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—— Abstract

Wireless sensors have been studied over recent years for different promising applications with
high value for individuals and society. A good example are wireless sensor networks for patients
allowing for better and more efficient monitoring of patients in hospitals or even early discharge
form hospital and monitoring at home. These visions have hardly led research as reliability is and
issue with wireless networks to be known error-prone. In life critical applications like health care
this is not an aspect to be handled carelessly. Fail-safety is an important property for patient
monitoring systems.

The Ambient Assistance for Recovery (AA4R) project of the Hamburg University of Techno-
logy researches on a fail-safe patient monitoring system. Our vision is a dynamically distributed
system using suitable devices in the area of a patient. The data in the network is stored with
redundancy on several nodes. Patient data is analyzed in the network and uploaded to a medical
server.

As devices appear, disappear and fail, so do the services being executed on those devices.
This article focuses on a Reincarnation Service (RS) to track the functionality of the processes.
The RS takes suitable actions when a failure is detected to correct or isolate the failure. Checking
of the nodes is done adaptively to achieve a good response time to failures and reduce the power
consumption.
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1 Introduction

Until today, patients need to stay in the hospital after their treatment for monitoring their
recovery or even for diagnosing. With wireless sensor networks (WSNs) these doctors would
be able to monitor the health signals of the patients remotely, while they can be at their
familiar environment. This would not only help reduce costs by reducing the occupied beds
in the hospitals, but might also help people recover. People tend to recover better in their
families and many infections happen in hospitals!.

! See http://www.bmg.bund.de/praevention/krankenhausinfektionen/fragen-und-antworten.html
(2014-02-10)
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Using a WSN for patient monitoring rises several problems regarding the fail-safety of
the system. Wireless links are volatile and nodes can fail. While those problems also affect
other kinds of WSNs, in patient monitoring they can be life critical.

This work is part of the Ambient Assistance for Recovery (AA4R)? project of eight
institutes at the Hamburg University of Technology. The project aims at building a patient
monitoring system to support recovery of patients and relieve of hospital personal. This will
be achieved by an uninterrupted use of technology from the ward of a hospital over a rehab
center to the patients home. By this, we are closing the gaps between ambient assisted
living in home care, telemonitoring and telediagnosis. Fail-safety is addressed at different
subsystems such as the communication infrastructure or the sensors themselves. Further,
the fail-safety is addressed at system-level. In this paper we primarily focus on fail-safety in
the communication infrastructure.

The system is distributed using resources available in the area. We point out and model
different sources of failure and discuss strategies to reduce them and the risk of a total
failure of the system. To achieve that, we build a monitoring service for the system, called
Reincarnation Service (RS). The RS discovers faults and takes actions to solve them.

In the next chapter, we review related work and show the differences to our approach.
The vision of our scenario is introduced in the third chapter, followed by possible failures and
failure rates. We discuss our approach and the expected improvements in the fifth chapter.
In chapter six, we give a conclusion and discuss the future work.

2 Related Work

Chipara et al. [4] built and tested an IEEE 802.15.4 based wireless monitoring system for
patient data. In contrast to our idea of monitoring the patient at home for longer periods,
they only measured for up to three days during the patients stay at the hospital. The sensor
data was limited to the pulse rate and the oxygen level of the blood. Data rates were only
in the range of several bytes per minute. As the patients only moved inside the hospital
and several relay points where installed to forward the data, the network reliability was
not problematic in this study. The system was centralized and the nodes preconfigured.
Problems of reliability in a distributed system were not investigated. The work of Ko et
al. [7] invested a similar system.

Chen et al. [3] investigated a routing protocol for patient monitoring and fall detection
at home. In case of emergency the system transmits the ECG and in-door position of the
patient to first responders. Their protocol ensures a fast and reliable delivery of the data.
The system is closed and no ambient sensors or other devices are used.

Preventing or avoiding faults is not possible in complex distributed systems. We plan
to detect and correct or isolate faults in the system. To achieve high reliability, Herder
et al. [5] described a Reincarnation Server in the Minix 3 operating system. This server
periodically checks the state of the other services in the system and restarts them when
they are broken. The described method is used on one machine and the checking time is
constant. Nevertheless, we can use that idea of failure detection and correction and thereby
increase the overall reliability of the system.

