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Abstract

We generalize the Guyan condensation of large symmetric eigenvalue problems
to allow general degrees of freedom to be master variables� On one hand useful in�
formation from other condensation methods �such as Component Mode Synthesis�
thus can be incorporated into the method� On the other hand this opens the way
to iterative re�nement of eigenvector approximations� Convergence of such a pro�
cedure follows from the result� that one step of �static� condensation is equivalent
to one step of inverse subspace iteration� A short outlook on several applications is
included�

Zusammenfassung

Durch eine Verallgemeinerung der Guyan Kondensation gro�er symmetrischer
Eigenwertprobleme wird die Verwendung allgemeiner Freiheitsgrade als Master�
Variable erm�oglicht� Dadurch k�onnen einerseits Ansatzvektoren aus anderen Kon�
densationsmethoden in die Guyan Kondensation eingebunden werden� und ander�
erseits werden damit gewonnene Eigenvektorapproximationen iterativ verfeinerbar�
Die Konvergenz einer solchen Verfeinerung folgt aus dem Resultat� da� die �statis�
che� Kondensation als ein Schritt der inversen Unterraum Iteration interpretiert
werden kann� Ein kurzer Ausblick auf Anwendungsgebiete schlie�t die Arbeit ab�

Keywords� Symmetric eigenvalue problem� Guyan condensation�
generalized condensation

AMS�classi�cation� ��F��

� Introduction

When discretizing continuous problems one often �nds that a su�ciently accurate repre�
sentation of the desired data in the discrete model requires the use of prohibitively many
degrees of freedom� such that a standard treatment of the resulting large set of discrete
equations is far too expensive�
For such situations several reduction techniques have been developed in di	erent dis�
ciplines� These aim at incorporating speci�c parts of the 
global� good approximation
behaviour of the large size models into much smaller systems derived from the larger
ones 
cf� the survey paper ��
� on reduction methods� e�g���

�
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In the study of structural vibrations large algebraic eigenvalue problems

Kx � �Mx 
��

arise� where the sti	ness matrix K � IR�n�n� and the mass matrixM � IR�n�n� are real
symmetric and positive de�nite� x is the vector of modal displacements and � is the
square of the natural frequencies�

Most reduction methods for eigenvalue problems consist of a projection to a low

dimensional subspace X � Given a basis �x�� � � � � �xm 
m �� n� of X and putting

X ��
�
�x�� � � ��xm

�
the system 
�� is replaced by the m�dimensional projected eigenvalue problem

KXy � �MXy� 
��

with the projected sti	ness and mass matrices

KX �� XTKX and MX ��XTMX� 
��

The eigenvectors yi of 
�� with their corresponding eigenvalues �i are afterwards lifted

back to give approximate eigenpairs 
��i� �x
i� through


��i� �x
i� �� 
�i�Xy

i��

The elementary properties of this approach can be read up in ���� or ����� e�g�
If m � � then 
�� is a scalar equation� which can be solved for the Rayleigh quotient of
the onedimensional sti	ness and mass matrix condensations�

RfK�Mg
x� �� � �
xTKx

xTMx
�

As is well known the Rayleigh quotient extraction of eigenvalues from eigenvector esti�
mates produces eigenvalue approximations of increased quality� If the error of an eigen�
vector approximation is of �rst order 
O
���� then the error of the corresponding Rayleigh
quotient is of second order 
O
����� The same holds for the more general multidimen�
sional approximation 
��� This is why nearly every algorithm for the approximation of
eigenpairs uses projection as a basic step when it comes to compute eigenvalue approxi�
mations from eigenvector information�
Di	erences between algorithms are mostly found in the way in which eigenvector approx�
imations are build or how these are updated to improve their quality�

In mathematics one likes to span the subspaces Xn by vectors derived from few
starting vectors through the iterative application of a speci�c iteration matrix� Using
Xn �� fz�Bz�B�z� � � � �Bn��zg with B � 
K � �M ���M � e�g�� leads to Krylov space
methods� ����� Alternatively� if one projects onto Xn �� Bn��X�� with X� some starting
space and B � fK��M �M��Kg one arrives at subspace iteration methods� ����� In
any case mathematical algorithms prefer the iterative approximation of the eigenpairs
invoking little or no a priori knowledge of the eigenvectors in general� The approxi�
mation quality generally comes from a power method type enrichment of the relevant
eigenvector�components within an iteratively improved set of starting vectors the initial
choice of which is more or less arbitrary� What counts is the method of improvement� the
starting vectors are of minor importance�

