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Abstract

As an example of a complex system with extreme events, we investigate ocean wave states exhibiting
rogue waves. We present a statistical method of data analysis based on multi-point statistics which for
the first time allows the grasping of extreme rogue wave events in a highly satisfactory statistical
manner. The key to the success of the approach is mapping the complexity of multi-point data onto
the statistics of hierarchically ordered height increments for different time scales, for which we can
show that a stochastic cascade process with Markov properties is governed by a Fokker—Planck
equation. Conditional probabilities as well as the Fokker—Planck equation itself can be estimated
directly from the available observational data. With this stochastic description surrogate data sets can
in turn be generated, which makes it possible to work out arbitrary statistical features of the complex
sea state in general, and extreme rogue wave events in particular. The results also open up new
perspectives for forecasting the occurrence probability of extreme rogue wave events, and even for
forecasting the occurrence of individual rogue waves based on precursory dynamics.

1. Introduction and motivation

The observation and study of waves on the sea is probably one of the oldest scientific and cultural endeavors of
mankind. But even today the sea’s state cannot be regarded as anything other than an enigma to man and
science. Of course ocean waves have inspired a tremendous number of often groundbreaking results in
mathematics, physics and related sciences, including nonlinear waves, localization, extreme events, turbulence
and many more. But still, the fully irregular and complex state of the sea is far from being understood. And both
the characteristics of its irregularity, as well as the rare but extremely large wave events occurring sometimes,
now often called rogue waves, defy satisfying description, even in statistical terms.

Obviously the difficulties with understanding irregular and extreme or rogue ocean waves have to be seen in
the context of extreme events in complex systems in general. Driven by various motives there has been extensive
research on extreme events in many fields, from the sciences, via meteorology and climate change, up to the
social sciences and economics [1-6]. It is still a strongly debated question whether extreme events are generally
linked to some universal stochastic mechanisms, or if they rather originate through special features of the
individual systems under study [7]. Still, a common point of all observations is that the empirical data are
frequently punctuated by extreme events which seem to play an important role. Often an analysis approach is to
approximate the observations by means of a generalized stochastic model in which some variables are
represented in terms of stochastic components [8]. Usually the complex systems under study are very high
dimensional and thus finding adequate methods to model the stochastic components remains a challenge.

Besides the description of extreme events in complex systems there is also the demand of their prediction.
Despite the fact that we have irregular and complex behavior of rogue waves, there is an increasing amount of
research towards defining an early warning system for rogue wave occurrences [9, 10] or establishing a
prediction method for short term prediction of rogue events. Studies on prediction methods mainly rely on
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deterministic behavior of non-stationary solutions of the underlying wave equations [11-13] and also
deterministic nonlinear time series analysis [ 14].

The present work is based on the finding that complex systems can often be described highly successfully as
stochastic processes in scale rather than time or space. Examples are now known for various very different fields,
like turbulence [15, 16], economics [17-19], biology [20-22], and many more, see [23]. With scale-dependent
processes, originally introduced by Friedrich and Peinke [15], fractal and multi-fractal structures [23] and even
more generally joint N-point statistics [ 18, 24] can be reduced by Markov properties to particular three-point
statistics. In a previous study [25] we have already shown for ocean wave data that certain scale-dependent
processes may have Markov properties. However, in [25] the Markov properties for the pure scale process could
only be derived for deliberately pre-filtered data. In the present contribution we extend our previous
investigations and base our analysis of the wave dynamics on general joint (N + 1)-point probability density
functions (PDFs) p (h(¢), h(t — 7) »..., h(t — 7n)). Here h(f) denotes the water surface elevation measured ata
given location at time tand 7; are different time increments. The joint PDF provides the likelihood of a sequence
of water surface elevation heights for N + 1 different instants of time. We show how a Fokker—Planck equation
can be derived which describes these general joint PDFs. Knowing the corresponding stochastic process for the
general multi-point statistics we can show that extreme events, i.e. rogue waves, are also grasped by this
stochastic approach. The approach also allows time series reconstruction in a statistical sense, and thus a
statistically valid prediction of rogue wave occurrence.

