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1. Introduction 

1.1 Research motivation 

This thesis examines the measurement and management of product costs to support knowledge and 

guidance of the notion of competitive advantage of Porter (1985a, 1985b). The development of 

competitive advantage through differentiation is continuously worsening owing to increasing 

competition (D'aveni, 2010). When business models solely rely on “comfort zones of differentiation”, 

they may lose market share. As a result, firms tend to increase their product variety to meet the needs of 

more customers and raise profits. However, such a strategy can lead to growing costs (Kekre & 

Srinivasan, 1990), and this emphasizes the importance of cost-effectiveness - despite differentiation - 

for being profitable in the long run. Hence, firms are forced to offer a product variety at reasonable costs, 

which may be challenging in practice. Given the significance of cost research, this thesis extensively 

formalizes and models firms to analyze product cost measurement and management. 

Expectations of today’s product cost measurement are high because of increasing information 

technology capabilities and competition. Cost accounting systems are a common instrument for 

measuring general resource costs in firms as well as products’ resource consumption and the related 

expenses. No matter whether monitoring product development or material procurement, cost data 

facilitate daily decision-making in the value chain. Unfortunately, product cost measurement still 

contains errors. Specifically, firms’ complexity impairs the full and error-free measurement of all 

usages, which makes full measurement almost infeasible and often too costly.1 These errors diffuse into 

final product cost information and affect cost-based decision-making on such factors as pricing, capacity 

planning, performance evaluation, inventory management, profitability analysis, and classical cost 

evaluation (Labro, 2019; Labro & Dierynck, 2018). The economic consequence of erroneous cost 

information depends on the context and can be more or less severe. Therefore, although 

recommendations point to the usage of complex costing systems, a balanced strategy between sufficient 

accuracy and fewer efforts is necessary in practice. 

Product cost management concerns resource commitment decisions as well as the selection of 

alternative cost-effective production technologies (Anderson & Dekker, 2009a). Planning product 

programs with production technology and the necessary capacities result in the “grand program” of firms 

that shatters in many sub-decisions into departments such as marketing, production, and development. 

The high number of departments shows that cost management decisions are less focused, and this makes 

 
1 The terms of diversity, heterogeneity, and complexity are used interchangeably throughout this thesis. Accounting and 

economic studies predominantly apply diversity and heterogeneity (Abernethy, Lillis, Brownel, & Carter, 2001; Anderson, 

1995; Gupta, 1993; Labro & Vanhoucke, 2008). Engineering and operations management use complexity in the same sense 

(ElMaraghy, ElMaraghy, Tomiyama, & Monostori, 2012; Guenov, 2002; Meyer, Meßerschmidt, & Mertens, 2019). 
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it difficult to take integrated and deliberate actions. Consequently, cost management refers to more 

strategic levels (Shank & Govindarajan, 1993) for its implementation; however, this requires long time 

commitments in resources and production technology. This long-term perspective is particularly 

decisive when later adjustments are immensely costly and narrow the space of erroneous decisions. 

Hence, many trade-offs in product cost measurement and measurement have a relevant impact on the 

competitiveness and long-term success of firms. 

1.2 Problem statement and objectives 

Product costs reflect the aggregated consumption of production factors weighted by their respective 

input prices (Balakrishnan, Labro, & Sivaramakrishnan, 2012a).2 Costing systems aim to provide 

information about products’ resource usage along the value chain (Horngren, Datar, & Raja, 2014), 

where managers use the resulting cost information for a myriad of decisions (Labro, 2019; Labro & 

Dierynck, 2018). By contrast, managing product costs aims to deliberately influence the resource and 

production function in product-based planning (Blocher, Stout, Juras, & Cokins, 2012; Krause & 

Gebhardt, 2018). In sum, both cost measurement and cost management are mandatory to be cost-

effective and develop a competitive advantage in this area, as shown by Porter (1985a, 1985b). 

Unfortunately, measuring and managing product costs “right” is challenging because of their 

unobservable and interdisciplinary nature. 

First, firms’ trade-off between measurement efforts and the resulting accuracy remains under 

discussion (Balakrishnan et al., 2011; Hoozée & Hansen, 2018; Labro & Vanhoucke, 2007, 2008), and 

conclusive evidence for the “right” cost system design choices is lacking (Al-Omiri & Drury, 2007; 

Drury & Tayles, 2005; Schoute, 2009). Complex costing systems such as activity-based costing (ABC) 

systems are thought to provide more accurate measurements (Drury, 2015; Horngren et al., 2014); 

however, their use by firms is limited (Gosselin, 1997, 2006; Jones & Dugdale, 2002) compared with 

simple traditional volume-based costing (TVC) systems (Al-Omiri & Drury, 2007; Cinquini, Collini, 

Marelli, & Tenucci, 2013; Drury & Tayles, 1994, 2005; Schoute, 2009). In addition, numerical studies 

have shown that ABC systems do not always provide error-free cost information (Balakrishnan et al., 

2011; Christensen & Demski, 1995, 1997, 2003; Labro, 2006, 2019; Labro & Vanhoucke, 2007, 2008; 

Noreen, 1991), stressing the question mark over appropriate cost system designs. In sum, this thesis 

reconsiders the inconsistent discussion and findings to contribute new guidance on cost system design 

choices. 

 

 
2 This thesis prefers the wording of products but uses it interchangeably with services, customers, and other potential carriers 

of costs. This is a common simplification because modeling does not strictly exclude the principles of services (Fandel, 2005,p. 

3f.). Following Schmenner (1986), services have specific characteristics for which the study can partially account. 
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[1] The first objective of this thesis is to examine simple and complex costing approaches among 

different environmental circumstances that may support guidance and theory in cost system design 

choices.  

 

Second, neither complex nor simple costing entirely prevents measurement errors (Babad & 

Balachandran, 1993; Balakrishnan et al., 2011; Datar & Gupta, 1994; Hwang, Evans, & Hegde, 1993), 

with imprecision, also recognized as noise or error variance (Bloomfield, 2016), underdiscussed in cost 

research. Although it is intuitive to address the lack of precision (Amershi, Banker, & Datar, 1990; 

Banker & Datar, 1989; Datar, Kulp, & Lambert, 2001; Feltham & Xie, 1994; IASB, 2018), most costing 

research has focused on total error and bias (Anand et al., 2017; Balakrishnan et al., 2011; Labro & 

Vanhoucke, 2007, 2008). Specifically, increasing data collection by firms may change accepted 

guidance and theory and raise the probability of finding more unpredictable random measurement errors 

(Cardinaels & Labro, 2008; Mertens & Meyer, 2018). Finally, it seems suitable to evaluate the 

magnitude and presence as well as the economic consequences of imprecision in cost-based decisions. 

 

[2] The second objective of this thesis is to examine the effects of random measurement errors on 

imprecision in reported product costs as well as on their economic consequences in decision-making. 

 

Third, there is limited integration of engineering design and economic principles even though both 

are fundamental to product planning and share the same objective. Product-based planning is the “grand 

program” of combined product and capacity planning problems (Balakrishnan et al., 2011). Whereas 

economists focus on product prices and resource commitments when making their decisions, engineers 

aim to determine firms’ engineering based on customers’ needs and the functional requirements of the 

resulting product designs. Although their perspectives are different, their objectives are largely similar. 

In detail, engineering design considers a large space of possible product designs (Hazelrigg, 1998) to 

select the best technical opportunity for creating the requested products, while economic questions seek 

the optimal decisions in pricing as well as in resource and production commitments (Demski, 2008). In 

sum, both strands rank possible strongly related product-based planning scenarios under different 

criteria. Consequently, this thesis aims to extend the theory to formalize and model a detailed product 

perspective including the subsequent production environment under economic information as well as 

weight the product plan using the economic metrics of price, costs, and profit from resources to 

customers.  

 

[3] The third objective of this thesis is to connect engineering design principles with neoclassical firm 

theory to propose a decision-relevant framework that can comprehensively support product-based 

planning problems. 
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Lastly, practical cost management strategies aim to make large resource and production function 

adjustments, where modularization is perceived as a fruitful approach for achieving cost-effectiveness 

(Wouters & Morales, 2014; Wouters, Morales, Grollmuss, & Scheer, 2016; Wouters & Stadtherr, 2018). 

Modularization adjusts, reconfigures, and realigns existing commitments and relations in an 

organization, particularly its production technology (MacDuffie, 2013). Hence, modularization can 

drastically reduce firms’ total costs, regardless of the initial circumstances (Blees, 2011; Farrell & 

Simpson, 2009; Jacobs, Droge, Vickery, & Calantone, 2011; Jacobs, Vickery, & Droge, 2007; Kipp, 

2012; Kumar, Chen, & Simpson, 2008; Marion, Thevenot, & Simpson, 2007; Ripperda & Krause, 

2017); however, there is less evidence (Fixson, 2005, 2006) about the drivers and mechanisms of cost-

effectiveness concerning the product architecture. On this point, the extended axiomatic design (EAD) 

from the previous objective addresses the theoretical foundation to thoroughly construct a model-based 

engineering system (Adams, Hester, Bradley, Meyers, & Keating, 2014; Madni & Sievers, 2018; Ramos, 

Ferreira, & Barceló, 2012). This engineering model encourages the analysis of actual guidance in 

modularization referring to the prominent market segmentation grid (Krause et al., 2014; Meyer & 

Lehnerd, 1997; Otto et al., 2016). 

 

[4] The last objective of this thesis aims to assess cost-effectiveness when modularizing product 

architectures to support and test decisive drivers and guidance. 

 

Overall, this thesis develops a theory-orientated framework consisting of engineering design and 

economic theory to examine decision-making in product-based planning [3]. The framework supports 

the identification of cost drivers when modularizing product architectures. Therefore, this thesis 

proposes general guidance when applying the market segmentation grid in modularization projects [4]. 

Moreover, it claims that the horserace between simple and complex product costing is still entangled 

and sensitive to cost structure theory [1]. To this end, the lack of precision in product cost information 

is crucial for optimal decision-making because it may yield overconfidence and profit losses [2]. 
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1.3 Structure of this thesis 

Figure 1 illustrates the conceptual framework of this thesis. The foundations of modeling and simulation 

(M&S) as well as product cost measurement and management are presented in Section 2 to clarify the 

understanding of the basic concepts. Section 3 builds upon Section 2 by outlining the latest research 

activities in both fields with a slight emphasis on modularization. Both support the formalism of the 

EAD in Section 4, which provides the foundation for the conceptual and further computational models. 

Sections 5, 6, and 7 present the results, and Section 8 concludes. 

 
Figure 1: Conceptual structure of this thesis  
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2. Basic concepts 

2.1 Modeling and simulation (M&S) 

2.1.1 M&S as a research method 

M&S, the main research method in this thesis, primarily refers to the conceptual modeling of 

problems that will be computerized and hence manipulated while observing the responses (ASME, 2007; 

Balci, 1994; Harrison, Lin, Carroll, & Carley, 2007; Law, 2014a, 2014b; Oberkampf & Roy, 2010; 

Sargent, 2013).3 Studies use M&S to model, test, and develop and elicit causal mechanisms 

(Balakrishnan & Penno, 2014) in all kinds of fields. Because it is widely acknowledged, it is differently 

used (Grisar & Meyer, 2015; Hauke, Lorscheid, & Meyer, 2017b; Meyer, Zaggl, & Carley, 2011). While 

agent-based M&S includes social and behavioral simulations, production and industrial cases apply 

mixes of Monte Carlo and discrete-event M&S. No matter which approach is used, every M&S study 

yields an artificial laboratory for testing and manipulating inputs while observing responses. 

The advantages of M&S are its capacity to perform experiments despite unobservability and 

analytical intractability in less time and at lower cost. M&S has long flourished in research (e.g. 

Shannon, 1975) and is not an exclusive academic method (Clymer, 2009). Over time, it has matured to 

become an accepted methodology for providing generalizable findings, particularly on questions of 

theory testing and development (Davis, Eisenhardt, & Bingham, 2007; Harrison et al., 2007). In detail, 

studies use it to predict and explain outcomes among uncertainty without employing large and costly 

equipment and in a fraction of the time of real experiments (Law, 2014a). This capability strengthens 

research investigating unobservable mechanisms by implementing theoretical relations in the 

computational model. 

The physical science community most frequently models phenomena using M&S to mitigate time 

restrictions and unobservability. M&S discussions in physical science are based on influential theories 

such as the relativity and mass-energy equivalence of Einstein (1905). Using theories supports 

conceptual and computational models of space, where numerical explorations foster the investigation of 

unobservable phenomena. For instance, phenomena such as black holes and galaxy generations are not 

observable due to the enormous time restrictions. However, M&S allows researchers to explain how 

galaxies develop (Vogelsberger et al., 2014) and how black holes evolve (Stergioulas, 2009) before 

empirical observations have been found. Overall, M&S is thus a valid approach for exploring complex 

phenomena. 

Through widespread applications and questions, M&S has built branches for efficiently designing 

conceptual and computational models, where discrete event, agent-based Monte Carlo as well as hybrid 

 
3 This research method is not linked to computers per se, but this thesis concentrates on computational M&S. 
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simulations forms are prominent. For example, agent-based modeling formalizes the actions and rules 

of individual micro-level behavior by agents that autonomously interact with their environments. These 

micro-level interactions emerge in a macro-level phenomenon (e.g., socio-technical or socio-ecological 

systems) (Schulze, Müller, Groeneveld, & Grimm, 2017; Squazzoni, 2012). Discrete event simulation 

is a stepwise modeling process with actions over time, stages, and events aiming to emulate a flow 

process (Siebers, Macal, Garnett, Buxton, & Pidd, 2010). For instance, this approach is prominent in 

investigating production scheduling problems. Monte Carlo simulations use repetition to study uncertain 

input assumptions while calculating numerous scenarios for analysis. Native applications are associated 

with risk management in business administration (Grisar & Meyer, 2015). Overall, the presented 

typology is ideal when many M&S projects belong to hybrid and blended forms. 

 

Figure 2: Model development cycle of M&S 

Despite the existence of diverse M&S approaches, a generic M&S development process 

encompasses a problem entity, a conceptual model, and a computational model, as shown in Figure 2 

(Balci, 1994; Barth, Meyer, & Spitzner, 2012; Law, 2014a; Robinson, 2008a, 2008b; Sargent, 2013). 

M&S studies start with a focal research objective or research questions about a system, resulting in a 

problem entity containing elements, rules, or patterns. During conceptual model development, modelers 

abstract and simplify the problem entity to its relevant core principles. This model hence exemplifies 

the relevant elements and interactions concerning the model’s problem (Robinson, 2008a, 2008b). 

Finally, the conceptual model leads to the implementation of a computational model using coding and 

compiling. The computational model is a virtual laboratory ready to receive manipulations for tracking 

the responses. By manipulating the input parameters, the model yields outcomes from the implemented 

rules. The stimulations in the responses are thus observable and useable for statistical analysis and 

reasoning.  

Each M&S study continuously requires verification and validation at each level to sustain models’ 

credibility (Law, 2014a; Sargent, 2013). Although the theoretical M&S development process is linear, 

it is actually a circle of plausibility checks and remodelings to allow verification and validation. As 
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shown in Figure 2, all arrows are doubled to denote this circularity. This process is closer to M&S 

development because each stage can have issues such as less substantiated simplifications, programming 

errors, and missing alignment to the problem. This thesis, therefore, recommends that modelers 

repeatedly falsify themselves to start a process of rethinking and remodeling. This stepwise process 

ensures the quality of M&S by verification and validation, which is essential for generating rigorous and 

credible results as well as conclusive communication (Balci, 1994; Barth et al., 2012; Rand & Rust, 

2011; Waldherr & Wijermans, 2013). Overall, M&S projects must supply enough credibility to 

communicate their conclusions and reasoning. 

Regarding reasoning, M&S can be closer to either inductive or deductive principles (Axelrod, 1997, 

2006). It can use existing theory such as the general relativity of Einstein (1905) and production theory 

of Cobb and Douglas (1928) or empirical observations to develop models (Grimm et al., 2005; Hauke, 

Lorscheid, & Meyer, 2017a; Klügel & Karlsson, 2009). When applying existing strong theory, it swings 

toward a more deductive conceptual model, where empirical observations lead to more inductive 

modeling. Both ways affect the conceptual model and determine the potential for reasoning, meaning 

whether the study will support generalizations through theory testing or offer theory developments, 

respectively. Indeed, according to discussions (Popper, 1998), M&S is neither strictly inductive nor 

deductive (Axelrod, 2006). To sum up, M&S supplies ways for analyzing hardly measurable phenomena 

in complex systems with fewer restrictions in terms of costs and time to test and develop theory 

(Axelrod, 1997; Conte, 2009; Davis et al., 2007). 

2.1.2 Systems, models, and metamodels 

Another perspective of M&S study development provides three levels of granularity, namely the 

real system F (problem entity), the model f (conceptual and/or computational model), and a metamodel 

m (statistical analysis), as shown in the research process in Figure 3 (Barton, 1998; Barton & 

Meckesheimer, 2006; Kleijnen & Sargent, 2000).4 The previous section provided information about the 

M&S development process, whereas this section illustrates the conceptual granularity in M&S, starting 

from the problem entity to conceptual and computational modeling toward statistical analysis. 

The real system F(X)=Y includes for input X and outputs Y entities as well as functional 

relationships, known as the design F. Assuming that parts of systems are decomposable, F reflects a 

more or less complex mechanism designed as an interplay of rules, functions, and entities. Of course, 

mechanisms are relevant for targeting the problem entity and they start the M&S development process, 

where abstractions and simplifications then consolidate F to the model f. In this process, only a few 

 
4 The definition of a model in M&S is subtle. Every study ideally starts with a conceptual model and transfers it into a 

computational model. The transition between the model also allows for differences because the conceptual model is not 

necessarily correctly implemented. In practical research, there is sometimes less emphasis on this issue where studies frequently 

are arguing from the computational level. Preventing this pitfall, modelers should use frameworks or techniques for conceptual 

modeling (Grimm et al., 2010; Mertens, Lorscheid, & Meyer, 2017; Müller et al., 2013). For simplicity, this stage is ignored in 

this thesis. 
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entities X and Y are of particular interest. Therefore, modeling also operationalizes the entities to 

quantitative inputs x and outputs y. An optional step at the end is the statistical modeling of the model f, 

which analyzes complex simulation model behavior (Mertens, Lorscheid, & Meyer, 2015). Statistical 

modeling is prominent in all kinds of fields, where M&S frequently postulates it as metamodeling 

(Pietzsch et al., 2020). The resulting metamodels surrogate the behavior of the model f and support the 

reasoning and concluding by predicting or explaining the simulation data x and y. To sum up, Figure 3 

illustrates the granularity, and the next paragraphs provide more detailed explanations by exposing the 

real system F, the model f, and the subsequent statistical modeling m. 

 

Figure 3: Conceptual overview of the system, model, and metamodel 

Systems’ skeleton F incorporates a design that reacts with a response Y when receiving inputs from 

X (Adams et al., 2014; Cook & Wissmann, 2007; Van Gigch, 1991). This definition reflects systems’ 

behavior. The question of the boundaries or limits of a system are not new; they are not absolute but 

rather depend on the specific context. Further, systems are not necessarily isolated, meaning that their 

designs and elements are barely decoupled from those of other systems. It is rather the case that the 

systems contain complex mechanisms with more than one system (An, 2012; Polhill, Filatova, Schlüter, 

& Voinov, 2016; Werner & McNamara, 2007). This perspective parallels and agrees with Simon (1962), 

who states in his “philosophy of systems” that systems are interacting compounds embedded in a 

hierarchical network. Thus, the general input-output transformation F(X)=Y includes a hierarchal 

network of systems, as illustrated in Figure 4. 
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Figure 4: Systems’ hierarchical architecture following Simon (1962) 

Figure 4 exemplifies a system as a network of subsystems that determines the potential hierarchical 

structure of a complex system (Simon, 1962). Examples of systems with subsystems are airplanes, 

military vehicles, organizations, firms, and even social networks (Eppinger & Browning, 2012). This 

mental model has become the cornerstone of system engineering and model-based engineering (Cook 

& Wissmann, 2007; Eppinger, Whitney, Smith, & Gebala, 1994; Madni & Sievers, 2018; Ramos et al., 

2012). In the context of this thesis, a firm is a complex system with various subsystems such as 

marketing, development, procurement, operations, and controlling. It may be intuitive, but the more 

interactions between elements and designs, the larger systems’ complexity (Adams et al., 2014; Clymer, 

2009; Li & Meerkov, 2009; Simon, 1962). Overall, this thesis determines a system as a hierarchical set 

of subsystems comprising parameters and functional relationships (Clymer, 2009, p. 4f.). 

Modeling the problem system further through abstractions, simplifications, and operationalizations 

leads us to model f. Modeling the real problem system fully is often unnecessary (Epstein, 2008) and 

even simple models can offer insights (Edmonds & Moss, 2005; Evans et al., 2013; Sanchez & Lucas, 

2002). In line with the statement that “all models are wrong” by Box (1976), modeling is an 

approximation process that should be sufficient for investigating the intended task. Finally, the 

functional design of F thoroughly converges to the model f, likewise operationalizing the entities X and 

Y to the quantitative parameters x and y. Then, the model f(x)=y is a surrogate that focuses on the relevant 

information from the problem system F(X)=Y. 

Through the abstractions, simplifications, and operationalizations of the problem system, the model 

does not account for all functions and parameters, which manifests as a deviation term ɛ. In the ideal 

case, the model fully reflects the real system yielding no deviation ɛ between F and f. However, this is 

frequently not worthy because neglecting information is essential for modeling. In addition, the 

occurring deviation ɛ is not an error per se, as it accounts for the unnecessary variance from the less 

context-relevant parts of the problem system. In sum, the deviation does not strictly affect the credibility 

of outcomes, even though a deviation ɛ exists. Thus, as long as the model fits the relevant context in the 

problem system, the ɛ does not disturb the outcome (Pearl, 2009). 
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Statistical modeling, designed as metamodeling in the M&S context, analyzes simulation model 

behavior or predicts the simulation data outcome with less computational effort (Mertens et al., 2017). 

Metamodeling refers to a series of statistical procedures (Gore, Diallo, Lynch, & Padilla, 2017; Kleijnen 

& Sargent, 2000; Mertens et al., 2015, 2017; Sargent, 1991), where model inputs x and outputs y serve 

as a training set for the statistical approximation of the model f. This approximation yields a metamodel 

m. A quality criterion of metamodels concerns keeping residuals e as low as possible (𝑦– 𝑦̂  𝑒). When 

there are no residuals, the metamodel predicts the output behavior completely in the respective 

experimental design (Barton, 2015; Kleijnen, 2015; Kleijnen & Sargent, 2000). 

Figure 5 shows a metamodel’s goals regarding statistical principles, where both prediction and 

explanation cause a contingency for positioning metamodel approaches. When performing statistical 

analysis, one can pursue predicting or explaining more (Shmueli, 2010; Shmueli & Koppius, 2011). 

Neuronal networks or parallel distribution processes (Rumelhart, McClelland, & Group, 1987; Weiss, 

2000), for instance, are suitable for high predictive capabilities (Rosen & Guharay, 2013). However, 

they do not easily unveil simulation models’ behavior or design in accessible ways. This approach thus 

aims to explain where metamodels check the outcome to the simulation model f (Mertens et al., 2015, 

2017). When seeking explanations, a design with its functions is more important than minimizing the 

residuals. Overall, metamodels are statistically differentiable by employing an explanation and a 

prediction dimension (Gore et al., 2017; Kleijnen & Sargent, 2000).5 

 

Figure 5: Continuum of metamodels’ objectives (Mertens et al., 2015) 

To sum up, modelers condense particular problems from systems F to models f. There is no 

prerequisite that a model must completely surrogate the real system, but deviations ɛ can be either 

sensible or erroneous. On the one hand, simplifications and aggregations support more abstract models 

that may be more generalizable in their outcomes. Exaggerating toward simplicity, on the other hand, 

decisive patterns or mechanisms are unintendedly omitted. Finally, this is part of modelers’ trade-off 

between the cost of modeling and model accuracy (Law, 2014b). 

 
5 This thesis acknowledges the previous differentiation of the four goals of understanding, predicting, optimization, and 

verification and validation by Kleijnen and Sargent (2000). Their review, which offers insights into the field, concerns the 

applications of metamodels in simulation studies. Nonetheless, this does not explicitly address the statistical difference of 

metamodels. In detail, the goals of “understanding” and “verification and validation” aim to ‘explain”, whereas “predicting” 

and “optimization” are linked to “prediction”.  
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2.1.3 Design structure matrices (DSMs) 

Implementing conceptual models into computational models requires appropriate methods, and this 

thesis applies DSM modeling, a network modeling technique that has advantages in mathematical, 

graphical, and computational contexts (Danilovic & Browning, 2007; Eppinger & Browning, 2012; 

Lindemann, Maurer, & Braun, 2009). Although numerical matrices are by no means rocket science, as 

stated by Eppinger et al. (1994), their application and continuous development in research and practice 

have resulted in a mature approach. For instance, DSM modeling has already been used to address 

problems such as information flows, modularization, interorganizational conflicts, and project 

management as well as in many engineering projects (Danilovic & Browning, 2007; Eppinger & 

Browning, 2012; Hölttä-Otto & de Weck, 2007; Lindemann et al., 2009; Sosa, Eppinger, & Rowles, 

2003, 2004; Yassine, Whitney, Daleiden, & Lavine, 2003). Whether large-scale projects or simple 

mappings, DSM modeling thus provides an intuitive approach for modeling, communicating, and 

visualizing designs of systems without waiving computational suitability.6 

The previous sections demonstrated that every system owns independent X and dependent Y entities 

that are sets of arguments called domain D. From a mathematical angle, every input and output contains 

a possible set of arguments (Kuratowski & Mostowski, 1976) or parameters. For instance, all input 

entities can be expressed by DX (DX = [X1, X2, X3,…, Xn]). Nevertheless, instead of using “domains” as 

the terminology, this thesis follows the M&S terminology of “independent and dependent sets of 

parameters” to comply with the experiments (Libby, Bloomfield, & Nelson, 2002; Montgomery, 2000). 

Although both terminologies are interchangeable, this thesis adapts the experiment perspective. 

Figure 6 shows an artificial system design F through DSM modeling. The first case depicts a system 

design as a DSM explicating sequential, coupled, and parallel connections. Constructing a sequential 

mapping from one element to another resuls, for instance, in the pair(A, B) or pair(A, B, C, D). The 

DSM hence gets a one in column A and row B. Importantly, the pair(B, A) differs from the previous 

pair (pair(A, B)≠pair(B, A)) and depicts the flow from B to A. Taking both pairs together, the DSM 

demonstrates coupled mapping, which is a recursive flow. The last case concerns decoupled mapping, 

where Figure 6 exemplifies E, as decoupled from A, B, C, D. In other words, E behaves independently 

and does not change when the other elements are involved. Next, DSM modeling comprises two 

systems. 

 
6 This thesis acknowledges that not every numerical pair between domains must have an underlying function. The wording 

mapping will contain functions and relations in a mathematical sense and is interchangeable for both. 
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Figure 6: DSM modeling 

Figure 7 presents a domain mapping matrix (DMM) that contains interconnections of system design, 

shown by the sets A, B, C, D, E and F, G, H, I, J. A DMM primarily maps system designs to each other 

and does not account for a direction in contrast to a DSM, as shown by Eppinger and Browning (2012). 

In other words, row elements direct to column elements and the other way around. For instance, pair(B, 

G) means that B is solely mapped to G, where the entry in the DMM reflects the potential design 

elements A. Taking the example into a vector notion conducts a possible function of G=AG,B B and 

unveils the suitability of AG,B. For instance, a B of five with an AG,B =1 results in five G, too. 

Adding this context into the DMM, with A, B, C, D, E as the input parameters and F, G, H, I, J as 

the output parameters, clarifies the interpretation to some degree. In the context of independent and 

dependent parameters, the DMM is one partial element of the hierarchical systems’ design. The DMM 

hence reflects a system design matrix by Y=AX,YX, which is a mathematical vector notation of the 

subsystem F(X)=Y. In other words, the design of AX,Y can cover a large set of functions within a system’s 

design F. Summarized, DMMs can describe systems’ design F through inputs X, outputs Y, and a design 

matrix AX,Y. 
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Figure 7: Building a requirement matrix through DMMs 

Figure 8 describes the system Y=F(X) further using two DSMs and one DMM. This assumes that X 

contains a fully decoupled DSM, meaning that there is no interrelation between the inputs. This parallels 

a realistic orthogonal design in M&S (Law, 2014b; Siebertz, van Bebber, & Hochkirchen, 2010) because 

complexifying systems’ input is needless. By contrast, the dependent variables Y have one interrelation 

through the pair(Y2, Y1), meaning that Y2 is based on Y1. This is no exception because models frequently 

have several stages that typically requiring initial or intermediate inputs. The DMM in Figure 8 thus 

necessitates a numeric design. 

At this point, the matrices formalize a system design; however, it is also possible to use descriptions 

and mappings further. Assume that Y2 is a necessary output such as a product. When the system wants 

to supply one Y2, it will trigger the first design equation of Y2=5X1+ 1X2 + 1Y1 and automatically the 

second of Y1 =X1 + 2X3. In sum, the input must be X1=6, X2=1, and X3=2 for receiving one Y2=1. This 

principle underlies neoclassical consideration in production theory and strengthens the choice of DSM 

modeling. This is an abstract example to demonstrate the modeling applied in this thesis. 
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Figure 8: A system of two DSMs and one DMM 

Overall, DSM modeling allows us to analyze complex networks to understand their scalability and 

applicability to computational procedures. The choice of DSM modeling has several advantages. First, 

using DSM modeling to implement conceptual models to computational models profits from parallel 

developments. The clustering and sequencing algorithms of DSMs and DMMs facilitate their 

application. Second, broad applications in research and practice support communicability (Lindemann 

et al., 2009; Sosa et al., 2003, 2004; Yan & Wagner, 2017; Yassine et al., 2003). Third, all matrices are 

visualizable, which fosters understanding to more realistic settings. To sum up, designing complex 

systems employing DSM modeling can understand and communicate without neglecting computational 

scalability and applicability. 
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2.2 Product program 

2.2.1 Product-based planning 

The progress and interplay of multiple business strategies manifest in product-based planning to 

define firms’ product and production program, as illustrated in Figure 9 (Arend, Zhao, Song, & Im, 

2017; Balakrishnan et al., 2011; Krause & Gebhardt, 2018; Robertson & Ulrich, 1998). Product-based 

planning starts with the identification of customers’ expectations. Based on this information, firms can 

target specific customer segments through the development of products with suitable functionalities 

(Banker & Johnston, 2006; Jonas, Gebhardt, & Krause, 2012; Ulrich & Eppinger, 2012).7 The collection 

of the product design characteristics for future new product development (NPD) is part of the marketing 

strategy (Banker & Johnston, 2006; Jonas et al., 2012; Robertson & Ulrich, 1998). Operating strategies 

include planning prospective technologies and processes (i.e., for capacity planning) using the NPD 

process design characteristics to ensure sufficient supply for expected demand. In sum, product-based 

planning determines product variants, families, and production lines in line with the firm’s strategies. 

 

Figure 9: Product program (Krause & Gebhardt, 2018) with market extension 

Marketing strategies aim to identify customers’ needs to derive the functional characteristics that 

support design choices within NPD. The market side offers nearly unlimited design choices for product 

variants, and marketing can reduce this uncertainty by identifying worthwhile customer segments. This 

 
7 Some studies use product segments instead of customer segments (Kotler & Keller, 2015). This thesis does not see a 

conceptual difference and retains customer segments to accentuate the market perspective. 
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is known as customer targeting and is part of efficient NPD (Du, Jiao, & Tseng, 2005; Ulrich & Ellison, 

1999; Xu et al., 2009). When marketing targets customer segments, NPD acquires the market 

information and provides production design characteristics. 

Operation strategies are devoted to efficient technology and capacity planning to secure the 

continuous supply of every product variant given expected demand (Balachandran, Balakrishnan, & 

Sivaramakrishnan, 1997; Banker & Hughes, 1994; Banker, Hwang, & Mishra, 2002). The design 

characteristics from marketing frame the necessary production procedures. The operation strategy hence 

decides on the process design characteristics, which determine the properties of the production lines. 

The production line then requires capacity such as workers and machines to supply sufficient resources 

for production.8 As a final result, the interplay of the strategies in product-based planning defines firms’ 

future product and production program. 

2.2.2 Product variety 

Because markets can own a myriad of customer segments that constitute a possible range for NPD, 

a large product variety can result. Assuming firms have a profit maximization motivation and aim to 

increase the revenue of new product variants, this often prevents a reasonable break from developing 

more products. Specifically, having markets with many distinct customer segments provides a rich 

ground for many product variants. In its extreme, this results in the ideal state of “mass customization”, 

where each customer segment has its own specific variants(Jiao & Tseng, 1999; Pine, Bart, & Boynton, 

1993). This circumstance has prompted the investigation into complexity management and 

postponement (Abdelkafi, 2008; Blecker, Wilding, & Abdelkafi, 2006; Feitzinger & Lee, 1997; Jiao & 

Tseng, 1999; Ramdas, 2003). Nonetheless, this also leads to the classical trade-off between the value of 

product variety and costs of complexity in production (Banker & Johnston, 2006; Krause & Gebhardt, 

2018; Shank & Govindarajan, 1989). 

 

Figure 10: Market potential can cause product variety 

 
8 This topic is also prominent under capacity program planning in economics (Balakrishnan & Sivaramakrishnan, 2002). 
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Figure 10 illustrates an arbitrary market potential through various customer segments, where each 

can be a motivation for NPD. When firms only follow the market, sooner or later, variety in the product 

portfolio rises markedly (Fisher, Ramdas, & Ulrich, 1999; Henderson & Clark, 1990; Jiao & Tseng, 

2000; Ramdas, 2003), thus diffusing toward production lines. Unfortunately, this internal variety tends 

to increase costs (Desai, Kekre, Radhakrishnan, & Srinivasan, 2001; Fisher et al., 1999; Fixson, 2007; 

Kekre & Srinivasan, 1990). Assuming that every customer segment is dissimilar in at least one customer 

need, products must have a certain degree of specificity (Schilling, 2000; Schilling & Steensma, 2001). 

In simple terms, it is not sensible to offer too similar products, because less specificity leads to 

cannibalization (Kim & Chhajed, 2000; Moorthy & Png, 1992; Raghavan Srinivasan, Ramakrishnan, & 

Grasman, 2005). Providing unique products to customers, by contrast, results in specific functions, 

components, processes, and resources (Fixson, 2007; Schilling, 2000; Simpson, 2004). This increases, 

for instance, the variety of components and related production efforts primarily associated with spiraling 

costs (Labro, 2004; Ripperda & Krause, 2017; Wouters & Stadtherr, 2018). This causal relationship is 

not new (Baker, Magazine, & Nuttle, 1986; Collier, 1981; Gerchak, Magazine, & Gamble, 1988; 

Treleven & Wacker, 1987), and research and practice are still seeking to offset specificity through, for 

instance, more generic product architectures. 

2.2.3 Product architecture 

Figure 11 demonstrates a product architecture with a functional and physical structure that maps 

products’ functions to components following Ulrich (1995) and Göpfert (1998). A product architecture 

is the ontological framework consisting of mappings between products’ specifications and physical 

components (Ulrich, 1995). Göpfert (1998) adds the functional and product structure that describes the 

internal linkages between components and functions. Of particular interest is that this framework has 

become a common theory in management and engineering (Eppinger & Browning, 2012; Schilling, 

2000; Ulrich & Eppinger, 2012) and is decisive in questions of performance (Jiao & Tseng, 1999, 2000; 

Martin & Ishii, 2002). Overall, the product architecture integrates customers’ perspectives of products’ 

functions with the internal physical domains of firms. 
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Figure 11: Product architecture with a functional and physical structure (Göpfert, 1998; Ulrich, 1995) 

Products are sets of specifications, engineering metrics, attributes, or functional requirements 

respectively that correspond to customers’ needs and components (Chan & Wu, 2002; Jiao & Tseng, 

2000; Martin & Ishii, 2002; Stone & Wood, 2000).9 Functions are, for instance, power or resistance 

characteristics (Fisher et al., 1999; MacDuffie, Sethuraman, & Fisher, 1996), where the physical 

structure includes components such as electronic boards, cases, and sensors. Under engineering design 

theory, functions are the communicable basis of products (Stone & Wood, 2000); moreover, components 

are no longer only physical elements because they can also reflect digital information and knowledge 

(Du, Jiao, & Tseng, 2001; Eppinger & Browning, 2012; Jiao & Tseng, 2000; Martin & Ishii, 2002). 

A characteristic of product architectures is their degree of modularity and integrality (Baldwin & 

Clark, 2000; Fixson, 2006; Göpfert, 1998; Hölttä-Otto & de Weck, 2007; Ulrich, 1995), which 

highlights the number of function-sharing components.10 Consider the product architecture in Figure 11; 

functions can have one or more mappings (dashed lines) to components. When functions have many 

connections to components, this is known as an integral product architecture. For instance, integrality 

means more couplings to components, where a laptop is preferably integral in contrast to a more classical 

computer. A classical computer tower is probably more of a modular architecture because functions 

have fewer mappings to components. For instance, the hard disk for saving data may be easier to 

decompose because it has fewer connections to other components. Overall, the product architecture is 

central to improvements and made decisions about design (Fixson, 2005; Mikkola, 2007; Mikkola & 

Gassmann, 2003; Suh, 1995). 

 
9 The engineering design and economic communities share the same understanding of a “product” (Fisher et al., 1999; Martin 

& Ishii, 2002), seeing it as a bundle of specifications, engineering parameters, and products’ attributes. The terminology of this 

thesis is functional requirements, which is interchangeable. 
10 The interpretation of modularity differs slightly in the context of modular design and modular architecture. While design 

interpretations concern modules as objects for offering product variety with fewer elements, the architecture interpretation sees 

a modular as a characteristic rather associated with being differentiated or encased in a function. In other words, there 

modularity means less function-sharing components. 
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2.3 Cost accounting systems 

2.3.1 Product costing systems 

Product costs carry aggregate monetary information on particular products’ resource consumption 

that influences and facilitates many decisions such as performance, pricing, capacity, and inventory 

evaluation (Balakrishnan et al., 2012a; Demski, 2008; Labro, 2019; Labro & Dierynck, 2018). The cost 

measurement process is located in cost accounting systems or costing systems (Drury, 2015; Horngren 

et al., 2014). Grounded in resource consumption and prices, costing systems first aggregate costs to 

resource cost pools such as aggregated labor costs, employees’ salaries, summed material costs, and 

depreciation costs. Depending on information availability, the system can either directly trace costs to 

their origin or carry out additional calculations to allocate the remaining indirect costs.11 In any case, 

costing systems seek to accurately measure and allocate the resource costs to their cost objects. 

Regardless of the cost object, costing systems have a typical design. Figure 19 presents the typical 

two-stage allocation process. More stages are also possible when, for instance, considering service 

allocations, but this is not necessarily conceptually different (Balakrishnan et al., 2012a). An often 

neglected step “zero” is the construction of direct and indirect resource cost pools by assigning expenses 

to the respective accounts in information systems. The first stage hence groups indirect resource cost 

pools to overhead cost pools. Direct cost pools are directly traced to their causing object. The grouping 

of indirect costs can take several forms with different rules. Whereas some pools pertain to responsibility 

grouping rules, others are functional or activity-based (Balakrishnan et al., 2011; Lanen, Anderson, & 

Maher, 2013). Lastly, the second stage of costing systems allocates overhead cost pools to cost objects 

by employing a cost driver (Babad & Balachandran, 1993; Homburg, 2001).12 There, each cost object 

receives its respective overhead costs and provides information on resource consumption. 

