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Purpose: Key performance indicators (KPIs) are an essential management tool. Real-
time KPIs for production and logistics form the basis for flexible and adaptive pro-
duction systems. These indicators unfold their full potential if they are seamlessly 
integrated into the “Digital Twin” of a company for data analytics. 

Methodology: We apply the Design Science Research Methodology for Information 
Systems Research for deriving a digital twin architecture. 

Findings: Research in the field of digital twins is at an early state, where the main 
objective is to find new applications for this technology. The majority of digital twin 
applications relate to the fields of manufacturing. Finally, it became apparent that 
existing architectures are too generic for usage in logistics. 

Originality: The approach presented is an affordable solution for stakeholders to 
start with a digital transformation, based on standards and therefore highly technol-
ogy-independent. The combined use of a lambda architecture with a semantic layer 
for flexible KPI definition is a special case.  
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 Introduction 

Every day, logistics generates a vast amount of data, which is mainly gen-

erated by controlling and monitoring enormous flows of goods (Jeske, Grü-

ner and Weiß 2014, p. 9). The data generated in this way holds considerable 

potential for optimization. A central challenge is the intelligent use of data 

(Spangenberg, et al., 2017, p. 44). The value of data is not measured by the 

amount of data collected, but by the applications made possible by the 

data. For this purpose, the collected data must be prepared in such a way 

that it can form the basis for optimization measures. 

Making use of such data requires a substantial and valid data basis. Data 

collection, for example, is no longer a particular challenge due to increas-

ingly improved and cheaper sensor technology. What is essential, howev-

er, is how this data is evaluated and how this evaluated data contributes to 

improving the specific process. Another important aspect is the processing 

time required to evaluate the collected data. The processing of large 

amounts of data, such as that generated by IoT (Internet of Things) appli-

cations, requires a particular framework in order to evaluate these enor-

mous amounts of data (Mishra, Lin and Chang 2014, p. 124). Enterprises 

have to cope with an ever-increasing amount of data, which be-comes in-

creasingly more efficient with the use of big data frameworks (Gupta, et al. 

2017, p. 9). 

Hence, it is generally no coincidence that the field of big data analytics 

plays such an important role in logistics. Logistics, with its cross-sectional 

function, is a key success factor, making big data analytics increasingly a 

strategic tool (Spangenberg, et al., 2017, p. 44; Hazen, et al. 2016, p. 592). 

The determination of key performance indicators (KPIs) is an essential 
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management tool that allows a variety of different evaluations and anal-

yses (Chae 2009, p. 423). This form of data processing and data visualization 

is made possible by the digital representation of physical assets in the form 

of a digital twin. 

Particularly in logistics, the use of real-time data is an important instru-

ment for visualizing events immediately (Park et al. 2014, 5). However, an 

industrial application of digital twin frameworks can be found mainly in the 

context of product management, shop floor and production management 

(Zhuong, et al. 2018, p. 1153; Qi, et al. 2018, p. 238). In addition, Hopkins and 

Hawking point out that there is a lack of real life use cases in logistics for 

both IoT applications and big data analytics (Hopkins and Hawking 2018, p. 

579). 

Motivated by these aspects, the approach chosen in this paper is to develop 

a data processing architecture that is tailored to the needs of logistics in 

particular. The architecture presented in this article is essentially based on 

IoT applications and big data analytics and therefore enables the evalua-

tion of large amounts of data and the generation of user-defined KPIs in 

real-time. The digital twin is thus an essential component of these architec-

tures, as it enables an extensive exchange of information (Mičieta, Gašo and 

Krajčovič, 2014 cited in Furmann, Furmannová and Więcek, 2017, p. 208). 
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 Research Design 

The structure of this paper and the approach to the development of a digi-

tal twin architecture are based on the Design Science Research Methodol-

ogy (DSRM) for Information Systems Research according to Peffers et al. 

(2007). This methodology is structured into six different steps and begins 

with a problem-centered approach that identifies and motivates a prob-

lem. In the second step, objectives of the solution are presented, in which 

the necessary solution approaches are determined. Based on steps one and 

two, a central artifact is designed and developed in step three. The fourth 

step is the demonstration of the artifact in a specific context. Steps five and 

Figure 1: The DSRM for the development of a digital twin architecture in lo-
gistics based on Peffers et al. 2007 
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six evaluate and finally communicate the solution. They represent evalua-

tion and communication, and are used for process iterations, which in turn 

influence the structure of the central artifact (Peffers, et al. 2007, pp. 12-14). 

