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Abstract. A wide variety of problems in global optimization, combinatorial optimization as
well as systems and control theory can be solved by using linear and semidefinite programming.
Sometimes, due to the use of floating point arithmetic in combination with ill-conditioning and
degeneracy, erroneous results may be produced. The purpose of this article is to show how rigorous
error bounds for the optimal value can be computed by carefully postprocessing the output of a
linear or semidefinite programming solver. It turns out that in many cases the computational costs
for postprocessing are small compared to the effort required by the solver. Numerical results are
presented including problems from the SDPLIB and the NETLIB LP library; these libraries contain
many ill-conditioned and real life problems.
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1. Introduction. We consider the (primal) semidefinite program in block diag-
onal form

p∗ := min
n∑

j=1

〈Cj , Xj〉 s.t.
n∑

j=1

〈Aij , Xj〉 = bi for i = 1, . . . ,m,

Xj � 0 for j = 1, . . . , n,

(1.1)

where Cj , Aij , and Xj are symmetric sj × sj matrices, b ∈ Rm, and

〈C,X〉 = trace (CT X) (1.2)

denotes the inner product for the set of symmetric matrices. Moreover, � is the
Löwner partial order, that is X � Y iff X − Y is positive semidefinite. In the case
n = 1 we suppress the index j, and write shortly C,X, Ai, and s for the dimension.

If sj = 1 for j = 1, . . . , n (i.e. Cj , Aij , and Xj are real numbers), then (1.1)
defines the standard linear programming problem. Hence, semidefinite programming
is an extension of linear programming.

The Lagrangian dual of (1.1) is

d∗ := max bT y s.t.
m∑

i=1

yiAij � Cj for j = 1, . . . , n, (1.3)

where y ∈ Rm. The constraints
∑m

i=1 yiAij � Cj are called linear matrix inequalities
(LMI).

The duality theory is similar to linear programming, but more subtle. The pro-
grams satisfy the weak duality condition

d∗ ≤ p∗, (1.4)

but strong duality requires in contrast to linear programming additional conditions
(see Ramana, Tunçel, and Wolkowicz [25] and Vandenberghe and Boyd [31]).

Theorem 1.1 (Duality Theorem).
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a) If (1.1) is strictly feasible (i.e. there exist feasible positive definite matrices
Xj for j = 1, . . . , n) and p∗ is finite, then p∗ = d∗ and the dual supremum
is attained.

b) If (1.3) is strictly feasible (i.e. there exists some y ∈ Rm such that Cj −∑m
i=1 yiAij are positive definite for j = 1, . . . , n) and d∗ is finite, then p∗ =

d∗, and the primal infimum is attained.
In general, one problem may have optimal solutions and its dual is infeasible, or

the duality gap may be positive at optimality. The strict feasibility assumptions in
Theorem 1.1 are called Slater constrained qualifications.

Semidefinite programming and LMI-methods are evidenced by many applications
and a number of survey papers (see for example Skelton and Iwasaki [29], Balakr-
ishnan and Feron [2], and Vandenberghe and Boyd [31]). Applications include global
optimization problems, optimal state space realizations, robust controller design, inte-
ger programming problems, as well as eigenvalue problems in the form of minimizing
the largest, or minimizing the sum of the first few largest eigenvalues of a symmetric
matrix X subject to linear constraints on X.

Semidefinite programs can be solved in polynomial time if an a priori bound for
the size of their solution is known (see M. Grötschel, L. Lovász, and A. Schrijver [7]).
This is a consequence of the ellipsoid method for convex programming. The ellipsoid
method has not proven practical, and interior point methods turned out to be the
method of choice in semidefinite programming.

Conventionally, algorithms assume that the input data are given exactly, and they
use floating point arithmetic for computing an approximate solution. Occasionally,
wrong results may be produced, not solely but especially for ill-conditioned problems.
Examples where commercial solvers fail for linear optimization problems can be found
in Neumaier and Shcherbina [23], and in [10]. It cannot be answered how frequently
such failures occur. Ill-conditioning is, however, frequently observed. In a recent paper
by Ordóñez and Freund [24] it is stated that 71% of the lp-instances in the NETLIB
Linear Programming Library [19] are ill-posed, i.e. the problems have an infinite
condition number. The condition number is defined as the scale-invariant reciprocal
of the smallest data perturbation that will render the perturbed data instance either
primal or dual infeasible. It is set to ∞ if the distance to primal or dual infeasibility
is 0, and in this case the problem is called ill-posed.

As pointed out in Neumaier and Shcherbina [23], ill-conditioning is also likely to
take place in combinatorial optimization when branch-and-cut procedures sequentially
generate linear or semidefinite programming relaxations. Therefore, the computation
of rigorous error bounds, which takes account of all rounding errors and of small errors
in the input data, can be valuable in practice.

The primary purpose of this paper is to show that by properly postprocessing
the output of a semidefinite or linear solver, rigorous error bounds for the optimal
value can be obtained. Moreover, existence of optimal solutions can be proved, or
a certificate of infeasibility can be given. The input data are allowed to vary within
small intervals. Our numerical experience with the NETLIB LP library and other
problems demonstrates that, roughly spoken, rigorous lower and upper error bounds
for the optimal value are computed even for ill-conditioned and degenerate problems.
The quality of the error bounds depends on the quality of the computed approxi-
mations and the distances to dual and primal infeasibility. It is typical that either
no finite rigorous bounds or distant bounds are computed if the solver gives bad
approximations.
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The presented results can be viewed as a further development of similar meth-
ods for linear programming (Neumaier and Shcherbina [23], and [10]) and convex
programming [9].

The paper is organized as follows. Section 2 contains notation, and in §3 an
algorithm for computing a rigorous lower bound of the global minimum value is con-
sidered. Then, in §4, a rigorous upper bound of the optimal value together with a
certificate of existence of optimal solutions is presented. In §5 we show how these rig-
orous bounds can be used for obtaining certificates of infeasibility. Section 6 contains
numerical results. Finally, in §7 some conclusions are given.

2. Notation, interval arithmetic. Throughout this paper we use the following
notation. R, Rn, Rn

+, and Rm×n denote the sets of real numbers, real vectors, real
nonnegative vectors, and real m× n matrices, respectively. Comparisons ≤, absolute
value | · |, min, max, inf and sup are used entrywise for vectors and matrices.

For a symmetric matrix A the eigenvalues are sorted non-increasingly, λmax(A) =
λ1(A) ≥ λ2(A) ≥ . . . ≥ λmin(A).

