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Abstract. The subject of this paper is a demonstration of the accuracy and robust-
ness of evolution Galerkin schemes applied to two-dimensional Riemann problems
with finitely many constant states. In order to have a test case with known exact
solution we consider a linear first order system for the wave equation and test evo-
lution Galerkin methods as well as other commonly used schemes with respect to
their accuracy in capturing important structural phenomena of the solution. For the
two-dimensional Riemann problems with finitely many constant states some parts of
the exact solution are constructed in the following three steps. Using a self-similar
transformation we solve the Riemann problem outside a neighborhood of the origin
and then work inwards. Next a Goursant-type problem has to be solved to describe
the interaction of waves up to the sonic circle. Inside it a system of composite elliptic-
hyperbolic type is obtained, which may not always be solvable exactly. There an
interesting local maximum principle can be shown. Finally, an exact partial solution
is used for numerical comparisons.

1. Introduction. This paper is concerned with the accuracy of numerical ap-
proximations for solutions to systems of hyperbolic conservation laws. In order to
precisely assess the accuracy of numerical schemes it is of fundamental importance
to have a wide range of different exact solutions. Only in such cases one can deter-
mine the exact error of the approximation. For multidimensional systems of partial
differential equations this is quite a challenge.

One commonly used possibility to design such test cases for smooth solutions is
to take some simple, e.g. polynomial, trigonometric or exponential, functions. One
may insert them into the differential part of the equations and then adjust the right
hand side as well as the data in order to obtain a solution, see e.g. Lukáčová et al.
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[17]. This is quite nice for a start, but it is difficult to assess special properties of
schemes in general applications, since these solutions are quite special and possibly
unrealistic for true applications.

In designing schemes for conservation laws it is important to study discontinuous
solutions. Numerical difficulties at contact discontinuities in nonlinear systems like
the Euler equations of gas dynamics are quite well known. Therefore, it is useful to
study discontinuous solutions to the two-dimensional Riemann problem for linear
systems as a first step. The aim is to obtain as much exact information on the
solution of test cases as possible in order to calculate the local error of the scheme.
This will be done in this paper by considering a 3 by 3 linear system for the wave
equation that is related to the linearized accoustic part of the Euler equations.

The two-dimensional Riemann problem is given by initial data which consist of
piecewise constant states on a finite number of sectors going out from the origin
of the plane. A common simple example is to take four quadrants obliquely to the
mesh. The solution at a later time consists basically of two main parts. In a small
region around the origin, i.e. inside the sonic circle, it has a complicated structure
that is obtained as a solution to an elliptic boundary value problem. This part of the
solution is not known exactly. Outside this region the solution is piecewise constant
and the location of the discontinuities between these states is known exactly.

Another important issue for test cases is to obtain as much qualitative informa-
tion on the specific, e.g. monotonicity or maximum principle type properties, in
those local parts of the solution where it is not known exactly. One may then test
the scheme for the preservation of such properties.

The structure of the paper is as follows. First we study the solution near infinity
by making use of its self-similarity. We obtain a time-independent system in two
variables and demonstrate its solvability. This solution may be extended inwards
to a certain region. Then we have to solve a Goursat-type problem with possibly
discountinuous boundary values to go further inward. Next, we study the boundary
value problem for the extension of the solution to the remaining neighborhood of
the origin. We prove the solvability of this problem using the theory of symmetric
positive systems due to Friedrichs [8]. We also prove a maximum principle that
should be respected by numerical approximations.

In the remaining parts of the paper we give explicitly the construction of parts
of the solution for an example that we use to compare various schemes. We are
developing evolution Galerkin (EG) type schemes using the bicharacteristic cones
of the system in their construction specifically to deal with multidimensional so-
lution features. Variants of these second order schemes based on a finite volume
formulation are applied to this test case. Comparisons with a scheme of Butler, a
finite volume flux vector splitting scheme and the rotated Richtmyer Lax-Wendroff
scheme are made.

The study of the error in local parts of solutions to multidimensional Riemann
problems may be extended also to nonlinear systems. The analysis becomes quite
a bit more involved. Results of the kind that would be needed may be found in Li
et al. [15]. Since such solutions have been used as numerical test cases in recent
years, see e.g. Schulz-Rinne [26], it would be important to extend the results in this
paper to some of the test cases already in use.

2. Construction of two-dimensional Riemann solutions. In this section we
construct explicitly Riemann solutions of the two dimensional Riemann problem
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for wave equation system 


φt + c(ux + vy) = 0
ut + cφx = 0
vt + cφy = 0

(2.1)

subject to the initial data

(φ, u, v)(t = 0, x, y) = (φ0, u0, v0)(θ), (2.2)

where 0 ≤ θ < 2π is the polar angle. For the purpose of numerical experiments,
(φ0, u0, v0) is restricted to be a finite number of constant states, being discontinuous
along rays through the origin.

As the initial data are discontinuous, the solution of (2.1) and (2.2) must be
discontinuous and discontinuities propagate along characteristics by the well–known
theory of hyperbolic systems. Therefore (2.1) and (2.2) must be understood in
L∞(IR3

+), see [27].

