ(U τ )2 ti dΓ . (7.67)

When a high-Re approach is pursued, the diffusive momentum flux through the boundary
is modelled in terms of the shear velocity τw = ρ (U τ )2. A close coupling between the
equations of momentum and turbulence is achieved expressing the boundary stress in
terms of both,

• the velocity next to the wall described through the logarithmic law of the wall (7.64),
U τ = −κU t(yP )/ ln

(
Ey+

P

)
, and

• the turbulent kinetic energy U τ = C
1/4
µ k

1/2
P .

Accordingly, the flux of momentum through the considered wall face can be calculated in
a formulation that is analogue to the low-Re approach (7.58),

F d|wall = −
∫

∆Γ

2µeff S · dΓ ≈ −µlog ∆Γ
yP

T ·∆U , (7.68)

based on the auxiliary definition of the viscosity in terms of the logarithmic law of the
wall

µlog =
ρ κC

1/4
µ k

1/2
P

ln(Ey+
P )

yP . (7.69)

A Neumann boundary condition is imposed on the pressure for both low- and high-Re
formulations. A first-order approximation reads

0 =
∂p

∂n
≈ (pB − pP ) /yP or pB ≈ pP . (7.70)

With the wall pressure flux approximated as F p ≈ ∆Γ pB, the total flux of momentum
through a wall face is calculated according to Eqn. (7.56) from F |wall = F d + F p.

Under the assumption of zero curvature, the subsequent boundary condition is obtained
for symmetry planes or slip-walls

0 = Un =
∂U t

∂n
=
∂U s

∂n
. (7.71)
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Figure 7.10.: Logarithmic law of the wall

The corresponding diffusive momentum flux through a symmetry face is

F d|sym = −
∫

∆Γ

2µeff S · dΓ ≈ −2
µeff ∆Γ
yP

P ·∆U , (7.72)

wherein the boundary-normal portion of the velocity difference, ∆U = UB − UP , is
calculated through scalar multiplication by P = nn. A zero-gradient Neumann boundary
condition is applied to the pressure and further variables for turbulence, heat, etc.

0 =
∂φ

∂n
≈ φB − φP

yP

or φB ≈ φP . (7.73)

The convective flux F c through a symmetry face is zero. With F p ≈ ∆Γ pB, the boundary
flux of momentum is computed from

F |sym = F d + F p . (7.74)

At the inlet, a Dirichlet boundary condition is defined for the velocity components, the
turbulence variables or additional scalar variables

D = φB , (7.75)

together with a Neumann condition for the pressure (7.70), i.e.

F |in = F c + F d + F p

≈ ṁ UB − µeff∆Γ ·
[
∇U + (∇U)T

]

B
+ ∆Γ pB . (7.76)

A prescribed pressure value at the outlet is referred to as pressure outlet boundary
condition, viz.

D = pB . (7.77)
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The normal derivatives of the velocity, turbulence and scalar variables are set to zero at
the pressure outlet according to Eqn. (7.73), viz.

F |out ≈ F c + F p ≈ ṁ UB + ∆Γ pB . (7.78)

The boundary condition for the pressure-correction equation is ∂p′/∂n = 0 if the
mass flux for the considered boundary face is prescribed, e.g. on inlet, wall or symmetry
faces. In that case, no change of the flux is allowed. A prescribed pressure value on the
pressure outlet, i.e. a zero pressure correction p′, leads to a velocity correction on the
boundary face according to Eqn. (7.42).

The discrete treatment of turbulence variables is in accordance with Ferziger and Peric
[30] and Rung [131]. Since it is not in the focus of the following analysis of the adjoint
discretisation, it is omitted for the sake of brevity.

7.5. Solution Algorithm

The state equations are solved sequentially in a segregated manner for

(i) the velocity components Ui determined from the momentum equations;

(ii) the pressure correction p′ calculated from the pressure-correction equation;

(iii) the turbulence variables k, ε or ω, optionally augmented by

(iv) the free water-surface in a volume of fluid (VOF) or level set approach; or

(v) further active scalar variables φ.

The individual equations associated with the steps (i) to (v) are solved iteratively in so-
called inner iterations. The Picard-linearised momentum equations (7.38) are based on
the mass fluxes of the previous iteration. The velocity prediction from the momentum
equations does not necessarily satisfy continuity. Based on the imbalance of mass, a
pressure correction is predicted from Eqn. (7.45) in step (ii) which is subsequently used
to correct the pressure (7.39), the velocities (7.42) and the mass fluxes consistently with
(7.47) to achieve continuity of the velocity field. The corrected state is used to compute
the variables in the steps (iii) to (v). The steps (i) to (v) are repeated in a so-called
outer iteration loop until a convergence criterion is met for the coupled system (Section
7.5). Further “passive variables”, which do not influence the other field variables, can be
addressed after solving the coupled system in the segregated manner. Iterative methods
are adopted to solve the sparse linear equation systems as described in Section 7.5. A
sufficiently improved solution of the inner equation system can often be achieved in just
a few inner iterations per outer iteration.

The algorithm is implemented in parallel using the MPI protocol [31] in a distributed
memory concept. The domain decomposition is carried out with the aid of the ParMETIS
[72] library package.
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Under-Relaxation

To obtain a converged solution of the coupled system of equations in a segregated pressure-
correction procedure, the rate of change of the individual variables φ is reduced by under-
relaxation. Only a fraction 0 < αφ < 1 of the predicted variable change, ∆φ = φm∗−φm−1,
is applied in the current iteration loop m:

φm = φm−1 + αφ

(
φm∗ − φm−1

)
. (7.79)

Instead of using φm∗

, the algorithm proceeds with the under-relaxed, or damped value
φm. Eqn. (7.79) is used implicitly, substituting

φm∗

= φm−1 +
(
φm − φm−1

)
/αφ (7.80)

for φm into Eqn. (7.23). Discarding the iteration counter yields

A∗
ii φi +

∑

j∈N(i)

Aij φj = S∗
i , i = 1, . . . , n . (7.81)

The under-relaxed central coefficient and source term are

A∗
ii = Aii/αφ and S∗

i = Si −
(

1− 1
αφ

)

Aii φ
m−1
i . (7.82)

The neighbour coefficients are not affected, so that the diagonal dominance of the relaxed
equation system is increased when the under-relaxation factor αφ is reduced. The stabil-
isation is achieved by reducing the rate of convergence. The under-relaxation does not
influence the converged solution since ∆φ tends to zero eventually.

Solution of Linear Equation Systems

The set of algebraic equations for momentum, pressure correction, turbulence, etc. is iter-
atively driven to convergence as described in Section 7.5. The algebraic, integral residual
R for the individual scalar fields φ, associated with the steps (i) to (v), is calculated
according to the L1-norm

R
k

=
1

R
1

n∑

i=1

Rk
i with Rk

i = Ak
iiφ

k−1
i +

∑

j∈N(i)

Ak
ijφ

k−1
j − Sk

i . (7.83)

The integral residual of iteration k is normalised with respect to the integral residual of
the first iteration R

1
. Ak

ij and Sk
i denote the components of the sparse system matrix and

the right-hand side vector of iteration k. Alternatively, the L2- or root mean-square norm
can be used. By default, the maximum value of the individual residuals for Ui, p, k, ε or
ω is used to evaluate the convergence process.

The PETSc toolkit [4] was used to precondition and solve the linearised equation sys-
tems. In the parallel computations, the Jacobi preconditioner was used. Different iterative
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solution procedures were employed depending on the properties of the system matrix. The
symmetric equation system of the pressure-correction equation was mainly solved by the
conjugate gradient (CG) method. For the non-symmetric matrices associated with the
equations of momentum, heat, turbulence, etc., the generalised minimal residual (GM-
RES) and biconjugate gradient methods (BiCG or BiCGSTAB) were used.

7.6. Objective Functionals

For steady-state problems, the objective functional value is evaluated at the end of the
primal simulation. The objective functionals are approximated consistently with the dis-
cretisation schemes used for the flow equations, which is particularly important for the
following adjoint analysis. The force criterion (4.34), for example, is evaluated from the
momentum flux through a wall face, F = F p + F d, consistently with the discretisation of
the boundary conditions in the momentum equations (7.58) or (7.68):

JΓ = −d∗
i

∫

ΓO

πij dΓj ≈ d∗
i

∑

PB∈ΓO

[
F d

i + F p
i

]
. (7.84)

PB ∈ ΓO denotes the set of boundary patches on ΓO carrying the objective functional.
The implementation is in line with the method of sections, so that integral conservation
of momentum is ensured.

7.7. Navier–Stokes Variation

In general, the variation of the Navier–Stokes equations is discretised and solved like the
non-linear Navier–Stokes or RANS equations. Three specific features are discussed below,
regarding

• the full linearisation of the non-linear convection term;

• the variation of the boundary conditions on the design surfaces ΓD; and

• the evaluation of the variation of the objective functional on ΓO.

Convection and Advection Terms

It is assumed that the shape variations according to Eqn. (5.24) are confined to the
design surfaces ΓD. The variation of the convection term is derived from the chain rule of
differentiation, viz.

δ

∫

∆Ω

ρUj
∂Ui

∂xj

dΩ = ρ

∫

∆Ω

(

Uj
∂δUi

∂xj

+ δUj
∂Ui

∂xj

)

dΩ . (7.85)

Two terms arise from the linearisation of the non-linear convective term in the momentum
equations, denoted linear convection and advection1, being the first and the second right-

1The naming convection “advection” is arbitrary. It has no deeper meaning or bearing on particular
conventions used elsewhere.
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hand side terms of Eqn. (7.85), respectively. The linearised convection is equivalent to
the Picard-linearised convection term in the non-linear momentum equations2. Hence, the
discretisation schemes described in Section 7.1 are applicable. An explicit, volume-based
approximation of the advection term is considered on the right-hand side of the linearised
momentum equations:

δSi = −
∫

∆Ω

ρ δUj
∂Ui

∂xj

dΩ ≈ −
[

ρ δUj
∂Ui

∂xj

]

P

∆Ω . (7.86)

Alternatively, a face-based approximation can be derived for the advection term from
the discretisation of the non-linear system. A linearisation of the discrete convective flux
of momentum through a CV face gives

δF c
i ≈ ρ∆Γj (Uj δUi + δUj Ui)F

≈ ṁ δUi|F + δṁ Ui|F (7.87)

with
δṁ ≈ ρ∆Γj [λ δUj|N + (1− λ) δUj|P ] . (7.88)

The linearised convection term, which is the first right-hand side term of Eqn. (7.87), is
treated as the convection term of the non-linear problem. The second right-hand side
contribution, being the advection term, represents the variation of the mass fluxes, which
is neglected in the Picard iteration scheme. The face value UF is interpolated consistently
with the primal convection scheme (UDS, CDS or MUSCL-based according to Section
7.1). Note that the off-diagonal sub-matrices, A

ij
|i6=j, of the variation of the matrix-vector

problem (7.26) are non-zero unless the advection terms are neglected.

Boundary Conditions on ΓD

Whereas the boundary conditions on ΓD are linearly developed to the new position in
the continuous approach, cf. Eqn. (6.29), the discrete, primal boundary fluxes through
no-slip walls on ΓD are derived here with respect to both flow and position. As illustrated
in Figure 7.11, it is assumed that only the position of the surface node B undergoes a
variation (xB′ = xB + δxB) and P is fixed (xP = xP ′ or δxP = 0). In that way, the
discrete approach corresponds to the boundary-based gradient evaluation (6.39) of the
continuous adjoint analysis. Hence, a movement of the boundary implies a change of the
wall distance of the cell centre next to the design surface ΓD:

δyP = yP ′ − yB′ − (yP − yB) = −yB′ = −δyB = n · δxB = δnB . (7.89)

A low-Re formulation is considered first, which also holds for laminar flow when the
effective viscosity µeff is substituted by the molecular viscosity µ. Since the boundary value

2An incomplete linearisation of the Navier–Stokes convection term yields the so-called Oseen equations.
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P

B

B′

n

δxB

Figure 7.11.: Perturbation of boundary mesh by δnB = n · δxB

for the velocity UB is prescribed, the corresponding variation δUB is zero. A zero pressure
gradient, 0 = n · ∇p|wall, is assumed, i.e. pP ≈ pB. The boundary flux of momentum

Fi|wall ≈ p|P ∆Γi − τw
i ∆Γ

≈ p|P ∆Γi − µeff Tij y
−1
P (Uj|B − Uj|P ) ∆Γ (7.90)

experiences a variation with respect to y, p|P and Ui|P :

δFi|wall ≈ δp|P ∆Γi − δτw
i ∆Γ

≈ δp|P ∆Γi − µeff Tij y
−1
P

[
δyB y

−1
P (Uj|B − Uj|P )− δUj|P

]
∆Γ . (7.91)

Viscous normal stresses are avoided in the discretisation (7.91) enforcing ∂Un/∂n|wall = 0
by virtue of the projection tensor Tij = δij − ninj.

Alternatively, the boundary layer flow can be modelled according to the logarithmic
law of the wall (high-Re) (7.64). The high-Re analysis is carried out on the discrete
level alone since it is difficult to argue in a continuous approach if not boundary values but
the values in the adjacent CV-centre are considered. The total variation of the velocity
profile (7.64) with respect to the velocity U t

P = U t(yP ), the wall distance yP = −nP and
the shear velocity U τ is

−δU t|P = δU τ 1
κ

[
ln
(
Ey+

P

)
+ 1
]

+ δyP

[
U τ

κyP

]

. (7.92)

The negative sign on the left-hand side of Eqn. (7.92) is in line with Eqn. (7.64). The
summand “1” in the first bracketed term of (7.92) results from a change of y+

P with respect
to the shear velocity. The variation of the viscous flux of momentum through the boundary
is determined from

δτw = 2ρU τ δU τ = − 2ρκU τ

ln(Ey+
P ) + 1

[

δU t
P + δyP

U τ

κyP

]

. (7.93)

Eqn. (7.93) is rewritten in tensor notation to be used in combination with the Navier–
Stokes equations. For the sake of brevity the following conventions are declared

U τ
i = U τ ti and τw

i = τw ti . (7.94)
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The vector-valued equivalent of Eqn. (7.92) is

−Tij δUj|P = δU τ
j

1
κ

[
δij ln(Ey+

P ) + titj
]

+ δyP

[
U τ

i

κyP

]

. (7.95)

Let tδ denote the surface unit vector associated with the direction of the variation of the
surface shear stress: tδ = T ·∆δU/|T ·∆δU | with ∆δU = δUB − δUP . The multiplier of
the variation of the shear velocity δU τ in Eqn. (7.95)

tδj
[
δij ln(Ey+

P ) + titj
]

= tδi ln(Ey+
P ) + ti t

δ
jtj (7.96)

is dominated by the logarithmic expression

ln(Ey+
P )

tjtδj
> 5.7 for y+

P > 30 . (7.97)

Thus, a reduced version of (7.95) is used, wherein the variation of y+
P with respect to the

shear velocity is neglected

−Tij δUj|P ≈ δU τ
i

[
ln(Ey+

P )
κ

]

+ δyP

[
U τ

i

κyP

]

. (7.98)

With the nomenclature illustrated in Figure 7.12 and cos γ = t · tδ, the simplification is
defensible looking at the distributions of the angle error

εγ(γ) =







arctan
(

cos γ sin γ
ln(Ey+)+cos2 γ

)

, −π
2
< γ < π

2

arctan
(

cos(π−γ) sin(π−γ)
ln(Ey+)−cos2(π−γ)

)

, π
2
< γ < 3

2
π

(7.99)

and the associated relative error in the vector norm (amplitude error)

εA(γ) =







1− ln(Ey+)
(

[ln(Ey+) + cos2 γ]2 + [sin γ cos γ]2
)− 1

2

, −π
2
< γ < π

2

1− ln(Ey+)
(

[ln(Ey+)− cos2(π − γ)]2

+ [sin(π − γ) cos(π − γ)]2
)− 1

2

, π
2
< γ < 3

2
π .

(7.100)
The corresponding plots of the angle error εγ and the relative error in the vector norm
εA over γ are provided in Figure 7.13. The errors are highest for small y+-values. For
y+ = 30, εA is below 22 per cent with the maximum amplitude at γ = π. εγ does not
exceed 0.031π. Note that εA and εγ are not in phase.

Substituting the reduced formulation (7.98) into

δτw
i = ρ δ(U τ U τ

i ) = ρ δU τ
j U

τ (δij + titj) , (7.101)

the tensor-equivalent to Eqn. (7.93) is obtained:

δτw
i ≈ −

ρU τκ

ln(Ey+
P )

[

(Tij + titj) δUj|P + 2 δyP
U τ

i

κyP

]

. (7.102)
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Using the reduced expression (7.98) instead of Eqn. (7.95), a matrix inversion of (I ln(Ey+
P )+

t t) is avoided. Accordingly, the variation of the momentum flux through the boundary is

δFi|wall ≈ δp|P ∆Γi − δτw
i ∆Γ

≈ δp|P ∆Γi +
ρU τκ

ln(Ey+
P )

[

(Tij + titj) δUj(yP ) + 2 δyP
U τ

i

κyP

]

∆Γ . (7.103)

Objective Functional on ΓO ∩ ΓD

When a force objective is declared on ΓO ∩ ΓD, the description presented in the previous
section is consistently applied to the variation of the objective functional, viz.

δJ = d∗
i

∑

PB∈ΓO

δFi ≈ d∗
i

∑

PB∈ΓO

[δpP ∆Γi − δτw
i ∆Γ] . (7.104)

The boundary-flux variation δF PB is summed up over the boundary wall faces in the set
PB lying on ΓO. Depending on the wall treatment, either the low-Re formulation (7.91) or
the high-Re description (7.103) are used to calculate the variation of the viscous portion
of the force objective.

ln(Ey+)tδ

(t · tδ)t
ln(Ey+)tδ + (t · tδ)t

γεγ

Figure 7.12.: Definition of vectors on design surface ΓD
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Figure 7.13.: Amplitude error εA (left) and angle error εγ (right) at y+ = 30, 90 and 270
if the variation of y+ is neglected
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8. Adjoint Discretisation

“The discrete and continuous formulations of the adjoint problem clearly rep-
resent two very different ways of doing essentially the same thing [. . . ]” Peter
and Dwight [116]

The adjoint Navier–Stokes module was planned and set up as an extension to the existing
general-purpose RANS code FreSCo+. Due to the similarity of the primal and the adjoint
PDE derived in Chapters 5 and 6, many features of the flow solver concerning discretisation
and implementation are like-wise apt for the adjoint module. However, some aspects have
to be interpreted in a special way. The subsequent properties are considered particularly
important for the development of the adjoint RANS module:

(i) accuracy and adjoint consistency;

(ii) numerical robustness and stability;

(iii) maintainability, flexibility and user-friendliness;

(iv) numerical efficiency and performance.

These issues are linked to each other in various ways as discussed in the following.
The adjoint PDE devised in Chapter 6 are the starting point for the analysis. In

conjunction with the continuous adjoint method, adjoint consistency (i) is not a matter
of course but must be ensured with due caution. A so-called hybrid adjoint strategy was
pursued in this work to derive consistent discretisation schemes for the individual adjoint
PDE terms from the corresponding primal schemes via summation by parts (cf. Reuther
et al. [126], Nadarajah [101]). Based on the primal discretisation, a unified, discrete
description of the adjoint boundary conditions and the sensitivity equation is presented
that supports both low- and high-Reynolds number boundary formulations. The analysis
incorporates consistent definitions of the primal boundary conditions, the primal objective
functional and the discrete shape variation.

