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Abstract
Nonlinear modulation is a promising technique for ultrasonic non-destructive damage identification. A wireless sensor
network is ideally suited to monitor large structures using nonlinear modulation in a cost-efficient manner. However,
existing approaches rely on high sampling rates and resource-demanding computations that are not feasible on low-cost
and low-power sensor network devices. We present a new damage indicator that uses the short-time Fourier transform
to derive amplitude and phase modulation with less computational effort and memory usage. Evaluation of the proposed
method using real experiment data exhibits performance and reliability similar to the conventionally used modulation
index. Undersampling is demonstrated, which reduces the memory demand in a test scenario by more than 100 times,
and the required energy for sampling and processing more than four times. The loss of accuracy introduced by under-
sampling is shown to be negligible.
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Introduction

Nonlinear acoustic methods for non-destructive testing
exhibit higher sensitivity to damage than linear methods.
Among the nonlinear techniques, vibro-acoustic modula-
tion (VAM) is a promising candidate. Since the 1990s,
several research groups have exploited VAM to detect
fatigue damage before visible cracks appeared.1–4

However, several hurdles still exist before VAM can
be deployed to monitor real structures outside the
laboratory. One of these is the reliability of the method:
the underlying mechanisms that produce the nonlinear
modulation (NM) are not yet fully understood, and the
soundness of the damage assessment is not yet ready
for safety-critical infrastructure. A second problem is
the practical implementation of the method. On com-
plex structures, such as bridges, measurements have to
be carried out at many locations to cover all fundamen-
tal structural elements.

A sensor network implementing VAM could hence
leverage the potential of the method. However, using
cables for power supply and communication increases
the deployment cost of such a network considerably. If
batteries are used to power the sensor nodes, power
consumption must be kept as low as possible to reduce
the battery replacement interval. Not relying on

batteries at all is an even preferable option. Energy har-
vesting allows sensor nodes to generate the required
power themselves from ambient energy such as vibra-
tion, wind, or sunlight. Such self-powered wireless sen-
sor networks (WSNs) have been demonstrated
successfully.5–7 However, the authors also stress that
available computation and communication resources
are minimal.

Several studies investigate the potential of vibrational
energy harvesting in detail8,9. The amount of energy that
a sensor node can expect to harvest at a typical bridge is
in the order of a few milliwatts, which only allows for
very simple signal processing and a few hundred bytes
of data transmission with low-power hardware.
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Wireless sensor nodes performing the NM technique
were presented by Liu et al.10 and Yang et al.11 Both used
expensive and energy-demanding hardware and bulky
batteries to realize long-term monitoring. The former uses
a high-performance microcontroller with 216 MHz and
an external 256 Mbit RAM to store the samples for pro-
cessing. Energy harvesting is used to prolong the lifetime
up to 1.5 years, with one measurement every 3 weeks.
The latter study is similar, but additionally employs a
field-programmable gate array (FPGA) to reduce the
power demand during processing.

Further reduction of the method’s computational
complexity and memory demand is necessary to enable
the use of simpler, cheaper hardware, and battery-free
devices running purely on harvested energy.
Simultaneously, lower energy demand reduces the
interval between measurements and yields a higher tem-
poral resolution. Typical properties of low-power
devices suitable for self-powered WSNs are compared
to desktop computers in Table 1.

The sampling rates and signal durations required to
calculate the commonly used modulation index (MI) rely
on fast processors and large amounts of memory. Neither
sampling at this rate nor transmitting the acquired sam-
ples for remote processing is feasible on a low-power sen-
sor node, given their constrained resources.

Recent research suggests that splitting the VAM sig-
nals into amplitude modulation (AM) and frequency
modulation (FM) might increase sensitivity to damage.
Different techniques have been used to achieve the
separation of both modulation types: the Hilbert trans-
form (HT),3 the Hilbert–Huang transform,1 and the
in-phase/quadrature homodyne separation (IQHS)
algorithm.2 However, all three methods require even
higher computational power than the conventional MI.
In this work, we present techniques to implement VAM
capable of running with significantly lower energy
usage and smaller memory footprint, but still produce
comparable results. Our contributions are as follows:

� investigation of the short-time Fourier transform
(STFT) as an alternative to HT for computing AM
and phase modulation (PM) separately;

� a new damage index that can be computed from
PM and AM and performs similar to the estab-
lished MI; and

� the demonstration of heavy undersampling to dras-
tically reduce required sampling rates and conse-
quentially also reduce computational complexity,
hence rendering the implementation of VAM in a
low-power WSN feasible.

In the remainder of this work, we first revisit VAM
and explain the conventionally used MI. We then
describe how to separately assess AM and PM using
the STFT and combine them in a new damage index.
Then, we demonstrate how the narrow bandwidth of
the VAM signal can be leveraged to recover AM and
PM with lower than usual sampling rates. This is fol-
lowed by a comparison of the performance of the pro-
posed damage index with the established MI on real
data and an investigation of the errors introduced by
undersampling. Finally, we present a hypothesis indi-
cating that AM and PM are not exclusively caused by
different physical mechanisms, but may be two differ-
ent effects of the same underlying mechanism.