For µ ∈ R the operator

svec(A,µ) := (A11, µA21, . . . , µAn1, A22, µA32, . . . , µAn n−1, Ann)T , (2.1)

transforms symmetric n× n matrices into (n + 1)n/2 vectors with the property that
the inner product of two symmetric matrices A,B is

〈A,B〉 = svec(A, 2)T svec(B, 1) = svec(A,
√

2)T svec(B,
√

2), (2.2)

and svec(A,
√

2) is the customary svec operator. We prefer the first representation of
the inner product, since this avoids conversion errors of the input data of semidefinite
programs in its vector representation form. The inverse operator of svec is denoted
by smat(a, µ).

For block matrices with blocks Aj for j = 1, . . . , n we define the concatenated
vector

svec((Aj), µ) := (svec(A1, µ); . . . ; svec(An, µ)). (2.3)

We require only some elementary facts about interval arithmetic, which are de-
scribed here. There are a number of textbooks on interval arithmetic and self-
validating methods that can be highly recommended to readers. These include Alefeld
and Herzberger [1], Moore [18], and Neumaier [20], [21].

If V is one of the spaces R, Rn, Rm×n, and v, v ∈ V, then the box

v := [v, v] := {v ∈ V : v ≤ v ≤ v} (2.4)

is called an interval quantity in IV with lower bound v and upper bound v. In
particular, IR, IRn, and IRm×n denote the set of real intervals a = [a, a], the set
of real interval vectors x = [x, x], and the set of real interval matrices A = [A,A],
respectively. The real operations A ◦ B with ◦ ∈ {+,−, ·, /} between real numbers,
real vectors and real matrices can be generalized to interval operations. The result
A◦B of an interval operation is defined as the interval hull of all possible real results,
that is

A ◦B := ∩{C ∈ IV : A ◦B ∈ C for all A ∈ A, B ∈ B}. (2.5)
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All interval operations can be easily executed by working appropriately with the
lower and upper bounds of the interval quantities. For example, in the simple case of
addition, we obtain

A + B = [A + B,A + B]. (2.6)

Interval multiplications and divisions require a distinction of cases. For interval quan-
tities A,B ∈ IV we define

midA := (A + A)/2 as the midpoint, (2.7)
radA := (A−A)/2 as the radius, (2.8)
|A| := sup{|A| : A ∈ A} as the absolute value, (2.9)
A+ := max{0, A}, (2.10)
A− := min{0, A}. (2.11)

Moreover, the comparison in IV is defined by

A ≤ B iff A ≤ B,

and other relations are defined analogously. Real quantities v are embedded in the
interval quantities by identifying v = v = [v, v].

We call A ∈ IRn×n symmetric, if Aij = Aji for all i, j, and A is called positive
semidefinite if all A ∈ A have this property.

For linear systems of equations with inexact input data, the aim frequently is to
compute an interval vector x ∈ IRn containing the solution set

Σ(A,b) := {x ∈ Rn : Ax = b for some A ∈ A, b ∈ b}, (2.12)

where A ∈ IRn×n, and b ∈ IRn. This is an NP-hard problem, but there are several
methods that compute enclosures x. A precise description of such methods, required
assumptions, and approximation properties can be found for example in Neumaier
[20]. Roughly speaking, it turns out that for interval matrices with ‖I − RA‖ < 1
(R is an approximate inverse of the midpoint midA) there are several methods which
compute an enclosure x with O(n3) operations. The radius radx decreases linearly
with decreasing radii radA and radb. For the computation of enclosures in the case
of large-scale linear systems the reader is referred to Rump [26].

In interval arithmetic several methods for computing rigorous bounds for all or
some eigenvalues of interval matrices were developed. Some important references are
Floudas [5], Mayer [17], Neumaier [22], and Rump [26, 27].

3. Rigorous lower bound. In many applications some or all input data are
uncertain. We model these uncertainties by intervals. In the case of semidefinite
programming we assume that symmetric interval matrices Cj ,Aij ∈ IRsj×sj , i =
1, . . . ,m, j = 1, . . . , n, and an interval vector b ∈ IRm are given. This yields a family
of semidefinite programs (1.1), where the input data P = (A, b, C) are allowed to vary
within interval bounds P := (A,b,C).

In order to indicate the dependency on the input data, we sometimes write p∗(P ),
d∗(P ), X∗(P ), etc.

First, we state a lemma proving a lower bound for the inner product of two
symmetric matrices.
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Lemma 3.1. Let D,X be symmetric matrices of dimension s that satisfy

d ≤ λmin(D), 0 ≤ λmin(X), and λmax(X) ≤ x. (3.1)

Then

〈D,X〉 ≥ s · d− · x. (3.2)

Proof. Let D have the eigenvalue decomposition

D = QΛ(D)QT , QQT = I,

where Λ(D) is the diagonal matrix with eigenvalues of D on the diagonal. Then

〈D,X〉 = trace(QΛ(D)QT X)
= trace(Λ(D)QT XQ)

=
s∑

k=1

λk(D)Q(:, k)T XQ(:, k).

Because of (3.1), we have 0 ≤ Q(:, k)T XQ(:, k) ≤ x yielding

〈D,X〉 ≥
s∑

k=1

λk(D)− · x ≥ s · d− · x.

We are now ready to prove a rigorous lower bound for the optimal value p∗.
Theorem 3.2. Let P define a family of semidefinite programs (1.1) with input

data P ∈ P, let ỹ ∈ Rm, set

Dj := Cj −
m∑

i=1

ỹiAij for j = 1, . . . , n, (3.3)

and suppose that

dj ≤ λmin(Dj) for j = 1, . . . , n. (3.4)

Assume further that upper bounds for the maximal eigenvalues of the primal feasible
solution of (1.1)

λmax(Xj) ≤ xj , for j = 1, . . . , n (3.5)

are known, where xj may be infinite. If

dj ≥ 0 for xj = +∞, (3.6)

then for every P ∈ P the inequality

p∗(P ) ≥ inf{bT ỹ +
n∑

j=1

sj · d−j · xj} (3.7)

is satisfied, and the right hand side of (3.7) is finite. Moreover, for every P ∈ P and
every j with dj ≥ 0 the LMI

m∑
i=1

yiAij − Cj � 0
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is feasible with y := ỹ.
Proof. Let P = (A, b, C) ∈ P be chosen fixed, and let Xj = Xj(P ) be primal

feasible for P and j = 1, . . . , n. Let

Dj = Cj −
n∑

i=1

ỹiAij for j = 1, . . . , n,

then

n∑
j=1

〈Cj , Xj〉 =
n∑

j=1

〈Dj +
n∑

i=1

ỹiAij , X〉 = bT ỹ +
n∑

j=1

〈Dj , Xj〉.

