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Kli�ken 21 IntroductionDue to the high power density the primary ight control surfaces (see �g. 1) ofmodern commercial and transport aircraft are driven by hydraulic linear servo ac-tuators. In Fly{by{Wire systems they are controlled fully electrical and digital bythe ight control computer, which distinguishes to newest tendencies [4]. Today, asa result of the low performance requirements classic porportional controllers oftensu�ce. Future projects | like very large aircraft with exible structures | will needimproved positioning behavior.
Figure 1: Primary Flight Control of the Airbus A340The physical parameters of the actuator vary because of changing ight con-ditions, like temperature, ight altitude or true air speed, and the natural agingduring the long operation time. Additional system nonlinearities can be interpretedas parameter uncertainties as well, if they are not too dynamical. This demands arobust design for a linear controller.As a typical example of an electro hydraulic actuation system, the inboardaileron of the Airbus A330/340 is used. Its functions and parameters are publishedin [6] and well known from actuator and aircraft manufacturers. The progress reports[12, 13] describe the presented and additional aspects more detailed.2 Parameter Space DesignFor an enhanced and robust controller synthesis the Parameter Space Design is used.This method is mostly established by J. Ackermann and decribed in detail in hisbooks [2, 3]. Here, only those facts are briey discussed, which are necessary andapplied for the synthesis of the actuator control. Further details on sampled-datacontrol explain [2, 9].



Kli�ken 32.1 Uncertain Plant DescriptionThe time{continuous model for the single{input plant family is given as a lineartime{invariant system in general state{space description_x(n)(t) = A(n;n)(q) � x(n)(t) + b(n)(q) � u(t)y(q)(t) = C(n;q)(q) � x(n)(t) : (1)Herein A represents the system matrix, b the input vector, C the output matrix,x the state vector, y the output vector and u the input. Their indices indicatethe dimensions, as well as the argument t denotes the time{dependency and q theparameter{dependency, respectively.The vector q = [qi � � � ql]T collects all l time{independent and real uncertainparameters which vary between their lower and upper bound qi 2 [q�i ; q+i ]. Reallyindependent uncertain parameters in the operation domain form an hyperrectanglein the uncertainty domain: the parameter boxQ = �q j qi 2 [q�i ; q+i ]; i = 1; 2; : : : ; l	 : (2)Thereby physically motivated parameter uncertainties prevent for conservative over-boundings. Mostly only a �nit number of operation points q(j) 2 Q are of interest,i.e. the corners of Q. Thus the hole plant family (1) yields j = 1; : : : ; J di�erentmodels _x(t) = A(j) � x(t) + b(j) � u(t)y(t) = C(j) � x(t) : (3)2.2 Time{DiscretizationAssuming the usual sampler with zero order hold, the time{continuous system (1)yields the time{discretized systemx(kT + T ) = Ad(q) � x(kT ) + bd(q) � u(kT )y(kT ) = C(q) � x(kT ) ; (4)by using the solution of the state{space di�erential equation at the sampling instancet = kT . Herein the time{discret system matrix Ad represents the homogeneous so-lution and the time{discret input vector bd the inhomogeneous solution. The outputmatrix C(q) is identical for both systems (1) and (4).Due to the mostly lost clearness by algebraic time{discretization, approxima-tion techniques have been established. Based on Tustin's method, a state{spacedescription can be approximated byAd � �I+ AT2 � � �I� AT2 ��1 and bd � �I� AT2 ��1 � bT ; (5)which is only practical for fast sampling.Choosing the sample time T , it is to consider that the system controllabilityis not lost for every possible operation point q(j) in the uncertainty domain Q.Therefore the sampling theorem must always be ful�lled.



