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Magnetic particle imaging (MPI) is a tomographic imaging technique that allows the determination of the 3D spatial distribution
of superparamagnetic iron oxide nanoparticles. Due to the complex dynamic nature of these nanoparticles, a time-consuming
calibration measurement has to be performed prior to image reconstruction. During the calibration a small delta sample filled
with the particle suspension is measured at all positions in the field of view where the particle distribution will be reconstructed.
Recently, it has been shown that the calibration procedure can be significantly shortened by sampling the field of view only at few
randomly chosen positions and applying compressed sensing to reconstruct the full MPI system matrix. The purpose of this work
is to reduce the number of necessary calibration scans even further. To this end, we take into account symmetries of theMPI system
matrix and combine this knowledge with the compressed sensingmethod. Experiments on 2DMPI data show that the combination
of symmetry and compressed sensing allows reducing the number of calibration scans compared to the pure compressed sensing
approach by a factor of about three.

1. Introduction

Magnetic particle imaging (MPI) is a promising method for
imaging the spatial distribution of magnetic nanoparticles
(MNP) [1, 2] in vivo [3–5]. When such contrast agents are
administered into the blood pool, MPI is capable of revealing
the blood flow [6] and potentially allows the detection of
coronary artery diseases provided that the resolution and
sensitivity will be preserved when scaling up the preclinical
scanner [6] to a human size.

When usingMNPs in clinically approved concentrations,
the relation between the particle distribution and the voltage
signals induced in the receive coils of an MPI system can
be assumed to be linear and thus formulated as a linear
system of equations. But due to the complex dynamics of
the nanoparticles, it is challenging to accurately model their
precise physical behavior, especially for dynamic 2D and
3D imaging sequences like the commonly applied Lissajous
sequence [2, 7, 8]. Thus, in practice, the MPI system matrix

is usually not explicitly known [9]. The common method to
determine the systemmatrix is to perform a time-consuming
calibration scan where the system response at all spatial
positions is measured using a point-like nanoparticle sample.
This calibrationmeasurement takes about 6 hours for volume
grids of size 34 × 28 × 20 covering a field of view (FOV)
of 20.4 × 12 × 16.8mm3 [6]. When changing any scanning
parameter such as the drive-field amplitude or the selection
field gradient, the calibration has to be redone. Also, a change
of the particle batch usually leads to small but noticeable
changes in the MPI signal [10].

The first attempt to reduce the amount of calibration
scans has been carried out in [11]. By exploiting the special
structure of theMPI systemmatrix and applying compressed
sensing techniques [12], the amount of calibration data could
be reduced to about 20% of the entire system matrix without
significantly affecting the image quality.

Thepurpose of the presentwork is to reduce the necessary
amount of calibration data for recovering the MPI system
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matrix with sufficient accuracy even more. To this end, it
is exploited that the MPI system matrix has symmetries in
every spatial direction which allows taking the calibration
scans only from one quarter and obtaining the full matrix
by mirroring [13]. But in this way for 2D MPI one can
only reduce the amount of calibration data to 25%. In order
to achieve reduction rates that are below that of the pure
compressed sensing approach, we therefore combine the
symmetry method with the compressed sensing technique
developed in [11].

2. Preliminaries

InMPI, the relation between the particle concentration 𝑐 and
the 𝑘th Fourier coefficient of the measurement signal 𝑢̂ can
be described by the integral equation

𝑢̂
𝑘
= ∫

FOV
𝑠
𝑘 (r) 𝑐 (r) d𝑟, (1)

where r is the spatial position in the FOV and 𝑠
𝑘
(r) denotes

the system function. By discretization of the FOV with 𝑁
sampling points r

𝑛
, 𝑛 = 0, . . . , 𝑁 − 1, a linear system of

equations

û = Sc (2)

is obtained, where û = (𝑢̂
𝑘
)
𝑘=0,...,𝐾−1

is the measurement
vector, c = (𝑐(r

𝑛
))
𝑛=0,...,𝑁−1

is the particle concentration
vector, and

S = (𝑠
𝑘
(r
𝑛
))
𝑘=0,...,𝐾−1,𝑛=0,...,𝑁−1

(3)

is the MPI system matrix. Here, one row of the MPI system
matrix describes the spatial distribution of the corresponding
frequency component and is commonly denoted as system-
function component.