We prove by a construction that the solution is in L∞. Now we try to find out
how to construct the explicit solution. For this purpose, we need to understand
how the discontinuities propagate and how they interact. For definiteness, we call
these discontinuities waves.

2.1. Planar waves and Rankine–Hugoniot condition. Since system (2.1) is
linear, there are no nonlinear rarefaction waves or shocks but only linear waves in
solutions. As a first step we just consider a planar wave. We assume such a wave
emitted from an initial discontinuity at the line µx + νy = 0 in the direction (µ, ν)
with µ2 + ν2 = 1. The solution takes the form

(φ, u, v)(t, x, y) = (φ, u, v)((µx + νy)/t). (2.3)

Let [φ] be the jump of φ across this discontinuity, and analogously for u and v,
and (−σ, µ, ν) the normal of the discontinuity. Then we get the Rankine–Hugoniot
condition, 


σ = σ0 = 0,
µ[u] + ν[v] = 0,
[φ] = 0,

or




σ = σ± = ±c,
[φ] ∓ (µ[u] + ν[v]) = 0,
−ν[u] + µ[v] = 0.

(2.4)

There are three possibilities for planar waves to travel with velocities 0, ±c.
Note that choosing an initial data with a jump along µx + νy = 0 leads to a
solution with at most three such planar wave parts. The first system of (2.4)
means that the normal components of velocity of (u, v) are identical on both sides of
stationary discontinuity with σ0 = 0. The second system means that the tangential
components of velocity are identical on both sides of the discontinuities moving with
speeds σ± = ±c. In this sense the case σ0 = 0 resembles a contact discontinuity, i.e.
a slip layer, and the case σ± = ±c are something like shock waves in gas dynamics.
Thus for given two initial states separated by the straight line µx + νy = 0, the
solution can be constructed via the characteristic analysis method in the phase
plane, similar to the construction of Riemann solutions for adiabatic gas dynamics,
see, e.g., [3], [27]. Specifically, we solve this problem in the (µu + νv, φ)–plane.
Denote by U = −νu + µv and V = µu + νv the tangential and normal velocity
components, respectively, along the plane µx + νy = σt with σ = σ0, or σ±. Then
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(2.4) is equivalent to

V1∗ − V2∗ = 0 and
φ1 − φ∗ + (V1 − V1∗) = 0,
U1 − U∗1 = 0, U2 − U2∗ = 0,
φ2 − φ∗ − (V2 − V2∗) = 0.

(2.5)

Taking the initial data (2.2) to be two constant states as

(φ, u, v)(t = 0, x, y) =
{

(φ1, u1, v1), µx + νy < 0,
(φ2, u2, v2), µx + νy > 0,

(2.6)

the solution can be expressed explicitly as

(φ, u, v)(t, x, y) =




(φ1, u1, v1), µx + νy < σ−t,
(φ∗, u∗1, v∗1), σ−t < µx + νy < 0,
(φ∗, u∗2, v∗2), 0 < µx + νy < σ+t,
(φ2, u2, v2), µx + νy > σ+t.

(2.7)

where (φ∗, u∗1, v∗1) and (φ∗, u∗2, v∗2) are solved by using (2.5). We illustrate the
construction of solutions in Figure 1.
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FIGURE 1. Ilustration of the construction of 2-D Riemann solutions;

X = µx + νy, V = µu + νv.

In general, the initial data are constant in angular domains and the corresponding
solutions will be much more complicated. However the invariance of (2.1) and (2.2)
under the dilation (t, x, y) → (αt, αx, αy) (α > 0) enables us to seek self–similar
solutions of the form (φ, u, v)(t, x, y) = (φ, u, v)(ξ, η) with ξ = x/t, η = y/t. Then
under this self–similar transformation system (2.1) becomes




−ξφξ − ηφη + c(uξ + vη) = 0,
−ξuξ − ηuη + cφξ = 0,
−ξvξ − ηvη + cφη = 0

(2.8)

and initial data (2.2) are transformed into boundary values at infinity

lim
ξ2+η2→∞

(φ, u, v) = (φ0, u0, v0)(θ), (2.9)



GALERKIN SCHEMES APPLIED TO TWO-DIMENSIONAL RIEMANN PROBLEMS 563

where η/ξ = arctan θ is kept constant taking the limit. This is a boundary value
problem for the first order system of partial differential equations (2.8) with bound-
ary values (2.9) at infinity. To solve it, the concepts of characteristics and discon-
tinuities in (ξ, η)–plane play an essential role. The eigenvalues of the system are

λ0 =
η

ξ
, and λ± =

ξη ± c
√

ξ2 + η2 − c2

ξ2 − c2
. (2.10)

The eigenvalue λ0 is always real while λ± are complex inside the sonic circle
S : ξ2 + η2 = c2 and real outside this circle. In other words, the flow is subsonic
inside the circle and supersonic outside the circle but parabolic degenerate on the
sonic circle.

In the supersonic domain, we define characteristics,

Γi :
dη

dξ
= λi, i = 0,+,−. (2.11)

Then it can readily be checked that Γ0 passes through the origin, Γ− and Γ+ are
straight and always tangent to the circle ξ2 + η2 = c2. Furthermore one can check
that Γ+ is tangent to S in the clockwise direction while Γ− is tangent to S in the
counterclockwise direction.