Kli�ken 42.3 Control law
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zFigure 2: Sampled{data control loopHere a static output control lawu(kT ) = �kT � y(kT ) + v � w(kT ) ; (6)with the control vector k = [k1 � � � kq]T, the pre�lter v and the demand w(KT ),is assumed, see �g. 2. Applying the controller (6) to the plant (4) the closed{loopsystem possess the uncertain characteristic polynompd(z;q;k) = det�z � I�Ad(q)� bd(q) � kT �C(q)� = [1 z � � � zn] � ad(q) ; (7)with the vector of the polynom coe�cients ad = [a0 a1 � � � an]T.While measuring the regulated variable is unavoidable, additional sensors aremostly not desired. Traditional state estimation by an observer or a Kalman �lter issometimes unsuitable, because they depend on the model of an uncertain plant. How-ever, low pass �ltered di�erentiation allows easily the robust generation of deriva-tions of measured states. A digital �lter for di�erentiation can be designed throughimpuls invariant synthesis [16]. Its odd order transfer function with d = 1; 3; : : :yields by series expansionGD(z) = 4 z�[ d+12 ]� T � [ d+12 ]Xk=1 �1k+1[2k � 1]2 � �zk � z1�k� : (8)2.4 Speci�cationTypical control loop speci�cations are often given in time domain for the step re-sponse or in frequency domain for the bode plot. Both can be represented by eigen-value locations too. Applying a constant controller to an uncertain plant the poleplacement degenerates to pole region assignment. These regions name � and theirboundary @�.For time{continuous systems a common region � is a hyperbola in the s{plane,which guarantees minimal damping and bandwidth. Similar simple regions in thez{plane z = � + j! are circles(� � �0)2 + !2 = r2 (9)with � 2 [�0 � r2;�0 + r] and the central point�0 = 8<: r : 0 � r � 0:51� r : 0:5 � r � 10 : 1 � r



Kli�ken 5for di�erent radia r. Table 1 shows the approximate correspondence between theminimal damping D� as well as radia r and central point �0 of a circle for �.D� 0 0.35 0.5 0.7r 1 0.5 0.44 0.33�0 0 0.5 0.44 0.33Table 1: Damping, radia and central point2.5 Simultaneous �{StabilisationNow, the goal is designing a controller so that the closed{loop system, representedby the characteristic polynom, has the speci�ed stability performance for the totaluncertainty domain.Therefore the complete uncertain plant family (4) is to transform into the con-troller plane. This presents for each operation point q(j) a set of possible controllers,which places the eigenvalues of the characteristic polynom pd(z;k;q) into �.K(j)� = (k ����� pd �z;q(j);k� = nYi=1 hz � z(j)i i ^ z(j)i 2 �; with j = 1; : : : ; J) (10)The intersection of all controller setsK� = J\j=iK(j)� (11)represents the set of the simultaneous �{stabilizing controllers. Figure 3 illustratesthe method for J = 2 operation points and q = 2 controller gains.
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Kli�ken 62.6 Pole Region AssignmentIn case of only two free controller gains k = [k1 k2]T a direct pole region assignmentis possible. Therefore the Boundary Representation Theorem is very useful, becauseit o�ers a direct solution, which can be solved analytically with computer algebra[7, 13, 14].The complex root boundary represents those combinations of both gains, whichproduce conjugate complex poles on @�. Their parametric represention in the con-troller plane (k1(�); k2(�)) yields� d0(�) d1(�) � � � dn(�)0 d0(�) � � � dn�1(�) � � a(j) � � 00 � : (12)Herein � parameterizes the boundary @� : z = �(�) + j!(�) and the elements areits function d0(�) = 1d1(�) = 2�(�)di+1(�) = 2�(�) di(�)� [�(�)2 + !(�)2] di�1(�)with i = 1; : : : ; n � 1. Every intersection of the boundery @� and the real axis �jof the z{plane forms a real root boundery. Its parametrization follows by evalutingthe characteristic polynom at the intersectionpd(z = ��j;q;k) � 0 : (13)3 Surface/Aktuator ControlWhile [17] presents a survey on ight control actuation, [6] describes especially theprimary ight control of the Airbus A330/340 and [11] traditional controller designof hydraulic linear actuators. The results of the authors research project summarizethe progress reports [12, 13] and additional papers [14, 15]3.1 Positioning Actuation System
Surface
Control Spar

Actuator Mountings

Actuator

RearFigure 4: Actuator installationFigure 4 shows the installation of one of two actuators for the inboard aileron.Here one actuator is active and rotates the surface by translating, while the otheractuator is by{passed and operates as a damper. With the �rst fault they change



