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Abstract
As an example of a complex systemwith extreme events, we investigate oceanwave states exhibiting
roguewaves.We present a statisticalmethod of data analysis based onmulti-point statistics which for
thefirst time allows the grasping of extreme roguewave events in a highly satisfactory statistical
manner. The key to the success of the approach ismapping the complexity ofmulti-point data onto
the statistics of hierarchically ordered height increments for different time scales, for whichwe can
show that a stochastic cascade process withMarkov properties is governed by a Fokker–Planck
equation. Conditional probabilities as well as the Fokker–Planck equation itself can be estimated
directly from the available observational data.With this stochastic description surrogate data sets can
in turn be generated, whichmakes it possible towork out arbitrary statistical features of the complex
sea state in general, and extreme roguewave events in particular. The results also open up new
perspectives for forecasting the occurrence probability of extreme roguewave events, and even for
forecasting the occurrence of individual roguewaves based on precursory dynamics.

1. Introduction andmotivation

The observation and study of waves on the sea is probably one of the oldest scientific and cultural endeavors of
mankind. But even today the sea’s state cannot be regarded as anything other than an enigma toman and
science. Of course oceanwaves have inspired a tremendous number of often groundbreaking results in
mathematics, physics and related sciences, including nonlinear waves, localization, extreme events, turbulence
andmanymore. But still, the fully irregular and complex state of the sea is far frombeing understood. And both
the characteristics of its irregularity, as well as the rare but extremely largewave events occurring sometimes,
nowoften called roguewaves, defy satisfying description, even in statistical terms.

Obviously the difficulties with understanding irregular and extreme or rogue oceanwaves have to be seen in
the context of extreme events in complex systems in general. Driven by variousmotives there has been extensive
research on extreme events inmany fields, from the sciences, viameteorology and climate change, up to the
social sciences and economics [1–6]. It is still a strongly debated questionwhether extreme events are generally
linked to some universal stochasticmechanisms, or if they rather originate through special features of the
individual systems under study [7]. Still, a commonpoint of all observations is that the empirical data are
frequently punctuated by extreme events which seem to play an important role. Often an analysis approach is to
approximate the observations bymeans of a generalized stochasticmodel inwhich some variables are
represented in terms of stochastic components [8]. Usually the complex systems under study are very high
dimensional and thusfinding adequatemethods tomodel the stochastic components remains a challenge.

Besides the description of extreme events in complex systems there is also the demand of their prediction.
Despite the fact that we have irregular and complex behavior of roguewaves, there is an increasing amount of
research towards defining an early warning system for roguewave occurrences [9, 10] or establishing a
predictionmethod for short termprediction of rogue events. Studies on predictionmethodsmainly rely on
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deterministic behavior of non-stationary solutions of the underlyingwave equations [11–13] and also
deterministic nonlinear time series analysis [14].

The present work is based on thefinding that complex systems can often be described highly successfully as
stochastic processes in scale rather than time or space. Examples are now known for various very different fields,
like turbulence [15, 16], economics [17–19], biology [20–22], andmanymore, see [23].With scale-dependent
processes, originally introduced by Friedrich and Peinke [15], fractal andmulti-fractal structures [23] and even
more generally jointN-point statistics [18, 24] can be reduced byMarkov properties to particular three-point
statistics. In a previous study [25]wehave already shown for oceanwave data that certain scale-dependent
processesmay haveMarkov properties. However, in [25] theMarkov properties for the pure scale process could
only be derived for deliberately pre-filtered data. In the present contributionwe extend our previous
investigations and base our analysis of thewave dynamics on general joint N 1( )+ -point probability density
functions (PDFs) p h t h t h t, ,..., N1( ( ) ( ) ( ))t t- - . Here h(t) denotes thewater surface elevationmeasured at a
given location at time t and it are different time increments. The joint PDFprovides the likelihood of a sequence
of water surface elevation heights for N 1+ different instants of time.We showhow a Fokker–Planck equation
can be derivedwhich describes these general joint PDFs. Knowing the corresponding stochastic process for the
generalmulti-point statistics we can show that extreme events, i.e. roguewaves, are also grasped by this
stochastic approach. The approach also allows time series reconstruction in a statistical sense, and thus a
statistically valid prediction of roguewave occurrence.

