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Abstract. For the nonlinear eigenvalue problem T (λ)x = 0 we consider
a Jacobi–Davidson type iterative projection method. The resulting pro-
jected nonlinear eigenvalue problems are solved by inverse iteration. The
method is applied to a rational eigenvalue problem governing damped
vibrations of a structure.

1 Introduction

In this paper we consider the nonlinear eigenvalue problem

T (λ)x = 0 (1)

where T (λ) ∈ Cn×n is a family of large and sparse matrices depending on a
parameter λ ∈ D ⊂ C. Problems of this type arise in damped vibrations of
structures, vibrations of rotating structures, stability of linear systems with re-
tarded argument, lateral buckling problems or vibrations of fluid-solid structures,
to name just a few. As in the linear case T (λ) = λI −A a parameter λ is called
an eigenvalue of T (·) if problem (1) has a nontrivial solution x 6= 0 which is
called a corresponding eigenvector.
For linear sparse eigenproblems iterative projection methods such as the

Lanczos, Arnoldi or Jacobi–Davidson methods are very efficient. In these ap-
proaches one determines approximations to the wanted eigenvalues and corre-
sponding eigenvectors from projections of the large eigenproblem to low-dimensio-
nal subspaces which are generated in the course of the algorithm. The small
projected eigenproblems are solved by standard techniques.
Similar approaches for general nonlinear eigenproblems were studied in [3],

[4], [8], [9], [12], and for symmetric problems allowing maxmin characterizations
of the eigenvalues in [1] and [13].
Ruhe in [8] (with further modifications and improvements in [3] and [9]) lin-

earized the nonlinear problem (1) by regula falsi and applied an Arnoldi type
method to the varying sequence of linear problems thus constructing a sequence
of search spaces Vk and Hessenberg matrices Hk which approximate the projec-
tion of T (σ)−1T (λk) to Vk. Here λk denotes an approximation to the wanted
eigenvalue and σ a shift close to that eigenvalue. Then a Ritz vector of Hk cor-
responding to an eigenvalue of small modulus approximates an eigenvector of
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the nonlinear problem (1) from which a new approximation to the correspond-
ing eigenvalue is obtained. Hence, in this approach the two numerical subtasks
reducing the large dimension to a low one and solving the projected nonlinear
eigenproblem are attacked simultaneously.
In this paper we suggest an iterative projection method for the nonlinear

eigenproblem where the two subtasks mentioned in the last paragraph are han-
dled separately. If Vk denotes a subspace of Cn of small dimension k constructed
in the course of the algorithm we solve the projected nonlinear eigenvalue prob-
lem V H

k T (λ)Vkz = 0 by a dense solver to obtain an approximate eigenvalue λk

and eigenvector xk = Vkz. After that we expand the space Vk. Similarly as in the
Jacobi–Davidson method for linear eigenproblems the expansion direction vk+1

of Vk is chosen such that xk + αvk+1 for some α ∈ C has a high approximation
potential for the eigenvector we are just aiming at. The projection step and the
expansion step are repeated alternately until convergence.
Here we consider a method of this type where the search space Vk is expanded

by an approximate solution of a correction equation
(

I −
T ′(λk)xkx

H
k

xH
k T ′(λk)xk

)

T (λk)

(

I −
xkx

H
k

xH
k xk

)

v = −T (λk)xk

in a Jacobi–Davidson like manner. In [12] we proposed an expansion of the search
space by vk+1 = T (σ)−1T (λk)xk generalizing the residual inverse iteration for
dense nonlinear eigenproblems [6].
The paper is organized as follows. Section 2. discusses the expansion of the

search space in a Jacobi–Davidson type way. In particular we discuss the approx-
imate solution of the correction equation by a preconditioned Krylov subspace
method. Section 3. reviews solvers of dense nonlinear eigenproblems with special
emphasis on structure preserving methods and on the fact that nonlinear prob-
lems are often small perturbations of linear problems which can be exploited in
the solution process. Section 4. contains the Jacobi–Davidson method for non-
linear eigenproblems and Section 5 demonstrates its numerical behavior for a
finite element model of a structure.