In greater detail, the first stage (I) concerns the aggregation and differentiation of costs from the 

priced resource consumption. The vast amount of individual resource consumption in firms is typically 

gathered by information systems or manually entered by employees. However, and rarely explicitly 

mentioned, costing systems aggregate these individual resource costs, too. As a result, similar costs are 

grouped into resource cost pools, such as material, labor, administrative, and development costs. 

Depending on information availability, costing systems thus differentiate costs into either direct costs 

or overheads. 

 
11 Indirect costs are separable into general administrative expenses and overheads (Horngren et al., 2014). Overheads are more 

clearly allocable to projects, whereas general administrative indirect expenses are more related to general activities not tracable 

to projects. For simplicity reasons, this thesis uses overheads, overhead costs, or indirect costs interchangeably to represent all 

these kinds of indirect costs. 
12 Several cost system designs such as resource cost accounting and time-driven ABC use the resource cost driver directly. A 

relevant study of this topic is Hoozée and Hansen (2018). 
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Figure 12 Two-Stage Cost Measurement System 

The second stage (II) concentrates on cost pool building and overhead allocation. Cost pools cluster 

indirect resources using systematic rules and allocate them to their cause. Complex costing, for example, 

groups overheads to their underlying processes in overhead cost pools, whereas simple ones tend to use 

the organizational structure. Ideally, the resulting activity measures (i.e., hours or units) accurately 

mirror the resource consumption to allow costs to be correctly allocated (Noreen, 1991). As a result, 

products receive their consumed resource costs and provide accurate product cost information. 

2.3.2 Cost system design choices 

While the typical cost measurement process is known, the design choices of costing systems under 

the consideration of firm characteristics remain opaque. Cost accounting textbooks highlight the TVC 

and full ABC systems as the dominant types of cost system designs (Drury, 2015; Horngren et al., 2014; 

Lanen et al., 2013). The simplest one is TVC, whereas the most complex is an ABC system.13 On the 

question of appropriateness and performance, research has continuously provided descriptive evidence 

but not found a clear pattern (Al-Omiri & Drury, 2007; Drury & Tayles, 1994, 2005; Ittner, Lanen, & 

Larcker, 2002; Krumwiede & Charles, 2014; Lukka & Granlund, 1996; Malmi, 1999; Schoute, 2009, 

2011). Despite their higher accuracy, surprisingly, complex ABC systems have not thus far diffused in 

practice. Moreover, research has not comprehensively disentangled the focal drivers or reasons for firms 

applying complex costing systems (Abernethy et al., 2001; Schoute, 2009, 2011). Overall, although 

 
13 The most frequently used simple cost accounting system is TVC, which reflects the usage of one overhead cost pool and one 

cost driver (Al-Omiri & Drury, 2007; Drury & Tayles, 2005). The cost driver is simple such as production output and labor 

hours. The opposite is the full ABC system, which disentangles and identifies the activity measures of all activities. In doing 

so, each activity is allocated the right costs, leading to “perfect” product costs. 
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ABC advocates claim that it is superior, more complex costing systems have not reached gold standard 

status. 

There is still a certain ambiguity about what a complex costing system is, with empirical research 

providing some of the distinctive characteristics of simple and complex costing systems. The first 

antecedent is the number of cost pools and cost drivers. Similarly, the rules, designs, and heuristics of 

cost pool building as well as cost driver selection are significant, too. Second, cost driver type is 

presumed to be another antecedent because ABC systems employ all kinds of activity measures as cost 

drivers (Babad & Balachandran, 1993; Park & Simpson, 2008). Here, cost structure theory is particularly 

relevant (Anderson & Sedatole, 2013; Cooper, 1990). Another antecedent may be the number of stages 

in cost accounting systems because the service allocation stage may increase and enhance cost 

information (Balakrishnan et al., 2012a). All these characteristics form the definition of a complex 

costing system visualized in Figure 13. 

 

Figure 13: Conceptual summary of the drivers for adopting and rejecting complex costing systems 

Although the properties of complex costing systems are distinctive, the reasons for adopting them 

remain unclear (Banker, Bardhan, & Chen, 2008; Cagwin & Bouwman, 2002; Gosselin, 1997; Schoute, 

2009). The adoption of complex costing systems has been found to be necessary to have cost advantages 

(Shank & Govindarajan, 1993); however, firms have often abandoned such complexity (Anderson, 

Hesford, & Young, 2002; Kaplan & Anderson, 2003). Why firms adopt or reject a complex costing 

system can be understood by observing potential antecedents such as product diversity, competition, 

and industry (Al-Omiri & Drury, 2007; Drury & Tayles, 1994, 2005; Schoute, 2009, 2011). 

Unfortunately, except for competition, size, and service industry level, variables such as product 

diversity and indirect cost share provide inconclusive findings. Figure 13 also shows the presumed 

antecedents for cost system design choices. 
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The theory-building study of Abernethy et al. (2001) qualitatively examines whether product 

diversity and product- and batch-level costs are an indicator of adopting complex costing systems. They 

argue that cost structures with product-level and batch-level activities highlight the need for complex 

costing systems because TVC does not incorporate more driver types.14 Specifically, when there are 

fewer non-unit-level activities, ABC’s utility is likely to be less. Some empirical research has 

corroborated this relationship (e.g., Fisher et al., 1999; Malmi, 1999); however, surprisingly, not every 

study has found support for it (e.g. Cagwin & Bouwman, 2002). More recently, Abernethy et al. (2001), 

supported by Drury and Tayles (2005) and Schoute (2011), find that it has a significant impact, whereas 

Al-Omiri and Drury (2007) offer the contrary finding. 

Another strand of the literature has searched for evidence that ABC systems improve performance 

(Banker et al., 2008; Cagwin & Bouwman, 2002; Ittner et al., 2002; Krumwiede & Charles, 2014) and, 

again, inconclusive findings have appeared. Less accurate cost information is presumed to lead to errors 

in decision-making, especially when using simple TVC systems. Following recommendations (Cooper 

& Kaplan, 1991, 1992, 1998a), ABC systems overcome this limitation by providing more accurate cost 

information and may be associated with greater performance. In particular, ABC has a positive impact 

in cost-sensitive environments (Krumwiede & Charles, 2014). However, whether complex costing 

systems perform better remains doubtful. 

In summary, discussion on the adoption reasons and performance benefits of applying complex 

costing systems is ongoing. Researchers and practitioners often assume that complex costing systems 

outperform simple costing systems. However, there is no convincing empirical or practical evidence of 

the antecedents of adoption and profitability. Moreover, there is still discussion on whether the accuracy 

of cost data can improve decision-making (Anand et al., 2017; Labro, 2019; Merchant & Shields, 1993). 

3. State-of-the-art 

3.1 Modern cost measurement 

3.1.1 Revisiting cost accounting 

This section departs from the basic understanding presented in Section 2 and revisits cost accounting 

research. It does not try to provide a systematic review of recent cost accounting issues but instead aims 

to offer a comprehensive and condensed introduction of the essential concepts and developments in 

costing system research to position the contributions of this thesis among the literature. 

 
14 Following Al-Omiri and Drury (2007) and Cooper and Kaplan (1998a), product diversity is a construct that encompasses 

several elements such as process layout, product design characteristics, underlying production volume, and support activities. 

A broader discussion about product diversity can be found in Trattner, Hvam, Forza, and Herbert-Hansen (2019). 
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A starting point for modern cost accounting was triggered by Miller and Vollmann (1985), who 

were among the first to indicate that costs are not strictly proportional to production volume. Nowadays, 

this is an intuitive assumption; however, in the past, disproportionate costs and production volume 

conflicted with neoclassical production theory (and still does) (Christensen & Demski, 1995; Cobb & 

Douglas, 1928; Shepard, 2015). For instance, Shank and Govindarajan (1988) conclude from this 

evidence that this classical costing approach is outdated compared with “transaction-based” systems. As 

a result, early research activities concentrated on cost drivers and problems when not considering 

transaction-related costs. 

There has been much cost driver research (Babad & Balachandran, 1993; Banker & Johnston, 1993; 

Banker & Potter, 1993; Datar, Kekre, Mukhopadhyay, & Srinivasan, 1993; Foster & Gupta, 1990), with 

Banker and Johnston (2006) offering a comprehensive review. These studies find that other drivers 

besides volume explain variance in the costs well. Interestingly, although the explained variances differ 

between studies and cost drivers chosen, this strand has shown that transaction-related activities are 

associated with a noticeable share of cost in firms. 

Paralleling the practice-orientated literature, Cooper (1989); Cooper and Kaplan (1987) state that 

transaction costing is necessary to stay competitive. Although there is no official inception of ABC in 

the literature (Gosselin, 2006; Jones & Dugdale, 2002), the inclusion of non-unit cost drivers in costing 

may have reflected the start (Cooper, 1990). Based on the assumption that transactions affect resource 

consumption, the first papers claimed that ABC systems were superior to the TVC system (Cooper & 

Kaplan, 1991). 

Simplifying the cost driver selection in ABC systems, likely for implementation issues, led to the 

development of the ABC hierarchy, a cost structure theory that categorizes activity measures into the 

underlying resource consumption (Cooper, 1990; Cooper & Kaplan, 1991). Although the empirical 

literature has found evidence for the explanatory power of non-unit cost drivers, evidence for the cost 

structure theory of ABC is inconclusive (e.g. Ittner, Larcker, & Randall, 1997). Indeed, whether the 

ABC hierarchy is better than the classical categorization of fixed and variable cost types remains unclear 

(Anderson & Sedatole, 2013). 

Noreen (1991) analytically defines cases when ABC systems provide marginal product costs and 

started discusses accuracy further.15 In his analysis, he states that ABC systems only provide marginal 

costs under three assumptions. First, non-linear activities such as a Cobb–Douglas function with 

increasing or decreasing returns to scale distort product costs because the “linear” cost driver cannot 

proxy for the underlying “non-linear” resource consumption. Second, joint processes cannot be 

acknowledged, while activities must be differentiable to specific products and drivers. Third, total costs 

 
15 Marginal costs reflect the “true” costs of producing one more unit in microeconomics. However, when propositions of the 

ABC framework are violated, this will not hold. For example, deviations from linearity prevents marginal costs (Christensen 

& Demski, 2003).  
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must be dividable into cost pools that have at least one activity. If any assumption does not hold, the 

ABC system will not lead to marginal product costs. 

Gupta (1993) was one of the first empirical studies of cost system performance in two firms. He 

compares the relative accuracy of simple and complex costing systems and finds differences, particularly 

distortions in product cost measures. In addition, both the firms investigated have many activities, and 

this prevented a full ABC system. Hwang et al. (1993) capture the full effect of heterogeneity in an 

analytical study with a numerical simulation. Their study explores the diversity of products’ production 

technology, product mix, and missing input costs from aggregation. All three factors interact positively 

in their study and drive the product cost bias. A significant finding of their study is that heterogeneity in 

products’ production technology, meaning that each product has different consumption and activities, is 

the main origin of product cost errors. 

Babad and Balachandran (1993) contribute to this discussion by disentangling the optimal cost 

driver choice in several scenarios. In their study, they conduct a narrow model to demonstrate that an 

error-free aggregation of several cost drivers is possible when there is a full positive correlation between 

them. Additionally, any deviations from those distort the product cost measurement. Besides, they 

introduce a combination of cost drivers, finding that an indexed cost driver leads to a feasible approach 

and thus more accurate estimates. In this line, Homburg (2001) provides an analytical model of cost 

driver selection and confirms the relevance of indexed cost drivers. 

A milestone in cost accounting theory is the analytical study of Datar and Gupta (1994), who 

conceptually and analytically develop a typology of error causes in costing systems. They show that 

errors under limited information are attributable to aggregation, specification, and measurement errors. 

These three types are the current ontology for error causes. First, aggregation errors arise from the 

aggregation of heterogeneous consumption (i.e., building a cost pool with dissimilar activities such as 

from administration and marketing). Second, specification errors reflect a wrong decision in terms of 

cost driver choice (i.e., using labor hours instead of machine hours for a machine activity cost pool). 

Finally, (random) measurement errors arise from uncontrollable reasons such as typing errors and 

manipulation in the information system (Weber, 2005).16 They also find that increasing cost pools is 

likely to increase measurement errors and thus worsen the accuracy of cost measurement. This effect 

was later substantiated by Cardinaels and Labro (2008). Nonetheless, Datar and Gupta (1994) question 

the unassessed rule that complex costing systems, particularly ABC-based systems, always lead to fewer 

errors. 

The empirical study of Hwang and Kirby (1994) examines the consequences of a single allocation 

driver in an empirical setting (i.e., hospital reimbursement). They first provide the detailed attributes of 

cost objects (i.e., patients) and enriched information compared with implemented costing systems. Each 

patient is classified into private/public insurers as well as young/old patients. These attributes are used 

 
16 Datar and Gupta (1994) use the term “measurement error” to describe imprecision. This thesis sees a measurement error as 

a general error and explicates uncontrollable errors as random measurement errors. 
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to update the existent cost allocation base with patients’ days. This update substantiates the classical 

cross-subsidization of TVC systems because they find that private- and public-insured patients are cross-

subsidized. Specifically, private patients are undercosted, while public ones are overcosted due to 

younger private patients released within fewer days in contrast to older and publicly insured patients 

who stayed longer. 

Noreen and Soderstrom (1994, 1997) also assess linearity in ABC systems in the area of hospitals. 

Their hospitality case shows that the linearity assumption of ABC systems is not substantiated. Noreen 

and Soderstrom (1994) primarily assume linearity in activity cost drivers. This leads to the proposition 

that the average cost driver must be constant across all sums of activity measures. However, they do not 

find linearity, because the cost driver shrinks when activity measures increase. This observation 

confirms the increasing returns to scale of an activity driver, which cannot yet be accounted for in ABC 

systems. The subsequent study of Noreen and Soderstrom (1997) demonstrates that increasing returns 

to scale leads to undercosting (overcosting) when a product consumes less (more) of an activity. Hence, 

ABC has lost much of its superiority of being error-free. 

Given the empirical support that activity cost drivers do not behave linearly, Christensen and 

Demski (1997) analytically address the question of how they affect cost information. They show that 

non-linearity has substantial implications on the reported outputs from ABC systems and that managers 

should be prudent. Additionally, they find that not all product costs profit from complex costing systems. 

For instance, in some cases, better costing systems measure individual product costs more inaccurately. 

Christensen and Demski (2003) examine ABC and TVC under non-linearity. They provide an 

analytical case in which a complex costing system does not necessarily lead to better product cost 

estimates than a TVC system. Even modest deviations from linearity (i.e., diseconomies of scale or 

simple bottlenecks) quickly shift most ABC systems to worse performance than simple ones. They 

further re-emphasize the still unanswered question of whether complex costing systems always lead to 

more accurate product costs. 

The simulation study of Labro and Vanhoucke (2007) points out that any refinements in costing 

systems lead to less product cost errors on average despite three exceptions. Before this study, Datar and 

Gupta (1994) claimed that refinements do not strictly improve accuracy. Their simulation study thus 

sharpens the discussion and shows that refinements toward more complex costing systems improve 

accuracy under three exceptions.17 They also analyze the interactions among aggregation, specification, 

and aggregation errors and suggest cases of the offsetting effects of aggregation and measurement errors. 

Additionally, their data show cross-subsidization behavior in ABC systems that slightly undercosts 

cheap product costs and overcosts expensive ones. The most remarkable result is that the second stage 

 
17 This study identified three exceptions of decreasing accuracy despite refinements by negative interaction effects. First, there 

is an offsetting between aggregation errors in stage II and measurement errors in the stage I when there is a measurement error 

≥50%. Second, there is offsetting within II stage under high aggregation error ≥70% and low measurement error ≤20%. Third, 

a similar effect at the I stage under very high measurement error =90% and aggregation error > 80%. 
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of costing systems is decisive in reducing product cost errors, which provides strong practical guidance 

for designing cost systems. 

Subsequently, Labro and Vanhoucke (2008) explore the implications of diversity in the resource 

consumption of products in terms of sensitivity to errors. Until their study, a ‘diversity rule’ of thumb 

existed (Cooper & Kaplan, 1988; Horngren et al., 2014). This rule states that improving costing systems 

benefits product costs most when a firm has vast diversity. The study confirms that diversity is an 

indicator of improvements in product costing. However, there are also exceptions to this rule. For 

instance, it seems that less diversity in cost driver distribution over cost pools helps raise robustness to 

measurement and specification errors. However, products with fewer driver links to processes are 

sensitive to aggregation, measurement, and specification errors. Therefore, refinements in these drivers 

increase accuracy. In summary, Labro and Vanhoucke (2008) build a comprehensive picture of diversity 

in resource consumption among cost error causes. 

Balakrishnan et al. (2011) compare the design choices of costing systems and highlight that less 

information does not inevitably reduce the effectiveness of product costing. Their simulation model 

surrogates numerous production environments with complex ABC systems and illustrates the 

advantages and disadvantages of cost pool and cost driver design heuristics. Striking from their data is 

that even less precise estimates of correlations between resources are enough to form accurate activity 

cost pools. To sum up, this study provides strong practical implications to define cost system designs.  

Hoozée, Vermeire, and Bruggeman (2012) use numerical explorations to investigate the effect of 

additional time driver terms as well as measurement errors in time drivers on accuracy. This study adopts 

time-driven ABC (TDABC), which has gained significance due to its lesser information demand for 

implementing complex costing systems (Balakrishnan et al., 2012a; Balakrishnan, Labro, & 

Sivaramakrishnan, 2012b). By drawing on the concept of this study, it is observable that the largest time 

drivers are the most relevant for explaining the costs likely to cover smaller time drivers. To be concise, 

they show that large time drivers are an appropriate choice as an allocation base. 

The latest strand of costing studies has moved to dynamic decision settings, where Anand et al. 

(2017) are the first in this line. Instead of highlighting errors in costing systems, they explain how 

erroneous cost information distorts a subsequent product elimination decision. As expected, products 

with negative contribution margins are eliminated, and many scenarios end up with a non-optimal 

equilibrium and thus a profit loss. A similar study also investigating decisions on cost information using 

pricing and capacity errors is Homburg, Nasev, and Plank (2017). They show that more accurate cost 

information from complex costing systems has fewer profit advantages as expected. In sum, they 

emphasize that cost allocation errors in pricing decisions are less significant. 

Another recent costing study, namely that of Hoozée and Hansen (2018), formally disentangles the 

difference between classical ABC and TDABC by describing activity–resource mapping in greater 

detail. Mapping activities with resources influences cost system design choice: where TDABC has a 

one-to-one, classical ABC has a one-to-many. They conclude that TDABC has a comparative advantage 
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over ABC referring to this mapping. Nonetheless, it is worse than classical ABC when activities are 

more traceable. Finally, Anand, Balakrishnan, and Labro (2019) consolidate previous simulation studies 

using a general framework. They do not primarily summarize the research findings but rather formalize 

previous simulation studies. Therefore, this sets a path for further studies f numerical cost accounting. 

Overall, cost accounting research has begun to explain error causes by considering diversity in 

production environments under less available information. The most prominent research method for 

costs remains analytical with increasing numerical explorations. Rules of thumb have been proposed 

such as the importance of the second stage in terms of errors and that all refinements of costing systems 

tend to reduce product cost errors. Diverse production technology needs more complex costing systems 

to provide accurate cost information. Drivers such as random measurement errors and non-linearity 

additionally question the superiority of complex costing systems. However, simple costing has also 

failed to evolve. The use of TDABC provides a more straightforward implementation instead of greater 

accuracy. Overall, although cost accounting has accumulated many findings, it still offers vague 

guidance on several questions. For instance, when should complex or simple cost designs be 

implemented? How vital is accurate cost information on average and to what degree are errors allowed? 

Finally, this short review emphasizes costing as a relevant and suitable field of management accounting 

because many topics are still uncharted (Labro, 2019; Labro & Dierynck, 2018). 
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3.1.2 Product cost errors 

Measuring complex unobservable phenomena with a simple measurement system may cause errors. 

Complex phenomena in natural science are difficult to measure, where nature scientists develop highly 

sophisticated instruments involving large measurement efforts and implementation costs to achieve high 

levels of accuracy (Abbott & et al., 2016). By contrast, firms see little value in perfect product costs 

even though the transparency and accuracy of such information could enhance their decisions in many 

ways (Banker & Datar, 1989; Bol, Kramer, & Maas, 2016; Chapman & Kihn, 2009; Nelson, Todd, & 

Wixom, 2005). Therefore, a balance between sufficient product cost accuracy and errors from noisy 

product costs (Cooper & Kaplan, 1998b) is still accepted.  

Describing product cost measurement in firms starts with explaining the production technology and 

its set of production functions pf. From a mathematical perspective, the general transformation process 

pertains to a number of production functions pf that relate to finite set of goods (Christensen & Hemmer, 

2006; Fandel, 2005, p. 35f.; Shepard, 2015, p. 13ff. ). The basic description of one function pf contains 

a set of minimum input requirements λ resulting in a minimum output y. In simple words, the 

transformation uses a certain set of inputs and transforms it into one output resulting in y = pf(λ). 

In addition to the input-output relation, other characteristics such as substitution, intensity, and 

linearity are prominent.18 Cobb–Douglas production functions do not assume fixed input proportions λ 

and allow for substituting inputs (Cobb & Douglas, 1928). Substitution for a bike, for example, means 

that it is possible to use two wheels more instead of one saddle. Such functions are mainly applied in 

aggregated models because they can demonstrate the extent to which capital can replace labor (i.e., 

buying a machine instead labor crafting). The most applied in production theory is the Leontief function, 

which has fixed input requirements λ that are not substitutable between each other. In this function, the 

bike absolutely needs two wheels and one saddle. Overall, production functions are abstract 

transformation functions that consume sets of input resource requirements λ to supply the requested 

output y. 

Extending the example, imagine a bike manufacturer that receives demand for q bikes, which 

prompts the production functions to supply y in the quantity of q. Assume that manufacturing a bike 

needs the following process with minimum input requirements λ = {two wheels λ1, one frame λ2, one 

saddle λ3, and one hour of a worker λ3}. To calculate the necessary inputs, the bike results in the Leontief 

production function of y = pf(2,1,1,1) = pf(λ1, λ2, λ3, λ4). Demand for five bikes hence proportionally 

increases the minimum input resource requirements by five to 5y = f(2‧5, 1‧5, 1‧5, 1‧5) = pf(qλ1, qλ2, qλ3, 

 
18 There are several well-known production functions in production theory. Most belong to the functional typology of the 

“constant elasticity of substitution” (Fandel, 2005). In this family, functions such as Gutenberg (Albach, 1980) and Cobb–

Douglas have a strong mathematical description. 
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qλ4). The multiplication results in the total (input) resource requirement x or RCU (RCU= λq) 5y = 

f(10,5,5,5).19 

At this point, cost theory includes production functions, as it multiplies total resource requirements 

RCU by their corresponding input prices ρ. Taking the bike process again, let us assume that one wheel 

has a price of 10€, frame 50€, seat 30€, and one working hour costs 50€. Next, the production function 

becomes a cost function resulting in 150€ per bike cf(2‧10,1‧50,1‧30,1‧50) = 20+50+30+50 = 150€. 

Adding the demand of five again, the cost function increases to 750€. 

This single product example is intuitive; however, it becomes more interesting when adding another 

bike into the production environment. Now, imagine two bikes, where the previous bike is the “simple 

bike” and the new one is a “complex bike”. Both bikes entail the same production function but have 

different input requirements. For simplicity, working on the complex bike needs three hours instead of 

one. Knowing the input requirements and prices results in the following cost function: 

cf(2‧10,1‧50,1‧30,3‧50) = 250€. As a result, the complex bike costs 250€ PCb2 and the simple one costs 

150€ PCb1. 

Figure 14 shows the bike example in a matrix notation – still under our full information example. 

The first matrix maps both products (P1, P2) to their minimum resource requirements λ. This is 

frequently called the resource consumption matrix. Assuming demand q for both products of one, the 

minimum resource input is the total resource input (x = λq = RCU). The sum of both products yields the 

total sum of unit for a resource TRU={TRU1 = 4, TRU2 = 2, TRU1 = 2, TRU2 = 4}. Under the same prices 

as before, this thesis weights the production of the two bikes by the costs, resulting in an economic 

snapshot. Under full information, there is no cost measurement problem because all costs are directly 

traceable to their causes, as shown in the right matrix. Multiplying each resource input RCU by its price 

ρ and summing results in the total resource costs RCC={RCC1 = 40, RCC2 = 100, RCC3 = 60, RCC4 = 

200} for each input resource RC. Unfortunately, this is still an infeasible setting. 

 

 
19 There is inconsistency between the abbreviations used for total resource requirements. Whereas Anand et al. (2019) use RCU, 

analytical studies as Christensen and Demski (1995, 1997, 2003) use x. Both are interchangeable; however, this thesis uses 

RCU. 
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Figure 14: Cost measurement example 

The balanced strategy results in limited information, and this interacts with the diversity of 

production to dilute the “true” cost setting. Relaxing the assumption of full information leads to the 

classical cost allocation problem (Zimmerman, 1979). Figure 14 shows the bike environment when 

assembling a simple (P1) and a complex bike (P2) in a benchmark or “true” scenario. The opposite 

scenario concerns no information, meaning that all costs are indirect. This assumption entails several 

potential measurement scenarios, and this thesis selects four (a,b,c,d) to provide example cases of 

product cost errors. 

First, under the simplest costing system (a), the system has only one consumption pattern. This 

consumption is thus used as an allocation base to allocate all costs from a single cost pool CP1,2,3,4 to 

both products (CP1,2,3,4 = RCC). The allocation base does not reflect individual products’ resource usage 

and this results in product cost distortion (PCh1 = 200€ vs. PCb1 = 150€ and PCh2 = 200€ vs. PCb2 = 

250€). Case (b) contains two allocation bases and cost pools; surprisingly, this measurement system can 

provide “true” product costs with fewer measurement efforts than complex costing systems (d) (PCh1 = 

PCb1 = 150€ and PCh2 = PCb2 = 250€). Here, the allocation base reflects the average resource 

consumption of products with fewer allocation bases in a homogeneous grouping (Babad & 

Balachandran, 1993). Scenario (c) distorts the product costs again because the costing system neither 

clusters homogeneous resources nor applies the right allocation bases. The last case (d) fully resolves 

the production environment and is the “true” costing scenario. Table 1 completes the example and shows 

the errors in cost information in percentage terms. These cases conceptually illustrate that product cost 

errors arise from limited information given the heterogeneity in the production environment in 

accordance with Babad and Balachandran (1993); Hwang et al. (1993). 

Production environment ‘True’ Cost Example

(a) (b) (c) (d)

Simple costing system Complex costing system

Cost measurement systems
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Table 1: Percentage errors in the shown costing system 

 Percentage error between the “true” and measured product costs [%] 

Product Case (a) 

Simple costing 

Case (b) Case (c) Case (d) 

Complex costing 

Simple bike 

P1 

+33.33% 

(overcosted) 

0% 

(no error) 

+33.33% 

(overcosted) 

0% 

(no error) 

Complex bike 

P2 

-20% 

(undercosted) 

0% 

(no error) 

-20% 

(undercosted) 

0% 

(no error) 

 

While information limitations are less measurable (Dopuch, 1993), measures of heterogeneity are 

common among the engineering and management communities (Gupta, 1993; Kota, Sethuraman, & 

Miller, 2000; Mikkola & Gassmann, 2003).20 Figure 15 introduces the intra- and inter-heterogeneity 

measures inspired by Gupta (1993). Intra-heterogeneity (INTRA) focuses on products’ production 

technology in terms of relative variances in average consumption. The more dissimilar usages are, the 

more substantial INTRA is. This calculation helps identify products with variance in usage. Measuring 

intra- and inter-heterogeneity illustrates the diversity of production from two angles. P1 (INTRA=0.25) 

is more intra-heterogenous than P2 (INTRA=0.15). Although the distances between consumption are 

equal, the average consumption of P1 is less than that of P2, leading to a large diversity in the first 

resource RC1. 

Products’ inter-heterogeneity evaluates products’ position in the product portfolio or family by 

measuring its dissimilarity from other products. Assessing INTER shows no disparities between the 

products (both INTER=0.25). This result is explainable because processes’ average consumption is 

similar. For example, RC4 has an average of two, where P1 and P2 only deviate by one. Thus, both 

products have the same distance to the average of production and do not necessarily have a different 

product mix. Equation (1) demonstrates the calculation procedure used to measure the degree of product 

dissimilarity. 

 

 
20 Engineering and management communities measure complexity, diversity, and heterogeneity in various contexts. 

Engineering fields tend to measure homogeneity, called commonality, whereas management fields observe heterogeneity. 
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Figure 15: Example of intra- and inter-heterogeneity 

 

This section sets out the principles of product cost errors, which are grounded on the interplay 

between limited information and heterogeneity in production technology. In detail, hidden consumption 

due to limited information obscures the “true” costs. In a more complex environment, more 

measurement efforts are expected to provide sufficient accuracy for product costs. Therefore, managers 

should be prudent in their cost information and consider cost systems’ sophistication and firms’ 

heterogeneity. 

  

𝐼𝑁𝑇𝑅𝐴   ∑ (
𝑅𝑛𝑣  −  𝑚𝑒𝑎𝑛 𝑅𝑁𝑣 

𝑚𝑒𝑎𝑛 𝑅𝑁𝑣 
)

2𝑁

𝑛=1

 ;     𝐼𝑁𝑇𝐸𝑅   ∑(
𝑅𝑛𝑣  −  𝑚𝑒𝑎𝑛 ∑𝑅𝑛𝑉 

𝑚𝑒𝑎𝑛 𝑅𝑛𝑉 
)

2𝑉

𝑣=1

 (1) 
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3.2 Modern cost management 

3.2.1 Cost management research 

Cost management is an umbrella term for making cost-related decisions on resource commitments 

and adjustments as well as selecting production technology (Anderson, 2006; Anderson & Dekker, 

2009a, 2009b; Blocher et al., 2012). The field is inter- and multidisciplinary and unifies knowledge on 

management, engineering, and manufacturing. For example, management fields concentrate on 

managers’ influence on cost behavior (Banker, Byzalov, Fang, & Liang, 2018) and the elicitation of cost 

structures (Anderson & Sedatole, 2013). By contrast, engineering-related fields pursue cost-effective 

NPD (Anderson, 2006; Davila & Wouters, 2006; Fixson, 2007) to select the best designs in a product 

family context (Fixson, 2007; Simpson, Jiao, Siddique, & Hölttä-Otto, 2014). Other questions concern 

operational improvements throughout the supply chain (Kersten, Seiter, Von See, Hackius, & Maurer, 

2017; Morita, Machuca, & Pérez Díez de los Ríos, 2018; Xiong, Du, & Jiao, 2018). Overall, cost 

management mainly aims to efficiently handle cost trade-offs in product planning. 

Cost management theory in managerial communities is based on structural and executional drivers, 

which should explain the impact on costs when they change (Blocher et al., 2012; Shank & 

Govindarajan, 1989, 1993). Structural and executional drivers belong to the suggested driver taxonomy 

of Riley (1987). Structural drivers refer to firms’ design of products and technology. For example, 

drivers rise or change when introducing or changing production functions. Executional drivers relate to 

efficacy and efficiency in the operational stage (Shank & Govindarajan, 1993). For instance, the 

measurement of quality or customer satisfaction belongs to executional cost management. This 

perspective is further specified and verified by Anderson and Dekker (2009a, 2009b), who see structural 

cost management as “a decision between alternative production functions”, where executive cost 

management improves “efficiency at a given production function”(Anderson & Dekker, 2009a, 2009b). 

One aim of cost management in management accounting is to investigate sticky costs, which are a 

proxy for “resource adjustment costs” that affect managers’ decisions (Anderson, Banker, & 

Janakiraman, 2003; Balakrishnan, Labro, & Soderstrom, 2014; Calleja, Steliaros, & Thomas, 2006; 

Guenther, Riehl, & Rößler, 2014; Weiss, 2010). Sticky costs arise from non-linear cost behavior and 

give insights into managers’ resources commitments. When costs are sticky, one can identify less 

sensitive cost changes among sales decreases than increases (Banker et al., 2018). This stickiness arises 

from managers’ behavior because they tend to retain unused resources to avoid adjustment costs. For 

example, firing a skilled worker may be quicker than finding a new skilled worker in terms of transaction 

costs. Accounting for this expectation results in resource adjustment costs, whereby managers retain 

resources despite sales decreases. Overall, when sticky costs are high, managers tend to keep resources 



 

 

35 

longer to avoid substantial resource adjustment costs.21 The other strand of cost management focuses on 

engineering disciplines, especially developing and designing cost-effective product programs (Davila & 

Wouters, 2004, 2006; Wouters & Morales, 2014). Cost management frequently refers to NPD (Wouters 

& Morales, 2014; Wouters et al., 2016), where, for instance, target costing is still a standard for cost 

management (Navissi & Sridharan, 2017; Zengin & Ada, 2010). Thus, NPD is at the center of making 

cost management decisions. 

3.2.2 Cost management in NPD 

Cost management in NPD concerns the cost-effective commitment of resources and production 

functions (Figure 16). While cost information supports decisions, it has a delay in the context of NPD. 

Hundal (1997) describes this as the designer’s paradox. Later empirical evidence supports the existence 

of delayed effects between resource commitments and occurring costs (Ehrlenspiel, Kiewert, & 

Lindemann, 2002; Franz & Kajüter, 2002). Therefore, firms have the largest potential to influence future 

costs at the early stage of projects (Ehrlenspiel et al., 2002; Franz & Kajüter, 2002; Homburg & Richter, 

2002). While NPDs are respective projects, it covers an abundant space for committing, adjusting, and 

determining resources and production functions around the concepts and designing phases. This ability 

loses its leverage over time under standard operations. Here, product costing systems start to supply cost 

information about the realized resource consumption. 

 

Figure 16: Conceptualized trade-off between resource commitments and costs 

Developing cost-effective products has points of no return and pitfalls preventing reversible actions 

after design choices are made. Cost management faces the challenge that once committed, resources and 

production functions during NPD are merely reversible. For example, buying a customized machine for 

production will be hard to sell thereafter. To prevent and develop efficiently, practice thus relies on 

methodological instruments to systematize their inherent development routines supported by research. 

 
21 The sticky cost measurement mainly follows Anderson et al. (2003), with valuable extensions by Weiss (2010) and 

Balakrishnan et al. (2014). 
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Thus, many methods have evolved. Table 2 provides a condensed overview of those that promise cost-

effectiveness. 

Table 2: Cost management approaches in NPD following Wouters and Morales (2014) 

Target Costing Most taught on management courses, target costing is a systematic approach to develop 

products to a specific allowable price and margin (Navissi & Sridharan, 2017). It uses 

customers’ perceptions of functionality in a weighted ranking that defines cost 

constraints for the respective components of a new product. 

Value Engineering Value engineering is a comprehensive approach that starts from the required product 

functions that need to fulfill quality, performance, time, and cost constraints. In 

particular, value is the primary target that includes the ratio of function and costs 

(value=function/costs). 

Quality Function 

Deployment (QFD) 

QFD starts with the identification of customer needs and expected quality. Afterward, 

customer satisfaction is the primary aim of all development activities (Akao, 1990). The 

resulting interactions among needs, engineering metrics, and components are 

consolidated and these describe the functional requirements. This outcome is used as a 

policy for product development  

Design for X 

(DFX) 

The X of DFX reflects specific aims during NPDs such as costs, quality, ecology, or 

variety. The respective designing procedures commonly consider products’ life cycle 

phases as well as the identification of customer requirements (Benabdellah, Bouhaddou, 

Benghabrit, & Benghabrit, 2019). 

Kaizen Costing Kaizen costing, which has risen from lean principles, is the continuous pursuit of cost 

reductions.  

Life Cycle Costing 

(LCC) 

LCC is a cost accounting extension examining future cost streams during a product’s life 

that is less developed in management accounting. A more practical perspective of LCC 

is an extension that aims to collect all data on a product during its life.  

Total Cost of 

Ownership (TCO) 

Similar to LCC, TCO is used in procurement and it includes types of transaction costs 

(i.e., supplier selection, supplier search, and screening). 

Component 

Commonality1 

Component commonality is the sharing of assets between at least two product variants. 

Modular Design1 Modular designs provide a large product variety using sets of modules and components 

instead of providing variety through specific components, processes, and resources. A 

modular design employs combinability and functional binding to offer the same variety 

with less specificity. 

Product Platform1 Product platforms are substantial sharable assets over at least one product family. In 

contrast to modular designs, there is a larger willingness to standardize the most common 

or shared components.  
1 There is no clear definition in the terminologies and a slight deviation between communities and time. Accordingly, transitions between 
the concepts are rather fluid than discrete. 

 

Wouters and Morales (2014) classify cost management approaches in NPD, as illustrated in Figure 

17, using a cost perspective (manufacturing costs/whole life cycle costs) and product perspective (one 

product vs. product family/portfolio). Under the single product perspective are approaches such as target 

costing, value engineering, QFD, and DFX. Kaizen costing, LCC, and TCO are similar in their 

perspectives but account for costs along the life cycle. In sum, all approaches ensure systematic 

developments that aim to achieve the cost-effectiveness of a single product. Although this leads to 

efficacy in the realized outcomes, it might underestimate the cost-saving effects among the product 

portfolio. 
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A broader product scope concerns the whole product portfolio or product family, where DFX is 

among the approaches for manufacturing costs; nonetheless, component commonality, modular design, 

and product platforms also have a significant impact on products’ life cycle costs.22 DFX narrows and 

condenses the possibilities of NPD using clearer guidance and constraints to achieve the specific goal 

(Fuchs & Kirchain, 2010; Wouters et al., 2016). For instance, when X means “cost”, NPD emphasizes 

the pursuit of optimizing cost-effectiveness. An X of “variety” concerns effective NPD preventing large 

product variety, which refers to modularization (Blees, 2011; Blees, Joans, & Krause, 2010; Kipp, 

2012). This thesis recommends the literature of Benabdellah et al. (2019) for further details. 

Addressing full life cycle costs and product portfolios, methods such as component commonality, 

modular design, and product platforms are decisive (Wouters & Stadtherr, 2018). Among the many 

methods of cost management in NPD, this thesis concentrates on the gray-shaded field of 

modularization. Commonality, building modular designs, and platform concepts are among the most 

often mentioned cost-saving methods in practice and research. Thus, strategies follow the ordinary 

presumption of offering a large product variety at the lowest cost; however, the cost effects are firm-

specific and general guidance is scarce (Campagnolo & Camuffo, 2010; Fixson, 2007; Jiao, Simpson, 

& Siddique, 2007; Simpson, 2004). 

 

Figure 17: Classification of cost management methods in NPD by scope (Wouters & Morales, 2014) 

Unfortunately, the wordings and interpretations of commonality, modularity, and platforms are 

often interchangeably applied. This thesis sees it as follows: The main message of commonality 

 
22 DFX can be applied to a single product and product families. 
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expresses sharing capability. In the example of component commonality, this means that at least two 

products rely on the component (Collier, 1981; Salvador, 2007; Salvador, Forza, & Rungtusanatham, 

2002). By contrast, modularity is either the property/object of a design or the characteristics of a product 

architecture (Campagnolo & Camuffo, 2010; MacDuffie, 2013; Salvador, 2007; Ulrich, 1995) 

Modularity in the design suggests the supply of a high product variety through a combination of 

components. Modularity in the product architecture infers that components are independent of other 

components and somehow differentiated. Platforms are large sharable assets responsible for many 

product variants over product families (Baldwin & Clark, 2000; Meyer & Lehnerd, 1997; Muffatto, 

1999). This parallels a partial standardization of product variants through large modules with certain 

interfaces. Overall, offering product variety under fewer interconnections between components is 

associated with the usage of modules and components.23 

Figure 18 shows the conceptual perspectives of modularity following Salvador (2007), who revisits 

the dimensions used in a comprehensive literature review. Modularity is mainly an object-related 

concept (MacDuffie, 2013). To determine its characteristics, Salvador (2007) disentangles reoccurring 

patterns of modularity in design to present five typical characteristics: commonality, combinability, 

functional binding, interface standardization, and loose coupling. 