The discontinuity η = η(ξ), being a discontinuity surface y = ty(x/t) with
the normal (η − ξσ, σ,−1) and σ = η′(ξ) in (t, x, y)–space, satisfies the Rankine–
Hugoniot condition expressed in the selfsimilar variables [15],




σ0 =
η

ξ
,

σ[u] − [v] = 0,
[φ] = 0,

or




σ± =
ξη ± c

√
ξ2 + η2 − c2

ξ2 − c2
,

σ±[v] + [u] = 0,
cσ±[φ] + (η − ξσ±)[u] = 0.

(2.12)

The discontinuities η = η(ξ) defined by
dη

dξ
= σi (i = 0,+,−) have the same

properties as those of Γi. The components of velocity also share the same behaviour
as those in the case of planar waves above.

For the Riemann problem under consideration, (2.1) and (2.2) are equivalent
to (2.8) and (2.9). To solve the latter, we first need to solve this boundary value
problem at infinity, which is due to the following lemma.

Lemma 2.1. If the initial data (2.2) consist of a finitely many constant states,
then problem (2.8) and (2.9) is locally well-posed at infinity. The solution consists
of planar waves and constant states.

The proof of this lemma is similar to that in [5]. We omit the details.
After getting the solution at infinity, we have to extend this solution inwards

from an infinity. The solution can be extended by the method of characteristics
until an interaction of waves occurs.

2.2. The interaction of waves. As preparation of the construction of global
solution, the interaction of waves is now studied. We wish to solve a Riemann
problem in an angular domain Θ bounded by two characteristics in the (ξ, η)–
plane, which originate in a point P , where a wave interaction occurs, as illustrated
in Figure 2.

Let Γ− and Γ+ be two discontinuities, which intersect at P , Γ+ separates the
state (φ1, u1, v1) from (φ0, u0, v0) and Γ− separates (φ2, u2, v2) from (φ0, u0, v0).
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Thus our problem is to solve (2.8) inside the domain Θ bounded by PP1 and PP2

with the boundary values

(φ, u, v)|PP1 = (φ1, u1, v1) and (φ, u, v)|PP2 = (φ2, u2, v2). (2.13)

This is a Goursat-type problem with a possibly discontinuous boundary value on
the characteristics. Note that if (φ1, u1, v1) �= (φ2, u2, v2), the solution cannot be
expected to be continuous. Therefore we attempt to seek discontinuous solutions.
Denote P = (ξ0, η0), and consider a solution of the form

(φ, u, v) = (φ, u, v)(ζ), ζ = ζ(ξ, η) =
η − η0

ξ − ξ0
. (2.14)

v
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FIGURE 2. The Riemann problem in an angular domain; the discontinuities Γj

have the respective slopes σj j = 0,−, +; S : ξ2 + η2 = c2.

The curve ζ = ζ(ξ, η) is actually a surface y = t(ζ(x/t−ξ0)+η0) with the normal
(η0 − ζξ0, ζ,−1) in (t, x, y)–space. Therefore, the Rankine–Hugoniot condition of
discontinuities of this form satisfy (2.12) just replacing (η − σξ, σ,−1) by (η0 −
ζξ0, ζ,−1).

The slopes of the straight lines PP2, PP1 and PO are exactly ζ+, ζ− and ζ0.
ζ± must be real as long as (ξ0, η0) is located in the supersonic domain. This shows
that the solution of the form (2.14) can always be sought if two waves interact in
the supersonic domain.

If (φ1, u1, v1) = (φ2, u2, v2), then the solution in Θ is just constant. Otherwise, let
PPi separate (φi, ui, vi) from (φ∗, u∗i, v∗i), i = 1, 2, and PO separate (φ∗, u∗1, v∗1)
and (φ∗, u∗2, v∗2). Then we have the following relations by using the Rankine–
Hugoniot condition (2.12):

Across PP1,{
ζ−(v1 − v∗1) + (u1 − u∗1) = 0,
a(u1 − u∗1) − cζ−(φ1 − φ∗) = 0, a = −η0 + ζ−ξ0;

(2.15)

across PP2, {
ζ+(v2 − v∗2) + (u2 − u∗2) = 0,
b(u2 − u∗2) − cζ+(φ2 − φ∗) = 0, b = −η0 + ζ+ξ0;

(2.16)
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and across PO,
−ζ0(u∗1 − u∗2) + (v∗1 − v∗2) = 0. (2.17)

We write the system of equations (2.15)–(2.17) as

A U∗ = B, (2.18)

where

A =




−1 0 −ζ− 0 0
−a 0 0 0 cζ−
0 −1 0 −ζ+ 0
0 −b 0 0 cζ+

−ζ0 ζ0 1 −1 0


 , U∗ =




u∗1
u∗2
v∗1
v∗2
φ∗


 , B =




−ζ−v1 − u1

−au1 + ζ−cφ1

−ζ+v2 − u2

−bu2 + ζ+cφ2

0


 .