This approach can also be read out of the white paper of IBM [6] about self-healing,
self-configuring and self-optimizing. They identified a four state healing loop consisting of

2 http://www.aadr.org/
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Figure 1 Network Architecture.

monitoring the state, detecting errors, analyzing the failure to plan the repair and executing
the repair.

Our implementation will use the CometOS framework [12]. CometOS allows us to write
code that can be simulated in Omnet++ and compiled for testbed hardware. This reduces
the risk of failures during the migration of the software.

3 Scenario

The AA4R project aims at people recovering from different kinds of incidents. From a broken
leg over to heart attack. These people need to stay in hospitals to monitor their recovery
and ensure they are not suffering a fall-back. Another scenario are people coming to the
hospital without knowing what is wrong. They also need to stay in the hospital to monitor
their health values and be able to make a diagnosis. We want those people to be able to
go home and continue with their lives. Our monitoring system will assist patients in their
recovery and the physicians in their diagnosis. It will help prevent dangerous situations and
call help in emergency situations.

The system we envision consists of a Body-Area-Network (BAN) of sensors, collecting
vital information, ambient sensors and other External Devices (EDs), building a Personal-
Area-Network (PAN). EDs, like smartphones, smartwatches or laptops, are used for the
PAN-Controller (PAN-C). Figure 1 shows the network architecture of the Patient-Network
(PN) including the BAN, EDs building the PAN-C and an ambient sensor. The sensors in
the BAN might have direct connections to several EDs, but only only one connection will
be preferred, depending on the stability of the connection and the resources of the device.
On the other end of the Internet will be a medical server, which stores the information of
the patients under pseudonyms for diagnosis by physicians.

The PAN-C is a distributed system consisting of different services in the network. A
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service will be delegated to the most suitable device, determined by their available resources

and connections. Those services are:
Forwarding: We want to send the data to a medical server. The server can automatically
analyze the data and prepare relevant graphs for physicians or present raw data for
doctors to monitor the values or figures remotely. This service needs to be done by a
device having a reliable Internet connection.
Storing: Storing the data that is collected in the BAN and other ambient sensors needs
to be done redundantly by several devices. The data is needed for analyzing the health
status in the network and to maintain the state and integrity of the system. Not only
the current, but also the past data of the medical sensors is important to understand
the situation of the patient. This service becomes critical when lacking an Internet
connection.
Plausibility: This service looks for anomalies in the sensor data to detect drifts or other
failures of sensors. To achieve that, we need to have past data available.
Inclusion: This service can be described as the coordination service. New devices for
services of the PAN-C need to be found and included in the network. Also, ambient
sensors that might be helpful to analyze the patient data, e.g. room temperature and
humidity, need to be included. This service can be compared to the Membership Service
in the work of Rodrigues et al. [11].
Control: The control service allows medical applications to use possible actuators in the
BAN. A patient with diabetes can get his insulin automatically or a patient with strong
pain can get his analgesics. This service also needs to eliminate the risk of overdosing
the patient.

Services on the EDs run as virtual machines to be separated from the rest of the devices
system. This also enables us to simply copy the service to a different device and switching
the responsibility to the new device.

Having several devices responsible for the services in the network reduces the risk, that
all devices fail at once, but it increases the risk that devices running important services fail.
Also consistency of data and decision are critical points in the network. Failures of services
need to be detected to take measures to isolate and try to repair the failures. For that, a
Reincarnation Service (RS) will run on every device to monitor the state of the connected
devices.

The overlying application should not be concerned with failures of devices in the network.
Only if a service can not be fulfilled by any other device or compensated by another service,
the application should be informed to take actions.

4 Failures

As this system is responsible for a human being, a failure of one single component could

lead to an undiscovered critical situation of the patient and thereby to death. That is why

we need to analyze the possible faults in the system. We identified seven fault categories:
No Internet connection: The data needs to be transmitted to a medical server for
remote monitoring by a doctor. If the connection fails, the data needs to be temporarily
stored locally and transmitted when a connection comes up again. For diagnosis, this
will be a sufficient solution. In emergency situations, this problem can be life critical.
Depending on the previous condition of the patient, a timeout might be used to trigger
an emergency call on the server.