 

Figure 18: Conceptual description of the modularity construct (Krause, 2012; Salvador, 2007; Salvador et 

al., 2002) P=product, FR=functional requirement, M=module, CM=component 

First, this thesis further differentiates the characteristic combinability into swapping and 

combination, as discussed by Salvador et al. (2002) and Salvador (2007). Modularity is a gradual design 

concept consisting of the five major characteristics shown in Figure 18. In addition, the characteristic of 

 
23 This thesis recognizes that modularity is not exclusively related to products because elements of processes and organizations 

can be modular as well (MacCormack, Baldwin, & Rusnak, 2012). 
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combinability is gradual as well. An extreme value of full combinability means that modules can be 

arbitrarily combined to construct a product variant. In the opposite direction, modules have their own 

combinatorial restrictions through more selective interfaces. This restriction reduces the numerical 

combinability because only some modules can be combined with each other. This case is known as 

swapping (Du et al., 2001; Salvador et al., 2002).  

Functional binding is best visible from a product architecture, as modules can accumulate more than 

one function. This modular characteristic is striking, while it affects the contingency between modular 

and integral product architectures. Standardization is essential and this partly drives combinability and 

commonality. To achieve standardization, modules encourage versatile interfaces, with platforms 

particularly requiring ports for modules. The last principle is loose coupling, which is a criterion of 

cohesiveness defining systems as decomposable to smaller, independent, but still interrelated elements. 

In other words, strong couplings between elements are a primer for independent modules, where loosely 

couplings indicate less cohesiveness (Salvador, 2007). From a general system angle, this characteristic 

points to the possibility of reducing systems’ complexity by having less interconnectedness and more 

independence (Simon, 1962). 

Regardless of whether developing modules or platforms, this thesis sees modularization as a general 

change process in an organization starting from modular product architectures and moving toward 

designs, processes, and resources. Concerning the physical modularization of products, research 

primarily suggests a full conceptual decomposition by existing designs when analyzing potential 

modules (Hölttä-Otto, Otto, & Simpson, 2014; Krause et al., 2014; Krause & Gebhardt, 2018; Otto et 

al., 2016). Next, modularity drivers (Erixon, 1998), similarity measures (Kota et al., 2000), optimization 

(Luo, Tang, & Kwong, 2014), simulations (Xu & Jiao, 2014), or heuristics (Stone & Wood, 2000) are 

the main approaches to composite updated product family designs with new modules or platforms. 

Overall, modularization is thus an organization-changing process that aims to redesign existent linkages 

of products, processes, and the organization.  

3.2.3 Modern modularization theory 

Issues of modularization have been investigated from many angles (Frandsen, 2017; Gershenson, 

Prasad, & Zhang, 2003; Hsuan, 1999; Jiao et al., 2007; Jose & Tollenaere, 2005; Salvador, 2007; 

Sanchez & Mahoney, 1996), and this thesis selects studies to provide a condensed corpus of knowledge. 

Although all studies contribute to the literature, some have drawn stronger attention (Baldwin & Clark, 

1997, 2000; Martin & Ishii, 2002; Meyer & Lehnerd, 1997; Sanchez & Mahoney, 1996; Schilling, 2000; 

Ulrich, 1995). Others rather examine empirical cases and field studies to collate the latest evidence from 

practice (Farrell & Simpson, 2009; Israelsen & Jørgensen, 2011; Marion et al., 2007; Park & Simpson, 

2008; Simpson et al., 2011; Thyssen, Israelsen, & Jørgensen, 2006). Another strand – paralleling both 

developments – supports the methodological process of applying modularization (Gu & Sosale, 1999; 
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Hölttä-Otto, 2005; Hölttä-Otto & de Weck, 2007; Krause et al., 2014; Otto et al., 2016; Ripperda, 2019). 

This subsection provides an overview of these branches. 

When discussing modularity and theory development, the work of Schilling (2000) is seminal. She 

conceptualizes the principal drivers of modularization in a qualitative study and claims that new products 

automatically request new idiosyncratic elements. Under this assumption and increasing market 

diversity, new products are associated with new elements in the firm and cause internal diversity. To 

tame this development, modularization is explained as a mechanism to reduce firms’ overall specificity 

for management the diversity of the markets.  

 

Figure 19: Market segmentation grid with strategies 

Meyer and Lehnerd (1997) propose guidance on modularization strategies that align with existing 

market conditions.24 They use a market segmentation grid (Figure 19) as a framework for planning and 

developing platforms. In detail, the grid maps customer segments to their performance, quality, or price 

expectations (Low, Mid, High) within a market segment. For example, a low tier incorporates basic 

 
24 This thesis does not demonstrate the “beachhead strategy” of Meyer and Lehnerd (1997), which is an interplay between 

horizontal and vertical leveraging. 
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requests such as minimum performance, quality, or low price, whereas High products require high 

performance and quality under less price sensitivity. Importantly, the grid provides actual guidance 

when planning modularization and platforms in product programs (Hölttä-Otto et al., 2014; Krishnan & 

Gupta, 2001; Kumar et al., 2008; Otto et al., 2016; Robertson & Ulrich, 1998). 

In detail, based on the framework, customers have performance expectations, which are comparable 

to quality from an economic perspective (Anderson & Sedatole, 1998; Krishnan & Gupta, 2001; 

Moorthy & Png, 1992; Mussa & Rosen, 1978). Meyer and Lehnerd (1997) and Moorthy and Png (1992) 

were among the first to specify customer segments in terms of performance and quality, respectively. 

Classes should simplify the expectations of customers and their corresponding utility. In particular, 

Mussa and Rosen (1978) and Moorthy and Png (1992) assume that quality is proportional to the utility. 

Hence, higher customer utility leads to a higher potential price but higher marginal costs. This thesis 

also includes the assumption and recognizes higher utility proportional to marginal costs. 

Moreover, the market segmentation grid also offers guidance for the strategic implementation of 

platforms through horizontal leveraging and vertical scaling (leveraging) (Lei & Moon, 2015; Otto et 

al., 2016). The simplest strategy involves a platform for every customer segment. This is known as the 

“niche-specific” platform strategy (a). Next, horizontal leveraging (b) aims to construct larger shared 

platforms across the market segments in the same performance tier. Vertical scaling (c) is a means to 

up- and downscale an existing platform in size, weight, or quality (Meyer & Lehnerd, 1997). This has 

the effect that a basic platform can target customer segments with different expectations. Overall, these 

strategies are relevant for planning and developing platforms and modules. 

Another theoretical foundation is provided by Baldwin and Clark (2000) following Simon (1962). 

They argue that modularization reduces unfavorable interactions by decomposing and redesigning 

existing systems. In contrast to other studies, their broad systems’ perspective can better explain 

modularity in processes, teams, and organizations (Brusoni & Prencipe, 2011; Schilling & Steensma, 

2001; Sosa et al., 2003). They also claim that modules are shareable assets for interacting objects 

(Robertson & Ulrich, 1998) that hide unnecessary information and thus lowers perceived complexity. 

Moreover, they propose the first conceptual meaning of modularity, which is adapted and refined with 

empirical observations by Salvador (2007). 

Krishnan and Gupta (2001) analytically examine both platform strategies and product introduction 

in accordance with the market segmentation grid. Their results propose a combined set of drivers for 

effective modularization. For instance, they indicate that neither low nor high market diversity supports 

platform and module approaches, as low diversity favors standardized products. High diversity in 

markets should encourage addressing only one customer segment to maximize firms’ profitability. This 

recommendation is still in discussion (Krause & Gebhardt, 2018; Ripperda & Krause, 2017). 

Ethiraj and Levinthal (2004) advance the theory by showing how modularization performs under 

limited information on the “true” product architecture. They show that perfect modularization in firms 

can only occur when all interrelations are known as well as that modularization supports complexity 
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management. They also demonstrate that missing even small pieces of information can be decisive and 

find that developers and designers should minimize modularization when architectures and designs are 

still unclear. 

The essential study by Fixson (2006) moves the product architecture to the center of attention and 

emphasizes function-sharing components. His study sees the product architecture as the most crucial but 

least investigated construct in modularization, particularly in terms of economic parameters. To improve 

the economic perspective on modularization, he qualitatively assesses and formalizes potential cost 

mechanisms such as work parallelization, economies of scale, and risk pooling. In doing so, he lists 

trade-offs and indicates their cost effects over the product’s lifetime. 

Thyssen et al. (2006) provide conceptual guidance for modularization by approximating antecedents 

with great potential for cost-saving effects. A first result of their empirical case study is that less unit-

level dispersion among components combined with (preferably) equal demand for product variants 

increases the cost effects of modularization. Interestingly, they also find that the inclusion of product-

specific components may lead to substantial cost savings under the assumption that all unit-level costs 

are equal. Another finding suggests that new modules are at least as costly as the previous costliest 

component. Overall, they demonstrate that commonality, unit-level costs (i.e., direct labor or material), 

and demand affect the module’s cost-saving potential. 

Empirical studies such as surveys, fieldwork, and case studies of modularization such as Pasche, 

Persson, and Löfsten (2011), Jacobs et al. (2011); Jacobs et al. (2007), and Danese and Filippini (2013) 

all argue that modularization leads to large cost savings and average performance growth. Interestingly, 

although modularization seemingly reduces complexity, Vickery, Koufteros, Dröge, and Calantone 

(2016) find in their cross-sectional study that high complexity leads to a lower performance gain under 

modularization. A recent study of Hackl et al. (2020) revisits the economic impact of modularity design 

choices and is even able to approximate the magnitudes of the relationships. The study of Van den 

Broeke, Boute, and Samii (2015) applies numerical explorations and stresses the trade-off between 

standardization and customization in a supply chain setting, finding that modularity positively affects a 

firm’s performance and profitability. 

Overall, many studies have analyzed modularization. Researchers have provided rules such as that 

commonality reduces production costs on average (Collier, 1981; Farrell & Simpson, 2009; Treleven & 

Wacker, 1987) and that minimum module costs are at least as costly as the costliest embedded 

component (Thyssen et al., 2006). Other studies have contributed more conceptually; see, for example, 

the cost product–architecture framework proposed by Fixson (2005, 2006). Despite this progress, 

however, questions remain, especially when considering the product architecture and market dynamics 

(Campagnolo & Camuffo, 2010; Fixson, 2007; Ravasi & Stigliani, 2012; Simpson, 2004). 
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3.2.4 Complexity costs 

Another relevant and often debated topic in cost management is complexity costs (Ehrlenspiel, 

Kiewert, Lindemann, & Mörtl, 2014; Kersten, von See, Skirde, & Wichmann, 2015; Krause & Gebhardt, 

2018; Meyer et al., 2019; Ripperda & Krause, 2017; Rosenberg, 2002; Schuh, 2005; Schuh, Riesener, 

Breunig, Koch, & Kuntz, 2017). Firms offer new and specialized products to increase their value and 

profit. Unfortunately, more individualized product variants tend to commit new or overuse existing 

resources, leading to greater inefficiencies and errors in the value chain. In sum, offering a product 

variety is associated with more complexity, which unexpectedly raises costs, termed complexity costs. 

Child, Diederichs, Sanders, Wisniowski, and Cummings (1991), Rathnow (1993), and Wilson and 

Perumal (2009) state that such complexity costs threaten competitive advantage. 

Discussions on complexity costs started early in cost accounting studies (e.g., Banker, Datar, Kekre, 

& Mukhopadhyay, 1990; Banker & Johnston, 1993; Cooper & Kaplan, 1987; Foster & Gupta, 1990; 

Ittner et al., 1997), notably the trade-off between the “value of variety” and “cost of complexity” 

(Robertson & Ulrich, 1998; Shank & Govindarajan, 1989). Empirical studies of this topic primarily 

identify complexity drivers such as the number of components, the diversity of product design, 

production processes, portfolio width, and documentation efforts, as shown by Kersten et al. (2015) and 

Krause and Gebhardt (2018), and use regression-related techniques to estimate their impact on 

manufacturing overheads (Banker & Johnston, 1993; Banker, Potter, & Schroeder, 1995; Datar et al., 

1993). Their results agree that the complexity driver can explain cost variances; nonetheless, there are 

distinct deviations between the drivers in these studies (Anderson, 1995; Banker & Johnston, 2006). 

Although complexity costs are somewhat confirmed empirically, a concurrent formal declaration of 

complexity costs is lacking. The first formalized application of complexity costs outside cost accounting 

was by Thonemann and Brandeau (2000). They emphasize the number of mappings between product 

variety and processes (Thonemann & Brandeau, 2000, p. 8) as an indirect amplifying function that 

causes complexity costs. It is striking that their modeling almost entirely reflects the indirect overhead 

functions of classical cost accounting research (Christensen & Demski, 1997, 2003). A study with 

stronger conclusions is Ripperda and Krause (2017), who review complexity costs from an engineering 

perspective and define them as costs occurring in addition to existing product family structures. Their 

perspective is in line with Abdelkafi (2008), who shows variance-induced complexity and stresses 

complexity as a relative instead of an absolute measure. Therefore, firms seem to be capable of handling 

some degree of complexity and complexity drivers are not similar across industries. 

This thesis adopts this conceptual definition by determining complexity costs as a relative measure. 

While each firm has inherent baseline complexity, a specific degree of additional complexity raises 

complexity costs. For example, let us assume state s0 is baseline complexity in an existing product 

program. Introducing more products affects the components, processes, and resources and thus raises 

complexity. This yields the new state of s1, which is more complex than s0. When identifying the new 
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costs occurring between both states, while controlling for production volume (Banker et al., 1990; Datar 

et al., 1993; Foster & Gupta, 1990; Ittner et al., 1997), this is likely to expose complexity costs. 

Conclusively, increasing complexity by Δs = s1 – s0 and the related cost differences ΔCosts = c1 – c0 may 

be the first principle to measure complexity costs as adjustment costs for more product variety.25 

One of the most recent studies of complexity costs is by Meyer et al. (2019). They present a thorough 

example for calculating complexity costs on behalf of increasing product variants. Their study defines 

the initial state s0 by a single product firm that extends the product program by two additional variants 

s1. Subsequently, variety-induced complexity increases the initial costs of c0 with more costs c1. Thereby, 

the study formalizes an increasing of complexity from variants and linked it to costs. Finally, the study 

proposes an approach to calculate complexity costs and prompts several new questions. 

Overall, the trade-off between “product variety” and “complexity costs” remains inconclusively 

investigated across communities. Nonetheless, it has regained significance because of increasing cost 

pressure and changing circumstances in production technology. Consequently, focusing on complexity 

costs may lead to meaningful insights into firms’ ability to be flexible and resilient. 

  

 
25 This calculation indeed parallels the measurement of sticky costs (Balakrishnan et al., 2014); Nonetheless, this thesis suggests 

that complexity costs have a non-monotonic relationship with complexity drivers such as increasing products, parts, 

documentation and many other (see Krause and Gebhardt (2018) for more drivers) 

𝑠1
𝑠0

  
𝑐1
𝑐0

  (2) 
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4. EAD: A theory-connecting framework 

4.1 Introduction 

This thesis integrates engineering design theory and economic firm theory into an EAD to formalize 

the “grand” product-based planning process. Today’s practice is that research communities shed light 

on this grand process separately (Arend et al., 2017; Balakrishnan et al., 2011; Balakrishnan & 

Sivaramakrishnan, 2002; Robertson & Ulrich, 1998), resulting in a large and dispersed field of research 

mainly driven by the engineering and management communities (Anderson & Dekker, 2009a; 

Campagnolo & Camuffo, 2010; Fixson, 2007; Frandsen, 2017; Ravasi & Stigliani, 2012). This hampers 

common understandings (Tranfield, Denyer, & Smart, 2003), slows theory development (Raasch, Lee, 

Spaeth, & Herstatt, 2013), and dilutes research outputs (Birnbaum, 1981) due to little agreement in 

formalizations and modeling despite the substantial overlap in questions (Jiao et al., 2007; Simpson, 

2004; Starr, 2010). Suggesting a framework under academic rigor could thus help to bridge product-

based thinking across disciplines. Consequently, this thesis proposes the EAD as a theory-connecting 

framework for sharing and communicating concepts and formalisms beyond local engineering and 

management studies by rigorously modeling product-based planning. 

While engineering design theory aims to optimize product designs along technical functions and 

parameters, the goal of economic theory is to maximize profit under the given product portfolio. The 

EAD is a theory-connecting framework for analyzing product-based planning processes. Considering 

the intrinsic motivations of both fields, it identifies related questions. Then, because an optimal product 

(family) design in terms of performance quality may be associated with positive economic 

consequences, efficient product variants or families are thus assessable using economic parameters, 

which may overcome the drawbacks of existing perspectives. While engineering design is ambiguous 

in its generality and concepts (Madni & Sievers, 2018; Starr, 2010), economic modeling can support 

using its critical theory development (Cooper & Hopper, 2006) and causal thinking (Gow, Larcker, & 

Reiss, 2016; Pearl, 2009). Likewise, economic modeling has less considered realistic product modeling, 

whereas engineering has less discussion in questions of capacity planning. 

This thesis does not necessarily intend to propose the EAD; nonetheless, an integrated framework 

in both fields is lacking. Engineering design does not simply refer to the nearly unlimited possibilities 

of designing products (ElMaraghy et al., 2012). Searching for more formalized principles for selecting 

a product design leads to the axiomatic design (AD) of Suh (2001) (Gonçalves-Coelho & Mourão, 

2007). However, as the AD does not explicitly cover more than one product in its decision framework, 

it somewhat loses contact with real cases. Additionally, the classical AD has no linkage to economic 

parameters such as prices, costs, capacities, and demand, despite their necessity for ranking and selecting 

scenarios in product-based planning (Robertson & Ulrich, 1998). In economic firm theory, there has 
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been less discussion about interdisciplinary effects between products or couplings between customer’ 

needs and respective functions. In detail, products are frequently independent outputs of production 

functions. While this is not false per se, the theory is likely to oversimplify a product’s subtle network 

of customers, functions, and design. To sum up, there are as many opportunities to benefit from 

integrative framework to answer questions of product and production planning. 

4.2 Theory integration 

Integrating engineering design theory (also known as model-based system engineering or model-

based engineering) (ElMaraghy et al., 2012; Van der Auweraer, Anthonis, De Bruyne, & Leuridan, 

2012) with economic firm theory is the foundation for the EAD. First, under economic firm theory, 

profit maximization is the central motivation for decisions (Christensen & Hemmer, 2006; Demski, 

2008). To maximize profit, firms either maximize the sales of products, minimize their costs, or both 

(Demski, 2008; Shepard, 2015). Formalizing both economic objectives within a profit maximization 

proposition Π pertains to the sub-objectives of sales maximization (output prices multiplied by demand 

𝝆 𝒒) and cost minimization (input price multiplied by the required input resources 𝝆 ) under realized 

demand q. Both sub-objectives together determine the profit maximization function 𝛱 𝝆 , 𝝆  in equation 

(3). This equation is fundamental to firms’ motivation for large and small decision problems 

(Christensen & Hemmer, 2006; Demski, 2008).26 

Hence, assuming realized demand q for firms’ output determines the necessary number of input 

resources x for supplying the output y. Imagine customers are going to buy bikes, expressed as y, at the 

quantity of q. The firm receives realized demand q that prompts the production technology T for 

producing outputs y at the number of q. The production functions can supply the output when they have 

the necessary total input resources x. The number of inputs refers to the minimum requirements λ within 

each production function multiplied by demand (x = λq). Finally, the production technology T 

transforms the total input resources x (i.e., wheels, frames, working hours) into bikes yq (Christensen & 

Hemmer, 2006). This relationship is frequently described by inequalities and thereby embeds the 

input/output transformation constraint shown in equation (4).27 

 
26 Profit maximization assumes the non-adjustable output 𝜌̂ and input prices 𝜌 in accordance with polypolistic internal and 

external markets (Christensen & Demski, 1997). 
27 When capacities are assumed to be perfect, resource minimization is infeasible. Consequently, resource minimization 

develops into a necessary resource demand with input prices that is also a cost function pc. Thus, there is a pull of the inequality 

of yq ≤ T(x). 

𝛱 𝝆 , 𝝆    max
𝒒

𝝆 𝒒 − 𝑚𝑖𝑛
 

𝝆  (3) 

 𝒒 ≤ 𝑻   ≤ 𝑻 𝝀𝒒  (4) 
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Total input resources x depend on the requested output y (Fandel, 2005; Shepard, 2015) but their 

minimization also reflects the cost function of 𝒄  𝝆, 𝒒 . Cost functions recognize the total input resource 

consumption x with their corresponding input prices for supplying cost information. Taking this micro-

level assumption to total consumption in the production technology T yields firms’ total costs. 

Concerning profit maximization in equation (3), the cost function and production technology can replace 

the minimization problem. This changes equation (3) to equation (5) (Christensen & Hemmer, 2006). 

Equation (5) is central; it depicts the final profit maximization as a function of demand q, output price 

𝝆 , input price 𝝆, and specific production technology T. The profit maximization of a multiproduct firm 

in equation (5) is the foundation for designing the EAD as a decision-making framework that integrates 

engineering design theory. 

Management accounting and production theory have strongly elaborated and formalized questions 

of production and capacity planning. In this respect, cost accounting studies are no exception and set the 

state of the art (Anand et al., 2019; Balakrishnan et al., 2011; Christensen & Demski, 1997; Labro & 

Vanhoucke, 2007). Those studies divide production technologies into the three stages of products, 

processes, and resources. This differentiation is helpful because cost investigations underlie resource 

consumption patterns from production functions. Whereas processes and resources are sufficiently 

detailed for cost studies, products are neither specifically modeled in these studies (Anand et al., 2019; 

Labro & Vanhoucke, 2007, 2008) nor strongly mentioned in profit maximization. This lack of product 

modeling limits the theory of engineering design research. 

To use profit maximization as a motivation for decisions in a broad product-based planning concept, 

product modeling is necessary. Again, economic firm theory does not describe products to a large extent; 

instead, they are abstracted to unrealistic simplicity. Moreover, there is less discussion about product 

modeling and it does not continue to look beyond process outputs as the final products (Anand et al., 

2019; Balakrishnan et al., 2011; Christensen & Hemmer, 2006). Engineering-related research sees 

products not as a simple direct output of the production technology (Akao, 1990; Fisher et al., 1999; 

Martin & Ishii, 2002; Stone & Wood, 2000). Products are rather complex constructs of various functions 

and design characteristics for satisfying customer needs (Du et al., 2005; Ulrich & Ellison, 1999; Xu et 

al., 2009). Consequently, this thesis uses the AD of Suh (2001) to extensively model the output y to a 

product construct supplied by an enriched production technology T. 

Engineering design theory describes the output of the production technology y as product constructs 

instead of as a simple process output. Although product has been a valuable abstraction in economics 

fields, it mitigates cross-domain questions. Building this bridge focuses on the EAD because it enriches 

production technology T through the AD, which is a formalized and mathematical technical design 

theory for constructing optimal product designs necessary when designing new products or initiating 

𝐸  𝝆 , 𝝆    max
𝒒

𝝆 𝒒 −  𝒄  𝝆, 𝒒  

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  𝒒 ≤  𝑻 𝐱  
(5) 
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redesigns of existing variants. As a result, the EAD incorporates the customer, function, and design 

perspectives to model product constructs at the product portfolio level.  

Finally, equation (6) substitutes T with EAD, where the output y reflects the portfolio of product 

constructs, triggered by customers, consisting of functions and physical design relations. 

In short, the EAD integrates engineering design theory and economic firm modeling. When seeking 

to cover the entire picture of product-based planning, it requires a decision framework for product 

designing and production planning. Therefore, it seems right to combine both theories despite this posing 

a myriad of new questions. 

4.3 Classical AD  

Before introducing the EAD, it is necessary to understand the axiomatic mathematical principles of 

the AD. Formalizing and describing the nature of a system builds upon axiomatic principles (Adams et 

al., 2014). They also build a fundament for deductive reasoning and modeling while embedding logical 

– somehow unquestionable – argumentations by math. Therefore, the AD relies on mathematical set 

theory (Kuratowski & Mostowski, 1976). 

Figure 20 illustrates the “design world” of the AD with all its corresponding domains (Suh, 1995, 

1998, 2001). No matter the design context, the “left domain” is the question of “what we want to 

achieve”. The corresponding “right domain” is “how we propose to satisfy this (design) requirement”. 

It starts with customer needs (CN), which invoke a “pull system” of functional requirements (FR). Then, 

each CN is what firms want to achieve, where FR are the requirements. The mapping between them can 

be seen as a requirement matrix paralleling approaches such as QFD (Chan & Wu, 2002). Overall, 

Figure 20 includes all the domains to provide a full overview. 

 

Figure 20: Conceptual AD 

CN FR DP PV

Customer 
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Functional 
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Physical 

domain

Process 
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𝐸 𝝆 , 𝝆  max
𝒒

𝝆 𝒒 − 𝒄  𝝆, 𝒒  

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  𝒒 ≤  𝑬𝑨𝑫 𝐱  

(6) 
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The AD follows the hierarchical system principles of Simon (1962) and uses domain (parameter) 

mappings to formalize a system. As introduced in Section 4.32.1.2, the AD fits conceptually to the 

hierarchical system construct. Following Adams et al. (2014), every system has a depictable design in 

terms of domains and functions. Thus, domains are decomposable as a system of equations referring to 

design matrices A. This design matrix in turn connects the independent parameters x to particular sets 

of the dependent parameters y. Consider a design matrix AFR_DP that maps a set of functional 

requirements FR to subsequent design parameters DP (FR = AFR_DP DP). The single numerical example 

of AFR_DP = 5 implies the mapping of FR1 = 5DP1. Of course, more interconnected mappings such as 

FR1 = 3DP1 + DP2 + 2DP3 are possible, which the design matrix AFR_DP embodies. As long as the system 

is linear, design matrices have constant values. In the case of non-linearity, constant values are 

autonomous subfunctions (Suh, 2005), which gives space to adapt realistic cases, including their 

enormous complexity. However, this thesis focuses on linearity to ensure the concise communication of 

the core ideas. 

The actual usage of the AD demands a conceptual understanding (Gonçalves-Coelho & Mourão, 

2007; Jiao et al., 2007), empirical terminology (Guenov & Barker, 2005; Gumus, 2005), and 

optimization (Cebi & Kahraman, 2010; Thielman & Ge, 2006). Kulak, Cebi, and Kahraman (2010) 

provide a comprehensive literature review on the AD’s applications. They show that the AD is 

particularly decisive for questions of product design (Tseng & Jiao, 1997) and seemingly vital as a 

conceptual skeleton. For example, Jiao et al. (2007) use the domains of the AD as a conceptual 

framework structuring their literature review. Finally, the AD has been widely explicitly and more often 

implicitly acknowledged and applied. 
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4.4 Conceptual EAD 

Figure 21 illustrates how and where the EAD merges engineering design theory with economic firm 

theory. The EAD consists of three conceptual modules concerning the essential stages of product-based 

planning. First is the product portfolio definition (see Sections 2.2.1 and 2.2.2 for more details), which 

is the initial step in product planning. Second, defining the product portfolio requires determining the 

designs of many products, summarized as product (family) designing. This is the next step in product-

based planning. Lastly, the module of production technology incorporates the existing production layout 

and structure including the processes and capacities. 

In pursuing engineering design theory, the product portfolio definition and product (family) 

designing rely on the parameters of customer needs (CN), functional requirements (FR), and design 

parameters (DP), where economic firm theory supports the formalism of activities (AV), resources (RC) 

and related economic parameters.28 While products are simplified from an economic perspective, the 

EAD partially incorporates the AD to overcome this oversimplified perspective. Specifically, CN, FR, 

and DP provide an excellent supplement to and extension of modeling products, where the point of 

merging the theories takes place at the end of DP (referring to the AD) and at the end of products P from 

an economic modeling perspective. Overall, this connection secures sufficient product modeling in 

engineering disciplines where the production technology satisfies economic-related fields. The 

conceptual depiction in Figure 21 illustrates merging engineering design theory with economic firm 

theory. 

 

Figure 21: Merging engineering design and economic firm theories to create the EAD 

 
28 Economic theory frequently uses activities instead of processes. The thesis use both interchangeable.  
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 A product portfolio definition can be formally expressed as the mapping between customers’ 

needs CN and products’ functional requirements FR. It is assumed that the product portfolio definition 

starts from the market side, known as top-down product planning (Krause & Gebhardt, 2018; Otto et 

al., 2016; Ulrich & Eppinger, 2012). As a first step, the marketing department differentiates the market 

into segments and clusters them by their needs. This segmentation also disentangles targetable customer 

segments with better knowledge about their wishes and expectations (Du et al., 2005; Meyer & Lehnerd, 

1997; Ulrich & Ellison, 1999). The more customers overlap in their set of needs, the larger the expected 

demand q of a segment, where firms target such segments by providing new product variants (Du et al., 

2001, 2005; Ulrich & Ellison, 1999). 

Every product in a portfolio is a construct of the functional requirements FR and design parameters 

DP for an appropriate product (family) design. Design parameters DP are engineering and construction 

metrics such as the necessary conditions, tolerances (i.e., temperature tolerance of ±0.1°), and employee 

skill requirements (i.e., capable of analyzing the data) in services. In general, DP need not be a physical 

object. Instead, it can be intangible such as digital knowledge or information. In this stage, the EAD also 

highlights that components (CM) are constructs of DP (Baldwin & Clark, 2000). Such aggregation, as 

suggested from the EAD as an additional formalism, overlaps with other frameworks (Du et al., 2001; 

Kipp, 2012; Krause & Gebhardt, 2018; Martin & Ishii, 2002; Ulrich & Ellison, 1999) and supports 

product architecture modeling at a higher level (i.e., mapping FR to CM). 

The final set of domains originates from economic firm modeling concerning production 

technology. Each DP or respective CM is related to processes AV such as procurement and indirect 

production activities. The structure of all AV, namely the technology, reacts to the demand request and 

prompts processes AV that demand resources RC. The classical AD entails process variables PV; 

however, they have not yet been intensively discussed or applied. In addition, it lack the principles of 

economic theory referring to neoclassical production and cost theory. Thus, PV is substituted by the 

activity variables AV employing production theory and its functions. The resource demand is the last 

step of the EAD, highlighting the consumption of material, labor, and required capacities in general.  
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Figure 22: Conceptual EAD 

Connecting all three modules leads to the final conceptual EAD in Figure 22, which incorporates a 

profit maximization motivation concerning demand and costs. The EAD surrogates a standard 

production technology but is extended through engineering design theory. Profit maximization implies 

total demand for pre-existing structures that diffuse through the EAD toward final resource 

consumption. Combining final resource consumption with input prices further weights the previous 

elements and leads toward final product costs. 

4.5 Designing and formalizing an EAD 

4.5.1 Product portfolio definition 

Designing an EAD develops a nearly complete product program under profit maximization. The 

actual sections follow the top-down approach of product-based planning, while gradually explaining 

and formalizing the levels of the EAD. Figure 23 depicts the product portfolio definition, which includes 

the trade-off of aligning firms’ products P [1 x Ps] with customer segments C [1 x Cs]. Under 

engineering design theory, this trade-off has finer granularity (AlGeddawy & ElMaraghy, 2013). There, 

products and customers are constructs of the parameters FR and CN, respectively. Subsequently, one 

product P contains several FR [1 x FRs] P(FR1, FR2, ..., FR), where a customer segment C similarly 

contains CN [1 x CNs] C(CN1, CN2, ..., CN). This is the lowest level of granularity responsible for the 

alignment between P and C based on FR and CN. 
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Figure 23: EAD – Product portfolio definition 

Defining the product portfolio starts with the identification of customers’ needs, which prompts a 

detailed understanding, segmenting, and thorough targeting of the market (Kotler & Keller, 2015). 

Following previous studies (Akao, 1990; Du et al., 2001, 2005; Luchs & Swan, 2011; Stone & Wood, 

2000; Ulrich & Ellison, 1999), the EAD determines C as unique sets of customer needs CN (C(CN)). In 

line with economic firm modeling, the more individual customers in a segment, the larger demand q [1 

x Cs] (C(CN,q)). 

The alignment between customers and products addresses how well each FR satisfies the respective 

CN. Again, products are sets of attributes, functions, or engineering metrics (Fisher et al., 1999; 

Gershenson et al., 2003; Martin & Ishii, 2002). This aligns with the structure of customer segments, 

where products P are constructs of P(FR). In the simplest case, there are binary fits between CN and 

FR, resulting in 0% for no fit and 1 for 100% fit. For instance, imagine one customer C(CN1, CN2) that 

wants to “drive a fast car” (CN1) “in the color red” (CN2). Having a corresponding product P(FR1, FR2) 

“a fast red car”, the customer will purchase and will have 100% satisfaction P(FR,q). Equation (7) 

exemplifies this alignment between customers and products by referring to the underlying micro-level 

mapping between CN and FR mapped by ACN_FR. To sum up, the design matrix ACN_FR maps the 

requested functions with customer needs, which is close to a requirement matrix in QFD (Tang, Y.K. 
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(7) 

𝑪 𝑪𝑵,𝒒 ≤ 𝑷  𝑹,𝒒  
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Fung, Xu, & Wang, 2002). However, the limited information on customers’ needs, utility expectations, 

and missing alignments may be relevant in further research.29 

4.5.2 Product (family) designing 

Product (family) designing is based on mappings in the design matrix AFR_DP between products’ 

functional requirements FR to their necessary design parameters (DP). Figure 24 depicts the formalized 

relationships between products P(FR) and components CM(DP), including different levels of 

granularity. Naturally, FR need technical or service mechanisms to fulfill their specific purposes (Kipp, 

2012; Krause & Gebhardt, 2018). DP [1 x DPs] cover this concept in the most granular form and are 

valuable for finding the optimal designs (Suh, 2001). Nonetheless, the majority of studies refer to 

components (CM) as their reference unit (Blees, 2011; Kipp, 2012; Krause & Gebhardt, 2018; Otto et 

al., 2016; Ulrich & Ellison, 1999). While compliant components are aggregates of DP in the EAD, the 

design matrix AFR_DP can be similar to the product architecture of Ulrich (1995). 

 

Figure 24: EAD – Product (family) designing 

 
29 The EAD does not yet account for the utility functions between expected and realized expectation u(CNs, FRs) or willingness 
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𝑷  𝑹,𝒒 ≤  𝑪𝑴 𝑫𝑷,𝒒  
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Equation (8) demonstrates products’ functional requirements demand – as opposed to the AD – for 

the CM [1 x CMs] components. The requirements of FR to DP belong to mappings in the design matrix 

AFR_DP. Given the example of an electronic circuit board with numerous elements, there are many 

potential DP. Hence, it is possible to define a DP for the resistance tolerances or an earthing subsystem. 

Nonetheless, this level of granularity may overlook practicable sensibility because questions of firms’ 

product programs mainly refer to components CM; see, for example, the module interface graph of 

Krause et al. (2014), DSM modeling of Eppinger and Browning (2012), and variety allocation model of 

Kipp (2012). Consequently, CM are constructs that encompass many or at least one DP.30 

Accepting this argumentation, AFR_DP maps FR to DP or to CM by AFR_CM, where the component 

perspective mirrors the product architecture of Ulrich (1995). AFR_DP covers one of the most crucial 

interfaces when considering efficient product (family) designing (Fixson, 2006; Jiao & Tseng, 2000; 

Sharman & Yassine, 2004; Skirde, Kersten, & Schröder, 2016; Ulrich & Eppinger, 2012). This is 

somewhat new, as the classical AD does not explicitly consider full families or portfolios, and extending 

it may thus be fruitful. In particular, research investigates efficient product (family) designs instead of 

single products. Thus, the EAD extends and emphasizes product (family) architectures (Du et al., 2001; 

Erens & Verhulst, 1997; Jiao et al., 2007; Jiao & Tseng, 1999). 

4.5.3 Production technology 

The final stage of the EAD (product technology) entails economic firm modeling by the components 

required CM [1 x CMs] from the design parameters DP [1 x DPs] to activity variables AV [1 x AVs] 

toward input resources RC [1 x RCs]. Production theory suggests modeling an economic production 

environment by employing outputs (here, design parameters DP or components CM), processes, and 

input resources (Christensen & Hemmer, 2006; Shepard, 2015). Here, among others, cost accounting 

studies are state-of-the-art for modeling (Anand et al., 2019). The EAD includes their contributions by 

mapping CM to AV toward RC in accordance with their guidance. As a result, the two design matrices 

ACM_AV and AAV_RC map CM, AV, and RC, yielding the total resource consumption demand. 

 
30 All the parameters (CN, FR, DP, AV, and RC) can have their own structures consisting of flows or couplings, identifiable 

through a DSM. While this would complicate an introduction, there is no limitation per se. For simplicity, the EAD assumes 

full decoupling (identity matrices). 
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Figure 25: EAD – Production technology 

The EAD in Figure 25 defines the output of the production technology as DP or CM to link it to the 

product portfolio definition and product family design. Following economic firm modeling, the demand 

q of CM prompts processes AV and resources RC for production (CM(DP,q) ≤ AV(RC,q)). The first 

design matrix ADP_AV pertains to the mapping of DP to AV, where every AV is a specific production 

function. While every production function is unique, some DP require fewer processes than others. 

Nonetheless, all AV behave proportionally to realized demand q. Thus, the larger demand, the larger the 

total required output of the production functions.31 Equation (9) records the aggregated behavior of 

firms’ production technology concerning the components detailed by design matrices (1) and (2). The 

final resource domain hence supports the functions for supplying the required components. 

In summary, the design process of an EAD begins by targeting customer segments C(CN,q) for the 

product portfolio definition. In the optimal case, every segment has a corresponding product that 

perfectly fits the needs with its functional requirements P(FR,q). Subsequently, the functions refer to 

specific sets of components CM(DP,q), where both include firms’ product architectures. Overall, their 

mappings reflect the product (family) designs. While demand diffuses toward production, this prompts 

the technology to supply the necessary components. Production consists of processes AV and resources 

RC, which end up in outputs AV(RC,q). Eventually, the final amount of required input resources is set. 

 
31 When discussing manufacturing, issues of scheduling and material flow are also important. In accordance with operations 

management, here, modeling is divided into two directions. The first direction refers to scheduling and queuing problems. Here, 

Little’s law (Little & Graves, 2008) is a basic theory for investigating the efficiency of flows and productivity. By contrast, this 

thesis assumes the full utilization of capacities and adopts a second path without addressing continuous flows in manufacturing. 

Overall, the EAD can account for Little’s law but the underlying research objectives do not require this. 
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𝑨𝑽 ≤ 𝑨𝑨𝑽_𝑹𝑪 𝑹𝑪  
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Without capacity restrictions, each consumption has its price and this will cause costs. These resource 

costs are retractable in the EAD across all earlier design elements. This also adds the economic context 

to engineering design, mirroring all aspects of product-based planning. Overall, the EAD thus proposes 

a theoretical foundation for product-based planning that combines the principles of engineering design 

with those of economic firm theory. 