The paper is structured as follows. First themathematical aspects ofmulti-point andmulti-scale description
aswell as the connection to scale-dependent stochastic processes are introduced. Then the validity of the
description based on observational oceanwave data is demonstrated. Finally the approach is applied to
reconstruct time series for the underlying observational data and to forecast the occurrence probability of rogue
waves in the given sea state.

2.Multi-point statistics

In this section the statistical background of our approach for amulti-point reconstruction is presented. In the
followingwe use the shorthand notation h h ti i≔ ( ) for the elevation of thewater surfacemeasured at a given
location at time ti, with h h t ti j i j≔ ( )++ .We define the relative change in surface height over a time interval or,
respectively, a time scale jt as

h t h t . 1j j i i j( ) ≔ ( ) ( ) ( )x x t tº - -

The aim is to calculate the joint probability p h t h t h t, ; , ; ...; ,N N1 1( )* * * *t t- - of occurrence of the event
h t,{ }* * , together with the knowledge of the past points h t h t h t, ; , ; ...; ,N N1 1 2 2{ }* * *t t t- - - .We assume
that the systemhas no explicit time dependence, i.e. the system is stationary. The probability of occurrence of the
event h{ }* under the conditions of the past points is given by

p h h h
p h h h
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Next, the joint (N+ 1)-point PDF can be expressed in an equivalent way by joint increments statistics
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Note that instead of the knowledge of wave heights atN+1 points, we consider now the knowledge ofN height
increments and one selected height h*.Without loss of generality we take i i 1t t< + , and thus introduce a
hierarchical ordering of the increments ix .

Only if the conditional PDFs do not depend on h*, i. e. if

p h p; ; ...; ; ; ...; , 4N N1 2 1 2( ∣ ) ( ) ( )*x x x x x x=

does the (N+ 1)-point statistics reduce toN-scale statistics of the increments ix at scales it . In our previous work
[25]wehad applied filtering based onHilbert–Huang transform techniques (HHT) to thewave data. The
filtering removed the dependency on h* by effectively separating off the underlying dominant frequency, i.e.
because of thewave-like nature of the system. Still, already in this caseMarkov properties could be shown for the
filteredwave data and thus themulti-scale PDF could be factorized in

p h h h p p h

p p p p h
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In our present workwe do not apply any pre-filtering and stay focused on the very direct data itself. This renders
the approachmuchmore general andwe directly start with themulti-point statistics (equation (2)) to investigate
if theMarkov property of the process is given for

p h p h, , , , , . 6j j j j N j j1 2 1( ∣ ) ( ∣ ) ( )* *x x x x x x¼ =+ + + +

More specifically wewillfirst investigate from the observational data if

p h p h, , , 7j j j j j1 2 1( ∣ ) ( ∣ ) ( )* *x x x x x=+ + +

holds. This wewill take as a hint regarding the validity of theMarkov property. Using equation (6), themulti-
point PDF equation (3) can then be factorized as

p h h h h p h p h p h p h; , ; , ; ...; , , ... , . 8N N N N N1 1 2 2 1 2 1( ) ( ∣ )· · ( ∣ ) · ( ∣ ) · ( ) ( )* * * * *t t t x x x x x= -

As equation ((6) is nothing other than theMarkov property of a stochastic process of ix evolving in the time scale

it , the evolution of conditional PDFs of equation (8) can be expressed byKramers–Moyal expansion [26],
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where Kramers–Moyal coefficients D n( ) are defined as
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Note that the pre-factor t- in equation (9) indicates that we consider the process for decreasing τ-values and an
evolution in log-scale of τ.

If the Kramers–Moyal coefficient D 4( ) is zero, then it follows from the Pawula theorem that all coefficients
for n 3 are zero, too; cf [26]. TheKramers–Moyal expansion then yields a Fokker–Planck equationwith just
two coefficients,
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D 1( ) denotes the drift and D 2( ) the diffusion coefficient.With this the Fokker–Planck equation turns out a
suitable description for the conditional probabilities of thewater surface height increments, fromwhich in turn
the generalmulti-point joint PDF of the surface heights themselves, equation (8), can be determined as
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Using the increment notation, omitting the τ-values and defining h hj j1
˜ ≔x - with the corresponding time

scale j 1t t- and j N2 ,...,= , this equation simplifies to
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For a given height h* the probability of its occurrence p h h h, ; ...; ,N N1 1( ∣ )* t t is given by the simple conditional
PDFs, which can be calculated from the Fokker–Planck equation, or which can be estimated directly from the
data. Note the simple conditional PDFs p h, , ;i i j j( ∣ )*x t x t only contain information about three height values

h h h, , ;i j* ormore abstractly, about three points of the time series h(t). Thus equation (2) is a three-point closure
of themulti-point problem.