Normally, the MPI system matrix is obtained by a
calibration procedure where a delta sample with the size
of one voxel filled with the used tracer material is shifted
to all discretization positions within the FOV and at each
position the system response is measured. Each calibration
scan corresponds to one column of the MPI system matrix
which can be mathematically described by multiplying the
system matrix S with a unit vector. Here, the index of the
nonzero component of the unit vector corresponds to the
calibration position.

3. Symmetries of the System Function

With the assumption of ideal coils and isotropic particles
that instantaneously followmagnetic field changes, symmetry
properties of the system function can be established. To this
end, the system-function component 𝑠

𝑘
(r)has to be separated

by

𝑠
𝑘
(r) = 𝑎

𝑘
𝑚
𝑘
(r) , (4)

where 𝑎
𝑘
is the transfer function of the receive chain and

𝑚
𝑘
(r) is denoted by signal function component. Due to the

symmetric behavior of the Lissajous excitation sequence, the
signal function exhibits symmetry properties as well, which
depend on the frequency ratio of the excitation frequencies.
In the setting of the 2DMPI experiment outlined in Section 6
the signal function can be mirrored in vertical direction
by multiplication with a symmetry factor. In horizontal
direction, additional to the multiplication with a symmetry
factor, a complex conjugation has to be performed. A more
detailed explanation with a theoretical derivation of the
symmetry properties is given in [13].

In Figure 1, original system-function components and
their mirrored versions are visualized. As one can see,
the system-function components are highly symmetric. The
differences at the border are due to drift artifacts caused by
the long measurement time of the calibration procedure.

One challenge when utilizing the system matrix symme-
tries in practice is that the symmetry axis is not exactly known
(e.g., due to field inaccuracies and shifts induced by the earth
magnetic field). When the symmetry axis does not perfectly
match the central position between two pixels,mirroring thus
can lead to discontinuitieswhich influence the reconstruction
result negatively. To avoid this problem, a slightly larger
region than one-half/one-quarter has to be measured. Using
this overlap a smooth transition by a weighted averaging
depending on the distance to the symmetry axes can be
enforced.

In [13] it has been shown that the high similarity between
the mirrored and the original system-function components
can be utilized to reduce the number of calibration scans by
a factor of three to obtain the same reconstruction results as
when using the fully sampled system matrix.

4. System-Function Recovery Using
Compressed Sensing

A further method to accelerate the calibration process is
the usage of compressed sensing [12] to recover the system
function from an undersampled set of calibration scans [11].

Basically, compressed sensing is a technique to solve an
underdetermined linear system of equations, which has an
infinite number of solutions. To obtain the desired solution,
further constraints have to be imposed. In compressed
sensing the usually imposed constraint is that the solution of
the linear system is sparse; that is, it has only a few coefficients
which are unequal to zero.

For the MPI system matrix it has first been observed
in [14] that the individual system-function components are
highly compressible when a certain basis transformation B
is applied, like the discrete Fourier transformation (DFT)
or the discrete Cosine transformation (DCT). The basis
transformation forms the linear system of equations

ŝ
𝑘
= Bk
𝑘 (5)

involving the discrete system-function component ŝ
𝑘
=

(𝑠
𝑘
(𝑟
𝑛
))
𝑁−1

𝑛=0
. The coefficient vector k

𝑘
has only few nonzero

components when B is a DFT or DCT matrix.
When subsampling the spatial grid at which calibration

scans are performed, the system-function components ŝ
𝑘
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Figure 1: Several original system-function components of the 𝑥-channel and their mirrored versions at frequencies 𝑓 ∈ {180 kHz, 359 kHz,
412 kHz}. Vertical mirroring is performed from left to right and horizontal mirroring from top to bottom.