The paper is structured as follows. First the mathematical aspects of multi-point and multi-scale description
as well as the connection to scale-dependent stochastic processes are introduced. Then the validity of the
description based on observational ocean wave data is demonstrated. Finally the approach is applied to
reconstruct time series for the underlying observational data and to forecast the occurrence probability of rogue
waves in the given sea state.

2. Multi-point statistics

In this section the statistical background of our approach for a multi-point reconstruction is presented. In the
following we use the shorthand notation h; := h(t;) for the elevation of the water surface measured at a given
location at time ;, with h;; == h(t; + t;). We define the relative change in surface height over a time interval or,
respectively, a time scale 7; as

§ = &) = h(t) — h(t; — 7). (1)

The aim is to calculate the joint probability p (h*, t*; hy, t* — 7;...;hy, t* — 7v) of occurrence of the event
{h*, %}, together with the knowledge of the past points {h;, t* — 73; hy, t* — ;.. hy, t* — 75 }. Weassume
that the system has no explicit time dependence, i.e. the system is stationary. The probability of occurrence of the
event { *} under the conditions of the past points is given by
P hy, 753 )
p(h, 7i5..5hn, TN)
Next, the joint (N 4 1)-point PDF can be expressed in an equivalent way by joint increments statistics
p ("5, 75 ha, T35 h, ) = p(BF — h, i3 Y — g, 5B — By, T, BF)

=p (fﬁ 52; s £N> h*)

= p (& Ep5os &y 11 - p(HD). ©)
Note that instead of the knowledge of wave heights at N + 1 points, we consider now the knowledge of N height
increments and one selected height h*. Without loss of generality we take 7; < 7; 1, and thus introduce a

hierarchical ordering of the increments &;.
Only if the conditional PDFs do not depend on h*, i. e. if

s EpsEn IH) = p (&5 €558 4)

does the (N + 1)-point statistics reduce to N-scale statistics of the increments &; at scales 7;. In our previous work
[25] we had applied filtering based on Hilbert—-Huang transform techniques (HHT) to the wave data. The
filtering removed the dependency on i* by effectively separating off the underlying dominant frequency, i.e.
because of the wave-like nature of the system. Still, already in this case Markov properties could be shown for the
filtered wave data and thus the multi-scale PDF could be factorized in

p(W*; by, 755 hs ™) = P& €y) - p(B)
= p(&IE) P (En_ilEN) - P(EN) - p(H). (5)

p(W¥\hy, 755 by, TN) = )
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In our present work we do not apply any pre-filtering and stay focused on the very direct data itself. This renders
the approach much more general and we directly start with the multi-point statistics (equation (2)) to investigate
if the Markov property of the process is given for

p(£]|§]+1) €j+2) .. ~)§j+N) h*) - P(§]|£J+1) h*) (6)
More specifically we will first investigate from the observational data if
p(§]|€]+1: £j+2: h*) = P(£]|§]+1) h*) (7)

holds. This we will take as a hint regarding the validity of the Markov property. Using equation (6), the multi-
point PDF equation (3) can then be factorized as

p(H*s hy,y 75 by T35 hs TN) = PUEIE B ep (E i€ BF) - p (& [HF) - p(HF). ®)

As equation ((6) is nothing other than the Markov property of a stochastic process of {; evolving in the time scale
;> the evolution of conditional PDFs of equation (8) can be expressed by Kramers—Moyal expansion [26],

9 =( o)
Tj n=1 5]
where Kramers—Moyal coefficients D are defined as
DOE, 75, 1) = lim — 1 < [¢](r; — b7, B) — & (7, W]'>¢ (10)
U 8,0 n18T it Y g

Note that the pre-factor —7 in equation (9) indicates that we consider the process for decreasing 7-values and an
evolution in log-scale of 7.