The issue of adjoint consistency is also linked to the numerical robustness of the adjoint
solver (ii). The discretisation schemes for the primal system have been a subject of
research over the past decades. Since no comparable experience is available for the adjoint
problem, it is obvious to derive the adjoint schemes from the primal ones, so that the
adjoint discretisation is a valid approximation to the adjoint PDE (i). Ideally, both
the discrete linearised and adjoint systems have the same matrix properties in terms of
diagonal dominance, sparseness, etc (ii). When so-called Picard iterations are used [e.g.
30], the complete linearisation is not available in the non-linear implementation and must
be supplemented in the adjoint code.
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A lean adjoint implementation is achieved by re-using large parts of the primal FV
discretisation presented in the previous chapter. Code-maintenance (iii) is facilitated by
avoiding redundant adjoint subroutines. Accordingly, the self-adjoint operators of the
nonlinear flow solver are shared by the adjoint code. The underlying data-structure is
re-employed by the adjoint as, for example, regards the unstructured book-keeping and
the concept of parallelisation. A user-coding strategy was installed to provide a high
level of flexibility (iii) so that the adjoint boundary conditions and source terms can be
imposed for the objective functional of interest. This is necessary to use one adjoint body
for different optimisation problems.

The flexibility of the continuous adjoint method is traded for the accuracy of the dis-
crete adjoint method (Sections 2.3 and 2.4). The flexibility was mainly exploited for the
implementation of the adjoint pressure-correction scheme, which is an adapted SIMPLE
algorithm. It was accepted that the succession of operations in the forward pressure-
correction algorithms (linear and non-linear) is not exactly reversed in the adjoint im-
plementation, so that only converged solutions can be compared. The pressure-velocity
coupling is expected to have a high influence on the numerical efficiency (iv) of the adjoint
module. The treatment of the additional cross-coupling of the adjoint equations (Chapter
6) is an inherent weak point of a segregated adjoint solution scheme. However, a huge
portion of the analytical pressure equation is already neglected in the SIMPLE algorithm,
so that one could hope that the incomplete scheme can also cope with the densely-coupled
adjoint problem.

This chapter aims to highlight the central features of the adjoint discretisation. The
elementary adjoint schemes are derived in Section 8.1 for a scalar transport equation. The
adjoint schemes are subsequently extended to the Navier–Stokes equations, Sections 8.2 et
seqq., based on a term-by-term analysis of the primal discretisation schemes. The adjoint
pressure-correction scheme is described in Section 8.3. It is followed by the analysis of the
adjoint boundary terms, Section 8.4, and the gradient equation in Section 8.5 for both
low- and high-Re wall boundary conditions. This part closes with Section 8.6 where the
adjoint algorithm is outlined and selected implementation features are discussed.

8.1. Scalar Transport Equation

The scalar transport equation (7.2) is considered first. The flux contributions to the
variation of the Lagrangian are computed by summing over all internal and boundary
face-flux variations multiplied by the adjoint variables. In a compact discretisation scheme
each internal face PN contributes to the balances of the neighbouring CVs P and N , so
that the internal face-flux variations are weighted by the adjoint multipliers φ̂P and φ̂N ,
respectively. The boundary-faces PB only contribute to the balance of the adjacent CV
P , viz.

δL = . . .+
∑

PN

δFPN · (φ̂P − φ̂N) +
∑

PB

δFPB · φ̂P + . . . (8.1)
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In the following, the adjoint pseudo-fluxes F̂ are obtained via summation by parts of the
individual contributions to Eqn. (8.1) to give the adjoint balance for each CV P

∑

N(P )

F̂PN +
∑

B(P )

F̂PB = Ŝ , (8.2)

wherein Ŝ is the adjoint source term, which for example hosts contributions from the
objective functional. To keep the presentation concise, the subsequent analysis is confined
to internal cell faces PN.

Convection

A first-order upstream discretisation (UDS)

δF c
PN = ṁPN δφF ≈ max[ṁPN , 0] δφP + min[ṁPN , 0] δφN (8.3)

makes the following internal-face contributions to the variation of the Lagrangian

δL = . . .+
∑

PN

(max[ṁPN , 0] δφP + min[ṁPN , 0] δφN) ·
(

φ̂P − φ̂N

)

+ . . .

= . . .+
∑

PN

(

−min[ṁPN , 0]φ̂P −max[ṁPN , 0] φ̂N

)

· (δφP − δφN) + . . . (8.4)

by virtue of the continuity-balance for the internal CV P

0 =
∑

N(P )

(max[ṁPN , 0] + min[ṁPN , 0]) . (8.5)

The adjoint pseudo-flux for face PN is identified from Eqn. (8.4):

F̂ c
PN = −min[ṁPN , 0] φ̂P −max[ṁPN , 0] φ̂N . (8.6)

This is a first-order downstream (DDS) approximation to the negative convective fluxes
in the adjoint equations (6.5). Since the negative DDS-operator is the transposed of the
primal UD scheme, the discrete adjoint identity (2.42) is satisfied and an adjoint-consistent
scheme is obtained.

For the central differencing scheme (CDS)

δF c
PN = ṁPN δφF ≈ ṁPN ([1− λPN ] δφP + λPN δφN) , (8.7)

the flux contributions to the Lagrangian read

δL = . . .+
∑

PN

ṁPN ([1− λPN ] δφP + λPN δφN) ·
(

φ̂P − φ̂N

)

+ . . .

= . . .−
∑

PN

ṁPN

(

λPN φ̂P + [1− λPN ] φ̂N

)

· (δφP − δφN) + . . . (8.8)
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According to Eqn. (8.8), the corresponding dual fluxes are

F̂ c
PN = −ṁPN

(

λPN φ̂P + [1− λPN ] φ̂N

)

= −ṁPN

(

[1− λ̂PN ] φ̂P + λ̂PN φ̂N

)

. (8.9)

Note that the primal and the (negative) dual face-interpolation schemes are only equiv-
alent on equidistant grids, i.e. λPN = λ̂PN = 0.5. Like in the flow solver the popular
UDS-CDS blending with 0 < βφ < 1

F c
PN = βφ[F c

PN ]CDS + (1− βφ)[F c
PN ]UDS , (8.10)

can also be applied to the adjoint discretisation:

F̂ c
PN = βφ[F̂ c

PN ]CDS + (1− βφ)[F̂ c
PN ]DDS . (8.11)

The dual of the MUSCL-scheme (7.13) is used to calculate the adjont face-flux F̂PN =
[−ṁ φ̂F ]PN . According to the notation illustrated in Figure 8.1, the adjoint MUSCL-
scheme for face interpolation of φ̂F is downstream biased and obtained via summation by
parts

φ̂F ≈ φ̂D +
1
4

[

(1 + κ)
(

φ̂U − φ̂D

)

ψ(r̂) + (1− κ)
(

φ̂D − φ̂DD

)

ψ
(
r̂−1
)]

, (8.12)

with

r̂ =
φ̂D − φ̂DD

φ̂U − φ̂D

(8.13)

and the primal definitions (7.16) through (7.18). The resulting adjoint schemes depend
on the choice of κ. These are compiled in Table 8.1 with “U” (“UU”) for (remote) up-
stream replaced by “D” (“DD”) for (remote) downstream. For simplicity, the non-linear
limiting scheme is directly applied to the adjoint problem instead of a transposition of
the completely-linearised primal scheme. The equidistant description of the proposed “re-
verse” formulation (8.12) can directly be applied to the unstructured, pseudo-equidistant
formulation described in Section 7.1, wherein the variable values in the remote nodes UU
or DD are explicitly reconstructed based on the gradient of φ or φ̂.

Diffusion

With the diffusive flux through face PN

δF d
PN ≈ −

γφ ∆Γ
|xN − xP |

(δφN − δφP ) , (8.14)

the dual discretisation scheme for the adjoint diffusion operator is obtained from the
corresponding flux-contributions to the variation of the Lagrangian

δL = . . .−
∑

PN

γφ ∆Γ
|xN − xP |

(δφN − δφP ) · (φ̂P − φ̂N) + . . . (8.15)
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Figure 8.1.: 1D illustration of primal and adjoint convection schemes: transposition or
“mirroring” leads to the adjoint downstream scheme in the balance of the
CV shaded in the bottom row, which is the counterpart of the corresponding
primal upstream scheme in the balance of the CV shaded in the top row.

Table 8.1.: Comparison of primal and adjoint convection schemes in a unified formulation

scheme κ primal deferred correction adjoint deferred correction

CDS 1 (φD − φU) /2
(

φ̂U − φ̂D

)

/2

LU(D)DS −1 (φU − φUU )/2
(

φ̂D − φ̂DD

)

/2

QU(D)ICK 1/2 (3φD − 2φU − φUU ) /8
(

3φ̂U − 2φ̂D − φ̂DD

)

/8

CU(D)I 1/3 (2φD − φU − φUU ) /6
(

2φ̂U − φ̂D − φ̂DD

)

/6
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The corresponding adjoint pseudo-fluxes through face PN are:

F̂ d
PN = − γφ ∆Γ

|xN − xP |
(

φ̂N − φ̂P

)

. (8.16)

Eqn. (8.16) verifies the well-known symmetry property of the diffusive flux operator, i.e.
the discrete diffusion operator is self-adjoint. The primal non-orthogonality correction
(7.22) is directly reapplied in the adjoint algorithm. The implementation is not strictly
symmetric on non-equdistant, unstructured grids due to the evaluation of the gradient
∇φ and its CV-face interpolation.

8.2. Momentum Equations

The subsequent description based on the Navier–Stokes equations is face-oriented and
supports unstructured polyhedral grids. The complete variation of the discrete Lagrangian
with respect to the discrete state and control variables is

δL =
(
δU + δp + δy

)
L . (8.17)

The partial variation with respect to the flow, (δU + δp)(·), is considered in the discrete
analysis of the adjoint momentum equations and the pressure-projection scheme. Sub-
sequently, the discretisation schemes for the adjoint boundary conditions on ΓD and the
boundary-based gradient expressions are derived from the partial variation with respect
to the geometry δy(·).

The transposed system matrix of the adjoint momentum-continuity problem is obtained
from the primal system (7.26) via summation by parts

(

AT CT

BT 0

)

·
(

Û

p̂

)

=

(

Ŝ

Q̂

)

, (8.18)

with the adjoint variable and right-hand side vectors

Û =






Û1

Û2

Û3




 ; Ŝ =






Ŝ1

Ŝ2

Ŝ3




 .

Note that the off-diagonal sub-matrices, A
ij
|i6=j, of the full variation of the matrix-vector

problem (7.26) are zero since the advection terms are treated explicitly in Ŝi.
The discretisation schemes for the convection, diffusion and pressure operators of the

adjoint momentum equations are derived from the primal schemes in the following in a
term-by-term analysis.
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Convection

Two terms arise from the linearisation of the non-linear convective term in the momentum
equations, denoted convection and advection. The contributions to the variation of the
Lagrangian are

δL = . . .+
∑

P

ρ

∫

∆ΩP

Ûi δ

(

Uj
∂Ui

∂xj

)

dΩ + . . .

≈ . . .+
∑

P

[

ρÛi

(

Uj
∂δUi

∂xj

+ δUj
∂Ui

∂xj

)

∆Ω
]

P

+ . . . (8.19)

The linearised convection term being the first inner summand in Eqn. (8.19) is equivalent
to the convection term of the scalar transport problem. Within the FV approach, the
corresponding convective flux of adjoint momentum is

F̂ c ≈ −ṁ ÛF , (8.20)

using the “transposed” convection schemes described in Section 8.1 for cell-face interpo-
lation of ÛF .

Advection

The advection term, being the second inner summand in Eqn. (8.19), does not have a
counterpart in the primal discretisation if an incomplete Picard linearisation is applied.

A straight-forward, volume-based approximation (ADV1) obtained from the con-
tinuous adjoint calculus leads to the underlined expression, which is treated explicitly in
the adjoint momentum equations:

δL = . . .+
∑

P

∫

∆ΩP

Ûi ρ δUj
∂Ui

∂xj

dΩ + . . .

≈ . . .+
∑

P

[

δUi ρ Ûj
∂Uj

∂xi

∆Ω
]

P

+ . . . (8.21)

An alternative approximation (ADV2) underlined below is obtained from the con-
tinuous adjoint analysis via integration by parts (see A.3):

δL = . . .−
∑

P

∫

∆ΩP

δUi ρUj
∂Ûj

∂xi

dΩ +
∑

PB

∫

ΓPB

δUi ρUjÛj dΓi + . . .

≈ . . .−
∑

P

[

δUi ρUj
∂Ûj

∂xi

∆Ω

]

P

+
∑

PB

[

δUi ρUjÛj ∆Γi

]

+ . . . (8.22)

A third, face-based approximation (ADV3) can be derived from the primal dis-
cretisation. A linearisation of the discrete convective flux of momentum through a cell
face, Eqn. (7.31), gives

δF c
i |PN ≈ ṁPN δUi|F + δṁPN Ui|F (8.23)
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with
δṁPN ≈ ρ∆Γj|PN [λPN δUj|N + (1− λPN) δUj|P ] . (8.24)

The first right-hand side term of Eqn. (8.23) leads to the adjoint convection term discussed
above. The second right-hand side term makes the inner-face contributions to the variation
of the discrete Lagrangian

δL ≈ . . .+
∑

PN

[

ρ (λPN δUj|N + [1− λPN ] δUj|P )nj|PN Ui|F ∆Γ
(

Ûi|P − Ûi|N
) ]

+ . . .

(8.25)
Expression (8.25) is rearranged

δL ≈ . . .+
∑

PN

(

δUi|P
[

ρ (1− λPN) ni|PN Uj|F ∆Γ
(

Ûj|P − Ûj|N
)]

(8.26a)

+ δUi|N
[

ρ (1− λNP ) ni|NP Uj|F ∆Γ
(

Ûj|N − Ûj|P
)])

+ . . . (8.26b)

Note the negative orientation of the face unit-vector in CV N , i.e. nNP = −nPN . With
λ̂PN = 1− λPN , the advective face flux is obtained from

F̂ a
PN ≈ −ρ λ̂PN UF ·

(

ÛN − ÛP

)

∆ΓPN . (8.27)

A consistent implementation is achieved if the face value UF is interpolated by the primal
convection scheme (UDS, CDS, MUSCL, etc.) using the primal transport direction. The
face under consideration contributes the bracketed term in (8.26a) to the balance of adjoint
momentum of CV P and the bracketed term in (8.26b) to the balance of CV N . Due
to the analogy of integration and summation by parts, the advection formulations ADV2
and ADV3 are equivalent on a Cartesian, equidistant grid in conjunction with a CDS
convection scheme as shown in Appendix B.3. The equivalence is not generally true on
unstructured grids. When the transport equations are solved one by one in a segregated
pressure-projection scheme, only one out of three summands of the inner product [U · Û ]F
can be considered implicitly per adjoint momentum equation. The advection term was
treated explicitly in this study. Boundary faces featuring a zero-variation of the convective
flux δF c = 0, such as wall-, inlet- or symmetry-faces, neither have convective nor advective
fluxes in the adjoint discretisation. To calculate the advective flux through the outflow,
the primal velocity is extrapolated using the upstream velocity value:

F̂ a|out ≈ ρ∆ΓPB ÛP · UP . (8.28)

Formulation ADV3 is consistent with the strong conservation form of the primal dis-
cretisation it is derived from. It is directly compatible with high-Re wall boundary con-
ditions. On the contrary, formulation ADV1 (8.21) is not necessarily consistent with the
primal high-Re discretisation and requires an exceptional treatment for [∇U ]P in the first
cell layer: A simplistic numerical evaluation according to Eqn. (7.8) usually overpredicts
[n · ∇U ]P , and causes a strong source of adjoint momentum normal to the wall; pressure
and velocity oscillations were observed in the adjoint solution. A work-around for ADV1
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in combination with high-Re wall boundary conditions is to calculate [n ·∇U ]P according
to the logarithmic law of the wall instead:

[n · ∇U ]P =
U τ

κyP

t . (8.29)

ADV3 does not require such an exceptional treatment in combination with high-Re wall
boundary conditions since the advective fluxes are directly determined from Eqn. (8.27),
based on the primal convective face fluxes. Compared to ADV1/2, it alleviates the
strength of the momentum source in the wall-normal direction.

Viscous Diffusion

The viscous diffusion operator in the momentum equations is self-adjoint. The corre-
sponding adjoint face fluxes are

F̂ d
i = −

∫

∆Γ

2µeff Ŝij dΓj = −
∫

∆Γ

µeff

(

∂Ûi

∂xj

+
∂Ûj

∂xi

)

dΓj . (8.30)

The first term on the left-hand side resembles the diffusion term in the scalar transport
equation. It has symmetric matrix coefficients and is treated implicitly according to
Section 8.1. The second term is considered explicitly re-using the primal scheme, see
Eqns. (7.32) and (7.33).

Pressure Term

According to Eqns. (7.26) and (8.18), a consistent approximation of the adjoint pressure
term in the adjoint momentum equation can be derived from the variation of the discre-
tised equation of continuity. In the primal pressure-correction scheme outlined in Section
7.3, the latter contributes the right-hand side terms to the pressure-Poisson equation.
An example is given for a CV adjacent to a symmetry boundary patch as shown in Fig-
ure 8.2. The variation of the mass flux through the symmetry boundary patch is zero.
The corresponding contributions to the variation of the Lagrangian are

δL ≈ . . .− p̂P (δṁPN1
+ δṁPN2

)− p̂N1
(. . .)− p̂N2

(. . .) + . . . (8.31a)

≈ . . .− p̂P

[

∆Γi|PN1
(λPN1

δUi|N1
+ [1− λPN1

] δUi|P )

+ ∆Γi|PN2
(λPN2

δUi|N2
+ [1− λPN2

] δUi|P )
]

− p̂N1
[. . .]− p̂N2

[. . .] + . . . (8.31b)

≈ . . .− δUi|P
[

∆Γi|PN1
(1− λPN1

) (p̂P − p̂N1
)

+ ∆Γi|PN2
(1− λPN2

) (p̂P − p̂N2
)
]

− δUi|N1
[. . .]− δUi|N2

[. . .] + . . . (8.31c)
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By virtue of

0 = ∆Γi|PN1
+ ∆Γi|PN2

+ ∆Γi|PB , (8.32)

Eqn. (8.31c) can be rewritten as

δL ≈ . . .+ δUi|P
[

∆Γi|PN1
([1− λPN1

] p̂N1
+ λPN1

p̂P )

+ ∆Γi|PN2
([1− λPN2

] p̂N2
+ λPN2

p̂P )

+ ∆Γi|PB p̂P

]

+ δUi|N1
[. . .] + δUi|N2

[. . .] + . . . (8.33)

Note that an adjoint-consistent first-order approximation, p̂B = p̂P , is obtained on the
symmetry face. A conservative description of the adjoint pressure contribution to CV P
is identified from Eqn. (8.33)

∆Ω
∂p̂

∂xi

∣
∣
∣
P
≈
[

λ̂|PN1
p̂N1

+
(

1− λ̂|PN1

)

p̂P

]

∆Γi|PN1

+
[

λ̂PN2
p̂N2

+
(

1− λ̂PN2

)

p̂P

]

∆Γi|PN2
+ p̂P ∆Γi|PB . (8.34)

As observed for the adjoint CDS convection scheme, Eqn. (8.9), the interpolation weights
λ̂PN = 1− λPN are inverse to the primal ones. Similarly, the primal, CDS-based pressure
scheme leads to the adjoint pressure flux approximation

F̂ p
i |PN ≈

[

λ̂PN p̂N +
(

1− λ̂PN

)

p̂P

]

∆Γi|PN . (8.35)

The adjoint pressure gradient is obtained from the discrete velocity divergence via sum-
mation by parts. Like integration by parts, summation by parts implies a sign change
between Eqns. (8.31b) and (8.33).

