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Abstract. The Jacobi–Davidson method is known to converge at least quadratically if the
correction equation is solved exactly, and it is common experience that the fast convergence is
maintained if the correction equation is solved only approximately. In this note we derive the
Jacobi–Davidson method in a way that explains this robust behavior.

1. Introduction. In this paper we consider the large and sparse eigenvalue prob-
lem

Ax = λx (1.1)

or more generally the nonlinear eigenproblem

T (λ)x = 0 (1.2)

where A ∈ Cn×n and T : D → Cn×n, D ⊂ C is a family of sparse matrices.
For the linear problem (1.1) iterative projection methods have proven to be very

efficient if a small number of eigenvalues and eigenvectors are desired. Here the
eigenproblem is projected to a subspace of small dimension which yields approximate
eigenpairs. If an error tolerance is not met then the search space is expanded in an
iterative way with the aim that some of the eigenvalues of the reduced matrix become
good approximations of some of the wanted eigenvalues of the given large matrix.

Particularly efficient are Krylov subspace methods like the Lanczos and the Arnoldi
algorithm which provide rapid convergence to well separated and extreme eigenvalues
and corresponding eigenvectors. For interior eigenvalues these methods tend to ex-
hibit difficulties which can be remedied by shift-and-invert techniques, i.e. by applying
the method to the matrix (A − σI)−1 where σ denotes a shift which is close to the
wanted eigenvalues.

However, for truly large eigenproblems it is very costly or even infeasible to solve
the shift-and-invert equation (A− σI)x = y by a direct method as LU factorization,
and an iterative method has to be employed to solve it approximately.

Unfortunately, methods like the Lanczos algorithm and the Arnoldi algorithm are
very sensitive to inexact solutions of (A − σI)x = y, and therefore the combination
of these methods with iterative solvers of the shift-and-invert equation usually is
inefficient (cf. [3, 5, 12, 13, 14, 15]).

An iterative projection method which is more robust to inexact expansions of
search spaces than Krylov subspace methods is the Jacobi–Davidson method which
was introduced approximately 10 years ago by Sleijpen and van der Vorst [17] for
the linear eigenproblem (1.1), and which was extended to matrix pencils in [4], to
polynomial eigenproblems in [16], and to the general nonlinear eigenvalue problem
(1.2) in [2] and [19]. A survey has recently been given in [6], pseudo codes are contained
in [1].

Usually the Jacobi–Davidson expansion of a search space V is derived as orthog-
onal correction t of a current Ritz pair (θ, x) which is the solution of the so called
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correction equation

(I − xxH)(A− θI)(I − xxH)t = −(A− θI)x, t ⊥ x. (1.3)

It has been shown in [17] that the expanded space span{V, t} contains the direction
(A− θI)−1x which is obtained by one step of the Rayleigh quotient iteration. Hence,
one can expect quadratic convergence, which is even cubic in the Hermitian case.

It is common experience that fast convergence is maintained if the correction
equation (1.3) is solved only approximately. But the way the expansion of the search
space was derived by Sleijpen and van der Vorst does not indicate why the Jacobi–
Davidson method is more robust to inaccurate solutions of the correction equation
than Krylov type methods to inexact solutions of the shift-and-invert system.

In this note we rederive the Jacobi–Davidson method in a way that explains its
robustness.

2. A geometric derivation of a robust search space expansion. Consider
the linear eigenvalue problem (1.1). Let V be the current search space of an iterative
projection method. Assume that x ∈ V with ‖x‖ = 1 is the current approximation to
the eigenvector we are aiming at, and let θ = xHAx be the corresponding Rayleigh
quotient. Because of its good approximation property we want to expand the search
space by the direction of inverse iteration v = (A− θI)−1x/‖(A− θI)−1x‖.

However, in a truly large problem the vector v will not be accessible but only an
inexact solution ṽ := v + e of (A − θI)v = x, and the next iterate will be a solution
of the projection of (1.1) onto the space Ṽ := span{V, ṽ}.

We assume that x is already a good approximation to an eigenvector of A. Then
v will be an even better approximation, and therefore the eigenvector we are looking
for will be very close to the plane E := span{x, v}. We therefore neglect the influence
of the orthogonal complement of x in V on the next iterate and discuss the nearness
of the planes E and Ẽ := span{x, ṽ}. If the angle between these two planes is small,
then the projection of (1.1) onto Ṽ should be similar to the one onto span{V, v}, and
the approximation properties of inverse iteration should be maintained. If this angle
can become large, then it is not surprising that the convergence properties of inverse
iteration are not reflected by the projection method.

We denote by φ0 = arccos(xHv) the angle between x and v, and the relative error
of ṽ by ε := ‖e‖.