41

MCPS’14



42

Adaptive Failure Detection and Correction in Dynamic Patient-Networks

Data Loss Invalid Data

igratio
Failure

Retry
Failed
Device
Failure

Figure 2 Fault Tree.

Low Storage: The last data should always be held on nodes in the network for a better
analysis of the current patient state. In case of a lost Internet connection the data needs
to be kept even longer, so that the storage may get sparse.

Migration failure: The state of the network needs to be known by every device. Dur-
ing transfer of a service from one device to another, inconsistencies in the distributed
information might arise.

Sensor failure: Sensors might drift, have an offset or even stop working. Those errors are
not further considered in this work, as they are part of the analysis that other members
of the AA4R project are working on.

Device failure: Any device can randomly fail because of bad production or wear-out.
Software failure: We can not guarantee an error-free program. An error may also be
caused by a memory shortage. In this case it might work again after a restart.

Battery low: As we are using wireless devices running on battery, any device can run
low on battery. This failure can be easily foreseen.

The fault tree in Figure 2 shows the impact of the given failures. Only if one of the three
subsystems fails and we encounter data loss, service loss or a sensor failure, the application
must be informed. Otherwise the faults can be masked for the application, be it through a
state-machine or a primary-backup approach [8]. Invalid data will be handled by the analysis
service, which might just discover a drift or switch to a redundant sensor, if available.

Masking failures allows the application to concentrate on its service rather than having
to deal with error handling. It is still possible for faults to occur, thus fault handling can
not completely left out.

4.1 Expected Failure Rates

Failure rates, hazard rates or hazard functions are names for the expected failures at a
given time. In contrast to the probability density function f(t), which depicts the overall
probability of failures per time, the hazard function h(t) depicts this probability under the
assumption, that no error happened before. It is the fraction of the probability density
function by the survival rate, whereas the latter is S(t) = 1 — F(t).
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For electronic devices Nowlan and Heap [10] proposed a hazard function with an infant
mortality and a constant failure rate. The infant mortality is caused by incapable devices,
program or migration errors. Those errors are more likely to happen at the beginning of
the lifetime of a device. Devices that survive the infant mortality phase are not likely to
suffer from those errors. The constant failure probability is due to battery drain, interfering
failures or devices moving out of reach. Those errors can happen at any time. A wear-out
mortality is not included, as the system is not expected to run tens of years. We can also
expect that the patient is taking care of his or her smart phone battery.

The infant mortality can be described with the Weibull distribution (equation 1), with a
0 < k < 1 [13]. k is the shaping factor, where k < 1 results in a decreasing failure rate over
time. A is the scaling parameter. fi;, (t) describes the error probability at a certain time, (2)
is the cumulative error probability and (3) shows the hazard function:

fim (£) = kAL, g5 o™ Qumt)" (1)
Fim(t) = 1 — e~ ()" (2)
hip () = kAR t571 (3)

Failures by interfering signals or devices moving out of range can occur at any time.
Those failures are not more likely to happen at the beginning or after some time. The
constant failure rate can be described by an exponential distribution. Equations (4), (5)
and (6) show the probability density function, the cumulative distribution and the hazard
function of the exponential distribution:

fo(t) = Aee A<t (4)
Fc(t) =1-e Act (5)
hc(t) = )\c (6)

The hazard functions can be easily combined by addition to get the system hazard
function in equation (7). For any given interval [t,;t] we can calculate the probability of a
failure, under the assumption that no failure occurred before time t,, with the equation (8):

h(t) = kA t571 4 A, @)
_F(t) = F(t) _ | et Ot
Ptait(ta, tn) = 1-F(ta) 1- e—Acta—(Aimta)® ®

Figure 3 depicts sample hazard functions for equations (3), (6) and (7). The used example
values are later discussed in section 5.1.1.

5 Counter-measures

To achieve fail-safety, the system needs to be in a stable state, although inevitable faults
may occur. For that, we need to detect the failures as fast as possible and take measures to
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Figure 3 Sample of hazard functions for equations (3), (6) and (7) with k = 0.2, Aim = 0.93352
and Ac = 000462

solve them. The system must not rely on one single node. Also, even if a service or data
is lost, the system needs to be aware of the situation and keep on working with its limited
capabilities.