VAM and the MI

During an NM measurement, two sinusoidal acoustic
waves, Xp and Xc, with distinct frequencies fc and fp are
introduced into a specimen under test, where fp � fc.
The lower frequency fp is often referred to as the pump-
ing frequency, while the higher frequency fc is referred
to as the carrier or probing frequency. Then, the result-
ing ultrasonic wave, Y , is measured at a different loca-
tion of the specimen. The process is depicted in
Figure 1.

Table 1. Typical characteristics of low-power wireless sensor
nodes compared with modern desktop computers.

WSN node Desktop computer

Memory 0.1–10 kB 4–16 GB
CPU frequency 1–16 MHz 2–4 GHz
Power requirement 0.1–10 mW 100–400 W
Network speed 0.1–50 kbits21 100–1000 MBs21

WSN: wireless sensor network.

Figure 1. Nonlinear modulation principle as proposed by
Donskoy,12 and Lim and Sohn.13
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Many studies show that the received signal Y is
becoming increasingly modulated by the pumping sig-
nal when defects in the material accumulate. The exact
physical mechanisms causing modulation have not yet
been fully understood. However, existing studies sug-
gest that fatigue damage can be detected before it grows
into an open crack.

The modulation occurs in both the form of AM and
PM/FM. In the amplitude spectrum of Y , AM mani-
fests as two sidebands appearing at frequencies fc6fp.
PM also appears as sidebands, but can produce a
potentially unlimited amount of sidebands at fc6k � fp,
where k 2 N+. In a signal containing both PM and
AM, the two forms cannot be separated easily in the
frequency domain alone.

The intensity of the modulation has to be tracked
over the lifetime of the structure under test. A standard
approach to measure this modulation intensity is to
compute the amplitude spectrum of Y using the Fourier
transform. Then, the amplitude of the first sidebands at
frequency components fc6fp and the amplitude of the
carrier at fc are compared. The modulation is often
assessed using the MI, in decibel, defined as

MI= 20 � log10
Afc�fp +Afc + fp

2Afc

� �
ð1Þ

where Af is the amplitude in the spectrum at frequency f .
The MI and other very similar metrics have been used in
many studies.4,12,14

While this is sufficient to represent pure AM inten-
sity accurately, the MI cannot assess AM and PM indi-
vidually. It does not precisely represent a total
modulation since it neglects the information given in
the additional sidebands produced by PM.

Note that the resulting waveform can take different
shapes than the one shown in Figure 1 depending on
the specific situation. For example, Lee et al.15 show
that—for a large crack—no contact between the crack’s
surfaces is given under tension, and hence, no energy
can be transmitted during part of the low-frequency
period. However, even in this situation, similar side-
bands appear in the frequency domain.

Required resources for MI computation

The MI calculation using the frequency spectrum
requires high sampling rates and considerable process-
ing power. As an example, assume fc = 200kHz and
fp = 10Hz. Frequencies in this range are used in several
studies.2 The minimal required sampling frequency is
then 400 kHz.

The frequency components of the carrier and the
sidebands must be clearly distinguishable in the spec-
trum. That requires a high resolution of the spectrum.

When using the discrete Fourier transform (DFT), the
frequency resolution Df is given by

Df =
fs

ns
ð2Þ

where ns is the number of recorded samples. Hence, to
achieve a certain frequency resolution, say, 2 Hz, where
the sidebands can be clearly distinguished, using the
minimum sampling rate of fs = 400kHz, at least
ns = 200, 000 samples need to be recorded. The typical
analog-to-digital converter (ADC) samples the voltage
with 14- to 16-bit resolution. Hence, the required
amount of memory to store all samples of a single mea-
surement is roughly 400 kB. This drastically exceeds
the available RAM on WSN devices (Table 1).

Even if abundant memory is available, the execution
time of a fast Fourier transform (FFT) with that many
samples will be in the range of minutes. Performing
intense computations directly on the device is not possi-
ble on an energy budget given by batteries or even energy
harvesting. Furthermore, this amount of data cannot be
transmitted for remote computation since radio trans-
mission also requires considerable energy. Hence, more
manageable ways to compute the modulation intensity
have to be employed to perform VAM in a WSN.

Separation of AM and PM

We propose a modulation intensity classifier that calcu-
lates AM and PM individually using the STFT and
then combines both to yield a single damage indicator,
comparable to the MI (Figure 2). This new damage

Figure 2. Schematic description of the separation of amplitude
and phase modulation from the original signal with the short-
time Fourier transform.
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indicator is a precondition for undersampling with very
low sampling rates, which will be presented in the next
section.