P

B

nPB

nPN1

nPN2 N1

N2

Figure 8.2.: CV next to a symmetry surface patch
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8.3. Pressure-Correction Scheme

Continuity Equation

The adjoint continuity equation is derived from the primal pressure term in the discrete
momentum equation, cf. Eqn. (8.18). With δpB ≈ δpP , the contributions to the CV
depicted in Figure 8.2 are

δL ≈ . . .+ Ûi|P (δF p
i |PN1

+ δF p
i |PN2

+ δF p
i |PB) + Ûi|N1

(. . .) + Ûi|N2
(. . .) + . . . (8.36a)

≈ . . .+ Ûi|P
[

∆Γi|PN1
(λPN1

δpN1
+ [1− λPN1

] δpP )

+ ∆Γi|PN2
(λPN2

δpN2
+ [1− λPN2

] δpP )

+ ∆Γi|PB δpP

]

+ Ûi|N1
[. . .] + Ûi|N2

[. . .] + . . . (8.36b)

≈ . . .+ δpP

[

∆Γi|PN1
(1− λPN1

)
(

Ûi|P − Ûi|N1

)

+ ∆Γi|PN2
(1− λPN2

)
(

Ûi|P − Ûi|N2

)

+ ∆Γi|PB Ûi|P
]

+ δpN1
[. . .] + δpN2

[. . .] + . . . (8.36c)

With Eqn. (8.32), Eqn. (8.36c) can be restated as

δL ≈ . . .− δpP

[

∆Γi|PN1

(

[1− λPN1
] Ûi|N1

+ λPN1
Ûi|P

)

+ ∆Γi|PN2

(

[1− λPN2
] Ûi|N2

+ λPN2
Ûi|P

) ]

− δpN1
[. . .]− δpN2

[. . .] + . . . (8.37)

According to Eqn. (8.37), the flux through the symmetry patch is found to be zero. The
general FV discretisation of the adjoint continuity equation for CV P reads

0 = −
[

λ̂|PN1
Ûi|N1

+
(

1− λ̂|PN1

)

Ûi|P
]

∆Γi|PN1

−
[

λ̂|PN2
Ûi|N2

+
(

1− λ̂|PN2

)

Ûi|P
]

∆Γi|PN2
. (8.38)

Note that the operator for the adjoint velocity divergence is obtained from the discrete
pressure gradient via summation by parts. If carried out once, summation by parts leads
to a change of sign as observed in the previous section.

Pressure-Correction Scheme

A pressure equation can be derived for the adjoint problem like for the primal. When the
continuity operator is applied to the adjoint momentum balance (ADV1), the following
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continuous expression is obtained

1
ρ

∂2p̂

∂x2
j

=
∂Uj

∂xi

∂Ûi

∂xj

+
∂

∂xi

(

Uj
∂Ûj

∂xi

)

(8.39a)

= 2SijŜij + Uj
∂2Ûj

∂x2
i

in Ω. (8.39b)

An alternative formulation (ADV2) is obtained via integration by parts of the advection
term according to Eqn. (A.3)

1
ρ

∂2p̂

∂x2
j

=
∂Uj

∂xi

∂Ûi

∂xj

− ∂

∂xi

(

Ûj
∂Uj

∂xi

)

(8.40a)

= 2WijŴij − Ûj
∂2Uj

∂x2
i

in Ω . (8.40b)

The adjoint RANS equations are solved by means of a SIMPLE-based algorithm, which
is presented in a semi-discrete formulation here. A consistent pressure-correction equa-
tion for the adjoint system is obtained from the discrete representation of the adjoint
momentum-continuity problem. The source term Ŝi of the adjoint momentum equations
contains contributions from the advection term ADV1/2/3 treated explicitly. Additional
contributions to the adjoint source term may result from the objective functional. The
semi-discrete momentum equations are formulated for both the predictor stage, carrying
the asterisk, and the corrected stage at the end of the adjoint pressure-correction cycle
m. Explicit treatment of variables is referred to by superscript (m − 1). The velocity
prediction, Û∗

i |mP , is obtained from the adjoint momentum equations

ÂP Û
∗
i

∣
∣
m

P
+
∑

N(P )

ÂN Û
∗
i

∣
∣
m

N
= −∆Ω

[
∂p̂

∂xi

]m−1

P

− ρ∆Ω
∂Uj

∂xi

Ûj|m−1
P . (8.41)

The adjoint momentum balance can be expressed in terms of the corrected adjoint pressure
and velocity components

Ûi

∣
∣
m

P
= Û∗

i

∣
∣
m

P
+ Û ′

i

∣
∣
m

P
and p̂

∣
∣
m

P
= p̂
∣
∣
m−1

P
+ p̂′

∣
∣
m

P
, (8.42)

which leads to

ÂP

(

Û∗
i + Û ′

i

) ∣
∣
m

P
+
∑

N(P )

ÂN

(

Û∗
i + Û ′

i

) ∣
∣
m

N
=

−∆Ω
[
∂

∂xi

(
p̂m−1 + p̂′

)
]

P

− ρ∆Ω
∂Uj

∂xi

Ûj|mP . (8.43)

Note that the iteration counter for the advection term has increased from (m− 1) to m.
The difference between Eqn. (8.41) and (8.43) is

ÂP Û
′
i

∣
∣
m

P
+
∑

N(P )

ÂN Û ′
i

∣
∣
m

N
=

−∆Ω
[
∂p̂′

∂xi

]

P

− ρ∆Ω
∂Uj

∂xi

(

Û∗
j |mP + Û ′

j|mP − Ûj|m−1
P

)

. (8.44)
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The terms overlined above are neglected in the following. With regard to the neighbour
contributions this treatment is in accordance with the original SIMPLE-algorithm. Both
the iteration counter m and the subscripts P and N are left out for the sake of brevity,
viz.

Û ′
i = −∆Ω

ÂP

[
∂p̂′

∂xi

+ ρ
∂Uj

∂xi

Û ′
j

]

. (8.45)

The underlined term in Eqn. (8.45) depending on Û ′
j is neglected in the standard imple-

mentation. For ∂jΩ/∂p = 0, the corrected adjoint velocity field is forced to be solenoidal
at the end of the pressure-correction cycle, viz.

0 =
∂

∂xi

[

Û∗
i + Û ′

i

]

. (8.46)

The reduced expression for Eqn. (8.45),

Û ′
i = −∆Ω

ÂP

[
∂p̂′

∂xi

]

, (8.47)

is substituted into Eqn. (8.46) to arrive at the adjoint pressure-correction equation

∂

∂xi

[
∆Ω

ÂP

(
∂p̂′

∂xi

)]

=
∂Û∗

i

∂xi

. (8.48)

The semi-discrete expression (8.48) is discretised by the FV method like its primal counter-
part, cf. (7.45). The adjoint pressure-correction obtained from Eqn. (8.48) is used to cor-
rect the adjoint pressure field according to (8.42). The corresponding velocity correction
obtained from (8.47) is also used to update the “adjoint mass fluxes”. An extended, two-
fold pressure-correction approach is outlined in Appendix D. It iteratively accounts for
the advection contribution to the momentum equations.

The self-adjoint “pressure diffusion” on the left-hand side of the adjoint pressure-
correction equation (8.48) is approximated according to the diffusion treatment outlined
in Section 7.1. The adjoint pressure gradient inside the divergence operator originates
from the adjoint momentum balance.

Matrix-Vector Interpretation

The adjoint SIMPLE algorithm outlined above may also be viewed from the matrix-
vector point of view (8.18). Since a complete linearisation underlies the adjoint system,
Ŝ also hosts the additional advection terms ADV1/2/3. The adjoint matrix-vector prob-
lem reveals that the discrete-adjoint pressure-gradient operator of the adjoint momentum
equation, CT , is found by transposition of the corresponding primal divergence operator
of the primal continuity equation. In the same way, the adjoint continuity operator BT is
found by transposition of the primal pressure-gradient operator. Moreover, the coupled
view is very instructive for the derivation of the discrete-adjoint boundary conditions.
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The problem is solved iteratively as its primal counterpart:

AT · Û∗ = −CT · p̂m−1 + Ŝ . (8.49)

Then, the adjoint pressure-correction p̂′ is determined from
(

BT · Ã−1 · CT
)

· p̂′ = BT · Û∗ − Q̂ . (8.50)

Mind that, in the adjoint system, the underlying assumption Û ′ = −(Ã
−1 ·CT ) · p̂′ is more

restrictive than in the primal problem since more terms are neglected. Finally, the adjoint
velocity and pressure fields are corrected via

p̂m = p̂m−1 + αp̂ p̂
′ and Ûm = Û∗ − (Ã

−1 · CT ) · p̂′ . (8.51)

The adjoint Schur-complement is the transposed of the primal due to

C · Ã−1 ·B = (BT · Ã−1 · CT )T . (8.52)

The Rhie and Chow correction (7.47) of the primal system is reapplied to obtain smooth
adjoint solutions.

8.4. Boundary Conditions

Since the approximation order of the boundary fluxes is often lower than of the interior
fluxes—typically first-order gradient approximations are used on the boundaries—duality
violations on the discrete level can lead to major inconsistencies in objective functional
values and derivatives. Boundary conditions to the Navier–Stokes equations and the
objective functionals declared on ΓO should be discretised in a consistent, strictly conser-
vative manner. It allows to devise conform, adjoint-consistent discretisations for both the
adjoint boundary conditions and the adjoint gradient expression.

In the adjoint calculus, a conform boundary treatment involves

(a) boundary terms stemming from the definition of the objective functional defined on
ΓO;

(b) primal boundary conditions;

(c) adjoint boundary conditions;

(d) the adjoint gradient equation on ΓD.

The boundary stress acting on solid and fluid, respectively, is considered according to
the method of sections. In a momentum-conservative FV discretisation, the net sum of
the fluid force on the boundary and the boundary force on the fluid should be zero. In
the discrete Lagrangian, the boundary stress acting on the fluid (b) is weighted by the
adjoint multipliers ÛP in the balance for the wall-adjacent CV P . If the contribution (a)
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from the force objective acting on ΓO into the direction d∗ is discretised consistently, the
contribution to the discrete Lagrangian can be written as

L ≈ . . .+
(

d∗
i + Ûi|P

)

Fi|wall + . . .

Since the analysis is confined to the contribution of the boundary face PB to the La-
grangian, the boundary-face index PB is omitted here. The presentation also holds if no
force objective functional is declared on the considered boundary wall face; in that case
the force projection vector is the null vector, d∗ = 0.

A deformation of the design surface ΓD implies a perturbation of the position vectors
of the boundary nodes, xB, as described in Section 7.7. Based on the full variation of
the Lagrangian, δL = (δU + δp + δy)L, a unified formulation covering low- and high-Re
descriptions is derived to obtain the discretisation schemes for the adjoint wall boundary
condition and the sensitivity equation.

A low-Re wall boundary formulation is considered first. The description also covers
no-slip wall faces that are part of the objective surface ΓO and may be part of the design
surface ΓD as well. The eddy viscosity µT is zero on the wall boundary and negligible
in the viscous sublayer, i.e. the effective viscosity µeff equals the molecular viscosity µ.
In fully laminar flow, µeff is to be replaced by µ. With δFi|wall substituted according to
Eqn. (7.91), the following expression is obtained

δL ≈ . . .+
(

d∗
i + Ûi|P

)

δFi|wall

≈ . . .+
(

d∗
i + Ûi|P

)(

ni δpP

+ µeff Tij y
−1
P

[
δyP y

−1
P (Uj|B − Uj|P ) + δUj|P

] )

∆Γ + . . . (8.53)

Expression (8.53) is reordered via summation by parts in order to obtain a discretisation
for both the adjoint boundary condition (c) and the adjoint gradient equation (d):

δL ≈ . . .+ δpP

(

d∗
i + Ûi|P

)

ni ∆Γ (8.54a)

+ δUi|P
(
µeff Tij

yP

[

d∗
j + Ûj|P

])

∆Γ (8.54b)

+ δyP

(
µeff Tij

y2
P

[

d∗
j + Ûj|P

]

[Ui|B − Ui|P ]
)

∆Γ + . . . (8.54c)

With Ûj|B = −d∗
j , the adjoint boundary condition (6.11) of the continuous formulation

is recovered (c). It reappears as a discrete source term in the CV P next to the wall.
The dual discretisation for the viscous boundary flux in the adjoint system is calculated
through

F̂ d
i |wall = −µeff Tij

yP

(

Ûj|B − Ûj|P
)

∆Γ . (8.55)

It is interesting to note that, like in the flow problem, the adjoint strain vector is projected
onto the boundary via scalar multiplication by T .
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Alternatively, the boundary-layer flow can be modelled with high-Re wall bound-
ary conditions based on the logarithmic law of the wall (7.64). The variation of the
Lagrangian, including contributions from a force objective (a) according to Section 7.6, is

δL ≈ . . .+
(

d∗
i + Ûi|P

)

δFi|wall + . . .

≈ . . .+
(

d∗
i + Ûi|P

)

(ni δpP − δτw
i ) ∆Γ + . . . (8.56)

In the high-Re formulation, δτw is substituted according to Eqn. (7.102). With the aux-
iliary definition of the viscosity in terms of the logarithmic law of the wall

µlog =
ρU τκ

ln(Ey+
P )
yP =

ρ κC
1/4
µ k1/2

ln(Ey+
P )

yP , (8.57)

Eqn. (8.56) can be rearranged via summation by parts:

δL ≈ . . .+ δpP ni

(

d∗
i + Ûi|P

)

∆Γ (8.58a)

+ δUi|P
µlog

yP

(Tij + titj)
(

d∗
j + Ûj|P

)

∆Γ (8.58b)

+ δyP 2
µlog

yP

U τ

κyP

tj

(

d∗
j + Ûj|P

)

∆Γ + . . . (8.58c)

Once again, the adjoint boundary condition Ûi|B = −d∗
i is recovered. With the auxiliary

definition of the viscosity (8.57), a FV implementation analogue to the low-Re description
(8.55) is found:

F̂ d
i |wall ≈ −

µlog

yP

(Tij + titj)
(

−d∗
j − Ûj|P

)

∆Γ . (8.59)

Adjoint pressure and volume fluxes through no-slip wall faces are discretised as shown for
symmetry boundary faces. The adjoint pressure flux through a wall face is identified from
Eqn. (8.33), which yields a first-order approximation p̂B = p̂P , which is a valid, adjoint-
consistent approximation to the boundary condition of the continuous adjoint problem.
The adjoint volume flux, −d∗ ·∆Γ, through a wall boundary face that contributes to the
objective functional is found from (8.54a) or (8.58a).

The continuous form of the adjoint pressure boundary condition (6.23) can be
considered as a “do-nothing” or no-flux condition

nj

[

ρUj Ûi + µeff
∂Ûi

∂xj

− p̂ δij

]

= 0 on Γout (8.60)

or
F̂ |out = F̂ c + F̂ d + F̂ p = 0 . (8.61)

Accordingly, the adjoint pressure takes the value

p̂ = ρUnÛn + µeff
∂Ûn

∂n
on Γout . (8.62)
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The viscous normal stress is neglected in the vicinity of the outflow, which corresponds to
the velocity boundary condition, n ·∇U = 0, used in the primal discretisation. It leads to

p̂m = ρUn Ûn on Γout . (8.63)

From the pressure-correction point of view, Eqn. (8.63) determines a pseudo-Dirichlet
boundary value for the adjoint pressure. Thus, p̂′ at the boundary is

p̂′ = p̂m − p̂m−1 on Γout , (8.64)

so that the corrected pressure at the end of the SIMPLE cycle assumes the value demanded
by (8.63). Eqn. (8.64) is a pseudo-Dirichlet condition which evolves during the SIMPLE-
iteration. Since the value of p̂′ is prescribed at the boundary, the adjoint velocity has to
be corrected via:

(Ûn)′ =
∆Ω

ÂP

∂p̂′

∂n
on Γout . (8.65)

A one-sided approximation is used for the adjoint pressure gradient, which is of first-order
accuracy. The boundary value for p̂′ required in (8.65) is prescribed by Eqn. (8.64). The
boundary value for ÂP is extrapolated from the adjacent CV.

The numerical treatment of the outlet face proposed above is confirmed by a discrete
adjoint analysis for CV P next to the boundary sketched in Figure 8.3. A first-order
description of the convective contribution of CV P to the variation of the Lagrangian is

δL ≈ . . .+ (max[ṁPN1
, 0] δUi|P + min[ṁPN1

, 0] δUi|N1
)
(

Ûi|P − Ûi|N1

)

+ (max[ṁPN2
, 0] δUi|P + min[ṁPN2

, 0] δUi|N2
)
(

Ûi|P − Ûi|N2

)

+ (max[ṁPB, 0] + min[ṁPB, 0]) δUi|P Ûi|P + . . . (8.66)

By virtue of the CV continuity balance,
∑

min(ṁ, 0) = −∑max(ṁ, 0), Eqn. (8.66) can
be restated as

δL ≈ . . .− δUi|P
[

min(ṁPN1
, 0) Ûi|P + max(ṁPN1

, 0) Ûi|N1

+ min(ṁPN2
, 0) Ûi|P + max(ṁPN2

, 0) Ûi|N2

]

− δUi|N1
[. . .]− δUi|N2

[. . .] + . . . (8.67)

The negative adjoint downstream scheme is recovered for the internal faces PN1 and
PN2. Obviously, the resulting adjoint convective flux through the outlet patch, F̂ c|out, is
zero. The adjoint diffusion, pressure and volume fluxes are identified from Eqn. (8.18).
Assuming δUi|B ≈ δUi|P leads to 0 = F̂ p|out = F̂ d|out. The findings of the discrete adjoint
analysis are consistent with the weak boundary condition (8.61) of the continuous adjoint
problem.

The numerical treatment of inlet, wall and symmetry patches on Γ \ ΓO has been
derived in the same way and is equivalent to the primal implementation described in
Section 7.4.
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Figure 8.3.: CV next to a pressure outflow boundary patch

8.5. Gradient Equation

After solving the discretised adjoint equations for the considered objective functional, its
sensitivity derivative is evaluated in the adjoint post-processing. According to Section 6.3,
the local portion of the gradient distribution, GL, is evaluated over ΓD. The formulation
is specific to the type of control and independent of the considered objective functional.

When boundary layers are resolved numerically in a low-Re strategy, a consistent
discretisation scheme for the gradient equation (d) directly follows from (8.54c). It is the
partial derivative of the discrete Lagrangian with respect to the shape control δy divided
by the patch area ∆Γ, viz.

GL ≈ −
µeff

y2
P

(Ui|B − Ui|P ) Tij

(

−d∗
j − Ûj|P

)

on ΓD . (8.68)

Note that the description is an adjoint-consistent approximation to the continuous adjoint
formulation (6.39).

When a high-Re wall boundary condition is employed, the discrete gradient equation
is identified from (8.58c)

GL ≈ −2
µlog

yP

U τ

κyP

tj

(

−d∗
j − Ûj|P

)

on ΓD , (8.69)

with the auxiliary viscosity µlog declared according to Eqn. (8.57). Eqn. (8.69) is an
approximation to the continuous adjoint formulation (6.39) expressed in terms of the
logarithmic law of the wall. The velocity gradient based on the logarithmic law of the
wall is found again in Eqn. (8.69):

∂U t

∂n

∣
∣
∣
P

=
U τ

κyP

.