Kli�ken 7their operation conditions and with the second both act as dampers, to preventutter [8].Figure 5 shows a simply�edmodel sketch of an active actuator. Here the inertialof the surface is reduced to the e�ective mass m?, where the damping actuator fD,the aerodynamic load by a systematic hinge moment fL and disturbance loads f areapplied. The actuator with the two volumes VA;B and pressures pA;B displaces thereduced mass by x due to the ows QA;B through the servo valve. Thereby, the servovalve is displaced by y through the current i and supplied by the constant pressurespS;T .
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Figure 5: Simpli�ed model sketch3.2 Linear ModelThe transfer functionGH(s) = X(s)Y (s) = kH !H2s3 + 2 dH !H s2 + (!H2 + !A2) s + !A2=�H (14)represents the actuator reaction on the servo valve. The only di�erence to conven-tional hydraulic actuation systems is the consideration of the systematic hinge mo-ment [8] by an aerodynamic spring, which yields the addional term, correspondingto the eigenfrequency !A [10]. The inuence of further aerodynamic loads describesGF (s) = X(s)F (s) = kF (�H s� 1)�| {z }= GPD(s) GH(s) ; (15)and GSV (s) = Y (s)I(s) = kSV�SV s+ 1 (16)the servo valve dynamics. Figure 6 shows the structure of the transfer functionmodel.3.3 Parameter DiscussionThe parameters of the linear model (14), (15) and (16) concentrate the physicalparameters of the nonlinear model, which varies partly within decades. It can bediscussed as follows:
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GPD(s)Figure 6: Transfer function descriptiondH : The hydraulic damping depends on the friction of the actuator and the kine-matic, the damping constant of the parallel actuators, the ow/pressure char-acteristic of the servo valve and the leckages between the chambers. It variesmostly because of nonlinear e�ects of the velocity depending damping andageing, which is inuenced by the over-/underlap of the servo valve. WhileTaylor linearization leads less e�ective estimates, nonlinear technics like lin-earization by harmonic or random describing functions show more realisticresults in comparision to the nonlinear time response.!H : The hydraulic eigenfrequency is a function of the actuator position and thee�ective/reduced mass of the surface and represents thus the typical nonlin-earity. Also it is strongly inuenced by the variation of the bulk modulus,which is a linear function of the temperature and a nonlinear function of thechamber pressure.kH : The hydraulic gain is nearly constant in the main range. Only in the nar-row area of over-/underlap it is zero/doubled and shows, of cause, saturationcharactaristic.!A: According to [8], the aerodynamic eigenfrequency depends on the ight situa-tion: true air speed, ight altitude and air density. But mostly it is proportionalto the square of the true air speed, which is nearly zero, for the aircraft rollingon ground.�H : The hydraulic decay varies on the nonlinear e�ects of ow/pressure character-istic, inverse proportional like the hydraulic damping.kF : The load gain represents the static e�ect of actuator displacement on externalloads.�SV : The servo valve decay reduces the highly nonlinear and complex dynamic toits �rst order representation. It varies in a small band, because of internalfeedback control.kSV : For the variation of the servo valve gain, it is the same as for the servo valvedecay.Table 2 shows the typical value q0i and the extremums of the parameters q+=�i , aswell as an heuristic dependency graduation (�, � and +) on nonlinearity (n.l.) andreal parameter variation (var.).All together the linear model holds eight parameters. It is not nessesary toconsider all uncertainties, because their e�ects are only at spacial operation pointsof interest or they are not really relevant. For an aircraft on ground !A = 0 isassumed, because the systematic loads stabilize the surface and this operation pointrepresents the worst case. Hereby the inuence of the hydraulic decay �H and theload gain kF in the command transfer function is lost. Also the uncertainty of the