4.5.4 Applying the EAD 

This section uses a simplified practical example with two products, which consist of two FR, three 

CM, four AV, and five RC, to give an overview of applying the EAD. The case concerns the product 

family program of ‘main controller units’ (MCUs) consisting of the two respective variants with cold 

resistance or not. MCUs are central processing units of electrical signals and control several functions 

(e.g., enabling steering of a vehicle or safety control). This thesis simplifies all possible FR to the single 

function of “central processing”. So, if customers wish for CN1 “control”, they will require FR1 ‘central 

processing”. Next, FR1 prompts the CM “housing” and “circuit board”. Both housing and circuit board 

CM are in-house produced and will require AV and RC. Therefore, they also request for the housing 

process, board assembly and quality testing. The processes, in turn, are contingent on specific sets of 

RC (i.e., material housing, labor hour housing, or engineering hour). In sum, the practical example 

illustrates a small product program. 

While one product is depictable by the classic AD, the example will additionally cover for a second 

CN of “cold protection” (CN2). Extending the product program of the standard MCU by another MCU 

with protection against cold, given by CN2, conducts a new FR2. The FR2 can consist of new or existent 

elements that influences the number and usage of forthcoming components, processes, and resources. 

Before proceeding, this example assumes that each CN has one respective FR, consequently ACN_FR=1. 

Following the previously made formalizations, the two customers define two products (see Equation 

(10) and Figure 26). Then, the practice example consists of two MCUs, ‘standard’ and ‘cold housing’, 

where the latter requires more testing time and specific parts.  

𝐴𝐶_𝐶𝑁  [
1 0
1 1

]  𝐴𝐹𝑅_𝑃  [
1 0
1 1

] 

 

 

𝐶1 ′𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙 𝑚𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡′ ≤ 𝑃1 ′𝑐𝑒𝑛𝑡𝑟𝑎𝑙 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔
′  ; 

𝐶2 ′𝑒𝑙𝑒𝑡𝑟𝑖𝑐𝑎𝑙 𝑚𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡′,′ 𝑐𝑜𝑙𝑑 𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑡′ ≤ 𝑃2 ′𝑐𝑒𝑛𝑡𝑟𝑎𝑙 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔
′, ′𝑐𝑜𝑙𝑑 𝑝𝑟𝑜𝑡𝑒𝑐𝑡𝑖𝑜𝑛′  

(10) 
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Figure 26: EAD from the aggregated market and product perspective 

Table 3 shows the minimum design and related costs for one product unit of each product by means of 

the EAD. Table 3 primarily overviews but also quantifies the introduced example of the MCU variants 

by adding prices to all resources (e.g., one material housing costs 0.50€, one engineering hour 2€, 

thermal insulation 2€). Additionally, it shows that weights of mappings must not necessarily be one. 

Because the testing of the cold protection takes more time than the standard processes, CM “cold 

housing” requires two instead one testing run. In sum, the example confirms that the EAD depicts a 

product program by accounting for its design and costs. 
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Assume that the demand q of each product is one, the standard MCU will cost 5€, whereas the cold-

resistant MCU costs 9€. Offering a new function for customers, designed as the FR2, results in additional 
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AC_CN

CN1

CN2

AP_FR

C1

C2

[C] [FR][CN]

MARKET PRODUCTS

P1

P2

FR1

FR2

[P]



 

 

59 

to greater costs. Hence, the product costs of the standard MCU are by 4€ higher than the standard MCU. 

Under the linearity condition, product costs will increase proportionally by the demand (i.e., q1=5 

resulting in total product costs for the standard of 25€ (5∙5€)), whereby the EAD can eventually calculate 

firms’ total costs in consultation with product variety.  

The Equation (11) shows the resulting matrix notations from the EAD, which starts from CN toward 

RC and covers the product program. The EAD consists of four matrices in its full range (ACN_FR, AFR_CM, 

ACM_AV, and AAV_RC). Each matrix contains the maximum number of parameters from the connecting 

stages (e.g., AFR_CM : total number of FR and total number of CM). A full multiplication along all design 

matrices results in the overall consumption matrix ACN_RC shown on the right side of Equation (11). This 

demand or consumption matrix, respectively, defines the minimum resource usage of a certain customer 

need. In accordance with Equation (10) and Figure 26 Based on this matrix, customer segments and 

product will be definable.  

 

Figure 27: Illustrated EAD from customer needs (CN) up to resource demand/consumption (RC) 
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The EAD coins several advantages for researchers and practitioners. First, the EAD covers matrix 

notations (see Equation (11)) that allows mathematical experiment and investigations through 

simulations and optimizations, respectively. Hence, the EAD addresses questions as evaluating existent 

product programs, strategically planning toward new product programs or the support in computer-aided 

product design. Second, the framework is an accessible illustration for complex product programs, 

which facilitates communication to readers and decision-makers (see Figure 27). The product variety is 

an elusive construct of complexity through its various product designs, organizational structures, 

production lines, and distinct resources. The EAD encounters the challenge by requiring stringed 

mappings and elements in its formalism, which will cover the product program in a structured way 

without neglecting essential connections. Overall, the short example should be sufficient to show that 

the EAD formalizes product programs based on theoretical principles, which provides a general model-

based approach for examining product planning from an engineering and economic perspective. 

4.5.5 Product costing in the EAD 

Measuring product cost necessitates modeling costing systems in an EAD. As explained in earlier 

sections, costing systems measure products’ resource consumption weighted by their prices to trace and 

allocate the costs to their origin case (see Section 2.3 for detailed explanations). Therefore, the flow of 

costs starts from the resource demand RC - assuming that the demand was consumed – and the respective 

unit resource prices ρ toward final product costs PCB. 

Figure 28 demonstrates how a classical two-stage costing system (see Figure 12 for a recap) is 

embedded in the EAD.32 As explained, financial systems first account for resource costs RCC, which 

need further measurement and calculation to obtain product costs PCB. Before receiving this 

information, multiplying minimum resource consumption by demand yields the total resource 

consumption of each product. Summing the usages of the resources leads to total input resources TRU 

(RCq = TRU [1 x RCs]). Multiplying the corresponding price ρ by TRU leads to the resource cost RCC 

(TRUρ = RCC) for every cost. Next, costing systems often implicitly start by building a resource cost 

pool RCP from all RCC such as a specific salary and material costs of tools.33 Thereafter, costing 

differentiates between direct costs DC and indirect costs OH. Direct costs are traced to their products 

once, whereas overheads RCP have grouped into cost pools CP. In the second stage, the system 

distributes all CP to their products by referring to the cost driver selection heuristics. Afterward, each 

product receives the “true” costs under the assumption of full information about the product program. 

 
32 In the simplest case, the EAD combines customer needs CN, functional requirements FR, and design parameters DP by 

applying identity design matrices to abstract products (Balakrishnan et al., 2011). However, these simple products are still 

sufficient to address cost and capacity issues. 
33 There is still ambiguity and discussion about the correct modeling (Hoozée & Hansen, 2018). For example, Balakrishnan et 

al. (2011) does not aggregate RCC into RCP, whereas Labro and Vanhoucke (2007) do, including aggregation, specification, 

and random measurement errors. For the sake of simplicity, this thesis does not get into this discussion, but sees it as necessary 

to have RCP. 



 

 

61 

 

Figure 28: Product costing in the EAD 

4.6 Contribution 

There is a myriad of interdisciplinary questions on product-based planning processes (Balakrishnan 

et al., 2011; Campagnolo & Camuffo, 2010; Ravasi & Stigliani, 2012) because engineering and 

management still have distinct perspectives. Indeed, while both fields recognize results and continuously 

advance knowledge and theory, they may have unconsidered interconnections or even parallel 

discussions (Anderson & Dekker, 2009a; Campagnolo & Camuffo, 2010; Fixson, 2007; Simpson, 

2004). For example, management accounting sees life cycle cost accounting as relevant for future 

research (Anand et al., 2019; Labro, 2019). Surprisingly, engineering and operations management 

recognized this issue in much greater detail long ago (Gu & Sosale, 1999; Krause & Gebhardt, 2018). 

By contrast, frameworks of service architectures (Iman, 2016; Voss & Hsuan, 2009) are prominent in 

management and can support starting investigations of product/service systems in engineering (Bertoni 

& Bertoni, 2018; Schuh et al., 2017). Overall, many overlapping research fields exist in engineering and 

management, and thus the EAD paves the way for common concepts by emphasizing their cohesiveness. 

The proposed frameworks identify at least three potential contributions to research and practice. 

First, this thesis contributes to an integration of engineering design theory and economic firm theory 

that supplement each other and result in the EAD as an accessible and communicable framework. The 

EAD integrates engineering design theory through the AD and related fundamentals (Du et al., 2001; 

Jiao & Tseng, 2000; Suh, 1998; Ulrich, 1995; Ulrich & Eppinger, 2012) with economic firm modeling 

mainly promoted by the strand of the cost accounting literature (Anand et al., 2019; Christensen & 
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Demski, 1995). In detail, the AD’s design parameters substitute the output of the economic firm, where 

product modeling refers to engineering theory and production technology to production theory. Cost 

theory finally determines the costs of all the design elements in the framework. The introduction of this 

integrated framework lays the platform for discussing common concepts and understandings between 

communities, facilitating theory development around all questions of product-based planning. 

Second, the EAD does not solely connect two theories; it also overcomes the limitations of the AD 

and firm modeling. The AD concentrates on the optimal design of a single product (Kulak et al., 2010; 

Suh, 1995, 1998, 2001). Nevertheless, optimal designing is often a question of product families that go 

beyond the single product perspective (Eppinger & Browning, 2012; Jiao et al., 2007; Krause & 

Gebhardt, 2018; Simpson et al., 2014; Ulrich & Eppinger, 2012). The EAD sees CN, FR, and DP as the 

most granular units but encapsulates them into customers C, products P, and components CM. Applying 

this abstraction of granularity allows the design of numerous products with one EAD that would actually 

require many separate AD investigations and supports estimating and modeling complex product 

program scenarios. 

Finally, this thesis provides guidance and structure for applying the EAD to product-based planning 

in combination with M&S. Product-based planning, a “grand” decision process, demands a vast amount 

of information. Estimating scenarios and adjustments is computationally intense. Here, the EAD 

supports valid design structures with its theory orientation and provides a clear mapping direction at 

different granularities (product vs. functional requirements). This allows researchers to model existing 

evidence and practitioners to adapt the framework to estimate strategic scenarios under various 

conditions such as demand disruption. Therefore, managers and planners can test their intuition and 

ideas in more generalizable settings to identify robust product programs. In particular, the latter also 

supports system engineering and model-based engineering. Both are suitable strands for modeling 

complex systems such as product planning (Efatmaneshnik, Shoval, & Qiao, 2018; Eigner, Roubanov, 

& Zafirov, 2014; Madni, Boehm, Ghanem, Erwin, & Wheaton, 2018; Madni & Sievers, 2018; Negahban 

& Smith, 2014; Ramos et al., 2012), but have less common concepts and theory (Bertoni & Bertoni, 

2018; Schuh et al., 2017). Hence, the EAD provides a thorough framework for testing and specifying 

product programs in virtual (product) laboratories, thereby addressing several communities, questions, 

and practices. 

  



 

 

63 

5. Evaluating the cost effects at modular product architectures 

5.1 Introduction 

Prior research has concluded that product variety increases costs (Fisher et al., 1999; Kekre & 

Srinivasan, 1990). However, firms are compelled to provide this variety at low costs to stay competitive, 

where a product modularization is a promising approach for cost-effectiveness. Many studies have 

identified and confirmed its cost-saving effects (Farrell & Simpson, 2009; Fixson, 2006; Jacobs et al., 

2011; Jacobs et al., 2007; Kim & Chhajed, 2000; Marion et al., 2007; Pasche et al., 2011; Schuh, 1989; 

Siddique & Repphun, 2001; Wouters & Stadtherr, 2018; Xiong et al., 2018) as well as found that 

modularization reduces costs by keeping product variety high. Despite this effect, however, evidence 

also suggests that the cost-saving potential differs by business because of inconsistent information, 

overdesigning, innovation risks, module development costs, and the facilitation of copycat products 

(Baldwin & Henkel, 2015; Ethiraj & Levinthal, 2004; Halman, Hofer, & van Vuuren, 2003; Krishnan 

& Gupta, 2001). In addition, there has been less evidence about the cost-saving potential when applying 

modularization after Otto et al. (2016). Indeed, most of the cost-saving effects of modularization are 

rough estimations, intuition, or subjective opinions rather than confirmed knowledge. 

This section addresses this gap in knowledge in two ways. First, it exploits large-scale product 

program scenarios through numerical simulations, which provide a large sample for examining the cost 

effects when modularizing product architectures. Numerical explorations are conventional for testing 

existing intuitions and causal relations in broad settings (Balakrishnan & Penno, 2014). Specifically, the 

field of modularization frequently applies numerical studies (Ethiraj & Levinthal, 2004; Siddique & 

Repphun, 2001; Sosa et al., 2004; Van den Broeke et al., 2015; Watanabe & Ane, 2004; Xu & Jiao, 

2014) to identify under-discussed mechanisms from case studies and surveys. 

Second, the model incorporates the guidance of Otto et al. (2016) and Meyer and Lehnerd (1997) to 

evaluate different platform positioning strategies. Research has intensively considered the product 

architecture (Fixson, 2005, 2006; Mikkola, 2007; Mikkola & Gassmann, 2003), but not explicitly 

accounted for market dynamics despite recommendations to the contrary (Blocher et al., 2012; Kotler 

& Keller, 2015; Sanchez & Mahoney, 1996). Therefore, the experiments also integrate the market 

perspective through product demand. By using a numerical exploration, timing is less complication. The 

investigation of cost-saving effects needs time to emerge (see Section 3.2) or capacity reductions are not 

directly observable. Finally, this section assesses existing guidance on modularization strategies and 

how they impact cost savings among various product program conditions. 
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5.2 Documentation of M&S experiments 

All the experiments in this study followed a stringent documentation process to satisfy the 

requirements of academic rigor. There is rich guidance for maintaining academic rigor in M&S with 

respect to reproducibility, transparency, and generating communicable and trustable results (Barton, 

2013; Grimm et al., 2010; Hinkelmann & Kempthorne, 2012; Kleijnen, 2015; Lorscheid, Heine, & 

Meyer, 2012; Montgomery, 2000; Siebertz et al., 2010). The forthcoming sections and experiments 

follow five stages: (1) constructing a conceptual model (2) classifying the dependent and independent 

parameters using a systematic experimental design, (3) providing descriptive statistics as an anchor for 

assessing the behavior of input modeling, (4) documenting the analysis and data, and (5) offering a code 

including its comments. 

First, the conceptual model incorporates the mental model of the modeler, which is preferably 

aligned to the communities. Importantly, every peer needs to understand the concept to get to the heart 

of the assumptions and mechanisms. Many visual and textual approaches are used to build and 

communicate conceptual models. Some exemplify their models employing UML (Unified Modeling 

Language) diagrams (Bersini, 2012) and others use textual standard procedures such as the ODD 

(Overview, Design concepts, and Details) protocol for agent-based modeling of Grimm et al. (2010). 

Other valuable tools include assumption documents, as claimed by Law (2014a), and depicting the 

causal structure using Libby boxes (Libby, 1981; Libby et al., 2002) and structural equation models 

(Mertens et al., 2017). Ultimately, M&S aims to provide access to the model’s assumptions and 

simplifications to ensure its credibility (Mårtensson & Mårtensson, 2007). 

Second, computational models mainly examine the independent and dependent parameters to 

perform experiments. Here, a classical experimental design helps by providing substantial information 

about the experiment (Lorscheid et al., 2012; Montgomery, 2000; Siebertz et al., 2010). Third, the 

descriptive measurement of the simulation model behavior is often underestimated. Showing how inputs 

change the model in statistical measures may be more convincing because it parallels classical dataset 

analysis. Importantly, descriptive measures should also help non-peers acknowledge the impacts of 

input modeling on models’ behavior. Specifically, Edmonds and Moss (2005) claim that complex 

models require more descriptive insights, and Mertens et al. (2015) provide an example that primer 

inputs do not necessarily explain simulation outcomes. This thesis sees it likewise and thus aims for 

clarity between inputs and models’ behavior. 

Fourth, in terms of the analysis procedure and data, Thiele, Kurth, and Grimm (2014) make their 

analysis procedure available to allow reviewers and later other researchers to connect and offer an 

alternative analysis for substantiating evidence. Finally, disclosing the code with thorough code 

commenting aims for academic rigor and further usage in research. Several tools are available for 

publishing and correctly developing and documenting codes (i.e., GitHub and R Markdown). Overall, 

following the guidance in M&S, this thesis aims to become as credible as possible. 
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5.3 Model design concept 

5.3.1 Modeling modularization 

Before explaining the model used, this section formalizes the modularization process used in the 

experiments in accordance with the product architecture. In this thesis, modularization is the process of 

developing and building modules and platforms. Strong couplings between components and functions 

can be an indicator of efficiently developing shareable modules or platforms (Baldwin & Clark, 2000; 

Krause & Gebhardt, 2018). Therefore, this section demonstrates and firstly formalizes modularization 

from an existing product architecture. 

Figure 29 illustrates an existing product architecture (a) where modularization will merge 

functional-coupled components into a module or platform (b). One functional requirement FR1 can 

branches out to three subfunctions, FR11, FR12, and FR13. For example, this may be a heating 

performance of 50°C, 100°C, or 200°C, quality rating, or other tolerances. Instead of defining complex 

products for customers using the EAD (see Section 4.5), the modeling initially denotes three product 

variants consisting of four functional requirements. In sum, the figure reflects a simple product family 

decomposable by their existing product architecture. 

 

Figure 29: Formalizing modularization in the context of product architecture. The module M1 integrates 

CM13 and CM14 

Every FR in a product architecture can relate to many, few, or at least one component CM depending 

on the function-component scheme (Fixson, 2006). Sharing functions among components is not 

arbitrary; it rather emerges from the made decisions during product-based planning manifesting in a 

product architecture, known as modular, integral, and mixed characteristics (see Section 2.2.3). Recall 
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that strict pairs between one FR and one CM are modular, as indicated by one-to-one mapping. A one-

to-many mapping tends to be integral, suggesting that one FR is related to many CM. More realistic 

scenarios contain many degrees in this contingency known as mixed architectures. Figure 29 shows the 

possibilities as dashed gray lines, stressing the contingency between ideal modular and integral product 

architectures. 

Equation (12) expresses the product architecture as a design matrix in vector notation, which can be 

the shape of modular, mixed, and integral architectures. Modeling the product architecture parallels 

DMMs because there is a need to map two subsystems. Recall that the EAD sees DP and CM as a 

question of granularity, where sets of DPs result in CM. In the simplest case, every DP is one CM. Using 

this proposition, the design matrix AFR_DP of the EAD is likewise the product architecture AFR_CM. 

The design matrix AFR_CM models the number of functional couplings between FRs and CMs using 

the non-zero entries in equation (12) in accordance with the example. Having a non-zero matrix, where 

every function has one CM (modular architecture), indicates decoupled design (Suh, 2001). Continuing 

this progress by continuously filling the entries in the matrix will shift the design toward an integral 

architecture. The shifts increase integrality by enriching the couplings between FRs and CMs. When all 

entries are non-zero, there is ideal integrality, meaning that each function shares each CM. 

 

[𝑨 𝑹_𝑪𝑴]  [

𝐴11 𝐴12 𝐴13 𝐴14

𝐴21 𝐴22 𝐴23 𝐴24

𝐴31 𝐴32 𝐴33 𝐴34

] (12) 

The modularization process in Figure 29 combines two components (CM13, CM14) into one module 

M1, which binds the respective functions at one asset. The module accrues former FRs to ensure 

customer satisfaction. Because the module binds all the functions of the previous components, it is more 

expensive. Through the aggregation, it is necessary to adjust the subsequent design of AV and RC. This 

thesis uses the findings of Thyssen et al. (2006), who claim that the costs of a new module are “at least 

as costly as the costliest component”. For instance, integrating one cheap and one expensive component 

into a module reduces the probability that it costs less than the most expensive components before. 

Hence, the modularization will use the costliest requirements of AV and RC from the former production 

technology as a proxy to ensure the higher costs for the module by dropping the production lines of the 

less costly components. Finally, two components end up in one module with one production line and a 

respective set of resources. Overall, this section provides the modularization model used in the 

forthcoming numerical exploration.  

5.3.2 Conceptual model 

The conceptual model includes the product-based planning process with the EAD, which uses 

several parameters to generate a large set of scenarios. To detect the positive and negative cost effects 

of modularization, the model first generates an artificial product program consisting of an initial product 



 

 

67 

architecture without any modules or platforms. Second, the model uses the previously described 

modularization mechanisms that aggregate the components and adjust the production technology. 

Lastly, the modular product program has a new economic state, including new product variant costs. 

The difference between the reference and modular product program allows me to assess the impact of 

the modularization. To sum up, Figure 30 shows the events in one round.  

 

Figure 30: Conceptual walkthrough of one simulation run 

Figure 30 illustrates the routine for one simulation run that compares the costs of the initial and 

modular product programs. The routine of the model disseminates to three subroutines. First, the 

implemented modeling in the EAD can provide reference product programs without any modules or 

platforms. This approach is far from new; indeed, referencing or constructing benchmarks is common 

in many disciplines (Anand et al., 2017; Ethiraj & Levinthal, 2004). Israelsen and Jørgensen (2011) 

adopt a similar approach in a modularization context. The model uses the market segmentation grid (see 

Figure 19) as actual guidance for deciding on modularization strategies (Otto et al., 2016; Simpson et 

al., 2011). Thus, it has a specific product program referring to an existing market segmentation grid 

yielding the final product and firms’ costs. Second, the modularization adjusts the existing product 

architecture using the chosen modularization strategy (see Section 3.2.3). The selected strategy then 

switches the cost situation of the firm because modules will substitute components and their respective 

production lines. This manipulation affects the overall design of the existing product architecture as well 

as the previous process and resource commitments. The last level of the routine calculates the new costs 

after modularization under the same cost drivers to ensure a fair comparison. Assessing the cost 

difference shows the positive and negative cost-saving effects of the modularization. 

  

(1) 

Constructing a reference product 

program by means of the EAD

(3)

Examining cost differences 

at firm and product level  

Computing product costs

of the initial product program

(2)

Modularization

in accordance with the chosen strategy 

Computing product costs

of the adjusted product program
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5.3.3 Computational model 

“Benchmark” 

The computational model transforms the conceptual model into an executable program for 

performing numerical calculations. Starting with the initial product program, Figure 31 illustrates one 

principal design modeled by the formalism of the EAD. It starts with a product portfolio definition, 

including C customer segments [1 x Cs] that depend on the strategy referring to the market segmentation 

grid. Assuming a perfect product portfolio definition, three product variants P [1 x Ps] are sufficient for 

covering the market segment. This simplification is valid as long as there is a one-to-one mapping 

between CN and FR. Next, customers’ C(CN,q) demand for their product variants leads to the 

subsequent CM, AV, and RC. 

The demand q of each product variant P(FR,q) diffuses over the product architecture AFR_CM toward 

the required CM (FRq = AFR_CM CMq). The product architecture AFR_CM changes its fillings using 

PA_DENS. This factor regulates the sharing between FR and CM, indicating how many non-zero values 

will be in the matrix (see equation (12) for a simple example). This computation hence decides on the 

initial characterization of the product architecture (modular, mixed, and integral). Recall that this is 

assumed to be crucial for the forthcoming modularization (Fixson, 2005, 2006). 

 

Figure 31: Conceptual product program through the EAD 

Next, such demand prompts production technology to supply the necessary number of CM or 

module M. Typical examples of a component’s production technology range from the external 

procurement of materials or liquids to internal services such as material movements, engineering, and 
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maintenance activities. The computational product model randomly fills the design matrix with non-

zeros parameterized by the factor AV_DENS. This process is identical to those of previous numerical 

studies (Anand et al., 2019). Finally, every CM requires a specific set of AV, where an identity design 

matrix AAV_RC directly triggers the RC. 

The identity matrix of AAV_RC continues the demand pull from AV toward one RC. For example, 

having a process requirement of 5 hours (i.e., hardening or painting) determines a minimum input 

requirement of 5 hours at a single resource. This condition shows similar behavior to demand. Thus, 

demand q yields firms’ total resource consumption TRU multiplied by prices ρ to obtain RCC. At this 

point, the costs are retractable to the product variants in the full information setting, where the initial 

product program is expressed through product costs.  

“Modularization” 

Next, modularization integrates components CM into modules M by the functional couplings in the 

product architecture AFR_CM. Afterward, the model pools the corresponding processes AV and resources 

RC from the integrated components. The modularization has full information, which is a supporting 

assumption otherwise new issues would arise (Ethiraj & Levinthal, 2004). Thus, the product program is 

entirely observable through the design sets of all the design parameters CN, FR, DP, AV, and RC and 

design matrices AFR_CM, ACM_AV, and AAV_RC. 

The modularization follows the strategy of the market segmentation grid and the selected 

performance tier OD. Targeting the “High” performance tier (OD=3) with horizontal leveraging, the 

modularization seeks to develop modules solely in this grid. Therefore, it integrates all functional-related 

CM in the segments (Section 5.3.1). While this approach may not be efficient in practice, the model 

nevertheless provides cost savings under the given circumstances of the product program. Overall, the 

modularization depends on the chosen strategy of the market segmentation grid, chosen performance 

tier OD (“Low”=1, “Mid”=2, “High”=3), and conditions of the initial product program. 

Finally, computational modeling provides a laboratory for constructing product programs based on 

the theory connecting EAD. Manipulating the product program from the lab provides responses to any 

design adjustments in the program. The results can disentangle and initiate discussions on the underlying 

causal mechanisms (i.e., modularization and adjustments) (Balakrishnan & Penno, 2014). Overall, this 

thesis thus proposes a product program model that can analyze economic states during change. 

5.3.4 Simulation model protocol 

This section describes the parameters and their variation during the experimental exploration, which 

are applicable to the numerous reference scenarios of the product programs. Table 4 classifies the 

parameters of the experiments, many of which have previously been used. For example, cost accounting 

studies have used AV_DENS and RC_VAR (Anand et al., 2019). Analytical and conceptual studies such 

as Moorthy and Png (1992) and Krishnan and Gupta (2001) have used Q_VAR. On the contrary, other 
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factors are new, especially the density of the product architecture PA_DENS. The next paragraphs 

provide a detailed view of each parameter supported by the descriptive statistics in Table 5 that shed 

light on the behavior of the simulation model and relate the results to the empirical observations. 

Table 4: Parameter and factor classification of the modularization model 

Independent parameters Control parameters Dependent parameters 

Customer demand diversity  

[Q_VAR] [-2,-1,0,1,2] 

Number of customers 

[NUMB_C] 

Product (variant) cost difference 

[%] [ΔPC] 

Targeted tier for the module/platform 

[OD] [1,2,3] 

Number of customers’ needs 

[NUMB_CN] 

Production (variant) cost 

difference [%] [ΔPPC] 

AFR_DP density/product architecture 

[PA_DENS] [0.35,0.6,0.85] 

Number of functional requirements 

[NUMB_FR] 

Firms’ total cost difference [%] 

[ΔTC] 

ADP_AV density/production technology 

[AV_DENS] [0.35,0.6,0.85] 

Maximum level of FR 

[NUMB_FR_MAX]  

 

Resource cost dispersion 

[RC_VAR] [0.45,0.6,0.85] 

Number of resources RC 

[NUMB_RC]  

 

Unit-level process share 

[UNIT_SHARE] [0.3,0.5,0.7] 

Number of activities AV 

[NUMB_AV] 

 

Number of component 

[NUMB_CM] [3,6,9,12,15,18,24] 

Simulation repetitions 

[n] 

 

 Firms’ initial total costs 

[TC]  

 

 Total demand 

[TQ]  

 

Identity design matrices of ACN_FR=1; AAV_RC=1 

The first independent factor is Q_VAR that disseminates a total demand of TQ=100 to all customer 

segments. While having different performance tiers, as Figure 31 shows whether the “High” or “Low” 

customer segment has substantial demand differs. The simulation hence uses negative values (i.e., -2) 

to model “High” with the lowest demand (~6.2%). For positive values of Q_VAR (i.e., 2), “High” has 

the highest demand (~73%) in terms of TQ. Following previous studies, this thesis includes a measure 

called “market diversity” or “cannibalization” R (see Equation (13)). This measure has been used in 

analytical studies to explain the link from market diversity to demand (Krishnan & Gupta, 2001; 

Moorthy & Png, 1992). Equation (13) shows the calculation, where demand for “High” relates to that 

for “Low”. As a result, the market is diverse when having significant demand for “High” performance 

product variants in contrast to “Low” product variants in the same family. Ideally, the equation would 

use product value; nonetheless, based on previous analytical studies (Mussa & Rosen, 1978), costs can 

be linear to performance and utility, where costs are a valid proxy. As expected, the descriptive statistics 

in Table 5 demonstrate that Q_VAR drives market diversity to a large extent. 

The next factor OD embodies the design target in the performance tier, where OD=1 (“Low”) 

constructs modules in the “Low” performance segment, followed by OD=2 and OD=3 analogously. In 

the following example, each of the product variants has only one component. Building a module at the 

“Mid” level (OD=2) combines two components into a new module. Increasing the components in several 

𝑅   
𝑞𝐻

𝑞𝐿

 
𝑝𝑐𝐻 − 𝑝𝑐𝐿

𝑝𝑐𝐿
  (13) 
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tiers, modules, and platforms can become more extensive. This process logically continues with OD=2 

(“Mid”) and OD=3 (“High”) in the same manner. 

The factor PA_DENS defines the product (family) architecture that incorporates the probability of 

mappings between FR and CM. For instance, having a large PA_DENS (~0.8), functions have more 

linkages with more components, indicating integrality. Analogously, lower values (~0.2) imply fewer 

mappings and a more modular architecture (Hölttä-Otto & de Weck, 2007; Ulrich, 1995). This factor is 

therefore responsible for modeling integral, mixed, and modular product architectures.34 

AV_DENS regulates the sharing of processes and resources among components. This factor has been 

extracted from previous numerical studies in cost accounting (Balakrishnan et al., 2011) and has a 

tremendous impact on the diversity of production technology and resource consumption. For instance, 

having high AV_DENS (0.85), one component uses many processes (~17), somehow highlighting mass 

or simple production processing. Analogously. a low AV_DENS (0.35) leads to a job shop environment, 

namely having distributed workshops for specific products due to the lack of sharing among machines 

and processes (~7).  

RC_VAR determines the diversity of resource cost drivers following previous research 

(Balakrishnan et al., 2011). This factor regulates the dispersion between expensive and cheap resource 

costs in a production environment. For instance, RC_VAR (1.5) surrogates a diversified resource cost 

structure, meaning that few resources are costly and others remain low. Conversely, a low value of 0.5 

indicates the opposite and reflects a uniform cost distribution. 

The number of components CMs relies, on the one hand, on empirical studies (Hölttä-Otto & de 

Weck, 2007) and, on the other, on analytical ones (Moon & Simpson, 2014). Every component in the 

model is an entity that affects the production technology by a set of processes and resources. Larger 

modules can incorporate more scaling effects such as fixed cost degression because more components 

proportionally increase efficacy. 

There are more possible parameters; however, reducing numerical complexity is a severe challenge 

to computational efforts. Not controlling for dimensional parameters can result in an exponential growth 

in complexity, raising computational effort without knowing whether it enhances the value of the likely 

findings. Therefore, limiting parameters to the research problem is necessary. Accordingly, some 

parameters can reduce the hierarchical structures and dimensions of the domains (i.e., NUMB_FR_MAX 

and AVs), where identity designs decouple all the relations between domains (i.e., ACN_FR=1; AAV_RC=1). 

The costs are fixed for every initial product program at TC = 10,000€, where 30–50% are randomly 

chosen as non-unit costs (Anand et al., 2019; Balakrishnan et al., 2011). Cost structure theory is therefore 

traditional (i.e., including variable and fixed costs). Lastly, the dependent variables are relative measures 

of cost changes to assess the impact of the modularization. The first dependent parameter ΔPC concerns 

 
34 As there is the reasonable minimum requirement that each functional requirement has at least one component, an exception 

handler automatically correct it. As a result, the adjusted parameter of PA_DENS (i.e., 0.2) are not necessarily exact 20% of 

the total possible linkages.  
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each product variant. The measure consists of the difference between the product costs of the adjusted 

firm after modularization PCM and those of the reference PCB (ΔPC = (PCM – PCB)/PCB). A similar 

measure is ΔPPC, which uses only variable costs for the calculation to provide manufacturing cost 

information. The central measure of the experiments is ΔTC, which focuses on changes in firms’ total 

costs between the initial TC and after modularization TCM (ΔTC =(TCM – TC)/TC)). 

  



 

 

73 

  

T
ab

le
 5

: 
D

es
cr

ip
ti

v
e 

st
at

is
ti

cs
 a

b
o
u
t 

th
e 

b
en

ch
m

ar
k
 p

ro
d

u
ct

 p
ro

g
ra

m
s 

  
 

  
  

  
  

  
  

  
  

 A
v

er
a
g

e 
v
a

lu
es

 

C
u

st
o

m
er

 d
em

an
d

 d
iv

er
si

ty
 

(Q
_

V
A

R
)  

U
n

it
 

G
lo

b
al

 

A
v

er
ag

e 

L
o

w
 d

em
an

d
 f

o
r 

“H
ig

h
” 

p
ro

d
u

ct
 v

ar
ia

n
t 

(Q
_

V
A

R
 =

 -
2

) 
(Q

_
V

A
R

 =
 -

1
) 

E
q

u
al

 d
em

an
d

 b
et

w
ee

n
  

al
l 

p
ro

d
u

ct
 v

ar
ia

n
ts

 

 (
Q

_
V

A
R

 =
0

) 
(Q

_
V

A
R

 =
 1

) 

L
ar

g
e 

d
em

an
d
 f

o
r 

“H
ig

h
” 

p
ro

d
u

ct
 v

ar
ia

n
t 

(Q
_

V
A

R
 =

 2
) 

R
el

at
iv

e 
p

er
ce

n
ta

g
e 

o
f 

th
e 

“H
ig

h
” 

 

p
ro

d
u

ct
 d

em
an

d
 

[%
] 

3
7

.1
7
 

6
.2

2
 

1
3

.4
2
 

3
3

.3
3
 

5
9

.2
0
 

7
3

.6
4
 

M
ar

k
et

 d
iv

er
si

ty
 o

f 
 

M
o

o
rt

h
y
 a

n
d
 P

n
g

 (
1

9
9

2
) 

#
 

7
4

1
.6

5
 

3
5

.9
5
 

5
3

.5
0
 

1
2

3
.0

6
 

6
5

5
.1

5
 

2
,8

4
0
 

R
el

at
iv

e 
p

er
ce

n
ta

g
e 

o
f 

th
e 

co
st

s 
o
f 

th
e 

“H
ig

h
” 

p
ro

d
u

ct
  

[%
] 

4
3

.0
0
 

2
4

.8
0
 

2
9

.9
3
 

4
2

.1
9
 

5
5

.5
1
 

6
2

.7
6
 

D
en

si
ty

 o
f 

th
e 

p
ro

d
u

ct
 f

am
il

y
 

ar
ch

it
ec

tu
re

 (
P
A

_
D

E
N

S
) 

 
G

lo
b

al
 

A
v

er
ag

e 

M
o

d
u

la
r 

ar
ch

it
ec

tu
re

 

(P
A

_
D

E
N

S
 =

 0
.3

5
) 

M
ix

ed
 a

rc
h
it

ec
tu

re
 

(P
A

_
D

E
N

S
 =

 0
.6

) 

In
te

g
ra

l 
ar

ch
it

ec
tu

re
 

(P
A

_
D

E
N

S
 =

 0
.8

5
) 

P
er

ce
n

ta
g

e 
o

f 
ze

ro
 e

n
tr

ie
s 

in
 t

h
e 

p
ro

d
u

ct
 a

rc
h

it
ec

tu
re

 
[%

] 
4

3
.5

1
 

3
7

.4
0
 

4
3

.5
0
 

4
9

.6
2
 

P
er

ce
n

ta
g

e 
o

f 
co

st
s 

in
 t

h
e 

“H
ig

h
” 

p
ro

d
u

ct
 

[%
] 

4
3

.3
 

3
8

.8
8
 

4
3

.3
3
 

4
7

.5
8
 

D
en

si
ty

 o
f 

th
e 

p
ro

ce
ss

 

co
n

su
m

p
ti

o
n
 (

A
V

_
D

E
N

S
) 

 
G

lo
b

al
 

A
v

er
ag

e 

L
it

tl
e 

sh
ar

in
g

 o
f 

re
so

u
rc

es
 

(A
V

_
D

E
N

S
 =

 0
.3

5
) 

M
ed

iu
m

 s
h

ar
in

g
 o

f 
re

so
u

rc
es

 

(A
V

_
D

E
N

S
 =

 0
.6

) 

H
ig

h
 s

h
ar

in
g
 o

f 
re

so
u

rc
es

 

(A
V

_
D

E
N

S
 =

 0
.8

5
) 

P
er

ce
n

ta
g

e 
o

f 
ze

ro
 e

n
tr

ie
s 

in
 t

h
e 

co
n

su
m

p
ti

o
n
 m

at
ri

x
 

[%
] 

4
0

.8
1
 

6
2

.5
8
 

4
1

.5
5
 

1
8

.3
1
 

A
v

er
ag

e 
p

ro
ce

ss
 u

sa
g

e 
o

f 
ac

ti
v

it
ie

s 

o
f 

th
e 

co
m

p
o
n

en
t 

(m
ax

.=
2

0
) 

#
 

11
.8

3
 

7
.4

8
 

1
1

.6
8
 

1
6

.3
4
 

A
v

er
ag

e 
ra

n
g

e 
o

f 
p

ro
ce

ss
 

co
n

su
m

p
ti

o
n
 a

cr
o

ss
 p

ro
d
u

ct
s 

[%
] 

6
6

.9
0
 

8
0

.6
8
 

6
5

.7
2
 

5
3

.7
0
 

N
u

m
b

er
 o

f 
co

m
p

o
n

en
ts

 (
C

M
) 

 
G

lo
b

al
 

A
v

er
ag

e 

A
n

al
y

ti
ca

l 
co

m
p
o

n
en

t 
se

tt
in

g
 

(N
U

M
B

_
C

M
 =

 3
) 

M
o

d
er

at
e 

co
m

p
o

n
en

ts
 

(N
U

M
B

_
C

M
 =

 6
) 

M
an

y
 c

o
m

p
o
n

en
ts

 

(N
U

M
B

_
C

M
 =

 9
) 

R
el

at
iv

e 
p

er
ce

n
ta

g
e 

o
f 

th
e 

co
st

s 
o
f 

th
e 

“H
ig

h
” 

p
ro

d
u

ct
 

[%
] 

4
3

.3
0
 

4
8

.6
3
 

4
1

.1
0
 

3
9

.2
9
 

C
o

st
 s

h
ar

e 
o

f 
th

e 
2

0
%

 c
o

st
li

es
t 

co
m

p
o

n
en

ts
 c

o
m

p
ar

ed
 w

it
h

 t
h

e 

to
ta

l 
in

it
ia

l 
co

st
s 

(d
es

cr
ip

ti
v

e 
v

al
u

e 
C

O
S
T

H
IG

H
) 

[%
] 

5
4

.3
1
 

5
8

.6
6
 

5
9

.0
6
 

4
5

.2
0
 

1
 n

=
1
2
1

,5
0
0
 

2
 T

h
e 

v
al

u
e 

C
O

S
T

H
IG

H
 i

s 
u

se
d

 l
at

er
 t

o
 m

ea
su

re
 t

h
e 

d
is

p
er

si
o
n

 a
m

o
n
g

 t
h
e 

co
m

p
o
n

en
t 

co
st

s 



 

 

74 

5.4 Investigating the cost effects of modularization 

5.4.1 Examining the cost effects of vertical leveraging 

The first experiment concerns the investigation of the cost effects of vertical leveraging without 

parametric scaling. The first experiment is limited to upscales in terms of platforms and modules to 

examine the overdesign costs at a lower performance tier when designing modules or platforms for 

higher performance tiers. Figure 32 illustrates the market segmentation grid presented by Meyer and 

Lehnerd (1997) with the implemented strategy of vertical leveraging. Importantly, the experiment 

accounts for vertical leveraging in its ‘true’ meaning, whereby the same platform or component is used 

among different performance tiers. This prevents the ability to scale, where overdesigns are obligatory 

(Kipp, 2012; Krause & Gebhardt, 2018). Hence, the first experiment uses one market segment and 

applies modularization at each performance tier through including overdesign OD. Table 6 explicates 

the experimental design further.  