In either case, the one-sided first-order approximation used for the boundary-normal
velocity derivative is recovered in the gradient equation. The formulations are analogue to
the approximations of boundary-normal derivatives applied in the primal discretisation—
force objective (a) and boundary condition (b)—which are of first-order accuracy. Mind
that the influence of the boundary curvature is neglected here. This simplification is
common practice in industrial CFD codes and is consistent with the primal discretisation.
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8.6. Solution Algorithm

The process chains for both the direct-differentiation method and the adjoint method are
illustrated in Figure 8.4. In the direct-differentiation method the linearised Navier–Stokes
problem is solved in forward direction, whereas the adjoint code calculates the sensitivity
derivative in reverse mode. This is reflected in the top-down (linearised) and the bottom-
up (adjoint) strategy, respectively. The adjoint module is integrated into the main code.
It is possible to

• run the adjoint directly after the primal solver; or

• execute the adjoint alone restoring the converged primal solution from a restart-file.

According to Eqns. (6.5) and (6.6), the adjoint problem is driven by the adjoint boundary
conditions on ΓO and the volume source terms in ΩO, both of which are specific to the
objective functional. These are defined in the so-called adjoint pre-processing, which is
executed prior to solving the adjoint PDE, cf. Figure 8.4. This step corresponds to the
evaluation of the objective functional variation in the post-processing of the linearised
RANS problem, which is carried out in the same stage. The adjoint code must have
the flexibility to be tailored to different types of user-defined objective functionals. The
following strategy is pursued in the adjoint module:

• A collection of standard objectives, such as fluid forces or energy dissipation, are
implemented within the main program.

• Further, case-specific definitions can be provided through a user-coding interface.
User-routines are compiled individually and linked to the main program. This strat-
egy permits to keep the program clearly arranged and, at the same time, ensures a
high level of versatility.

The adjoint PDE are iteratively solved by the adapted SIMPLE algorithm sketched in
Section 8.3. The adjoint momentum equations (8.41) are solved for the adjoint velocity
components followed by the adjoint pressure equation (8.48). In the subsequent correction
step, the adjoint pressure and velocity components are updated according to (8.42) and
(8.47). The adjoint routines are similar to the primal ones. The same PETSc-solvers
and pre-conditioners that are used to solve the primal linear equation systems (Section
7.5) are reused for the corresponding adjoint systems. The adjoint pressure-correction
system is symmetric as its primal counterpart, so that the same equation solvers could
be used. As the adjoint system is linear, the individual adjoint system matrices can be
stored and reused during the iteration. In spite of the linearity of the adjoint problem,
the right-hand side contributions—stemming from the adjoint advection terms ADV1–
3, explicit deferred corrections for second-order accurate reconstructions, the definition
of the objective functional or further adjoint transport equations—need to be updated
continuously. The dense coupling of the adjoint equations increases the number of right-
hand side terms in the segregated approach. The set of adjoint equations for momentum
and pressure-projection is iterated using the adjoint SIMPLE scheme. The adjoint system
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is under-relaxed as the primal Navier–Stokes system (7.5). Like in the primal solver (7.83),
the adjoint residual for φ̂ in iteration k is calculated according to the L1-norm

R̂
k

=
1

R̂
1

n∑

i=1

R̂k
i with R̂k

i = Âk
iiφ̂

k−1
i +

∑

j∈N(i)

Âk
ijφ̂

k−1
j − Ŝk

i . (8.70)

When the adjoint residual value has fallen below a given threshold, or a prescribed number
of adjoint iterations is exceeded, the gradient is evaluated in the so-called adjoint post-
processing. According to Figure 8.4, it is executed on the same level like the boundary
perturbation step of the forward linearisation. The gradient evaluation does not have to
be modified or adapted by the user unless the type of control changes. Therefore, the
boundary-based gradient Eqns. (8.68) and (8.69) are included within the main program.
When a different sort of control is considered, e.g.

• a volume-based evaluation of the sensitivity derivative either with respect to the
shape [e.g. 61, 126, 99, 108] or with respect to a porosity defined inside the fluid
domain in the context of topology optimisation [6, 35, 111, 110],

• active flow control via blowing or suction [10, 8, 9], or

• grid parameters or points in conjunction with error analysis [169, 51, 52],

the adjoint post-processing can be adapted through user-coding interfaces as implemented
for the adjoint pre-processing. It is interesting to note that the adjoint equations are the
same for all these problems unless extra control terms do explicitly depend on the state
or flow variables.
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post-pr.

user-coding

pre-pr.
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pre-pr. post-pr.

start linFreSCo+

boundary per-
turb. δβj on ΓD
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mentum for δU

solve lin. PC for δp′

corr. δp, δU
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δJΓ on ΓO δJΩ in ΩO

end linFreSCo+ start adFreSCo+

Û , p̂ on ΓO
∂jΩ
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corr. p̂, Û
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conv.?
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end adFreSCo+
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Figure 8.4.: Solution schemes for the linearised and the adjoint FreSCo+ solvers
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9. Verification and Validation Studies

The origin of the adjoint Navier–Stokes equations is mathematical rather than physical.
Since a direct comparison against experimental data is hardly possible, there is a need
for alternative validation and verification strategies for the adjoint-based results. In a
numerical experiment, the adjoint solution can be verified against sensitivity derivatives
with respect to control parameters of local or integral influence. If, for example, a finite
differentiation is carried out with respect to a parameter of global influence, the corre-
sponding adjoint-based sensitivity derivative is obtained via an integral expression over
the area of influence, ΓD or ΩC . Potential local deviations resulting from insufficiencies in
the adjoint numerics may accumulate or cancel each other out in the sensitivity integral.
When control parameters of local influence are used, many calculations have to be carried
out to verify the sensitivity derivative over a large design surface ΓD or control volume
ΩC .

Two concepts are pursued in this chapter which allow to locally assess the sensitivity
derivative; these are based on

• adjoint field solutions derived analytically, or

• gradient distributions reconstructed via the direct-differentiation method.

9.1. Analytic Solution for Axis-Symmetric Couette Flow

An analytic adjoint solution was tailored in order to validate the adjoint solver. The
axis-symmetric Couette problem sketched in Figure 9.1 was considered in combination
with incompressible Navier–Stokes flow of homogeneous viscosity. The absence of in-
and outflow boundaries simplifies the validation of the numerics. The axis-symmetric
Couette problem represents an engineering shear flow which, when discretised in Cartesian
coordinates, also allows to assess the adjoint discretisation schemes for convection and
advection.

Analytic Solution

A description in physical cylinder coordinates (r, ϕ, z) enables an analytic solution. The
velocity can be expressed for an arbitrary point:

U = U r ẽr + Uϕ ẽϕ + U z ẽz . (9.1)
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ϕ

r

z

ωO

Figure 9.1.: Sketch of axis-symmetric Couette flow in physical cylinder coordinates
(r, ϕ, z); outer radius rO, inner radius rI , angular velocity of outer ring ωO

ẽr, ẽϕ and ẽz represent the unit vectors of the r, ϕ and z components, respectively. The
corresponding representation of the gradient operator is

∇(·) =
∂(·)
∂r

ẽr +
1
r

∂(·)
∂ϕ

ẽϕ +
∂(·)
∂z

ẽz . (9.2)

The Navier–Stokes equations transformed into physical cylinder coordinates read:

Continuity equation:
∂U r

∂r
+
U r

r
+

1
r

∂Uϕ

∂ϕ
+
∂U z

∂z
= 0 (9.3)

Radial momentum equation (ẽr direction):

ρ
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1
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)

(9.4)

Circumferential momentum equation (ẽϕ direction):

ρ

(

U r ∂U
ϕ

∂r
+
Uϕ

r

∂Uϕ

∂ϕ
+ U z ∂U

ϕ
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(9.5)

Axial momentum equation (ẽz direction):

ρ

(

U r ∂U
z

∂r
+
Uϕ

r

∂U z
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+ U z ∂U

z

∂z
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(
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∂ϕ2
+
∂2U z

∂z2

)

(9.6)
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For symmetry reasons, ∂
∂ϕ

(·) = ∂
∂z

(·) = 0, the set of equations above reduces to

∂p

∂r
= ρ

(Uϕ)2

r
, (9.7)

0 = r
∂2Uϕ

∂r2
+
∂Uϕ

∂r
− Uϕ

r
. (9.8)

A no-slip wall boundary condition is imposed on both inner and outer cylinder walls. The
outer wall, radius rO, rotates with the angular velocity ωO, whereas the inner wall, radius
rI , is fixed. This axis-symmetric Couette problem has the following analytical solution

U r(r) = 0 , Uϕ(r) = α

(

r − r2
I

r

)

, (9.9)

p(r) = p(rI) + ρα2

[
r2

2
+ 2 r2

I ln
(rI

r

)

− r4
I

2r2

]

, (9.10)

with
α =

ωO

1− (rI/rO)2 . (9.11)

The objective functional for the manufactured adjoint problem is the torque acting on
the inner cylinder wall, r = rI . With the position vector x0 denoting a point on the
cylinder axis, the objective functional reads

JΓ = ẽz ·
∫

ΓO

(x− x0)×
(
π · dΓ

)
, (9.12)

which can be rewritten as

JΓ =
∫

ΓO

jΓ dΓ with jΓ = −rI µ
∂Uϕ

∂r
. (9.13)

Accordingly, the adjoint Navier–Stokes equations can be stated in physical cylinder coor-
dinates:

Adjoint continuity equation:

∂Û r

∂r
+
Û r

r
+

1
r

∂Ûϕ

∂ϕ
+
∂Û z

∂z
= 0 (9.14)

Radial adjoint momentum equation (ẽr direction):
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+ Û z ∂U

z

∂r

)

=

−∂p̂
∂r

+ µ

(

∂2Û r
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)

(9.15)
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Circumferential adjoint momentum equation (ẽϕ direction):
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(9.16)

Axial adjoint momentum equation (ẽz direction):
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(9.17)

The left-hand side terms in Eqns. (9.15) through (9.17) consist of the negative convective
contributions. These are followed by the advection terms according to formulation ADV1
transformed into physical cylinder coordinates. For completeness, the alternative formu-
lation ADV2 described in physical cylinder coordinates is provided in Appendix B.2. The
right-hand side contributions, being the adjoint diffusion and pressure terms, correspond
to the primal Navier–Stokes equations.

The adjoint boundary conditions are specific to the definition of the objective functional
(9.12). The adjoint boundary conditions on the outer cylinder ring are

Ûi = Û r = Ûϕ = Û z = 0 for r = rO . (9.18)

For the inner ring carrying the objective functional, Γ ⊂ ΓO, the boundary conditions are

Ûi = rI ẽ
ϕ
i or Ûϕ = rI ; Û r = Û z = 0 for r = rI . (9.19)

The adjoint continuity equation (9.14) and the z-component of the adjoint momentum
equation (9.17) are irrelevant for symmetry reasons, ∂

∂ϕ
(·) = ∂

∂z
(·) = 0. Eqns. (9.15) and

(9.16) reduce to
∂p̂

∂r
= −ρ Ûϕ

(
Uϕ

r
+
∂Uϕ

∂r

)

, (9.20)

0 = r
∂2Ûϕ

∂r2
+
∂Ûϕ

∂r
− Ûϕ

r
. (9.21)

The term underlined in Eqn. (9.20) corresponds to the standard formulation ADV1. The
corresponding solution for the alternative formulation ADV2 is presented in Appendix
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B.2. The analytical solution for the adjoint axis-symmetric Couette problem is obtained
by integration

Ûϕ(r) = α̂

(
r

r2
O

− 1
r

)

(9.22)

p̂(r) = p̂(rI) + ραα̂

[
r2

I − r2

r2
O

+ 2 ln
(
r

rI

)]

, (9.23)

with
α̂ =

rI

(rI/rO)2 − 1
. (9.24)

Results

The laminar Couette flow sketched in Figure 9.1 was solved numerically on a computa-
tional grid of 100 × 50 cells in circumferential and radial directions that is depicted in
Figure 9.2(a). The Reynolds number based on the width ∆ = rO − rI and the velocity of
the outer ring Uϕ

O was Re = 100. The primal solutions obtained with the LUDS scheme for
the circumferential velocity component Uϕ(r) and the pressure p(r) are plotted over the
radius in Figure 9.3 along with the analytic solutions. Velocity and pressure distributions
meet the analytical results. The adjoint problem was solved on the same grid with the
LDDS convection scheme and different advection treatments ADV0–3. The nondimen-
sional distributions of the adjoint velocity Ûϕ(r) and the adjoint pressure p̂(r) are shown
in Figure 9.4 on top of the corresponding analytic solutions. It is interesting to note that
the momentum equations for the radial and the circumferential components decouple for
both primal and adjoint problem. Hence, different treatments of the advection term in
the adjoint equation do not affect the circumferential component of the adjoint velocity:
As shown in Figure 9.4(a), advection treatments ADV0–3 result in the same nondimen-
sional Ûϕ(r) distribution. Only the radial equation is affected by the advection treatment:
According to Figure 9.4(b), very different p̂(r) distributions were obtained for neglected
advection (ADV0), advection formulations ADV1 and ADV2/3 derived from the primal
discretisation. The numerical adjoint results coincide with the corresponding analytic
solutions. Note that ADV2 and ADV3 result in the same adjoint pressure distribution.
This is obvious since ADV2 and ADV3 are closely related as shown in Appendix B.3.

In more complex configurations the adjoint momentum equations can hardly be ex-
pected to decouple. On the contrary, the advective term intensifies the cross-coupling
between the adjoint system of equations. Compared to the primal Navier–Stokes equa-
tions solved through a Picard iteration, the interaction between the adjoint momentum
equations will probably increase.

Since the numerical solution of both flow and adjoint problem is based on Cartesian
coordinates, (adjoint) momentum is redistributed between the Cartesian components by
convection and advection terms during the numerical solution. In physical cylinder coor-
dinates, the convection and advection terms do not explicitly appear in the circumferential
adjoint momentum equation. It allows to derive an analytic solution to assess the numer-
ical convection scheme. The coarse mesh of 15 × 60 cells in radial and circumferential
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directions depicted in Figure 9.2(b) was set up in order to bring out the differences. Fig-
ure 9.5 shows the nondimensional Ûϕ(r)-distribution obtained via DDS-CDS blending and
the LDDS convection-schemes. For increased DDS-CDS blending factors the numerical
solution approaches the analytic result. The LDDS scheme shows the best agreement.
Though the expected trend is found in the curves, one has to bear in mind that the pri-
mal solution underlying all adjoint cases is computed using the LUDS convection scheme.
All adjoints were linearised about the same primal solution to compare the effect of the
adjoint convection scheme. However, there is a numerical inconsistency associated with
the combination of primal LUDS and dual DDS-CDS blending.
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(a) Fine mesh of 100× 50 cells (b) Coarse mesh of 60× 15 cells

Figure 9.2.: Computational grids for axis-symmetric Couette flow
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Figure 9.3.: Axis-symmetric Couette flow; nondimensional primal solution obtained on
fine mesh compared against analytic solution
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Figure 9.4.: Axis-symmetric Couette flow; nondimensional distributions of Ûϕ(r) and p̂(r)
for advection schemes ADV0–3 compared against analytic solution
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Figure 9.5.: Axis-symmetric Couette flow; nondimensional distribution of Ûϕ(r) obtained
from different convection schemes (DDS, 30% CDS, 70% CDS, LDDS) com-
pared against analytic solution; radial mesh resolution of coarse grid indicated
by circles
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9.2. Direct-Differentiation Method

Simple internal and external flow cases are considered to verify the adjoint method against
the direct-differentiation method, wherein the linearised Navier–Stokes equations are
solved once per degree of freedom. The internal flow studies are based on the power
loss criterion (4.38) evaluated for a bent duct and a diffuser geometry. The verification
study for external flow is concerned with a quarter cylinder in free-stream conditions. A
drag force objective is evaluated either on the interior or the exterior domain boundaries
as described in Section 6.5.

Bent Duct in Laminar Flow

The bent duct sketched in Figure 9.6 was investigated first for 2D, laminar flow. It
resembles the S-shaped duct configurations investigated by Zymaris et al. [170, 171]. The
geometry used in this study is composed of circular ring segments and straight lines alone,
so that it can be reproduced easily. The computational mesh depicted in Figure 9.7
consisted of 50 × 90 cells. A uniform inflow velocity was prescribed resulting in a bulk
Reynolds number Re = Uin d/ν = 500. At the outflow, the pressure was set to zero.
According to Eqn. (4.37), the power loss between inlet and outlet, ΓO = Γin ∪ Γout, is
reduced by maximising the power objective functional:

JΓ =
∫

ΓO

(

p+
ρ

2
U2

i

)

Uj dΓj . (9.25)

Primal and adjoint convective fluxes of momentum were approximated according to the
LU(D)DS scheme (7.17). The distribution of the primal pressure coefficient, Cp = 2p/(ρU2

in),
is plotted in Figure 9.8 together with the primal and the adjoint velocity fields. The flow
field features a recirculation zone on the lower wall. Note that the derivatives are zero
at the point of separation. In Figure 9.9, the distribution of the sensitivity derivative
is plotted over the channel walls for advection treatment ADV1. In order to verify the
adjoint code, the derivative obtained from the adjoint method was compared against its
counterpart calculated via the direct-differentiation method. The linearised Navier–Stokes
equations were solved for boundary conditions perturbed patch-wise over the tunnel walls
ΓD; that is, a total of 158 calculations were necessary to compute the full sensitivity
derivative over upper and lower walls of the duct in the range of −1 < x/d < 4.5.

Figure 9.10(a) shows the distributions of the nondimensional sensitivity derivative

G∗ = G
d

ρU3
in

,

calculated from different advection treatments ADV0–3. If the advection term is neglected
(ADV0), the maximum amplitudes on upper and lower walls are almost equivalent. The
distribution of the sensitivity derivative has a different character when the advection
term is taken into account through formulations ADV1–3. The curves for ADV1–3, Fig-
ure 9.10(a), show the main differences in the peak prediction and on the upper wall for



118 9. Verification and Validation Studies

45◦

45◦

d

2d
2d

3d

5d

Γout

Γin

Figure 9.6.: Setup and dimensions for a bent duct configuration
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Figure 9.7.: Computational grid of 50× 90 cells for a bent duct configuration
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2d < x < 2.5d. The adjoint-based sensitivity derivative is compared against its coun-
terpart predicted by the direct-differentiation method using consistent approximations
for convection and advection terms in Figures 9.10 (b–e). In the direct-differentiation
method, the volume-based approximation (7.86) of the advection term is referred to as
ADV1. The adjoint-based ADV1/2 results are compared against the ADV1 results of
the direct-differentiation method, since an ADV2 description obtained via integration by
parts does not exist in the direct-differentiation method. According to Figure 9.10(c),
ADV1 shows the best agreement. ADV2 (d) and ADV3 (e), which are closely related to
each other as demonstrated in Appendix B.3, mainly deviate in the peak predictions and
upstream, particularly on the upper wall surface.

Bent Duct in Turbulent Flow with Low-Re Wall Boundary Condition

For the configuration introduced above, the bulk Reynolds number was increased to Re =
20,000. The Wilcox k-ω turbulence model was used in conjunction with low-Re wall
boundary conditions. Figure 9.13(b) shows the y+ distribution over upper and lower
tunnel walls. A uniform velocity was prescribed at the inlet together with the turbulence
quantities

k =
3
2
Tu2 U2

in and ω =

√

3
2
TuUin

C
1/4
µ LT

,

determined from empirical relationships for pipe flow

Tu = 0.16Re−1/8 and LT = 0.07 d . (9.26)

The frozen-turbulence assumption was consistently applied for both the adjoint and the
direct-differentiation method. The convective momentum fluxes in primal, linearised and
adjoint PDE were discretised according to the LU(D)DS scheme. Figure 9.11 shows
the adjoint-based distribution of the sensitivity derivative of the power objective (9.25)
using ADV3 and how it correlates with the separation bubble ranging from xS to xR.
For the turbulent case the sensitivity distribution clearly reflects the onset of separation,
suggesting a wider duct shape upstream of the separation point, a zero change in the
separation point and a reduced duct width downstream, which will intuitively delay the
separation.