Theorem 2.1. The maximal possible acute angle between the planes E and Ẽ is

β(ε) =

{
arccos

√
1− ε2/ sin2 φ0 if ε ≤ | sinφ0|

π
2 if ε ≥ | sinφ0|

(2.1)

Proof. For ε > | sinφ0| the vector x is contained in the ball with center v and
radius ε, and therefore the maximum acute angle between E and Ẽ is π

2 .
For ε ≤ | sinφ0| we assume without loss of generality that v = (1, 0, 0)T , ṽ =

(1+e1, e2, e3)H , and x = (cos φ0, sinφ0, 0)T . Obviously the angle between E and Ẽ is
maximal, if the plane Ẽ is tangential to the ball B with center v and radius ε. Then
ṽ is the common point of ∂B and the plane Ẽ, i.e. the normal vector ñ of Ẽ has the
same direction as the perturbation vector e:

e =

e1

e2

e3

 = γñ = γ

cos φ0

sinφ0

0

×

1 + e1

e2

e3

 = γ

 e3 sinφ0

−e3 cos φ0

e2 cos φ0 − (1 + e1) sinφ0

 . (2.2)
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Hence, we have e1 = γ sinφ0e3, e2 = −γ cos φ0e3, and the third component yields

e3 = γ(−γ cos2 φ0e3 − (1 + γ sinφ0e3) sinφ0) = −γ2e3 − γ sinφ0,

i.e.

e3 = − γ

1 + γ2
sinφ0. (2.3)

Moreover, from

ε2 = e2
1 + e2

2 + e2
3 = γ2 sin2 φ0e

2
3 + γ2 cos2 φ0e

2
3 + e2

3 = (1 + γ2)e2
3,

we obtain

ε2 =
γ2

1 + γ2
sin2 φ0, i.e. γ2 =

ε2

sin2 φ0 − ε2
.

Inserting into (2.3) yields

e2
3 =

1
1 + γ2

ε2 =
(
1− ε2

sin2 φ0

)
ε2,

and since the normal vector of E is n = (0, 0, 1)T , we finally get

cos β(ε) =
n× e

‖n‖ · ‖e‖
=

e3

ε
=

√
1− ε2

sin2 φ0

.

Obviously for every α ∈ R, α 6= 0 the plane E is also spanned by x and x + αv.
If Ẽ(α) is the plane which is spanned by x and a perturbed realization x + αv + e
of x + αv then by the same arguments as in the proof of Theorem 2.1 the maximum
angle between E and Ẽ(α) is

γ(α, ε) =

{
arccos

√
1− ε2/ sin2 φ(α) if ε ≤ | sinφ(α)|

π
2 if ε ≥ | sinφ(α)|

(2.4)

where φ(α) denotes the angle between x and x + αv. Since the mapping

φ 7→ arccos
√

1− ε2/ sin2 φ

decreases monotonically the expansion of the search space by an inexact realization
of t := x + αv is most robust with respect to small perturbations, if α is chosen such
that x and x + αv are orthogonal, i.e. by

t = x− xHx

xH(A− θI)−1x
(A− θI)−1x. (2.5)

Then the maximum acute angle between E and Ẽ(α) satisfies

γ(α, ε) =
{

arccos
√

1− ε2 if ε ≤ 1
π
2 if ε ≥ 1

. (2.6)

Figure 1 shows the maximum angles between the planes E = span{x, v} and Ẽ =
span{x, ṽ} if ṽ is obtained by inexact evaluation of the direction of inverse iteration
v and of the orthogonal correction t, respectively, for two angles φ0 = 1 and φ0 = 0.1
between x and v. It demonstrates that for a large angle φ0 the robustness does not
increase very much, but for small angles, i.e. in case where x is already quite accurate,
the gain of robustness is essential.
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3. Jacobi–Davidson method. Obviously, the expansion t in (2.5) of the cur-
rent search space V is the solution of the equation

(I − xxH)(A− θI)(I − xxH)t = (A− θI)x, t ⊥ x. (3.1)

This is the so called correction equation of the Jacobi–Davidson method which was
derived by Sleijpen and van der Vorst in [17] as a generalization of an approach of
Jacobi [7] for improving the quality of an eigenpair of a symmetric matrix. Hence, the
Jacobi–Davidson method is the most robust realization of an expansion of a search
space such that the direction of inverse iteration is contained in the expanded space
in the sense that it is least sensitive to inexact solves of linear systems (A− θI)v = x.