Quite contrary the engineer aims at constructing from engineering knowledge within one
single step the �nal projection space Xm which gives the desired eigenpair approxima�
tions 
up to a relative error of about � �� with no iterative re�nement at all� There are
several good reasons for such an approach�
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� Normally� the engineer either has a lot of a priori information about the desired
eigenfunctions themselves or he knows a lot about subsystems which have already
been extensively analysed� It makes sense to exploit this knowledge�

� In case of eigenvalue reanalysis ��� ��� eigenpairs of very similar problems are known�
since the actual eigenproblem is just a small perturbation of these� The eigenvectors
of the old problems should be ideal members of a projection space to analyse the
new problem�

� In Component Mode Synthesis 
CMS� vibration modes of subsystems 
both with
�xed subsystem boundaries or with free boundaries� make up a major part of pro�
jection spaces� They are complemented by what are called attachment modes 
static
responses of components to applied loads� or constraint modes 
static responses of
components to prescribed boundary displacements� as well as coupling constraints
to join them together� cf� ���� �� ���

This engineering approach can be very successful in the hands of a skilled engineer� since
it allows him to make use of his well trained engineering intuition�
It can be very unsatisfactory� however� if the �nal approximations fail to have the desired
precision� The case of too high a precision is of course only of minor annoyance� Only
within the actual calculation work is wasted� For follow up analyses the number of basis
vectors can be adequately reduced by analyzing their contributions to the actual eigen�
vector approximations 
cf� ����� If the precision is to low� however� one has to construct
additional vectors to augment the previous basis and to rerun both the projection and
the eigenvalue analysis� This is quite tedious and hence attempts have been made to
reduce the e	ort of this task by taking into account the results of the previous condensa�
tion 
cf� ������ Computation of approximations with increased accuracy serve at the same
time as a means to estimate the accuracy of the gained approximations�

Only very seldomly engineers seem to use exact computational error bounds like those of
Krylov�Bogoliubov� Kahan�Krylov�Bogoliubov or the Kato�Temple�bound 
cf� ����� e�g���
though these are known in the engineering literature� too 
cf� ����� and though they are
easily implemented in practice ����� Even more seldomly engineers use information from
error estimates to construct additional ansatz vectors or to adapt the previously used
projection space 
see ���� however��
Vice versa� mathematicians do not generally design algorithms for eigenanalysis with a
primary goal to allow engineering know how to be included�

The present paper is devoted to the study of Guyan condensation �
� ���� In engineering
this is a technique to construct basis vectors of projection spaces� Using the language of
CMS these vectors could be called global constraint modes since they are static responses
of the full system to prescribed displacements of so called master 
nodal� degrees of free�
dom� To this end the slave 
�nonmaster� components are determined as linear functions
of the masters through the solution of a �slave part� of the system�
We shall generalize this approach to allow general non nodal degrees of freedom to be
masters� In the course of this generalization it will become clear� that Guyan condensation
can be interpreted as simultaneous inverse iteration� Consequently� Guyan condensation
can be re�ned iteratively and we are able to hybridize engineering and mathematical
approaches�

The next section reviews fundamental properties of nodal condensation� Section � de�
�nes non nodal condensation� and it shows that condensation can be performed without
explicit access to the slave part of the system� Furthermore as a byproduct condensation
is interpreted as an inverse iteration process� In Section � we derive a system� by which
the non nodal condensation can be computed in a numerically stable way� The system
is closely related to saddle point equations from constrained eigenvalue problems� We
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indicate connections to the Weinstein�Stenger theory of intermediate eigenvalues 
cf� ����
����� and to Kron�s method to compute eigenvalues of coupled subsystems 
cf� ������
We close the paper in Section � with a short outlook on applications under investigation�

� Nodal condensation

Condensation methods for large eigenvalue problems are subspace projection methods
together with a speci�c Gaussian elimination �avoured approach to construct reasonable
approximations of projection spaces X �

To this end some 
relatively few� components of the vector x are selected to be masters

and to form a master part xm � IRm of x� The aim is then to construct an eigenproblem