Figure 9.13(c) depicts the adjoint-based sensitivity derivative obtained by ADV0–3.
For ADV0 the amplitudes on upper and lower walls are very similar. The curves for
ADV1–3 have a different character. The differences between the sensitivity derivatives for
ADV0 and ADV1 can in parts by explained by the shapes of the corresponding adjoint
boundary-layer profiles plotted in Figure 9.12. Whereas for ADV0 the adjoint boundary
layer resembles the primal one, ADV1 causes a velocity peak in the boundary layer.
In the recirculation zone, the primal velocity boundary layer has non-zero derivatives
U t,t = −Un,n and Un,t. In this area, the adjoint boundary-layer flow is essentially driven
by the source of momentum acting in the wall-tangential direction, ρ ÛjUj,iti = ρÛ tU t,t +
ρÛnUn,t (ADV1). The influence is convected in the upstream direction. Accordingly, the
adjoint wall shear rates for ADV0 and ADV1 are different, leading to different sensitivity
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(a) Primal pressure coefficient Cp

(b) Primal velocity field

(c) Adjoint velocity field

Figure 9.8.: Laminar flow through a bent duct at Re = 500
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Figure 9.9.: Laminar flow through a bent duct at Re = 500; derivative G with velocity
streamlines and magnitude

derivatives calculated from the adjoint gradient equation (6.39) or its discrete form (8.68).
The adjoint method is verified against the direct-differentiation method in Figures 9.13(d)
through 9.13(g). The sensitivity derivatives obtained from both methods oscillate at
the scale of the boundary patch length. The oscillations are more pronounced in the
adjoint case. This is expected to be caused by the adjoint gradient formulation (6.39),
which is a differential expression including the product of primal and adjoint wall shear
rates, both of which are not smooth in the low-Re calculation. The rough distribution
of the primal wall shear rate is reflected in the y+ plot in Figure 9.13(b). In the direct-
differentiation method, the sensitivity derivative was obtained by integration over ΓO,
which led to smoother distributions though the boundary conditions on the boundary
patches of ΓD were individually perturbed. The wider length scales predicted by the
direct-differentiation method and the adjoint method are in fair agreement. ADV0 and
ADV1 show the best agreement. The main differences between the ADV2 and ADV3
curves are found in the upper and lower wall peaks and upstream. A similar trend was
observed in the laminar case. The local extrema predicted by the direct-differentiation
method are more distinct than the adjoint-based extrema.

The numerical experiment was repeated with a refined low-Re mesh of 50 × 240 cells
depicted in Figure 9.14(a). The numerical resolution of the boundary curvature was im-
proved by increasing the number of mesh points over the bent section from 50 to 200; in
the transverse direction the mesh remained unchanged. Compared to the coarser grid, the
primal y+ distribution plotted in Figure 9.14(b) is significantly smoother. Also the oscilla-
tions in the adjoint-based sensitivity derivatives based on ADV0–3, cf. Figure 9.14(c), were
considerably reduced. According to Figures 9.14(d) to 9.14(g), the sensitivity derivatives
based on the direct-differentiation method and the adjoint method are in good agreement.
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Figure 9.10.: Laminar flow through a bent duct at Re = 500; nondimensional derivative
G∗ according to adjoint (ADJ) and direct-differentiation method (LIN) using
advection schemes ADV0/1/2/3
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xS xR

Figure 9.11.: Bent duct at Re = 20,000 with low-Re wall boundary condition; derivative G
(left); correlation with flow separation between xS = 1.31d and xR = 1.85d
(right)

Figure 9.12.: Bent duct at Re = 20,000 with low-Re wall boundary condition; adjoint
velocity field Û and derivative G according to ADV0 (left) and ADV1 (right);
separation bubble outlined by vertical lines
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(a) Computational mesh of 50× 90 cells
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Figure 9.13.: Bent duct at Re = 20,000 with low-Re wall boundary condition; nondimen-
sional derivative G∗ according to adjoint (ADJ) and direct-differentiation
(LIN) method using advection schemes ADV0/1/2/3
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(a) Computational mesh refined to 50× 240 cells
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Figure 9.14.: Bent duct at Re = 20,000 with refined mesh and low-Re wall boundary
condition; nondimensional derivative G∗ according to adjoint (ADJ) and
direct-differentiation (LIN) method using advection schemes ADV0/1/2/3
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Bent Duct in Turbulent Flow with High-Re Wall Boundary Condition

The same test case was used to verify the implementation of the high-Re wall boundary
condition. The primal flow field calculated on the high-Re mesh of 15 × 85 cells is de-
picted in Figures 9.15(a) and 9.15(b). Figure 9.15(c) shows the sensitivity distribution
(ADV3) obtained in the high-Re case, which is smooth compared to the low-Re cases
above. Also the underlying y+ distribution plotted in Figure 9.16(a) is smooth. The
adjoint-based sensitivity plots for ADV0 and ADV3 are compared in Figure 9.16(b). For-
mulations ADV1 and ADV2 caused strong oscillations of the wall-normal component of
the adjoint velocity next to the wall so that they are not presented here. The differences
between ADV0 and ADV3 are smaller than in the low-Re case. This is expected to be a
consequence of not resolving the wall boundary layers which are responsible for the main
difference between ADV0 and ADV1–3 in the low-Re case. The adjoint-based derivative
according to Eqn. (8.69) is verified against the result of the direct-differentiation method
in Figures 9.16(c) and 9.16(d). In the direct-differentiation method, source terms were
successively applied to the linearised momentum equations in the wall-adjacent CVs in
the range −1 < x/d < 4.5, compare Eqn. (7.103).

Diffuser in Turbulent Flow

A 2D diffuser configuration was considered next to verify the adjoint approach. The
diffuser sketched in Figure 9.17 is composed of straight lines and circular arcs alone,
which can be modelled easily. It resembles the configuration investigated by Zymaris
et al. [171], for which an explicit geometry definition was not available. Inlet and outlet
areas are different so that the kinetic energy contribution to the objective functional
(9.25) plays an important role in the budget of energy. This case features a symmetry
boundary condition which has not been investigated in the previous cases. The bulk
Reynolds number based on the uniform inlet velocity was Re = Uin d/ν = 20,000. At the
outflow the pressure was set to zero. The computational mesh shown in Figure 9.18(a)
consisted of 30 × 60 cells. The Wilcox k-ω turbulence model was used in conjunction
with low-Re wall boundary conditions. The convective fluxes of (adjoint) momentum
were discretised by means of the LU(D)DS scheme. The primal velocity field depicted in
Figure 9.18(b) shows a huge recirculation zone. The pressure coefficient, Cp = 2p/(ρU2

in),
is plotted in Figure 9.18(c). Figure 9.19 illustrates the primal and the adjoint (ADV3)
velocity fields in the recirculation zone together with the sensitivity derivative plotted
over the boundary walls. The sensitivity distributions for ADV0/1/3 are compared in
Figure 9.20(a). When the advection term is neglected (ADV0), the peaks are strongly
underestimated. Figures 9.20(b), 9.20(c) and 9.20(d) verify the adjoint-based derivatives
against the direct-differentiation method. The over-all agreement is good—the major
deviations are found upstream of the separation, particularly for advection scheme ADV3.
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(a) Primal velocity field

(b) Primal pressure coefficient Cp

(c) Sensitivity derivative (ADV3)

Figure 9.15.: Bent duct at Re = 20,000 with high-Re wall boundary condition
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Figure 9.16.: Bent duct at Re = 20,000 with high-Re wall boundary condition; nondimen-
sional derivative G∗ according to adjoint (ADJ) and direct-differentiation
(LIN) method using advection schemes ADV0/3
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Figure 9.17.: Setup and dimensions of diffuser configuration



9.2. Direct-Differentiation Method 129

(a) Computational mesh of 30× 60 cells

(b) Velocity vectors and streamlines

(c) Pressure coefficient Cp

Figure 9.18.: Diffuser at Re = 20,000 with low-Re wall boundary condition

(a) Primal velocity and sensitivity derivative (b) Adjoint velocity and sensitivity derivative

Figure 9.19.: Diffuser at Re = 20,000 with low-Re wall boundary condition; recirculation
zone
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(c) Advection treatment ADV1 (right-hand side zoomed in)
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Figure 9.20.: Diffuser at Re = 20,000 with low-Re wall boundary condition; nondimen-
sional derivative G∗ according to adjoint (ADJ) and direct-differentiation
(LIN) method using advection schemes ADV0/1/3
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Quarter Cylinder in Free-Stream

The last verification sample is a 2D quarter cylinder in turbulent free-stream conditions.
The blunt-body configuration featuring a distinct separation point was selected in order
to verify the approach for external flow problems. The Wilcox k-ω turbulence model
was used with a low-Re wall boundary condition imposed on the cylinder walls. The
computational grid is shown in Figure 9.21 with a system of physical cylinder coordinates
(r, θ) aligned with the cylinder axis. The diameter of the full cylinder is denoted by d.
The flow domain extended 15d upstream and to the side and 20d in the downstream
direction. A symmetry plane was defined on the centreline. The Reynolds number based
on the inlet velocity and the diameter of the full cylinder was Re = Uind/ν = 106. At the
outlet, the pressure value was set to zero. The LU(D)DS scheme was used to evaluate the
convective face fluxes of (adjoint) momentum. Figure 9.22 illustrates the primal flow by
velocity streamlines and contours of the pressure coefficient Cp = 2(p− pout)/(ρU2

in). The
objective functional was the drag force acting on the cylinder surface,

• either evaluated by integration over the interior (INT) boundaries, i.e. over the
cylinder surface (ΓO)

J =
∫

ΓO

jΓ dΓ with jΓ = −njπijδ1i , (9.27)

• or by integration over the exterior (EXT) boundaries (ΓO) of the solution domain

J =
∫

ΓO

jΓ dΓ with jΓ = nj (−ρUiUj + πij) δ1i . (9.28)

The adjoint pressure and velocity fields obtained by INT and ADV1 are depicted in
Figure 9.23. Extreme values of both the adjoint velocity and the adjoint pressure are
observed in the point of separation (θ = 0, r = d/2). Next to the cylinder surface the
adjoint pressure distribution is dominated by the advection term ADV1. The distributions
of the nondimensional sensitivity derivatives

G∗ = G
d

ρU2
in

on ΓD (9.29)

over the circular front, 0 < θ < π/2 and r = d/2, based on interior and exterior
force declarations and advection schemes ADV0/1/3 are plotted in Figures 9.24(b) to
9.24(e). All sensitivity curves obtained with low-Re wall boundary conditions oscillate.
The ADV0 distributions clearly differ from the corresponding ADV1/3 curves. Fig-
ures 9.24(c) through 9.24(e) compare the nondimensional derivative G∗ obtained via the
adjoint method (INT/EXT) against the direct-differentiation method (INT). Once again,
the distribution predicted by the direct-differentiation method is much smoother than the
adjoint-based results. For ADV0 the adjoint-based results (INT/EXT) are in good agree-
ment with the direct-differentiation method (INT). The agreement of the adjoint and
the direct-differentiation method is fair for advection treatments ADV1/3 consistently
applied.
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(a) Computational mesh

r

θ

(b) Close up

Figure 9.21.: Quarter circle in free flow at Re = 106; computational grid of 9,600 cells for
low-Re wall boundary condition

(a) Velocity streamlines and pressure
contour lines

(b) Velocity streamlines and pressure
contour lines

Figure 9.22.: Quarter cylinder in free flow at Re = 106 with low-Re wall boundary condi-
tion; primal flow



9.2. Direct-Differentiation Method 133

(a) Adjoint pressure contour lines
for drag objective

(b) Adjoint velocity for drag objective

Figure 9.23.: Quarter cylinder in free flow at Re = 106 with low-Re wall boundary con-
dition; adjoint solution using advection scheme ADV1 and interior (INT)
definition of objective functional

Concluding Remarks

The adjoint solution was validated against analytic solutions found for an axis-symmetric
Couette problem. The radial distributions of the adjoint velocity and pressure distribu-
tions coincide with the corresponding analytical solutions for different adjoint convection
and advection treatments.

The adjoint method was also verified against the direct-differentiation method to ad-
dress more realistic configurations. This allows to verify the implementations of (i) the
adjoint boundary conditions declared in the adjoint pre-processing for the investigated
objective functional, (ii) the adjoint field equations, and (iii) the evaluation of the sen-
sitivity derivative in the adjoint post-processing. Internal and external flow cases were
considered in laminar and turbulent flow using both low- and high-Re wall boundary
conditions. The general agreement of the sensitivity derivatives based on the adjoint
method and the direct-differentiation method is good, depending on the application, the
mesh and the numerical settings, in particular the advection treatment. The deviations
observed in conjunction with high-Re wall boundary conditions may be a consequence
of the rather coarse high-Re grids, which may have affected the accuracy of both the
direct-differentiation method and the adjoint method.

The sensitivity derivatives obtained for interior (INT) and exterior (EXT) definitions of
force criteria according to Section 6.5 are in fair agreement. Since the objective surface is
not subject to shape variations in the EXT configuration (i.e. ΓO∩ΓD = ∅ and GCG = 0), I
conclude that GC and GG formally existing in the INT configuration are of minor influence
for the investigated case.

In conjunction with turbulent low-Re wall boundary conditions, the primal solver tends
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Figure 9.24.: Quarter cylinder in free stream at Re = 106 with low-Re wall bound-
ary condition; nondimensional derivative G∗ of drag force according to
adjoint (ADJ) and direct-differentiation (LIN) method using advection
schemes ADV0/1/3; interior (INT) vs. exterior (EXT) declaration of ob-
jective functional
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to produce moderately oscillating distributions of the wall shear rate if the ratio of the
grid spacing in the wall-tangential direction and the local curvature radius is large. Po-
tential reasons for the rough distributions of the wall shear rate next to highly stretched
boundary-layer cells are: the metric schemes for the computation of the wall distance
yP and the boundary vector ∆Γ for polygonal boundary patches that are not necessarily
planar; the formulation of the primal pseudo boundary condition for ωP (7.63) which
is O(y−2

P ); and the neglected boundary curvature in the formulation of the wall bound-
ary condition. The adjoint wall shear rate is comparably rough, so that the adjoint-based
sensitivity derivative, calculated from a differential expression based on the product of pri-
mal and adjoint shear rates (8.68/8.69), is quadratically affected by the oscillations. The
amplitudes of the oscillations decreased when the curvature resolution was increased. To
process the rough sensitivity derivative in an automated optimisation program, a filtering-
based preconditioning of the sensitivity derivative suggested by Stück and Rung [152] is
described in Section 10.3. Other authors [e.g. 62, 2, 78, 99, 151, 109, 108] evaluate the
sensitivity derivative (2.41) from integral, volume-based expressions—cf. Section 3.3—so
that potential irregularities in the adjoint solution are averaged over several cells and the
huge content of information available from adjoint methods is reduced to a pre-selection
of (CAD) parameters.
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10. CAD-free Geometry Concept for Shape
Optimisation

In a CAD-free optimisation strategy, the geometry has to be evaluated and manipulated
on the basis of the computational mesh alone. The basic calculus presented in the follow-
ing is applicable in the framework of fully-unstructured finite-volume grids. It consists
of basic, CAD-free concepts for the evaluation of metric quantities (Section 10.1), a han-
dling of simple metric constraints (Section 10.2), a filter-based preconditioning of surface
derivatives (Section 10.3, also see Stück and Rung [152]), and a mesh adaptation approach
(Section 10.4).

10.1. Evaluation of Metric Terms

The volume enclosed by a number of surfaces can be calculated from the divergence
theorem (e.g. Soto et al. [151])

V =
1
3

∮

xi dΓi . (10.1)

The formulation may also be used in conjunction with symmetry planes cutting the body
of interest. In that case a closed surface representation is not available. With the mirror
plane defined by a position vector xs located on the plane, formulation (10.1) can be recast
as

V s =
1
3

∫
(
xj − xs

j

)
dΓj . (10.2)

Accordingly, the coordinates of the barycentre can be obtained using the first geometric
moment

xi

∣
∣
B

=
1

4V

∮

xixj dΓj , (10.3)

or, in the presence of a symmetry plane

xs
i

∣
∣
B

=
1

4V s

∫
(
xj − xs

j

)
(xi − xs

i ) dΓj . (10.4)

The descriptions above are also valid for concave volumes.

10.2. Handling of Constraints

A penalisation of the objective functional is a very popular technique to account for (met-
ric) constraints. The objective functional can, for instance, be augmented by a volume
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constraint

CV =
1
2

(V − V0)
2 = 0 , (10.5)

so that deviations from the desired volume V0 are penalised. The integral constraint (10.5)
can be linearised with respect to a change of the control and considered in the sensitivity
analysis.

Alternatively, a gradient projection method can be pursued to eliminate the components
of the gradient that violate the constraint(s). A gradient projection G̃, compatible with the
volume constraint (10.5), can be obtained by subtracting the average as—for instance—
proposed by Huan and Modi [60] and followed by Stück and Rung [152]

G̃ = G−
∫

ΓD
G dΓ

∫

ΓD
dΓ

. (10.6)

A potential change in the surface area is neglected in the calculation of the average vol-
ume per step size, δV/α ≈

∫

ΓD
G dΓ, “swept” by the deformation. This approximation is

satisfactory as long as the resolution of the boundary curvature is sufficient. In contrast
to the penalisation method, the constraint is satisfied during the whole optimisation pro-
cess. Given the violation is severe, the orthogonal projection of the constraint can be a
considerable offset applied of the unconstrained sensitivity derivative.

10.3. Filtering of Derivatives

Small-scale oscillations (noise) are usually undesired in practical shape design for several
reasons. Among these are hydrodynamic, structural, manufacturing, operational or eco-
nomic considerations. In a CAD-free approach the same mesh is used to discretise both
flow and shape. This strongly reduces the number of tools and data-interfaces involved
in the optimisation. The resolution of the computational mesh is usually chosen in accor-
dance with the RANS requirements. Thus, in some areas the grid resolution can be very
high in order to capture the important flow features (e.g. boundary layers, stagnation or
separation and re-attachment zones). The resolution requirements of the shape descrip-
tion can be different, mainly driven by the local curvature of the boundary so that the
characteristic length scales of the description of geometry and flow can be different. Very
fine mesh resolutions are prone to non-smooth derivatives with respect to the shape, dom-
inated by fine-scale structures. Such structures usually slow down the local optimisation
or lead to undesired shapes.

This motivates the use of filters that eliminate short length-scales from the distribution
of the derivative with respect to the shape. Linear convolution filters with a uniform filter
kernel K(r) are applied in this study. The filtered distribution of the derivative is given
by the convolution

G(ξ) = H G(ξ) =
∫

ΓD

K(r)G(ξ − r) dr , ∀ ξ ∈ ΓD , (10.7)
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with r,H and ξ representing the local filter radius, the filtering operator and the curved
boundary coordinate, respectively. The extension of the one-dimensional description to
two-dimensional surfaces with a local system of orthogonal surface coordinates, ξi, i = 1, 2,
is straight-forward. The filter is assumed to be a bounded operator, to have a normalised
filter function ∫

K(r) dr = 1 , ∀ ξ ∈ ΓD (10.8)

and to be conservative, so that it does not alter the integral of the derivative with respect
to the shape over the design surface ΓD (global conservation)

∫

G(ξ) dξ =
∫

H G(ξ) dξ =
∫

G(ξ) dξ . (10.9)

Gaussian Filters

Many formulations for low-pass filters are available in literature, such as box-filters, Gaus-
sian, spectral or Pao filters. Motivated by scale-space theory [86, 88, 15, 29, 87], Gaussian
filters are used in this study. These are conform with Lindeberg [87], who postulates in
the context of image data processing:

“Coarse-scale representations should constitute simplifications of correspond-
ing structures at finer scales—they should not be accidental phenomena created
by the smoothing method intended to suppress fine scale structures.”