PM and FM

FM and PM are very similar. If the modulating signal
consists of just a single frequency component, pure FM
and pure PM are indistinguishable.16 With a modulat-
ing signal

s tð Þ= cos vpt
� �

ð3Þ

a phase-modulated sinusoid is given as

SPM =A0 sin vct +mp cos vpt
� �

+f0

� �
ð4Þ

with PM index mp. A frequency-modulated sinusoid is
given as

SFM =A0 sin vct +vcmf �
ðt

0

s tð Þdt +f0

0
@

1
A ð5Þ

In the given case, that s(t) is again a sinusoid, equa-
tion (5) can be rewritten as

SFM =A0 sin vct +vc

mf

vp

� sin vpt
� �

+f0

� �
ð6Þ

which differs from the definition of the phase-
modulated signal from equation (4) only in two ways:
the intensity of the PM is now dependent on the pump-
ing and probing frequency, and the modulation signal
is phase shifted by p=2. For practical purposes in
VAM, however, we observe the evolution of FM/PM
over the specimen’s lifetime at a single pumping fre-
quency. Hence, the change to the signal’s phase either
originates from PM or FM, or a mixture of both.

Previous work has regarded any modulation to the
phase of the signal as pure FM. However, the methods,
such as the HT or the IQHS algorithm, cannot distin-
guish between FM and PM. We will consider all modu-
lations to the phase as pure PM and all modulations to
the amplitude as pure AM in the remainder of this
work. To motivate this choice, we provide a wave pro-
pagation model in the later section, which shows that
PM must be expected in the signal.

PM creates several sidebands in the power spectrum.
The conventional MI considers only the first sideband,
where PM cannot easily be distinguished from AM. We
choose to use the STFT, in which the whole signal is
split into shorter chunks

Ck = yknc , yknc + 1, . . . , y k + 1ð Þnc�1

� �
, k 2 0,K½ � ð7Þ

where nc is the number of samples contained in each of
the K chunks. If nc is chosen small compared to the
pumping signal’s period, the content of each chunk is
approximately a pure sinusoid with the carrier fre-
quency fc—the modulation within the chunk is negligi-
ble. Hence, we can safely assume that the carrier
frequency is the dominating frequency component
within the chunk.

The phase of the carrier in each chunk can then be
calculated using the DFT. This yields a new signal
P= ½p0, p1, . . . , pK �, where

pK = arg F Ckf g fcð Þð Þ ð8Þ

is the phase calculated from chunk Ck . When the car-
rier’s phase offset changes over time, this can be
observed in P. Finally, the Fourier transform of P is
used to retrieve the amplitude of the PM in the spec-
trum at the pumping frequency fp

mp = F Pf g fp
� ��� �� ð9Þ

Now, mp approximates the PM index in Y.
Note that the chunk size nc has to be chosen appro-

priately so that every chunk contains an integer number
of periods of the carrier signal. Otherwise, each chunk’s
phase will be shifted by a constant amount from each
chunk to the next. Given the sampling rate of the origi-
nal signal fs and the carrier frequency fc, the chunk size
must fulfill

nc = l
fs

fc
2 N, where l 2 N ð10Þ

The smallest possible chunk size is given when l = 1.
If the sampling frequency is not divisible by the carrier
frequency, then a bigger l must be chosen to accommo-
date an integer number of periods in each chunk

l =
fc

gcd fs, fcð Þ ð11Þ

where gcd(a, b) denotes the greatest common divisor of
two numbers a and b. Hence

nmin
c =

fs

gcd fs, fcð Þ ð12Þ

Any multiple of nmin
c is, of course, possible. However,

larger chunks will lead to fewer samples of the phase
measurements P. Finally, the sampling rate of phase
measurements f ps = fs=nc has to be high enough that we
can compute the modulation caused by the pumping
frequency fp. According to the Nyquist theorem,
f ps ø 2fp. Hence

4 Structural Health Monitoring 00(0)
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fs

gcd fs, fcð Þ < nc <
fs

2fp
ð13Þ

Amplitude Modulation (AM)

An amplitude-modulated signal can be written as

SAM = A0 +ma sin 2pfpt
� �� �

sin 2pfct +f0ð Þ ð14Þ

where ma is the amplitude modulation intensity. The
amplitude of a signal over time is referred to as the envel-
ope of a signal. In the previous section, the instantaneous
phase (IP) was approximated using the STFT. The envel-
ope can also be recovered in the same way as the phase.

Using the same chunks C as in the previous section,
the vector A= ½a0, a1, . . . , aK � of amplitudes per chunk
Ck can be calculated with

ak = F Ckf g fcð Þk k ð15Þ

The sampling rate required for the envelope only
depends on the pumping frequency. According to the
Nyquist–Shannon sampling theorem, the minimum
required sampling rate would be at least 2fp. Otherwise,
the same restrictions on the chunk size nc apply as for
the PM.

We can now estimate the intensity of the AM with
pumping frequency fp by computing the amplitude of
the frequency spectrum of the envelope at fp

ma = F Af g fp
� ��� �� ð16Þ

In the conventional MI, the modulation intensity is
normalized by the signal strength of the carrier. We
assume the carrier amplitude A0 to be the average of
the amplitude vector A. The amplitude of the Fourier
transform at frequency zero yields the constant offset,
and hence the average, as

A0 = F Af g 0ð Þk k ð17Þ

Combining AM and PM

With the mechanisms from the previous sections, we
can derive the PM and AM independently. However,
experiments on real specimens, that we present in sec-
tion ‘‘Evaluation,’’ show that if only PM or only AM is
inspected over the lifetime of a specimen, their trend is
not conclusive. Therefore, no clear damage assessment
can be drawn from each of them individually.