are subsampled as well. In turn, linear system (5) becomes
underdetermined

ŝ
𝑘,𝑟
= B
𝑟
k
𝑘 (6)

with a reduced measurement vector ŝ
𝑘,𝑟

and a reduced
basis transformation matrix B

𝑟
. This underdetermined linear

system of equations can be solved by compressed sensing. In
order to calculate the complete system-function component
ŝ
𝑘
, the basis transformationB has to be applied to the solution

k
𝑘
after compressed sensing reconstruction.
Besides the requirement of a sparse solution k

𝑘
, com-

pressed sensing further requires that the reduced system
matrix B

𝑟
exhibits a low coherence. This is usually achieved

by choosing the subsampling positions in a random fashion
(see [15]).

There exists a multitude of algorithms to solve the
compressed sensing problem [16–18]. In the present work,
the fast iterative shrinkage-threshold algorithm (FISTA) is
chosen [19] that has already proven its good performance for
the MPI system matrix recovery problem [11].

In [11] it has been shown that at a sampling rate of 20%
no significant difference in the reconstructed image quality
can be observed. Even a reduction to 10% of the original cal-
ibration scans yielded an acceptable image quality. However,
a further reduction to 5% degraded the reconstructed image
quality considerably.

In Figure 2 several system-function components
obtained with the pure compressed sensing method are
visualized. Thereby compressed sensing was applied with
the DCT and in combination with the FISTA algorithm. It
can be clearly seen that the quality of the system-function
components degrades with decreasing sampling rate and

depends on the spatial structure of the system-function
component since finer structures can be less compressed.

5. Combining Symmetries with
Compressed Sensing

In the last section two independent ways to reduce the
number of calibration scans necessary to reconstruct theMPI
system matrix were discussed. Next, it will be discussed how
the compressed sensing method can be combined with the
symmetry method. For simplicity only vertical symmetries
are considered in the illustrations. As it turns out, there are
twodifferent possibilities for combining symmetry properties
with compressed sensing.

On the one hand, one can sample the system function
in one-half and first apply compressed sensing in order to
reconstruct the full half of the system-function component.
In the second step, the entire system-function component
is reconstructed by mirroring. This method, which we call
CS/Symmetry, is illustrated in Figure 3. As the system-
function components are nonperiodic when considering only
one-half (or one-quarter) of the FOV we have found that the
DCT performs better than the DFT when used as sparsity
transformation for compressed sensing.This is due to the fact
that the DFT assumes periodic data.

On the other hand, one can first mirror the sparse
sampling positions such that they cover the entire FOV. In the
second step, compressed sensing is applied in order to recover
the dense system-function component. An illustration of
this Symmetry/CS method can be found in Figure 4. Testing
the DCT and the DFT, no significant difference in the
performance up to a sampling rate of 5% could be recognized
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Figure 2: Several system-function components of the 𝑥-channel at frequencies 𝑓 ∈ {180 kHz, 359 kHz, 412 kHz}, which are obtained with
compressed sensing at different sampling rates. Compressed sensing is performed with the DCT in combination with the FISTA algorithm.

Compressed Mirror

System matrixUndersampling Reconstruction

sensing reconstruction

Figure 3: CS/Symmetry method: first recovery of a part of the system function using compressed sensing. Afterwards mirroring of the
reconstructed part to obtain the whole system function.
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Figure 4: Symmetry/CS method: first mirroring of the measurement data. Afterwards recovery of the whole system function using
compressed sensing.
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for the Symmetry/CS method. At smaller sampling rates
the DFT shows better reconstruction results. Thereby the
restriction of the sampling scheme has a larger influence on
the DCT than on the DFT.