2 Expanding the search space by Jacobi–Davidson

The Jacobi–Davidson method was introduced by Sleijpen and van der Vorst (cf.
[11]) for the linear eigenproblem Ax = λx, and generalized in a series of papers
with different co-authors to general and to polynomial eigenvalue problems (cf.
[10]). Its idea is to construct a correction for a given eigenvector approximation
x in a subspace orthogonal to x. Namely, if V is the current search space and
(θ, u), ‖u‖ = 1, is a Ritz pair of Ax = λx corresponding to V then V is expanded
by a solution t of the so called correction equation

(I − uuH)(A− θI)(I − uuH)t = −(A− θI)u, t ⊥ u.

If the correction equation is solved exactly then it is easily seen that the new
search space [V, t] contains the vector t̃ = (A − θI)−1u obtained by one step
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of shifted inverse iteration, and therefore one can expect quadratic (and in the
Hermitean case even cubic) convergence.
A natural generalization to the nonlinear eigenproblem (1) which was al-

ready suggested in [10] for polynomial eigenvalue problems is the following one:
Suppose that the columns of V ⊂ Ck form an orthonormal basis of the current
search space, and let (u, θ) be a Ritz pair of (1) with respect to V , i.e.

V HT (θ)V y = 0, u = V y.

Then we consider the correction equation

(

I −
puH

uHp

)

T (θ)

(

I −
uuH

uHu

)

t = −r, t ⊥ u (2)

where p := T ′(θ)u and r := T (θ)u.
Equation (2) can be rewritten as T (θ)t− αp = −r where α has to be chosen

such that t ⊥ u. Solving for t we obtain

t = −u+ αT (θ)−1p = −u+ αT (θ)−1T ′(θ)u,

and u = V y yields t̃ := T (θ)−1T ′(θ)u ∈ span[V, t].
Hence, as in the linear case the new search space span[V, t] contains the vector

obtained by one step of inverse iteration with shift θ and initial vector u, and
we may expect quadratic or even cubic convergence of the resulting iterative
projection method, if the correction equation (2) is solved exactly.
It has been observed by Sleijpen and van der Vorst for linear problems that

the correction equation does not have to be solved accurately but fast conver-
gence of the projection method is maintained if the search space is expanded by
an approximate solution, and the same holds true for nonlinear problems. For
the linear problem they suggested to apply a few steps of a Krylov solver with
an appropriate preconditioner.
In the correction equation (2) the operator T (θ) is restricted to map the

subspace u⊥ to T ′(θ)u⊥. Hence, if K ≈ T (θ) is a preconditioner of T (θ) then a
preconditioner for an iterative solver of (2) should be modified correspondingly
to

K̃ := (I −
puH

uHp
)K(I −

uuH

uHu
).

With left-preconditioning equation (2) becomes

K̃−1T̃ (θ)t = −K̃−1r, t ⊥ u. (3)

where

T̃ (θ) := (I −
puH

uHp
)T (θ)(I −

uuH

uHu
).

We apply a Krylov solver to equation (3) with initial guess t = 0. For the
linear case this was already discussed in [11], and the transfer to equation (3) is
straightforward.
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Since the operator K̃−1T̃ (θ) maps the space u⊥ into itself, and since the
initial guess t = 0 is an element of u⊥, all iterates are contained in this space,
and therefore in each step we have to perform one matrix-vector product y =
K̃−1T̃ (θ)v for some v ∈ u⊥. To this end we first multiply v by T̃ (θ) which yields