If the Kramers—Moyal coefficient D® is zero, then it follows from the Pawula theorem that all coefficients
for n > 3 arezero, too; cf[26]. The Kramers—Moyal expansion then yields a Fokker—Planck equation with just
two coefficients,

0 0 0?
~Ti——p(E€p 1) = ———[DDE, 75, KIP(Ele )] + —= (DO, 7 B9p(Elee L. (11)
oT; 0¢; 0¢ ;
D denotes the drift and D® the diffusion coefficient. With this the Fokker—Planck equation turns out a
suitable description for the conditional probabilities of the water surface height increments, from which in turn
the general multi-point joint PDF of the surface heights themselves, equation (8), can be determined as

p(h*)
P(hb Tl)

p(W¥hy, 75BN, TN) = x p(h* — hy, 7i |W* — hy, 3 B%)

p(W* — hy_y, Tn_1 |h* — hy, 7 BY)
p(h — hy—1, Tv—1 — 7l — hyny TN — 735 By, T0)
p(H* — hy, v [H)
p(h — hy, v — 7ilhy, 7-1)'

Using the increment notation, omitting the 7-values and defining Ej = h; — h;j with the corresponding time
scale 7; — 7fjand j = 2,..,, N, this equation simplifies to

py  TIL P& 1D pey 1)

po— > : (12)
ply T pGalEys b pExlh)

p(W¥\hy, 755y, TN) =

For a given height #* the probability of its occurrence p (h*|hy, 7i;...; iy, Tiv) is given by the simple conditional
PDFs, which can be calculated from the Fokker—Planck equation, or which can be estimated directly from the
data. Note the simple conditional PDFs p (§;, 7|, 73 h*) only contain information about three height values
h*, hj, hj; or more abstractly, about three points of the time series h(f). Thus equation (2) is a three-point closure
of the multi-point problem.

3. Results based on observational data

The wave measurements used in this study were taken in the Sea of Japan, at alocation 3 km off the Yura fishery
harbor, where the water depth is about 43 m; further details can be found in [27-30]. First we want to examine if
the conditional PDFs depend on the wave height itself by comparing both sides of the equation

P(§1|£25 h*) = P(£1|§2) (13)
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Figure 1. Contour plots of the conditional PDFs p (§|&,) (dashed black lines) and p(§|&,; F*) (solid red lines) with & = (7)) for
scales 1 = 14 and 7, = 27, for h* = 0 + 05,/4 (a)and I* = 20, £ 03,/4 (). Cuts through the conditional PDFs for fixed values of
& = —0.504in (a) and (c) are shown in (b) and (d) respectively.

In figure 1 the comparison of conditional PDFs from both sides of equation (13) at scales 7; = 14 and 7, = 28
seconds and for two different values of h* are shown. To get sufficient data we always use an interval of #* with
+01,/4 (where g, = m ). For h* = 01in figure 1(a) both distributions are almost the same but for values of
hy = 0, like in figure 1(c), a significant shift of the red contour plot (solid lines), which is the left hand side of
equation (13), is found. As a result from this, one can clearly deduce that the conditional PDFs p (§|&,; #*) do

depend on *.

Next the Markov properties according to equation (7) can be checked. Note that we have to compare two

data sets according to §j|5j+ 5

5

prand §le e o+ and thessize of each of these data sets is very different. The

verification is thus performed by the use of the Wilcoxon test [ 16] as this test is suitable to compare the statistical
similarity of two sample sets of different sizes. The validity of the Wilcoxon test can be shown by the normalized
expectation value (AQ*) of the number of inversions of the conditional wave height increments &le., yn+and
&le, s, s If Markov properties are given, (AQ™) has a value of J2/7 ~ 0.8. The values of (AQ*) in figure 2
for different values of #* show that Markov properties hold for (7 > 14s) . This defines a finite minimum step
size or scale in the Markov process of the evolution of the surface elevation increments &;. Such a finite step size is
well known for stochastic processes in general [31], and the scale is called the Einstein—-Markov length, which has
for example also been found in a similar way for turbulent flow data, cf[32, 33]. The scale has been marked by a
vertical red dashed line in figure 2. Note that compared to our previous work [25] the Markov properties are
fulfilled without applying a Hilbert—Huang transform (HHT) to the original data, which is due to the fact that we
have now included the dependencies on h*.