Due to the uncertainty of the real mirror axes (see
Section 3), theCS/Symmetrymethod requires reconstructing
the system-function component with a small overlap so that
a smooth transition in themirroring process can be enforced.
In contrast, this overlap can be neglected in the Symmetry/CS
method, because the compressed sensing reconstruction does
inherently smooth the data such that no discontinuities
occur.

6. Materials and Methods

In the present work we use the same MPI data as in [11]. The
data has been measured with the MPI mouse scanner that
was first published in [6]. It has a bore size of about 32mm
and allows imaging small mice. The selection field gradient
strength is 5.5 Tm−1𝜇−1

0
in 𝑥-direction and 2.75 Tm−1𝜇−1

0

in 𝑦-direction. The drive amplitudes are 18mT𝜇−1
0
. A 2D

Lissajous imaging sequence has been performed with drive-
field frequencies 𝑓

𝑥
= 2.5MHz/96 ≈ 26041.7 kHz and 𝑓

𝑦
=

2.5MHz/99 ≈ 25252.5 kHz. The resulting repetition time
considering an averaging factor of 17 is 𝑇 = 21.42ms.

While the signal is sampled with 20MS/s, only frequency
components up to 1MHz are used for reconstruction. In the
frequency range above 1MHz no detectable MPI signal was
measured. The total number of frequency components in
each receive channel is 1268. As only two of three receive
channels are required for 2D imaging, the total number of
system matrix rows is 2536.

In the presented pictures of system-function components
and reconstruction results the horizontal direction coincides
with the 𝑥-direction and the vertical direction with the 𝑦-
direction.

For reference a fully resolved system matrix is captured
at 68 × 37 equidistant positions spanning a FOV of 20.4 ×
11.1mm2. The different system matrix recovery methods
are evaluated by using only a subset of the positions of
the full system matrix. For the combined Symmetry/CS and
CS/Symmetry approach, the random samples are taken in
one-half (vertical and horizontal symmetry) or one-quarter
(when exploiting both symmetries) considering an additional
overlap for the CS/Symmetry method. The sampling rates
reported in the results section are always relative to the total
number of positions of 2516. For the combined Symmetry/CS
and CS/Symmetry method, the sampling rate takes both the
symmetry undersampling and the CS undersampling into
account.

In order to determine the impact of the system matrix
error on real MPI images, measurements of a rotating P
phantom consisting of 12 holes each of a diameter of 0.5mm
were acquired.

For image reconstruction, the iterative Kaczmarzmethod
is used considering 5 iterations and a regularization parame-
ter, which is chosen such that the best visual result is obtained
(see [4]).

7. Results

7.1. System Matrix. First we consider the reconstruction of
the system matrix using the different recovery methods and
calculate the deviation from the fully sampled systemmatrix.

In the first experiment, we test whether it is better to
first mirror the system function and then apply compressed
sensing or whether the reverse order is better. In Figure 5
the mean normalized root mean squared error (NRMSE)
considering the 100 system matrix rows with highest signal-
to-noise ratio (SNR) is shown for different sampling rates.
In this example a vertical mirroring has been applied. As
one can see, for sampling rates above 20% both methods
perform equally. However, for sampling rates below 20% one
can see that the Symmetry/CS method is better than the
CS/Symmetrymethod. In the followingwe therefore consider
only this procedure.

It should be noted that the mean NRMSE shown in
Figure 5 is limited by the symmetry error for sampling
rates above 20%. The symmetry error is about 5.5% for the
considered dataset and vertical symmetry. For sampling rates
below 20% the compressed sensing methods contribute an
additional error that increases for decreasing sampling rates.