(2.19)
Note that

det A = cζ−ζ+(ζ+ − ζ−)(ξ0 + η0ζ0) �= 0 (2.20)
if ζ−ζ+ �= 0 and by (2.12) ζ+ �= ζ−, i.e. (ξ0, η0) is not located on the circle
ξ2 + η2 = c2. If ζ−ζ+ = 0, then ξ0 = ±c or η0 = ±c. Without loss of generality, we
just consider the case ξ0 = c. Then (2.16) is replaced by{

v2 − v∗2 = 0,
u2 − u∗2 − c(φ − φ∗) = 0 (2.21)

and ζ− =
η2
0 − c2

2cη0
. In all, the system (2.15), (2.17), (2.21) has a unique solution

when P is located outside the sonic circle. Thus the Goursat-type problem (2.8)
and (2.13) is uniquely solvable with the structure sketched in Figure 2.

2.3. The subsonic problem. In order to get the global Riemann solutions, we
have to study the subsonic problem (2.8) inside the sonic domain with the boundary
value on the sonic circle resulting from the extension of the Riemann solution in
the supersonic domain. The sonic circle is a degenerate boundary. The boundary
values are piecewise constant. For simplicity, denote the subsonic domain by Ω =
{(ξ, η); ξ2 + η2 < c2}.

System (2.8) can be rewritten in the operator form

L(w) = (L1(w), L2(w), L3(w))T := A
1
wψ + A

2
wη = 0, w = (φ, u, v)T, (2.22)

where

A
1

:=


 −ξ c 0

c −ξ 0
0 0 −ξ


 , A

2
:=


 −η 0 c

0 −η 0
c 0 −η


 .

Correspondingly, the adjoint operator of L is denoted by L∗ = (L∗
1, L

∗
2, L

∗
3)

T, i.e.

L∗(α) =


 (ξα1)ξ + (ηα1)η −cα1ξ −cα1η

−cα2ξ (ξα2)ξ + (ηα2)η 0
−cα3η 0 (ξα3)ξ + (ηα3)η


 , (2.23)

where α = (α1, α2, α3), the subscripts “ξ” and “η” represent the partial derivatives
as before.

According to Friedrichs [8] a first order system of type (2.22) is a symmetric
positive system. Due to regularity of the boundary ∂Ω we have everywhere the
outer normal vector field n = (n1, n2) and can define the boundary operator

B := A
1
n1 + A

2
n2.
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Thus,

B =


 −ξn1 − ηn2 cn1 cn2

cn1 −ξn1 − ηn2 0
cn2 0 −ξn1 − ηn2


 .

Now we take B− to be the negative part of the symmetric matrix B, i.e. B−

is negative semi-definite and B+ = B − B− is positive semi-definite. Let g ∈
L2(∂Ω) be given. Then according to Friedrichs [8], see also Lax and Phillips [13],
an admissible boundary condition is defined via

B−w = B−g on ∂Ω. (2.24)

A weak solution of (2.22) and (2.24) can be defined as follows.

Definition 2.1. Let g be in L2(∂Ω). A measurable vector w = (φ, u, v) ∈ L2(Ω)
is a weak solution of (2.22) and (2.24) iff

(w,L∗α) + 〈B−g, α〉∂Ω = 0, (2.25)

for all α ∈ C1(Ω) ∩ C(Ω̄).

The following theorem is due to Friedrichs [8], see also Lax and Phillips [13], and
gives the existence and uniqueness of solution in the strong sense.

Theorem 2.2. Let g ∈ L2(∂Ω). Then the problem (2.22), (2.24) has a unique
solution w = (φ, u, v) ∈ L2(Ω), s.t.

L w = 0 a. e. on Ω

B−w = B−g on ∂Ω.

Note that φ satisfies in a weak sense the following differential equations of second
order, which can be derived from (2.8) for smooth as well as distributional solutions

Q(φ) = (c2 − ξ2)φξξ − 2ξηφξη + (c2 − η2)φηη − 2(ξφξ + ηφη) = 0. (2.26)

If this equation has a unique classical solution, then the solution satisfies the max-
imum principle.

Lemma 2.3. (MAXIMUM PRINCIPLE) Suppose the solution of (2.26) satisfies
φ ∈ C2(Ω) ∩ C(Ω̄). Then the maximum principle holds, i.e.

‖φ‖Lp(Ω) ≤
( c

2

)1/p

‖φ‖Lp(∂Ω) (2.27)

for all 1 ≤ p < ∞. For p = ∞, it is

max
Ω

|φ| ≤ max
∂Ω

|φ|. (2.28)

Proof. The adjoint operator to Q is

Q∗(β) = ((c2 − ξ2)β)ξξ − (2ξηβ)ξη + ((c2 − η2)β)ηη + 2ξβξ + 2ηβη + 4β.

Applying Green’s formula, we have∫
Ω

wQ∗(β)dξdη −
∫

Ω

βQ(w)dξdη = −c

∫
∂Ω

wβdσ
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for w, β ∈ C2(Ω) ∩ C(Ω̄). Taking β = −1 and w = (φ2 + δ)p/2 for some δ > 0, we
have Q∗(β) = 2 and

Q(w) = p(φ2 + δ)p/2−1φQ(φ)
+p(φ2 + δ)p/2−2

(
(p − 1)φ2 + δ

)
((c2 − ξ2)φ2

ξ − 2ξηφξφη + (c2 − η2)φ2
η).