As shown in Figure 1, the sixth step of this paper is excluded because com-

munication has not yet taken place. 

 State of the Art of Real-Time Data Processing in 
Logistics 

Following the DSRM by Peffers et al., the problem identification presented 

in chapter 1, according to which digital twins are mainly found in the area 

of manufacturing, is the motivation for considering this technology in the 

context of logistics. It is also about the question whether current architec-

tures are suitable for an application in the field of logistics. 

3.1 Internet of Things and Big Data in Logistics 

Digitalization and the associated digital transformation of processes affect 

almost all areas of the economy and industry (Kersten, et al., 2017, p. 8). For 

its implementation new technological concepts are needed, which primar-

ily relate to data management and analytics. These include comprehensive 

sensor technology, which serves as a data source for monitoring and im-

provement, as well as predictive analyses and artificial intelligence, which 

form the basis for the optimization of logistics processes (Kersten, et al., 

2017, p. 12). The core technologies are therefore the realization of extensive 

sensor technologies and the development of algorithms capable of pro-

cessing large amounts of data. IoT and Big Data technologies are proving to 

be the most promising way to process large amounts of data in real-time 

(Malek, et al., 2017, p. 429). The ability to extract already processed raw 
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data in the format of KPIs from running processes and to visualize them in 

real-time will bring fundamental improvements in the area of data manage-

ment. This is especially true in the field of logistics, where many data sets 

are generated (Wang, et al, 2016, p. 104). 

IoT applications and Big Data analysis in combination form a considerable 

potential for various applications in the field of data management. In gen-

eral, IoT refers to the vision of a continuous networking of objects so that 

these objects can communicate with each other and with their environ-

ment (Bousonville 2017, p. 25). In this context, IoT refers to a network of 

sensors by which data can be obtained from various processes (Hopkins 

and Hawking 2018, p. 576-578). IoT applications thus form the basis for 

comprehensive data generation. The number of data collected is substan-

tial, depending on the area of application. However, data collection is only 

the first step.  

At this point, it is still completely unclear what value the generated data has 

for the processes from which it was collected. This means that data from 

different sources must be merged in order to be processed further, which 

requires Big Data analysis (Bousonville 2017, p. 25). The term Big Data can 

essentially be described with the 4 Vs that stand for Volume, Velocity, Vari-

ety, Value (Dijcks 2014, pp. 3-4). Value is a particularly im-portant parame-

ter in this context, since the analysis of large amounts of data must focus 

on the aspect of generating only data of relevance (Dijcks 2014, p. 4; Bou-

sonville 2017, p. 26). The combination of IoT applications and big data ana-

lytics is done with architectures that enable end-to-end data management 

from data collection through data preparation up to data visualization. 
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Such architectures provide components for three stages (Malek, et al., 

2017, p. 431): Data acquisition, data processing and data visualization. 

This becomes more obvious with the consideration of an exemplary IoT ar-

chitecture in Figure 2 (ISO/IEC 2016, p. 41). It shows the Inside Domain Func-

tions of an IoT architecture, which was developed for the definition of an 

IoT Reference. The lowest level refers to the Physical Entity Domain, which 

describes the physical asset under consideration. The next level covers the 

Sensing and Controlling Domain, which in relation to Malek et al. repre-

sents the level of data acquisition. The data processing level is divided into 

the three domains Operation and Management, Application Service, IoT Re-

source and Interchange. This level contains the essential analysis functions 

for real-time data processing. The last level shows the user domain, which 

enables data visualization. However, a more detailed look reveals that the 

basics for an exact semantic description of systems is missing, as it is spe-

cifically necessary for the area of logistics. 

Figure 2: Exemplary IoT architecture according to (ISO/IEC 2016, p. 41) 
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3.2 Digital Twins in Logistics 

The continuous development in the field of big data analytics and sensor 

technologies and the associated progress in the field of IoT technologies 

finally led to the advancement in digital twins (Tao, et al., 2019, p. 2405). 

With these platform architectures, the collected data can be processed and 

visualized in real-time. They provide a technical framework on which con-

crete industrial applications can be developed. Nevertheless, it is evident 

that concrete use cases for the implementation of such architectures are 

rarely found in logistics, although the implementation of IoT technologies 

in logistics offers considerable additional value (Hopkins and Hawking 

2017, p. 579). If logistics objects are equipped with a comprehensive sensor 

system, a digital image of the respective logistics objects is created, a so-

called digital twin. More precisely, a digital twin is the digital representation 

of a physical asset (Wohlfeld 2019, p. 65). Digital twins enable the connec-

tion between the physical and digital world, which must be based on a com-

plete database (Tao, et al., 2019, p. 2405; Wohlfeld 2019, p. 65). 