Since Dj ∈ Dj , Lemma 3.1 implies

n∑
j=1

〈Dj , Xj〉 ≥
n∑

j=1

sj · d−j · xj ,

which proves the inequality (3.7), and the assumption (3.6) yields a finite right hand
side. The last statement is an immediate consequence of Dj ∈ Dj and λmin(Dj) ≥
dj ≥ 0.

In order to judge the quality of the lower bound (3.7), we assume that
i) exact input data P = P are given,
ii) D = D is computed exactly, and
iii) the Slater constrained qualifications are fulfilled.

Moreover, let ỹ be the optimal solution of the dual problem (1.2), and let dj = λmin(D)
for j = 1, . . . , n. Then dj ≥ 0 for j = 1, . . . , n, and

p∗(P ) = d∗(P ) = bT ỹ = inf{bT ỹ +
n∑

j=1

sj · d−j · xj}.

Hence, no overestimation occurs, and it follows that the quality of this lower bound
mainly depends on the quality of the dj and on the computed approximation ỹ.

An immediate consequence is the following error bound for linear programming
problems

p∗ := min cT x s.t. Ax = b, x ≥ 0, (3.8)

which is proved in [10], and in [27] for finite bounds xj . The input data are A ∈ Rm×n,
b ∈ Rm, c ∈ Rn and P = (A, b, c) ∈ Rm×n+m+n.

Corollary 3.1. Let P = (A,b, c) ∈ IRm×n+m+n, ỹ ∈ Rm, and let

d := c−AT ỹ. (3.9)

Assume further that upper bounds for the primal feasible solutions of (3.8)

xj ≤ xj for j = 1, . . . , n

are known, which may be infinite. If

dj ≥ 0 for xj = +∞, (3.10)
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then for every P ∈ P the optimal value p∗(P ) satisfies the inequality

p∗(P ) ≥ inf{bT ỹ +
n∑

j=1

d−j · xj}. (3.11)

Proof. Apply Theorem 3.2 to the semidefinite program where the symmetric
matrices Aij , Cj and Xj are one-dimensional.

Next, we describe an algorithm for computing a lower bound of the optimal value,
which is based on Theorem 3.2. We assume that an approximate dual optimal solution
ỹ ∈ Rm of the midpoint problem midP is known. If condition (3.6) is fulfilled, the
only work is to compute the right hand side of (3.7). Otherwise, the idea is to perturb
all constraints which violate condition (3.6); that is, we solve a perturbed midpoint
problem P = (midA,midb, C(ε)) with

Cj(ε) = midCj − εjI, εj =
{

> 0 if dj < 0 and xj = +∞
0 otherwise. (3.12)

Then the dual optimal solution y(ε) satisfies the constraints

midCj −
m∑

i=1

yi(ε) midAij � εjI.

Hence, the minimal eigenvalues of the new defect

Dj(ε) := Cj −
m∑

i=1

yi(ε)Aij

will increase. Choosing εj very large may imply dual infeasibility, choosing εj > 0
too small may not be sufficient for satisfying (3.6). Our current trade off is to solve
repeatedly perturbed programs until either condition (3.6) is satisfied, or the dual is
infeasible. The details are given in Algorithm 3.1.

The algorithm terminates during the first iteration in step 3 if all simple bounds
xj are finite or all dj are nonnegative. In this case the computational costs are
O(m ·

∑n
j=1 s2

j ) for computing the Dj ’s, the lower bounds dj require O(
∑n

j=1 s3
j )

operations, and the bound p∗ needs O(m+n) operations. Hence the costs are negligible
compared to the costs for approximately solving a semidefinite program.

In other cases, however, the computational costs may increase because perturbed
semidefinite programs must be solved until either the semidefinite programming solver
indicates dual infeasibility of the perturbed problem or the maximal number of iter-
ations lmax is reached.

Several modifications of this algorithm are possible and may yield improvements.
Here we have considered a simple choice of perturbations: In each step we add to εj

the negative defects −dj multiplied by a factor 2kj , where kj counts the number of
iterations that violated the inequality dj ≥ 0.

In applications we recommend to use infinite bounds xj instead of unreasonable
large bounds, because otherwise the sum in (3.7) may yield an unnecessary overesti-
mation.

If the upper bounds xj = +∞ for j = 1, . . . , n, and Algorithm 3.1 delivers a finite
lower bound p∗, then the lower eigenvalue bounds dj must be nonnegative. Since the
computation of these eigenvalue bounds introduces some small overestimation, the
termination in step 3 in fact proves strict dual feasibility. Hence, the distance to dual
infeasibility is greater than zero.
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Algorithm 3.1. Rigorous lower bound

given: real or interval input data P = (A,b, c),
upper bounds xj for j = 1, . . . , n,
approximate dual optimal solution ỹ for midP,
p∗ := −∞,
maximal numbers of iterations lmax,
ε := 0, k := 0, l := 0.

while perturbed problem P (ε) is dual feasible and l ≤ lmax

1. Compute Dj = Cj −
m∑

i=1

ỹiAij , j = 1, . . . , n.

2. Compute rigorous lower bounds dj ≤ λmin(Dj), for j = 1, . . . , n.
3. If dj ≥ 0 for every j with xj = +∞ then compute

p∗ = inf{bT ỹ +
n∑

j=1

sj · d−j · xj},

STOP.
4. Compute for j = 1, . . . , n

kj :=

{
kj + 1 if dj < 0 and xj = +∞
kj otherwise,

εj :=

{
−2kj dj + εj if dj < 0 and xj = +∞
εj otherwise.

5. Solve the perturbed midpoint problem P (ε) = (midA,midb, C(ε)), where
Cj(ε) = midC − εjI for j = 1, . . . , n, and set ỹ := ỹ(ε) (approximate dual
optimal solution).

6. l := l + 1.
end

4. Rigorous upper bound. In this section we investigate the computation of
a rigorous upper bound for the optimal value of a semidefinite program together with
a certificate of existence of primal feasible solutions. The basic idea is to compute
interval matrices Xj for j = 1, . . . , n that contain for every semidefinite program
P ∈ P a primal feasible solution. The desirable characteristics of the matrices Xj are
given in the next theorem.