Based on the finding that Markov properties are fulfilled for the evolution of water surface height increments
&; with decreasing time scale 7; we can now proceed to estimate the corresponding stochastic process via the
above mentioned Kramers—Moyal coefficients. Based on the knowledge of the conditional PDF like that shown
in figure 1 the conditional average in equation (10) is known too. The estimation of lims__,; causes some
problems, in particular due to the Einstein—Markov length, but has been worked out already in several
publications [16, 34, 35]. Besides this direct estimation we optimize the obtained functional forms of D" and
D® by minimizing the differences between measured conditional PDFs and those obtained by numerical
solutions of the resulting Fokker—Planck equation [36]. Figure 3 shows the estimated drift and diffusion
functions, DV(&, 7, h)and DP (&, 7, h), of ocean wave surface elevation data for 7 = 140 s and different

4
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Figure 4. Coefficient d;, from equation (14) as a function of 7 for different wave surface height values, h*. The dotted lines are the
second order polynomial fitsin 7.

values of wave height h*. For h* = 0the DY (&, 7, h) curves are shifted in the vertical direction, whereas no
significant change is found for the diffusion term. Furthermore the fourth order Kramers—Moyal coefficient
DW(¢, 7, h)isindeed found to be close to zero for different values of #*, thus the Fokker—Planck description we
propose in equation (11) can be assumed to be valid. Note that the surface elevation height increments, &, are
given in the units of their standard deviation in the limit 7 — 00, .., which is identical to ~/2 o5, = /2 (h?) [16].

To ease parameterization, the drift and diffusion terms can be approximated by first and second order
polynomialsin &,

DW(E, 7, h) = dyo (T, h) — di1(T)&,
DO(E, 1) = dao(T) — do1 (7)€ + dar (7)€% (14)

The height dependency of the drift function is expressed by the dyo (h*, 7)-coefficient and our results are shown
in figure 4. The results indicate once more that we have a strong wave height dependency in our process.

4, Reconstruction of time series

The knowledge of the conditional probability p (F*|hy, 7 ,..., hy, Tw) and its estimation by equation (12) can be
used to generate a new data point #*. Shifting the procedure by one step and repeating the same process may be
used to generate new surrogate time series. For technical reasons one should avoid zeros in conditional PDFs if
one uses equation (12). Here we used kernel density estimation which is very helpful for parameter ranges for
which we have only limited data [37, 38]. The initial idea for reconstructing time series following this procedure
was originally developed in a similar way for fluid turbulence data, see [39]. The time scales we use here for this
processare 7, = n - Ty where n = 1, 2,..., 7 and the Einstein—Markov time scale 75, = 14 s, as shown in
figure 2. (The maximal value of n = 7 was chosen, as for that time step the autocorrelation of the height
increments approaches zero.) In figure 5(a) a typical time series obtained is shown. In figures 5(d) and (e) two
selected conditional probabilities p (h*|hy, i ,..., hy, Tn) are shown to illustrate our method. In addition to the
conditional probabilities the single event probability p (h*) = p(h) of all height values is shown (red curve).
These figures show clearly how the conditional probabilities change with hy, 7 ..., hy, T the values of the N
wave heights seen before. There are cases when smaller /*-values are expected in the next step, see figure 5(b),
and there are cases when large h*-values become highly likely, see figure 5(c).

To illustrate that the reconstructed time series are indeed statistically similar to the measured wave data we
repeat the above mentioned Fokker—Planck analysis. In figure 6 we show that from the surrogate data we obtain
the same drift and diffusion coefficients. Also the corresponding PDFs p (¢, 7;) obtained from the measured
data and from the numerical solution of the Fokker—Planck equation using the estimated drift and diffusion
terms are the same as shown in figure 7(a). Furthermore the statistics of the wave height maxima are well grasped
by the reconstructed data, see figure 7(b). Both empirical and reconstructed data follow a generalized gamma
distribution very well, as expected from [25]. From this verification of the obtained stochastic process we
conclude that both the empirical data and the reconstructed data have the same multi-point statistics.