Since (c2 − ξ2)φ2
ξ − 2ξηφξφη + (c2 − η2)φ2

η ≥ 0 and Q(φ) = 0, we get

2
∫

Ω

(φ2 + δ)p/2 ≤ c

∫
∂Ω

(φ2 + δ)p/2dσ.

Letting δ → 0, we arrived at (2.27). The formula (2.28) is obvious from (2.27).

The general boundary value problem for (2.26) is also well–posed. This is very
similar to Theorem 1.5.1 in [24]. We state this theorem in the following theorem.

Theorem 2.4. There exists a unique solution of (2.26) with a measurable boundary
value φ|∂Ω = φ̄ in the sense that∫

Ω

Q∗(β)φdξdη = −c

∫
∂Ω

φ̄βdσ (2.29)

for all β ∈ C2(Ω) ∩ C(Ω̄). This solution satisfies the maximum principle

|φ| ≤ max
∂Ω

|φ̄|. (2.30)

The proof of this theorem basically follows that of Theorem 1.5.1 in [24]. We
omit the details.

2.4. The construction of global Riemann solutions. Based on the above
preparation, we can solve the two dimensional Riemann problem (2.1) for a finitely
many constant states in the initial data (2.2). By Lemma 2.2, we conclude that the
solution at infinity consists of piecewise constant states separated by planar waves.
These waves can be continued up to the sonic circle. In view of the Rankine-
Hugoniot conditions (2.15) - (2.17), these waves cannot be curved at interaction
points, where the Goursat-type problem can be solved, as explained in Subsection
2.2. Thus we can completely solve (2.8) and (2.9) outside of subsonic domain using
the method of characteristics. By Theorems 2.1 and 2.2 we obtain the combination
of the solution inside the subsonic domain. Thus a unique global Riemann solution
is constructed. Similar construction of solutions for gas dynamics can be found in
[15].

3. Evolution Galerkin methods. The evolution Galerkin methods (EG) were
proposed by Lukáčová, Morton and Warnecke in [17] as numerical schemes for
solving multidimensional systems of hyperbolic conservation laws. The main idea
of the evolution Galerkin methods is that they evolve the initial data using the
bicharacteristic cone or the Mach cone and then project them onto a finite element
space. In [17] three new first order evolution Galerkin schemes (EG1-EG3) for a
system of hyperbolic equations, and particularly for the wave equation system were
derived and analyzed. It has been shown in [17], see also [22], that the EG methods
capture very well such solution properties as circular symmetry, independence of
mesh orientation, vorticity preservation and shocks. The accuracy of some of these
first order schemes, e.g. the EG3 scheme, matches on coarse meshes that of the
commonly used second order schemes, e.g. the Lax-Wendroff.
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In [17] we proved that the EG schemes are stable upto some CFL number 0 <
νmax < 1 and numerical tests, presented in [19], indicate the bounds of νmax for
each approximate evolution operator EG1 - EG3.

In order to derive higher order versions of the EG schemes a finite volume for-
mulation is used. Thus to compute fluxes on the cell interfaces the approximate
solution is evolved using one of the three approximate evolution operators men-
tioned above. Then using a suitable recovery operator and a numerical quadrature
for time integral we obtain high resolution finite volume evolution Galerkin schemes,
see [16], [18], [20], [19].

Let us note here that the commonly used finite volume methods approximate
fluxes on the cell interfaces by solving a Riemann problem in normal directions
to the cell interfaces. However, it has been shown by many authors, see e.g. [6],
[7], [14], [17], [23], that such an approach can lead to structural deficiencies in the
numerical solution. Our finite volume evolution Galerkin methods take advantages
of both approaches: the simplicity of the finite volume formulation and the multidi-
mensionality of the evolution Galerkin schemes. In fact, they combine the usually
conflicting design objectives of using the conservation form and following the char-
acteristics, or bicharacteristics. This is a novel feature of our method and a genuine
multidimensional generalization for systems of Godunov’s idea.

In what follows we will describe explicitly evolution Galerkin schemes, finite vol-
ume evolution Galerkin schemes and their higher order version. The wave equation
system (2.1) can be written in the form of a general system of hyperbolic conser-
vation laws in d space dimensions

U t +
d∑

k=1

(F k(U))xk
= 0, x = (x1, . . . , xd)T ∈ IRd, (3.1)

where F k = F k(U), k = 1, . . . , d represent given physical flux functions and the
conservative variables are U = (u1, . . . , um)T ∈ IRm. Let us denote by E(s) :
[Hk(IRd)]m → [Hk(IRd)]m the exact evolution operator associated with a time step
s acting on Sobolev spaces for the system (3.1), i.e.