However, we can combine the independent measure-
ments of PM and AM to create a single indicator track-
ing the strength of combined modulation over time.
The intensity of AM is measured as the amplitude of
the fluctuation of carrier amplitude. PM is measured in
the amplitude of the fluctuation of the carrier’s phase

(in radians). We can construct a meaningful combina-
tion of both geometrically.

A pure sinusoidal signal can be represented mathe-
matically as

Spure =A0 � ej� 2pfct +f0ð Þ ð18Þ

where j is the imaginary unit, A0 is the amplitude of the
sinusoidal wave, fc is its frequency, and f0 is its phase
offset. In the modulated signal, both the amplitude of
the sinusoidal signal (AM) and its phase (PM) change
over time

Smod = A0 +masin 2pfpt
� �� �

� ej� 2pfct +f0 +mp�sin 2pfptð Þð Þ

ð19Þ

where mp is the PM amplitude in radians and ma is the
AM amplitude in volts.

We define the combined modulation intensity mc as
the maximum distance between the modulated and the
hypothetical unmodulated carrier, normalized by the
amplitude of the unmodulated carrier

mc = max
t

Spure � Smod

�� ��
Spure
�� �� ð20Þ

which equals

mc =
A0 +mað Þ � ejmp � A0k k

A0

ð21Þ

Practically, we estimate A0 from the average ampli-
tude of the modulated carrier. Figure 3 visualizes this
relation geometrically in the complex plane.

Comparison of STFT with the HT

The standard approach for splitting a signal into instan-
taneous amplitude (IA) and IP is the HT, which has
been used in some recent work on VAM.1,3 The STFT

Figure 3. Visualization of the combination of AM and PM in
the complex plane. The modulation strength is defined as the
maximum difference of a modulated carrier Smod and an
unmodulated carrier Spure.
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is not equivalent to HT, but it is an approximation that
is sufficient for VAM, where the pumping frequency is
much smaller than the probing frequency, that is, the
modulation happening within a single chunk during
STFT is negligible.

We have verified that the STFT-based method pro-
duces comparable results to the IA and IP computed
with HT, both with simulated and experimental data.
The vectors A and P computed by the STFT corre-
spond to the envelope and the IP, respectively.
However, it is computationally more advantageous to
use the STFT for several reasons.

We use the STFT to reveal the amplitudes and
phases in the carrier’s frequency bin. The HT, however,
reveals all changes to phase and amplitude. Intense fil-
tering has to be applied to mitigate the effect of noise
or ambient vibration. Alternatively, the Hilbert–Huang
transform is sometimes used, which first splits the sig-
nal into empirical modes and then applies the HT to
them individually.1

The fastest algorithm to compute the discrete HT is
applied in the frequency domain by first using an FFT
to compute the complex frequency spectrum, perform a
simple element-wise vector multiplication in the fre-
quency domain, and then transfer the result back into
time domain using the inverse FFT.17 With the STFT,
however, no inverse transformation is necessary.

The HT produces IP and envelope vectors with a
sampling rate equal to the original signal. Since the
pumping frequency is much lower than the carrier fre-
quency, such high sampling rates are not required to
derive the low FM and unnecessarily increase memory
usage. With the STFT, the number of elements in the
vectors A and P is reduced significantly depending on
the chunk size.

When the STFT is used in the case of VAM, we are
only interested in very few frequency components.
Therefore, not even a full FFT has to be computed in
our approach. Instead, the Goertzel algorithm18 can be
used to derive the required frequency components indi-
vidually, which greatly reduces the computational
effort.

Moreover, the STFT processes incoming data in
chunks. Each chunk can be processed in a pipeline
already during the measurements. The full number of
samples never has to be kept in memory
simultaneously.

Undersampling

The Nyquist–Shannon theorem constructs a relation-
ship between the bandwidth of a signal and the required
sampling frequency to reconstruct this signal. In many
applications, the bandwidth is assumed to be equal to

the maximum frequency in the signal. This assumption
leads to the often formulated requirement: the sampling
frequency must be at least twice the maximum fre-
quency in the signal.

However, in the case of VAM, the bandwidth of the
signal is actually very small: the frequencies of interest
cover just a small range around the carrier frequency.
Hence, even with much lower sampling rates, precise
reconstruction of the original signal is possible.

Practically, if a signal is sampled with a sampling
rate fs, the DFT can only contain frequency contribu-
tions up to fs=2. This range is called the baseband. If a
signal contains a frequency component f.fs=2, the
DFT of that signal contains a component f 0 in its base-
band, that is an alias of the higher frequency f . The
amplitude and phase of that alias component are equiv-
alent to the phase and amplitude of the original signal.
Figure 4 illustrates how an alias appears from a higher
frequency.