Theorem 4.1. Let P define a family of semidefinite programs (1.1), and suppose
that there exist interval matrices Xj for j = 1, . . . , n, such that

∀ b ∈ b, Aij ∈ Aij , i = 1, . . . ,m, j = 1, . . . , n

∃ symmetric Xj ∈ Xj :
n∑

j=1

〈Aij , Xj〉 = bi,
(4.1)

and for j = 1, . . . , n

Xj � 0 for all symmetric Xj ∈ Xj . (4.2)
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Then, the optimal value is bounded from above by

p∗(P ) ≤ sup{
n∑

j=1

〈Cj ,Xj〉} (4.3)

Moreover, if all symmetric Xj ∈ Xj are positive definite and p∗(P ) is bounded from
below, then p∗(P ) = d∗(P ) for every P ∈ P (no duality gap), and the dual supremum
is attained.

Proof. Let P ∈ P be a fixed chosen problem. Then the conditions (4.1) and
(4.2) imply that there exists a primal feasible solution Xj = Xj(P ) for j = 1, . . . , n.
Hence,

∑n
j=1〈Cj , Xj〉 ≥ p∗(P ), and the inclusion property (2.5) yields (4.3). The

Strong Duality Theorem together with (4.1) and (4.2) shows the existence of a dual
optimal solution, and that there is no duality gap.

In the following, we describe an algorithm for computing this rigorous upper
bound. This algorithm must find appropriate interval matrices Xj , and verify the
conditions (4.1) and (4.2). We discuss these items below.

To make sure that the upper bound (4.3) is close to the optimal value, the interval
matrices Xj must be close to optimality. The complementary slackness relations may
yield rank-deficient matrices that are not positive definite. Therefore, we solve the
slightly perturbed midpoint problem

min
n∑

j=1

〈Cj , Xj〉 s.t.
n∑

j=1

〈Aij , Xj〉 = bi for i = 1, . . . ,m,

Xj � εj · I, for j = 1, . . . , n,
(4.4)

where εj is positive and the input data (A, b, c) = midP. Then for small εj the optimal
solution (Xj(εj)) is positive definite and close to the optimal solution of the midpoint
problem. This solution is used below to construct appropriate interval matrices (Xj).

The semidefinite program (1.1) can be written in the equivalent vector represen-
tation form

min cT x s.t. Amatx = b, Xj � 0, for j = 1, . . . , n, (4.5)

where

c := svec((Cj), 2), (4.6)
x := svec((Xj), 1), (4.7)

and the i-th row of the m×
∑n

j=1
sj(sj+1)

2 matrix Amat is defined by

Amat(i, :) = svec((Aij)n
j=1, 2). (4.8)

If interval input data P are given, then we denote by Amat, b, and c the corresponding
interval quantities. Thus condition (4.1) is equivalent to

∀ b ∈ b, ∀Amat ∈ Amat ∃x ∈ x : Amatx = b, (4.9)

which is an underdetermined system of linear equations with interval input data.
Given an approximate optimal solution (Xj(εj))n

j=1, it is straight forward to solve
such a system.
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We start by assuming that the m×m submatrix midAmat
I with the m columns

midAmat(:, βi) is nonsingular. Let I = {β1, . . . , βm}, let N denote all indices of
columns of midAmat which are not in I, let Amat

N be the matrix with columns
corresponding to the indices of N , and let x̃ = svec((Xj(εj)), 1). Now we fix the
variables x̃N , and compute with some verification method for interval linear systems
an enclosure xI of the solution set

ΣI := {xI ∈ Rm : Amat
I xI = b−

∑
γ∈N

Amat
N x̃N , A ∈ Amat, b ∈ b}. (4.10)

Then x := (xI ; x̃N ) fulfills (4.9), and therefore (Xj) := smat(x, 1) satisfies condition
(4.1). Condition (4.2) must be verified by some method for computing a rigorous
lower bound for the smallest eigenvalue of a symmetric interval matrix.

Algorithm 4.1 contains the details for computing a rigorous upper bound for the
optimal value and for proving existence of primal feasible solutions.

If Algorithm 4.1 delivers a finite upper bound p∗, then the lower eigenvalue bounds
λj must be nonnegative. Since the computation of these eigenvalue bounds introduces
some small overestimation, the termination in step 3 in fact proves strict primal
feasibility. Hence, the distance to primal infeasibility is greater than zero.

Krawzcyk [15] was the first who solved non degenerate interval linear program-
ming problems by using the technique of fixing appropriate variables (the nonbasic
variables) and solving a remaining quadratic interval linear system for the basic vari-
ables. In [8] this technique was used to compute enclosures of all optimal vertices in
the case of degeneration. Hansen used this technique in order to prove existence of a
feasible point for nonlinear equations within a bounded box. It was further modified
and investigated numerically by Kearfott [11], [12], and is also described in his book
[13]. Corresponding algorithms are implemented in his software package GlobSol.

5. Certificate of Infeasibility. In branch and bound algorithms a subprob-
lem is discarded if the local nonlinear solver detects infeasibility. It is not a rare
phenomenon that sometimes local solvers do not find feasible solutions of a subprob-
lem, although they exist (see for example the comments for use of SDPT3 [30]). A
consequence is that the global minimum solutions may be cut off.

To avoid this disadvantage we can apply the rigorous lower bounds to a phase
I problem. In the literature there are several variations of the phase I method. It
is common, however, that the auxiliary objective function describes the infeasibility
in the sense that the problem has no feasible solutions, provided the optimal value
is greater than zero. The latter property can be verified by the algorithms of the
previous section.

Another approach for verifying infeasibility for linear programs in the case of
bounded variables is described in Neumaier and Shcherbina [23]. It is based on the
observation that the dual of an infeasible problem is unbounded or infeasible, and in
many cases solvers compute a ray exposing this. This information can be used for a
certificate of infeasibility based on the Farkas lemma.

6. Numerical results. In this section, we present some numerical experiments.
The results for the following semidefinite problems were obtained by using MATLAB
[16], the interval toolbox INTLAB [28], and the semidefinite solver SDPT3 (version
3.02) [30].
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Algorithm 4.1. Rigorous upper bound, certificate of feasibility

given: real or interval input data P = (A,b, c),
approximate primal optimal solution (X̃j)n

j=1 of the midpoint problem,
p∗ := ∞,
maximal number of iterations lmax, ε := 0, k := 0, l := 0.