U(·, t + s) = E(s)U(·, t). (3.2)

We suppose that Sp
h is a finite element space consisting of piecewise polynomi-

als of order p ≥ 0. Let Un be an approximation in the space Sp
h to the exact

solution U(·, tn) at a time tn > 0 and take Eτ : Sr
h → [Hk(IRd)]m to be a suit-

able approximation to the exact evolution operator E(τ), r ≥ 0. We denote by
Ph : [Hk(IRd)]m → Sp

h an L2-projection onto cells, and by Rh : Sp
h → Sr

h a recovery
operator, r ≥ p ≥ 0 . We limit our considerations to cases of constant time step
∆t, i.e. tn = n∆t, and of a uniform mesh consisting of d-dimensional cubes with a
uniform mesh size h.

Definition 3.1 (EG methods). Starting from some initial value U0 at time t = 0,
the higher order evolution Galerkin scheme (EG) falls into the class of PERU-
schemes and is recursively defined by means of

Un+1 = PhE∆RhUn.



GALERKIN SCHEMES APPLIED TO TWO-DIMENSIONAL RIEMANN PROBLEMS 569

Definition 3.2 (FVEG methods). The recursive update formula for the finite vol-
ume evolution Galerkin method (FVEG) reads

Un+1 = Un − 1
h

∫ ∆t

0

d∑
k=1

δxk
F k(Un+τ/∆t) dτ, (3.3)

where the spatial central difference v(x + h/2) − v(x − h/2) is denoted by δxv(x)
and δxk

F k(Un+τ/∆t) represents an approximation to the edge flux difference at
intermediate time levels tn + τ , τ ∈]0,∆t[. The cell boundary flux Fk

(
Un+τ/∆t

)
is

evolved using the approximate evolution operator Eτ to tn + τ and averaged along
the cell boundary, i.e. e.g. on vertical edge for U itself

Un+τ/∆t =
1
h

∫ h

0

EτRhUndSydτ. (3.4)

An analogous formula holds for the horizontal edges.

Now we will give the approximate evolution operators E∆ for the wave equations
system (2.1) that we have used.

3.1. Approximate evolution operators. Consider the Mach cone corresponding
to the wave equation system (2.1), see Figure 3. Let us denote by P = (x, y, t+∆t)
the apex of the Mach cone and by Q = Q(θ) = (x + c∆t cos θ, y + c∆t sin θ, t)
the base points parametrized by the angle θ ∈ [0, 2π]. Denote by P ′ = (x, y, t) the
center of the base of the cone. The lines from Q(θ) to P generating the mantle of the
so-called bicharacteristic cone as well as the center line are called bicharacteristics.

� � ��� �� �����

� �

����

�

�

�
�

Figure 3. Bicharacteristics along the Mach cone through P and
Q(θ) as well as P ′.
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Using the theory of bicharacteristics it can be shown that the solution (φ, u, v)
at the point P is determined by its values on the base as well as on the mantle of
the characteristic cone. An exact integral equation has been derived; for details see
e.g. [1], [25], [17]. It should be pointed out that this integral equation is not an
integral representation of the solution in terms of the data, such as the Kirchhoff
formula for the wave equation. Different discretizations with respect to time of this
integral equation lead to the following approximate evolution operators E∆. For
more details on their construction see [17], [22].

3.2. Approximate evolution operator for the EG1 scheme.

φP =
1
2π

∫ 2π

0

φQ − 2uQ cos θ − 2vQ sin θdθ + O(∆t2) (3.5)

uP =
1
π

∫ 2π

0

−φQ cos θ + uQ(3 cos2 θ − 1) + 3vQ sin θ cos θdθ + O(∆t2) (3.6)

vP =
1
π

∫ 2π

0

−φQ sin θ + 3uQ sin θ cos θ + vQ(3 sin2 θ − 1)dθ + O(∆t2) (3.7)

3.3. Approximate evolution operator for the EG2 scheme.

φP =
1
π

∫ 2π

0

φQ − uQ cos θ − vQ sin θdθ − φP ′ + O(∆t3) (3.8)

uP =
1
π

∫ 2π

0

−φQ cos θ + uQ(2 cos2 θ − 1
2 ) + 2vQ sin θ cos θdθ + O(∆t3) (3.9)

vP =
1
π

∫ 2π

0

−φQ sin θ + 2uQ sin θ cos θ + vQ(2 sin2 θ − 1
2 )dθ + O(∆t3) (3.10)

3.4. Approximate evolution operator for the EG3 scheme.

φP =
1
2π

∫ 2π

0

φQ − 2uQ cos θ − 2vQ sin θdθ + O(∆t2) (3.11)

uP =
1
2
uP ′ +

1
2π

∫ 2π

0

−2φQ cos θ + uQ(3 cos2 θ − 1) + 3vQ sin θ cos θdθ

+ O(∆t2) (3.12)

vP =
1
2
vP ′ +

1
2π

∫ 2π

0

−2φQ sin θ + 3uQ sin θ cos θ + vQ(3 sin2 θ − 1)dθ

+ O(∆t2) (3.13)