3. Results based on observational data

Thewavemeasurements used in this studywere taken in the Sea of Japan, at a location 3 kmoff the Yura fishery
harbor, where thewater depth is about 43m; further details can be found in [27–30]. First wewant to examine if
the conditional PDFs depend on thewave height itself by comparing both sides of the equation

p h p; . 131 2 1 2( ∣ ) ( ∣ ) ( )*x x x x=

3
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Infigure 1 the comparison of conditional PDFs fromboth sides of equation (13) at scales 141t = and 282t =
seconds and for two different values of h* are shown. To get sufficient data we always use an interval of h*with

4hs (where hh
2s = á ñ ). For h 0* = infigure 1(a) both distributions are almost the same but for values of

h 00 ¹ , like infigure 1(c), a significant shift of the red contour plot (solid lines), which is the left hand side of
equation (13), is found. As a result from this, one can clearly deduce that the conditional PDFs p h;1 2( ∣ )*x x do
depend on h*.

Next theMarkov properties according to equation (7) can be checked. Note thatwe have to compare two
data sets according to j h;j 1

∣ *x x +
and j h; ;j j1 2

∣ *x x x+ +
, and the size of each of these data sets is very different. The

verification is thus performed by the use of theWilcoxon test [16] as this test is suitable to compare the statistical
similarity of two sample sets of different sizes. The validity of theWilcoxon test can be shown by the normalized
expectation value Q*áD ñof the number of inversions of the conditional wave height increments j h;j 1

∣ *x x +
and

j h; ;j j1 2
∣ *x x x+ +

. IfMarkov properties are given, Q*áD ñhas a value of 2 0.8p » . The values of Q*áD ñ infigure 2
for different values of h* show thatMarkov properties hold for s14( )t . This defines afiniteminimum step
size or scale in theMarkov process of the evolution of the surface elevation increments ix . Such afinite step size is
well known for stochastic processes in general [31], and the scale is called the Einstein–Markov length, which has
for example also been found in a similar way for turbulent flowdata, cf [32, 33]. The scale has beenmarked by a
vertical red dashed line infigure 2.Note that compared to our previous work [25] theMarkov properties are
fulfilledwithout applying aHilbert–Huang transform (HHT) to the original data, which is due to the fact that we
have now included the dependencies on h*.

Based on thefinding thatMarkov properties are fulfilled for the evolution of water surface height increments

jx with decreasing time scale jt we can nowproceed to estimate the corresponding stochastic process via the
abovementionedKramers–Moyal coefficients. Based on the knowledge of the conditional PDF like that shown
infigure 1 the conditional average in equation (10) is known too. The estimation of lim 0d t causes some
problems, in particular due to the Einstein–Markov length, but has beenworked out already in several
publications [16, 34, 35]. Besides this direct estimationwe optimize the obtained functional forms of D 1( ) and
D 2( ) byminimizing the differences betweenmeasured conditional PDFs and those obtained by numerical
solutions of the resulting Fokker–Planck equation [36]. Figure 3 shows the estimated drift and diffusion
functions, D h, ,1 ( )( ) x t and D h, ,2 ( )( ) x t , of oceanwave surface elevation data for 140t = s and different

Figure 1.Contour plots of the conditional PDFs p 1 2( ∣ )x x (dashed black lines) and p h;1 2( ∣ )*x x (solid red lines)with j j( )x x tº for
scales 141t = and 22 1t t= , for h 0 4h* s=  (a) and h 2 4h h* s s=  (c). Cuts through the conditional PDFs for fixed values of

0.5 h2x s= - in (a) and (c) are shown in (b) and (d) respectively.