Before discussing results, the next paragraph disentangles the difference between vertical scaling 

and leveraging. Meyer and Lehnerd (1997) primarily defined “vertical platform scaling” (see Section 

3.2.3) as a strategy to adjust functionalities of existent platforms from “High” (“Low”) to “Low” 

(“High”) performance tiers through adjusting size, weight, length or functionalities. Interestingly, 

current research do not use “vertical scaling” but rather “vertical leveraging” (Hölttä-Otto, 2005; Otto 

et al., 2016; Ramdas, 2003; Siddique & Repphun, 2001; Simpson, 2004; Simpson et al., 2011; Simpson, 

Maier, & Mistree, 2001) and continuously cite Meyer and Lehnerd (1997) even though they have not 

proposed this strategy.  

While scaling involves design changes through more components, leveraging does not allow 

adjustments and lead to overdesign. It may be hair-splitting to mention an artifact in wording but 

leveraging and scaling platforms or components are different design activities concerning Meyer and 

Lehnerd (1997). Both leveraging and scaling will cover for more than one segment or performance tier, 

however, their underlying design implications are distinct. While scaling allows for unlimited design 

adjustments and firms only leverage their knowledge to develop specific platforms faster and more cost-

efficient (Meyer & Lehnerd, 1997, pp. 58-60), leveraging means that the identical platform or 

component is used for several segments or tiers. Specifically, ‘physically’ vertical leveraging underlies 

the effect of overdesign whereas scaling does not. In sum, this thesis concludes a distinctiveness between 

leveraging and scaling between performance tiers . 
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Figure 32: Vertical leveraging with overdesign 

Table 6: Experimental design – Vertical leveraging experiment 

Independent parameters Control parameters Dependent parameters 

OD [Low, Mid, High] Processes  20 Product (variant) cost difference 

[%] [ΔPC] Q_VAR [-2,-1,0,1,2] Resources 20 

AV_DENS [0.35,0.5,0.85] Products/Customers  3 Production (variant) cost difference 

[%] [ΔPPC] PA_DENS [0,0.2,0.4,0.6,0.8,1] Repetitions 50 

UNIT_SHARE [0.3,0.5,0.7] Initial total costs 10^4 Firms’ total cost difference  

[%] [ΔTC] RC_VAR [0.5,RND,2] Total demand in the segment 100 

NUMB_CM [3]    

n= 40,500 (5 ‧ 3 ‧ 6 ‧ 3 ‧ 3 ‧ 50)  

Equation (14) demonstrates a constrained product architecture for satisfying the condition of 

increasing performance, costs, and quality in the tiers (the association has been considered in Section 

2.2). Using a full matrix – as explained in the formalization – allows for mixed designs, meaning that 

FR13 can have higher or lower costs than FR11. The experiment needs to prevent those conditions by 

setting zeros in the upper triangle of the product architecture AFR_CM. Describing the design matrix 

further, A11 is a one-to-one mapping between the subfunction FR11 and component CM1, where function 

FR12 has two CM, advocating a mixed architecture. Importantly, it also contains CM1, where FR12 is 

based on the previous function but extends it somehow. FR13 is connected to all CM and reflects a more 

integral function. Thus, each FR accumulates CM and the corresponding costs. The increase of costs by 

quality and performance in a common analytical assumption (Section 2.2.2), where the experiment uses 

the constrained triangular product architecture to satisfy.35 

Both panels of Figure 33 report that vertical leveraging is less cost-effective for firms because cost 

increases are more likely. At Q_VAR=-2, there is less demand (i.e., 6 units from 100), where Q_VAR=2 

indicates larger demand for the “High” product variant (i.e., 73 units from 100). At negative levels of 

 
35 This thesis tested several types of constrained product architectures including full and several partial matrix designs. 

Interestingly, there was less difference than expected but the proposed scenario may be the most intuitive. 

‚High‘ Performance 

Customer segments 

‚Mid‘ Performance

Customer segments
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Customer segments

Vertical leveraging

Overdesign
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Scale-up
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Q_VAR, the platform strategies “High” (OD=3) and “Mid” (OD=2) increase firms’ total costs 

enormously on average (~750%, ~180%). This is intuitive as both strategies overdesign the large 

demanded “Low” and “Mid” product variant. By contrast, the “Low” platform shows no savings because 

there is no modularization owing to the analytical number of components (NUMB_CM=3). Interestingly, 

the total cost increase behaves exponentially, where OD=3 may increase due to doubled overdesign 

effects at the “Low” and “Mid” product variants. Hence, the cost-saving effects when overdesigning are 

not straightforward, in line with Krishnan and Gupta (2001). 

 

Figure 33: Total cost effects of vertical leveraging under varying demand;  

Panel A (left): Estimated mean plot; Panel B (right): Boxplots 

The right panel of Figure 33 indicates the profitable areas of vertical leveraging, particularly when 

facing large demand at the respective performance tier. The greater demand for the “High” product 

variant, the greater the potential for cost savings for the firm, as the modularization develops a large 

platform leveraging a standardization that can profit significantly from economies of scale. Interestingly, 

the total costs decrease does not strictly corroborate previous findings (Krishnan & Gupta, 2001). Thus, 

rising demand for the chosen segments for modularization favors the cost-saving effects because 

overdesign costs of other segments are reduced.36 

Concerning the product architecture in Figure 34, integrality proposes cost-saving and cost-

increasing effects. Recall that PA_DENS=0 means a perfect modular architecture, where PA_DENS=1 

is perfect integral. The boxplot panel highlights that large integrality has significant variance in terms 

of total cost decreases and increases. Increasing integrality may incur overdesign costs as well as cost-

saving effects through economies of scale. This ambivalent behavior may be an interaction effect when 

demand is high. Further, the cost-saving effects of PA_DENS are not fully explainable, suggesting that 

the vertical leveraging of integral product architectures offers opportunities and risks. 

 
36 Figure 33 also documents the ‘low’ performance segment but it is entirely at zero. This comes as no surprise, because the 

experiment is restricted to three components (NUMB_CM=3). 
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Figure 34: Total cost effects of vertical leveraging under the density of the product architecture;  

Panel A (left): Estimated mean plot; Panel B (right): Boxplots 

Before disentangling the drivers behind the cost savings of PA_DENS, Figure 35 shows the product 

perspective of the product and production variant costs in the considered market grid. The first row 

depicts the full product costs and the lower row only production costs. These rows have qualitative 

differences. The vertical leveraging of the “High” performance tier (OD=3) at Q_VAR=-2 reduces 

“High” product variant costs (~17%). This observation explains a transition from existing economies of 

scale from the “Mid” and “Low” at the “High” product variant. However, this advantage comes in 

exchange for the increasing costs for the “Low” and “Mid” variants. Hence, overdesigning costs affect 

the whole product family, which are responsible for firms’ total cost increase.  

 

Figure 35: Estimated mean plots of the product cost when applying vertical leveraging 

Another finding from Figure 35 is that the variants have economies of scale in terms of lower 

production costs. At OD=3 the “High” product receives production variant cost reductions of ~5% on 

average, where “Mid” and “Low” have increases of ~10% on average. This suggests that vertical 
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leveraging leads to larger cost increases; nonetheless, this could be a false conclusion because total costs 

are not anticipatable from single product cost information. As a result, this thesis stresses that estimating 

the cost-saving effects of modularization is affected by the whole product family design. 

Lastly, Figure 35 underlines the importance of market expectations for long-term forecasts. As 

stated, single product cost information cannot estimate general cost consequences. Nevertheless, 

combining estimated product cost savings with market expectations may be worthwhile for estimating 

cost reductions. Hence, demand expectations and uncertainties are crucial for planning modularizations 

and introducing the unexplored potential of cost savings. 

To sum up, vertical leveraging without parametric scaling was the foundation of the experiment 

because it provides the opportunity to examine overdesigning through modularization. The numerical 

results – likely overcoming single cases – show the following remarkable pattern: vertical leveraging 

best suits the chosen modularized performance tier in terms of costs, related cost effects are primarily 

beyond manufacturing costs as well as demand expectation are decisive. Similarly, integral product 

architecture is seemingly ambivalent and depends on more parameters. Overall, vertical leveraging thus 

encourages the sharing of economies of scale at the product level, where market expectations may be 

decisive for profitability. 

5.4.2 Cost drivers of vertical leveraging 

The regression analysis in Table 7 shows the underlying drivers of the previous results. Using an 

ordinary least squares regression as a metamodel can substantiate or clarify the simulation model 

behavior (Mertens et al., 2015). The resulting statistical model may offer more detailed explanations 

through effect sizes and interactions, supporting the clarity of the underlying mechanisms of vertical 

leveraging. In doing so, metamodels become vital for qualitative interpretations, and this thesis applies 

statistical measures such as standardized regression coefficients (B), effect size in a linear model (η²), 

and F-values (F). 

Consider Table 7, where Q_VAR increases total costs at larger output quantities (B=-0.54, η²=0.07, 

F-value=3,354). This observation indicates that a large number of outputs at the “Low” performance tier 

(Q_VAR=-2) decreases total costs, whereas at “High” (Q_VAR=2) total increases. This effect is 

intuitive, because “High” product variants are more expensive, but it also substantiates the intended 

simulation model behavior.  

COSTHIGH reflects the initial cost share of the “High” product variant, indicating the extent to 

which component costs are skewed in the reference product program. The regression model indicates a 

cost-saving effect (B=-0.39, η²=0.01, F-value=852). This is interesting because it contrast previous 

simulation and empirical observations of (Park & Simpson, 2005); Park and Simpson (2008); Thyssen 

et al. (2006), who state that similar unit-level costs among unique components are a more profitable 

scenario for modularization. The reported experiment has an opposite effect that may refer to the missing 
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differentiation between unit- and non-unit-level costs or to vertical leveraging. In this line, larger 

dispersions of component costs may be associated with more considerable savings of non-unit-level 

costs because expensive components can have high costs at low quantity (Cooper & Kaplan, 1987). 

Hence, skewed components’ unit costs are assumed to be relevant indicators in selecting components 

for compositing modules when overdesigning. 

Table 7: Regression results of the vertical leveraging experiment 

TOTAL COST DIFFERENCE [%] 

 B η² 
F- 

Value 

Q_VAR 0.54 0.07 3,354 

OD -0.23 0.07 2,590 

COSTHIGH -0.39 0.01 852 

PA_DENS -0.32 0.06 1,888 

AV_DENS 0.06 0.01 430 

Q_VAR x OD -0.29 0.07 3,172 

Q_VAR x PA_DENS -1 -1 -1 

OD x COSTHIGH 0.00 0.01 801 

OD x PA_DENS 0.89 0.04 1,695 

OD x AV_DENS -0.42 0.01 370 

PA_DENS x AV_DENS -1.50 0.01 287 

n 39,007 

Adj. R² 0.33 

Multicollinearity VIF Controlled≤1 in the main effects.  

The model and its coefficients are significant p<0.05 
B = Standardized Regression Coefficients, η² = Effect sizes F = F-value from an ANOVA model Type III; 

Less intense interaction effects in terms of η²<0.01 are excluded. 

Outliners are eliminated at a threshold >300% (n=40,500 -> n=39,007). This facilitates the normal distribution of the dependent variable for 
estimating the main effects.  
1 The interaction effect is overestimated (-6.45≤-1) regarding multicollinearity issues. 

 

PA_DENS reduces firms’ total costs (B=-0.32, η²=0.06, F-value=1,888) and suggests that the 

integrality of the product architecture has a cost-saving effect when applying vertical leveraging. Full 

integrality ideally means that every component shares and has a link to every function (i.e., sometimes 

referred to as a bus) (Hölttä-Otto & de Weck, 2007; Ulrich, 1995) and the other way around. This should 

prevent overdesign costs to a large extent. Thus, the main effects may explain the unexplained cost 

savings of Figure 34. Consequently, this thesis concludes that integral product architectures naturally 

induce a high probability of cost-effectiveness. 

A related strong interaction is OD x PA_DENS (B=0.89, η²=0.04, F-value= 1,695) that demonstrates 

a cost-increasing effect for overdesign. Overdesigning is most likely to lead to cost increases, 

specifically for lower performance variants. Explaining the interaction in detail means that larger 

overdesigning in integral product architectures is positively associated with total cost increases. 

However, acknowledging interaction effects with demand, overdesign can change the outcome to 

positive effects, too. Consider the interaction Q_VAR x OD (B=-0.29, η²=0.07, F-value= 3,172), which 

leads to the assumption that larger demand and overdesign reduce firms’ total costs. In addition, Q_VAR 
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x PA_DENS (η²=0.04, F-value=2,293) is another supportive cost-saving effect. To sum up, “High” 

product variants under high integrality and high demand, overdesign will save costs. 

 

Figure 36: Demonstrating the interaction of PA_DENS and Q_VAR 

Illustrating overestimated regression coefficients in the data reveals their nature. Figure 36 

demonstrates that large integrality – designed as PA_DENS=1 – has a positive (negative) cost-saving 

effect at high (low) demand at the high performance tier. These results explain the boxplots of Figure 

34 in greater detail and crystalize that high demand at the “High” performance variant (Q_VAR=2) will 

guarantee cost savings. Large demand (Q_VAR=-2) at the “Low” tier, contrarily, does the opposite 

probably because any overdesign will lead to higher costs for that variant. 

5.4.3 Examining the cost effects of horizontal leveraging 

The next experiment reports the cost effects when developing modules over market segments at three 

performance tiers, called as horizontal leveraging. The experiment departs from the previous one 

because it modularizes components in-between and between product families. Otto et al. (2016) see this 

strategy as comparable to swappable modules, where Figure 37 depicts the selected strategy concerning 

the market segmentation grid. This time, the grid comprises three market segments with three product 

families. This results in nine customer segments and product variants. The experimental design in Table 

25 lists the used factors, which are comparable to the previous experiment. 
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Figure 37: Horizontal leveraging 

Figure 38 shows that realized demand Q_VAR has less impact on modularizations for horizontal 

leveraging. This result may sound counterintuitive but is explainable through the experimental design. 

In the experiment, the performance tiers share similar demand levels over product families because 

Q_VAR still disseminates demand across the performance tiers. Thus, there are no substantial demand 

differences at a horizontal performance tier. This condition controls for interactions in demand. Hence, 

there must be a substantial demand difference between components before modules can disseminate 

economies of scale. 

 

Figure 38: Total cost effects of module building along Q_VAR  

It is striking from Figure 39 (both panels) that the density of the product architectures PA_DENS 

has a non-linear cost-saving effect. As stated earlier, questions remain about the cost effects when 

applying modularization. Evidence of the relation between product architectures and costs is 

inconclusive and rarely discussed quantitatively. The data of the experiment show that modularizing 

from a more modular product architecture tends to increase firms’ total costs. Increasing integrality 

continuously alters the setting to a cost-saving scenario, but not linear. A potential explanation may be 

that modular architectures have more function-specific than function-sharing components. When then 

applying modularization, there is a higher probability of integrating function-specific components into 
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a module or platform. Therefore, the contingency between modular and integral product architectures 

has a non-linear cost-saving effect when modularizing. 

 

Figure 39: Total cost effects of module building;  

Panel A (left): Estimated mean plot; Panel B (right): Boxplots 

Disentangling the cost-saving effect of the product architecture further, Figure 40 highlights the 

importance of the number of components (NUMB_CM) and components’ cost dispersion (COSTHIGH). 

The left panel of Figure 40 shows the potential cost savings when modules and platforms integrate more 

components. As a result, the cost-saving effect is proportional to the integrated components of a module 

or platform. The right panel shows the impact of a skewed cost dispersion among components that tends 

to weaken the cost-saving effects. This time, the data extends the result of Thyssen et al. (2006) because 

the horizontal leveraging is seemingly more profitable when costs, including product-sustaining and 

batch-level costs, have fewer differences. 
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Figure 40: Total cost effects of module building considering the costs of components 

Panel A (left): Box plot NUMB_CM; Panel B (right): Box plot COSTHIGH 

Overall, applying horizontal leveraging as part of the modularization strategy often has large cost-

saving potential. One remarkable result is that the integrality of a product architecture is a measurable 

driver for estimating cost savings when modularizing. The experiment demonstrates that product 

architectures’ contingency between initial modularity and integrality has non-linear cost behavior. The 

more modular a product architecture, the more likely are function-specific components. Using function-

specific components for modules generally increases the probability of unintended overdesign costs. 

Specifically, components with some function sharing tend to increase costs. This pattern highlights that 

large functional-sharing components have higher opportunities for cost savings when integrating them 

into modules or platforms. Another observation concerns the number of components, which is likely to 

emphasize the cost-saving effects from reducing the existing production technology. 

5.4.4 Cost drivers of horizontal leveraging 

As the last step in the horizontal leveraging experiment, a metamodel supports the evaluation of the 

driving effects using a statistical regression model. Table 8 shows an R² of 0.59, which indicates 

plausible prediction capabilities in using an almost linear model, where only one interaction effect is 

significant. As the data demonstrate, there are fewer areas for cost increases than decreases, where 

PA_DENS is the most potent cost driver for cost savings (B=-0.68, η²=0.51, F-value=1,888), as in Figure 

39 and Figure 40. Hence, this thesis can statistically substantiate that the characteristics of a product 

architecture are decisive for anticipating the potential cost effects under modularization. 

Surprisingly, AV_DENS (B=-0.28, η²=0.17, F-value=430) has a critical cost-reducing effect, too. 

This was unexpected because modularization is known to reduce complexity or especially supports 

complexity management (Lai & Gershenson, 2007). The regression model instead highlights that when 
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the production technology has less diversity (i.e., more sharing of resources as in mass production), 

more substantial cost savings are possible. Thus, this thesis suggests that module building is more cost-

efficient under both less complexity and more (process) commonality.  

COSTHIGH has the opposite effect to the experiment before (B=0.08, η²=0.02, F-value=852). 

Again, Thyssen et al. (2006) claim that skewed unique components yield more expensive modules and 

probably higher costs in total. Thus, this thesis could add evidence to the empirical finding that skewed 

component costs can increase total costs through more costly modules. 

Table 8: Regression results of the module experiment 

 
TOTAL COST DIFFERENCE [%] 

 B η² 
F- 

Value 

Q_VAR 0.00  3,354 

COSTHIGH 0.08 0.02 852 

PA_DENS -0.68 0.51 1,888 

AV_DENS -0.28 0.17 430 

UNIT_SHARE 0.01  26 

COSTHIGH x AV_DENS -0.04 0.01 128 

n 121,4991 

R²-adj 0.59 

Multicollinearity VIF Controlled≤1 

The model and all shown effects are significant p<0.05 

B = Standardized regression coefficients, η² = Effect sizes F = F-value from an ANOVA model Type III; 

Less intense interaction effects in terms of η²<0.01 are excluded. 
1One observation was corrupted regarding the factor building of COSTHIGH 

Q_VAR and UNIT_SHARE have no effects to consider in the regression model. Surprisingly, there 

is only one significant interaction effect, namely COSTHIGH x AV_DENS. This suggests that the 

skewness in the component costs is less cost increasing in a less diverse production environment. This 

may be plausible because the new platforms or modules may already benefit from sharing existing 

resources. Overall, this thesis concludes that less diverse production environments that have high 

resource sharing are more profitable scenarios for modularization. 

5.5 Contribution 

Extending product programs using new product variants increases sales but does not necessarily 

increase profit because the associated variety comes with higher costs (Kekre & Srinivasan, 1990). To 

prevent this creeping progress, modularization may be a fruitful approach for achieving cost-

effectiveness (Wouters & Morales, 2014; Wouters et al., 2016; Wouters & Stadtherr, 2018). 

Unfortunately, generalizable guidance for anticipating potential profitability when modularizing product 

architectures is lacking (Fixson, 2005, 2006; Park & Simpson, 2005; Park & Simpson, 2008; Thyssen 

et al., 2006). This thesis overcomes this limitation through a deductive model-based engineering analysis 

of modularization by employing the EAD. This model uses M&S to examine the cost-saving effects 
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among various product program conditions from customers to resources. In doing so, this section 

describes four contributions. 

First, this thesis disentangles the mechanisms of vertical and horizontal leveraging during 

modularization and offers new practical insights and guidance. Considering vertical levels, it suggests a 

precise differentiation between vertical scaling and leveraging. While scaling allows unrestricted 

adjustments over the performance tiers in terms of size, weight, quality, and components, this thesis 

argues that leveraging prevents this possibility. As a result, vertical leveraging will overdesign modules 

while overspecifying product variants at the lower performance tiers.  

Second, the thesis identifies a non-linear cost-saving effect of horizontal leveraging when product 

architectures’ integrality increases. This thesis agrees with previous research (Fixson, 2005, 2006; Park 

& Simpson, 2008) that integral product architectures have larger function-sharing components. 

However, there has been no clear evidence of how the product architecture affects costs on average. 

This thesis finds the unexpected effect that composing components with less function-sharing to 

modules and platforms tend to increase firms’ costs. This effect only diminishes when using large 

function-sharing components. To explain this phenomenon, this thesis suggests that unintended 

overdesign costs frequently appear when using less function-sharing components in constructing 

modules. These kinds of components increases the probability that modules contain unnecessary 

functionalities for several variants. This mechanism diminishes at higher levels of integrality. Overall, 

this thesis recommends first to composite high function-sharing components into modules and platforms 

to achieve the highest cost savings and second that integral product architectures are particularly 

worthwhile for modularizations.  

Third, this thesis shows that the cost-saving effects of modularization take place at the firm level 

rather than at the product level. Although the results document that single product variants frequently 

increase in costs, it does not affect total cost-savings of firms. While the responsibility for costs mainly 

falls to departments, teams or projects (Horngren et al., 2014), clear tracing of cost-savings from 

modularization may be hampered. This ambiguity hampers empirical observations of cost savings, 

particularly when considering non-unit costs such as fixed salaries, annual machine depreciation, or 

releasing capacities. 

Lastly, this thesis demonstrates that less complexity in the production technology increases the 

potential for cost-saving. This thesis finds that less complexity (e.g., process commonality) provides 

higher cost-saving potentials referring to easier sharing of resources. Although modularization is 

seemingly a tool to manage complexity (Ehrlenspiel et al., 2014; Guenov, 2002; MacDuffie et al., 1996; 

Mikkola, 2007; Mikkola & Gassmann, 2003), it does not guarantee cost-saving potentials. This is 

probably due to that less complexity in the production is associated with larger sharing of processes that 

probably lower the efforts in changes when modularizing.  
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6. Simple and complex product costing 

6.1 Introduction 

This section has three parts. The first part [1] evaluates the accuracy of simple volume-based (i.e., 

predominantly single cost driver) costing systems in varying production environments and compares 

them with more complex ones. The next section [2] is devoted to the horserace of simpler TVC and 

more complex ABC systems under distinct cost structure theories. Finally [3], this thesis considers a 

systematical increase in the direct costs of costing systems and examines how this impacts the accuracy 

of cost information. This experiment allows me to forecast how information technology may affect the 

issue of classical cost allocation. 

First, the choice of cost system design is crucial for the quality of cost information but is still not 

fully disentangled. Empirical studies have not conclusively found evidence of when and how a specific 

cost design is more efficient than another. Further, some firms have improved their performance using 

ABC systems, whereas others have not (Cagwin & Bouwman, 2002; Kennedy & Affleck‐Graves, 2001). 

Although ABC advocates claim that such systems have superior accuracy, this instrument lacks 

diffusion across all industries (Gosselin, 2006; Jones & Dugdale, 2002). Therefore, many cost system 

designs are still rather simple (Al-Omiri & Drury, 2007; Drury & Tayles, 2005; Schoute, 2009). 

Unfortunately, investigations and guidance for simple costing are limited, perhaps because TVC systems 

are similar to ABC ones. To investigate this implicit knowledge, the first subsection evaluates and 

compares simple TVC systems. 

The second part of this section concerns the horserace between simple TVC and complex ABC 

systems under distinct cost structure theory. Complex costing systems are particularly relevant under 

high batch- and product-level costs (Abernethy et al., 2001; Schoute, 2011). Specifically, ABC systems 

address the relation between batch- and product-level activity measures and their resource consumption 

(Cooper & Kaplan, 1987, 1998b; Ittner et al., 1997). This logically implies if fewer cost structures exist 

in an environment, ABC does not necessarily account for the trade-off between implementation effort 

and accuracy. Thus, this thesis progresses a horserace between both costing systems under an ABC 

hierarchy and a traditional variable and fixed cost structure. 

The last section examines the development of growing information technologies and better 

trackability of resource consumption. New information technologies are mitigating the impact of 

transaction costs (Williamson, 1979, 1981) and this should support the collection resource consumption 

and drivers within the firm. For instance, enterprise resource planning systems now provide more 

abundant information about production environments than before. This increased transparency also 

automatizes previous transactional activities such as human data maintenance. The transparency hence 

sheds new light on the differentiation of indirect and direct costs because they are not predetermined. 
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Concerning actual guidance (Cooper, 1989; Horngren et al., 2014), simple TVC systems should perform 

better when there is a large proportion of direct costs. Thus, the last experiments investigate the effects 

of increasing direct costs on accuracy. 

6.2 Model design concept 

6.2.1 Conceptual model 

Studies of cost system design performance have typically used analytical and numerical analysis 

(Christensen & Demski, 2003; Labro, 2019). This section is no exception. It uses numerical experiments 

to manipulate the product technology and cost system designs (see Section 4.5.5). Before presenting the 

results, the model design concept reviews the model applied. Later, this thesis introduces and explain 

the conceptual and computational models, followed by a detailed simulation model protocol about the 

operationalizations that aim to strengthen the credibility of all the outcomes and foster critical 

discussions. 

The progress of the model in Figure 41 illustrates the events along the conceptual model. (1) 

Initially, realized demand q pulls the production technology. This leads to the necessary outputs of the 

processes (AV) that consume a certain set of resources (RC) for producing the demanded products. 

Because every consumption level has its price, the production technology causes costs. Next (2), 

aggregating each resource cost along the resource measures results in total resource costs (RCC). 

Summing along a product computes the benchmark product costs (PCB). 

 

Figure 41: Conceptual walkthrough of one simulation run 

Real-world costing systems lack full information and therefore produce approximations of product 

costs (3). Investigations of cost system design choices start by building cost pools in accordance with 

specific rules (CPH). Then, every cost pool is categorized to a selected cost driver to allocate the costs 

to the products (CDH). While it is nearly infeasible to guarantee a full and perfect information setting, 

both stages lead to errors in the final approximated product costs PCH. 

Constructing the production

technology and set a realized

demand for each product in the

portfolio

Calculating the resource 

costs for computing 

benchmark product costs

Cost pool building

(STAGE I)

Full information Limited information

Cost driver selection 

(STAGE II)

Assessing the benchmark product

costs versus measured product

costs
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The last step uses both product costs (PCB, PCH) and statistically compares them. The information 

aggregation and neglection affect the product cost measurement. This impact rises with the error 

distance between the benchmark and estimated product costs to reflect the accuracy of the heuristics 

implemented. Hence, cost system design choices can be compared because each is suitable for 

measuring the costs in a production environment. Next, the computerized model formalizes all the stages 

of the conceptual model using mathematical models. 

6.2.2 Computational model 

Based on the conceptual model, the computational model starts by computing a benchmark 

production environment following Anand et al. (2019). Using the costing framework of Anand et al. 

(2019) supports the extensive mathematical modeling of the production technology concerning the 

design elements RC, DP, and AV.37 The emphasis on product costing in system design choices does not 

necessarily demand complex engineering design theory. The EAD contains engineering design and 

economic firm theory, which is advantageous when considering product-centric issues in product-based 

planning such as NPD. However, fewer product-centric questions may unnecessarily increase 

complexity. Thus, instead of this engineering product modeling, the identity multiplication of ACN_FR 

and AFR_DP adapts the EAD to economic firm modeling. This simplification of analytical and numerical 

research is required (Christensen & Hemmer, 2006) and is applied to AAV_RC as well. Specifically, the 

latter design matrix has frequently been used, leading to similar outcomes (untabulated results) (Anand 

et al., 2017, 2019; Balakrishnan et al., 2011). In other words, one can see this identity multiplication 

somewhat like an accordion that neglects unnecessary elements in the context of the problem system. 

Finally, using the mentioned identity designs supports the focus on the cost design choices of the 

relevant systems. 

Next, the model draws random numbers from a lognormal distribution to determine realized demand 

q for each product P. The products P and resources RC create the design matrix AP_RC [RCs x Ps] that is 

embedded in the identity matrix of AAV_RC. This matrix still describes the minimum input resources for 

one output but uses products and resources. This is relevant because it is the central matrix of 

consumption considered in the forthcoming experiments. 

The resource consumption matrix AP_RC is frequently mentioned as a resource consumption matrix 

RES_CONS_PAT, which is fundamental in an economic production environment. Research identifies 

the crucial factors for building the resource consumption matrices that costing systems try to measure 

(Anand et al., 2019; Balakrishnan et al., 2011; Labro & Vanhoucke, 2007, 2008). For instance, DENS 

shows that sharing resources in RES_CONS_PAT where COR induces a correlation pattern between 

 
37 The model follows the baseline assumptions of “modern costing” (Christensen & Demski, 1995), namely fixed proportions 

in production functions combined with Leontief, constant returns to scale (no economies of scale; linearity), cost separability, 

and, of course, no substitutability among resources. 
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the resources.38 Because one should not underestimate the effect of resource consumption modeling, this 

thesis follows the traditional cost structure of variable and fixed costs. Actual guidance implies that all 

resources should be multiplied by realized demand (Anand et al., 2019), which covers the full variable 

cost setting. Other studies have not explicitly carried out this multiplication, as several types of resource 

consumption are independent of demand (Balakrishnan et al., 2011). This thesis sees a mixture as a valid 

way for modeling, where the factor UNIT_SHARE separates proportional unit-level costs, advocating 

variable costs, from non-unit-level costs, namely fixed costs. Thus, the model multiplies the unit-level 

requirements by realized demand to determine the total number of resource units TCU (e.g., a material, 

time, and setup).39 

Next, the model computes the resource costs RCC by distributing a constant amount of total costs 

TC=1,000,000 using the parameter RC_VAR, which regulates the dispersion of costs at each RCC 

(Balakrishnan et al., 2011). A division of each RCC through the corresponding TCU computes the 

resource cost driver RCU (RCC/TCU=RCU). This driver is then multiplied by demand q and the 

minimum requirements from RES_CONS_PAT. Finally, the sums of the individual resource costs end 

in the benchmark product cost PCB, as indicated by equation (15). 

𝑹𝑪𝑼 ∘ 𝒒 ∘ 𝑹𝑬𝑺_𝑪𝑶𝑵𝑺_𝑷𝑨𝑻   𝑷𝑪𝑩 (15) 

Despite increasing information technology, gathering full information from a production 

environment is still infeasible or simply too costly, and thus costing systems make the necessary 

systematic simplifications through heuristics. Costing systems tend to be two-staged, with cost system 

designers deciding on the types and amounts of cost pools when selecting a cost driver. The literature 

highlights organizational, functional, and ABC pool building with simple or indexed cost drivers (Babad 

& Balachandran, 1993; Balakrishnan et al., 2011; Homburg, 2001; Horngren et al., 2014; Hwang et al., 

1993; Labro & Vanhoucke, 2007, 2008; Lanen et al., 2013). 

“Cost pool building heuristic CPH” 

The heuristic used in this study groups resource costs RCC into a certain number of cost pools CP. 

While less explicit, the first “hidden” grouping starts by classifying single resource costs RCC into 

resource cost pools RCP. For example, grouping the costs of material, labor, and salary, indirect 

production activities, and marketing, sales, and development activities result in the homogeneous RCP 

of direct and indirect costs. The chosen cost pool-building heuristic next uses all remaining indirect RCP 

and builds cost pools by applying systematic simplifications. When all cost pools are consistent, 

meaning that homogeneity exists within every RCP, there are no errors when aggregating them (Datar 

& Gupta, 1994; Feltham, 1977).  

“Cost driver selection CDH” 

 
38 In context of cost measurement, DENS = AV_DENS = RC_DENS. 
39 Section 6.4.3 discusses cost structure theories, where there are further operationalizations and discussions about process and 

resource modeling. 
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Assuming that cost system designers set the number of cost pools, the next question concerns how 

to allocate the costs from the cost pools to product costs, raising the challenge of selecting an appropriate 

cost driver for every pool. There are several ways of identifying cost drivers, and this thesis applies the 

“big pool” heuristic. The big pool employs the resource unit driver in terms of the largest cost in cost 

pools as an allocation base (Anand et al., 2017, 2019; Balakrishnan et al., 2011; Hwang et al., 1993). 

Imagine that the most expensive resource cost in a cost pool is from a machine. Subsequently, the 

corresponding activity measures are the machine’s output or time usage, which is widely acknowledged 

for allocating costs. Summarized, cost pool and cost driver selection heuristics systematically neglect 

information in the full information setting. Taken together, the limited information setting in a cost 

system is describable by the number of cost pools CP [1 x CPs] and their relative activity driver 

consumption ACT_CONS_PAT [CPs x Ps] in equation (16). 

𝑪𝑷 ∘ 𝑨𝑪𝑻_𝑪𝑶𝑵𝑺_𝑷𝑨𝑻   𝑷𝑪𝑯 (16) 

Similar to all the experiments, observing the response from the manipulation and benchmark 

supports an assessment of the implemented causal mechanisms (Balakrishnan & Penno, 2014). This 

thesis follows previous research by applying existing error metrics (Labro & Vanhoucke, 2007). 

Specifically, costing system performance may depend on the Euclidean distance (EUCD), mean 

percentage error (MPE), and %ACC (≥5% or ≤-5%) (Kaplan & Anderson, 2007). Considering product 

cost accuracy individually requires more specific measures. Therefore, this thesis also considers the 

absolute percentage error (APE) and percentage error (PE) as product cost error measures (Christensen 

& Demski, 1997). This offers the more decision-relevant error metric shown in equation (17). 

𝐴𝑃𝐸  |
𝑃𝐶𝐵 −  𝑃𝐶𝐻

𝑃𝐶𝐵
| ;  𝑃𝐸  

𝑃𝐶𝐵 −  𝑃𝐶𝐻

𝑃𝐶𝐵
 (17) 

6.2.3 Detailed simulation model protocol 

Table 9 shows the applied factors responsible for manipulating the production technology. DENS 

reduces the density of the resource consumption matrix RES_CONS_PAT. A dense (sparse) matrix is 

full of non-zero (zero) elements. For example, high DENS (0.85) means fewer zero entries in the 

consumption matrix and suggests more process sharing; conversely, low DENS=0.35 is the opposite and 

this reflects less sharing such as in a specified job shop production. Intuitively, this has significant effects 

on diversity in resource consumption. 

. 
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Table 9: Classification of the parameters  

Independent parameters Control parameters Dependent parameters 

Density of process/resource sharing  

DENS [0.35,0.6,0.85] 

Number of products 

[50] 

Euclidean distance (EUCD)  

Dispersion of realized demand 

Q_VAR [0.5,1, 1.5] 

Number of resources 

[50] 

Mean percentage error (MPE) 

Direct cost share 

DC_SHARE [0,0.2,0.4,0.6] 

Number of processes 

[50] 

Absolute percentage error (APE) 

Cost pools, number of cost pools  

CP [1,2,4,6,8,10,12,14,16,18,20] 

Cost pool building  

CPH 

Percentage error (PE) 

Correlation between unit and batch resources 

COR [-0.6,0,0.6] 

Cost driver selection 

CDH 

 

Resource cost dispersion  

RC_VAR [0.35,0.5,0.75] 

Simulation repetitions  

[20]1 

 

Unit-level share in terms of costs  

UNIT_SHARE [0.3,0.5,0,7] 

  

Measurement errors  

ERROR [0.1,0.3,0.5] 

  

1 There were no severe numerical deviations in the mean and variance for 20, 50, 100, and 1000 repetitions. 

Identity design matrices: ACN_FR; AFR_DP; AAV_RC 

Importantly, the dispersion of realized demand q along the product portfolio is modeled using 

Q_VAR. Although mass customization is desired, firms still have more and less produced products. In 

detail, firms frequently have a few “standard” products that tend to be produced in large quantities 

combined with less produced product variants that often have more unique functional requirements. 

When Q_VAR is high (1.5), it leads to a few standardized variants with huge demand and many less 

requested product variants. For example, this reflects a portfolio where 10 products own 70% of total 

demand. By contrast, the top 10 products have a smaller share of 35.9% when Q_VAR is low 

(Q_VAR=0.5).40 

The new parameter in the model is the direct cost share of total costs DC_SHARE. For instance, 

higher shares of direct costs (DC_SHARE=0.7) are common in manufacturing, whereas service sectors 

(DC_SHARE=0.4) might possess more substantial overhead shares (Al-Omiri & Drury, 2007; Drury & 

Tayles, 2005). Thus, this thesis models direct costs directly from resource consumption by splitting it 

into direct and overhead costs (see Section 6.5 for the detailed modeling). 

CP sets the number of cost pools and cost drivers. As important as this factor are the used cost 

system design heuristics, cost pool building heuristics (e.g., cost centers), and cost driver selection 

heuristics (e.g., product units). These heuristics represent a particular mechanism for grouping resources 

to cost pools or using underlying measures to allocate costs to objects to indicate the efforts of 

information gathering (Balakrishnan et al., 2011). 

RC_VAR defines the skewness of resource unit prices RCU by defining different distributions over 

all resource costs RCC, either equal or dispersed (see Balakrishnan et al. (2011). For example, for a low 

value of RC_VAR (i.e., 0.4), resource costs have uniform distributed costs and magnitudes. For higher 

 
40 To substantiate the chosen variable levels, empirical and conceptual sources were considered. The conceptual data were 

collected from standard textbooks (Franz & Kajüter, 2002; Horngren et al., 2014) and the empirical data were gathered from 

business reports (i.e., VW and Toyota) and qualitative interviews (anonymous). 



 

 

92 

values of RC_VAR (i.e., 0.7), few resources dominate, resulting in a stratified and skewed distribution 

of resource costs. 

COR reflects the correlation between consumption patterns, which refers to the ABC hierarchy. In 

empirical and analytical studies, cost categories do not necessarily correlate positively with each other. 

In particular, unit-level costs and variable costs are strictly proportional to the production output. 

Conversely, non-unit-level costs and fixed costs do not behave proportionally (Ittner et al., 1997). COR 

implements this circumstance by embedding different correlations between the resource (i.e., COR=0.6). 