K�xm � �M�xm 
��

for these master�vectors and the eigenparameter � such that the eigenvectors of 
�� are
good approximations to the masterparts of selected eigenvectors of 
�� with similarly
good approximation behaviour for the accompanying eigenvalues�

To accomplish this one decomposes equation 
�� into block form�
Kmm Kms

Ksm Kss

��
xm
xs

�
� �

�
Mmm Mms

M sm M ss

��
xm
xs

�

��

where xm � IRm containes the mastervariables� xs � IRs collects the remaining variables�
the slaves� and where the permutation of x leading to the new order xm�xs of the
variables has been applied likewise to the rows as to the columns of K and M � Then
these matrices are still symmetric and positive de�nite in their permuted form�

Now we see that if the master part �xm of an eigenvector �x is given together with the
corresponding eigenvalue �� then the slavepart �xs can be computed from the second row
of 
�� through the master�slave�extension

�xs � S
����xm �� �
Kss � ��M ss�
��
Ksm � ��M sm��xm 
��

as long as the matrix

Kss � ��M ss� is regular� 
��

The latter condition is usually expressed as �� not being an eigenvalue of the slave�

eigenvalue problem

Kssxs � �M ssxs� 
��

which 
cf� Section �� can be seen to be the the eigenvalue problem corresponding to the
vibration of the slave�portion of the system with the master degrees of freedom restricted
to be zero�
With the master�slave extension a prolongation

P
���xm ��

�
xm

S
���xm

�


�

of IRm�vectors xm to full space vectors is de�ned which would reproduce an eigenvector
�x from its master part �xm 
if the latter is di	erent from zero��

The masterparts of relevant eigenvectors are most easily caught by varying xm over all
of IRm� The linear space of all full space vectors of the form P
���xm� xm � IRm is the
span of the columns of

P
��� ��

�
Im

S
���

�
�

�
Im

�
Kss � ��M ss�
��
Ksm � ��M sm�

�
�
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which is the matrix representation of the operator P
���� Subspace projection of the
original problem onto the column space of this matrix leads to a small problem for the
masterparts xm which is called the condensation to the chosen master�variables

at ���

�P
���TKP
���	 
z �
K�

��P
���TMP
���	 
z �
M�

�xm � �� ����

This eigenproblem certainly would reproduce �� since we assumed �� to be an eigenvalue of
the original problem� Furthermore the corresponding eigenvectors would be prolongated
to eigenvectors of the original system� Thus this reduction would retain the approximation
quality of the large system with respect to the eigeninformation connected with the
eigenvalue ���

Of course an exact eigenvalue �� of the original system is not available� Hence one has to
use suitable substitutes for the eigenvalue� Depending on the speci�c choice of �� speci�c
names for the condensation processes are common use�

� �� � � is known as static condensation �
� ����

� �� � �� with a given �xed �� is called dynamic condensation ���� ���

and

� �� � � with variable � leads to exact condensation ���� �
� ���� which produces
a nonlinear condensed eigenvalue problem�

Explanations of the names and some further discussion of the pros and cons of these
methods may� e�g�� be found in ����� It should be remarked that an extension of dynamic
condensation presented there gives particularly good results� From eigenpairs of the stat�
ically 
�� � �� condensed equation 
���� one derives vectors of a new projection space
by prolongating the small space eigenvector�approximations yi with their corresponding
eigenvalue approximations� P 
�i�yi� This method independently has been found in �����

All the cited condensation methods are nodal condensation methods in that the
masters and slaves are always chosen from the nodal degrees of freedom in which the
problem has been set up� Usually� these degrees are dictated by the method of discretiza�
tion and are not adapted to the speci�c eigenproblem�
Intuition tells us that the condensation will produce the better results the better the true
eigenvectors 
to be approximated� can be represented by master components� If e�g� the
�rst unit vector would be an eigenvector� then chosing the �rst component as a master
would approximate this eigenvector and the corresponding eigenvalue exactly and inde�
pendently of the choice of ���
This situation can be induced by a basis transformation with an exact eigenvector as �rst
new basis vector� With an approximate eigenvector instead such a proceeding should still
give similar results� We shall see that condensation to general degrees of freedom can be
performed without having to carry out a corresponding basis transformation�

� Non nodal condensation� fundamental results

Our aim here is to generalize the condensation techniques to allow for general degrees of
freedom to be chosen as masters� To this end we assume that a set of linearly independent
master�vectors

z�� � � � � zm
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is given� with a speci�c 
not yet speci�ed� potential to help with the modeling of the
problem� Within the nodal condensation methods these vectors are unit vectors 
with
all components equal to zero except for exactly one unit component� with the totality of
nonzero components 
of all z�vectors� specifying the master components� As we shall see
it makes sense to use as z�vectors all of the above cited ansatz vectors from engineering
approaches to projection methods�

Together with the z�vectors we assume an inner product on IRn to be given by a
symmetric positive de�nite matrix V via

hx�yi �� xTV y� x�y � IRn�

If we then let
ym��� � � � �yn

denote a complementary orthonormal basis of

fz�� � � � � zmg
� ��

�
y � yTV zj � �� j � �� � � � �m



and if we put

Z �� 
z�� � � � � zm� � IR�n�m��

Y �� 
ym��� � � � �yn� � IR�n�n�m��

���

such that

Z�Y � � IR�n�n� is regular and ZTV Y � O� 
���

then the master�slave�splitting of a vector x � IRn into its master� and slave�parts with
master� and slave�component�vectors xm � IRm and xs � IRn�m� respectively� is given
by

x � Zxm � Y xs�

Going with this representation into 
�� and multiplying with the regular matrix 
Z�Y �T

one arrives at �
Kzz Kzy

Kyz Kyy

��
xm
xs

�
� �

�
M zz M zy

Myz Myy

��
xm
xs

�

���

with
Lzz �� ZTLZ� Lzy �� ZTLY

Lyz �� Y TLZ� Lyy �� Y TLY
� L � fK�Mg � 
���

In the special case that Z and Y consist of unit vectors only and V � I this splitting
reproduces the splitting 
���

Theoretically� 
��� could serve as a basis for all three sorts of condensation ap�
proaches for general masters just as 
�� was the basis in the case of nodal masters�
There is� however� a very strong practical objection to such a naive approach� In the non
nodal case we can in general not exclude the case that though the vectors z�� � � � � zm are
well accessible the complementary vectors ym��� � � � �yn are de�nitely not�
While it is always possible to compute and handle a small number of m master�vectors
z�� � � � � zm it is impossible for large systems in general to store the data needed for a
representation of the y�vectors�
Concerning the system 
��� this means 
in contrast to system 
��� that with the excep�
tion of Kzz andM zz all other submatrices are not accessible� Hence condensation � as
a naive adaptation of the nodal case � will no longer work�

In the present paper we focus on showing how the condensation method can be
performed using only the basis Z � 
z�� � � � � zm� and without having access to a basis
Y of the orthogonal complement Z�� To do so let us �rst derive an expression for the
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prolongation P from 

� correspondig to 
���� Written with the coordinates xm and xs
the master�slave�extension 
�� of a master vector �xm reads�

�xs � �
Kyy � ��Myy�
��
Kyz � ��Myz��xm� 
���

The vector of coordinates 
�xm� �xs� with respect to the basis 
Z�Y � corresponds to the
vector

�x � Z�xm � Y �xs� 
���

Let us restrict our attention to static condensation �rst 
i�e� let �� � ��� Inserting �xm
and �xs from 
��� into 
��� and using the expressions 
��� for the projected matrices
Kyy�Kyz results in

�x � P�xm ��
�
I � Y

�
Y TKY

���
Y TK

�
Z�xm� 
���

Using the prolongation operator P the statically condensed matrices K� andM� read

K� �� PTKP � ZTKZ �ZTKY
�
Y TKY

���
Y TKZ 
���

and
M� �� PTMP� 
�
�

Thus the condensation data seem to rely heavily on the large matrixY � The next theorem
gives a �rst expression for P which does not involve Y at all�

Theorem ��

Let Z � IR�n�m� and Y � IR�n�n�m� such that ���� holds with the symmetric positive
de�nite metric matrix V � Then with X �� V Z one has