There are no metrics for fail-safety, but we can use the Mean-Time-To-Failure (MTTF),
Mean-Time-To-Recovery (MTTR) and the fraction of components allowed to fail, before the
system becomes unstable. Those figures are used to describe the reliability.

For the different kind of failures, we have to take specially assembled counter-measures:

Link Quality Prediction: By predicting the quality of a link, we can take measures to

switch a service from a node to another one, before it is disappearing. This would extent

a Link-Quality-Estimator (LQE) to a Link Quality Predictor.

Redundant storage: As nodes with important information can disappear without warn-

ing, we need to have redundant data in the network. Acedanski et al. [1], Nguyen et al. [9]

and Rodrigues et al. [11] have analyzed distributed network storage with random linear

network coding. Nevertheless they can not assure that data is available after some time.

Depending on the sensors data-rate and the number of devices and their capacities, data

needs to be deleted eventually. We want to use an approach that assure data availability

and prioritizes the data by importance, so only dispensable data gets lost.

Reincarnation Service: For detecting failures in software and loss of connection, a Rein-

carnation Service (RS) checks the state of the devices and processes. In case of failure,

the process can be restarted or a substitute can be found.

The RS itself also needs to be distributed. Every device running a service has a RS
responsible for the services on that device. This ensures reliability of services on the devices.
Figure 4 shows the layered software architecture on two connected devices. Services that
are not present on a device, due to limited resources, can be used from another device.
The medical application itself does not know, where the services are hosted. The RS is
responsible for the services and the application to be running and available.

As devices can also fail or disappear, the device that has include another device, that
means it has delegated a service to that device, is responsible for that. The Reincarnations
Service has to check the Reincarnation Service on the other device.

5.1 Detecting Failures

To detect failures, processes and devices need to be checked periodically. The question
remains how often a check should be performed. Too frequent checks will drain the battery
and cause congestion, too few lead to long unrecognized failures which can cause other
failures.
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Figure 4 Software Architecture, showing two devices offering different services
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Figure 5 Influences of At.

Setting the probability of failures in an interval to a fixed value fail,, .5, we can calculate
the next time we need to check if the service is still alive. By that, we achieve an adaptive
testing of the process, depending on the expected failure rate. But solving that equation is
not trivial. We use the Newton method to approximate the next time to check (equation 9):

max)

0 = AAt + A ™ ((t + At)* — tk> + (1 — Ppay

max)

A(:Atmin + )\imk ((t + Atmin)k - tk> + ln(l - Pfail

Atn xt — Atmin +
o e — KA (6 + Atyngn) <!

(9)

If that equation results in a Atyexe less than Atpin, Atpexs 1S set to Atyin. To make sure
that a failure does not stick undetected for a long time, it is best to also set Atpext < Atmax-
Figure 5a shows a sample curve for an adaptive At, whereas Figure 5b depicts the failure
probability during the different intervals for fixed Ats and the adaptive one from Figure 5a.

After detecting a failure, other processes must be tested again, regardless of their next
checking time. This way, we can check if the failure affected other processes or was introduced
by the failure of another process.

5.1.1 Calculating the parameters

To create a fitting curve, we need to know the parameters k, A\. and Ajp,. k and Ay, will be
set to fixed values. They can be estimated in advance by empirical values of failures.
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For every device that was already used for the PAN-C, we can adaptively compute A.
with an exponentially weighted moving average (EWMA) filter. As for a constant failure
rate, the MTTF is the inverse value of A.. We can use the last time to failure to update our
estimation. Devices that are known to stay in the network for longer times will be checked
less frequently than devices that disappear after short times.

5.1.1.1 Example

Assume we have a smartphone with a MTTF of two years, the battery holds for 24 hours
and we expect the device to stay in the network for 8 hours. If we experience a migration
failure, it is expected to occur in the first second. If the software has a failure we expect it
to occur in the first minute. The MTTF of the whole system can be calculated by [2]:

1 _ Z 1
MTTF B MTTFsubsystcm -

We do that separately for the infant mortality failure and for the failures with constant
failure rate. The migration failure and the software failure are part of the infant mortality,
with an MTTF of about 0.9836 s. The MTTF for this is the expected value of the Weibull
distribution, which is calculated by:

Lratn — N = LULER)

B(X) = Nim MTTF

Assuming k = 0.2, we calculate \j,, = 0.9334 % The lower we set k, the more we decrease
the influence of infant mortality failures to the long term failure rate.