A digital twin is far more than the digital representation of a physical asset. 

A digital twin represents a comprehensive physical and functional depic-

tion of an asset that provides all the information necessary to process it 

throughout its lifecycle. (Boschert and Rosen, 2016, p. 59). The exact defini-

tion of a digital twin depends on the integration level. A distinction must be 

made between a digital model, a digital shadow and a digital twin. The core 

of the consideration is in all cases a physical and a digital object. In a digital 

model, there is only a manual data flow between the physical and the digi-

tal object. A change in the physical object has no effect on the digital object 

and vice versa. In a digital shadow, there is an automatic data flow in at 
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least one direction, whereby the change of the physical object leads to a 

change of the digital object. However, this does not apply to the reverse 

case. In a digital twin, the data flow between the two objects is automatic. 

Thus, a change to the physical object leads directly to a change to the digi-

tal object and vice versa. (Kitzinger et al. 2018, p. 1017). 

The use of digital twins enables real-time communication between assets 

and different systems. With regard to logistics, data collection alone does 

not represent a major challenge. The decisive factor here is how this data 

must be further processed in order to offer real added value. In this con-

text, the added value is created with the help of KPIs tailored precisely to 

the respective application. Depending on the sensors used, different KPIs 

can be determined from the same data sources in real-time, exactly as re-

quired for the respective process. This technology thus offers consider-able 

potential for logistics and contributes to targeted decision-making (Wang 

et al. 2016, p. 99). 

3.3 Applicability of Lambda Architecture in Logistics Sys-
tems 

The Industrial Internet of Thing (IIOT) produces massive quantities of sen-

sor data, which arrives in a streaming fashion. The lambda architecture is 

an efficient big data solution for generic, scalable and fault-tolerant data 

processing (Gröger, C. 2018). 

In the context of IoT data processing, two layers of the lambda architecture 

consume incoming data simultaneously. The batch layer enables time-con-

suming analyses on stored raw data, therefore the results are provided to 

the serving layer and can be consumed by the users. Using a distributed 

storage topology, the vast amount of sensor data is stored in the batch 
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layer efficiently. In the meanwhile, the speed layer enables real-time anal-

ysis of the incoming data streams. 

Because of the limitation of computational resources, it is often impossi-

ble to load whole datasets at once and analyzing them with classical ma-

chine learning models. On the contrary, visiting each instance of the data 

stream only once and analyzing it with either an adaptive online model or 

a robust batch model provides the chance to get fresh knowledge from data 

streams in time, which is of vital importance for IoT data analysis applica-

tions. 

3.4 Research Gap on Digital Twin Architectures in Logis-
tics 

As already pointed out at the beginning of this article, the majority of pub-

lications on digital twins relate to the area of shop floor and production 

management (Zhuong, et al. 2018, p. 1153; Qi, et al. 2018, p. 238). Kitzinger 

et al. (2018) offer a comprehensive literature analysis on this topic. It shows 

that more than half of the publications on the subject of digital twin initially 

describe basic concepts only. Just a quarter of the publications refer to con-

crete use cases, but most of them are in the area of simulation, product 

lifecycle management and manufacturing in general (Kitzinger et al. 2018, 

pp. 1018-1020). 

In the context of logistics, Hopkins and Hawking contribute to the applica-

tion of IoT and Big Data Analytics in logistics. This contribution is based on 

a literature review on these topics. The result of this investigation is a lack 

of concrete use cases of both topics, from which the claim is derived to 

close the gap between theory and logistics practice. Finally, a Big Data 

Framework is examined using a case study approach. However, this study 
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does not explicitly focus on digital twins, but on the influence of IoT and Big 

Data on various problems in transport logistics (Hopkins and Hawking 

2018). By looking at existing reference architectures, it also becomes appar-

ent that these are too generic to be used in logistics. Furthermore, a func-

tionality to consider a semantic description of the systems to be considered 

is missing. 

Thus, research in the field of digital twins is at an early state, where the main 

objective is to find new applications for this technology (Negri, et al. 2017 

p. 946). Therefore, this paper makes a contribution to the use of digital twin 

architectures in logistics. It shows how a digital twin architecture can be set 

up to achieve a seamless integration of logistics systems. 