Denote by Ph an L2 - projection onto a space of piecewise constant functions
S0

h and apply Ph to the approximate evolution operators (3.5)-(3.7), (3.8)-(3.10),
(3.11)-(3.13). This yields the first order schemes Un+1 = PhE∆Un, which in [17]
are referred to as the EG1, EG2 and EG3 schemes. Space integrals coming from the
projection step are computed exactly, i.e. no numerical quadrature is used. The re-
sulting finite difference formulation on equidistant rectangular meshes can be found
in [17], where the coefficients of the EG schemes in finite difference formulation are
given explicitly.
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3.5. Second order finite volume evolution Galerkin schemes. There are
many possible recovery schemes, which could be used. We only prescribe that the
following conservativity property holds

PhRhV = V for all V ∈ Sp
h. (3.14)

For our computations we choose a discontinuous bilinear recovery using a finite
difference approximation to derivatives, but others could be used and were tested
as well. The formula for the recovery on each cell is

RhU |Øij
= U ij +

(x − xi)
4h

(
∆0xU ij+1 + 2∆0xU ij + ∆0xU ij−1

)

+
(y − yj)

4h

(
∆0yU i+1j + 2∆0yU ij + ∆0yU i−1j

)

+
(x − xi)(y − yj)

h2
∆0y∆0xU ij ,

where ∆0xv(x) = 1
2 [v(x + h) − v(x − h)] = 1

2 (vi+1 − vi−1), an analogous notation
is used for ∆0y.

For the computation of fluxes through cell edges the cell interface value of U has
to be determined. Instead of the exact time integration the second order midpoint
rule is used. Thus, the finite volume evolution Galerkin scheme (3.3) now is written
as

Un+1 = Un − ∆t

h

d∑
k=1

δxk
F k(Un+∗), (3.15)

where

F k(Un+∗) =
1
h

∫ h

0

Fk(E∆t/2RhUn)dS. (3.16)

The resulting two-dimensional space integrals of the bilinear function RhUn with
respect to θ and cell edges are computed exactly without any numerical quadrature
and thus all of the infinitely many directions of propagation of flow information are
taken explicitly into account. Examples of stencils can be found in [18]. The above
construction leads for every approximate evolution operator (3.5)-(3.7), (3.8)-(3.10),
(3.11)-(3.13) to an overall second order scheme. Numerical experiments show, see
[16], [18], that these schemes give very accurate results in regions were the solution
is smooth, e.g. even 7 times more accurate than the commonly used second order
schemes of Lax-Wendroff and finite volume flux vector splitting scheme using the
MUSCL approach. In what follows we will test the quality of the numerical solution
for a discontinous genuinely multidimensional test case.

4. Numerical results. The goal of this section is to solve numerically a two-
dimensional Riemann problem with the initial data consisting of finitely many con-
stant states. Using the results from the Section 2 the exact analytical solution
outside the subsonic region can be found. The exact solution will be compared
with the numerical solution obtained by the evolution Galerkin schemes as well
as by other commonly used numerical schemes. Thus, we will get a good insight
into the performance of our schemes and the possibility to compare the numerical
solutions with the exact discontinuous solution, which in certain cases are available.

In what follows, let us consider the following Riemann problem



572 JIEQUAN LI, MÁRIA LUKÁČOVÁ - MEDVIĎOVÁ, GERALD WARNECKE

φ(x, 0) = 0,

v(x, 0) = u(x, 0) = 1√
2

{
1, |y| < |x|,

−1, elsewhere.

(4.1)

The computational domain is taken to be [−1, 1]× [−1, 1] and the final time set
to be T = 0.4. According to the results from the Section 2 we find out that from
each of the initial discontinuities x = ±y planar waves propagate with the speeds
σ0 = 0 or σ± = ±c. For each initial discontinuity a corresponding Riemann problem
has to be solved in order to find the intermediate constant states (φ∗, u∗1, v∗1) and
(φ∗, u∗2, v∗2) up to the region where the waves interact, i.e. up to the points P,Q
as depicted in Figure 4.

For our test case these constant states of the solution are as follows. In the
regions denoted in Figure 4 by (1) - (4) φ = 0; further u = v = 1/

√
2 in (1),(3)

and u = v = −1/
√

2 in (2),(4). In the region between the rays l21 and l23 one
has φ = 1 and u = v = 0. Analogously, between l41 and l43 we have φ = −1
and u = v = 0. Further, in the region between the rays l31 and l33 the values are
φ = 0, but u = v = 1/

√
2 in the region l31 − l32, and u = v = −1/

√
2 in the

region l32 − l33. Similar results with opposite signs hold in the region l11 − l13.
Further, there are four regions corresponding to the Goursat-type problems, cf.
Section 2.2. In two of them between the rays l11 − l43 and l33 − l41 we have
φ = −1 and u = v = 0 and analogously in the next two Goursat-type regions,
which are bounded by the rays l13 − l21 and l23 − l31, the solution is φ = 1 and
u = v = 0.
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FIGURE 4. Construction of solution of the Riemann problem (4.1).

In what follows we will compare these values of the exact solution with the
corresponding parts of the numerical solutions obtained by the evolution Galerkin
methods as well as by other numerical schemes. We divide the computational
domain into N × N mesh cells with N = 400. For the CFL condition c∆t/h ≤ ν,
we set the CFL-number ν = 0.55 and take the final time T = 0.4.