Next, it is checked if the combination of mirroring with
compressed sensing works equally well for the different
mirror combinations. The NRMSE are shown in Figure 6.
As one can see, for each mirror combination (vertical,
horizontal, and both) there is a different baseline error that
is independent from the sampling rate. It is at about 5.5% for
vertical mirroring, 4.4% for horizontal mirroring, and 6.2%
when exploiting both mirror axes. Although the procedure
that uses both mirror axes has a higher symmetry error it
behaves better for low sampling rates (i.e., below 7% sampling
rate). Thus, to achieve the highest undersampling one should
use both mirroring axes and apply compressed sensing.

To demonstrate that exploiting the system-function sym-
metries provide a benefit compared to the pure compressed
sensing approach the NRMSE of the reconstructed system
matrices are compared in Figure 7. One can see that the
pure compressed sensing method performs better at modest
sampling rates because it has no systematic symmetry error
due to drift artifacts. However, below 10% sampling rate the
combined approach clearly outperforms the pure compressed
sensing approach.

Several system-function components which are obtained
with the Symmetry/CS method are visualized in Figure 8. At
a sampling rate of 7.5% no significant difference to the pure
mirrored system-function components can be seen. A further
decreasing of the sampling rate causes artefacts whereby as
for the pure compressed sensingmethod the system-function
components with the finest spatial structures exhibit the
largest degradation.

7.2. Phantom Measurements. After analyzing the NRMSE
of the MPI system matrix for the different reconstruction
techniques, how the error translates to the MPI phantom
images when using the approximated system matrices for
image reconstruction is investigated next.
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Figure 5: Mean NRMSE between the fully sampled system matrix
and the reconstructed system matrices using the Symmetry/CS and
the CS/Symmetry approach with vertical mirroring for different
sampling rates. For the mean NRMSE calculation only the 100
system-function components with the highest SNR were taken into
account.
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Figure 6: Mean NRMSE between the fully sampled system matrix
and the reconstructed system matrices using the Symmetrie/CS
method and three different mirror strategies (vertical, horizontal,
and both) at different sampling rates. For the NRMSE calculation
only the 100 system-function components with the highest SNR
were taken into account.

As a reference, two frames of the captured P phantom
time series reconstructed with the original system matrix are
shown in Figure 9 (first column). It can be seen that the dots
of the P phantom can only be resolved in vertical direction.
This is due to the fact that the MPI scanner has a higher
gradient strength and in turn resolution in the vertical axis
of the scanner/images.

Besides the reference images, Figure 9 also shows the
reconstruction results that are obtained when using the
mirrored system matrices for reconstruction. As one can see,
only minor differences can be observed compared to the
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Figure 7: Mean NRMSE between the fully sampled system matrix
and the reconstructed system matrices for different sampling rates
using either the pure CS approach or the combined Symmetry/CS
approach. For the mean NRMSE calculation only the 100 system-
function components with the highest SNRwere taken into account.

images reconstructed with the full systemmatrix. Here, there
is no change in the result if the horizontal, the vertical, or both
mirror axes are exploited.

In Figure 10, the phantom images reconstructed with the
compressed sensing recovered system matrices are shown.
As one can see, the compressed sensing approach is not
restricted to sampling rates of 25% like the symmetrymethod.
Instead, the number of positions to be used for systemmatrix
recovery can be reduced to 10% with still acceptable image
quality compared to the reference images. However, below
10% sampling rate, the image quality degrades considerably
such that the dots cannot be resolved anymore for 7.5%
sampling rate.

Finally, Figure 11 shows the phantom images recon-
structed with system matrices obtained with the combined
Symmetry/CSmethod. One can see clearly that the combined
Symmetry/CS method outperforms the pure symmetry and
the pure CS approach. Even at 3.7% sampling rate the
dots of the P can be clearly resolved. When comparing the
results of the pure compressed sensing with the combined
Symmetry/CS method, one can see that the image quality
and resolution of the 10% pure compressed sensing method
roughly match those of the 3.7% combined method. Hence,
the combined Symmetry/CS method allows reducing the
number of sampling points by a factor of about three.