Among others, Gaussian kernels have the subsequent scale-space properties likewise apt
in the context of shape optimisation: linearity, shift invariance, non-enhancement of local
extrema, invariance of scale and rotation—cf. for example Lindeberg and ter Haar Romeny
[88] and [87]. The Gaussian filter is local in both physical and wave-number space. It is
interesting to note that Gaussian kernels are a Green’s function or fundamental solution
to the unsteady diffusion-equation

∂G

∂t
=
γ

2
∂2G

∂ξ2
on ΓD , (10.10)

with γ/2 being the diffusion coefficient. The corresponding Gaussian kernel is

K(t) = (2πγ t)−D/2 exp
(

− r2

2γ t

)

, ∀ ξ ∈ ΓD , (10.11)

wherein σ2 = γ t [m2] is the variance of the filter and D denotes the dimensionality of the
boundary that is subject to the filter (D = 1 for lines; D = 2 for surfaces). Details present
in the “raw” distribution of the derivative with respect to the shape, which are significantly
smaller than the standard deviation or length scale of the filter kernel, σ =

√
γ t, are

eliminated by the filter. For t = 0 the original distribution is retained.
An implicit first-order approximation to Eqn. (10.10)

G(t)− γ t

2
∂2G

∂ξ2
(t) = G(0) +O(t) over ΓD (10.12)
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allows for a direct comparison against the implicit smoothing technique based on a
“Sobolev-Gradient”, which is well-established in adjoint shape optimisation [65, 69, 138].
There, a second-order PDE is solved over the design surface in order to obtain a smoothed
derivative, or gradient G, from the raw derivatives G, viz.

G− ∂

∂ξ

(

ε
∂G

∂ξ

)

= G over ΓD . (10.13)

A step in the negative direction of G with the stride α guarantees a negative (desired)
variation of the objective functional for arbitrary choices of a uniform value ε [65]:

δJ = −
∫

ΓD

[
αGG

]
dΓ = −α

∫

ΓD

[

G
2

+ ε

(
∂G

∂ξ

)2
]

dΓ . (10.14)

The equivalence above is obtained using (10.13) and integration by parts in conjunction
with zero values of G along the bounding lines of ΓD. It is interesting to note that
Eqns. (10.12) and (10.13) are first-order equivalent. A direct comparison reveals

ε ≈ γ t

2
, (10.15)

so that the smoothing intensity ε involved in Eqn. (10.13) can be interpreted as half
the variance, σ2 = γ t, of the Gaussian filter kernel. The optimal choice of ε is case
dependent. Gherman and Schulz [36] and Schmidt et al. [138] suggested to identify an
appropriate (optimal) value for ε by analysis of the corresponding Hessian, Kim et al. [79]
used automatic procedures.

As outlined by Schmidt et al. [138] and Eppler et al. [26], the preconditioned steepest-
descent can be considered as an approximate Newton method. The close relation to the
Sobolev-smoothing puts the suggested filtering technique on a firm rational basis. In
contrast to the implicit smoothing technique, Eqn. (10.13), the filtering operation is fully
explicit. It can easily be applied in the context of unstructured grids, where the grid
connectivity is often not available for the surface patches.

This study is confined to uniform Gaussian filter kernels, which are globally conserva-
tive, cf. Eqn. (10.9). In practice, a part of the kernel is cut off close to the bounding lines
of ΓD, since it has an unbounded support. However, the filter operation acts locally as
for r/

√

(γ t) = 2, approximately 95 per cent of the kernel integral is included. The kernel
is renormalised numerically to enforce Eqn. (10.8). The filter operation becomes partic-
ularly simple when the influence of the local curvature of the design surface is ignored
within the kernel width. The approach is defensible due to the dense support of the kernel
as long as

√

(γ t) is kept small compared to the local radius of curvature. The latter is
usually satisfied and an undesired filtering across edges can be suppressed by screening
the changes of the face normals.

Numerical Implementation

The suggested filtering of the derivative is performed in a fully explicit manner. In many
cases, the domain decomposition, which is optimised to compute the flow in parallel based
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on the MPI protocol, turns out to be suboptimal for surface operations. To avoid an ex-
tra decomposition, the boundary patches for every separate surface area to be filtered
are gathered on a single processor to avoid MPI communication overheads. The resulting
memory consumption of approximately 105 or less variables per processor is considered
tolerable. Boundary conditions are not considered explicitly, instead the part of the filter
that exceeds the considered surface is simply cut off. The filtering can be considered as
a weighted local average over the kernel radius. Particularly on unstructured grids, the
implementation of the filtering approach is less involved than the implementation of the
smoothing algorithm based on “Sobolev-gradients”: Often the data-structures existing to
solve the governing PDE in the domain do not have a counterpart on the domain bound-
aries. Beyond the necessary connectivity table for the boundary faces, a management of
boundary conditions is needed to declare the boundary conditions for the surface PDE
over the confining surface lines.

10.4. Mesh Adaptation

In the face-centred FV approach the gradient is available in the centres of the boundary
faces. The boundary-normal perturbation of the optimisation cycle i, δn|i, was calculated
from the filtered gradient G

i
and step size α, viz.

δn|i = −α G|i on ΓD . (10.16)

The boundary displacements d|i = [n δn]i were passed into the interior domain by solving
a Laplace field equation

∇ ·
(
γd∇d|i

)
= 0 in Ω , (10.17)

with the boundary displacements d|i imposed as boundary conditions over the design
surface(s) ΓD. Zero displacements were declared on the outer boundaries. The deformation
was extrapolated to symmetry boundaries attached to the design surfaces. Undesirable
out-of-plane displacements of the symmetry boundaries, P ·δn, were subtracted explicitly.
The implementation allows to use inhomogeneous distributions of γd to control or optimise
the field deformation, e.g. Wick [165]. In the current study γd was set to unity. The
displacement vector of the mesh nodes was subsequently obtained by interpolation from
the centres of the surrounding CVs or boundary faces. After a succession of n optimisation
cycles, the final displacement of a mesh node is the sum over its trajectory

x|n − x|0 =
n∑

i=1

d|i . (10.18)
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start FreSCo+

read ctrl & mesh

solve momentum i

solve PC

corr. p, Ui

solve turbulence

solve scalar

conv.?

eval. obj.

adjoint?

end FreSCo+ start adFreSCo+

read ctrl, mesh & flow

solve admomentum i

solve adj. PC

corr. Ûi, p̂

end adFreSCo+

conv.?

eval. gradient

flow?
smooth &

update shape

update mesh

yes

yes

no

no

no

yes

no

yes

Figure 10.1.: Iterative optimisation scheme coupling flow solver and adjoint solver



11. Applications

The adjoint Navier–Stokes method presented in this work can be used to support both
manual and automatic shape optimisations. In Section 11.1, the adjoint method is intro-
duced to wake design and tailored to specific wake objective functionals that quantify the
quality of a ship’s velocity wake field. An adjoint-based sensitivity analysis was carried
out to guide a manual aftship redesign (cf. Stück et al. [155, 156]). Moreover, automatic
shape optimisation runs were performed for a 2D T-junction in Section 11.2 to reduce the
power loss. Subsequently, a 3D double-bent pipe was optimised in Section 11.3.

11.1. Sensitivity Analysis for Manual Wake Optimisation

The propeller operates in the wake field of the ship. To improve the propeller inflow
conditions, the nominal wake field is investigated in the absence of the propeller. The
flow is evaluated in the propeller disk ΩO representing the volume swept by the propeller
blades. According to Figure 11.1, a system of physical cylinder coordinates (r, θ, a) is
located in the centre of the propeller hub

xi ei = r ẽr + θ ẽθ + a ẽa . (11.1)

ẽa is aligned with the propeller axis pointing from fore to aft. The upright position is
described by θ = 0. The corresponding velocity coordinates are U r, U θ and Ua. The
propeller disk extends over the volume RI < r < RO, 0 < θ < 2π and afore < a < aaft,
where the inner radius RI is the propeller hub radius and the outer radius RO is slightly
beyond the propeller tip radius. In the axial direction the disk reaches from afore to aaft.

It is common practice to evaluate the quality of the wake field in terms of the circum-
ferential variations of the (axial) velocity wake over the propeller disk. For a single-screw
ship, the 12 o’clock position is strongly influenced by the presence of the ship hull, whereas
the lower region is usually less affected. Depending on the hull shape, bilge vortices may
disturb the flow field in the propeller disk. Local deviations in the axial velocity Ua and
the circumferential velocity component U θ lead to a local variation of the propeller blade
load, due to changes in the blade angle of attack and the magnitude of the inflow velocity.
The propeller blades pass wake inhomogeneities at the blade frequency which is the num-
ber of blades times the number of revolutions. The pressure fields of the passing blades
excite the ship structure at the blade frequency and its multiples causing vibrations and
noise. This effect is accompanied by cavitation, particularly in the area of highest blade
loads and low hydrostatic pressure above the propeller. Bubble growth and collapse lead
to pressure pulses at high frequencies. Beyond noise and vibration, cavitation damages
may occur on the propeller and the rudder. These devices are particularly sensitive in the
context of ship safety and security.
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The ship’s nominal wake field has to be taken into account during the design of the
propeller blade sections. The radial variation of the velocity wake can be compensated by
choosing an appropriate pitch distribution over the radius. The circumferential variation
cannot be met by the propeller design. An appropriate hull shape that leads to more
homogeneous inflow conditions over the perimeter facilitates the propeller design and
improves the propeller-hull interaction.

Wake Objective Functionals

The wake design problem was turned into an optimisation problem: Find the hull form
parameters βi that lead to an increased homogeneity of the wake field. The design is
evaluated in terms of integral hydrodynamic wake objective functionals J , quantifying
the quality of the wake field. The objective functional is obtained by integration over the
propeller disk volume or objective volume ΩO:

J =
∫

ΩO

j dΩ . (11.2)

Among several wake objective functionals used in maritime industry is the formulation
proposed by the SVA Potsdam. The SVA criterion is based on the deviation of the axial
velocity component Ua from its mean value U

a
(r) that is obtained by averaging over the

circumference via

U
a
(r) =

1
2π

∫ 2π

0

Ua(r) dθ for RI < r < RO . (11.3)

With US denoting the ship velocity, the integral variation for each radius

DI(r) =
1

2π US

∫ 2π

0

∣
∣Ua − Ua∣

∣ dθ , RI < r < RO (11.4)

is weighted by the relative bandwidth experienced on that radius

DII(r) =
1
US

[max(Ua)−min(Ua)] , RI < r < RO . (11.5)

The optimisation goal is to find a hull shape that maximises the wake objective functional

JA = 1− 1
RO −RI

∫ RO

RI

√

2DI(r)DII(r) dr . (11.6)

In combination with unstructured grids, in which the nodes are not aligned with the
propeller coordinate system, the wake objective functional requires to be re-stated, e.g.

JA = 1− CA

∫

ΩO

dΩ
r

√

US DII(r)
∣
∣Ua − Ua

(r)
∣
∣ , (11.7)
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with DII(r) according to Eqn. (11.5) and

CA =
[

US

∫

ΩO

dΩ
r

]−1

. (11.8)

The integration is carried out over the computational cells whose centres are located inside
the propeller disk volume ΩO.

A simplified wake objective functional JB, measures the integral quadratic deviation in
Ua from its radial average, i.e. maximise

JB = 1− CB

∫

ΩO

dΩ
2r

[
Ua − Ua

(r)
]2

with CB =
[

U2
S

∫

ΩO

dΩ
r

]−1

. (11.9)

For a constant ship velocity US and DII frozen, the variation of the SVA criterion (11.7)
with respect to the flow reads

δJA =
∫

ΩO

δUi
∂jA

∂Ui

dΩ with
∂jA

∂Ui

= −ẽa
i CA

Ua − Ua
(r)

2r

√

US DII(r)

max(
∣
∣Ua − Ua

(r)
∣
∣
3
, ǫ)

.

(11.10)
A small number ǫ is used in Eqn. (11.10) to suppress the singularity of ∂jA/∂Ui where
Ua = U

a
(r).

The variation of the quadratic deviation norm (11.9) is given by

δJB =
∫

ΩO

δUi
∂jB

∂Ui

dΩ with
∂jB

∂Ui

= −ẽa
i CB

Ua − Ua
(r)

r
. (11.11)

Eqns. (11.10) and (11.11) can be considered as different weights applied to the deviation
[Ua − Ua

(r)]. Compared to JB, JA has two formal deficiencies in the context of the
differential analysis: (i) ∂jA/∂Ui has a singularity in Ua = U

a
(r), which is numerically

attenuated by a small number ǫ in Eqn. (11.10); (ii) it is difficult to differentiate the
max-statement in DII with respect to the flow over ΩO, thus DII is frozen in the adjoint
analysis.

Manual Hull Redesign

A generic PanMax container vessel was investigated at a model Reynolds number of

Re =
U0L

ν
=

1 m/s× 200 m
4/3× 10−5 m2/s

= 1.5 · 107. (11.12)

The main dimensions of the CAD-parametrised ship hull are listed in Table 11.1. The
flow domain extended one ship length ahead, to the side and below the ship hull. Behind
the ship two ship lengths were resolved numerically. For symmetry reasons only half of
the ship hull was modelled. Another symmetry boundary condition was declared at the
still-water surface. The velocity was prescribed at the inlet, at the outlet the pressure
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was set. Over the ship hull the boundary layer was resolved numerically (y+ < 1). The
computational grid, cf. Figure 11.2, consisted of approximately 1.1 million cells. It is
locally refined in the vicinity of the hull and in the wake region. The diameter of the
propeller disk, wherein the wake objective functional was evaluated, was set to 105% of
the propeller diameter. The inner diameter and the axial extension of the disk were 17.5%
and 16% of the propeller diameter, respectively. The Wilcox k-ω turbulence model was
used.

Figure 11.3 depicts the shear stress acting on the aftship hull in conjunction with stream-
lines tracing the major wake field disturbances upstream. The axial velocity wake in the
propeller disk was normalised with the ship velocity US. Due to the formal deficits of JA in
the context of differentiation, the adjoint sensitivity analysis was based on formulation JB.
Nonetheless, JA was evaluated during the redesign in addition to JB to quantify the wake
field improvements. The source terms in the adjoint momentum equations, −∂jB/∂Ui,
drive the adjoint solution inducing an adjoint velocity wake shown in Figure 11.4. As
expected, the strongest respond of the adjoint velocity can be observed in the area of
the highest velocity deficit of the primal wake. Having solved the adjoint equations, the
distribution of the sensitivity derivative over the hull surface, Figure 11.5, is obtained
from Eqn. (8.68): A dark (light) shading indicates that the wake objective functional is
improved by a local increase (decrease) of the displacement. A contour line represents the
zero level in the gradient distributions (left). Within a manual redesign study, the sensi-
tivity analysis was carried out for three design stages 0 (initial), 1 and 2. Flow field, wake
objective functional and sensitivity derivative were updated for each design stage. The
cycle was carried out twice. The design evolution is visualised in Figure 11.6 by water-
lines, buttock-lines and frame sections. The design steps 0, 1 and 2 are coloured in black,
dark and light grey. A smoother heel-shape of the stern gondola (cf. buttock line B0) in
combination with a more circular frame-character of the stern gondola (buttock lines B1
to B3, frame sections F2 to F5) reduced the disturbances in the 6 and 12 o’clock positions
of the propeller disk. The corresponding velocity wake fields are depicted in Figure 11.5
(right). The white circles outline the circular rings which were used to evaluate the wake

Table 11.1.: Main dimensions and characteristics of the generic PanMax container vessel

length between perpendiculars L 200.0 m

length waterline 204.0 m

beam 32.2 m

draft 11.5 m

propeller hub vert. pos. above basis 4.5 m

propeller diameter 8.0 m

block coefficient 0.68

midship section coefficient 0.98

Reynolds number at model scale 1.5× 107
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objective functional over the perimeter. The circumferential inhomogeneities in the wake
velocity field were alleviated. Accordingly, the hook-shaped “signature” dominating the
6 o’clock position in step 0 decreased in steps 1 and 2. It is interesting to note that the
improved shapes result in smoother distributions of the derivative with respect to the
shape. As illustrated in Figure 11.7, the value of the wake objective functional increased
from JA = 0.716 to 0.787 and JB = 0.970 to 0.984 after two iterations. Trim and sinkage
were frozen in the analysis, resulting in a relative increase of the displacement of 0.05%.
The longitudinal centre of buoyancy moved astern by 0.025%L.

Concluding Remarks

Wake objective functionals used in practical hull design were introduced into the adjoint
calculus. A sensitivity analysis was carried out to guide the redesign of a generic PanMax
container vessel. The method provides a continuous sensitivity distribution over the hull
surface and yields considerable insight into the design problem from the objective point of
view. The wake objective functional JA increased by approximately 10 per cent. Several
improvements are required to prepare the adjoint technique for practical use, including

• improved wake objective functionals, accounting for variations of the propeller blade
load due to changes in the local blade angle of attack and the incoming flow velocity.
It must be kept in mind that the practical success of the adjoint-based sensitivity
analysis all depends on the validity of the underlying objective functional.

• tailored data interfaces to several CAD frameworks;

• a mathematical connection of the continuous sensitivity derivative to the shape
parametrisation according to the chain-rule of differentiation;

• enhanced robustness of the adjoint numerics for simulations at full scale; and

• to account for the influence of propulsion within the aftship optimisation.
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a

r

RIRO

θ

Figure 11.1.: System of physical cylinder coordinates used for the propeller disk (back
view); r, θ, and a denote the radial, circumferential and axial coordinates,
respectively. The inner and outer radii of the propeller disk are referred to
as RI and RO.

Figure 11.2.: Computational grid with boundary conditions
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Figure 11.3.: Inhomogeneities in the propeller disk are traced upstream by velocity stream-
lines for the reference geometry (step 0). The wall shear stress is visualised
through vectors on the wetted hull surface.

Figure 11.4.: Normalised axial velocity wake (left) and corresponding axial component of
the adjoint velocity wake, Û1 [1/N ] (right) of JB for the reference geometry
(step 0)
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(a) Step 0: JA = 0.716, JB = 0.970

(b) Step 1: JA = 0.776, JB = 0.982

(c) Step 2: JA = 0.787, JB = 0.984

Figure 11.5.: Gradient distribution G [ 1/m3] of JB (left) and normalised axial velocity
wake (right) for design steps 0, 1 and 2. A dark (light) shading indicates
an increase of the wake objective functional by a local increase (decrease) of
the hull displacement.
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(a) Frame sections

(b) Water lines

(c) Buttock lines

Figure 11.6.: Design steps 0 (black), 1 (dark grey) and 2 (light grey)
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(a) Wake objective functional JA (WOF) (b) Hull displacement (VOL)

(c) Longitudinal centre of buoyancy (XCB),
positive forward

Figure 11.7.: Design evolution over design steps 0, 1 and 2
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11.2. Optimisation of a 2D T-Junction

A 2D T-junction was investigated at a bulk Reynolds number Re = 50,000 based on the
mean inlet velocity Uin and the width D of the inflow section. The shape was optimised
to reduce the dissipated power between in- and outlet (ΓO):

minimise J = −
∫

ΓO

(ρ

2
U2

j + p
)

Ui dΓi . (11.13)

Figure 11.8(a) depicts the initial configuration with the main dimensions, L1 = L2 = 3D.
A comparable setup was optimised by Schmidt [137, Section 6.2.4,] for laminar flow at
a Reynolds number of Re = 100. Since the design surface ΓD was confined to no-slip
wall boundaries, ΓO ∩ ΓD = ∅, the sensitivity derivative consists of local contributions
GL alone. The low-Re mesh consisted of 92 × 60 cells in streamline and perpendicular
direction, respectively. Half of the system was modelled numerically assuming a symmetry
boundary condition on the centre-line. A homogeneous velocity U in was imposed on the
inlet with the turbulence variables estimated from Eqn. (9.26). A zero pressure value was
defined at the outflow.