Based on the proposed reconstruction of time series it is now possible to generate long synthetic time series
to work out further statistical features of the wave data. We have chosen 1000 data points of empirical data as the
initial condition and run it to produce 1.1 x 10° synthetic data with sampling rate of 1 Hz. In this reconstructed
time series we have captured three events that we could consider as rogue waves, using the usual definition [40],

6
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Figure 5. Reconstructed time series (a) after equation (12). Two time windows are marked by (b) and (c) for which the corresponding
multi-conditioned PDFs are given in (d) and (e). To show the changing volatility of the multi-conditioned PDFs (black), the
unconditional PDF (red) estimations from all data are shown too. Note the obvious changes of the likelihood of large wave
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Figure 6. the drift DI (&, 7, k) and diffusion D® (€, 7, h) coefficients of ocean wave data in time scale 7 = 280s. The black dots are
the original data and hollow circles are from reconstructed time series.

saying i* must be larger than twice the significant wave height, which is 2.4 m for our data. The corresponding
three sections of the reconstructed time series are shown in figure 8(b)—(d). Also, we performed 4096 different
runs of 2048 s blocks. From these data we captured 33 time series with extreme values and a corresponding
waiting time of about 2.5 X 10° s to obtain an extreme event, or a rogue wave.

Next we discuss the possibility of forecasting emerging rogue waves. From the conditional probability, see
figure 5(e) (black curve), we can quantify the likelihood of the appearance of the measured amplitude of

7
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h, > 5.2 m by integration
Prtrerme = f pH¥|hy, 7553 by, T) dBF (15)
h,

and obtain 23.6%. This likelihood Pureme (B, > 5.2 m) can be evaluated for each time step and results in a
changing risk of emerging rogue waves, as shown in figure 9. This probabilistic characterization of extreme
events returns some false alarms as well as some true hits.

A common method to test the quality of a prediction is the receiver operating characteristic curve (ROC)
[41-43]. The idea of the ROC consists of comparing the rate of true predicted events with the rate of false alarm.
The most quantitative index describing a ROC curve is the area under it, which is known as accuracy. In figure 10
we have plotted ROC curves for our prediction, Petreme, first by considering h, = 5.2 m to detect the extreme
event alarms. The corresponding ROC curve is plotted in black (solid) line. To investigate the robustness of our
reconstruction method, we considered lower amplitude wave height for i, = 2.5m and h, = 3.5 m and the

8
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Pextreme

Surface elevation (m)

[ [ ! [ [
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Figure 9. Reconstructed time series (bottom) and probability of having an extreme event for each reconstructed point, Peytreme (top).

1.0-

— h=5.2m
——~h=35m
,,,,,,,,, h225m

Rate of correct prediction

0.5 1.0
Rate of false alarm

Figure 10. ROC curve for three different estimations of Pexreme for i, = 5.2 m (solid black line), i, = 3.5 m (dashed blue line) and h, =
2.5 m (dotted red line).

corresponding ROC curves are shown in figure 10 in red (dotted) and blue (dashed) lines, respectively. In all
three cases we have an accuracy of ROC curves greater than 80% which indicates that our multi-point procedure
is a proper method for time series reconstruction and can be used for short time prediction purposes.

5. Conclusions

We have presented a new approach for a comprehensive analysis of the complexity of ocean wave dynamics.

The complexity of multi-point statistics can be simplified by a three-point closure, based on which an arbitrary
N-point statistics can be expressed by a hierarchy of nested three-point statistics ordered in a cascade-like
structure. We have been able to show for the first time that by our stochastic approach not only can the joint
N-point statistics be grasped, but also extreme events, rogue waves, can be captured statistically. We have also
shown how for each instant in time the conditional probability of the next wave height can be determined. As the
height profile of waves changes from moment to moment, also the probability of the next value of the wave
height is changing dynamically. These changes may thus clearly give rise to measures indicating the risk of the
appearance of rogue waves ahead of their actual emergence. Most interestingly, this was possible, although in the
measured data only one event of a rogue wave was recorded. From our analysis of the occurrence probabilities it
becomes clear that the rogue wave for these wave conditions is an integral part of the entire complex stochastic.




10P Publishing

NewJ. Phys. 18 (2016) 013017 A Hadjihosseini et al

In our opinion this can only be achieved as we were able to carve out an N-point approach for this complex
system.
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