8. Discussion

It has been shown that the combined Symmetry/CS method
achieves much better results than the pure CS method
for high sampling rates while at lower sampling rates the
symmetry prevents that more accurate system functions are
reconstructed using the combined Symmetry/CS method.
For the experimental data considered in this work, the sym-
metry error was low enough that it could not be recognized
in the reconstructed phantom images.
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Figure 8: Several system-function components of the 𝑥-channel at frequencies 𝑓 ∈ {180 kHz, 359 kHz, 412 kHz}, which are obtained with
the Symmetry/CS method at different sampling rates. Mirroring is applied in both directions and compressed sensing is performed with the
DCT in combination with the FISTA algorithm.
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Figure 9: Two frames of the P phantom time series reconstructedwith the original systemmatrix and three differentmirrored systemmatrices
(exploiting vertical, horizontal, and both symmetries).
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Figure 10: Two frames of the P phantom time series reconstructed with different system matrices that were obtained by compressed sensing
and different sampling rates.
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Figure 11: Two frames of the P phantom time series reconstructed with different system matrices that were obtained by combined the
Symmetry/CS method and different sampling rates.

While a robot was employed to move the delta sample
at the various sampling positions to calibrate the system
function in the present work, an alternative method has been
proposed in [20], where the delta sample stays at a static
position and the robot movement is emulated by applying
dedicated offset fields. Since the time to move the robot
is commonly higher than switching the offset fields, an
acceleration of the calibration can be achieved. Nevertheless
the determination of a high resolution system matrix is still
very time-consuming even when using an electromagnetic
calibration procedure. Fortunately, the system matrix recon-
struction method proposed in this work can be applied
regardless of whether a mechanical or an electromagnetical
calibration is performed in order to measure the columns of
the system matrix. Hence, the findings of this work can be
directly transformed to field-based systemmatrix calibration
where calibration times in the sub-second range can be
expected.

The experiments in this work have been carried out
on 2D measurement data. While, in principle, the findings
can be directly carried over to 3D imaging, the symmetry
properties differ between the 2D and the 3D case. In the
2D case the system-function components are symmetric with
respect to the vertical and horizontal axes. In contrast for
the 3D case there exist settings depending on the ratios
of the excitation frequencies where the 3D system-function
components exhibit a mirror symmetry in a single direction
and in addition a symmetry with respect to the center point
in the planes perpendicular to this direction [13]. Hence,
instead of a factor of eight that could have been expected,
the feasible reduction factor when exploiting the symmetries
of a 3D MPI system matrix is four as in the 2D case. When
considering the potential reduction that can be achieved in
3D by compressed sensing, one can expect even higher rates
than for 2D system matrices. This is because the 3D system
function is sparse in all three dimensions when applying a
3D sparsity transformation.Thus, a further overall reduction
of the necessary calibration scans can be expected for 3D
imagingwhen applying the combined Symmetry/CSmethod.

The compressed sensing reconstruction of the system
matrix is naturally related to the sparse image reconstruction

technique introduced in [14], which allows accelerating image
reconstruction in MPI. Both methods use a basis transfor-
mation to represent the system matrix in a compact form
and their combination has been already shown in [21]. The
sparse reconstruction technique can also be combined with
the system matrix recovery method developed in this work,
which will allow directly performing reconstruction without
arranging the full system matrix at any time.

9. Conclusion

In the present work, it has been shown that for the recon-
struction of the MPI system matrix the compressed sensing
reconstruction technique can be combined with the symme-
try method to achieve a further reduction of the required
calibration scans. Using 2D experimental data, the feasibility
to reduce the number of calibration scans by a factor of
30 compared to a full system matrix calibration has been
shownwithout noticeable loss in resolution. Compared to the
pure compressed sensing method, the reduction rate could
be increased by about a factor of three using the combined
Symmetry/CSmethod. At a reduction rate of 2.4%, the image
quality degrades, but the rough outline of the measured
nanoparticle phantom could still be imaged.
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