¢ is simply the inverse of the MTTF for the device, the battery and the device availabil-
ity. By that we get Ac = 4.63-107° 1. The Round-Trip-Time (RTT) between two neighbor
nodes in IEEE 802.15.4 can be estimated with 20 ms (including MAC retries and Back-offs),
S0 Atmin should not have a lower value. To also allow other packets in the network to freely
flow, we set Atmin = 80 ms. Atnay is set to one second, so we are still able to catch failures
after at least that time.

Those calculated values were used in the example Figures 5a and 5b. The maximum
failure probability per interval was set to fail . = 0,62%.

When the smartphone disappears from the network after two hours, . will be recal-
culated for the next time. The experienced time to failure would result in a Acexp =
1.39-1074 % A new A. will then be calculated by:

)\C,new = a)\c,old + (1 - a))\c,exp .

5.2 Defeating Failures

When failures occur, it is important to understand their cause. When the device failed, the
service needs to be switched to another device, but if it was a random failure it might be
sufficient to restart the process. On the other hand, if the service program for that device
is error-prone, the service needs to be updated.

Of cause, switching the service to another device is not an option if no other is available.
If the device is still available and no other is capable of fulfilling it, the service needs to be
restarted. Otherwise, if the device is not available anymore, the service must be set on hold.

The checking of devices and services by the RS must not only rely on a simple echo ping,
but must ask for the devices and services state. Services might need to do a simple job, to
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see, if the service is still working properly. Answers by devices need to inherit the battery
status, link quality, RAM usage and a version of the information used on that device. With
this information, we can derive a probable cause for the failure. We can see if the information
is out of date, the processes ran out of ram, the link went weak or if the device went out of
energy.

The gathered information about the device can also influence the next checking time. A
device responsible for the Internet connection with a bad link quality to the WiFi should be
tested more often, than with a good link quality.

Another way to defeat failures is to have redundancy. We already mentioned to store
data redundantly on the devices of the network, but we can also have several devices fulfilling
the same service, as it is done on aircrafts. But in contrast to aircrafts, we have a dynamic
system with changing devices and can only do that, when spare resources are available. The
up-lying applications have to make their requests through the RS, unknowing where the
services are fulfilled. That way failures can be masked from the applications and only get
an error, when a service is not able to run anymore.

5.3 Expected Improvements

By implementing this adaptive checking behavior, we expect to keep the probability of
undetected failures below a set maximum failure probability Pg.j while also not keeping
the network occupied with checking packets and having a low energy consumption. Network

max )

capacities force us not to stick to that optimum, when the failure rate would expect a
checking time below the round-trip-time. The adaption by an EWMA filter will make sure,
that the assumed hazard rate will reflect the experienced disappearing of a device.

With the RS we also mask failures of devices from applications. Only when service can
not be fulfilled anymore, the applications will be informed and can take actions on their own.

6 Conclusion and Future Work

In this work we presented our vision of a fail-safe dynamic Patient-Network for health
monitoring. To achieve fail-safety, among other counter-measures we propose an adaptive
checking of the functionality of the components by a Reincarnation Service (RS). Instead of
a fixed interval to check the components, we use an interval corresponding to the expected
failure-rate. By that, we hope to keep the probability of undiscovered failures below a set
threshold, while not flooding the network with checking packets and also keeping the energy
consumption low.

Those measures for a fail-safe distributed health monitoring system, have not been im-
plemented and tested yet. We want to build an Omnet++ simulation to validate our as-
sumptions. We also need to further investigate the possible steps to be taken, when a failure
is discovered.

In this paper we only focused on an the adaptive checking of processes and devices. We
have not discussed how to check the functionality of a process. It is also our aim to investigate
in a fail-safe distributed storage and the prediction of disappearing nodes with LQE.

Other works of the AA4R project will focus on the security of the system, analysis of
the data and validation of the model.
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