 A Digital Twin Architecture for Logistics 

Considering Big Data Analytics in logistics as well as existing architectures, 

a digital twin architecture for logistics is now being developed in the third 

step of the DSRM according to Peffers et al. Therefore, this architecture 

forms the central artifact. Figure 3 shows a real-time IoT data processing 

and analyzing platform with a lambda architecture, which aims to provide 

a scalable and powerful infrastructure for IoT data acquisition, processing 

and visualization. As an IoT solution for logistics, it is flexible and industrial-

application-oriented. The architecture is composed of four layers, as de-

scribed in detail in the next sections. It is a digital twin architecture with an 

optional data acquisition layer. The digital twin architecture itself has lay-

ers for data visualization, data processing and a semantic layer for provid-

ing the overall system model and data integration. These layers are used to 
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enrich, integrate and process the data from the sensors to values that are 

finally visualized in real-time. 

Figure 3: Lambda architecture for real-time IoT analytics in logistics 

The implementation of this lambda architecture was realized with a modi-

fied SMACK (Spark, Mesos, Akka, Cassandra and Kafka) stack, which is a 

proven distributed big data stack for streaming data processing. The fol-

lowing sections describe how the individual layers of this infrastructure op-

erate. Furthermore, it is shown which software tools were used to imple-

ment these layers and why these software components are best suited for 

this layer. 
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4.1 Data Acquisition 

With regard to data acquisition, the architecture described here is sensor-

independent. Therefore, the description of data collection in this article is 

a secondary aspect. The selection of a sensor system ultimately decides on 

the limitation of the possible analyses, since these can only be as good as 

the sensor system itself. For data acquisition it is useful to select a micro-

controller, which can to hold a multitude of different sensors. A decisive as-

pect in the selection of these modules is the costs. It is important to empha-

size that even with a simple sensor system the most diverse evaluations are 

possible. When such microcontrollers and sensors are used, it must always 

be ensured that they are also suitable for industrial applications. They must 

be resistant to vibrations and temperature fluctuations. 

4.2 Data Processing 

The architecture shown in Figure 3 uses a modified SMACK stack to per-

form real-time and batch KPI analysis such as shock detection, indoor lo-

calization, and usage analysis. Unlike the classic SMACK stack, Apache Akka 

has been replaced by Apache Nifi, which provides similar features with a 

more straightforward structure. In addition, several backend functions 

have been implemented with the Java Spring Boot Framework. 

The sensor data is transferred to the infrastructure via the microcontroller. 

These raw data arrive in the MQTT data broker Mosquitto. There the raw 

data is pre-processed and distributed to different target units. Kafka trans-

forms the data streams in the overall system and thus forms a distributed 

data processing platform that enables real-time data stream processing 

with high throughput. Streaming data is also stored in a Cassandra data-

base, an extensive NoSQL database, for batch analysis. Spark is used as a 
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real-time data analysis engine where the data stream is analyzed in near 

real-time using the native MLlib machine learning library. After backend 

processing, the raw data stream and analysis results are visualized on the 

web frontend. 

Data processing is used in industrial applications to generate the KPIs re-

quired for the respective process in real-time. The definition, calculation 

and visualization of KPIs for a specific application is, therefore, the central 

analysis function of a digital twin system. The combination of lambda ar-

chitecture and digital twin enables powerful and scalable KPI calculations 

in real-time. The KPIs generated by this kind of architecture enables com-

panies to quickly determine the condition of their assets. Three steps are 

required to define and store a new KPI function for a specific scenario: 

1. Implementation of the KPI function 

2. Implementation of KPI visualization 

3. Adding a semantic description to an ontology 

The KPI functions are calculated with statistical and machine learning mod-

els in batch or real-time. A distinction must be made between whether it is 

really necessary to generate a KPI in real-time, or not. In general, each KPI 

function is visualized on the frontend, allowing the user to monitor all rele-

vant indicators. Thus, it makes sense to build the frontend of such an archi-

tecture component-based. This means that each KPI function is organized 

as an isolated component, which makes it much easier to implement new 

KPIs into the architecture. The components communicate with the 

backend via a REST API. The real-time KPIs are visualized dynamically from 

the streaming data. After the implementation of a new KPI function and the 

visualization of this indicator, the relevant physical objects as well as the 



                   Digital Twin for Real Time Data Processing in Logistics                  17 

 

analysis functions are described in the ontology within the semantic layer. 