Similarly, we obtain the Jacobi–Davidson expansions for more general eigenvalue
problems. Consider the generalized eigenvalue problem

Ax = λBx (3.2)

where B is nonsingular. Then given an approximation (θ, x) to an eigenpair the
inverse iteration is defined by v := (A − θB)−1Bx. Again, we expand the current
search space by t := x+αv, where α is chosen such that x and x+αv are orthogonal,
i.e. by

t = x− xHx

xH(A− θB)−1Bx
(A− θB)−1Bx,

and this is the solution of the well known correction equation(
I − BxxH

xHBx

)(
A− θB

)(
I − xxH

xHx

)
t = (A− θB)x, t ⊥ x (3.3)

of the Jacobi–Davidson method [4].
If B is Hermitian and positive definite, and angles are measured with respect to

the scalar product 〈x, y〉B := xHBy, then the robustness requirement 〈x, x+αv〉B = 0
yields the expansion

t = x− xHBx

xHB(A− θB)−1Bx
(A− θB)−1Bx,

which is the solution of the symmetric correction equation (cf. [16])(
I − BxxH

xHBx

)(
A− θB

)(
I − xxHB

xHBx

)
t = (A− θB)x, t ⊥B x. (3.4)
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Finally, we consider the nonlinear eigenproblem (1.2) where the elements of T are
assumed to be differentiable with respect to λ. Then given an eigenpair approximation
(θ, x) the direction of inverse iteration is v = T (θ)−1T ′(θ)x. t := x+αv is orthogonal
to x if

t = x− xHx

xHT (θ)−1T ′(θ)x
T (θ)−1T ′(θ)x,

and this is the solution of the correction equation(
I − T ′(θ)xxH

xHT ′(θ)x

)
T (θ)

(
I − xxH

xHx

)
t = T (θ)x, t ⊥ x. (3.5)

which was discussed in [2, 19], and for polynomial eigenvalue problems in [16].

4. Inexact Krylov subspace methods. In [10] Meerbergen and Rose investi-
gate an inexact shift-and-invert Arnoldi method for the generalized eigenvalue prob-
lem Ax = λBx. They demonstrate the superior numerical performance of a Cayley
transformation over that of a shift–invert transformation within an Arnoldi method
when using an iterative linear solver. Similarly Lehoucq and Meerbergen [8] showed
that the Cayley transformation leads to a more robust eigensolver than the usual
shift-and-invert transformation when the linear systems are solved inexactly within
the rational Krylov method.

Aiming at the eigenvalue λ̃ that is closest to some shift σ in both methods the
current search space V is expanded by

tSI = (A− σB)−1Bx (4.1)

where x is a Ritz vector with respect to V corresponding to the Ritz value θ closest
to σ.

Since

(A− σB)−1(A− θB)x = x + (σ − θ)(A− σB)−1Bx

and x ∈ V, this expansion is equivalent to the one given by the Cayley transformation

tC = (A− σB)−1(A− θB)x (4.2)

if (4.1) and (4.2) are evaluated in exact arithmetic.
However, since |xHtSI |/‖tSI‖ → 1 as θ → λ̃ and x approaches an eigenvector

corresponding to λ̃ whereas xHtC/‖tC‖ → 0, the considerations in Section 2 indicate
that we may expect a more robust behavior of Arnoldi’s method and the rational
Krylov method, if the search space is expanded by an inexact realization of tC than
by an approximation to tSI .

Similar considerations hold for the nonlinear Arnoldi method [9, 18] for problem
(1.2). There the expansion of the search space is motivated by the residual inverse
iteration tRI = x− T (σ)−1T (θ)x (cf. [11]) which converges quickly if σ is close to the
wanted eigenvalue. Since in iterative projection methods the new search direction is
orthogonalized against the basis of the current search space for stability reasons and
since x is already contained in V, the expansion was chosen to be tA := T (σ)−1T (θ)x.
In this case we have |xHtRI |/‖tRI‖ → 1 and xHtA/‖tA‖ → 0 such that the expansion
by tA turns out to be more robust than the one by tRI .
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[3] A. Bouras and V. Frayssé. A relaxation strategy for the Arnoldi method in eigenproblems.
Technical Report TR/PA/00/16, CERFACS, Toulouse, 2000.

[4] D.R. Fokkema, G.L.G. Sleijpen, and H.A. Van der Vorst. Jacobi-Davidson style QR and QZ
algorithms for the partial reduction of matrix pencils. SIAM J.Sci.Comput., 20:94 – 125,
1998.

[5] G.H. Golub and Q. Ye. An inverse free preconditioned Krylov subspace method for symmetric
generalized eigenvalue problems. SIAM J. Sci. Comput., 24(1):312 – 334, 2002.

[6] M.E. Hochstenbach and Y. Notay. The Jacobi–Davidson method, 2006. To appear in GAMM
Mitteilungen.
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