UNIT_SHARE determines the number of unit-level activities, which behave proportionally to 

increases in production units such as variable costs. Previous studies have argued that non-unit-level 

activities are an indicator of complex cost systems such as ABC (Abernethy et al., 2001; Cooper & 

Kaplan, 1987). Consequently, the model recognizes a range of UNIT_SHARE of 70%, 50%, and 30%, 

which implies higher and lower non-unit-level costs. When UNIT_SHARE is high (UNIT_SHARE=0.7), 

a few batch- or product-level activities concern the ABC hierarchy, while there is a large amount of 

unit-level activity. For instance, when the environment contains 50 activities, UNIT_SHARE of 0.7 

defines 35 activities as unit-level costs and 15 as non-unit-level costs. 

Finally, the (random) measurement error ERROR will distort the allocation bases randomly. The 

model thus adopts the modeling strategy of Balakrishnan et al. (2011), which acknowledges the 

experimental finding of Cardinaels and Labro (2008), who find a measurement error of around ~37%. 

Following this observation, the three error levels of 10%, 30%, and 50% are reasonable. 

Total costs are fixed at TC=1,000,000; the number of products, processes, and resources are fixed 

as well (RCs=50; AVs=50; Ps=50). The batch-level costs allocated at all batch-level activities are 

randomly drawn around 30% and 50% following the empirical observations.41 The descriptive statistics 

in Table 10 provides the descriptive statistics following Balakrishnan et al. (2011) show the changes by 

manipulating the independent parameters and provide additional information on how the simulation 

model behaves. 

  

 
41 The empirical literature finds a percentage value of 35% for batch- and product-level costs (e.g. Ittner et al., 1997), which is 

adapted by Balakrishnan et al. (2011). 
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6.3 Evaluating simple costing systems 

6.3.1 Simple costing systems 

This subsection compares simple TVC heuristics and their resulting error sensitivities with 

suspected antecedents. Despite lacking the clarity of the limitations and adequacy of simple costing 

systems, there is a strong presumption that they are also inaccurate and thus identical (Drury, 2015; 

Horngren et al., 2014; Lanen et al., 2013). However, the general shift toward complex costing has not 

diffused, and simple systems are still being used in the industry. Hence, this thesis performs experiments 

to assess distinct single cost drivers and ascertain whether they are more or less identical. This question 

may offer generalizable results and thus new guidance on applying simple TVC heuristics. 

The most straightforward cost designs contain just one cost pool and cost driver encompassing and 

allocating all overheads (Brierley, 2008; Drury & Tayles, 2005). Single cost drivers are mostly volume-

based, referring to their availability and simplicity as well as the neoclassical assumption that all 

production functions depend on the units (Christensen & Demski, 1995). This thesis uses a sample of 

five single overhead drivers drawn from the literature (Cooper & Kaplan, 1987, 1988; Drury, 2015; 

Hansen & Mowen, 2006; Horngren et al., 2014; Lanen et al., 2013; Mowen, Hansen, & Heitger, 2011; 

Shank & Govindarajan, 1988). The selected cost driver selection heuristics of TVC systems are the 

allocation bases of total production units (DIV), average direct labor hours (DLH), predetermined 

overhead allocation with a unit-level process (UAM) and non-unit-level process (NUAM), as well as 

direct material requirements (DM).  

DIV, which may be the most prominent and most frequently available single cost driver (Shank & 

Govindarajan, 1988), uses the relative weights of the number of products in comparison to total 

production output Σq. Using direct labor hours for overhead allocation (DLH) is another standard 

approach (Horngren et al., 2014). This driver incorporates the direct labor hours of each product in a 

period and builds weights relative to total labor hours. Notably, the driver does not strongly rely on labor 

because machine hours are also applied. Whether labor or machines, both cost drivers positively 

correlate with manufacturing overheads (Foster & Gupta, 1990, p.322-325). 

Another driver uses the material costs of each product to build the relative weights for the subsequent 

cost allocation (DM) as an allocation base. Material costs often account for a large share of a firm’s 

costs, making them suitable as a driver for overheads as well. Cause-and-effect allocation bases are 

based on actual process use instead of aggregated or average measures. UAM and NUAM select the 

costliest unit-level or non-unit-level process as an allocation base (i.e., expensive machine hours). 

Summarized, all the techniques are advantageous from an information perspective, but they have not 

thus far received detailed investigation.42 

 
42 See Appendix 10.1 for the detailed formalization of the cost driver selection heuristics. 
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6.3.2 Assessing simple cost driver heuristics 

The first experimental design in Table 11 reflects the parameters considered. Production technology 

has been used to investigate cost system performance by previous studies (Anand et al., 2017, 2019). 

Using 50 products and 50 processes leads to 50 resources, where the repetition is at 20 runs. This amount 

is sufficient for a covariance steady-state (Law, 2014a). In simple words, the experimental design is able 

to investigate the advantages and disadvantages of simple volume-based cost driver heuristics in a more 

general setting. 

Table 11: Experimental design – Assessing simple cost driver heuristics  

Independent parameters Control parameters Dependent parameters 

DENS [0.35, 0.6, 0.85] Products 50 Euclidean distance [EUCD€] 

Q_VAR [0.5,1,1.5] Processes  50  

RC_VAR [0.4,0.55,0.7] Resources  50  

UNIT_SHARE [-0.6,0,0.6] Repetitions 20  

COR [0.3,0.5,0.7] Total costs 1,000,000€  

ERROR 0 CP 1  

  CPH Random  

  CDH See 10.1  

n= 4,860 (35*20) 

 

The results in Figure 42 demonstrate the accuracy differences between the selected cost driver 

heuristics chosen by an estimated mean plot. Interestingly, all the aggregated volume-based cost driver 

heuristics (DIV, DLH, DM) are seemingly less distorted in contrast to the cause-and-effect drivers 

(UAM, NUAM). This outcome was unexpected because guidance is a cause-and-effect criterion 

(Horngren et al., 2014), namely a rule of thumb that aims to use activity measures instead of aggregate 

or average labor hours and production units. Hence, the cost driver heuristics (DIV, DLH, DM) have a 

comparative advantage over the cause-and-effect cost drivers. 
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Figure 42: Assessing simple cost driver heuristics in a one-pool costing system 

Additionally, Figure 42 indicates significant error variance for UAM and NUAM, probably 

conditional of their closeness to the production environment. The aggregated volume-based cost drivers 

are robust to varying environmental factors while having seemingly less dispersed errors in contrast to 

the cause-and-effect cost drivers, as shown by the width of the boxplots. Less sensitivity among simple 

cost drivers is regularly stated as a disadvantage (Horngren et al., 2014), nonetheless, it supports 

robustness to errors either. The cause-and-effect cost drivers are more sensitive to the production 

environment, which includes stochasticity such as measurement errors . This thesis therefore concludes 

that the aggregated cost drivers tend to be robust to environmental factors compared with the single 

cause-and-effect drivers. Hence, simple allocation bases do not behave similarly, especially product 

units and direct labor hours are seemingly efficient. 

Regressing the environmental parameters on the EUCD in Table 12 shows the heuristics’ 

sensitivities to errors and demonstrates that they behave dissimilarly in statistical metamodels, too. In 

detail, consider the density of resource sharing, designed as DENS. This parameter has less effect on 

DIV (B=-0.33, η²=0.179), DLH (B=-0.14, η²=0.102), and DM (B=-0.23, η²=0.02) in contrast to the 

cause-and-effect drivers of UAM (B=-0.53, η²=0.69) and NUAM (B=-0.41, η²=0.65). Hence, the 

aggregated drivers are less error-sensitive to diversity in the production environment. 
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Table 12: Regression table of simple cost driver heuristics 

 
DIV DLH UAM NUAM DM 

 B η² F B η² F B η² F B η² F B η² F 

DENS -0.33 0.18 32 -0.14 0.10 417 -0.53 0.69 9,750 -0.41 0.65 8343 -0.23 0.02 65 

Q_DIV 0.73 0.56 152 0.83 0.53 5,239 0.71 0.41 3,280 0.38 0.37 2871 0.67 0.42 3,398 

UNIT_SHARE -0.19 0.01 11 -0.05   0.09   0.20 0.03 91 -0.02   

RC_VAR 0.05   0.06   -0.01   0.02   0.01   

COR -0.06   -0.10   -0.07   -0.03   -0.05   

DENS x Q_DIV -0.05   -0.11   -0.20 0.03 119 -0.11 0.01 34 -0.01   

DENS x UNIT_SHARE 0.42   0.14   -0.28   -0.90 0.02 84 0.31   

n  4,860 4,860 4,860 4,860 4,860 

R²-adj  0.60 0.55 0.74 0.71 0.43 
Multicollinearity VIF Controlled≤5  

The model and all shown effects are significant p<0.05 

B = Standardized Regression Coefficients, η² = Effect sizes F = F-value from an ANOVA model type III; 
Interaction effects of η²<0.01 are excluded. 

Q_VAR seems to be the strongest error driver among all the heuristics (B(DIV)=0.73, B(DLH)=0.83, 

B(UAM)=0.71, B(NUAM)=0.38, B(DM)=0.67). The literature advocates that the increasing volume 

diversity from a skewed demand distribution is a source of distortion when using volume-based 

allocations (Cooper & Kaplan, 1987). The regression models identify Q_VAR as an impelling parameter. 

One can conclude that stratified demand (i.e., few standard and many specific variants) in a product 

portfolio causes diversity in unit-level consumption. In sum, DENS and Q_VAR are materialistic drivers 

and indicators of errors in product cost approximations. 

Table 12 highlights that UNIT_SHARE has negative and positive error effects, but overall a smaller 

effect size (B(DIV)=-0.19, B(DLH)=-0.05, B(UAM)=0.09, B(NUAM)=0.20, B(DM)=-0.02) than 

DENS and Q_VAR, which indicates less power and relevance. This was slightly unexpected because a 

lower UNIT_SHARE is associated with more batch- and product-level consumption. Further, the number 

of different processes and their drivers is not relevant per se because the costs are on average constant 

(untabulated result), suggesting that the number of distinct processes within a production technology 

does not infer more errors. 

RC_VAR and COR have less impact on distortions in their magnitude and effect size. Both have less 

statistical power on the EUCD and hence are not strictly indicators for facilitating cost system design 

choices. The regression models in Table 12 recognize the effects of statistically relevant interaction 

effects. Most models with a large sample are full of interaction effects, but these are less observable in 

the raw data. Consequently, the identification of interactions demands convincing statistical power; 

therefore, this thesis neglects interactions with less statistical power to prevent exaggerating the 

qualitative interpretations of rather statistical artifacts. 

The interaction plots in Figure 43 present the interaction effects, illustrating the estimated means 

under these effects through bar plots, where DENS x Q_VAR is the most remarkable in NUAM and 

UAM. DENS x Q_VAR has the most statistical relevance in terms of the regression coefficient, effect 

size, and F-value (i.e., UAM B=-0.20, n²=0.03, F-value=119). This implies that less process and 
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resource sharing between products (low DENS) hampers an additional distortion of Q_VAR. Hence, less 

sharing of resources among products mitigates the impelling strength of different production volumes 

in simple cost drivers. 

 

Figure 43: Interaction plots between DENS and Q_VAR 

To sum up, simple (i.e., classical and traditional) allocation bases embedded in simple TVC systems 

have different levels of accuracy. The data suggest that cause-and-effect drivers (UAM, NUAM) are 

unsatisfactory as single cost drivers. DIV, DLH, and DM, conversely, are more accurate even though 

they are indifferent to production technology. This provides an interesting picture of robustness when 

applying aggregated drivers. By contrast, UAM and NUAM are less convincing and may need more 

cost pools and drivers. 

 

Figure 44: Assessing the costing error among increasing departments and unit-level allocation bases  
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In a departmental setting, as shown in Figure 44, the data show the expected improvement compared 

with a single allocation basis application of UAM. Departments are cost pools but tend to group 

resources by functional (similar to activity cost pools) or organizational rules (probably more “random”). 

This structure is often suspected in German cost accounting (Boons, Roberts, & Roozen, 1992). The 

shown experiment follows an organizational structure (“random”) with a maximum of 15 

departments.43,44 

Figure 44 demonstrates accuracy gains by increasing departments that converge to DLH and DIV 

at around 10 and overtake them around 15. The shown cost system design with UAM records an EUCD 

of 75,011€ with 10 departments. Interestingly, this accuracy is comparable to previous aggregated 

allocation bases such as DLH (76,750€) and DIV (82,178€). Continuing to 15 cost pools, UAM 

increases to 70,050€ and finally outperforms DLH and DIV. Hence, despite the exclusive usage of 

volume-based allocation bases, cost system accuracy can rise with extensive efforts. 

6.3.3 Cross-subsidization in traditional volume-based cost systems 

Cooper and Kaplan (1998a) recommend applying “... ABC systems where there is a large variety of 

products. For example, standard and custom products, high-volume, and low-volume products”. This 

guidance results from the fact that TVC systems cross-subsidize high volume (simple) and low volume 

(complex) products (Horngren et al., 2014). Indeed, simple costing systems do not resolve complex 

resource consumption patterns because they solely use one type of allocation base. Standard textbooks 

introduce this case to highlight the comparative advantage of ABC systems (e.g., Drury, 2009, p. 190; 

Hansen & Mowen, 2006, p. 124f.; Horngren et al., 2014, p. 158f.; Lanen et al., 2013). In these textbooks, 

simple (high volume) products are overcosted and complex (low volume) products are undercosted. 

However, while they are excellent teaching examples for cost distortions in cost accounting courses, 

they are likely to fail to mirror more realistic circumstances (see the Appendix for an example). 

Cross-subsidization overcosts products with high unit-level costs and undercosts products with low 

unit-level costs on the condition that not all overheads behave proportionally to the production units. If 

firms’ overhead allocation uses unit-level processes, high volume products have higher overhead costs 

because the implementation of non-unit-level overheads is ignored. For complex products, this is the 

opposite, while complexity leads to undercosting. Despite this systematic deviation, large-scale analysis 

of this phenomenon is lacking besides the above-mentioned simple practice and teaching cases. 

This thesis seeks to add generalizable evidence to this mechanism when analyzing product costs in 

a TVC system with DIV. The experimental design is similar to that in Section 6.3.2; however, it now 

turns to the product level (PE and APE) instead of the system level (costing system performance). The 

 
43 The experiments underline the limitation that the maximum available unit-level activity is 15 because a UNIT_SHARE of 0.3 

reduces the processes (50 × 0.3 = 15).  
44 Untabulated results of NUAM show congruent qualitative behavior when increasing cost pools and allocation bases. 
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experimental design in Table 13 is similar to the previous one but has more repetitions, thus yielding a 

sample of 1,215,000 product cost measures. 

Table 13: Experimental design: Cross-subsidization experiment 

Independent parameters Control parameters Dependent parameters 

DENS [0.35, 0.6, 0.85] Products  50 Percentage error [PE%] 

Q_VAR [0.5,1,1.5] Processes  50 Absolute percentage error [APE%] 

RC_VAR [0.4,0.55,0.7] Resources  50  

COR [-0.6,0,0.6] Repetitions 100  

UNIT_SHARE  [0.3,0.5,0.7] Total costs 1,000,000€  

ERROR 0 CP 1  

  CPH Random  

  CDH DIV  
n= 1,215,000 ; 24,300 (35* 100) x 50 products 

 

Figure 45 shows that product costs – factorized by their unit-level costs through COST_SHARE –

suffer from cross-subsidization. The presumed pattern is that low volume products, potentially 

identifiable by a lower unit-level cost share (COST_SHARE = 0 to 50%), are mainly biased downward. 

When products have a higher unit-level cost share, they may be overcosted, as appears for the first time 

in a boxplot. This result is in line with the theory, but surprisingly under- and overcosting are not 

predictable when only considering COST_SHARE.  

Figure 45 details the unexpected result that despite large unit-level consumption, overcosting is by 

no means clear. The general phenomenon of cross-subsidization has indeed been confirmed following 

theory and practical guidance; however, there is large variance in every boxplot, which indicates less 

precision for determining over- and undercosting. Specifically, high unit-level product costs can lead to 

over- and undercosting with a slight tendency toward the former. Despite needing further consideration, 

this thesis supposes that the under- and overcosting behavior of TVC systems is not straightforward. 

 

Figure 45: Cross-subsidization when applying the volume-based cost driver heuristics 
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Extending the analysis of Figure 45, Table 14 shows an ordinary least squares regression to identify 

the error driver and claims that not only COST_SHARE is decisive. Figure 45 shows that less volume-

based products are predominantly undercosted even when they incur over 65% unit-level costs. 

Considering COST_SHARE through the metamodel, PE (B=0.55, n²=0.31, F-value=469,190) and APE 

(-0.35, n²=0.11, F-value=161,066) confirm the impact on over- and undercosting behavior. Surprisingly, 

higher unit-level costs tend to reduce APE, which has not previously been identified. Therefore, one 

could anticipate that undercosting is prominent – as stated earlier – and identifiable through the share of 

non-unit-level costs; nonetheless, predicting overcosting is not as straightforward as may be expected. 

Table 14: Regression table of the error drivers in TVC systems 

 
PE 

[%] [+/-] 

APE 

[%] [+] 

 B η² F B η² F 

INTRA -0.21 0.02 19,749 0.12 0.10 5,261 

INTER 0.10  16,122 0.17 0.03 39,879 

COST_SHARE [%] 0.55 0.31 469,190 -0.35 0.11 161,066 

INTRA x INTER -0.02 0.01 15,498 -0.02 0.01 10,188 

COST_SHARE x INTRA 0.02 0.05 64,508 0.01 0.01 13,439 

COST_SHARE x INTER1 -1 -1 -1 -1 -1 -1 

DENS -0.03  155 -0.15 0.03 42,197 

Q_DIV -0.09 0.01 15,792 0.25 0.08 107,780 

UNIT_SHARE 0.00  20 -0.02  679 

RC_VAR 0.01  250 0.02  674 

COR 0.00  1 0.00  12 

n 1,214,591 1,214,591 

R²-adj  0.46 0.38 

Multicollinearity VIF Controlled≤5  

The model and all shown effects are significant p<0.05 

B = Standardized Regression Coefficients, η² = Effect sizes F = F-value from an ANOVA model type III; 
Less intense interaction effects in terms of η²<0.01 are excluded. 
1 The interaction term has high collinearity and is excluded, because its coefficients are not consistent. 

Next, this thesis applies the introduced heterogeneity measures to quantify the impact of products’ 

complexity. In detail, products with high INTRA and INTER (APE: INTRA: B=0.12, η²=0.10, F-

value=5,261, INTER: B=0.17, η²=0.03, F-value=39,879) tend to be prone to costing errors. Common 

guidance claims that simple products are biased upward, whereas complex products are biased 

downward (e.g. Cooper, 1989). Recall that INTRA and INTER reveal products’ technology diversity as 

well as position in the product mix. High INTRA means that a product uses various dissimilar processes 

within a complex production technology. High INTER suggests that this product is dissimilar to other 

products in the mix, probably either seldom or highly demanded product variants. Considering the 

direction, high INTRA (INTER) biases product costs downward (upward) (i.e., PE: INTRA: B=-0.21, 

η²=0.02, F-value=19,749). This thesis therefore suggests that complex products tend to be sensitive to 

costing errors, whereas simple ones are robust to costing errors.  

COST_SHARE, INTER, and INTRA share interaction effects that disentangle cross-subsidization in 

a product portfolio further. Figure 46 illustrates the interaction effects using an estimated mean plot. As 
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the regression model predicts, COST_SHARE x INTRA has a large impact (i.e., B=0.02, n²=0.05, F-

value=64,508). Unfortunately, COST_SHARE x INTER suffers from multicollinearity; nonetheless, the 

interaction plot in Figure 46 offers a more credible insight than falsely estimated coefficients.45 

Figure 46 reveals that products with large COST_SHARE are typically sensitive to overcosting; yet, 

higher levels of INTRA and INTER are necessary. Figure 46 suggests that a rather complex production 

technology (high INTRA or high INTER) is an indicator of overcosting, whereas less complexity 

dampens overcosting. This finding is interesting because it does not show the presumed association 

between simple products and overcosting strictly. 

  

Figure 46: Interaction plots of heterogeneity and product costs’ shares of unit- and non-unit-level costs. 

Left panel: INTRA / Right panel: INTER 

In detail, Figure 46 depicts that high COST_SHARE under low INTRA and INTER results in less 

biased product costs. Simple mass-produced products have less INTRA but more INTER, whereas less 

INTRA clearly indicates less overcosting. In combination with the regression coefficient showing that 

unit-level costs lower costing errors, overcosted products may have higher levels of INTRA or INTER. 

Following this argumentation, this thesis concludes that simple high volume products are not strictly 

overcosted as taught in cost accounting as long as they are not too complex. 

 
45 Multicollinearity in interaction effects is common and does not necessarily distort the regression coefficients. However, the 

multicollinearity in this case was over 100, indicating that both try to explain the same variance. This hints at a more subtle 

effect such as partial mediation. A subsequent but untabulated analysis confirmed the causal mechanism by identifying that 

large production units increase unit-level activity consumption as INTER increases. 
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6.4 Assessing simple and complex costing systems 

6.4.1 Horserace between simple and complex product costing 

Complex costing systems are presumed to offer a competitive advantage by having more accurate 

product costs (Cooper & Kaplan, 1998b); however, there is still inconclusive evidence (Anderson et al., 

2002; Gosselin, 2006; Krumwiede & Charles, 2014). ABC systems have been diffused less than simple 

TVC systems in recent decades (Al-Omiri & Drury, 2007). Despite this ambiguity, few studies of cost 

design choices have been conducted. 

Comparative assessments between simple TVC and complex ABC systems using fair scenarios and 

varying contextual factors are thus far unreliable. An exception is Christensen and Demski (2003), who 

disentangle the advantage of simple and complex costing under non-linearity. Following their study, 

this thesis explores when and in which situations sophisticated ABC systems provide an advantage over 

traditional cost accounting systems. To conclude, this comparative assessment seems promising, as the 

claim concerning ABC’s superior accuracy seems not to be well founded despite its prevalence. 

Consequently, there is tension in a horserace between product costing. The ABC system consists of 

the most and least informative heuristics in accordance with Balakrishnan et al. (2011). In detail, the 

CPH and CDH combinations apply “correl-size” and “big pool”. In further scenarios, this thesis 

accounts for the random measurement errors (ERROR=0.1,0.3,0.5) for both. In this experiment, 

UNIT_SHARE and RC_VAR are uniformly randomized, designated as RND, due to their negligible 

effects. This aids computational performance and focuses the model on its relevant factors but does not 

exclude their effects. Simple TVC systems incorporate one cost pool, aiming at the total sum of 

overheads, and DIV as an allocation base. Table 15 shows the experimental design. 

Table 15: Experimental design: Horserace between simple and complex costing systems 

Independent parameters Control parameters Dependent parameters 

DENS [0.35, 0.6, 0.85] Products  50 Euclidean distance [EUCD€] 

Q_VAR [0.5,1,1.5] Processes  50  

RC_VAR [0.4,RND,0.7] Resources 50  

UNIT_SHARE [0.3,RND,0.7] Repetitions 20  

COR [-0.6,0,0.6] Total costs 1,000,000€  

ERROR [0.1,0.3,0.5] TC(CPH) Random  

CP [1,2,4,…,18,20] TC(CDH) DIV  

  ABC(CPH) Correl-Size  

  ABC(CDH) Big pool  
n= 17,820 (35* 11 * 20) 

Figure 47 shows an estimated mean plot where the ABC system dominates the TVC system for 

more than 10 cost pools. The advantage of ABC systems is noted when the number of cost pools ~CP=6. 

Nonetheless, in some scenarios, both systems can be somewhat similar (even at CP=10). This evidence 

further substantiates the intangible rule of thumb that 10 cost pools are sufficient (Balakrishnan et al., 

2011). As a result, the study claims that ABC systems require a specific number of cost pools to be 

advantageous over a simple TVC system. 
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Figure 47: Horserace between simple TVC and complex ABC systems 

Disentangling the error drivers further, Table 16 shows statistical evidence that Q_VAR is the most 

relevant error driver. As mentioned, Q_VAR reflects the diversity in the distribution of realized demand. 

This well-known phenomenon in research leads to severe drawbacks for TVC systems (B(ABC)=0.15, 

η²(ABC)=0.06 vs. B(TVC)=0.74, η²(TVC)=0.59). Moreover, DENS differs little between the considered 

systems, as both are prone to diversity (Labro & Vanhoucke, 2008; Shank & Govindarajan, 1988). 

Interestingly, the measurement error ERROR does not have a substantial influence on either. Overall, 

complex ABC systems win the horserace among existing modeling and parameters when increasing the 

number of cost pools (~10). 

Table 16: Statistical regressions for evaluating simple TVC and complex ABC systems  

 
ABC SYSTEM 

[EUCD] / [€]  

TVC SYSTEM  

[EUCD] / [€] 

 B η² F B η² F 

DENS -0.30 0.20 3,258 -0.28 0.17 3,232 

Q_VAR 0.15 0.06 582 0.74 0.59 24,727 

ERROR 0.05  93 0.02  20 

CP -0.74 0.60 25,406 -0.02  16 

n 17,057 17,347 

R²-adj 0.63 0.89 

Multicollinearity controlled in the linear model VIF < 5;  

All models are significant (p<0.01); 
B = Standardized Regression Coefficients, η² = Effect sizes F = F-value from an ANOVA model Type III;  

The full sample is 17,820 as shown in Table 12; nonetheless, extreme values are truncated to sustain the normality assumption of regression 

modeling; outliers above 400,000 €. 

 The outcome of the horserace is expected because ABC outperforms TVC, as suggested by research 

(Cooper & Kaplan, 1998b). Although the expected outcome of the experiment is intuitive, it yields an 

additional insight. First, the recommendation of 10 cost pools for ABC systems meets the threshold for 
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beating TVC (Balakrishnan et al., 2011). This performance indication gradually fills the overall picture 

between simple and complex costing that strengthening this guidance. Second, when demand is less 

dispersed, TVC systems are likely to remain accurate over longer ranges, as firms with a small product 

portfolio and steady demand may require less complex costing. The results confirm ABC as having 

superior accuracy; however, it does not draw a new conclusion on why simple TVC systems are 

frequently applied in practice. 

6.4.2 Cost structure modeling 

Further disentangling why simple costing is still applied in firms, this section investigates different 

input resource consumption models using cost structure theory, which concerns the differentiation of 

cost behavior on specific drivers and measures. For example, cost and production theory state that all 

costs behave proportionally to demand q, which is implicitly used in several studies and models (Anand 

et al., 2017; Banker & Hughes, 1994; Cooper, 1990). Another classical cost structure differentiation 

adds non-proportional fixed costs to variable costs. Indeed, the cost structure theory of variable and 

fixed costs states that fixed costs do not depend on the output of products (Coenenberg, Fischer, & 

Günther, 2012). ABC advocates claim that cost behavior can be mainly categorized into the unit level 

(variable costs), batch-level, product-level, and facility-level (Cooper & Kaplan, 1991; Horngren et al., 

2014), known as the ABC hierarchy. However, this ABC hierarchy has not yet been confirmed 

(Anderson & Sedatole, 2013) and the discussion on a suitable cost structure theory is inconclusive. 

There is a wide endorsement of ABC structure theory in the literature despite the lack of a closing 

discussion or empirical foundation for it (Anderson & Sedatole, 2013; Ittner et al., 1997). Abernethy et 

al. (2001) claim that ABC systems are likely most suitable when batch- and product-level costs reach a 

certain threshold. This principle holds until today, but cost accounting research continues to discuss its 

suitability (Anderson & Sedatole, 2013; Ittner et al., 2002; Ittner et al., 1997; Schoute, 2011; Shank & 

Govindarajan, 1989). Joining the discussion, this thesis seeks to integrate three theories of cost structure 

to illustrate their sensitivity to and relevance on cost system design choices. 

Figure 48 shows formalized cost structure theory at the unit-level, batch-level, and product-level 

with their formal operationalization, as proposed by Noreen (1991). Unit-level processes behave after 

production output q. Batch-level processes should be representable by step functions, where product-

level processes do not depend on q. For instance, expenses for processes and for testing product lines 

are potential product-level costs (i.e. Banker & Hughes, 1994). Product-level costs such as salaries are 

costs that do not vary by demand, paralleling fixed costs to some extent. By contrast, unit-level costs 

behave proportionally to demand (i.e., they are actually variable costs). Combing these arguments, there 

is substantial overlap in the behavior of unit-level and product-level costs as well as variable and fixed 

costs. Nevertheless, batch-level costs are less clear. 
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Anand et al. (2019) and Balakrishnan et al. (2011) use negatively correlated minimum input resource 

requirements λ to model batch-level consumption. After embedding the correlations, Anand et al. (2019) 

multiply all minimum input resource requirements by realized demand q, whereas Balakrishnan et al. 

(2011) do not. This differs from cost structure theory, while batch-level processes depend only on 

batches and not on product units. More interestingly, empirical investigations have found evidence of 

similarities between unit-level and batch-level costs (Ittner et al., 1997). In detail, Ittner et al. (1997) 

find that product-level costs are negatively correlated with unit- and batch-level costs, whereas batch- 

and unit-level costs provide a mixture of positive and negative correlations. When batch-level and unit-

level costs are the same, there is less criticism for modeling them distinctively because the drivers make 

no difference (Babad & Balachandran, 1993; Homburg, 2001). 

 

Figure 48: Cost structure modeling 

This thesis additionally models batch-level costs in accordance with the economic order quantity 

model (Misra, 1975) to implement more distinctiveness. Using this to model batch-level costs 

denominates the costs of batches using products’ annual or monthly demand q. The larger demand, the 

greater the batch size of the product, which lowers the batch-level costs per product unit. For instance, 

larger batch sizes are associated with less documentation, set-up, testing, and other support activities. 

Additionally, they may account for some learning and can disperse the costs to more product units. As 

a result, batch-level activities may have a degressive behavior, and the modeling can use a hyperbola 

function. 

Assume activities’ batch-level output y serves as a proxy for a dedicated product batch. The lower 

overall demand, the larger the batch-level resource consumption of one product. Increasing demand 

leads to larger batch sizes and this reduces product consumption. Equation (18) expresses the relation 

between y and q, which is valid until demand becomes too high. Thus, this thesis models batch-level 

costs using equation (18). 
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The cost structure theory experiment builds upon three theories to investigate their impact on cost 

measurement. First, MODEL 1 uses the recommendation of unit- and batch-level modeling by Anand 

et al. (2019). This evidence reflects the empirical findings because this mechanism results in large 

similarities between the unit and batch-level. Second, MODEL 2 includes the unit-level cost behavior 

of MODEL 1 but does not multiply the batch-level requirements by demand. This setting ensures 

negatively correlated resources somehow similar to Balakrishnan et al. (2011). Therefore, batch-level 

requirements are product-level activities. This thesis interprets this as the classical cost structure with 

variable and fixed costs consisting of unit-level and product-level costs. MODEL 3 incorporates the 

renewed batch-level cost modeling plus unit- and product-level activities to introduce the batch-level 

costs derived from theory. 

To sum up, MODEL 1 reflects the unit level and batch-level without negative correlations, as 

indicated by Ittner et al. (1997). MODEL 2 embeds only the product level because it has a negative 

correlation with unit-level costs. Therefore, it has distinct unit-level and product-level costs that mirror 

variable and fixed costs. Finally, MODEL 3 incorporates a subtle ABC hierarchy setting of three distinct 

activity categories. 

The first illustration discretizes cost structure theory using heatmaps (see Figure 49). Figure 49 

presents a snapshot of total resource consumption in an average production environment. The heatmaps 

embody RES_CONS_PAT, where products P belong to the y-axis and resources RC to the x-axis. This 

is indeed a design matrix that maps products’ consumption. The left matrix refers to Anand et al. (2019) 

(MODEL 1,) the second shows the classical variable/fixed cost structure (MODEL 2), and the right one 

symbolizes the ABC hierarchy (MODEL 3). Every heatmap is a graphic that shows the impact of cost 

structure modeling on consumption. To sum up, implementing cost structures in the production 

environment results in distinct patterns of resource consumption. 

 

Figure 49: Heatmaps of the total resource consumption of three cost structure models 

As shown in Table 17, surprisingly, MODEL 1 has the largest heterogeneity following the measures 

of Balakrishnan et al. (2011). Table 17 shows the correlations and heterogeneity measures of all the 

RES_CONS_PAT in the experiment. There, MODEL 1 has the largest heterogeneity in average 
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consumption distance (20.01/12.93/17.98) in accordance with (Balakrishnan et al., 2011). Looking at 

the product characteristics, conversely, the picture shifts. MODEL 1 has the largest INTER=215, where 

MODEL 3 has the most extensive INTRA=0.48. Interestingly, MODEL 2 is similar to MODEL 3 in 

terms of INTRA but has less INTER. Hence, rich cost structures are close to the products’ heterogeneity. 

Table 17: Average descriptive statistics for the implications of cost structure modeling 

Descriptive Measure Unit 

MODEL 1 

Unit 

Batch1 

MODEL 2 

Variable 

Fix2 

MODEL 3 

Unit 

Batch3 

Product 

Correlation between elements 

Average correlation between unit- and batch-

level consumption 
[#] 0.00 0.00 -0.12 

Standard deviation of the between unit- and 

batch-levels 
[#] 0.15 0.15 0.11 

Average correlation of the between unit and 

production volume 
[#] 0.54 0.54 0.45 

Density [DENS] of resource consumption matrix 

Percentage of zero entries in the consumption 

matrix 
[%] 45.02 45.02 45.02 

Average number of products 

consuming a resource 
[#](max=50) 27.49 27.49 27.49 

Average range in the consumption  

of a resource across products 
[%] 20.01 12.93 17.98 

Heterogeneity within the portfolio [INTER / INTRA] 

Average |INTER| [#] 215 140 201 

Average |INTRA| [#] 75 90 145 

Standard deviation of INTER within a product 

portfolio as a percentage 
[%] 2.65 2.25 1.84 

Standard deviation of INTRA within a product 

portfolio as a percentage 
[%] 0.31 0.45 0.48 

1 Batch-level modeling following Anand et al. (2019). 
2 Batch-level modeling following Anand et al. (2019) without demand q multiplication that leads to product-level modeling. This scenario 

comes closest to traditional cost structure theory of variable/fixed costs). 
3 Batch-level modeling after a hyperbola function. 

To sum up, cost structure modeling determines heterogeneity in the production environment. The 

cost structure theory of the ABC hierarchy is expected to be relevant for making effective cost design 

choices. Unfortunately, it has not yet been fully modeled or confirmed, and research uses the underlying 

framework in various settings to link value chain processes with costs (Park & Simpson, 2008; Thyssen 

et al., 2006). Hence, the reported descriptive statistics show the impact of the smallest variations in 

resource modeling, with the subsequent experiments demonstrating how they affect an error assessment 

and may adjust qualitative interpretations. 

6.4.3 Evaluating the impact of cost structure theory 

The next experiment incorporates the three above-described cost structure theories. Every cost 

structure treatment is implemented and costs are measured in the same experimental setting. The 

experimental design in Table 18 is comparable to the experiment between complex ABC and simple 

TVC systems (see Section 6.4.1); however, different input resource consumption modeling is used in 

this case. 
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Table 18: Experimental design – Cost structure modeling 

Independent parameters Control parameters Dependent parameters 

DENS [0.35,0.6,0.85] Products 50 Euclidean distance [EUCD€] 

Q_VAR [0.5,1,1.5] Activities  50  

RC_VAR [0.4,RND,0.7] Resources  50  

UNIT_SHARE [0.3,0.5,0.7] Repetitions  20  

COR [-0.6,0,0.6] Total costs  1,000,000€  

ERROR [0] ABC(CPH) Correl-Random  

CP [1,2,4,6,8,10] ABC(CDH) Big pool  

MODEL [1,2,3]    

n= 29,160 (35 ‧ 6 ‧ 20) 

 

Figure 50 demonstrates the three outcomes of the same experiment under different cost structure 

theories. Interestingly, there is no qualitative difference in the marginal efficiency of complex ABC 

systems. Around 10 cost pools are required before ABC shows diminishing marginal efficiency. The 

reported results confirm the suggested guidance of Balakrishnan et al. (2011). The experiment is thus a 

valuable example of changing central elements to understand and substantiate mechanisms (Thiele & 

Grimm, 2015). 

Figure 50 also shows that TVC is more efficient in MODEL 1 despite batch-level costs, whereas 

the ABC system with 10 cost pools cannot outperform TVC. This result is surprising because it entirely 

contrasts guidance and theory. When MODEL 1 reflects today’s realistic environment, complex costing 

does not easily outperform TVC. MODEL 2 and MODEL 3, conversely, show the expected horserace, 

where the TVC system quickly loses accuracy compared with complex ABC systems. Consequently, 

this thesis concludes that MODEL 1 is a fruitful scenario for TVC despite batch-level costs in contrast 

to all previous guidance (Abernethy et al., 2001; Cooper, 1990; Cooper & Kaplan, 1998b; Drury, 2015; 

Horngren et al., 2014; Ittner et al., 1997). 

Another result arises from the observation of no qualitative differences between MODEL 2 and 

MODEL 3, which questions the superiority of the ABC hierarchy over classical cost structure theory 

with variable and fixed costs. Textbooks and ABC advocates have promoted that the ABC hierarchy 

outperforms the classical perspective by supporting more granular information (Cooper, 1990; Cooper 

& Kaplan, 1998a, 1998b). Interestingly, this result is not fully depictable in the experiment because the 

outcome between a simple variable and fixed cost structure is somewhat comparable. Although there is 

a small quantitative offset between both, there is less qualitative difference in behavior. 
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Figure 50: TVC vs. ABC experiment under different cost structure theories 

Summarized, cost structure theory decisively affects the advantage and usability of complex ABC 

systems, with this thesis finding no clear evidence for the superiority of the ABC hierarchy or that TVC 

is less efficient among batch-level costs. The ABC hierarchy shows the need for hierarchical cost drivers 

and prompts the acknowledgment of many cost drivers and expenses. The experiments provide the first 

quantitative results on the application of a hierarchical cost structure, particularly to unit-, batch-, and 

product-level costs. The reported results also show that complex cost structures demand complex ABC 

systems, but this is also observable when adopting a variable and fixed cost (i.e., classical) structure. 

Further, TVC is more efficient than expected, even though batch-level costs exist. Therefore, product-

level costs are rather the focus, which are similar to fixed costs. Overall, the reported results confirm 

that complex ABC systems are more suitable for complex cost structures but find that the classical 

perspective of variable and fixed cost is sufficient. Finally, the series of experiments identify a potential 

scenario where complex ABC systems do not necessarily outperform simple TVC systems. 

6.5 Examining the impact of direct costs 

6.5.1 Reviewing direct costs 

Little attention has been paid to the role of direct costs in costing systems, probably due to their 

error-free nature in contrast to overhead cost allocations. Direct costs account for a substantial share of 

firms’ costs and new information technology capabilities are likely to shift the balance toward direct 

costs even more (Kache & Seuring, 2017; Matthias, Fouweather, Gregory, & Vernon, 2017). 

Nonetheless, although the growth in information technologies may affect product cost measurement, 
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this issue is under-studied in cost accounting research. To anticipate the consequences of increasing 

direct costs, this subsection thus investigates their impact on accuracy.  

In costing systems, direct costs are directly traceable to their causing objects, whereas indirect costs 

are still entangled and need further allocation. Table 19 provides an extended literature review of the 

specific cost share (Fixson (2006) was the first to provide an overview of this topic). Direct costs 

frequently have a share greater than indirect costs. By contrast, some sectors such as finance and services 

have more considerable indirect costs as well as around 50% direct costs.  

Table 19: Studies that have accounted for the share of direct costs 

 Total costs [100%] Additional information 

Reference 

Direct costs Indirect costs  

Material Labor 
Unit level 

(MOH) 

Non-unit 

level 

(NMOH) 

Sample size [n] 

Industries considered 

Further comments 

Miller and Vollmann 

(1985) 
20-40 60-80 - 

N= n.a. 