Choose an index set I such that the submatrix midAmat(:, I) is (at least numerically)
nonsingular (for example, by performing an lu decomposition on midAmat).

if there is no nonsingular submatrix then STOP.

while perturbed problem P (ε) is primal feasible and l ≤ lmax

1. Compute an enclosure xI of the solution set ΣI , and set x := (xI ; x̃N ).
2. Set (Xj) = smat(x, 1), and compute rigorous bounds

λj ≤ λmin(Xj) for j = 1, . . . , n.

3. if λj ≥ 0 for j = 1, . . . , n then compute

p∗ = sup{cT x},

STOP.
4. Compute for j = 1, . . . , n

kj :=

{
kj + 1 if λj < 0
kj otherwise,

εj :=

{
−2kj λj + εj if λj < 0
εj otherwise.

5. Solve the perturbed problem (4.4), set X̃j := X̃j(ε) for j = 1, . . . , n (approx-
imate primal optimal solution), and set x̃ := svec((X̃j), 1).

6. l := l + 1.
end

First we consider a semidefinite program of small size

min 〈

 0 1
2 0

1
2 δ 0
0 0 δ

 , X〉

s.t. 〈

 0 − 1
2 0

− 1
2 0 0

0 0 0

 , X〉 = 1,
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〈

 1 0 0
0 0 0
0 0 0

 , X〉 = ε,

〈

 0 0 1
0 0 0
1 0 0

 , X〉 = 0,

〈

 0 0 0
0 0 1
0 1 0

 , X〉 = 0,

X � 0.

The Lagrangian dual is

d∗ = max y1 + εy2 s.t. Y := C −
4∑

i=1

Ai1yi

=

 −y2
1+y1

2 −y3
1+y1

2 δ −y4

−y3 −y4 δ

 � 0.

The linear constraints of the primal problem imply

X =

 ε −1 0
−1 X22 0
0 0 X33

 ,

and X is positive semidefinite iff X22 ≥ 0, X33 ≥ 0, and ε·X22−(−1)2 ≥ 0. Hence, for
ε ≤ 0, the problem is primal infeasible and p∗ = +∞. The dual problem is infeasible
for δ < 0 with d∗ = −∞.

For ε = 0 and δ = 0 we obtain a duality gap with p∗ = +∞ and d∗ = −1, and
the problem is ill-posed. For ε > 0 and δ > 0 the Slater constrained qualifications are
satisfied and the optimal value p∗ = d∗ = −1 + δ/ε.

Numerical results for different values ε and δ are summarized in Table 6.1. The
termination code tc = 0 in SDPT3 means normal termination without warning,
whereas tc = −7 indicates primal infeasibility.

We see that SDPT3 is not backward stable, since in five cases p̃∗ < d̃∗, violat-
ing the weak duality. Nevertheless, the rigorous bounds p∗ and p∗ overestimate the
optimal value only slightly, and this overestimation depends on the quality of the
computed approximations. The bounds are infinite if the problem is infeasible or very
ill-conditioned. For larger values ε > 0 and δ > 0 the approximations and the rigorous
bounds are almost identical, and are not displayed here.

Next, we consider some random problems that are generated by the routine
randsdp available in SDPT3. For fixed n = 2 with dimensions s1 = s2 = 50 and
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Table 6.1
Approximations p̃∗, d̃∗ and rigorous bounds p∗, p∗

ε δ p̃∗ d̃∗ tc p∗ p∗

0 0 −1.0004 −0.99355 0 ∞ −∞
10−8 10−8 −0.99184 −0.98372 0 ∞ −0.98373
10−6 10−10 −1.0007 −1.0027 0 −0.99965 −1.0061
10−4 10−3 8.9004 8.9990 0 9.2586 8.9990
−10−4 10−3 28.228 142.86 0 ∞ 142.86
10−4 −10−4 −5.9323 −1.0361 −7 −5.9324 −∞

Table 6.2
Accuracy for the random problems

m p∗ µ(p̃∗, d̃∗) µ(p∗, p∗
1
) µ(p∗, p∗

2
)

10 −6.2681e + 002 4.3247e− 007 5.9976e− 004 5.9976e− 004
30 8.0343e + 003 1.3344e− 007 9.8268e− 005 9.8268e− 005
50 4.9363e + 003 7.3853e− 008 7.3835e− 008 7.3835e− 008

100 1.2226e + 004 1.0397e− 009 1.0379e− 009 1.0379e− 009
200 3.3755e + 003 5.0769e− 009 1.5861e− 007 1.5861e− 007
500 2.5818e + 004 5.6273e− 009 6.8369e− 007 6.8369e− 007

1000 7.0016e + 004 6.8072e− 009 6.8744e− 009 6.8744e− 009

varying m the results are displayed in Tables 6.2 and 6.3. All Aij ’s and Cj ’s are
dense symmetric matrices, and the number of variables (coefficients of Xj ’s) is equal
to 2550. The accuracy is measured by

µ(a, b) :=
|a− b|

max{1.0, (|a|+ |b|)/2}
.

For these problems we have computed the rigorous upper bound p∗, and two rigorous
lower bounds p∗

1
and p∗

2
. For the first lower bound it is assumed that x1 = x2 = +∞,

and for the second one we used x1 = x2 = 105. Table 6.2 shows the accuracy, and
in Table 6.3 the performance is given. By tp̃∗ , tp∗ , tp∗

1
, and tp∗

2
we denote the times

in seconds for computing the corresponding quantities. In all cases the existence of
optimal solutions is rigorously verified.

We see that in the cases m = 10, m = 30, m = 200, and m = 500, the rigorous
accuracy µ(p∗, p∗

1
) is inferior compared to the approximate accuracy µ(p̃∗, d̃∗), whereas

surprisingly in the other cases both accuracies are almost equal. At a first glance one
would suspect that this accuracy is lost due to the worst case analysis done in our
approach. But looking more deeply into the code we found the following reason.
The algorithm SDPT3 [30] is stopped in the case of solvability if a sufficient accurate
solution has been obtained, especially for the primal solution x̃ the inequality