Y
�
Y TKY

���
Y T �K�� �K��X

�
XTK��X

���
XTK��� 
���

such that
P �K��X

�
XTK��X

���
XTZ� 
���

Proof�

Let v �� Y 
Y TKY ���Y Tw�

From the assumptions on Z and Y it follows that 
V Z�KY � is regular since

V Z� �KY � � � � Y TV Z� � Y TKY	 
z �
SPD

� � �� � � �� � � ��

With the regularity of 
V Z�KY � one concludes now that

v �� Y 
Y TKY ���Y Tw

��

ZTV v � � and Y TKv � Y Tw�

��

ZTV v � � and Y T 
Kv �w� � ��

��

ZTV v � � and 
Kv �w� � span
V Z��

��

ZTV v � � and v �K��w �K��V Z� for some � � IRm�
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The �rst of these two equations uniquely determines � from the second one to be

� � �
�
XTK��X

���
XTK��w�

Putting this into
v �K��w �K��V Z��

gives the desired formula 
���� Inserting 
��� into 
��� we obtain 
����

In the next corollary we collect the consequences of Theorem � for the condensed
sti	ness and mass matrices� K� � PTKP and M� � PTMP� To give the result a
comfortable form� we assume that the column vectors of Z form a V �orthonormal basis
of the projection space� Then the matrix XTZ at the end of equation 
��� can be
dropped� Since the number of z�vectors is small� this is numerically not too restrictive
an assumption�

Corollary ��
With Z and Y as in Theorem � and under the additional assumption of the V �
orthonormality

XTZ � ZTV Z � Im

of the z�vectors	 one has

K� �
�
XTK��X

���
�

P � K��XK��

M� � K�X
TK��MK��XK��


���

Remarks�

�� Observe that the inverse of K� is the projection of K�� to the space spanfXg�
For the case of nodal condensation this means that K�

�� is obtained from K��

by deleting all rows and columns corresponding to the slave variables�
Notice� however� that the expressions for K� and M� from 
��� are mainly of
theoretical interest� For the practical computation of these see Theorem � below�

�� Condensation is projection of the eigenvalue problem to the column space of the
prolongation matrix P� Looking at the above formula for P

P �K��XK�

one sees that the column space of P is not in�uenced by the matrix K� ��
XTK��X

���
on its right� Hence one could drop it without changing the results

and the condensation data would be simpli�ed to

�P � K��X �
�K� � �PTK �P � XTK��X �
�M� � �PTM �P � XTK��MK��X �


���

From the simpli�cation of the condensation data it is tempting to try to use these
new formulae� It should be noted� however� that often sparsity structures of K or
M are exploited when calculating P from the blocked system 
���� Using the new
version 
��� will often destroy these structures�
We shall present an alternate system for the calculation of P in the next section�
anyhow� which is perfectly suited for the exploitation of sparseness and substruc�
turing�
The last set of data 
��� has proven useful� however� in prototype investigations of
new sets of potential masters�
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�� Though the last set of data may not be advisable for practical large scale imple�
mentation� it is clearly seen from it that condensation is nothing else but one step
of inverse subspace iteration 
iteration matrix is K��M � with starting subspace
chosen as the span of the columns of the matrixM��V Z�
In the case of modal masters� where the z�vectors approximate eigenvectors� the
natural metric matrix would be V �� M � Then condensation would result in si�
multaneous inverse iteration with start space span
Z��

Results on non nodal dynamic condensation at �� can be read from the results on
static condensation by replacing the matrix K within the master�slave prolongation by

K � ��M ��

Corollary ��

With Z and Y as in Theorem � and with ZTV Z � Im assume that �� is not a slave
eigenvalue	 i�e� assume that

Y T 
K � ��M �Y is regular�

Assume additionally that �� is not an eigenvalue of the original problem� Then the pro�
longation operator

P
��� � 
I � Y �Y T 
K � ��M �Y ���Y T 
K � ��M ��Z 
���

can be written without Y �dependence as

P
��� � 
K � ��M ���X
�
XT 
K � ��M ���X

���
� 
���

Proof� Taking into account the introductory remark of the corollary� the only thing that

has to be assured for the proof is the regularity of the matrix
�
XT 
K � ��M ���X