4

New J. Phys. 18 (2016) 013017 AHadjihosseini et al



Figure 2.Wilcoxon test of equation (7) for different values of h*.

Figure 3.Drift, D h, ,1 ( )( ) x t , diffusion, D h, ,2 ( )( ) x t , and the Kramers–Moyal coefficient D h, ,4 ( )( ) x t for different values of wave
height, h, at 140t = s.

5
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values of wave height h*. For h 0* ¹ the D h, ,1 ( )( ) x t curves are shifted in the vertical direction, whereas no
significant change is found for the diffusion term. Furthermore the fourth order Kramers–Moyal coefficient
D h, ,4 ( )( ) x t is indeed found to be close to zero for different values of h*, thus the Fokker–Planck descriptionwe
propose in equation (11) can be assumed to be valid. Note that the surface elevation height increments, ξ, are

given in the units of their standard deviation in the limit t  ¥, s¥, which is identical to h2 2h
2s º á ñ [16].

To ease parameterization, the drift and diffusion terms can be approximated by first and second order
polynomials in ξ,

D h d h d

D d d d

, , , ,

, . 14

1
10 11

2
20 21 21

2

( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( )

( )
x t t t x

x t t t x t x
= -
= - +

The height dependency of the drift function is expressed by the d h ,10 ( )* t -coefficient and our results are shown
infigure 4. The results indicate oncemore that we have a strongwave height dependency in our process.

4. Reconstruction of time series

The knowledge of the conditional probability p h h h, ,..., ,N N1 1( ∣ )* t t and its estimation by equation (12) can be
used to generate a new data point h*. Shifting the procedure by one step and repeating the same processmay be
used to generate new surrogate time series. For technical reasons one should avoid zeros in conditional PDFs if
one uses equation (12). Here we used kernel density estimationwhich is very helpful for parameter ranges for
whichwe have only limited data [37, 38]. The initial idea for reconstructing time series following this procedure
was originally developed in a similar way forfluid turbulence data, see [39]. The time scales we use here for this
process are nn EM·t t= where n 1, 2 ,..., 7= and the Einstein–Markov time scale 14EMt = s, as shown in
figure 2. (Themaximal value of n= 7was chosen, as for that time step the autocorrelation of the height
increments approaches zero.) Infigure 5(a) a typical time series obtained is shown. Infigures 5(d) and (e) two
selected conditional probabilities p h h h, ,..., ,N N1 1( ∣ )* t t are shown to illustrate ourmethod. In addition to the
conditional probabilities the single event probability p h p h( ) ( )* = of all height values is shown (red curve).
Thesefigures show clearly how the conditional probabilities changewith h h, ,..., ,N N1 1t t the values of theN
wave heights seen before. There are cases when smaller h*-values are expected in the next step, see figure 5(b),
and there are cases when large h*-values become highly likely, see figure 5(c).

To illustrate that the reconstructed time series are indeed statistically similar to themeasuredwave data we
repeat the abovementioned Fokker–Planck analysis. Infigure 6we show that from the surrogate data we obtain
the same drift and diffusion coefficients. Also the corresponding PDFs p ,i i( )x t obtained from themeasured
data and from the numerical solution of the Fokker–Planck equation using the estimated drift and diffusion
terms are the same as shown infigure 7(a). Furthermore the statistics of thewave heightmaxima are well grasped
by the reconstructed data, see figure 7(b). Both empirical and reconstructed data follow a generalized gamma
distribution verywell, as expected from [25]. From this verification of the obtained stochastic process we
conclude that both the empirical data and the reconstructed data have the samemulti-point statistics.

Based on the proposed reconstruction of time series it is nowpossible to generate long synthetic time series
towork out further statistical features of thewave data.We have chosen 1000 data points of empirical data as the
initial condition and run it to produce 1.1 106´ synthetic data with sampling rate of 1 Hz . In this reconstructed
time series we have captured three events that we could consider as roguewaves, using the usual definition [40],

Figure 4.Coefficient d10 from equation (14) as a function of τ for different wave surface height values, h*. The dotted lines are the
second order polynomialfits in τ.