ỹ = (I −
puH

uHp
)T (θ)v = T (θ)v −

uHT (θ)v

uHp
p,

and then we solve K̃y = ỹ, y ⊥ u.
This equation can be rewritten as Ky−αp = ỹ, where α is determined from

the condition y ⊥ u. Thus, we finally obtain

y = K−1ỹ −
uHK−1ỹ

uHK−1p
K−1p (4)

which demonstrates that taking into account the projectors in the precondi-
tioner, i.e. using K̃ instead of K, raises the cost of the preconditioned Krylov
solver only slightly. To initialize one has to solve the linear system Kp̃ = p
and to determine the scalar product α := uH p̃ = uHK−1p. These computations
have to be executed just once. Afterwards in each iteration step one has to solve
only one linear system Kw = ỹ for w, one has to compute the scalar product
β := uHw = uHK−1ũ, and to perform one axpy y = w − (β/α)ỹ to expand the
Krylov space of K̃−1T̃ (θ).

3 Solving projected nonlinear eigenproblems

Since the dimensions of the projected eigenproblems are usually small they
can be solved by any method for dense nonlinear eigenproblems like Newton’s
method for the characteristic function f(λ) := detT (λ) = 0 [5], inverse iteration
[7] or residual inverse iteration [6].

If problem (1) is a polynomial eigenproblem T (λ) =
∑k

j=0
λjAj , then the

projected problem preserves this property and can be solved by linearization,
i.e. by solving its companion problem
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where Ãj = V HAjV .
If the general nonlinear problem is symmetric or Hermitean such that the

eigenvalues are real and can be characterized as minmax values of a Rayleigh
functional then the projected problem inherits this property, and the eigenvalues
can be determined one after the other by safeguarded iteration. This approach
which was discussed for the Jacobi–Davidson method in [1] and for the Arnoldi
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method in [13] has the advantage that it is most unlikely that the method con-
verges to an eigenvalue that has already been found previously.
For linear eigenvalue problems the repeated computation of the same eigen-

value is no problem since Krylov subspace solvers construct an orthogonal basis
of the search space not aiming at a particular eigenvalue, and one gets approxi-
mations to extreme eigenvalues without replication (at least if reorthogonaliza-
tion is employed). If several eigenvalues are computed by the Jacobi–Davidson
method then one determines an incomplete Schur factorization thus preventing
the method from approaching an eigenvalue again which was already obtained
in a previous iteration step (cf. [2]). For nonlinear problems a similar normal
form does not exist.
In the general case the following strategy is similar to safeguarded iteration.

Assume that we want to determine all eigenvalues of problem (1) in the vicinity
of a given parameter σ0 ∈ D, and that already m − 1 eigenvalues closest to
σ0 have been determined. Assume that µ̃ is an approximation to the eigenvalue
wanted next.
A first order approximation of problem (1) is

T (λ)x ≈ (T (µ̃)− θT ′(µ̃))x = 0, θ = µ̃− λ. (5)

This suggests the method of successive linear problems in Algorithm 1 which
was introduced by Ruhe [7], and which converges quadratically.

Algorithm 1 Method of successive linear problems

1: Start with an approximation µ1 to the m-th eigenvalue of (1)
2: for ` = 1, 2, . . . until convergence do

3: solve the linear eigenproblem T (µ`)u = θT ′(µ`)u
4: choose the eigenvalue θ such |σ0 − (µ` − θ)| is the m–smallest among the eigen-

values
5: µ`+1 = µ` − θ
6: end for

Of course this method is not appropriate for a sparse problem (1), but in an
iterative projection method the dimension of the projected problem which has
to be solved in step 3. usually is quite small, and every standard solver for dense
eigenproblems applies.
Quite often the nonlinear eigenvalue problem under consideration is a (small)

perturbation of a linear eigenvalue problem. As a numerical example we will
consider a finite element model of a vibrating structure with nonproportional
damping. Using a viscoelastic constitutive relation to describe the behaviour of
a material in the equations of motions yields a rational eigenvalue problem for
the case of free vibrations. A finite element model obtains the form