The concrete advantage here is the standard semantic annotation in an 

overall model. 

4.3 Data Visualization 

In addition to data processing, data visualization is another important com-

ponent, since end users have access to the processed data here. KPIs and 

the digital description of physical objects are visualized on the frontend. Fi-

nally, the optimization options can be identified on the basis of the data 

visualized in the frontend. For example, Angular is used to create a compo-

nent-based Web interface. This also enables flexible extensibility of the 

functions for the frontend. The raw data and analysis results are transferred 

to the frontend in the data stream and displayed dynamically so that the 

user can monitor the systems according to the real-time conditions. In this 

context, it is useful to display the key figures and graphical evaluations on 

a mobile device, since these are particularly suitable for monitoring run-

ning processes. A large number of different KPIs that are relevant for an ap-

plication in the logistics context can be displayed on the frontend or on the 

user interface. 

4.4 Semantic Layer for Digital Twins in Logistics 

The introduction of digital twins faces difficulties due to a lack of semantic 

interoperability between architectures, standards and ontologies (Datta 

2016, p. 1). A digital twin needs a detailed model of its physical counterpart 

and its relevant environment. This can be a business-oriented semantic 

model to provide an integrated view of all relevant units in detail, based on 

the use and extension of standard ontologies. This includes, for example, 

the relevant assets of the company for which a digital twin is defined and 
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the microcontrollers and sensors associated with those assets. For exam-

ple, the heterogeneity of the various sensors used is managed with a stand-

ard sensor ontology such as W3C SSN (Haller, et al., 2017). New sensors and 

new assets can be easily connected and configured by instantiating ontol-

ogy concepts. 

The semantic layer of a digital architecture mainly consist of software com-

ponents and ontologies in a RDF format. The software components are pri-

marily Triple Store and Reasoner. These ontologies are stored in the Triple 

Store and are used by semantic SPARQL queries executed by the Reasoner. 

To keep license costs low, open source software can be used, such as the 

free open source Jena Framework (Apache Software Foundation 2019), 

which can serve as the basis for the implementation of a se-mantic layer. 

The composed ontology is a structured semantic model of all relevant en-

tities such as IoT devices, assets and their relationships. The top level of the 

ontology architecture describes the digital twin and its analyses. The com-

pany and its assets follow in the next ontology layer. To support the digital 

twin with values, IoT devices connected to assets are described in the low-

est ontology layer. 

4.5 Research Progress by the Presented Architecture 

The concept of a digital twin architecture is a very flexible and cost-effective 

IoT solution. In order to become flexible, analytical modules with logic and 

display functionality are semantically combined in a lambda architecture. 

For each KPI function on the frontend, there is a corresponding semantic 

description in the semantic layer. In the Triple Store, not only the digital 

description of physical objects is stored, but also respective services of the 
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object, for example the machine learning model used for this object and the 

relevant sensor types. Furthermore, the semantic model can be easily up-

dated when changes are made to sensors or when machine learning mod-

els are updated. 

Another aspect is the use of modular micro services. The analysis functions 

of digital twin architecture can be implemented as modular micro-services, 

with semantic annotation. The analysis functions and frontend services are 

fully customizable. For changing sensors or analysis models, the micro-

services can be easily extended by adapting semantic annotations and 

function changes. Also a component-based user interface with Angular has 

been implemented for flexible customization. For installation, the entire 

application is packaged in docker images so that it can be used on different 

platforms at any time. 

The large data tools used for the architecture are flexibly scalable. As a large 

data analysis solution for industrial applications, a digital twin architecture 

is suitable for various scenarios and applications. Depending on the type 

and number of sensors, the complexity of the analysis models and the avail-

ability of computing resources, the performance of a digital twin architec-

ture can be adapted to the respective application area. By using a combi-

nation of these distributed large data tools, a certain fault tolerance is en-

sured by storing computing information redundantly over different compu-

ting nodes. This ensures that the data is not lost in the event of a system 

failure. Communication between the components is usually implemented 

either with the REST API or with specific connectors, which are also easily 

expandable. 
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The flexibility of this architecture is further demonstrated by its independ-

ence from the sensor technology used. The specific sensor types can vary 

from user to user. The metadata of sensors and analysis functions are 

stored and linked in the semantic layer. The Data Broker receives all data 

and its metadata in JSON format, so that further processing and analysis is 

planned on the basis of metadata and information from the semantic layer. 