‖Amatx̃− b‖/ max{1, ‖b‖} ≤ 10−8 (6.1)

must be satisfied. The corresponding matrix X̃ := smat(x̃, 1) is close to rank-
deficiency, and the magnitude of its smallest eigenvalue is frequently around +10−9

or +10−10. On the other hand, the inequality (6.1) only takes account of the defect
Amatx̃− b. Hence, it can happen that for the exact solution x̂ of Amatx = b that is
closest to the computed approximation x̃, the norm ‖x̂− x̃‖ � 10−8 and the smallest
eigenvalue of X̂ = smat(x̂, 1) is negative. In other words, the computational approxi-
mation X̂ is not sufficiently close to optimality. The consequence is that in Algorithm
4.1 some perturbed problems must be solved, which decreases the rigorous accuracy
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Table 6.3
Performance comparison for the random problems

m tp̃∗ tp∗ tp∗
1

tp∗
2

10 1.78 5.25 0.45 0.16
30 3.80 6.89 0.36 0.38
50 5.55 5.64 0.53 0.52

100 13.72 18.19 1.05 1.05
200 41.52 87.52 1.94 1.89
500 209.98 449.23 4.73 4.73

1000 728.81 1421.03 11.81 9.97

Table 6.4
Accuracy for the SDPLIB problems

problem p∗ p∗ µ(p̃∗, d̃∗) µ(p∗, p∗)

arch2 −6.71509e− 001 −6.71515e− 001 2.69574e− 007 6.52201e− 006
arch8 −7.05698e + 000 −7.05698e + 000 1.84683e− 008 4.75031e− 007
control1 −1.77730e + 001 −1.77846e + 001 7.27895e− 008 6.54242e− 004
control4 −1.97482e + 001 −1.97942e + 001 7.31969e− 007 2.32978e− 003
control10 −3.49547e + 001 −3.85331e + 001 2.77620e− 006 9.73881e− 002
control11 −2.51222e + 001 −3.19587e + 001 6.47652e− 006 2.39539e− 001
mcp100 −2.26157e + 002 −2.26157e + 002 5.76094e− 009 1.62170e− 008
mcp250-1 −3.17264e + 002 −3.17264e + 002 4.76695e− 010 8.71740e− 009
theta3 −4.21670e + 001 −4.21670e + 001 7.93078e− 010 3.96012e− 007
theta4 −5.03212e + 001 −5.03212e + 001 1.07772e− 008 7.55169e− 007
theta5 −5.72320e + 001 −5.72323e + 001 5.00122e− 008 5.08575e− 006
truss2 1.23382e + 002 1.23380e + 002 1.56295e− 007 9.64838e− 006
truss5 1.32636e + 002 1.32636e + 002 5.09856e− 010 4.81005e− 006
truss8 1.33130e + 002 1.33115e + 002 5.36216e− 006 1.13718e− 004

but increases the computational work. Notice, that for computing the upper bound
we set x̂N = x̃N , and thus we try to compute the closest exact solution.

Following, we describe the numerical results on some problems from the SDPLIB
collection of Borchers [4]. We emphasize that with our current implementation we
cannot solve the largest problems. At the moment, for problems with more than 3500
equations and 50000 variables the algorithm runs out of memory; for example theta5
with 3028 equations and about 30000 variables can be solved rigorously, but theta6
cannot. We guess that in future releases the range of applicability can be extended.
Results are given in Tables 6.4 and 6.5. For all these problems existence of primal
and dual optimal solutions and the Slater constrained qualifications could be verified.

We see that, as in the case of random problems, sometimes the rigorous accuracy
is worse than the approximate accuracy. It is typical that the computational time for
the upper bound tp∗ is larger than the time tp̃∗ needed for the approximate solution,
whereas tp∗ is in many cases only a fraction of tp̃∗ .

There are a number of problems in the SDPLIB which are ill-posed, for example
the graph partitioning problems gpp. There, the aim is to find a partition of the node
set of a weighted undirected graph, such that the cardinality of the partition is equal,
and the cut is minimal with respect to the given weight. A semidefinite programming
relaxation of this problem is

p∗ := min〈C,X〉
s.t.〈Eii, X〉 = 1

4 , for i = 1, . . . , n
〈E,X〉 = 0,

X � 0
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Table 6.5
Performance comparison for the SDPLIB problems

problem tp̃∗ tp∗ tp∗

arch2 11.08 16.09 1.00
arch8 11.22 17.55 13.47
control1 1.14 1.72 0.31
control4 10.91 13.03 0.97
control10 398.78 514.30 290.49
control11 630.70 813.75 434.25
mcp100 1.61 4.80 0.30
mcp250-1 5.64 12.81 0.75
theta3 13.67 37.81 11.75
theta4 46.44 150.67 37.25
theta5 143.75 547.34 91.81
truss2 8.94 19.95 3.37
truss5 12.84 17.14 10.84
truss8 15.50 26.63 26.77

Table 6.6
Accuracy for some SDPLIB problems

problem p∗ p∗ µ(p̃∗, d̃∗) µ(p̃∗, p∗)

gpp100 +∞ 4.49435e + 001 7.00054e− 008 −6.79464e− 008
gpp124-1 +∞ 7.34307e + 000 3.44803e− 007 −3.22380e− 007
gpp124-4 +∞ 4.18988e + 002 7.30945e− 008 −7.17255e− 008
gpp250-1 +∞ 1.54449e + 001 7.12482e− 008 1.52073e− 008
qap5 +∞ 4.36000e + 002 1.17714e− 009 1.17716e− 009
qap6 +∞ 3.81404e + 002 9.41390e− 005 −9.41390e− 005
qap7 +∞ 4.24790e + 002 7.24794e− 005 −7.24794e− 005
qap8 +∞ 7.56865e + 002 1.21964e− 004 −1.21964e− 004
qap9 +∞ 1.40988e + 003 4.54030e− 005 −4.54030e− 005
hinf1 +∞ −2.03281e + 000 1.00564e− 004 −1.00564e− 004
hinf4 +∞ −2.74768e + 002 1.35848e− 005 −1.35848e− 005
hinf7 +∞ −3.90827e + 002 4.39663e− 005 4.39663e− 005
hinf10 +∞ −1.08863e + 002 1.38839e− 003 −1.38839e− 003
hinf11 +∞ −6.59384e + 001 1.15421e− 003 −1.15421e− 003
hinf12 +∞ −7.54028e− 001 6.65981e− 001 −6.99339e− 001
hinf15 +∞ −2.60852e + 001 8.32685e− 002 −8.32685e− 002

where Eii denotes the n × n matrix with Eii(i, i) = 1, and all other coefficients are
equal to zero, E denotes the n×n matrix with all coefficients equal to one, and n is the
number of vertices. Because the inner product of two positive semidefinite matrices
is nonnegative, the perturbed equation

〈E,X〉 = −ε

can never be fulfilled for small positive ε. Hence, the distance to primal infeasibility
is zero, i.e. the problem is ill-posed. Since Algorithm 4.1 allows to verify only posi-
tive definiteness, the upper bound p∗ = +∞ is computed for these problems. Tables
6.6 and 6.7 display the results of some problems with p∗ = +∞. In all cases dual
feasibility could be verified, but not primal feasibility. Some problems are apparently
primal infeasible, which is expressed by the poor accuracy.