Unfortunately, several different frequencies f can
map to the same f 0 in an undersampled signal.
Therefore, an essential requirement for correctness in
undersampling is that the signal does not contain more
than one frequency component, that maps to the same
alias f 0. A necessary condition for this is that the band-
width of the signal is smaller than half the sampling fre-
quency. Figure 5 depicts the mapping of the frequency
band in the frequency domain.

The narrow band around fc that is used during a
VAM measurement allows for drastic undersampling.
However, a bandpass filter should be used to reduce
the amount of noise and higher-order harmonics.
Appropriate bandpass filtering guarantees that no two
frequency components in the signal can map to the
same alias frequency.

Using undersampling theorems for unsymmetric
spectra,19 we can calculate the necessary sampling fre-
quency to map the carrier to a known frequency bin in

Figure 4. The red, solid line shows a sinusoidal signal. If it is
sampled with a frequency below the Nyquist rate, the resulting
samples appear to come from a sinusoid with a lower frequency.
This alias is shown as blue, dashed line.
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the baseband. The carrier frequency fc is mapped to
f
0
c = fs=4 in the baseband, if the sampling frequency fs is
chosen as

fs =
4fc

4r + 1
, where r 2 N ð22Þ

Note that undersampling can be performed with
sampling frequencies that do not match equation (22);
however, matching this equation simplifies further pro-
cessing, because the alias always appears in the center
of the baseband at fs=4.

The higher r is chosen, the lower is the resulting
sampling frequency. At the same time, the width of the
frequency band B, that can accurately be reconstructed,
shrinks with higher r. It follows from the Nyquist–
Shannon that

r<
fc

2B
� 1

4
ð23Þ

For practical purposes, the r-value is also bounded
by the data acquisition system. Small jitters in timing
or inaccuracy in sampling frequency can lead to large
errors in the reconstructed signal when the ratio of
undersampling is large.

The same methods for computing the phase vector
P, the envelope vector A, and the resulting damage
index mc can be used as described earlier using the
undersampled signal. Also, the same limitations on
chunk size and the minimum required number of
chunks apply. The only difference is that the carrier fre-
quency fc now has to be replaced by its alias at fs=4 in
all computations.

Evaluation

In this section, we will first show that the proposed
damage indicator mc performs comparably to the MI

with real experimental data. In the second step, we
investigate how much error is caused by applying
undersampling before calculating mc.

AM, PM, and the combined damage indicator

To evaluate the performance of the proposed combined
modulation intensity mc, we re-evaluated data from
existing experiments with real specimens. We then com-
pare the modulation over the specimen’s lifetime mea-
sured with the conventional MI and with the proposed
mc. We also inspect the AM and PM individually. In
this step, no undersampling is applied. Equivalent
experiment setups have been used in existing studies,
and the MI has shown to be sensitive to fatigue damage
accumulation, showing an increase after 70%–80% of
the fatigue lifetime.20 Strong increases of the MI occur
in the presence of microcracks in the range of tens to
hundreds of mm, which have been verified with electron
microscopes.12 In this work, we do not use additional
measurement techniques to verify damage presence or
size, but we compare the results from the proposed
method to the MI.

The experiment was conducted with three aluminum
specimens with dimensions 300mm320mm33mm as
shown in Figure 6. A 4.5-mm notch in the middle of
the specimen was used to predetermine the fatigue fail-
ure’s cross-section. Two disk-shaped piezoceramic
transducers (PZTs) were applied with epoxy to generate
the ultrasonic signal and measure it, respectively. At
one piezo, the probing signal is introduced using the
arbitrary waveform generator of an NI 6366 from the
National Instruments. To drive the piezos with suffi-
cient power, a custom designed buffer and bandpass fil-
ter was used. The signal on the other piezo is measured
using an input channel of the NI 6366.

The specimen was mounted in a tensile testing
machine, which mechanically generated the pumping

Figure 5. Undersampling a bandlimited signal is equivalent to
mapping the frequency band into the baseband. Using the
described constraints for the sampling frequency, the carrier
frequency alias will appear at the center of the baseband. The
signal must not contain any frequency component exceeding the
band around fc to guarantee an unambiguous mapping.

Figure 6. Schematic experiment setup. The pumping frequency
is introduced with a tensile testing machine, while the high
frequency is generated with a piezo disk.

Oppermann et al. 7
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signal. At the same time, one of the piezos generated
the probing signal. For the probing signal, 10 different
frequencies were chosen, ranging from 190 to 199 kHz.
This range is within the effective working range of the
piezos and provided large amplitudes at the receiving
piezo.