Electronics firms 

Foster and Gupta 

(1990) 
54.3 6.6 39.1 - 

N= 37  

Facilities of a large electronics company 

(only total manufacturing costs) 

Galsworth (1994) 40-65 35-60 - - Lacking clarity 

Banker et al. (1995)1 65.4 8.9 25.7 - 

N= 32  

Electronics, machinery, and automobile 

(only total manufacturing costs) 

Hundal (1997) 50-60 10 20-30 - 

N= 7 

Automobile, computers, general manufacturer 

(only total manufacturing costs)- 

Al-Omiri and Drury 

(2007)2 
52.2 14 10.3 14.8 

N= 86  

Comprehensive sample  

8.7% direct non-manufacturing costs 

Kallunki and Silvola 

(2008)1,2 
32.7 33.2 9.4 14.6 

N= 105 

Trade, service, media, metal industry 

10.10% direct non-manufacturing costs 

Average 70  30   
1 All descriptive values were averaged over the life cycle phases to approximate an estimate. Afterward, all values were normalized to 

100% of total costs.  
2 Both studies incorporated the category “other direct manufacturing costs” listed in the comments. 

 

Direct costs are known to be error-free (Labro & Vanhoucke, 2007, 2008) and remain little discussed 

in cost accounting research. Recall that cost accounting has predominantly investigated accuracy-related 

questions to improve product cost-based decisions. When assuming perfect direct costs, there is only a 

question of the errors in overheads. Looking at it from this angle, the abstraction in cost accounting is 

theoretically valid. 

Concerning the impact of product cost errors, absolute measures such as the EUCD may 

underestimate cost errors under direct costs, whereas PE and APE provide a more accurate view. 

Products with a large share of direct costs suffer less from erroneous overheads from a relative 

perspective (PE and APE). Monetary error metrics as the EUCD should remain constant. However, the 

magnitude and impacts change as PE changes. Overall, one can presume that classical overhead cost 

allocation loses relevance as direct costs increase (Zimmerman, 1979). 
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6.5.2 Direct cost modeling 

This thesis assumes that increasing information technology capabilities leads to higher shares of 

direct costs through more detailed data on products’ resource usage. To establish and ground the 

hypothesis, this thesis uses studies that have explored the empirical cost literature but only found 

marginal evidence. In detail, no empirical study has thus far hypothesized that increasing information 

technologies increase the share of direct costs. That said, Al-Omiri and Drury (2007) find a large but 

non-significant correlation of -0.098 between information technology quality and the average 

percentage of indirect costs, which may substantiate the presumed positive relationship between 

information technology and the direct cost share. 

Analytical/numerical studies model direct costs as exogenous and have not explicitly considered 

their impact on costing errors (Christensen & Demski, 1997, 2003). Analytical research exclusively 

determines costs a priori into overheads and direct costs. Although this is valid for several 

investigations, the impact of direct costs is not well understood. Further, analytical studies have used 

relative percentage errors such as PE and MPE, which are more responsive to the share of direct costs. 

Lastly, production and cost theory do not differentiate between direct and indirect costs, which is a 

cost accounting issue. Consequently, using full information as a benchmark costing system is a full 

direct cost scenario. Distancing from this ideal situation because of limited information, some direct 

costs are overheads and vice versa. Therefore, the used costing benchmarks are complete direct cost 

scenarios in which a lack of information shifts them to overheads. 

 

Figure 51: The impact of information availability on the share of direct costs 

The previous argumentation supports the conceptualization of Figure 51 that models the share of 

direct costs in accordance with the availability of information on process and resource consumption. 

The conceptualization includes three phases. First, having no information about firms’ resource 
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consumption leads to one RCC, including all kinds of costs. This situation is ideal when firms have at 

least some information. This leads to the second area with increased information availability. Having 

limited information on resource consumption patterns yields a partial decomposition into overheads and 

direct costs, as frequently observed in practice.46 Finally, the ideal condition of information is that there 

are no overheads; this results in a full costing benchmark. 

Table 20: Experimental design – Direct cost experiment 

Independent parameters Control parameters Dependent parameters 

DENS [0.35,RND, 0.85] Products  50 Euclidean distance [EUCD€] 

Q_VAR [0.5,RND, 1.5] Processes  50 Mean percentage error [MPE%] 

RC_VAR [0.4,RND,0.7] Resources 50  

UNIT_SHARE [0.3,RND,0.7] Repetitions 100  

COR [-0.6,0,0.6] Overheads 1,000,000€  

ERROR [0.1,0.3,0.5] TVC(CPH) Random  

CP [1,2,4,6,8,10] TVC(CDH) DIV  

DC_SHARE [0.2,0.4,0.6,0.8] ABC(CPH) Correl-Size  

  ABC(CDH) Big pool  

n= 16,500 (32 ‧6 ‧ 6 ‧ 50) 

 

6.5.3 Evaluating the share of direct costs 

The analysis pursues the suggested direct cost modeling and examines different levels of direct cost 

shares DC_SHARE by observing their resulting errors. Staying in the horserace scenario between TVC 

and ABC, the investigations confirm that the EUCD does not change under constant overheads. The 

MPE conversely shows – as expected – the impact of the percentage errors. 

As introduced, direct costs are not predestined and depend on information technology. As such, this 

thesis differentiates between direct RCCDC and overhead costs RCCOH instead of assuming generic 

resource costs RCC. The computerized model uses 50 RCCOH and 50 RCCDC, where DC_SHARE 

regulates the total costs of the firm. Both costs lead to the final product costs under the existing resource 

consumption pattern. Next, the computerized model fixes 1,000,000€ to RCCOH and increases the 

number of direct costs under DC_SHARE. For instance, given the level of 0.6, DC_SHARE calculates 

total costs of 2,500,000 TC from (sum(RCCOH)/(1-DC_SHARE)). The additional 1,500,000€ is hence 

direct RCCDC, yielding 40% overheads and 60% direct costs. 

Figure 52 demonstrates and substantiates the previous intuition about the error metrics because the 

EUCD does not differ among levels of DC_SHARE as MPE shrinks. As can be seen, there is less 

congruence between the EUCD and MPE, while the latter indeed profits from fewer overheads in the 

system. Another interesting artifact is that for a DC_SHARE of 60%, the MPE of TVC is 14.47% and 

8.90% for ABC with 10 cost pools (Δ 5.57%). The difference at an 80% DC_SHARE is smaller by about 

Δ3.14% (7.90% - 4.76%). Conclusively, this thesis reports evidence that the superior advantage of ABC 

 
46 For example, where consumption of material and labor is more observable referring to their strict proportionality to demand, 

indirect support processes have fewer clear consumptions. In particular, dispositive input resources (i.e., administrative, 

engineering, or development processes) are more latent (Park & Simpson, 2008). 
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systems over simple costing systems differs only to a small extent when the direct cost share is 

increasing. An untabulated regression model predicts that TVC is more responsive to increasing 

DC_SHARE than ABC systems. In detail, the linear ordinary least squares regression model reveals that 

the standardized regression coefficient B(DC_SHARE) is 0.89 for TVC and 0.56 for ABC in terms of 

the MPE. Additionally, η² is 0.79 for TVC and 0.31 for ABC. Hence, TVC may profit more from 

increasing direct costs, but this effect is too small to change the final outcome. 

 

 

Figure 52: Results of increasing direct costs in ABC (upper panel set) and TVC (lower panel set) 

The remaining question is how large the relative errors are at a high DC_SHARE. There has been 

no guidance about over- and undercosting under the influence of direct costs. In particular, the product 

level is decisive for evaluating the quality of the cost information used by decision-makers. In this 

respect, Table 21 applies the materialistic ±5% rule from Kaplan and Anderson (2007) and reports 

average probabilities being either over- or undercosted. Increasing direct costs from 20% to 80% reduces 

over- and undercosting from Σ 83.29% to Σ 35.29% in an ABC system on average. This is a remarkable 
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difference of 48%; nevertheless, Σ 35.29% are still being over- and undercosted. A side observation is 

that TVC tends to be less overcosted than ABC on average (Δ -2.84%). The experiment overcomes this 

point by demonstrating that simple costing may overcost a few products to a large extent (i.e., 

DC_SHARE=0.8 | Δ -6.44%) and persistently undercost. This thesis thus concludes that over- and 

undercosting are present even though the direct cost share is increasing. 

Table 21: Over- and undercosting among varying levels of DC_SHARE 

 
Products’ average probability of being over- and undercosted ±5% 

Costing system Unit 
Global  

average 

Percentage of direct costs [%] 

20 40 60 80 

TVC 

CP=1 

Overcosted [%] 24.11 28.50 26.34 23.81 17.72 

Undercosted [%] 52.77 61.16 59.50 53.77 36.66 

Overall [%] 76.88 89.66 85.84 77.58 54.38 

ABC 

CP=10 

Overcosted [%] 26.69 34.94 31.95 25.96 14.99 

Undercosted [%] 38.17 48.35 45.29 38.74 20.30 

Overall [%] 64.86 83.29 77.24 64.70 35.29 

Δ  

(TVC – ABC) 

Δ Overcosted [%] -2.84 -6.44 -5.61 -2.15 2.83 

Δ Undercosted [%] 14.60 12.81 14.21 15.03 16.36 

The next experiment concerns the question of increasing information technology in an existing 

production environment. Figure 53 demonstrates an ongoing transition from full overheads to direct 

costs, where firms can randomly select the direct costs, or do so based on their size. This experiment 

focuses on the availability of direct costs to address random or size-based availability. For instance, 

firms may have high direct costs such as material and labor, whereas other costs are less tangible and 

likely be overheads. Thus, higher resource costs are more likely to be direct under the size-based 

approach. By contrast, the random approach uniformly chooses a firm’s direct costs. Interestingly, the 

last 30% of the costs under the size-based approach are responsible for an MPE of 18.65% compared 

with 13.30% under the random approach. Additionally, the right panel in Figure 53 has a slightly 

concave shape. As a result, this thesis concludes that firms should not necessarily focus on reducing 

their most considerable resource costs, as less focus may support costing as well. 

 
Figure 53: Increasing the direct cost share (DC_SHARE) and impact on the MPE (left panel: randomly 

chosen, right panel: size-based approach) 
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To sum up, the direct cost experiment reports that even large shares of direct costs do not outweigh 

the overhead allocation. Of course, the overall error will decrease; however, approximately 30% of 

products in the portfolio remain over- or undercosted under a recommended ABC system. This result is 

unexpected because more excellent information technology capabilities should overcome this. Overall, 

this thesis discussed direct cost shares and provided the insight that even fewer overheads may play a 

vital role in cost-based decision-making. 

6.6 Contribution 

This section contributes to the discussion of cost system design choices as follows. 

Simple product costing 

This thesis contributes to cost design theory by emphasizing the cost driver selection as decisive for 

simple TVC systems, in particular, because aggregated cost drivers are less distorting. Cause-and-effect 

drivers are assumed to be preferable to the cause-and-effect criterion for selecting cost drivers (Horngren 

et al., 2014, p. 108) regardless of whether simple or complex costing systems are used. The series of 

experiments introduces aggregated cost drivers such as production volume and direct labor hours as an 

efficient alternative to cause-and-effect cost drivers in simple costing systems. In detail, aggregated 

volume-based allocations outperform certain cause-and-effect drivers. This superiority of aggregated 

costing parallels the economic analysis of Feltham (1977), who analytically demonstrates that 

aggregation loss can be rather small when drivers consist of sums or averages. It is reasonable that cause-

and-effect drivers perform worse in solving large specification problems in contrast to aggregation 

losses as simple cost drivers. Finally, this thesis finds that the cause-and-effect criterion is not a general 

rule of thumb and should be primarily used when applying complex product costing systems. 

Cross-subsidization 

Second, this thesis contributes to cost (error) behaviors (Krishnan, 2015) by disentangling the error 

drivers of classical cross-subsidization in a large-scale setting. There is known guidance (Cooper & 

Kaplan, 1988; Shank & Govindarajan, 1988) that complex, less unit-level activity-consuming products 

are undercosted, whereas simple, large unit-level activity-consuming products are overcosted (Drury, 

2015; Horngren et al., 2014). However, this thesis substantiates and clarifies the drivers further. Product 

units are still the best indicator for approximating over- and undercosting in TVC systems. Although 

undercosting is dominant in product portfolios, overcosting is not fully predictable because of simplicity 

and mass production. The general tendencies of simple and complex products in terms of over- and 

undercosting are seemingly unsustainable according to the numerical exploration. To be concise, costing 

errors behaves oppositely as suggested, while simple products with large volumes may be less 

overcosted and rather accurate. Complex products with transactions and large output, conversely, are 
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overcosted. Overall, cross-subsidization is still present, but mainly for complex products with unit-level 

activity consumption. 

The horserace between ABC and TVC  

Concerning the cost system design of simple TVC and complex ABC systems, the ABC system has 

performance advantages. To explain this issue further, this thesis first substantiates that cost structures 

do not necessarily emphasize the need for complex costing in terms of its higher accuracy and that the 

traditional classification of variable and fixed costs may be sufficient for choosing a cost system design. 

Of course, it is understood that fixed costs need more complex costing systems; however, this distinction 

has blurred because Cooper and Kaplan (1987) claim that there are no fixed costs while highlighting the 

ABC hierarchy. Thus, complex product costing such as ABC is necessary when batch- and product-level 

costs are high (Abernethy et al., 2001; Horngren et al., 2014; Schoute, 2011). The performed 

experiments suggest, conversely, that the ABC hierarchy does not lead to a different design choice than 

traditional cost structure theory for supporting cost design choices. Thus, combining the non-findings 

from empirical ABC hierarchy studies and the less distinctive pattern from the experiment, the ABC 

hierarchy is likely to overspecify firms’ underlying cost structure. Another result arises from the 

performance of the TVC system despite batch-level costs, which questions previous guidance further. 

The experiment uses the resource modeling standard of Anand et al. (2019). Surprisingly, simple TVC 

systems outperform complex ABC systems over a long range, suggesting that batch-level costs are not 

decisive for selecting a cost system design. Overall, this thesis thus questions cost system design 

guidance on batch-level costs and calls for more empirical research. 

Direct costs  

Increasing information technology improves the capabilities of disentangling consumption within 

production environments that increase direct costs. Empirical studies have lacked a robust discussion on 

whether increasing information availability raises direct costs or whether direct costs affect the cost 

system design choice. First, this thesis finds evidence on the proposition that simple costing systems 

profit more than complex ABC systems from having a large direct cost share. Nevertheless, this effect 

does not help them outperform complex ABC systems. A more remarkable finding is that errors in the 

product costs remain despite large direct cost shares. In sum, this thesis confirms the need for cost 

allocation even though the magnitudes of errors decrease with increasing information capabilities. 

  



 

 

118 

7. Bias and Imprecision of Product Costs 

7.1 Introduction 

This section applies general measurement theory to cost accounting systems to determine inaccurate 

cost information as a construct of bias and imprecision. Like all measurement systems, costing systems 

contain measurement errors question the validity and reliability of measurands. Measurement theory 

seeks to identify and describe both the quality aspects of measurement and models’ errors further. 

Although both simplified and aggregated costing systems have systematic errors, more complex systems 

are prone to uncontrollable random measurement errors (Mertens & Meyer, 2018). While systematic 

errors result in a shift called bias, random errors manifest as a lack of precision, called imprecision. It is 

thus reasonable that all measurement errors propagate through costing systems toward product costs, 

where measurement theory provides the necessary calculations. As a result, information quality depends 

on the magnitude of bias and imprecision referring to measurement theory, which may affect cost-based 

decision-making (Balakrishnan et al., 2012a). 

The research examines the accuracy of costing systems (Balakrishnan et al., 2011; Homburg et al., 

2017; Hoozée & Hansen, 2018; Hoozée et al., 2012); however, less research has investigated the 

variance in errors. Although a lack of precision is vital in all kinds of accounting values (Banker & 

Datar, 1989; Christensen, 2010; Erb & Pelger, 2015; IASB, 2018), most studies overlook the topic. In 

particular, the usage of erroneous cost information suggests that managers can make false rankings, 

comparisons, and evaluations (Demski, 2008) that may lead to negative economic consequences from 

cost-based decision-making. 

This section hence is devoted to the quality aspect of bias and imprecision in cost information 

because it is decisive for decision-making and reporting (IASB, 2018). This study departs from previous 

work because it uses the calculations of measurement theory frequently applied in engineering and 

natural science in management accounting systems. Despite being a non-standard approach, this thesis 

takes advantage of this perspective to show the bigger picture of bias and imprecision. To do this, this 

section also accounts for numerical explorations because repeated measurement is necessary to 

recognize the weight of imprecision. Afterward, product costs are no longer seen as reliable estimates 

but as having an error range. This leads to new questions about decision-making because imprecision 

hampers the evaluation of optimal performance and pricing. Ultimately, this thesis performs a sensitivity 

analysis to identify cost error behaviors and thus explain both quality dimensions of measured 

information. 
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7.2 The bigger picture on errors  

7.2.1 Principles of measurement theory 

The principles of measurement theory do not exclusively apply to engineering and natural sciences; 

this thesis sees the theory as necessary for monetary and behavioral systems, too. Applying it to 

(management) accounting information systems provides guidance on the calculations needed to offer an 

accurate picture. Knowledge of management disciplines and dissimilar terminology about measurement 

concepts and error modeling is limited (Amershi et al., 1990; Dikolli & Sedatole, 2007; Merchant & 

Shields, 1993). Even the IASB (2018) has changed its definition of reliability over time. Accepting 

measurement theory instead gives explicit guidance on error modeling that supports the measurement 

of erroneous accounting information.47 

A measurement system contains a design of measurement functions m that uses quantifiable inputs 

x to approximate an output value of the intended measurand y (JCGM, 2008). Measurement functions 

capture physical attributes to assign quantitative variables to the characteristics of an intended output 

object y. This is the most common measurement approach because measurands are rarely directly 

observable (DIN1319-1, 1995-01) and hence require indirect measures to carry out the subsequent 

calculations to better approximate the intended measurand (Puente León, 2015). Equation (19) 

introduces the measurement system m employing a design and k measurable inputs x with calculations 

to approximate the measurand y (Grabe, 2014; JCGM, 2008). 

Indirect measurable inputs x are seldom error-free because erroneous measurement processes 

produce estimates 𝑥 including errors ex. All inputs are somehow superimposed by errors, for instance, 

from white noise.48 Therefore, the measured input values are estimates 𝑥 with a measurement error e 

consisting of bias and imprecision. The error next propagates to the final measurand and this transfers it 

to an estimate 𝑦̂, too. This updates equation (19) to a more realistic measurement system (20). 

Knowing about imperfect measurement implies doubts about which measurement theory tries to 

quantify an underlying error uncertainty. Measurement theory is differentiated into systematic and 

random based on their specific behavior and nature. Systematic errors are due to causal reasons and 

induce a constant shift between the “true” measurand y and measurand estimate 𝑦̂. The deviation is 

 
47 In detail, IASB (2018) claims that “the level of uncertainty involved in estimating a measure of an asset or liability may be 

so high that it may be questionable whether the estimate would provide a sufficiently faithful representation”, which is 

comparable to large imprecision. The IASB (2018) has a clear understanding of useful information. For example, when one is 

unable to recognize uncertain measures, using other measures may be more appropriate, paralleling the points of Christensen 

(2010).  
48 There is no substantial difference between error and deviation (DIN1319-1, 1995-01). 

 (19) 

 
(20) 

𝑦  𝑚 𝑥1, 𝑥2, . . . , 𝑥𝑘   

𝑦̂  𝑚 𝑥1, 𝑥2, . . . , 𝑥𝑘   
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known as bias. Random measurement errors are entirely uncontrollable and do not follow any systematic 

pattern. Recognizing the controllable nature is solved by repeating measurements to account for the 

errors in a distribution, namely imprecision.49 

Figure 54 illustrates the outcome of the measurand from a repeated measurement process adopted 

to approximate bias and imprecision. The gray-shaded normal distribution indicates the dispersion when 

performing repeated measurements. As explained, the measure is uncontrolled regarding random 

measurement errors. The resulting average is the measurand estimate 𝑦̂ and this is the most counted 

measurement in the repetitions. The difference between the “true” value and estimate is recognized as 

the bias. 

In greater detail, the random measurement errors superimpose the estimate, which indicates the 

range and interval of imprecision. This imprecision accounts for the variance in errors, where research 

employs multiple standard deviations when assuming an ideal normal distribution. To indicate a 95% 

interval, imprecision is operationalized as ±2σ. Figure 54 illustrates imprecision as an error range, which 

can be either positive or negative (±). 

 

Figure 54: Measurement theory consisting of bias and imprecision 

Overall, measurement theory offers an operationalization for calculating bias and imprecision from 

erroneous measurement processes. Systematic errors are controllable and persistent over repeated 

measures, where the recurring distance between the “true” value and estimator is the bias. Random errors 

are uncontrollable and not causal. They can randomly change their magnitude and direction with each 

 
49 There are different scales for describing a probability interval. Measurement theory mainly uses multiple standard deviations 

referring to the expectations of the community (i.e., ±2σ or ±7σ). 
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measurement. As a result, random errors manifest around the estimate as a probability indicating a 

possible error range called imprecision. 

7.2.2 Measurement theory in cost accounting 

Aggregation, specification, and measurement errors are typical error causes in cost accounting, and 

measurement theory can parallel them using systematic and random errors. The theory around the error 

cause typology does not support calculating the error types in product costs. Therefore, this thesis 

bridges the gap between modern cost accounting theory and the principles of measurement theory to 

discuss error types that occur in cost information, particularly concerning imprecision. This is valuable 

because it reflects the errors in final product costs and evaluates them according to accounting standards 

(FASB, 2010; IAASB, 2008; IASB, 2018). This shifts, at least partially, the perspective from designing 

an effective cost system to the quality of cost information for influencing decision-making. Overall, 

adapting measurement theory to evaluate the errors in cost information may be the first step toward 

systematizing and elucidating the errors of all (measurement) accounting systems. 

A cost (measurement) system uses resource consumption or other aggregated measures from 

production technology as indirect measurable input quantities x to allocate overheads to products. The 

first process is to measure resource and activity measures (i.e., machine hours, number of setups) to 

obtain the input quantities. Then, the inputs will allocate the costs from the cost pools. Overall, a costing 

system is a measurement system that uses the underlying production technology to measure physical 

units for tracing and allocating costs. 

Less alignment to the production technology leads to systematic distortions in terms of specification 

and aggregation errors. The specification error of Datar and Gupta (1994) indicates the wrong choice of 

an allocation base (i.e., selecting 𝑥 instead of 𝑥). For example, using the energy consumption of a 

machine to allocate its depreciation costs may not fully reflect the underlying resource consumption. 

Aggregation errors result from grouping heterogeneous resources or activities and therefore neglecting 

information (∑ 𝑥1, 𝑥2   𝑥1,2  𝑥). For example, grouping marketing and operations is problematic 

because they do not have the same underlying production functions. Such aggregations lead to errors 

and subsequently hamper the correct specification of drivers. Thus, both will interact and worsen the 

accuracy of a cost system design. 

Further, both tend to depend on the initial cost system design choice and thus the costing system. 

Assuming the emergence of specification and aggregation in the cost system design process, both will 

be wrong and may imply a systematic error. The other error cause in cost system design relies on random 

measurement errors that arise in various ways. Examples in cost accounting are time misestimations 

(Cardinaels & Labro, 2008), process stochasticities such as congestion or deficient products (Banker, 

Datar, & Kekre, 1988), false master data (Mertens & Meyer, 2018), and even the manipulation of 
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employees (Weber, 2005). As a result, the measure used to allocate overheads does not reflect “true” 

resource consumption.50 

To sum up, while aggregation and specification errors persist in a costing system, random 

measurement errors are uncontrollable and can change in each measurement. Measurement errors do 

not persist in a costing system and change in each measurement period. Aggregation and specification 

errors are due to less specified cost measurement systems or wrongly chosen drivers. Although these 

errors can fluctuate, there is less demand for continuous cost system design updates in practice. 

Therefore, this thesis suggests that aggregation and specification systematically distort cost information 

through biases, where random measurement errors are responsible for imprecision. 

Figure 55 conceptualizes the augmented relations in the context of measurement theory and cost 

accounting similar to extrapolating bias and imprecision as the drivers of validity and reliability. The 

terminology in the literature is not always consistent, as validity and reliability are often used in 

empirical research to assess construct reliability and validity (McKinnon, 1988). In accounting, by 

contrast, faithful representation and relevance are dominant qualities in the recognition process (IASB, 

2018). In particular, faithful representation concerns measurement uncertainty in terms of validity and 

reliability, which leads to accurate measurement. 

 

Figure 55: Bridging cost error causes with measurement theory 

 
50 Concerning single measurement studies (Labro & Vanhoucke, 2007, 2008), there is no distinction between measurement 

and specification errors. However, concerning repeated measurement, there is a disparity. Imagine that a specification error 

means the selection of the wrong allocation base. When selecting the wrong base, it may exist more than one period in contrast 

to random one-time measurement errors. 
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Among the last steps, the question of inaccurate or accurate measurements relates to the degree of 

bias and imprecision, as shown in Figure 56. Primarily, all four targets can contain a “true” value with 

multiple measurements. Figure 56 demonstrates the common accurate measurement metaphor for 

describing and showing the context of inaccuracy and accuracy, illustrating the quality of cost 

information according to Mertens and Meyer (2018). This illustration depicts the quality of the measured 

information by demonstrating bias and imprecision in multiple measurements. At least one of the error 

quality dimensions is seemingly relevant for increasing the degree of inaccuracy. This thesis thus 

suggests that using accurate product costs is associated with the bigger picture of bias and imprecision 

errors. 

 

Figure 56: Conceptual overview of inaccurate and accurate measures (Mertens & Meyer, 2018) 

7.3 Model design concept 

Measuring the imprecision of each product cost demands repeated measurements using the same 

measurement system in a production environment. The model design concept does not branch into 

conceptual and computational types because the computational model is the same as that in Section 

6.2.2. The model rather generates a production technology in accordance with previous settings and 

under constant demand, which secures the invariant resource consumption setting and thus yields the 

benchmark product costs. Instead of adopting a single measurement as in the previous section, the model 

applies a specific number of repeated measurements, which allows random measurement errors to vary. 

Although costing systems cannot do this in practice, they can analyze imprecision in product costs to 

calculate the bias and imprecision of a product cost value. Figure 57 visualizes this walkthrough for one 

numerical run, where the dashed lines highlight the repetition (see the numerical example in Section 

10.3 for further details). 
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Figure 57: Conceptual walkthrough for assessing bias and imprecision 

7.4 Assessing bias and imprecision in product costs 

Introducing measurement theory and adjusting the model to repeated measurements support the 

calculation of bias and imprecision. The first series of experiments focuses on illustrating bias and 

imprecision in a product portfolio. Table 22 describes the detailed experimental design. 

Table 22: Experimental design – Bias and imprecision  

Independent parameters Control parameters Dependent parameters 

DENS 0.6 Products  50 Percentage error [PE%] 

Q_VAR 1 Processes  50 Absolute percentage error [APE%] 

RC_VAR 0.55 Resources  50 Bias [%] 

UNIT_SHARE 0.5 Repetitions 500 Imprecision [%] 

COR 0 Total costs 1,000,000€  

ERROR [0.1,0.3,0.5] ABC(CPH) Correl-Size  

CP [10,20] ABC(CDH) big pool  
n=150,000 products (3 ‧ 2 ‧ 500 ‧ 50) 

The first set of results quantifies bias and imprecision at the product portfolio level from repeating 

cost measurements in a typical production environment. Selecting a typical costing scenario in the 

model, 10 and 20 size correlation-based cost pools using the “big pool” cost driver can repeatedly 

measure this environment. Once the costing system is set, the bias in the average measurand will arise 

from the systematic error. Additionally, imprecision marks fluctuations in different random 

measurement error scenarios. Hence, the product cost portfolio is shown by demonstrating the bias and 

imprecision in each product cost. 
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Figure 58: Bias and imprecision in a product portfolio measured using a complex costing system of 10 

activity pools 

Figure 58 and Figure 59 depict boxplots of the percentage errors in the 10- and 20-cost pool settings 

and highlight the imprecision. This number of cost pools follow the recommendation in the literature 

about what is considered to be acceptable (Balakrishnan et al., 2011). Interestingly, both costing systems 

lead to less precise product cost estimates in the same environment. Recall that random measurement 

errors are uncontrollable and can appear and disappear between measurements that invoke a probability 

of product costs.51 This imprecision is on average 13.63% (for the 10-cost pool system) and 10.61% (for 

the 20-cost pool system). Notably, this is outside the accuracy range proposed by Kaplan and Atkinson 

(2011) in both settings, suggesting that product cost measures in ABC systems are somewhat imprecise 

and may be less credible. 

Analyzing the results at the product level also allows me to quantify the number of products that 

remain within the ±5% interval on average. The grey lines in the portfolios stand for this interval 

delineating a ±5% error tolerance. Using this evaluation criterion, the 10-cost pool scenario shows 25% 

overcosted and 62% undercosted products (CP=10, the share of over- and undercosted objects is 87%). 

This rises to 22% overcosted and 50% undercosted products in the more disaggregated setting (CP=20, 

the share of over- and undercosted objects is 72%). The average bias decreases from 25.70% to 16.88%. 

 
51 The resulting ranage of product cost measures indicates a corresponding variation including errors that is recognizable as a 

degree of uncertainty (Power, 2007). 
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Figure 59: Bias and imprecision in a product portfolio measured using a complex costing system of 20 

activity pools 

Consider that cost system refinement does not always reduce the bias of product costs. Consider, 

for example, product #3. In the 10-cost pool scenario, it has a bias of 3.54% and an imprecision of 

16.23%, while in the 20-cost pool scenario, there is a substantial increase in the bias toward 21.04% 

with a slightly reduced imprecision of 14.02%. For products #14, #30, and #35, the finding is the same. 

Hence, this thesis concludes that it is crucial to examine the individual product costs when assessing the 

performance of a costing system, confirming the claim by Christensen and Demski (1997). 

Figure 60 shows the error variance in product costs by demonstrating the respective bias and 

imprecision probabilities. The density plots are continuous histograms that reflect the frequency of the 

appearance of data points in terms of distribution. In this case, the plots represent the spectrum of 

potential cost measurements for product #2, which has a bias of 12.95% and an imprecision of 26.07% 

in the 10-cost pool setting. Hence, measuring the “true” value is possible. However, this effect could 

turn from offsetting to reinforcing when a positive measurement error occurs to an error of +38.97%. 

To sum up, the product cost range indicates the possible space for a single measurement. 
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Figure 60: Product cost range among different levels of random measurement errors 

In summary, the experiments demonstrate the bigger picture of errors at the product cost level by 

examining bias and imprecision, which are two dimensions of measurement quality with a range of 

product costs including non-constant uncertainty. Accordingly, single measurements may be highly 

inaccurate. These two factors are best taken into account to understand the bigger picture of 

measurement quality and the resulting information quality. 

 

7.4.1 Persistency of bias and imprecision  

The next consideration focuses on the persistence of bias and imprecision. The experimental design 

in Table 26 shows how the error metrics develop toward a full ABC system. All error measures decline 

with the increasing complexity of the costing system as expected. Of particular interest are the 

similarities and differences in the behavior of the error types. APE and absolute bias have almost the 

same size, with APE being slightly higher, as it additionally captures the effects of unsystematic errors. 

In addition, APE and absolute bias have the same slope, except for a full ABC system. Hence, this graph 

suggests that APE mainly reflects absolute bias. The slopes of absolute bias and imprecision suggest 

that bias is reduced much faster by refinements and, even more importantly, that a certain level of 

imprecision remains in the system even after full aggregation. This remaining imprecision explains why 

APE does not reach 0 toward the end. 
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Figure 61: Full disintegration of activities in the environment. When all resource consumption is known, 

the costs are perfectly allocatable 

Figure 61 also suggests that APE does not reflect imprecision sufficiently. Considering how the APE 

measure is calculated, this is only the case for product costs, where the bias is zero. With increasing 

bias, APE underrepresents imprecision more and more. As the APE and EUCD behave similarly, one 

can conclude that the error metrics currently used in the literature on the design of costing systems do 

not fully capture imprecision. Further, imprecision affects each product cost value to some extent. 

Although costing systems are refined, imprecision remains. By contrast, biases decrease with increasing 

refinements. As in other fields, this measurement imprecision could be denoted in the reported values. 

Hence, each product cost is affected by bias and imprecision, indicating different levels of measurement 

quality within a portfolio. 

 

Figure 62: Average probability of a product being over- or undercosted 

Figure 62 shows another observation from the data on the direction of the bias: there are more 

undercosted product costs than overcosted ones at the beginning. According to the data, around the 

beginning of more cost pools, decreasing overcosting occurs with an increasing undercosting tendency. 
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This confirms previous findings that undercosting is more persistent in portfolios (Gupta, 1993; Labro 

& Vanhoucke, 2007); however, despite more information on costing systems, undercosting rises. 

Indeed, it is striking that undercosting increases until the use of 30 cost pools, thereby strengthening the 

persistence of undercosting product portfolios. 

Figure 62 highlights imprecision at 50 cost pools, meaning that a full ABC system still causes over- 

and undercosting. According to Horngren et al. (2014) and Drury (2015), as well as Noreen (1991), a 

full ABC system leads to perfect marginal product costs. However, this result demonstrates that 

imprecision is responsible for 14% overcosting and 13% undercosting. In sum, despite the full resolution 

of the production environment by cost pools, 27% have an over- or undercosted product cost. 

Consequently, this thesis claims that marginal costs are by no means perfect – even under a full ABC 

system. Finally, the exploration of the previous experiments shows for the first time that bias and 

imprecision matter as well as emphasizes that imprecision does not benefit from the disaggregation of 

more cost pools, implying that even in innovative information systems, cost accounting may be unable 

to approximate product costs precisely. This evidence suggests that canceling out imprecision requires 

the precise measurement of each allocation base. 

7.4.2 Cost error behaviors in complex ABC systems 

Proposing the lack of precision as an essential antecedent for cost information emphasizes the 

question of anticipating cost error behavior. As bias and imprecision are different error types, clear 

guidance could sharpen managers’ perceptions. Hence, the experiment uses a large-scale dataset 

(n=4,860,000) to allow for the features of the production environments and costing systems to vary. 

Table 23 shows the experimental design, including five levels of cost pools (4, 8, 12, 16, and 20), four 

cost pool heuristics, and 50 products, processes, and resources. This results in a dataset of 81 economic 

environments under constant demand (3 levels of RC_VAR × 3 levels of DENS × 3 levels of COR × 3 

levels of Q_VAR) including 50 resources and 50 products, where 540 noisy measurements were 

performed (1,200 = 3 levels of measurement errors × 5 levels of cost pools × 20 repeated measurements 

× 4 cost pool building heuristics). Most of the factors are adopted from previous research and provide a 

set of relevant explanatory factors.52 Applying ordinary least squares regression with standardized 

coefficients, eta squared values, and F-values estimates the effects statistically.53  

 
52 We included all known “random” cost pool heuristics to allow no restrictions in cost pool building and cost driver selection 

choice. Cost pool heuristics can be grouped by various rules, as investigated by Balakrishnan et al. (2011). Thus, we accounted 

for the random as well as the correlation-based random rule that allow the “big pool” to choose different drivers even in 

identical environments. 
53 See Labro and Vanhoucke (2008) and Balakrishnan et al. (2011) for a similar analysis of simulation data. In addition, we 

follow the recommendation of Anand et al. (2019) to report effect sizes and F-values for large-scale datasets. 
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Table 23: Experimental design – Drivers of bias and imprecision 

Independent parameters Control parameters Dependent parameters 

DENS [0.35,0.6,0.85] Products 50 Absolute percentage error [APE%] 

Q_VAR [0.5,1,1.5] Processes 50 Bias [%] 

RC_VAR [0.4,0.55,0.7] Resources  50 Imprecision [%] 

VOL_SHARE [0.5] Repetitions 20  

COR [-0.6,0,0.6] Total costs 1,000,000€  

ERROR [0.1,0.3,0.5] ABC(CPH) [1,2,3,4] 

CP [4,8,12,16,20] ABC(CDH) Big pool  

n= 4,860,000 (35 ‧ 5 ‧ 4 ‧ 20); CPH1=‘random’, CPH2 = ‘size-based’, CPH3 = ‘correl-random’, CPH4 = ‘size-random’ 

 

The regressions in Table 24 show that the coefficient of determination of the bias and imprecision 

model is higher than that in the error model. All four models focus on different dependent variables but 

share the same full dataset (n=4,860,000). All the models are significant, but not all of them show the 

same behavior. For example, the error model and bias model share similar magnitudes and effect sizes 

as well as prediction powers (R² 0.32 vs. R² 0.34). The imprecision model has a higher R² (0.59) and the 

investigated parameters behave differently. Additionally, comparing the incidence of both coefficients 

indicates that product cost errors are almost entirely predictable by the model (R²(Bias) + 

R²(Imprecision) = 0.34 + 0.59 = 0.93). Hence, this thesis concludes that imprecision completes the 

bigger picture of errors by identifying the drivers of this kind of uncertainty. 
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Table 24: Regression models for identifying the drivers of bias and imprecision 

 

APE 

[%] [+] 

|BIAS| 

[%] [+] 

IMPRECISION 

[%] [+] 

 B η² F B η² F B η² F 

Product characteristics           

PCB [%] 0.28 0.01 90,534 0.30 0.02 5,086 -0.09  12,430 

INTRA [%] 0.27 0.03 802,272 0.27 0.03 42,402 0.08  9,127 

INTER [%] -0.17 0.01 8,104 -0.18 0.01 544 -0.04  13,840 

COST_SHARE [%] -0.36 0.06 445,869 -0.39 0.07 26,450 0.40 0.11 37,680 

Cost system 

characteristics 
         

CP -0.34 0.14 817,206 -0.34 0.15 42,271 -0.22 0.10 28,930 

ERROR 0.03  5,176 0.00  0 0.63 0.49 235,100 

          

Random [CPH1] -1   -1   -1   

Size-Correl [CPH2] [-1.5] 1   [-1.5] 1   [-0.8] 1   

Random-Correl [CPH3] [-7.2] 1 0.01  [-7.5] 1 0.01  [-0.1] 1   

Size-Random [CPH4] [-1.9] 1   [-1.8] 1   [-0.6] 1   

Firm environment          

DENS -0.05  3,143 -0.05  138 -0.12  2,087 

Q_VAR 0.06  22,959 0.07  1,328 0.05  1,076 

COR 0.00  135 0.00  7 0.00  7 

RC_VAR -0.05  19,695 -0.06  1,124 0.02  239 

n 4,860,000 4,860,000 4,860,000 

R²-adj  0.32 0.34 0.59 

Multicollinearity VIF Controlled < 6.5,  

All models are significant (p<0.01),  

B = Standardized Regression Coefficients, η² = Effect sizes F = F-value from an ANOVA model Type III;  
Less intense interaction effects in terms of η²<0.01 are excluded. 
1 Contrasts, dummy, or fixed effect variables may be misleading in their standardized beta regression coefficients due to their artificial scale. 

If not thoroughly acknowledged, it may cause the wrong interpretation. Hence, the regression uses unstandardized regression coefficients. 

In addition, Table 24 provides evidence that regular large consumption along products’ production 

processes drives the bias. In general, both INTRA and INTER affect bias and imprecision, with INTRA 

having a remarkable positive effect (B=0.27, η²=0.03, F-value=41,840) and imprecision a lesser extent. 