The final numerical experiments investigate the NETLIB suite of linear program-
ming problems [19]. This collection contains problems with up to 15695 variables and
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Table 6.7
Performance comparison for some SDPLIB problems

problem tp̃∗ tp∗ tp∗

gpp100 3.86 5.42 4.17
gpp124-1 3.66 11.84 6.70
gpp124-4 3.94 11.92 6.28
gpp250-1 11.06 44.00 24.59
qap5 0.92 4.14 0.47
qap6 1.44 2.98 0.50
qap7 2.25 7.36 1.05
qap8 3.55 8.02 1.80
qap9 7.09 27.19 3.23
hinf1 1.34 5.70 0.27
hinf4 1.16 4.98 0.06
hinf7 1.05 7.11 0.06
hinf10 1.70 1.73 0.30
hinf11 1.94 4.44 0.39
hinf12 2.89 5.38 3.72
hinf15 1.81 4.42 0.64

16675 constraints. They originate from various applications, for example forestry, flap
settings on aircraft, staff scheduling, and others, and Ordóñez and Freund have shown
that 71% of these problems are ill-posed [24].

We have implemented the rigorous bounds for the special case of linear program-
ming by using the interval library PROFIL/BIAS [14]. The slightly modified algo-
rithms allow to treat equations and inequalities separately as well as free variables.
Hence, converting free variables into the difference of two nonnegative variables is
not necessary. Notice that this transformation would yield an ill-posed linear pro-
gramming problem. The approximate optimal solutions were computed by the public
domain linear programming solver lp solve 4.0.1.0 [3]. All programs were compiled
with gcc 3.3.1 [6]. The computations were performed on a PC with 2.8 GHz.

Table 6.8 compares the condition numbers cond(P ) of the problems to the rigorous
lower and upper bounds and the rigorous accuracy µ(p∗, p∗). The rigorous accuracy
is displayed even if one of the bounds is infinite. In this case we have replaced this
infinite bound by the approximate optimal value in µ(p∗, p∗). We have displayed
the results for 68 problems. For the remaining problems in the NETLIB library
either lp solve 4.0.1.0 was unable to compute an approximate optimal solution due to
numerical problems, or the verification failed due to memory limitations. The reason
in the latter case is the missing of sparse structures in PROFIL/BIAS.

Finite lower bounds are computed for 62 of the 68 problems, and finite upper
ones for 27 of them. Despite an infinite condition number, rigorous lower and upper
bounds could be computed for adlittle, gfrd-pnc, sc105, sc205, sc50a, sc50b, and stair,
demonstrating that the condition numbers are finite. We guess that these discrepan-
cies stem from computing the condition numbers numerically without verification.

The relative error of the computed bounds varies between 1 · 10−7 and 1 · 10−16

for almost all problems. Taking lp solve’s accuracy of 1 · 10−9 into account, this is
close to the best one could expect. The large relative errors for the problems sctap1,
sctap2, sctap3 are due to bad upper bounds. We hope to improve this in the future.

Table 6.9 shows the time in seconds needed to solve the original problem tp̃∗ and
the times for computing the rigorous lower and upper bound tp∗ and tp∗ , respectively.

One can see that the lower bound is almost always computed within a fraction
of the time needed to solve the original problem approximately. The upper bound
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requires sometimes considerably more computational work, which is due to solving
additional perturbed problems.

Table 6.8

Rigorous bounds for the NETLIB problems

problem cond(P ) p∗ p∗ µ(p∗, p∗)

80bau3b ∞ 9.8722e + 05 ∞ 2.5801e− 08
adlittle ∞ 2.2549e + 05 2.2549e + 05 3.6470e− 08
afiro 4.565e + 03 −4.6475e + 02 −4.6475e + 02 2.1095e− 08
agg2 ∞ −2.0239e + 07 ∞ 2.0868e− 08
agg3 ∞ 1.0312e + 07 ∞ 7.3999e− 08
agg ∞ −3.5992e + 07 ∞ 2.7323e− 08
bandm ∞ −1.5863e + 02 ∞ 7.0741e− 08
beaconfd ∞ 3.3592e + 04 ∞ 1.0000e− 08
blend 3.195e + 05 −3.0812e + 01 −3.0812e + 01 1.4103e− 07
bnl2 ∞ 1.8112e + 03 ∞ 3.9661e− 08
bore3d ∞ 1.3731e + 03 ∞ 1.3362e− 08
brandy ∞ −∞ ∞
capri 1.322e + 08 2.6900e + 03 2.6900e + 03 1.7305e− 07
cycle ∞ −5.2264e + 00 ∞ 1.4591e− 08
czprob ∞ 2.1852e + 06 ∞ 1.0915e− 08
d6cube ∞ 3.1549e + 02 ∞ 1.1175e− 08
degen2 ∞ −1.4352e + 03 ∞ 1.1225e− 08
e226 ∞ −2.5865e + 01 ∞ 4.4384e− 08
etamacro ∞ −7.5572e + 02 ∞ 9.7768e− 09
finnis ∞ −∞ ∞
fit1d 1.577e + 05 −9.1464e + 03 −9.1464e + 03 6.1899e− 09
fit1p 6.616e + 05 9.1464e + 03 9.1464e + 03 8.2528e− 07
fit2d 6.522e + 03 −6.8464e + 04 −6.8464e + 04 4.8478e− 09
fit2p 6.398e + 05 6.8464e + 04 6.8468e + 04 5.2357e− 05
ganges ∞ −1.0959e + 05 ∞ 3.5123e− 09
gfrd-pnc ∞ 6.9022e + 06 6.9022e + 06 5.5919e− 08
grow15 7.888e + 02 −1.0687e + 08 −1.0687e + 08 3.5979e− 09
grow7 3.719e + 02 −4.7788e + 07 −4.7788e + 07 3.6032e− 09
israel 8.147e + 07 −8.9664e + 05 −8.9664e + 05 1.5935e− 08
kb2 5.606e + 07 −1.7499e + 03 −1.7499e + 03 2.1799e− 08
lotfi ∞ −∞ −2.5265e + 01 3.9057e− 09
modszk1 ∞ 3.2057e + 02 ∞ 1.5495e− 04
qap8 ∞ 2.0350e + 02 ∞ 3.3269e− 08
recipe ∞ −2.6662e + 02 ∞ 2.1320e− 16
sc105 ∞ −5.2202e + 01 −5.2202e + 01 7.7623e− 08
sc205 ∞ −5.2202e + 01 −5.2202e + 01 9.6644e− 08
sc50a ∞ −6.4575e + 01 −6.4575e + 01 5.6764e− 08
sc50b ∞ −7.0000e + 01 −7.0000e + 01 5.7599e− 08
scagr25 2.045e + 07 −1.4753e + 07 −1.4753e + 07 3.7852e− 08
scagr7 5.307e + 06 −2.3314e + 06 −2.3314e + 06 3.9152e− 08
scfxm1 ∞ −∞ ∞
scfxm2 ∞ −∞ ∞
scfxm3 ∞ −∞ ∞
scorpion ∞ 1.8781e + 03 ∞ 2.9174e− 08
scrs8 ∞ 9.0430e + 02 ∞ 3.4248e− 08
sctap1 3.674e + 05 1.4122e + 03 1.4178e + 03 3.9182e− 03
sctap2 8.358e + 04 1.7248e + 03 2.2955e + 03 3.3085e− 01
sctap3 1.526e + 05 1.4240e + 03 2.0462e + 03 4.3697e− 01
share1b 4.878e + 09 −7.6589e + 04 −7.6589e + 04 1.7119e− 07
share2b 1.233e + 07 −4.1573e + 02 −4.1573e + 02 4.0883e− 07
shell ∞ 1.2088e + 09 ∞ 0
ship04l ∞ 1.7933e + 06 ∞ 9.7666e− 09
ship04s ∞ 1.7987e + 06 ∞ 1.0115e− 08
ship08l ∞ 1.9091e + 06 ∞ 1.0593e− 08