We chose 10 Hz as pumping frequency, since the
resonant vibration modes of most target structures,
such as bridges, are similarly low. For example, we
conducted vibration measurements on the Köhlbrand
Bridge in Hamburg, which reveal peak vibration
around 14 Hz. Studies on other bridges report similar
resonant vibration modes at 8 Hz5 or even 3 Hz.9 Such
ambient vibration induced to the structure by traffic
and wind can be leveraged to avoid the artificial gener-
ation of the pumping frequency. By choosing a tensile
fatigue load as low-frequency excitation, it is ensured
that the resulting stresses always act orthogonally on
the surfaces of the fatigue crack. In addition, the same
pumping frequency has been chosen in many experi-
ments by Donskoy and Ramezani.2

The tensile testing machine applied a periodic
force on the specimen to introduce fatigue damage
in between the measurements. The signal on the
receiving PZT was sampled with 2 MSample s21.
The experiment was conducted for each specimen
until the specimen broke.

We computed the conventional MI using the side-
bands in the frequency spectrum as in equation (1), and
the proposed damage index mc as well as AM and PM

individually. Figure 7 shows the different modulation
indicators over load-cycles for two different frequen-
cies. For both frequencies, the MI exhibits the typically
observed strong increase in modulation intensity, start-
ing at roughly 85%–90% of the lifetime.

Inspecting AM and PM at 195 kHz reveals that dur-
ing the experiment, ma increases steadily, while mp

decreases significantly. However, the combined modu-
lation intensity remains relatively constant until the
exponential increase starts toward the end of the life-
time, and correlates well with the MI.

At 199 kHz, mc and the MI also correlate strongly.
However, AM and PM do not exhibit the same ten-
dency as at the previously discussed frequency. The
same observations apply to all frequencies that we have
inspected on all three specimens: the combined MI mc

correlates well with MI, but ma and mp seem not to fol-
low any consistent trend. For some frequencies, ma

rises and mp falls; for others, it is the other way round
and sometimes both develop similarly over the speci-
men’s lifetime. This unpredictable behavior suggests
that neither AM nor PM is a reliable indicator of dam-
age. Instead, a combination of both, such as mc, needs
to be inspected to make robust predictions from VAM
measurements.

Undersampled signals

We evaluate the error that is introduced by undersam-
pling the signal with the same experimental data we

Figure 7. Comparison of different modulation intensity indicators. The graphs show the evolution of the damage indicators over
the specimen’s lifetime for two different carrier frequencies. The proposed mc is very similar to the conventional MI despite the
lower complexity in calculation. Amplitude and phase modulation intensities alone are not conclusive. For better comparability, the
phase modulation index mp is plotted in dB relative to 1 radian.
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have already used in the previous section. The original
data were sampled with fs = 2MSample s�1, and the
damage indicators computed from the original data
will be taken as ground truth for the evaluation.

Before undersampling, we apply a Butterworth
bandpass filter to the original signal to eliminate
unwanted aliasing effects. The filter’s cut-off frequen-
cies depend on the carrier frequency and are chosen at
0:9 � fc and 1:1 � fc.

We pick every nth sample from the original time
series to generate undersampled data, where n is the
ratio of the original sampling frequency and the sam-
pling frequency of the resulting time series. However,
the choice of undersampling frequencies f

0
s is limited by

equation (22) and by the fact that the original sampling
frequency fs must be divisible by f

0
s . Note, however,

that the latter condition is purely artificial since we are
using existing, presampled data for evaluation.

Figure 8 shows the computed damage indicator mc

over the lifetime of the specimen evaluated with differ-
ent sampling frequencies for two different carrier fre-
quencies. The lowest used sampling frequencies are as
low as 160 Hz. In the case of the lowest evaluated sam-
pling frequencies, the damage indicator curve deviates
considerably from the curve computed from the origi-
nal data. Nevertheless, even in this case, the exponen-
tial rise of the curve toward the end of the specimen’s
lifetime is clearly visible.

With a sampling rate of 800 Hz in the case of Figure
8(a), or 1.6 kHz for Figure 8(b), the damage indicator
computed from the undersampled data yields very simi-
lar results to the original one. Although the sampling
rate is roughly 500 times lower than the Nyquist fre-
quency, the differences between the curves are marginal
compared to the curve’s exponential trend over time.

In addition to the sampling frequency, the chunk size
nc is also a variable. With bigger nc, the STFT produces
less phase and amplitude measurements from the time
series, but every individual phase and amplitude mea-
surement will rely on more samples and hence be more

accurate. We also compare the average deviation of the
results from undersampled signals to the original signal
in Table 2.

The results show that the average deviations intro-
duced by undersampling are, in many cases, less than a
tenth of a dB. Even with severe undersampling, only
160 Hz, the average error is still less than a dB.
Considering that during the specimen’s lifetime, mc

often increases more than 10 dB, and these average
errors seem tolerable.

Figure 9 shows the deviations of undersampled sig-
nals from those with full sampling rate for all available
data sets with different combinations of probing fre-
quency, sampling frequency, and chunk size. The errors
depend strongly on the relation between fc and nc. If
fs=nc is chosen bigger than 200, the mc computed from
the undersampled signal differs less than 1 dB from the
ground truth for all data sets. A sampling rate above
800 Hz with a chunk size of four samples is sufficient
to achieve this performance.