6
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saying h*must be larger than twice the significant wave height, which is 2.4 m for our data. The corresponding
three sections of the reconstructed time series are shown infigure 8(b)–(d). Also, we performed 4096 different
runs of 2048 s blocks. From these data we captured 33 time series with extreme values and a corresponding
waiting time of about 2.5 105´ s to obtain an extreme event, or a roguewave.

Next we discuss the possibility of forecasting emerging roguewaves. From the conditional probability, see
figure 5(e) (black curve), we can quantify the likelihood of the appearance of themeasured amplitude of

Figure 5.Reconstructed time series (a) after equation (12). Two timewindows aremarked by b( ) and c( ) for which the corresponding
multi-conditioned PDFs are given in (d) and (e). To show the changing volatility of themulti-conditioned PDFs (black), the
unconditional PDF (red) estimations from all data are shown too.Note the obvious changes of the likelihood of largewave
amplitudes.

Figure 6. the drift D h, ,1 ( )( ) x t and diffusion D h, ,2 ( )( ) x t coefficients of oceanwave data in time scale 280t = s. The black dots are
the original data and hollow circles are from reconstructed time series.

7
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h 5.2 mr > by integration

P p h h h dh, ; ...; , 15
h

N Nextreme 1 1
r

( ∣ ) ( )* *ò t t=
¥

and obtain 23.6%. This likelihood P h 5.2 mrextreme ( )> can be evaluated for each time step and results in a
changing risk of emerging roguewaves, as shown in figure 9. This probabilistic characterization of extreme
events returns some false alarms aswell as some true hits.

A commonmethod to test the quality of a prediction is the receiver operating characteristic curve (ROC)
[41–43]. The idea of the ROC consists of comparing the rate of true predicted events with the rate of false alarm.
Themost quantitative index describing a ROC curve is the area under it, which is known as accuracy. Infigure 10
we have plotted ROCcurves for our prediction, Pextreme,first by considering h 5.2 mr = to detect the extreme
event alarms. The corresponding ROCcurve is plotted in black (solid) line. To investigate the robustness of our
reconstructionmethod, we considered lower amplitudewave height for h 2.5 mr = and h 3.5 mr = and the

Figure 7. (a)Empirical (hollow circles) and reconstructed (red filled symbols)PDFs for different scales. Time scales
14, 28, 42, 56, 70t = and 84 are chosen and PDFs are shifted in the vertical direction for clarity of presentation. (b)Distribution of

wave heightmaxima for empirical and reconstructed data in normal and log (inset plot) scale, which follows gammadistribution.

Figure 8.Three different parts of stochastic reconstructed time series (b)–(d) based onmulti-point PDFs, from the empirical data as
initial conditions (a).

8
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corresponding ROCcurves are shown infigure 10 in red (dotted) and blue (dashed) lines, respectively. In all
three cases we have an accuracy of ROC curves greater than 80%which indicates that ourmulti-point procedure
is a propermethod for time series reconstruction and can be used for short time prediction purposes.

5. Conclusions

Wehave presented a new approach for a comprehensive analysis of the complexity of oceanwave dynamics.
The complexity ofmulti-point statistics can be simplified by a three-point closure, based onwhich an arbitrary
N-point statistics can be expressed by a hierarchy of nested three-point statistics ordered in a cascade-like
structure.We have been able to show for thefirst time that by our stochastic approach not only can the joint
N-point statistics be grasped, but also extreme events, roguewaves, can be captured statistically.We have also
shownhow for each instant in time the conditional probability of the next wave height can be determined. As the
height profile of waves changes frommoment tomoment, also the probability of the next value of thewave
height is changing dynamically. These changesmay thus clearly give rise tomeasures indicating the risk of the
appearance of roguewaves ahead of their actual emergence.Most interestingly, this was possible, although in the
measured data only one event of a roguewavewas recorded. Fromour analysis of the occurrence probabilities it
becomes clear that the roguewave for thesewave conditions is an integral part of the entire complex stochastic.

Figure 9.Reconstructed time series (bottom) and probability of having an extreme event for each reconstructed point, Pextreme (top).

Figure 10.ROCcurve for three different estimations ofPextreme, for hr= 5.2m (solid black line), hr= 3.5m (dashed blue line) and hr=
2.5m (dotted red line).
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In our opinion this can only be achieved aswewere able to carve out anN-point approach for this complex
system.
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