T (ω) :=



ω2M +K −

J
∑

j=1

1

1 + bjω
∆Kj



x = 0 (6)
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whereM is the consistent mass matrix, K is the stiffness matrix with the instan-
taneous elastic material parameters used in Hooke’s law, J denotes the number
of regions with different relaxation parameters bj , and ∆Kj is an assemblage of
element stiffness matrices over the region with the distinct relaxation constants.
The real part of an eigenvalue is the exponential rate with which the motion
described by the corresponding eigenvector x decays. The imaginary part is the
(damped) angular frequency with which the motion described by x oscillates
It is well known that often the eigenmodes of the damped and the undamped

problem do not differ very much although the eigenvalues do. Therefore, in
step 3. of Algorithm 2 it is reasonable to determine an eigenvector y of the
undamped and projected problem (ω2V HMV + V HKV )y = 0 corresponding
to the m-smallest eigenvalue ω2

m, determine an approximate eigenvalue ω̃ of the
nonlinear projected problem from the complex equation yHV HT (ω)V y = 0 or
eHV HT (σ)−1T (ω)V y = 0, and correct it by (residual) inverse iteration.

4 Jacobi–Davidson method for nonlinear eigenproblems

A template for the Jacobi–Davidson method for the nonlinear eigenvalue problem
(1) is given in Algorithm 2.

Algorithm 2 Nonlinear Jacobi–Davidson method

1: Start with an initial basis V , V HV = I; m = 1
2: determine a preconditioner K ≈ T (σ)−1, σ close to the first wanted eigenvalue
3: while m ≤ number of the wanted eigenvalues do

4: compute an approximation to the m-th wanted eigenvalue λm and corresponding
eigenvector xm of the projected problem V HT (λ)V x = 0

5: determine the Ritz vector u = V xm and the residual r = T (λm)u
6: if ‖r‖/‖u‖ < ε then

7: PRINT approximate eigenpair (λm, u); increase m = m+ 1;
8: reduce the search space V if necessary
9: choose an approximation (λm, u) to the next eigenpair
10: compute the residual r = T (λm)u;
11: end if

12: Find an approximate solution of the correction equation

(I −
T ′(λm)uuH

uHT ′(λm)u
)T (σ)(I −

uuH

uHu
)t = −r (7)

(by a preconditioned Krylov solver, e.g.)
13: orthogonalize t = t− V V Ht, v = t/‖t‖, and expand the subspace V = [V, v]
14: determine a new preconditioner K ≈ T (λm)−1 if necessary
15: update the projected problem
16: end while
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Remarks on some of its steps are inorder:

1. In V preinformation about the wanted eigenvectors (which may be gained
from previous solutions of similar problems) can be introduced into the
method.
If we are interested in eigenvalues close to a given parameter σ and no infor-
mation on eigenvectors is at hand we can start the Jacobi–Davidson method
with an orthogonal basis V of an invariant subspace of the linear eigenprob-
lem T (σ)u = θu (or T (σ)u = θT ′(σ)u) corresponding to eigenvalues θ which
are small in modulus.

8. As the subspaces expand in the course of the algorithm the increasing stor-
age and the computational cost for solving the projected eigenproblems may
make it necessary to restart the algorithm and to purge some of the basis
vectors. Since a restart destroys information on the eigenvectors and particu-
larly the one the method is just aiming at we restart only if an eigenvector has
just converged. A reasonable search space after restart is the space spanned
by the already converged eigenvectors (or a space slightly larger).

9. If the projected problem in 3. is solved by the method of successive linear
problems, by linearization or by one of the symmetry preserving methods
which solve in each iteration step a linear eigenproblem then at the same
time one gets approximations to further eigenpairs of the nonlinear problem
which can be exploited to get a good initial approximation to the next wanted
eigenpair.

12. The correction equation can be solved by a preconditioned Krylov solver,
e.g.

13. The first two statements represent the classical Gram–Schmidt process. It
is advisable to repeat this orthogonalization step once if the norm of t is
reduced by more than a modest factor, say ‖t‖/‖vold‖ < 0.25, e.g.