 Application Scenario of the Digital Twin Archi-
tecture for Real-Time Data Processing Based on 
Artificial Intelligence 

In order to demonstrate the framework presented in section 4, RIOTANA 

was developed in the context of logistics, which contains all described 

properties of the digital twin architecture presented here. According to the 

DSRM by Peffers et al., in chapter 5 the implementation and demonstration 

of the artifact, the digital twin architecture developed here, is realized. RI-

OTANA stands for real-time Internet of Things analytics and represents a 

digital twin architecture with which KPIs can be updated in real-time. 

In intralogistics it is possible to transform industrial trucks into a virtual as-

set with the help of comparatively inexpensive sensor technology. Hence, 

analyses can be carried out with which related internal processes can be 

fundamentally optimized. With RIOTANA, a comprehensive forklift control 

system can be implemented without having to access the elec-tronics of 

the industrial trucks. Based on discussions with stakeholders and the anal-

ysis of existing forklift control systems, a comprehensive system for con-

trolling forklift fleets was developed. The modular structure of the architec-

ture makes changes easy to implement, as the mathematical calculations 
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implemented in the architecture can be adapted to new application condi-

tions and new sensors. The sensor modules collect data on position, accel-

eration and localization, for example. These different data types are 

merged by the RIOTANA architecture, processed in real-time and displayed 

on a web frontend. 

Already with these three sensor types in combination, various analyses are 

possible, which offer a complete overview of the running processes. This 

includes the current workload, the current location as well as detected 

shocks and collisions. Accordingly, an entire forklift fleet can be equipped 

with such sensors, which in turn allows conclusions to be drawn about the 

overall effectiveness of this fleet. 

Figure 4 shows a section of the RIOTANA user interface during a field test. 

This field test was particularly concerned with a test of the implemented 

machine learning algorithms for the detection of shocks, as this is an im-

portant KPI for a large number of industrial scenarios that must be gener-

ated in real-time. Especially this indicator is regarded as a classification 

problem, for which a K-Nearest Neighborhoods (KNNs) model is used. This 

is done by collecting time series data from motion sensors attached to the 

devices. For this purpose, a sliding window is transferred to the time series, 
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whereby each window is regarded as a pattern. Shock patterns are classi-

fied on the basis of standard patterns, allowing each incoming pattern to 

be classified in real-time. 

Figure 4: The RIOTANA user interface during a field test 

Using the sensor modules RIOTANA can be integrated into existing pro-

cesses as a "retrofitting solution". By using cheap sensor technology, pre-

viously "non-intelligent" objects can become virtual assets that are availa-

ble for a variety of analyses and can be used to optimize processes. In addi-

tion, the use of the sensor modules is optional. RIOTANA can also be inte-
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grated into processes in which data are already collected but not yet eval-

uated. The application of such architectures is conceivable on the basis of 

digital platforms that operate according to the "as-a-service" principle 

(Otto, et al. 2019, p. 115). 

 Conclusion and Future Work 

In this paper a digital twin architecture was presented, which enables the 

analysis and processing of large amounts of data in real-time on the basis 

of IoT applications and big data analytics. It was also shown that the reali-

zation of such architectures can be realized with open source software 

components (Holtkamp 2019, p. 10). The special feature is the description 

of a digital twin architecture with reference to a concrete application in lo-

gistics. It is exactly this practical relevance that presents a particular chal-

lenge in the further development of this architecture. This is expressed in 

an iterative process according to DSRM by Peffers et al., shown in Figure 1. 

There have to be further investigations on how such architectures can be 

used in logistics, which in turn has an influence on the structure of the ar-

chitecture presented here. 

The collection of data in an industrial context is always a critical topic that 

must be considered with special attention. This is particularly the case for 

personal data. In order to ensure that the processed data is only made 

available to those who are authorized to do so, a corresponding sensor con-

nector must be implemented in the sensor module. In this way, access to 

the data can be considerably restricted. 

Another important technical aspect is the further development of the ma-

chine learning functions in RIOTANA in order to achieve even more precise 
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results with the shock detection. In addition to the further development of 

machine learning functions to recognize patterns and anomalies and the 

implementation of software components to ensure data sovereignty, there 

are also conceptual questions. These include questions about the criteria 

that determine whether an asset needs a digital representation. Further-

more, it will be necessary to clarify which processes or systems require real-

time data processing at all. Beyond that, there are no descriptions of how 

such architectures can be implemented in processes. Finally, it becomes 

evident that due to the focus of digital twins on the area of manufacturing, 

further investigations are necessary with regard to logistics. 
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