Recall that INTRA is the heterogeneity of the technology, meaning significant consumption variance 

along with production processes. This results in a variety of usage and can easily distort the measurement 

of costs under less specific costing systems. By contrast, products with more homogeneous production 

are robust to costing errors (Babad & Balachandran, 1993). Thus, the data support a higher chance of 

product cost distortion when there is variance in higher consumption in products’ production processes. 

Surprisingly, INTER has the opposite effect for bias (B=-0.18, η²=0.01, F-value=544). Products that 

differ from the average product mix or product family (i.e., large mass products compared with average 

products) have a lower error. Contrarily, products with less INTER (i.e., less demanded variants 

compared with average products) are more sensitive to costing errors. This result is striking because 

Hwang et al. (1993) demonstrate that INTER operates as a positive error driver in a single allocation 

base setting. In essence, this result suggests that INTER has an error-reducing effect instead of increasing 

with larger costing system disaggregation. Specifically, this thesis concludes that not all types of 

heterogeneity are indicators of potential errors when considering complex ABC systems. 
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Another remarkable effect occurs from the product cost structure UNIT_SHARE, which indicates 

the production output and consumption of unit-level activities. A large number of product units, on 

average, reduces bias but increases imprecision (Bias: B=-0.36, η²=0.06, F-value=26,100; Imprecision: 

B=0.40, η²=0.11, F-value=37,680). High volume products tend to have higher unit-level costs due to 

increased demand for materials, labor, and machine hours. From the data, those are seemingly better 

measured in contrast to others. Importantly, less bias comes with increasing imprecision. Noteworthily, 

the effect on imprecision is in the other direction, as it increases with higher unit-level activity in terms 

of cost. Striking from this evidence is that ABC systems, which are prominently suggested for measuring 

non-unit-level costs better, still bias these “less demanded” products downward (Cooper & Kaplan, 

1992; Shank & Govindarajan, 1988). Hence, ABC systems measure products with high (low) unit-level 

usage with less (more) bias but probably with more (less) imprecision at the same time. 

 

Figure 63: Left – COST_SHARE demonstrates classical cross-subsidization in an ABC system;  

Right – COST_SHARE demonstrates rising imprecision with higher unit-level product costs 

In this direction, Figure 63 reports the data more in-depth by showing the development of bias and 

imprecision for COST_SHARE. The figure illustrates the contrary movement of bias and imprecision as 

the regression models indicate. Lower unit-level product costs have less bias, although the bias increases 

in the end again. Imprecision, by contrast, increases with unit-level costs. Therefore, this thesis 

concludes that mass-produced products tend to have more substantial imprecision and are more likely 

to be imprecise. 

Further, there is still cross-subsidization in ABC systems even though they are presumed to 

overcome this issue. Similar to classical cross-subsidization, decreasing non-unit-level costs seem to 

switch the product cost error toward overcosting. This result is surprising because ABC systems should 

overcome classical cross-subsidization (Horngren et al., 2014; Shank & Govindarajan, 1988) by 

addressing more driver types (Cooper & Kaplan, 1987). This figure depicts that some cross-

subsidization remains in complex costing systems, emphasizing over- and undercosting when ABC 

systems have not fully adapted to a production environment. Specifically, this thesis suggests the rule 
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of thumb that cross-subsidization remains even in sophisticated costing systems, although to a lesser 

extent for high and low volume products. 

As expected, an increasing number of cost pools CP leads to a reduction in bias, but it also 

substantially reduces imprecision (Bias: B=-0.34, η²=0.15, F-value=42,271, Imprecision: B=-0.22 

η²=0.10, F-value=28,930). Intuition suggests that more cost pools, meaning higher sophistication, 

should reduce all kinds of errors, which the model confirms in that having more cost pools reduces bias 

and imprecision. To rule out that the findings depend on a specific cost design, the experiment included 

several cost pool-building heuristics to increase the robustness of the analysis to different cost designs. 

The heuristics are measured using fixed effects in the dataset, where the basis is the random grouping. 

As expected, there is a reduction in bias and imprecision in terms of correlation-based cost pools. 

By contrast, the “correl-random” allocation of resources to cost pools is less sensitive to bias (Bias: 

b=-7.5, η²=0.01). Intuitively, error reduction comes with more homogeneous cost pools, as shown by, 

among others, Balakrishnan et al. (2011). For imprecision, by contrast, costing systems may have less 

influence. This thesis infers that a cost system designer has no lever in cost system design choice to 

handle and reduce imprecision. The production environment characteristics offer little information, 

probably because the product-level category fits better. Hence, all the environmental parameters such 

as DENS, Q_VAR, UNIT_SHARE, COR, and RC_VAR have less effect on bias and imprecision. 

Summing up, the regression analyses support the bigger picture of errors. In particular, the models 

using bias and imprecision as a dependent variable have much higher explanatory power than the models 

using a “summed total error”. In addition, looking at the products leads to several useful patterns 

describing error behavior in the portfolios and helps identify the antecedents of cost systems with low 

bias and high precision. Still, the analysis also uncovered some trade-offs to be considered when 

designing cost systems. 

Concerning the drivers of bias and imprecision, the regression analyses support the higher prediction 

capabilities of separate bias and imprecision models compared with the previously used error metric. 

This supports the claim that both measurement characteristics matter and follow partly different logics. 

Further, ABC systems measure products with high unit-level costs with less bias but with more 

imprecision and vice versa. In other words, there is the potential trade-off that mass-produced products 

are more robust to biases but more sensitive to imprecision. Importantly, products with high non-unit-

level costs are still biased downward on average despite the proposition that ABC systems should 

measure simple and complex objects more. Thus, an ABC system is more efficient when measuring the 

resource consumption of simple products but does not strictly improve complex ones in contrast to 

existing guidance. 
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7.5 Cost-based decision-making 

7.5.1 Decision-influencing: Product cost evaluation 

The previous section provided robust evidence that product costs can have bias and imprecision 

depending on specific antecedents. Acknowledging bias and, in particular, imprecision provides the 

bigger picture for anticipating the quality of (cost) accounting information. Nonetheless, imprecision 

has not yet been considered intensively in this context, even though many analytical studies have 

incorporated error variance in their models (e.g. Banker & Hughes, 1994; Hölmstrom, 1979, 1982). In 

particular, it is regularly assumed to be independent and constant (Antle & Demski, 1988; Feltham & 

Xie, 1994), which does not match the results of this thesis. The presented results highlight a different 

picture because product cost imprecision is neither equally distributed across products nor equally under 

demand changes. In this line, this subsection aims to construct scenarios to address the implications of 

imprecision on further cost-based decision-making. 

Research has considered this to be a crucial element in (performance) evaluation (Banker & Datar, 

1989; Christensen, 2010; Feltham & Xie, 1994; Hölmstrom, 1979). Banker and Datar (1989) stress that 

a lack of precision reduces signal intensity, meaning that information is inconsistent. Therefore, 

imprecision dilutes signals because the congruity between action and measure is less observable. As a 

result, an imprecise signal is not optimal for measuring an agent’s actions, which outweighs the 

importance of an aggregated measure and raises the cost premium for motivating the agent. Feltham and 

Xie (1994) argue that imprecision makes incentivizing more costly because it increases agents’ risk (i.e., 

they are less responsive to incentives). Overall, the discussion on imprecision is conflicting; however, 

most studies have followed an independent variance assumption. Again, the last section provides 

evidence that a constant independent assumption of error variances does not hold for cost accounting. 

To investigate the implication of biased and imprecise cost information, an analysis of managers’ 

perceptions in performance evaluation through Bayesian updating may be promising (Christensen, 

2010; Lewis, Shields, & Young, 1983; Moore & Healy, 2008; Stein, Beer, & Kreinovich, 2013). 

Bayesian updating has occasionally missed representing the right personal belief (Hogarth & Einhorn, 

1992); however, it remains an often used belief framework in research, particularly in economics 

(Gigerenzer & Hoffrage, 1995; Slovic & Lichtenstein, 1971; Van den Steen, 2011; Zellner, 2002), for 

testing the implications of inconsistent data on forming and updating a belief. It thus provides a suitable 

method for examining managers’ perceptions and belief updating from biased and imprecise product 

cost information. 

Bayesian updating generally models a belief-building process from a sequential information 

perception. Imagine a person with a prior intuition who receives new information continuously that 

either confirms or rejects his or her intuition. This setting underlies the Bayes’ theorem shown in 

equation (21). No matter whether supporting or rejecting information, the prior belief will be updated 
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with new data, yielding a posteriori belief. Concerning equation (21), the prior belief is the probability 

P(A), where the new information B contains a normalization P(B). Then, the new information P(B) 

supports the prior belief with a certain likelihood P(B|A). Altogether, this yields the weighted posterior 

belief P(A|B).54 

 

Figure 64: A Bayesian updating model of a principal when receiving new information 

 illustrates a Bayesian-rational agent (Van den Steen, 2011) who sequentially updates his or her 

belief using new data in the experiment. The experiment can be a monitoring process of several product 

cost reports from an information system (John, 2016). This likely results in a modern performance 

evaluation context that can be applied at many hierarchical levels. Another possibility is that managers 

control their agents by observing their actions through product cost data. Irrespective of which setting 

is applied, a person builds his or her belief about a performance measure such as product costs. To ensure 

consistency, controlling the product cost is rather straightforward; however, in the experiment, managers 

receive inconsistent product cost information that is biased and imprecise. 

 

Figure 64: A Bayesian updating model of a principal when receiving new information 

Before proceeding, a numerical example of one Bayesian update in the context of controlling the 

product cost is given. Imagine costs for one product of 50€ in the period T0. Importantly, a period has 

no defined timeframe, but at T1, costs increase to 100€. Of course, the difference is 50€ when there is 

zero imprecision, underlying the informativeness principle. However, Bayesian interpretations can 

 
54 The calculation of Bayesian updating was performed in closed form, as described in the appendix. 
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compensate for inconsistency and the lack of credibility. Therefore, there is imprecision at T0 of σ0=5€ 

and σ1=10€ at T1. This scenario has inconsistent information through simple autocorrelated error 

variance in terms of imprecision (Christensen, 2010). Assuming the person knows about the 

informativeness, the posterior belief is 66.66€ instead of 100€ because the new information at T1 is less 

credible and informative and, thus, it influences updating in the direction of the informative prior belief. 

When both estimates are equally informative, meaning there is no difference in imprecision (σ0=σ1=5€), 

the updated belief is 75€. Finally, imprecision reduces the informativeness, as accounting studies suggest 

(Amershi et al., 1990; Amershi, Demski, & Fellingham, 1985; Banker & Datar, 1989), making the final 

belief less predictable.55 

Figure 65 illustrates the events of the recursive Bayesian updating used for the experiment. 

Assuming T0 as the starting point, the prior belief may be a cost target, expectation, intuition, or merely 

the last cost report. New information arises from the costing system and updates the prior belief to the 

posterior belief. In the next round, the posterior belief is the new prior belief of T1. The updating will 

repeat until it is stopped. 

 

Figure 65: Belief updating using recursive Bayesian updating 

Bringing all the parts together, the experiment has two sub-experiments: the first analyzes the 

perception under bias and imprecision among fixed product costs and the second examines how 

managers perceive product cost increases and decreases. At the beginning of each experiment, the 

Bayesian-rational agent will have a prior belief of the “true” product costs, including an imprecision 

from the corresponding product cost estimate. Next, the costing system will provide new product cost 

 
55 The calculation of Bayesian updating is challenging, especially when lacking conjugate priors. Hence, it is important that the 

data have an identical underlying distribution. When this is not the case, rather complicated approximation procedures are 

needed to solve the updating. Fortunately, product costs’ imprecision tends to be normally distributed, and this thesis generally 

supposes normality for all product costs and their imprecision. 
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data, which will enforce belief updating. Whether costs are increasing, decreasing, or constant, the new 

cost data are biased and imprecise. As a result, the belief will deviate from the benchmark. 

Figure 66 demonstrates the first experiment of updating one product; Panel A illustrates a set of 

only imprecise product cost information and Panel B a scenario of biased and imprecise information. 

The experiment performs 12 updates for learning and processing. In Panel A, product cost information 

is 678±155€; however, managers do not know about imprecision, as in the real world. Therefore, the 

updates strengthen the believed credibility more even though real imprecision does not vary. After the 

updates, managers’ belief converges to 681±13€, which actually “overprecises” the “true” product cost 

information. In the same experiment with biased and imprecise cost information, managers’ belief nears 

the biased information as expected, which shows the impact of bias in perception. More interestingly, 

overprecision rises from 1219±226€ to 1201±14€. Both results indicate that managers’ belief in the 

product cost information will increase despite imprecision. This thesis thus claims that imprecise product 

cost information can lead to overconfidence in cost accounting data (Moore & Healy, 2008; Van den 

Steen, 2011). 

 
 Cost information Managers’ belief 

 PC0 PC1 Bias Imprecision Final Belief 

Panel A 678€ 678€ 0 ±155€ [22.40%] 681±13.08€ [0.44±1.92%] 

Panel B 993€ 1219€ +226€ [24.22%] ±184€ [18.59%] 1201±14.30€ [20.95±1.44%] 

Figure 66: Panel A (left) demonstrates how a manager perceives cost information under imprecision. Panel 

B (right) shows the perception under bias and imprecision. 

The second experiment considers a product cost increase with hidden product waste and a product 

cost decrease with unobserved efficiency. Again, the manager starts with a prior product cost belief; 

then, in the next period, an increase (30%) or decrease (30%) occurs. The manager does not know what 

happens but can anticipate the action from the product costs. In this regard, the product costs are 

performance measures. 

Figure 67 demonstrates that the product cost increase is less perceptible than the product cost 

decrease. Panel A shows the increase of PC from 678€ at T0 to 881€ at T1. There, the final cost belief is 

844±7.30€, which covers 24.48% of the “true” 30% increase. Panel B shows a decrease from 678€ (T0) 
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to 475€ (T1), where the belief ends up being 501±4.27€. There, managers believe there is a reduction of 

26% instead of 30%, which highlights the difference between belief updating. Thus, this thesis 

concludes from this experiment that imprecision dilutes product cost changes and that increases may be 

less credible than decreases. 

  

Cost information Managers’ belief 

PANEL A: Product cost increase of 30% by an action 

 PC Imprecision Final belief 

T 678€ ±155€ [22.40%] 

844±7.30€ [Cost increase of 24.48%] T1 881€ ±184€ [18.59%] 

Δ(Cost) +203€ [+30%] ±29€ [4%] 

 

PANEL B: Product cost decrease of 30% by an action 

 PC Imprecision Final belief 

T0 678€ ±155€ [22.40%] 

501±4.27€ [Cost decrease of 26.00%] T1 475€ ±88€ [11.80%] 

Δ(Cost) -203€ [-30%] ±67€ [11%] 

Figure 67: Panel A (left) shows a product cost increase. Panel B (right) shows a product cost decrease. 

Summarized, the lack of precision affects signals’ informativeness (Amershi et al., 1990; Banker & 

Datar, 1989; Hölmstrom, 1979), which is decisive for the decision-influencing role of costs in costing 

systems. The previous experiments have shown that imprecise product cost information weakens 

signals’ intensity and mitigates the correct perception of hidden actions (i.e., product waste). This comes 

as a surprise because error variances are prominently presumed to be constant and independent. Another 

related finding concerns knowledge about imprecision. In particular, when managers are not careful 

about imprecision, they are likely to “overprecise” cost information, which is a quantification of 

overconfidence bias. 

7.5.2 Decision-facilitating: Pricing 

This subsection shows how imprecision impacts cost-based pricing (Balachandran et al., 1997; 

Balakrishnan & Sivaramakrishnan, 2002) in terms of profit. In particular, I refer to the optimal pricing 
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decisions in the work of Banker and Hughes (1994), who analytically develop an optimal pricing 

decision mechanism that can overcome decentralized information dissemination while using product 

costs. Hence, product costs are relevant for pricing, which influences demand in turn. Lastly, demand 

leads to corresponding production capacity commitments. 

However, the optimal decision relies on consistent product cost information, with a recent discussion 

about pricing decisions when product costs are distorted. Homburg et al. (2017) incorporate the impact 

of pricing and capacity decisions from noisy product costs in a single setting. Anand et al. (2017) 

consider elimination decisions in a dynamic setting but exclude demand functions. This thesis covers 

both studies and adopts a dynamic setting focused on pricing decisions because cost-based pricing still 

plays an enormous role in profitability (Banker et al., 2002; Banker & Potter, 1993). 

In accordance with Banker and Hughes (1994) and Banker et al. (2002), optimal pricing requires α 

(maximum demand of a product), β (price sensitivity), and marginal product unit costs PCb. When 

products are correctly measured, this results in the optimal price 𝜌∗̂ assuming a monopoly. Taking this 

into account, equation (22) results in an optimal pricing decision. 

The market reacts with expected demand 𝑞̅ on the price commitment in accordance with equation 

(23). Equation (23) is a simple linear demand function accounting for maximum demand α and price 

sensitivity β. 

However, both equations have consistent information, and thus the experiment focuses on biased 

and imprecise cost information. For analytical simplicity, it also assumes that expected demand is equal 

to realized demand (𝑞̅  𝑞) and that selling products increases firms’ profit (𝜌∗̂ − 𝑃𝐶𝑏)q. In addition, 

the experiment adopts the full utilization setting, thereby assuming fully variable product costs to 

decompose the optimal capacity decision. Overall, both increases and decreases in the profit function in 

equation (24) lead to worse pricing decisions and thus incorrect cost information. 

Demonstrating the profit implications of cost errors, the model runs this as the benchmark for 

optimal pricing PCb. Less optimal pricing first affects the market and then potential profit. When 

product prices are overexaggerated, demand decreases to zero. Then, the firm eliminates this product as 

in Anand et al. (2017). Hence, implementing inconsistent cost information, this thesis uses the same 

equations but chooses PCh. 

Figure 68 shows the dynamic progress of the experiments, starting from a specific production 

environment setting that continuously prices and sells products for 100 periods. While this is a dynamic 
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model, every period receives an input from the previous output, as indicated by the dashed line. At the 

beginning, product costs are used to set prices, which then determine the contribution margin and 

demand. Consequently, customers purchase the products demanded, which determines the resource 

consumption in the next period. 

 

Figure 68: Event line of the pricing experiment 

Intuitively, customers’ and competitors’ price sensitivity decides the impact of cost-based pricing. 

Before digging deep, explaining the demand parameters α and β is necessary to understand sensitivity 

to pricing errors. When demand α and inelastic pricing behavior β are sufficient, the environment is less 

sensitive to errors and fewer negative consequences may emerge from false pricing (i.e., β= [5,7.5,10]). 

By contrast, when there is price sensitivity (i.e., β= [12.5,15,17.5,20]), the penalties for wrong product 

pricing decisions reduce profit. To address this issue, this thesis first performs a sensitivity analysis of 

β. 

The first experiment deals solely with imprecision in product costs and tests different levels of price 

sensitivity on profit β=[5,7.5,10,12.5,15,17.5,20]. Figure 69 illustrates the impact on profit from this 

dynamic setting. This experiment first finds that imprecision affects firms’ profit in a decision-

facilitating role. From this observation, this thesis concludes that the price sensitivity β of products is 

indeed remarkable for the economic impact of erroneous pricing. 

Another theme identified in the simulation responses in Figure 69 is the steady decline in profit 

under imprecision. Specifically, levels 15, 17.5, and 20 of β show how profit can reduce over time. 

Similarly, there is a rapid drop at the beginning of the periods that afterward continue with a creeping 

profit loss. Hence, this thesis infers that imprecision has a continuing negative impact on profit. 
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Figure 69: Evaluating pricing along with different price sensitivities 

Figure 70 demonstrates four panels that contain a 2x2 design accounting for all the combinations 

with bias and imprecision. Panel A has no errors at all, whereas Panel B shows the impact of bias in a 

complex ABC system with 10 activity cost pools. The bias is constant, where overcosted products sooner 

or later disappear because they will lose market share. Nevertheless, after a transient oscillation, the 

portfolio adopts a steady state. Panel C shows the impact of imprecision on profit. While there are fewer 

profit losses, imprecision does not end up in the equilibrium as in the bias experiment. Most striking is 

Panel D, which reports the interaction between bias and imprecision. Interestingly, there is less 

fluctuation than in Panel B and more substantial losses than in Panel C. In the end, the firm’s profit has 

halved compared with the benchmark scenario. 
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Figure 70: Profit loss effect of erroneous cost information: Panel A: Benchmark; Panel B: Bias; Panel C: 

Imprecision; Panel D: Bias and Imprecision 

Overall, bias and imprecision have economic consequences on firms from small to large losses. 

Whereas the outcome of biased product cost information was rather expected, the implication from 

imprecision was not. This experiment highlights the different qualitative behavior of imprecise and 

biased product cost information. Therefore, both are relevant to consider in product cost decisions. 

Notably, price-sensitive products forfeit market share when imprecision holds. Having bias and 

imprecision, an interacting effect rises and enforces a creeping profit loss. 
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7.6 Contribution 

Product cost measurement and the resulting cost information is of interest both in academia and in 

practice (Krishnan, 2015). The presented numerical experiments assessed the accuracy of product costs 

with respect to bias and imprecision by applying general measurement theory. These experiments are 

therefore among the first to use this theory to evaluate information quality dimensions. Therefore, this 

thesis departs from previous studies and makes the following unique contributions. 

Bigger picture on errors through measurement theory 

This thesis contributes to the error modeling of accounting information by capturing inaccuracy via 

the two quality dimensions of bias and imprecision. Measurement theory can simply differentiate 

systematic and random errors, where the latter are less considered in accounting settings, because the 

existing assumption about imprecision is constancy and independence. In addition, previous cost 

accounting research has used single measurements, which cannot account for the dispersion of random 

measurement errors as imprecision (Babad & Balachandran, 1993; Balakrishnan et al., 2011; Homburg, 

2001; Hwang et al., 1993; Labro & Vanhoucke, 2007, 2008). Therefore, the repeated measurement of 

the numerical exploration has provided a new insight that product cost errors consists of bias and 

imprecision. 

Cost (error) behaviors 

Next, this thesis extends cost accounting knowledge in terms of cost error behavior that guide typical 

error patterns in product costs in complex ABC systems. The bigger picture on the errors in bias and 

imprecision unveils the following error behaviors: ABC systems still measure product costs with large 

transactional activity usage with an undercosting bias, whereas objects with more unit-level activities 

are somewhat accurate. The standard literature hypothesizes that the ABC system may be more effective 

at measuring complex products (Cooper & Kaplan, 1987, 1988). In addition, heterogeneity loses its 

distorting effects in multiple cost pool settings in contrast to the previously investigated single cost pool 

setting (Horngren et al., 2014; Hwang et al., 1993). Another remarkable error behavior is that high 

volume products are less biased, whereas low volume ones still struggled with undercosting in ABC 

systems. Therefore, mass or standardized products are less biased, whereas services or more complex 

products with substantial non-unit-level costs are still strongly undercosted. Overall, cross-subsidization 

is still observable in complex ABC systems, although the literature advocates them as a remedy in this 

respect (Cooper & Kaplan, 1987, 1991; Horngren et al., 2014). 

Information quality through measurement quality 

This thesis also contributes to the discussion on information quality and increasing data in 

management accounting. Measurement is a cornerstone in accounting, with information technology 

likely to help data collection. This thesis analyzed a full ABC system that can reduce bias to zero. 

However, this does not entirely prevent the error because imprecision persists. Therefore, more complex 

costing systems will not necessarily eliminate imprecision (Krishnan, 2015; Quattrone, 2016). Hence, 
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this thesis claims that having more data does not strictly lead to better outcomes when making decisions 

using cost accounting data. 

Decision-making 

When not fully preventing imprecision, this thesis also shows that inconsistent cost information 

affects cost-based decision-making. There is a compelling discussion about inconsistent cost 

information (Anand et al., 2017; Homburg et al., 2017) that emphasizes the implication of false cost 

information. This thesis offered evidence about how imprecision affects the decision-influencing and 

decision-facilitating role of product costs. The reported findings have serious implications for managers’ 

decision-making and stress the requests of accounting information by the IASB (2018). 

The first experiment provided evidence that cost changes under imprecision are less perceivable. 

This parallels the previous analytical work of Hölmstrom (1979) and Banker and Datar (1989) because 

less informativeness weakens signals’ intensity. As a result, principal-agent settings as well as 

performance evaluation are not optimal because of the lack of precision. Moreover, this thesis claims 

that unknown imprecision fosters overconfidence effects (Moore & Healy, 2008; Van den Steen, 2011). 

Concerning the role of decision-facilitating, imprecision has a creeping profit-reducing effect under 

continuous cost-based pricing. Further, biases distort optimal pricing. However, this thesis introduced 

imprecision as decisive, too, where the combination of bias and imprecision seemingly leads to profit 

losses. 
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8. Overall conclusion 

This thesis started with the general question of measuring and managing product costs “right”, which 

is challenging, at least partially, because of their unobservable and interdisciplinary nature. While 

product costs are still not fully observable for measurement, cost management interlinks with 

engineering and general management fields, resulting in a dispersed field. Further, although 

unobservability limits empirical investigation (Balakrishnan et al., 2012a), multi- and interdisciplinarity 

prevent knowledge diffusion (Raasch et al., 2013) and fail to provide a common theoretical foundation. 

Offering greater insight into both these fields, this thesis developed the EAD as a theory-orientated 

framework consisting of engineering design and economic theory to examine product-based planning in 

a decision context. This framework was used to test the existing guidance on modularization in terms of 

its cost-saving potential. The subsequent numerical exploration formalized and identified a non-linear 

cost-saving effect of the product architecture. Moreover, this thesis extended research on the horserace 

between simple and complex product costing. The evidence suggests that the superiority of complex 

ABC systems is sensitive to firms’ cost structure and that direct costs do not necessarily favor a specific 

costing system. In the end, this thesis discussed the lack of precision in product cost information that 

adversely affects optimal decision-making. In the worst cases, it may yield overconfidence and profit 

losses. 

As well as other studies, this thesis is subject to limitations. One major concern is less an empirical 

validation and more a general issue in M&S (Rand & Rust, 2011; Smith & Rand, 2018). There is indeed 

less convincing evidence that the modeled benchmarks fully overlap with realistic product programs 

and their production technology. Imagining what is necessary to move reference firms closer to reality 

by still supplying generalizable and reproducible findings is ambitious. First, one has to collect a large 

sample of “true” product programs and their respective production technologies. For instance, this 

requires the identification of customers’ needs and full traceability of costs. This is problematic because 

marketing struggles to provide such information and cost data are sensitive for firms, causing diligence 

and confidentiality issues. In addition, data collection implies large, costly, and time-consuming efforts 

to raise data quality. From this perspective, one could encourage M&S despite less empirical validation. 

Specifically, while this thesis sought further empirical validation, other communities are already down 

this road. These works thoroughly combine computational results with empirical observations, with the 

management and engineering communities at the forefront. Nevertheless, this thesis draws contributions 

from a rich pool of results, with the following remarkable in a general context. 

[1] First, this thesis proposes a theory-connecting framework that bridges engineering design and 

economic firm theories. This framework addresses questions from both fields in product-based planning 

processes. It also offers a solid theoretical foundation for design modeling (i.e., fundament for 

computational studies), which may pave the way for more investigations. Importantly, it outweighs 

earlier limitations of the AD by extending it to a new multiproduct perspective. This is particularly 



 

 

146 

valuable because single performance product evaluation may oversee the product family picture. 

Additionally, the framework combines the understanding and concepts of both communities that 

frequently criticize and analyze common problems from different angles (Anand et al., 2019; Anderson 

& Dekker, 2009a; Campagnolo & Camuffo, 2010; Davila & Wouters, 2006; Fixson, 2007; Hazelrigg, 

1998; MacDuffie, 2013). The blockage likely leads to the issues of disintegrated knowledge and slower 

theory development (Birnbaum, 1981; Raasch et al., 2013; Tranfield et al., 2003), where the EAD builds 

the necessary bridges through its integrated formalism and model-based character. This formalized 

skeleton for questions and profit-orientated decision-making in product-based planning supports further 

exploitation through computational and empirical models, which may be the starting point for new 

research projects. 

[2] This thesis adds to the discussion on cost-saving effects in modularization by disentangling the 

mechanisms of vertical and horizontal leveraging from the product architecture. The product 

architecture is among the most crucial concepts for designing potential cost-saving effects when 

applying modularization (Fixson, 2005, 2006; Mikkola, 2007; Mikkola & Gassmann, 2003). Using the 

EAD as a framework allows investigation into formalized processes of modularization throughout 

product programs. When testing recommended strategies for vertical and horizontal leveraging (Meyer 

& Lehnerd, 1997; Moon & Simpson, 2014; Otto et al., 2016) and further differentiating them, this thesis 

finds compelling evidence. Arguing that vertical leveraging differs from vertical scaling, overdesigned 

modules provide cost savings in more stringent conditions. This thesis finds that expected and realized 

demand as well as the integrality of the product architecture are crucial for cost efficacy in this design 

mechanism. Horizontal leveraging, advocating at swappable modularity (Otto et al., 2016), displays an 

unexpected non-linear cost effect along the contingency of integral and modular product architectures. 

This general finding suggests that the largest cost-saving potential is from integral product architectures, 

while low to moderate integrality raises the chance of cost increases. Specifically, components with 

large function sharing are most doubtful for cost savings, which prioritizes the degree of component 

function sharing when constructing modules. Overall, this thesis modeled modularization in a 

reproducible and theory-orientated framework that provides a potential future path for intense 

discussions and theory development. 

[3] Next, this thesis contributes to the choice of cost system designs while further disentangling the 

antecedents of the accuracy of complex and simple costing systems. Simple TVC systems should use 

aggregated allocation bases, although recommendations differ. Further, classical cross-subsidization 

does not fully follow the production output concerning over- and undercosting, where, especially, 

overcosting is subtler. Simple, high volume products have rather accurate product costs (Horngren et 

al., 2014). This thesis thus questions the applicability and necessity of the ABC hierarchy because a 

traditional view with variable and fixed costs behaves identically from a qualitative viewpoint. In the 

same vein, a TVC system does not suffer from accuracy for high batch-level costs. This additionally 

questions the cost hierarchy. Consequently, an indication of complex ABC systems mainly corresponds 
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to product-level costs or a share of fixed costs. Additionally, this thesis demonstrates that despite 

increasing information technology and the larger potential of direct costs, cost allocation remains 

relevant. Overall, this study has gone some way toward enhancing cost system design choices, showing 

when complex ABC systems actually pay off and the efficient cost drivers in simple systems. 

[4] Finally, this thesis emphasizes bias and imprecision as necessary error types for obtaining the 

bigger picture. Measurement theory uses bias and imprecision to recognize uncertainty in measurands, 

and accounting information systems are no exception. Therefore, it may be worthwhile to see accuracy 

as a bigger picture of errors, with cost information only accurate when it is unbiased and precise 

(Mertens & Meyer, 2018). Considering the lack of precision is not new in management accounting 

(Banker & Datar, 1989; Datar et al., 2001; Feltham & Xie, 1994; Krishnan, Luft, & Shields, 2005), but 

it has been neglected in the context of product costing. This thesis finds that assumptions of 

independence and constant variance do not necessarily hold because imprecision varies in strength and 

direction for every product regarding its specific antecedents. In addition, observations show that high 

levels of imprecision persist in complex ABC systems despite substantial refinements to cost pools. 

Thus, although the ongoing development of information technology improves measurements, it does not 

necessarily strengthen the quality of outcomes. Concerning cost-based decision-making, imprecision is 

qualitatively different from bias because a lack of precision affects performance evaluation through less 

perceivable cost increases. When not recognizing or teaching managers about this imprecision, the 

phenomenon of overconfidence may appear (Moore & Healy, 2008; Van den Steen, 2011). Further, this 

thesis shows that pricing also causes profit losses, especially when appearing with bias. Overall, this 

thesis thus claims that it is dangerous to neglect imprecision as an error type if wishing to avoid negative 

economic consequences. 
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10. Appendix  

10.1 Detailed algorithms for the simple single cost drivers 

Heuristic Formal model description of the cost driver heuristic for overhead allocation  

Production volume 

(DIV) 

Using realized demand q from a product n and calculating the relative weights. This 

provides the allocation base (qn/Σ(qn)) 

Direct labor56 

(DLH) 

Calculating products’ average estimate AVn of all consumed unit-level activity 

measures (AVsUNIT). Then, using each relative weight in the context of the total sum, 

which provides the respective allocation base (AVn/Σ(AVn)) 

Volume-based 

predetermined 

overhead calculation 

(UAM) 

Using the activity measures AV from the largest unit-level activity AVUNIT in terms of 

costs (i.e., large machines) as the allocation base for all products n (AVn/Σ(AVn)) 

Non-unit-based 

predetermined 

overhead calculation 

(NUAM) 

Using the activity measures AVs from the largest non-unit-level activity AVNON-UNIT in 

terms of costs (i.e., largest setup process) as an allocation base (AVn /Σ(AVn)) 

Direct material input 

requirements 

(DM) 

Using a uniformly drawn material requirement M in accordance with Christensen and 

Demski (1997). Then, calculating the relative product weights (Mn/Σ(Mn)) to build the 

cost allocation base. 

 

  

 
56 This heuristic parallels the “average” heuristic of Balakrishnan et al. (2011) but solely incorporates individual unit-level 

activity measures such as direct labor hours and direct machine hours. Importantly, this cost driver has more information efforts, 

but is still applicable in firm settings. 
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10.2 Numerical example I 

Numerical example in accordance with Horngren et al. (2014) 

DIRECT COSTS [$] 
 

Simple lenses (SL) Complex lenses (CL) 

Labor 600,000 195,000 

Manufacturing 1,125,000 675,000 

Mold cleaning 120,000 150,000 

Sum of direct costs 1,845,000 2,865,000 

Direct costs per unit 30.75 68 

INDIRECT COSTS [$] 

Activities Cost category 
Activity measures  Overheads 

SL CL  SL CL 

Design Product-sustaining 30 70  135,000 315,000 

Setup Batch-level 500 1,500  75,000 225,000 

Machine 

operations 
Unit-level 9,000 3,750  450,000 187,500 

Shipments Batch-level 100 100  40,500 40,500 

Distribution Unit-level 45,000 22,500  261,000 130,500 

Administration Facility-sustaining1 30,000 9,750  192,453 130,500 
  TOTAL  1,153,953 961,047 
  ABC  19.23 64.07 
  TC  30 39 

PRODUCT COST CALCULATION [$] 

 Benchmark  

costing system 

Heuristic  

costing system 

Percentage error 

[PE%] 

SL 60.000 lenses 49.98 60.75 21.54% 

CL 15.000 lenses 132.07 107 -18.98% 
1 Facility-sustaining activities are related to administrative activities, which are completely random in modeling following Noreen (1991), 
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10.3 Numerical example II 

 

Based on a fixed scenario with benchmark costs, the example illustrates various circumstances of costing systems with respect to bias and imprecision. The first 

costing system (see the upper costing system) includes random measurement errors but incorporates aggregation and specification errors. Hence, among the number 

of measures, costly errors for both product costs remain constant (-25%, 50%). This constant systematic drift reflects bias. The second costing system (see the lower 

one) accounts for random measurement errors. Interestingly, measures are dispersing and seemingly uncontrollable. At this point, both product costs are due to 

imprecision (58.60%, 117.63%). Accordingly, this figure depicts the setting that even varying cost measures can be due to unreasonable deviations in resource 

consumption. Our experimental design in the study follows this mechanism in many circumstances.
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10.4 Bayesian updating for conjugate priors (normal distribution) 

This subsection demonstrates the numerical calculation of Bayesian updating assuming conjugate 

priors under a framework of normal distributions.  

Imagine that one has a prior belief at T0 consisting of µ0 and σ0. Then, there is new data x at T1 with n 

observations consisting of µx and σx. 

𝑥 | µ0 ~𝑁𝑜𝑟𝑚𝑎𝑙 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 

 𝜇0 ~ 𝑁𝑜𝑟𝑚𝑎𝑙 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛  

The data updates the existing prior belief 0 and end in the new posterior belief of y consisting of µy 

and σy. The updating procedure is shown in the Figure below. 

 

 

 

Mean calculation of the posterior: 

µ𝑦    (
µ0

 0
2  

µ𝑥

 1
2/𝑛

) 

Variance-centered mean calculation of the posterior: 

µ𝑦    µ0  
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2
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Variance calculation of the posterior: 
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10.5 Experimental designs 

Table 25: Experimental design – Horizontal leveraging 
Independent parameters Control parameters Dependent parameter 

OD [Low, Mid, High] Processes  20 Total cost difference [%] 

Q_VAR [-2,-1,0,1,2] Resources  20  

AV_DENS [0.35,0.5,0.85] Products/Customers 9  

PA_DENS [0,0.2,0.4,0.8,1] Repetitions 50  

UNIT_SHARE [0.3,0.5,0.7] Total costs 1,000€  

RC_VAR [0.5,RND,2] Total demand 100  

NUMB_CM [9,18,27]    

n=121,500 (34 ‧ 5 ‧ 6 ‧ 50) 

Table 26: Experimental design – Persistency of bias and imprecision 
Independent parameters Control parameters Dependent parameters 

DENS [0.35,RND,0.85] Products  50 APE [%] 

Q_VAR [0.5,RND,1.5] Processes  50 Bias [%] 

RC_VAR [0.4,RND,0.7] Resources  50 Imprecision [%] 

UNIT_SHARE [0.4,RND,0.7] Repetitions 150  

COR 0 Total costs 1,000,000€  

ERROR [0.1,0.3,0.5] ABC(CPH) Correl-Size  

CP [1:10:50] ABC(CDH) Big pool  

n=135,000 (6 ‧ 3 ‧ 150 ‧ 50) 

Table 27: Experimental design – TVC system with departments and unit-level cost drivers 

Independent parameters Control parameters Dependent parameters 

DENS [0.35,0.6,0.85] Products  50 Euclidean distance [EUCD€] 

Q_VAR [0.5,1,1.5] Processes 50  

RC_VAR [0.4,RND,0.7] Resources  50  

UNIT_SHARE [0.3,0.5,0.7] Repetitions 20  

COR [-0.6,0,0.6] Total costs 1,000,000€  

ERROR 0 TVC(CPH) UnitSizeRandom  

CP [1,2,...,10,12,15] TVC(CDH) UAM  

N=12,960 (34 ‧ 20 ‧ 8) 
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Table 28: Experimental design – Bayesian updating 
Independent parameters Control parameters Dependent parameters 

DENS 0.6 Products  50 Bias [%] 

Q_VAR 1 Processes  50 Imprecision [%] 

RC_VAR 0.55 Resources  50  

UNIT_SHARE 0.5 Repetitions 40  

COR 0 Total costs 1,000,000€  

ERROR [0.1,0.3,0.5] ABC(CPH) Correl-Size  

CP 10 ABC(CDH) Big pool  

PERIOD 12    

     

n=72,000 (3 ‧ 12 ‧ 40 ‧ 50)  

Table 29: Experimental design – Pricing experiment 

Independent parameters Control parameters Dependent parameters 

DENS [0.35,RND,0.85] Products  50 Δ Profit [%] 

Q_VAR [0.5,RND,1.5] Processes 50  

RC_VAR [0.4,RND,0.7] Resources 50  

UNIT_SHARE [0.4,RND,0.7] Repetitions 20  

COR 0 α 200  

ERROR 0.1,0.3,0.5 β 15  

CP 10 Total costs 1,000,000€  

PERIOD 100 ABC(CPH) Correl-Size  

  ABC(CDH) Big pool  

     

n=6,000 (3 ‧100 ‧20); The experiment of imprecision focuses on a 10 resource environment. Then, a small costing system 

can completely outweigh the bias.  

 