14. We solved the correction equation (7) by a few steps of preconditioned GM-
RES where we kept the preconditioner for a couple of eigenvalues. We ter-
minated the solver of (7) in the k-th outer iteration for the m-th eigenvalue
if the residual was reduced by at least τk = 2

−k, and we allowed at most 10
steps of the solver. If the required accuracy τk was not met after at most 5
iteration steps we updated the preconditioner. However, we allowed at most
one update for every eigenvalue λm.

15. Often the family of matrices T (λ) has the form T (λ) =
∑p

j=1
fj(λ)Cj with

differentiable complex functions fj and fixed matrices Cj ∈ Cn×n. Then the
projected problem has the form

TVk
(λ) =

p
∑

j=1

fj(λ)V
H
k CjVk =:

p
∑

j=1

fj(λ)Cj,k

and the matrices Cj,k can be updated according to

Cj,k+1 =

(

Cj,k V H
k Cjv

vHCjVk vHCjv

)

.
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5 Numerical experiments

To test the Jacobi–Davidson method we consider the rational eigenvalue problem
governing damped vibrations of a column (6)

{(x, y, z) : 0.8 <
√

x2 + y2 < 1, 0 < z < 5}

which is clamped at its bottom z = 0. The instantaneous Young’s modulus is
set to E = 2.06 ∗ 1011, the instantaneous Poisson’s rate is ν = 0.3, and the
density is set to ρ = 7800. For the nonproportional damping we use in addition
the following parameters, ∆ν = 0.27, and ∆E = 6 ∗ 1010 for 0 < x < 2.5, and
∆E = 5 ∗ 1010 for 2.5 < x < 5. The relaxation constant is set to b = 10−4.
Discretizing this problem by linear Lagrangean elements we obtained the

rational eigenproblem (6) of dimension 11892, and the bandwidth of the stiffness
matrix K was after reducing it by reverse Cuthill–McKee algorithm still 665. For
symmetry reasons we determined only eigenvalues with negative imaginary part,
and we computed 50 of them one after another with decreasing imaginary part.
The nonlinear projected eigenproblems were solved by inverse iteration with an
initial guess obtained from the corresponding undamped projected problem as
explained at the end of Section 3.

50 100 150 200 250 300

100

105

iteration

res
idu

al 
no

rm

Fig. 1. Convergence history without restarts

The experiments were run under MATLAB 6.5 on a Pentium 4 processor with
2 GHz and 1 GB RAM. We preconditioned by the LU factorization of T (σ), and
terminated the iteration if the norm of the residual was less than 10−2.
Starting with an eigenvector of the linear eigenproblem Kx = λMx corre-

sponding to the smallest eigenvalue the algorithm without restarts needed 320
iteration steps, i.e. an average of 6.4 iterations per eigenvalue, to approximate
all 50 eigenvalues (including double eigenvalues) with maximal negative imagi-
nary part. To solve the correction equations a total of 651 GMRES steps were
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needed, and 6 updates of the preconditioner were necessary. Fig. 1. contains the
convergence history.
Restarting the Jacobi–Davidson process if the dimension of the research space

exceeded 80 the method needed 7 restarts. Again all 50 eigenvalues were found
by the method requiring 422 iterations, 840 GMRES steps, and 16 updates of the
preconditioner. The convergence history in Fig. 2. looks very similar to the one
without restarts, however, after a restart the speed of convergence was reduced
considerably. After a restart an average of 17.1 iterations was necessary to gather
enough information about the search space and to make the method converge,
whereas for the other iteration steps the average number of steps for convergence
was 7.0.
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Fig. 2. Convergence history with restarts (first 250 iterations)

The algorithm showed a similar behaviour if the projected eigenproblems
were solved by the method of successive linear problems. Starting with an eigen-
vector of the linear problem Kx = λMx corresponding to an eigenvalue close to
λ = 9 ∗ 106 79 iterations were needed to find 10 eigenvalues (including a double
eigenvalue) in the vicinity of σ0 = 3000i. The convergence history is contained
in Fig. 3.
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