Kli�ken 9dH !H kH !A �H kF �SV kSV[{] [rad/s] [m/s] [rad/s] [s] [1=mPa] [s] [m/A]� 0.01 250 0 0 -0.001 �1:07 � 10�11 1/250 0.900 0.10 350 250 10 -0.015 �8:68 � 10�10 1/350 1.00+ 0.25 750 500 20 -1.218 �2:20� 10�9 1/450 1.10n.l. + + � � + + � �var. � + � + � � � �Table 2: Parameter uncertainties | values and dependencyservo valve parameters �SV and kSV are neglected, because they vary in a narrowband, as well as the hydraulic gain kH inside the saturation. Thus the controllersynthesis posses only two relevant uncertain parametersq = [dH !H ]T : (17)3.4 Discret{time ModelApplying the approximation for time{discretization (5) to the time{continuousmodel (sec. 3.2) and the extremum assumption for the aerodynamic eigenfrequency(sec. 3.3) yields the time{discrete modelAd = 266664 1 4T (1+T dH !H)N1 2T 2N1 2T 3 kH !H2 �SVN1N20 4+4T dH !H+T 2 !H2N1 4TN1 4T 2 kH !H2 �SVN1N20 �4T !H2N1 4�4T dH !H�T 2 !H2N1 8T kH !H2 �SVN1N20 0 0 2 �SV +TN2 377775bd = h T 4 kH !H2 kSVN1N2 2T 3 kH !H2 kSVN1N2 4T 2 kH !H2 kSVN1N2 2T kSVN2 iT (18)with the abbreviationsN1 = 4 + 4T dH !H + T 2 !H2 and N2 = 2 �SV + T :Numerical veri�cation for the sample time T = 1ms shows partly remarkable di�er-ences between the elements of the exakt and the approximative time{discretization.But this does not really e�ect the dynamics and the synthesis.3.5 Controller SynthesisAvoiding an observer for the servo valve, only an output controller for the statesx = [x _x �x]T should be designedk = [kx k _x k�x]T : (19)Assuming an ideal actuator with a perfect uid, which yields a pure integral actuatorbehaviour GH(s) �! kH=s, the position feedback gainkx = 1� e�!B TkH T (20)



Kli�ken 10follows directly by the speci�ed bandwidth with the typical value !B = 2� 3 s�1 [6].Besides, this presents a good sti�ness against external loads, which is important forthe compensation of the systematic hinge moment as well as other additional loads.Now, the direct pole region assignment (see sec. 2.6) can be applied for the con-troller synthesis. Therefore the nominal parameter set q00 = [d0H !0H ]T and the twodiagonal corners q�� = [d�H !�H ]T and q++ = [d+H !+H ]T of the uncertainty domainare chosen as operation points, see table 2. From the time{continuous controller de-sign it is well known that a minimal damping D� � 0:3 results good performances.This yields the radius r = 0:5 for the boundary @�.
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Actuator:Figure 8: Realized controller structurefunction GD(z) = �4 z3 � 36 z2 + 36 z � 49� T z3 : (22)All together with the velocity feedback gain k _x, it results the structure of �g. 8 forthe command transfer functionGW (z) = kxGk(z)1 + kxGk(z) = kxGd(z)1 +Gd(z) [kx +GD(z)] : (23)3.6 Time{domain AnalysisAccording to [1], the time{domain test function in the simulations are: demand stepof 2:5% of the maximumdisplacement x+ at the time t = 0:0 s and load disturbancestep of 10% of the maximum hinge moment at t = 0:25 s.The operation point with a minimum bulk modulus K�Oil = 2 � 108 Pa at thecentral actuator position x = 0m yields the minimum eigenfrequency !�H of thelinear model and it increases with a increasing bulk modulus as well as actuatordisplacement. The nominal eigenfrequency correspondes to K0Oil = 8�108Pa as wellas x = 0m and the maximal to K+Oil = 17 � 108 Pa as well as x �! x+. Additionalvariations of damping through leckages or the parallel actuator are not examined.
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Kli�ken 12both systems the behaviour improves with rising bulk modulus, this reaveals thatthe operation point with a minimal eigenfrequency is the critical one.
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Kli�ken 13pA;B, the actuator undershoots �rst, reacts slower and oscillates more with bothcontrollers. But the improvement by the robust controller is preserved, also it isindicated by the better damped pressures.3.7 Frequency{domain AnalysisThe di�erences between the proportional and the robust controlled actuator be-haviour can also be seen in the nonlinear frequency responses via correlation analysis[5].
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