Low-Re Wall Boundary Condition

A low-Re wall boundary condition was declared on the channel walls. The nondimensional
wall distance y+ was of the order of unity. The turbulence field calculated according
to the Wilcox k-ω turbulence model was frozen in the adjoint analysis. Figure 11.8(b)
shows streamlines of the primal velocity field. A recirculation zone in the upper right
corner is responsible for a large portion of the power loss. The adjoint velocity field
obtained for the objective functional (11.13) using the LU(D)DS convection and the ADV3
advection scheme is shown in Figure 11.8(c). The corresponding sensitivity derivative
clearly responds to the recirculation zone as can be observed in Figure 11.8(d). The
gradient G obtained by filtering the sensitivity derivative G was imposed on the geometry
with a step size α. Next to inlet and outlet boundaries, which are not part of the design
surface, the gradient G was faded to zero by multiplication with a linear ramp function
in the intervals −2 < x1/D < −1 and −2 < x2/D < −1.

Figure 11.9 illustrates the evolution of the nondimensional objective functional

J∗ =
J

ρU3
inD

, (11.14)

depending on the nondimensional values of the step size and the filter width,

α∗ = α
ρU3

in

D2
and σ∗ = σ/D . (11.15)

Obviously, the optimisation stopped before the objective functional converged. This was
due to the mesh deformation algorithm (10.17) which, in conjunction with RANS grids of
very high aspect ratios, could not cope with large deformations. For the small step size



154 11. Applications

D

D

D

L1

L
2

(a) Low-Re mesh with main dimensions (b) Velocity streamlines

(c) Adjoint velocity field (d) Sensitivity derivative with velocity streamlines

Figure 11.8.: Initial configuration of T-junction configuration at Re = 50,000 with low-Re
wall boundary conditions
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α∗ = 0.0025, the optimisation was slightly retarded by increasing the filter width as can
be observed in Figure 11.9(a). This behaviour was expected since the filtering operation
reduces the maximum amplitudes of the sensitivity derivatives. For the medium step
size α∗ = 0.005 shown in Figure 11.9(b), the small filter width σ∗ = 0.025 seems to be
too narrow so that it performs slightly worse than σ∗ = 0.05. For the largest step size
α∗ = 0.01, Figure 11.9(c), the small filter width σ∗ = 0.025 is too narrow so that the
optimisation got stuck after two cycles. According to Figure 11.9(d), increasing the step
size α∗ inversely proportionally reduces the number of iterations required to achieve the
same reduction in J∗. It is interpreted as an indication that the step size could still be
increased without a notable influence on the optimisation path. The objective functional
was reduced by approximately 15 per cent. The optimisation stopped before the objective
functional converged. One must bear in mind that due to the mesh deformation also the
approximation error has probably changed during the optimisation process.

The shape evolutions for (α∗ = 0.0025, σ∗ = 0.025) and (α∗ = 0.01, σ∗ = 0.1) are
shown in Figures 11.10(a) and 11.10(b), respectively. The full outline is complemented by
a zoom in on the upper wall and the inner radius. A deflection spoiler developed on the
upper wall which successively moved in the x1 direction. For (α∗ = 0.0025, σ∗ = 0.025),
the spoiler contour is sharper than for the wider filter kernel (α∗ = 0.01, σ∗ = 0.1), which
led to a smoother shape.

The effect of different filter widths σ∗ at a constant step size α∗ = 0.0025 is shown
in Figure 11.11(a). For the wider filter kernels the evolution of the upper wall contour
slightly lags behind the narrow filter curves as observed in the history of the objective
functional, Figure 11.9(a). A rounder spoiler is obtained by the wider filter kernels. In
Figure 11.11(b) the filter width σ∗ is increased with the step size α∗ showing the same
trends. The distribution of the derivative on the inner bend is smooth enough so that the
filter width is of minor influence there.

High-Re Wall Boundary Condition

The same geometry was considered in conjunction with a high-Re boundary condition
imposed on the no-slip walls. The computational mesh consisted of 110 × 30 cells in
streamline and perpendicular direction, cf. Figure 11.12(a). The numerical settings were
inherited from the low-Re simulation. Figure 11.12(b) shows velocity streamlines together
with the sensitivity derivative of the power loss criterion (11.13). Whereas the low-Re case
shows a sign change in the sensitivity map at the end of the inner bend owing to a small
recirculation zone, Figure 11.8(d), the high-Re sensitivities are directed outwards over the
entire inner bend. The response to the recirculation area on the upper wall is less distinct
than in the low-Re case.

Several optimisation runs were conducted varying step size α∗ and filter width σ∗. The
optimisation runs were stopped when the objective functional J∗ could not be reduced
any more. For (α∗ = 0.05, 0.0 < σ∗ < 0.1), cf. Figure 11.13(a), the choice of σ∗ has little
influence on the evolution of the power loss between inlet and outlet. This is attributed to
the smooth distributions of the sensitivity derivatives obtained from the high-Re approach.
According to Figure 11.13(b), the number of optimisation cycles required to converge the
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Figure 11.9.: T-junction at Re = 50,000 with low-Re wall boundary condition; evolution
of power loss J∗



11.2. Optimisation of a 2D T-Junction 157

(a) Design cycles 0, 8, 16 and 24 for (α∗ =
0.0025, σ∗ = 0.025)

(b) Design cycles 0, 3 and 6 for (α∗ = 0.01, σ∗ =
0.1)

Figure 11.10.: T-junction at Re = 50,000 with low-Re wall boundary condition; shape
evolution depending on step size α∗ and filter width σ∗

(a) α∗ = 0.0025; σ∗ variable (b) (α∗ = 0.0025, σ∗ = 0.025); (α∗ =
0.005, σ∗ = 0.05); (α∗ = 0.01, σ∗ = 0.1)

Figure 11.11.: T-junction at Re = 50,000 with low-Re wall boundary condition; final
shapes depending on step size α∗ and filter width σ∗
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objective functional was inversely proportionally linked to the step size 0.025 < α∗ < 0.2.
The objective functional was reduced by approximately 28 per cent.

The final configurations for (α∗ = 0.1; 0 < σ∗ < 0.1) almost coincide, Figure 11.14(a),
as was previously indicated by the optimisation histories of different J∗ for variable σ∗,
Figure 11.13(a). The shape evolution is illustrated in Figure 11.14(b) for (α∗ = σ∗ = 0).
The shape modifications achieved during design cycles 1 to 10 are disproportionally high,
for example on the upper wall, due to larger amplitudes of the sensitivity derivative.
According to Figure 11.14(c), the final shapes obtained at a reduced number of pressure-
correction iterations per design cycle are almost identical.

The design iteration can be regarded as a succession of small boundary shifts, δn =
−αG, applied to the design surface. Primal and dual solutions were re-initialised with the
results of the previous step, which reduces the necessary number of pressure-correction
iterations per design cycle. Instead of accurately resolving the optimisation history of flow
and objective functional, flow and shape can be iterated in the optimisation loop. In the
limit of one outer iteration per design cycle, this approach is known as one-shot or piggy-
back method. The evolution of the objective functional (11.13) obtained with a limited
number of pressure-correction iterations per design cycle is shown in Figure 11.15(a) and
Figure 11.15(b) for (α∗ = 0.05, σ∗ = 0) and (α∗ = 0.1, σ∗ = 0), respectively. In either
case a maximum of 100 cycles per design step results in similar optimisation histories.
A further reduction led to non-smooth curves, however, the final values J∗ are very sim-
ilar independent of the number of pressure-correction cycles. For (α∗ = 0.05, σ∗ = 0),
the number of pressure-correction cycles could be reduced down to 30, whereas approxi-
mately 40 cycles were necessary to achieve convergence for (α∗ = 0.1, σ∗ = 0). Given that
domain boundary and flow do not change topologically, I assume that it is possible to
reduce the number of pressure-correction cycles further if the step size α∗ is reduced. All
optimisation runs started from a converged primal and dual solution since, in parts, the
sensitivity derivatives calculated in the early pressure-correction iterations considerably
differed in amplitude and direction.

Concluding Remarks

It was observed that the rough sensitivity distributions obtained in conjunction with
low-Re wall boundary conditions require a preconditioning before they are applied to the
reference shape. The roughness is expected to be caused by the schemes for the calculation
of surface metrics and the implementation of low-Re wall boundary conditions; it becomes
apparent on curved boundaries with highly-stretched grid cells, cf. Section 9.2. The
filtering technique outlined in Section 10.3 was applied here using various combinations
of filter width and step size. Due to the deficits of the simple mesh-deformation approach
in conjunction with highly stretched cells in the boundary layer, the low-Re optimisation
runs did not reach a local optimum. However, the objective functional value monotonously
decreased until the mesh deformation failed. The optimisation runs conducted with the
high-Re boundary condition allowed for larger deformations, which have reached a point
of zero-slope of the objective functional. The raw sensitivity derivative was found to
be smooth enough to be directly applied to the reference shape. Advection treatments
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(a) Computational mesh (b) Sensitivity derivative with velocity stream-
lines

Figure 11.12.: T-junction at Re = 50,000 with high-Re wall boundary condition; initial
configuration
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(b) α∗ variable; σ∗ = 0

Figure 11.13.: T-junction at Re = 50,000 with high-Re wall boundary condition; evolution
of power loss J∗
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(a) Final shapes for α∗ = 0.1; σ∗ variable (b) Intermediate shapes after n cycles for α∗ =
0.1; σ∗ = 0

(c) Final shapes obtained with variable number of
outer iterations per design cycle; α∗ = 0.1; σ∗ = 0

Figure 11.14.: T-junction at Re = 50,000 with high-Re wall boundary condition; shape
evolution and final shapes
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(b) α∗ = 0.1; σ∗ = 0

Figure 11.15.: T-junction at Re = 50,000 with high-Re wall boundary condition; evolution
of power loss J∗ using a limited number of pressure-correction iterations per
design cycle

ADV1/2 overestimate the advection term in the first cell layer in conjunction with high-Re
wall boundary conditions (cf. Subsection “Advection term”, page 95). This is overcome
by the flux-based scheme ADV3. However, when the Reynolds number and the relative
height of the first cell layer are increased to a higher level, the current implementation
requires a stabilisation to bear the wall-normal source of adjoint momentum induced by
the advection term in the first cell layer in combination with high-Re boundary conditions.

Using a reinitialisation based on the previous optimisation step allowed to limit the
number of pressure-correction cycles per optimisation step, which has accelerated the
optimisation process. The maximum number of pressure-correction steps per design cycle
can be reduced with the step size α. Mind that the flow fields estimated by low- and
high-Re wall boundary conditions differ, which is reflected in the sensitivity derivatives
based on a linearisation about the corresponding flow solution. This particularly affects
areas of flow separation or stagnation, where the high-Re assumption is generally invalid.
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11.3. Optimisation of a 3D Double-Bent Pipe

The geometry of a 3D, double-bent pipe section is shown in Figure 11.16 with its main
dimensions. The boundary shape was optimised to reduce the nondimensional power loss
(11.13) between in- and outflow (ΓO):

J∗ =
J

ρU3
inD

2
. (11.16)

D and Uin denote the pipe diameter and the homogeneous inlet velocity, respectively. As
for the T-junction case, design and objective surface are separate, ΓO ∩ ΓD = ∅, i.e. only
local contributions GL to the sensitivity derivative were considered. The bulk Reynolds
number based on D and Uin was Re = 20,000. The turbulence quantities at the inlet
were defined according to Eqn. (9.26). The LU(D)DS convection scheme was used for
primal and adjoint computations. The adjoint advection term was discretised according
to ADV3. The sensitivity derivative G was filtered and subsequently applied to the initial
boundary shape. A linear ramp function was multiplied to the gradient G, 2D downstream
of the inlet over 1.5D in the downstream direction and 4D upstream of the outlet over
2D in the upstream direction.

Low-Re Wall Boundary Condition

The quasi-structured grid used for the low-Re calculations is shown in Figure 11.16. The
pipe’s cross-section was subdivided into 1625 faces, 70 subdivisions were defined in the
longitudinal direction. The Lien-Leschziner k-ε turbulence model [83] was used for the
low-Re study, freezing the primal turbulence field in the sensitivity analysis. According
to Figure 11.17, the nondimensional wall distance y+ was of the order of unity. Areas of
high shear stress can be identified in the y+ map since the first cell layer had a constant
height. Recirculation or stagnation zones were observed behind the first and the second
bend.

A comparison of different σ∗ along with α∗ = 0.001, Figure 11.18(a), indicates that
the narrow filter kernels led to a steeper descent in the early steps but got stuck earlier
than the wider filter kernels. Wide filter kernels tend to reduce the amplitudes of the
derivative which may retard the optimisation. Local trends in the small length scales
may be eliminated by a wide filter kernel. However, I assume that more distant and
more attractive optima can only be reached if the small length scales in the derivative
are filtered out. Figure 11.18(b) shows the history of the nondimensional power loss J∗

for different step sizes α∗ using a constant filter width σ∗ = 0.2. Primal and adjoint
computations were reinitialised with the solution of the previous design cycle and the
number of pressure-correction cycles per design step was limited to 250. The required
number of optimisation cycles inversely proportionally scales with the step size α∗.

The grey boundary shape, Figure 11.19, outlines the final geometry obtained for (α∗ =
0.002, σ∗ = 0.2) together with the initial geometry plotted in red. Closeups of the first
and the second bend are shown in Figure 11.20, slicing the pipe of optimisation cycles
0, 10 and 40 in black, red and green, respectively. The pipe has widened in large part.
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Figure 11.16.: Double-bent pipe at Re = 20,000 with low-Re wall boundary condition;
surface mesh and dimensions for reference shape
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Figure 11.17.: y+ distribution for double-bent pipe at Re = 20,000 with low-Re wall
boundary condition

On the low-x1 boundary between the elbows the pipe boundary has gradually contracted
in order to reduce the recirculation area. The power loss between inlet and outlet was
reduced by approximately 20 per cent.

High-Re Wall Boundary Condition

The same case was investigated in conjunction with a high-Re boundary condition imposed
on the no-slip walls. The standard k-ε turbulence model [70] was applied freezing the
turbulence field in the adjoint calculation. The cross-section was divided into 300 patches.
The subdivision in the longitudinal direction was taken from the low-Re mesh. The
y+ distribution over the pipe wall, Figure 11.21, qualitatively differs from its low-Re
counterpart, Figure 11.17, due to different flow topologies. The high-Re model was applied
to the entire wall surface, including recirculation or stagnation zones where y+ < 30. The
assumption of the logarithmic law-of-the-wall (7.64) underlying the high-Re boundary
model is generally invalid in such areas. The sensitivity derivative obtained for the initial
configuration is shown in Figure 11.22.

Several optimisation runs were performed with α = 0.2, 0.4 and 0.8, along with σ∗ = 0,
0.025, 0.05, 0.1 and 0.2. According to Figure 11.23, the optimisation runs based on the un-
filtered sensitivity performed best independently of the step size α∗. A comparison of the
optimisation histories for different α∗ shows that the required number of optimisation cy-
cles is roughly inversely proportional to α∗. The final shape obtained for (α∗ = 0.8, σ∗ = 0)
is depicted in Figure 11.24. The deformation is much larger than in the low-Re case. The
boundary shapes of the bends have become smoother, i.e. the local radii have virtually in-
creased. A pronounced bulge has developed upstream of the first bend, cf. Figure 11.24(c)
top left. The effect of the ramp function used to fade out the amplitudes between 2D and
D/2 upstream of the first bend can be seen in Figure 11.24(b). A kink has developed
at the intersection of the elbows, which is attributed to the high rate of change in the
distribution of the sensitivity derivative G, cf. Figure 11.22(b). After the optimisation
run, the predicted power loss was reduced by approximately 44 per cent.
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Figure 11.18.: Double-bent pipe at Re = 20,000 with low-Re wall boundary condition;
evolution of power loss J∗ depending on filter width σ∗ and step size α∗

Concluding Remarks

Several optimisation runs were conducted for the turbulent 3D pipe case using low- and
high-Re wall boundary conditions. The general trends observed in the 2D cases were
confirmed: Whereas the high-Re derivative is sufficiently smooth, it is necessary to filter
the low-Re-based derivative before it is applied to the geometry (cf. concluding remarks
on page 158 and Section 9.2). Compared to the high-Re case, the low-Re optimisation
runs have led to shapes lying closer to the reference configuration. This has already
been observed in the 2D cases in Section 9.2. Different models predict different flow
fields which, in turn, show different sensitivity derivatives. A discrepancy in the primal
separation prediction, for example, leads to very different distributions of the sensitivity
derivative. The convergence (or stagnation) of the objective functional achieved in some of
the optimisation runs may be an indication that a local optimum has been found. However,
the resulting shapes are considered as improved designs rather than strict local optima.
Among the open questions are: (a) It is unclear whether the evolution of irregularities,
such as kinks, avoids a further reduction of the objective functional. Do further local shape
improvements cancel with developing shape deficits such as steepening irregularities? (b)
The filtering is merely an approximation to the so-called “Sobolev gradient” and the
differences have to be studied systematically. (c) The linear ramping applied to the
derivative next to inlet and outlet is no gradient-projection method. Hence, a shape
convergence next to inlet and outlet is not expected. A more elaborate, mathematical
handling of constraints should be pursued in future studies to enforce that inlet and outlet
boundaries remain untouched by the shape optimisation. (d) How does the approximation
error change during the shape evolution and how trustworthy are the RANS models in
combination with high- and low-Re boundary conditions for the current shape?

These aspects are beyond the scope of this study and need to receive particular atten-
tion. However, the shape evolution takes a reasonable direction, reduces the objective
functional mostly monotonously and gives a clear indication how to modify the shape.
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(a) −e3 view

(b) e1 view

(c) 3D view

Figure 11.19.: Double-bent pipe at Re = 20,000 with low-Re wall boundary condition;
final shape (grey with surface mesh) obtained with α∗ = 0.002, σ∗ = 0.2
together with inial shape (red)



11.3. Optimisation of a 3D Double-Bent Pipe 167

(a) first bend (b) second bend

Figure 11.20.: Double-bent pipe at Re = 20,000 with low-Re wall boundary condition;
shape evolution for α∗ = 0.002, σ∗ = 0.2: black – initial, red – cycle 10,
green – cycle 40

(a) front (b) rear

Figure 11.21.: y+ distribution for double-bent pipe at Re = 20,000 with high-Re wall
boundary condition
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(a) 3D view

(b) −e3 view

(c) e1 view

Figure 11.22.: Double-bent pipe at Re = 20,000 with high-Re wall boundary condition;
sensitivity derivative for initial configuration
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(c) α∗ = 0.8; σ∗ variable
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Figure 11.23.: Double-bent pipe at Re = 20,000 with high-Re wall boundary condition;
evolution of power loss J∗ depending on step size α∗ and filter width σ∗
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(a) 3D view

(b) −e3 view

(c) e1 view

Figure 11.24.: Double-bent pipe at Re = 20,000 with high-Re wall boundary condition;
final shape obtained with α∗ = 0.8, σ∗ = 0



12. Outlook and Conclusions

Adjoint Navier–Stokes concepts that allow for an efficient shape optimisation in the face
of many shape parameters were derived and implemented in this study. Whereas adjoint
methods for compressible flow and their discretisation have been a subject of exhaustive
research over the past twenty years, the adjoint discretisation and solution schemes for
viscous, incompressible flow are less represented and described in the literature.