In Figures 5 and 6 the isolines of x−component of velocity computed by several
numerical schemes are shown. We see that two discontinuities propagate in the
positive and negative direction of the diagonal x = −y and an additional steady
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discontinuity occurs along the main diagonal x = y. This is in a full agreement
with the structure of the exact solution as derived above.
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Figure 5. Isolines of velocity obtained by the first order FVEG3
and FV-FVS schemes.

In Figure 5 the comparison between the first order FVEG3 and the first order
FV flux vector splitting (FV-FVS) method is shown. It can be seen very well that
the directional splitting can spoil the structure of the solution if the discontinuity
is not aligned with the mesh orientation.

Figure 6 shows the comparison of the second order FVEG3 method with the
commonly known Lax-Wendroff (rotated Richtmyer) scheme. We can see that the
resolution by the FVEG method is generally better without producing oscillations.
Moreover comparing results of the first order and the second order FVEG3 method,
Figures 5 and 6, it can be seen very well that the discontinuities are sharper and
better resolved by the second order method.

Having outside the subsonic domain the analytical formulae for the exact solu-
tion, we are moreover able to compare errors between the exact and approximate
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Figure 6. Isolines of velocity obtained by the second order
FVEG3 and the Lax-Wendroff schemes.
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solutions. Actually, as alreday pointed out one can use the Kirchhoff formula to
obtain the exact solution in the subsonic domain also, see [10] for details. We have
refrained from using it, because the accuracy at the oblique discontinuities was the
main objective of our comparisons.

The CFL-number is set to 0.55, but numerical tests for several other values of
CFL number and final time T confirm the behaviour of the schemes as depicted in
Tables 1 and 2, where the errors between the exact and the approximate solution
measured in the discrete L2 -norm are shown. The computational domain is divided
into N × N mesh cells with N = 50, 100.

Similarly, as we have reported in [17], [18] for the continuous data case, the EG3
scheme is the most favourable among the first order EG-schemes due to its lower
numerical diffusion, see [21]. On the other hand, the commonly used dimensional
splitting finite volume flux vector splitting scheme (FV-FVS) has not only a rel-
atively large amount of diffusion, but can also spoil a solution considerably, see
Figure 5 and Table 1.

As illustrated in Table 2 the accuracy of the second order FVEG1 and FVEG3
schemes is comparable with the accuracy of the second order Butler scheme [1],
and it is even better than the accuracy of the Lax-Wendroff scheme. This feature
has already been noticed for continuous data problems in our previous papers [16],
[18], where we have shown that the accuracy of the second order FVEG schemes,
namely the FVEG3 and the FVEG1, is relatively high, in comparison to other
commonly used second order methods, e.g. the Lax-Wendroff scheme or the FV-
FVS (MUSCL). Moreover, also the qualitative phenomena in the exact solutions
are resolved better by the EG schemes as demonstrated in Figures 5 - 6. Note that
although we can see some improvements in L2-errors if the number of mesh cells
increases, i.e. N = 50, 100, as well as if the order of method increases, we cannot
actually obtain experimentally the full order of convergence in the discontinuous
data case. This is a well-known fact for discontinuous data problems.

In Table 3 we show that the L2-error computed only on the Goursat-type domain,
i.e. the domain where the waves emitted from the original discontinuities start to
interact. We can see the superiority of the FVEG schemes. Actually, the solution
in this domain, which is close to the subsonic part, i.e. partially elliptic part, of the
solution is much better and more stably approximated by the FVEG schemes than
by the other second order methods that we have tested.

Table 1. L2 error: comparison of first order methods outside the
subsonic domain.

N EG1 EG2 EG3 FVEG3 FV-FVS
50 0.659197 0.748516 0.588118 0.688988 0.710322
100 0.558413 0.640843 0.472754 0.582529 0.639134

Finally, we present in Figure 7 an example of a cross section of the φ component
showing that for the subsonic domain the local maximum principle, derived in
Section 2.3, is maintained by our schemes. We can see that the EG-schemes, the
first order EG3 as well as the second order FVEG3, provide monotone solutions
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Table 2. L2 error: comparison of second order methods outside
the subsonic domain.

N FVEG1 FVEG2 FVEG3 LW Butler
50 0.517610 0.590799 0.528176 0.565938 0.531510
100 0.404097 0.512992 0.409156 0.427599 0.408781

Table 3. L2 error: comparison of second order methods in the
Goursat-type domain.

N FVEG1 FVEG2 FVEG3 LW Butler
50 0.093271 0.079240 0.099798 0.127834 0.116926
100 0.060055 0.053268 0.066472 0.093554 0.081193

on the interval [−0.4, 0.4], which corresponds to the subsonic domain. For the
Lax-Wendroff method this is not the case.
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FIGURE 7. Comparison of the EG-schemes and the Lax-Wendroff method on the
cross section y = 0, CFL=0.55, N = 200.
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[5] Čanić, S.; Keyfitz, B.L. (1998): Quasi–one–dimensional Riemann problems and their role in
self–similar two dimensional flows. Arch Rational Mech. Anal. 144, 233–258

[6] Fey, M. (1998): Multidimensional upwinding, Part I. The method of transport for solving the
Euler equations. J. Comp. Phys. 143, 159-180
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