The results also show that the chunk size does play
an important role. In our experiment, small chunk sizes
of just four samples per chunk do not lead to signifi-
cantly worse results, that is, the deviation from the orig-
inal signal is not significantly higher than with larger

Figure 8. Comparison of damage index values computed with different rates of undersampling for a carrier frequency of (a)
193 kHz and (b) 194 kHz. The chunk size for the STFTwas only nc = 4.

Table 2. Average deviation of mc computed from
undersampled signals and the original signal with different chunk
sizes nc in dB.

Chunk size nc
fs 4 8 16 32

fc = 193
4 kHz 0.0296 0.0211 0.0240 0.0887
800 Hz 0.1668 0.1557 0.5572 2.4050
160 Hz 0.9286 – – –

fc = 194
8 kHz 0.0107 0.0097 0.0098 0.0225
1600 Hz 0.0752 0.0732 0.1365 0.5679
320 Hz 0.3657 0.7979 – –
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chunk sizes. On the contrary, if chunk sizes become too
big, the deviations grow. The reason for this effect is
that with a larger nc, the vectors A and P have fewer
samples and the modulation caused by the pumping fre-
quency cannot be determined as accurately.

Memory and computation time

Undersampling enables a potentially huge reduction in
memory demand and computational time. To quantify
this improvement, we implemented the conventional MI
algorithm, the HT-based determination of AM and PM,
and the new STFT-based and undersampled algorithm on
an ARM Cortex M4 microcontroller (STM32F446RE).
Having 128 kB internal static random-access memory
(SRAM) and running with 180 MHz clock frequency, this
microcontroller unit (MCU) is much stronger than typical
low-power MCUs characterized in Table 1. However,
these resources are required for signal processing the sam-
ples for MI or HT methods.

Our test scenario evaluated a phase- and amplitude-
modulated sine wave with carrier frequency 49 and
199 kHz. For the conventional MI and the HT, the
49 kHz sine was sampled with fs = 100 kHz. The
Goertzel algorithm was used to retrieve the amplitudes
of the carrier and the lower and higher sideband. The
samples were stored as 16-bit integers, as they are typi-
cally provided from an ADC. For a sufficient fre-
quency resolution, 50 kSample were taken.

For an HT implementation, we computed the deci-
mated discrete-time analytic signal of half sample rate
as presented by Marple.17 Using this algorithm, the cal-
culation can work on the sampled data in place, and
therefore, does not need any memory additional to the
sampled voltages. It relies on FFT algorithms, where
we used state-of-the-art efficient algorithms from the

literature.21 To the best of our knowledge, there is no
more efficient way to calculate the HT on the microcon-
troller. However, the efficient FFT algorithms require a
bigger datatype (4 byte per sample) and restrict the
number of samples to a power of 2. Therefore, on the
given MCU, no more than 16 kSample can be evalu-
ated with HT.

The same signal was also processed using STFT and
undersampling. The signal was sampled with just 4 kHz
and a chunk size of 8 was used for the computation.
Because of the low sampling rate, each sample can be
processed directly when it is taken and does not have to
be stored. Therefore, this implementation only needs
less than a kilobyte of memory, independent of the
record duration, and no additional processing time is
necessary after sampling.

We also measured the consumed energy during sam-
pling and processing. The MCU was put into power-
saving mode whenever possible. The results are shown in
Table 3. The high memory demand makes HT and MI
computation infeasible for higher sampling frequencies.
In feasible situations, HT needs more computation time
and energy compared to the MI. STFT with undersam-
pling outperforms both. Because of its low requirements
on memory and processing speed, the energy demand of
the STFT-based algorithm can be further reduced by
choosing more constrained low-power MCUs.

Discussion

Sources of AM and PM

Recent studies assumed that AM and PM/FM are
caused by different physical effects.1–3 Donskoy and

Figure 9. Overview of the deviation per data set. Every point
represents a measurement for a probing frequency
undersampled with a specific sampling frequency and chunk size.
The plot shows the deviation of mc from the result computed
from the full 2 MHz signal. For each set of parameters, the
deviations are averaged over all load cycles. The plot reveals
that the errors depend strongly on the relation of fs and nc.

Table 3. Comparison of memory requirements M,
computation time Tc , and energy demand E with different
carrier frequencies and recording durations Tr. Some
combinations are not feasible because their requirements
exceed the memory resources of the MCU.

fc, Tr

49 kHz 49 kHz 199 kHz
0:163 s 0:5 s 0:5 s

STFT + US M\1 kB M\1 kB M\1 kB
Tc’0ms Tc’0ms Tc’0ms
E= 10mJ E= 31mJ E= 45mJ

MI M’32 kB M’100 kB M’200 kB
Tc’100ms Tc’295ms Infeasible
E= 41mJ E= 126mJ –

HT M’65 kB M’200 kB M’400 kB
Tc’1:2 s Infeasible Infeasible
E= 204mJ – –

STFT+US: short-time fourier transform and undersampling;

MI: modulation index; HT: Hilbert transform.
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Ramezani2 suggest that FM may better indicate early
fatigue damage, while Hu et al.1 found that AM corre-
lates better with the size of large, visible cracks. In our
experiments, we cannot confirm that either AM or
PM/FM is a reliable indicator on its own.