continued. . .
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problem cond(P ) p∗ p∗ µ(p∗, p∗)

ship08s ∞ 1.9201e + 06 ∞ 1.1197e− 08
ship12l ∞ 1.4702e + 06 ∞ 1.1950e− 08
ship12s ∞ 1.4892e + 06 ∞ 1.3700e− 08
sierra ∞ 1.5394e + 07 ∞ 3.1096e− 14
stair ∞ −2.5127e + 02 −2.5127e + 02 6.2779e− 09
standata ∞ 1.2577e + 03 ∞ 3.6157e− 16
standgub ∞ 1.2577e + 03 ∞ 3.6157e− 16
standmps ∞ 1.4060e + 03 ∞ 1.3776e− 08
stocfor1 1.939e + 07 −4.1132e + 04 −4.1132e + 04 4.2231e− 08
stocfor2 7.267e + 09 −3.9024e + 04 ∞ 4.3136e− 08
truss 2.981e + 05 4.5882e + 05 ∞ 1.0022e− 07
vtp.base ∞ 1.2983e + 05 ∞ 3.4508e− 08
wood1p ∞ 1.4429e + 00 ∞ 4.9400e− 08
woodw ∞ 1.3045e + 00 ∞ 2.4401e− 08

Table 6.9

Performance of the NETLIB bounds

problem tp̃∗ tp∗ tp∗

80bau3b 8.51 14.90 41.91
adlittle 0.00 0.00 0.01
afiro 0.00 0.00 0.00
agg2 0.02 0.03 0.28
agg3 0.02 0.03 0.29
agg 0.01 0.02 0.15
bandm 0.20 0.06 5.61
beaconfd 0.01 0.02 0.40
blend 0.00 0.01 0.02
bnl2 11.11 10.40 398.65
bore3d 0.03 0.03 0.21
brandy 0.07 0.16 0.00
capri 0.03 0.03 0.36
cycle 14.40 3.24 3.02
czprob 0.90 0.82 119.93
d6cube 7.67 1.04 11.68
degen2 5.41 0.14 0.44
e226 0.07 0.02 0.25
etamacro 0.10 0.24 0.69
finnis 0.09 0.23 0.47
fit1d 0.16 0.00 0.03
fit1p 2.57 0.38 50.01
fit2d 16.74 0.02 0.16
fit2p 1381.90 31.00 6734.00
ganges 0.79 0.56 241.69
gfrd-pnc 0.10 0.14 18.94
grow15 0.49 0.07 6.03
grow7 0.06 0.02 0.51
israel 0.04 0.01 0.01
kb2 0.00 0.00 0.01
lotfi 0.02 0.06 0.09
modszk1 0.27 0.41 3.14
qap8 259.14 4.19 0.62
recipe 0.00 0.00 0.00
sc105 0.00 0.00 0.01
sc205 0.04 0.09 0.05
sc50a 0.00 0.00 0.00
sc50b 0.00 0.00 0.00
scagr25 0.16 0.06 4.88
scagr7 0.00 0.01 0.04

continued. . .
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problem tp̃∗ tp∗ tp∗

scfxm1 0.08 0.18 1.28
scfxm2 0.35 0.68 10.06
scfxm3 1.05 1.67 31.49
scorpion 0.05 0.04 1.50
scrs8 0.23 0.15 13.18
sctap1 0.22 0.04 0.48
sctap2 0.30 0.47 27.70
sctap3 0.60 1.28 64.04
share1b 0.03 0.01 0.10
share2b 0.00 0.01 0.01
shell 0.14 0.04 7.24
ship04l 0.10 0.18 0.05
ship04s 0.07 0.13 0.03
ship08l 0.37 0.69 0.19
ship08s 0.19 0.39 0.11
ship12l 0.74 1.51 0.48
ship12s 0.37 0.75 0.21
sierra 0.19 0.13 3.63
stair 0.40 2.95 0.71
standata 0.01 0.02 1.34
standgub 0.01 0.03 0.01
standmps 0.08 0.12 4.12
stocfor1 0.00 0.01 0.09
stocfor2 1.57 1.68 380.91
truss 23.24 3.74 451.99
vtp.base 0.02 0.01 0.11
wood1p 0.58 0.86 3.40
woodw 2.02 3.97 323.02

7. Conclusions. The computation of rigorous error bounds for semidefinite op-
timization problems can be viewed as a carefully postprocessing tool that uses only
approximate solutions computed by an SDP or LP solver. The numerical results show
that such rigorous error bounds can be computed at least for problems of medium
size.

In the future we plan to investigate larger problems by implementing appropriate
sparse structures into PROFIL/BIAS.
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