�
from


���� With A �� 
K � ��M � it follows from

�
I �

�XTA�� I

��
A X

XT �

�
�

�
A X

� �XTA��X

�

that
�
XT 
K � ��M ���X

�
is regular if and only if

�
A X

XT �

�
is� But from

�

X�Y �T �

� I

��
A X

XT �

��

X�Y � �

� I

�
�

�
� XTAX XTAY XTX

Y TAX Y TAY �

XTX � �

�
A

it is clear that this is equivalent to Y T 
K � ��M �Y being regular�

It would cause no problems to derive in an additional corollary the formal expression


XT 
K � �M ���X���xm � �

for the exact non nodal condensation� where the parameter �� is chosen to be the unknown
eigenvalue itself� If 
K � �M � is expressed in its diagonalized form� relations to the
Weinstein formulae from the theory of intermediate eigenvalue problems 
see ���� ���
e�g�� can be seen� However� we will not invest any further thought into this formula� since
it shares with the last corollary the unpleasant feature� that the value ��
� � here� has to
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be di	erent from an eigenvalue of the original problem� This is particularly nasty because
condensing dynamically with an eigenvalue �� would reproduce this eigenvalue 
if �� is not
a slave eigenvalue as well and if there exists an eigenvector corresponding to �� with a
nonvanishing master part��
Normally� one applies dynamic 
and exact� condensation for �� values in the interval

�� �� with � denoting the smallest slave�eigenvalue� Dynamic condensation 
and exact
condensation� works for all values of �� in this region without any exception� and this seems
to be one of the reasons why this interval is often called the region �where condensation
is valid� 
see ���� for an additional reason�� Actually� dynamic condensation formally
works whenever �� is di	erent from one of the n�m slave eigenvectors� but since in most
cases the lower part of the spectrum is of predominant interest� the interval 
�� �� is in
fact the most interesting region�
It is hence utterly annoying� that our condensation formulae do not work for the most
interesting points of that interval�
From 
��� one infers� that P
��� depends continuously on �� in the complement of the
slave spectrum� Thus one could try to de�ne the condensations by analytic continuation
of the derived formulae� However� this is at least numerically not to be recommended
since there is a method to compute the prolongations in a numerically stable way� The
latter is the subject of the next section�

� Non nodal condensation and constrained eigen�

problems

We start with a result� that has already been implicit in the proof of Corollary ��

Lemma ��

Under the assumptions of Corollary � one has


det
Y TKY � 	Y TMY � � 
���m det
Y Z�� � det

�
K � 	M VZ

ZTV O

�

���

such that the system 
Y TKY � 	Y TMY � is singular if and only if�
K � 	M V Z

ZTV O

�

���

is�

Proof�

Letting A
	� �� K � 	M �

L �

�
� In�m O O

� Im O

�ZTA
	�Y ��
�Z

TA
	�Z Im

�
A

W �

� �
Y Z

�
O

O Im

�

one has

LTW T

�
A
	� V Z

ZTV O

�
WL �

�
� Y TA
	�Y O O

O O Im
O Im O

�
A �

wherefrom the given formula follows�
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The second main result of this paper is the following formula for the computation
of the dynamic condensation�

Theorem ��

Under the standard assumptions from Corollary � the following conclusions hold


a� If �� is not a slave eigenvalue the prolongation operator P
��� can be calculated from

�
K � ��M V Z

ZTV O

��
P
���
�

�
�

�
�

Im

�
� 
���

b� In the case of static condensation ��� � ��	 the negative of � from the last equation
is already the condensed sti�ness matrix


�� �K� � PTKP� 
�
�

Proof�

From Lemma � it follows that the matrix from 
��� is regular if and only if

det
�
Y T 
K � ��M �Y

�
�� �� i�e� if �� is not a slave eigenvector� If K � ��M is regular�

too� block elimination in 
��� yields

�
x

�

�
�

�
BB�


K � ��M ���X

�
XT

h
K � ��M

i��
X

���

�

�
XT

h
K � ��M

i��
X

���
�
CCA �

Under the above conditions the �rst part of the solution agrees with P
��� from 
����
Since one infers from formula 
��� that P
��� depends continuously on �� for �� not a slave
eigenvalue the proof of part a� is complete�
Part b� follows by inspection from Corollary ��

Remark�

The assumptions of the last two results 
Lemma � and Theorem �� included the V �
orthonormality ZTV Z � Im of the z�vectors� This assumption has been made more or
less for the sake of convenience� It could have been dropped without altering the results
essentially�
If ZTV Z �� Im then in formula 
��� a factor det
ZTV Z��� has to be added on the
right hand side� Hence the conclusion following that formula remains as it is�
In Theorem � the given formulae can still be used for condensation if ZTV Z �� Im�
Notice� however� that under these circumstances the calculated projection matrix di	ers
from the usual one by a right hand side factor of 
ZTV Z���� Since this corresponds to
a regular basis transformation of the span of the column vectors of P the condensation
results do not change� Since the negative of the � matrix from the second part of the
theorem corresponds to the projection of the sti	ness matrix with the projector from
part a� it can be used within the condensation process as usual�
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Normally� the matrix from 
��� occurs in the constrained eigenvalue problem

�
K � �M X

XT �

��
x

�

�
� �� 
���

where the solution x of a normal 
unconstrained� eigenvalue problem


K � �M �x � �

is subjected to linear constraints XTx � � which are enforced by the Lagrange parame�
ters ��
Physically the constraints can be interpreted as generalized bearings of the investigated
vibrating entity� the Lagrange parameters � in X� from the �rst equation of 
��� can
be seen as the strengths of generalized bearing forces 
cf� ����� e�g��� An explanation of

��� within a mathematical context can be found in ����

For the applications aimed at her it may be of interest to formulate the equivalence of

��� and the slave�eigenproblem

Y T 
K � �M �Y y � � 
���

in the following lemma� the easy veri�cation of which is left to the reader�

Lemma ��

Let the standard assumptions on the symmetric positive de�nite matrix V and the ma�
trices Z�X �� V Z � IR�n�m� and Y � IR�n�n�m� hold	 such that

rank 
Z�Y � � n� XTZ � Im and XTY � ��

Then

��x� is an eigenpair of the constrained eigenvalue problem ��
�

�with corresponding Lagrange coe�cient � � �ZT 
K � �M �x� if and only if

x � Y y and 
��y� is an eigenpair of the slave problem �����

� Applications� a short outlook

Iterative improvement of condensation

In ���� we presented a procedure to derive realistic but safe error bounds for eigenvalue
approximations gained by condensation methods� The methods works well except for the
usual disadvantage of condensation approaches that the found approximation quality is
not easily increased if it turns out at the end that it is not good enough� There are at�
tempts to re�ne approximations 
cf� ���� or ����� but these again o	er only one re�nement
step� After this there is no chance to further improve the results without a total restart
of the whole procedure with new condensation data�
The concept of non nodal condensation allows to improve all or selected eigenpair approx�
imations up to a desired approximation quality� Several variants are under investigation�
We give some short indications of possible procedures�
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Static improvement of selected eigenapproximations

If the approximation 
��i�wi� to a speci�c eigenpair 
�i�xi� is chosen to be improved� the
projection matrix P of the condensation will be complemented by a suitable prolongation
p� of wi� According to formula 
��� this could be the inverse iteration prolongation

p� ��K��V wi 
���

where V ��M corresponds directly to an inverse iteration for the generalized eigenvalue
problem�
Alternatively� formula 
��� would suggest to compute p� from�

K VW

W TV �

��
p�
�

�
�

�
�

e�

�

���

whereW contains k � m of the already gained eigenvector approximations including wi

in the �rst column� e� is the �rst unit vector in IRk and V ��M is a sensible choice for
V �
With P� �� 
P�p�� the eigenproblem is now approximated by projection to the column
space of P��
If care is taken with this latter projection� the projected eigenvalue problem can be solved
with considerably less e	ort than the previous problem projected onto spanP only�
Clearly the procedure can be repeated and it can be executed for the simultaneous im�
provement of several eigenpair approximations�
The development of adequately implementable versions of the algorithms including ver�
sion for parallel computers is under investigation �����

Dynamic improvement of selected eigenapproximations

In dynamic condensation the condensation data is gained with the use of a shifted oper�
ator K � ��iM instead of K� In the light of 
��� and 
��� the static improvements just
reported on can equally well be performed with p��vectors which are computed with a
shifted inverse iteration 
either using the shifted versions of 
��� or 
����� In the same
way as Rayleigh�quotient shifts lead to considerable improvement of inverse iteration�
the shifts here improve the iteration a great deal� too� It is found� however� that simul�
taneous 
di	erent� shifts for several simultaneous eigenpair improvements safely lead to
the expected results only if the corresponding eigenapproximations are of good quality
already� The same has been found for the related projection�condensation iteration in
����� The need for good starting approximations makes sense as well by observing that
shifted simultaneous inverse iterations with projective approximation of the eigenvalues
can be interpreted as a modi�ed Newton�Iteration for the computation of invariant sub�
spaces 
cf� ������ For Newton type iterations only locally fast convergence is expected�
It appears from numerical results� however� that the iteration is well behaved in the sense�
that it converges in most cases to eigendata� This would conform with the known global
convergence properties of Rayleigh�quotient iteration 
cf� ������

Substructuring and non nodal condensation

Joint application of substructuring and condensation is particularly well suited for imple�
mentation on parallel computers 
cf� e�g� ������ Partitioning the structure under consider�
ation into substructures and choosing nodal masters as the interface degrees of freedom
leads to data structures and formulae for the individual substructures which are inde�
pendent of each other� A way to improve the approximation quality is to incorporate
additional nodal masters from the interior of the substructures� In this cases the data
structure essentially is preserved and the parallel method carries over in a straightfor�
ward way �����
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The part of the spectrum which can be approximated accurately enough depends cru�
cially on the size of the minimal slave eigenvalue� In the substructuring case the slave
eigenvalues consist of the eigenvalues of the independently vibrating substructures� The
eigenvalues of these are of course optimally increased if their eigenvectors are constrained
to be orthogonal to the substructures �rst eigenmodes� On the one hand this falls into the
scope of non nodal condensation 
the additional Z�vectors consists of eigenvectors of the
substructures �lled up with zeros at the complementary positions�� On the other hand
such vectors again allow the substructurewise computation of condensation� if the metric
matrix V has block diagonal structure with the blocks de�ned by the nodal interface
degrees of freedom and the collections of interior points of the individual substructures�
This approach has been de�ned and investigated in ����� It has been found there that
the use of substructure modes leads to considerably better results than the use of a com�
parable number of interior nodal masters� Details of the parallel implementation of the
methods will be given in ����� It will as well be there� where the substructured version of
the statical and dynamical improvement of approximations of speci�c eigenpairs will be
dealt with� In principle this is done by representing an eigenvector approximation from
nodal substructured condensation through its parts from the interior of the di	erent
substructures and using these parts in the same way as the substructure modes in �����

Eigenreanalysis

In a typical situation in applied eigenanalysis the interesting part of the eigendata 
eigen�

vectors z�� � � � � zm with corresponding eigenvalues ���� � � � � ��m� of a very similar problem
is perfectly known� The actual problem is a slight perturbation of the latter one and
since the eigendata ars most probably but slightly perturbed� too 
cf� ��� ����� it makes
sense� to use the known data to approximate the unknown� Approximations of the new
data can be obtained by projection on the space of old eigenvectors� Better results will
normally be produced by using the old vectors as 
part of the� master vectors within
a condensation approximation� possibly with a static or dynamic improvement of the
desired data�

Truncated iterative improvement

Within some of the above computational schemes the system�
K � ��M V Z

ZTV �

��
P
�

�
�

�
�

Im

�

has to be solved� If this system is large� it makes sense to solve it only approximately� Due
to the problems structure block versions of CG or MINRES 
the system is symmetric�
regular but always inde�nite� cf� the proof of Lemma �� seem to be especially suited�
Sensible steerings of the number of iterations are under investigation�

Algorithms for the choice of masters

A central question in nodal condensation has been how to choose the condensation mas�
ters optimally 
cf� ��� ��� ���� e�g��� The aim of most approaches to the automatical
determination of masters has been to maximize �� the minimal slave eigenvalue� Due to
a result from ��
� this makes sense� since an a priori bound on the approximation error
of static condensation from that paper decreases monotonically with increasing ��
With non nodal condensation the situation is seen to be more complicated� At least the
quality of a set of masters is not caught by � only� There are easy examples where quite
di	erent masters with very di	erent approximation behaviour in condensation lead to
the same �� The question how to mathematically characterize the quality of non nodal
masters is open� We shall investigate it in the near future�
At the moment� and most probably for ever � engineering know how will be of valuable
help in constructing starting approximations in non nodal condensation�
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