We want to point out that the modulation type mea-
sured at the receiving piezo during VAM is not necessa-
rily the modulation type caused by a damaged area. To
illustrate that, consider a simplified model of wave pro-
pagation, that assumes just one type of wave being
introduced into the specimen. Although VAM is per-
formed during a steady-state oscillation of the speci-
men, the steady state is produced by the superposition
of many reflections of the generated signal.

Figure 10 (left) shows an example specimen with a
generating ultrasonic transducer and a receiving ultra-
sonic transducer. Exemplarily, three paths p1 to p3 are
sketched, over which the oscillation caused at the gen-
erator reaches the receiver. The wave has traveled a dif-
ferent distance on every path. Hence, the phase offset
of the wave, when it reaches the receiver, may differ for
every path.

If sinusoids with the same angular frequency fc are
interacting, the resultant wave SR is again a sinusoid
with the same frequency

SR =
X
k

Ake
j 2pfct +Fkð Þ = ej2pfct

X
k

Ake
jFk ð24Þ

The phase FR and the amplitude AR of the resultant
sinusoid are given as

AR =
X
k

Ake
jFk

�����

����� , FR = arg
X
k

Ake
jFk

 !
ð25Þ

This shows that the phase of the resultant wave can
be modulated, even if at any individual propagating
path, only AM occurs. Simultaneously, AM can occur,
even though only the phase of one individual

propagation path changes. Figure 10 (right) illustrates
this behavior. The phase and amplitude of the wave
contributed by each propagation path are plotted in
the complex plane, leading to the resultant wave SR at
the receiver. We can see that if the amplitude of p2
decreases, for example, due to crack opening, both the
phase and the amplitude of the resultant wave change.

Hence, if a microcrack or fatigue damage occurs at a
specific location, no matter what physical effect (crack
opening, contact modulation, etc.) occurs, both ampli-
tude and phase of the resultant wave are affected. It
depends on the phase difference between the resultant
wave and the wave from the individual propagation
path, whether the change causes more AM, or more
PM. Hence, we cannot conclude on a specific type of
damage from the type of modulation alone. Recall at
this point that PM and FM cannot be distinguished
with any of the usually applied methods, that is, HT,
IQHS, or STFT. Hence, this observation applies to
studies focusing on measuring FM as well.

These observations on the simplified model also sup-
port the observations from our experiments. PM or
AM alone does not yield conclusive damage indicators.
It is arbitrary, how the modulation introduced in a spe-
cific propagation path affects the modulation in the
resultant wave. Furthermore, for different carrier fre-
quencies on the same specimen in the same damage
state, sometimes PM dominates, and sometimes AM
dominates.

General applicability of undersampling

We have demonstrated with our experiment data that
in case of pumping frequencies in the range of 10 Hz,
even sampling rates as low as 160 Hz can produce suf-
ficiently accurate results. However, many studies exist
that investigate NM using vastly different frequency
ranges. In general, the required sampling rate depends
on the pumping frequency.

For example, Ooijevaar et al.3 use in their study a
pumping frequency of 1455 Hz with a probing fre-
quency of 50 kHz. Using the requirements on sampling
frequency described in equation (13), the lowest possi-
ble sampling rate, that can still detect the modulation
reliably, is roughly 12 kHz. While this sampling rate is
considerably higher than the minimum sampling rates
tested in this work, undersampling still enables a dra-
matic reduction of samples of roughly 88% compared
to the Nyquist frequency of 2fc = 100kHz, that would
have to be applied without undersampling.

Conclusion

This work’s objective was to explore approaches to
make the VAM method sufficiently efficient for use in

Figure 10. A simplified model of wave propagation. The
dotted arrows show a situation in which the amplitude of the
propagation path p2 is decreased. This leads to a change in
phase and in amplitude for the resultant wave.
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low-power WSNs. We proposed to use the STFT
instead of the HT or the IQHS algorithm to split AM
and PM in a signal. The advantages of this approach in
computational complexity and memory demands have
been discussed extensively.

A new damage indicator based on the AM and PM
measurements has been introduced and compared with
the conventionally used MI. Experiments on real speci-
men show that this new indicator performs comparably
to the MI. Furthermore, our experiments suggest that
PM and AM alone cannot reliably assess damage, but
considering both at the same time yields significantly
improved results. A simplified model has been proposed
to explain the possible source of AM and PM and why
they are not reliable individually.

We discussed how undersampling could be used to
drastically reduce the required amount of memory and
computational resources for computing the damage
indicator. Using undersampling on existing experiment
data has achieved virtually identical results with only
0.2% of the conventionally required samples. The pre-
sented algorithm was implemented on a microcontroller
and required only a quarter of the energy compared to
the conventional MI in a test scenario, while consuming
only 1% of the memory. The proposed methods allow
using VAM on low-cost, low-power hardware for low
pumping frequencies by drastically reducing the
required memory and consequentially also the required
computational power of the sensor nodes.
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