Starting from a continuous adjoint analysis of the incompressible Navier–Stokes prob-
lem, consistent adjoint discretisation schemes for convection (upstream, central, MUSCL-
based QUICK, LUDS and CUI schemes) and diffusion terms were derived from the un-
structured, cell-centred FV discretisation. The Picard iteration used in the primal solver
neglects the advection term which is the second contribution arising from a complete lin-
earisation of the convection term of the momentum equation. In the adjoint approach, a
complete linearisation is necessary and the advection term needs to be discretised. Differ-
ent schemes, ADV0–3, were proposed, discretised and investigated. Based on the primal
discretisation a unified formulation for adjoint high- and low-Re wall boundary models
was developed. This includes the discrete schemes for (a) the adjoint wall boundary con-
dition and (b) the reduced, boundary-based sensitivity equation both of which are a valid,
adjoint-consistent approximation to the continuous adjoint PDE problem.

Adjoining a semi-implicit, segregated pressure-projection scheme requires to construct
a sequence of adjoint or transposed solutions corresponding to the primal, segregated
approach. The primal, SIMPLE-based pressure-projection scheme was adapted to solve
the adjoint problem, wherein the primal iteration was not exactly traversed in reverse.
The method was implemented in parallel in the framework of the unstructured, state-of-
the-art FV method FreSCo+. A user-coding interface allows for a flexible, user-defined
handling of contributions to the adjoint equations that stem from the considered objective
functional. It keeps the adjoint code both versatile and short.

The method was validated against analytical adjoint solutions derived for a Couette flow
problem. It was solved numerically in Cartesian coordinates so that the adjoint convection
terms are non-zero and the corresponding discretisation schemes could be assessed. The
higher-order advection schemes showed the best agreement. The direct-differentiation
method was used to verify the adjoint solver for more complex 2D configurations. Inter-
nal and external problems of turbulent flow were investigated which, depending on the
application, show a fair or good agreement of the sensitivity derivatives obtained from the
adjoint and the direct-differentiation method. The proposed discretisation schemes for the
advection term, ADV0–3, were verified individually in conjunction with low- and high-Re
wall descriptions for the adjoint boundary conditions and the sensitivity equation. The
concepts proposed for interior and exterior declarations of force objectives in the adjoint
method could be verified. The study indicates that the local sensitivity derivative pre-
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dominates over geometric and convective contributions, which are of minor influence for
the investigated configuration.

The adjoint method was introduced to ship wake design. To guide a manual hull re-
design towards an improve wake field, a wake objective functional was derived and applied
to the right-hand side of the adjoint problem. More elaborate wake objective function-
als allowing for a well-founded quantification of the wake quality should be considered
in future studies since the success of the adjoint method depends on the validity of the
considered objective functional. Additionally, the effect of the propulsion should be con-
sidered in the optimisation. The sensitivity distributions, obtained from a differential,
boundary-based expression and low-Re wall boundary conditions for turbulent flow, were
too rough to be directly applied to the reference shape. These oscillations are attributed
to the schemes used for the computation of surface metrics and to the formulation of the
primal low-Re wall boundary condition in combination with curved boundaries next to
highly-stretched boundary-layer cells. An explicit, filtering-based gradient precondition-
ing method was presented and applied in this work. It is first-order equivalent to the
well-known “Sobolev-smoothing”, easy to implement and intuitive to use. Supplemented
by a straight-forward grid deformation approach, a selection of 2D and 3D optimisation
runs were carried out for ducted flows following the direction of the “filtered steepest
descent”. Guided by the adjoint-based sensitivity derivative, the initial shapes were suc-
cessfully improved in a CAD-free environment. The design space is not a-priori limited
and the number of external software tools requiring tailored data interfaces is small. The
shapes obtained indicate how to modify a design or the underlying parametrisation. How-
ever, the handling of geometric design constraints such as “hard points” or “feature lines”
based on the CFD mesh is not straight-forward and requires some further refinement.
The elementary mesh-deformation approach based on a diffusion equation limited the
maximum deformation that could be achieved—particularly in combination with low-Re
RANS grids of high cell aspect-ratios in the boundary layer. In the context of industrial
CFD, the improved shape has to be passed back to the CAD/CAE system to be processed
further.

In future studies the frozen-turbulence approach should be extended by a complete
differentiation including the turbulence variables and the associated PDE. Several terms
arise from a complete differentiation leading to a strong cross-coupling of the adjoint
equations of momentum and turbulence. Many CFD codes solve the turbulence equations
separately so that a complete linearisation of the coupled system is usually unavailable
in the flow solver. Discretisation schemes have to be found for the additional terms and
the cross-coupling must be treated with due care in a segregated approach. To obtain
an efficient and robust adjoint method that calculates the full derivative for turbulent
flow problems and complex geometries, it may be necessary to develop (partially) coupled
solution algorithms. Some optimisation problems require to extend the adjoint system by
additional PDE constraints, for example the VOF or level-set equations for free-surface
flow or the energy equation. Unsteady simulations require to solve the associated adjoint
problem backwards in time. The existing approach must be complemented by an adjoint
time-stepping scheme. Such schemes are very memory-intensive since the primal solution
must be provided in every adjoint time step. Check-pointing schemes [37, 46, 163, 164] can
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be used to trade memory storage for CPU time. A bundle of efficient measures is proposed
by Stück et al. [154]. Simplified approaches proposed by Nadarajah [101] and Nadarajah
et al. [100] may lead to sufficiently accurate results depending on the application at hand.

To exploit the potential of the adjoint sensitivity approach in practical engineering, it
has to be integrated into the CAD/E-based design chain. Tailored data interfaces, cur-
rently being developed in the framework of the FormPro project (Kröger, Stück, and Rung
[80]) are necessary to link the sensitivity information to the underlying shape parametri-
sation, e.g. Soto et al. [151].

The adjoint method implemented during this work can also be used for other optimi-
sation tasks involving a large number of parameters. Among them are topology optimi-
sation, active or passive flow control, goal-oriented error analysis, mesh adaptation and
convergence improvement.
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A. Derivation of Adjoint Navier–Stokes
Equations

A.1. Variation of the Navier–Stokes Equations

Assuming that the fluid density ρ, the viscosity µeff = µ+ µT and the body force density
f are not subject to variations, the local variation of the residual of the incompressible
momentum equations (4.9) reads

δRi = ρ δUj
∂Ui

∂xj

+ ρUj
∂δUi

∂xj

− ∂δπij

∂xj

= 0 in Ω (A.1)

with

δπij = −δp δij + 2µeff δSij and δSij =
1
2

(
∂δUi

∂xj

+
∂δUj

∂xi

)

.

The linearised form of the equation of continuity (4.10) is

δQ = −∂δUi

∂xi

= 0 in Ω . (A.2)

A.2. Integration by Parts

In order to devise the adjoint equations, the derivatives are transferred from the local
variations (δUi, δp) to the adjoint multipliers (Ûi, p̂) through integration by parts:

∫

dΩ
[

Ûi δUj
∂Ui

∂xj

]

=
∮

dΓj

[

Ûi δUj Ui

]

−
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∂

∂xj

(

Ûi δUj

)

Ui

]
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∮
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δUi Uj Ûj

]

−
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δUi Uj
∂Ûj

∂xi

]

, (A.3)

∫
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Ûi Uj
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∮
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Ûi Uj δUi
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Ûi Uj

)

δUi

]

=
∮

dΓj

[

δUi Uj Ûi
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, (A.4)

∫

dΩ
[

Ûi
∂

∂xj

(2µeffSij)
]

=
∮

dΓj

[

Ûi 2µeff δSij − δUi 2µeff Ŝij

]

+
∫

dΩ
[
∂

∂xj

(

2µeff Ŝij δUi

)]

, (A.5)
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∫

dΩ
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Ûi
∂ δp

∂xi

]

=
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Ûj δp
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∫
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B. Advection Formulations ADV2/3

An alternative continuous formulation of the advection term called ADV2 is obtained via
integration by parts. The Cartesian description given in Appendix B.1 is rewritten in a
system of physical cylinder coordinates in Appendix B.2. Formulation ADV2 is compared
against the face-based representation ADV3 derived from the primal discretisation in
Appendix B.3.

B.1. Cartesian Coordinates

After integration by parts of the advection term, the local variation of the Lagrangian
reads

δLL =
∮

dΓj

[(

ρ
[

Ui δUj + δUi Uj

]

+ δp δij − µeff

[
∂δUi

∂xj

+
∂δUj

∂xi

])

Ûi (B.1a)

+
(

−p̂ δij + 2µeff Ŝij

)

δUi

]

(B.1b)

+
∫

dΩ
[(

− ρUj

(

∂Ûj

∂xi
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∂Ûi

∂xj

)

− ∂

∂xj

[

2µeff Ŝij − p̂ δij

])

δUi −
∂Ûj

∂xj

δp

]

(B.1c)

+
∫

ΩO

δLjΩ dΩ +
∫

ΓO

δLjΓ dΓ . (B.1d)

Compared to the formulation ADV1, the underlined terms are new (B.1a) or different
(B.1c). The adjoint field equations in combination with the ADV2 formulation [e.g. 149,
110, 170, 171] are

−2 ρUj Ŝij =
∂

∂xj

(

2µeff Ŝij − p̂ δij

)

in Ω \ ΩO . (B.2)

The additional boundary term in (B.1a), ρ δUjUinj, arising from integration by parts of the
advection term has to be considered in the derivation of the adjoint boundary conditions
for the ADV2 formulation. The corresponding boundary conditions are listed in Table
B.1. The adjoint gradient equation (6.39) is independent of the advection treatment and
holds for ADV0–3.

B.2. Physical Cylinder Coordinates

Integration by parts of the advection term leads to the left-hand side contribution, −ρ∇Û ·
U , to the adjoint momentum equations. The corresponding formulations for constant
density and viscosity transformed into physical cylinder coordinates are:
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Table B.1.: Summary of adjoint boundary conditions for advection scheme ADV2

boundary objective Û p̂

no-slip wall 6⊂ ΓO – Û = 0 p̂,n = 0

no-slip wall ⊂ ΓO force Û = −d∗ p̂,n = 0

inflow 6⊂ ΓO – Û = 0 p̂,n = 0

inflow ⊂ ΓO power loss Û = U p̂,n = 0

symmetry – Ûn = Û t,n = 0 p̂,n = 0

prs. outflow 6⊂ ΓO – ρUnÛi + ρUjÛjni + µeff
∂Ûi

∂n
= p̂ni

prs. outflow ⊂ ΓO power loss ρUnÛi + ρUjÛjni + µeff
∂Ûi

∂n
− ρ

2
U2
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Circumferential Adjoint Momentum Equation (ẽϕ direction):
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r

∂ϕ
+ Uϕ∂Û
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1
r2

∂2Ûϕ

∂ϕ2
+
∂2Ûϕ

∂z2
+

2
r2

∂Û r

∂ϕ

)

(B.4)

Axial Adjoint Momentum Equation (ẽz direction):

−ρ
(

U r ∂Û
z

∂r
+
Uϕ

r

∂Û z

∂ϕ
+ U z ∂Û

z

∂z

)

−ρ
(

U r ∂Û
r

∂z
+ Uϕ∂Û

ϕ

∂z
+ U z ∂Û

z

∂z

)

=

−∂p̂
∂z

+ µ

(

∂2Û z

∂r2
+

1
r

∂Û z

∂r
+

1
r2

∂2Û z

∂ϕ2
+
∂2Û z

∂z2

)

(B.5)
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The advection terms are underlined in the above equations. For the problem sketched in
Figure 9.1, Eqns. (B.3) through (B.5) reduce to

∂p̂

∂r
= ρUϕ

(

− Û
ϕ

r
+
∂Ûϕ

∂r

)

, (B.6)

0 =
∂2Ûϕ

∂r2
+

1
r

∂Ûϕ

∂r
− Ûϕ

r2
. (B.7)

For the adjoint boundary conditions (9.18) and (9.19), the analytic solution of the problem
(B.6) and (B.7) is obtained by integration:

Ûϕ(r) = α̂

(
r

r2
O

− 1
r

)

(B.8)

p̂(r) = p̂(rI) + ραα̂

[

2 ln
(
r

rI

)

+
(rI

r

)2

− 1
]

, (B.9)

with
α̂ =

rI

(rI/rO)2 − 1
. (B.10)

Neglecting the advection terms (ADV0) leads to the solution

Ûϕ(r) = α̂

(
r

r2
O

− 1
r

)

(B.11)

p̂(r) = p̂(rI)− ραα̂
[

1
2
r2 − r2

I

r2
O

−
([

rI

rO

]2

+ 1

)

ln
(
r

rI

)

−r
2
I

2

(
1
r2
− 1
r2

I

)]

. (B.12)

Note that only the radial equation is affected by the advection treatment, leading to a
different adjoint pressure distribution in radial direction, compare Eqns. (9.23), (B.9) and
(B.12).

B.3. Comparison of Advection Schemes

Advection formulation ADV3 is a face-based scheme derived from the primal discretisation
of the convective flux. According to Eqn. (8.27), the adjoint face fluxes are

F̂ a ≈ −ρ λ̂ UF ·
(

ÛN − ÛP

)

∆Γ . (B.13)

For the Cartesian grid with equidistant cell spacings (∆x,∆y) depicted in Figure B.3,
the advective net flux based on advection formulation ADV3 and CDS face interpolation
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reads:

1
∆Ω

∑

e,w,n,s

F̂ a ≈ ρ

∆x∆y

[(

F̂ a
y

∣
∣
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∣
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)
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(
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x

∣
∣
e

+ F̂ a
x

∣
∣
w

)

ex

]

≈ ρ

4∆y

[

−(UN + UP ) · (ÛN − ÛP ) + (US + UP ) · (ÛS − ÛP )
]

ey +

ρ

4∆x

[

−(UE + UP ) · (ÛE − ÛP ) + (UW + UP ) · (ÛW − ÛP )
]

ex

≈ ρ

2

[

−UN · ÛN − US · ÛS

2∆y
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UN − US

2∆y
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ÛN − ÛS

2∆y
· UP

]

ey +

ρ

2

[

−UE · ÛE − UW · ÛW

2∆x
+
UE − UW

2∆x
· ÛP −

ÛE − ÛW

2∆x
· UP

]

ex

≈ ρ

2

[

−∇
(

U · Û
)

+∇U · Û −∇Û · U
]

≈ −ρ∇Û · U . (B.14)

The final description, Eqn. (B.14), is equivalent to the formulation ADV2, cf. Eqn. (8.22).
That is, the formulations ADV2 and ADV3 are equivalent for a Cartesian, equidistant
grid. The equivalence (B.14) is not generally true on unstructured grids; however, the
analysis reveals that ADV2 and ADV3 are closely related.

P

N

S

EW

n

s

ew

∆x

∆
y

ex

e y

Figure B.1.: Cartesian grid with compass notation



C. Differential Geometry

It is assumed that a tangent surface perpendicular to the outer normal n exists in every
point x on Γ. The tangent surface can be extended into the normal direction to form a
narrow band enwrapping the boundary Γ, cf. Figure C.1. This object is often referred to as
“tubular neighbourhood” of Γ. The band width has to be such that the boundary normals
do not intersect. Let f and V denote a function and a vector field existing in the tubular
neighbourhood of Γ. Given that both f and V are C1-steady, the following operations are
the orthogonal projections of their Cartesian counterparts onto Γ [c.f. 57, 18, 145, 144, 137]

• the tangential gradient

∇Γf = T · ∇f or
∂f

∂xΓ
i

= Tij
∂f

∂xj

; (C.1)

• the tangential divergence

∇Γ · V = T : ∇V or
∂Vj

∂xΓ
j

= Tij
∂Vi

∂xj

; (C.2)

• the Laplace-Beltrami operator obtained by successive application of (C.1) and
(C.2) to a C2-continuous function f :

∇2
Γf = ∇Γ · (∇Γf) or

∂2f

∂xΓ
j

2 =
∂

∂xΓ
j

(
∂f

∂xΓ
j

)

; (C.3)

with the projection tensor

T = I − nn or Tij = δij − ninj . (C.4)

fluid domain Ω

tubular extension

design surface ΓD ⊂ Γ

solid 6⊂ Ω
n

Figure C.1.: Tubular neighbourhood (dashed) of Γ
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Mind that the projections are declared in 3D Cartesian coordinates. Based on the oper-
ations above, the local curvature of the boundary is defined as the surface divergence of
the unit normal

κ = ∇Γ · n on Γ . (C.5)

When a perturbation V = δx is applied to ΓD and its neighbourhood, the corresponding
variation of the unit normal lies in the tangential plane and can be calculated from

δ(n) = −(∇Γ δx) · n or δ(nj) = − ∂

∂xΓ
j

(δxi) ni on ΓD . (C.6)



D. Two-Step Adjoint Pressure-Correction
Scheme

A two-fold pressure-correction scheme for the adjoint system is suggested that accounts
for the advection term (ADV1) in the adjoint momentum equations. To set up the adjoint
pressure-correction cycle, Eqn. (8.45) is artificially extended:

Û ′
i ← Û ′

i + Û ′′
i and p̂′ ← p̂′ + p̂′′ . (D.1)

Substituting (D.1) into Eqn. (8.45) immediately leads to

Û ′
i + Û ′′

i = −∆Ω

ÂP

[
∂

∂xi

(

p̂′ + p̂′′

)

+ ρ
∂Uj

∂xi

(

Û ′
j + Û ′′

j

)]

, (D.2)

wherein the terms overlined once (twice) are treated in the first (second) pressure-correction
cycle. Continuity is postulated for the adjoint velocity field corrected twice

0 =
∂

∂xi

[

Û∗
i + Û ′

i + Û ′′
i

]

. (D.3)

In the first sweep the adjoint advection terms depending on Û ′
i are neglected by solving

0 =
∂

∂xi

[

Û∗
i + Û ′

i

]

(D.4)

with

Û ′
i = −∆Ω

ÂP

[
∂p̂′

∂xi

]

. (D.5)

It leads to the adjoint counter-part to the primal SIMPLE algorithm:

∂

∂xi

[
∆Ω

ÂP

(
∂p̂′

∂xi

)]

=
∂Û∗

i

∂xi

. (D.6)

Subsequently the velocity and the fluxes are updated using (8.47).
The second sweep equates the remaining terms of Eqns. (D.2) and (D.3) overlined

twice

0 =
∂

∂xi

(

Û ′′
i

)

. (D.7)

This time the advection contributions depending on Û ′′
i are neglected, treating the terms

in Eqn. (8.45) from sweep 1 (Û ′
i) in an explicit manner

∂

∂xi

[
∆Ω

ÂP

∂p̂′′

∂xi

]

= − ∂

∂xi

[

ρ
∆Ω

ÂP

∂Uj

∂xi

Û ′
j

]

. (D.8)
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Accordingly, the velocity correction in the second loop is

Û ′′
i = −∆Ω

ÂP

[
∂p̂′′

∂xi

+ ρ Û ′
j

∂Uj

∂xi

]

. (D.9)

A comparison of expression (D.9) against the adjoint pressure equation (8.40a) reveals
that the influence of the advection term is considered in sweep 2 of the modified SIMPLE
algorithm.
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