DOI: <u>https://doi.org/10.15480/882.4387</u> ORCID: <u>https://orcid.org/0000-0001-6300-4218</u>

Hamburg 23.03.2022

Green Hydrogen Supply Chains

A Techno-economic Assessment

Lucas Sens, Ulf Neuling, Martin Kaltschmitt

[1] [2] [3] [4] [5] [6]

Hamburg University of Technology (TUHH), Institute of Environmental Technology and Energy Economics (IUE) www.tuhh.de/iue

Background

6

Low cost transportation needed to supply hydrogen to the consumption hubs

Background

Liquefaction (LH₂)

Liquid Organic Hydrogen Carriers (LOHC)

[9]

Methanol (CH₃OH)

Ammonia (NH₃)

Outline

Conditioned Hydrogen Options

CGH2 = compressed gaseous hydrogen, CH3OH = methanol, H18-DBT = perhydro-dibenzyltoluene (LOHC), LH2 = liquid hydrogen, LNH3 = liquid ammonia, NH3 = ammonia, STP = standard temperature and pressure

1. Conditioning options – 2. Supply Chains – 3. Assessment – 4. Conclusion

EIUE

Compressed Gaseous Hydrogen (CGH₂)

CGH2 = compressed gaseous hydrogen, CH3OH = methanol, H18-DBT = perhydro-dibenzyltoluene (LOHC), LH2 = liquid hydrogen, LNH3 = liquid ammonia, NH3 = ammonia, STP = standard temperature and pressure

1. Conditioning options – 2. Supply Chains – 3. Assessment – 4. Conclusion

EIUE

Liquid Hydrogen (LH₂)

INE

CGH2 = compressed gaseous hydrogen, CH3OH = methanol, H18-DBT = perhydro-dibenzyltoluene (LOHC), LH2 = liquid hydrogen, LNH3 = liquid ammonia, NH3 = ammonia, STP = standard temperature and pressure

Liquid Organic Hydrogen Carrier (LOHC)

CGH2 = compressed gaseous hydrogen, CH3OH = methanol, H18-DBT = perhydro-dibenzyltoluene (LOHC), LH2 = liquid hydrogen, LNH3 = liquid ammonia, NH3 = ammonia, STP = standard temperature and pressure

1. Conditioning options – 2. Supply Chains – 3. Assessment – 4. Conclusion

SIUE

Methanol (CH₃OH)

CGH2 = compressed gaseous hydrogen, CH3OH = methanol, H18-DBT = perhydro-dibenzyltoluene (LOHC), LH2 = liquid hydrogen, LNH3 = liquid ammonia, NH3 = ammonia, STP = standard temperature and pressure

Ammonia (NH₃)

CGH2 = compressed gaseous hydrogen, CH3OH = methanol, H18-DBT = perhydro-dibenzyltoluene (LOHC), LH2 = liquid hydrogen, LNH3 = liquid ammonia, NH3 = ammonia, STP = standard temperature and pressure

Production Locations

- Central Germany (LOC): PV ≈ 1,100 AFLH; Onshore Wind ≈ 2,600 AFLH
- Northern Germany (GER): PV ≈ 1,000 AFLH; Offshore Wind ≈ 5,000 AFLH
- Tunisia (TUN): PV ≈ 1,800 AFLH; Onshore Wind ≈ 3,500 AFLH
- Argentina (ARG): PV ≈ 1,000 AFLH; Onshore Wind ≈ 5,500 AFLH

AFLH = annual full load hours

Supply Chains

- Supply efficiency based on hydrogen (LHV) filled in tank divided by the overall chain energy input from well to tank
- Hydrogen supply cost considers the well to tank costs and is calculated with the annuity method
- Depreciation equals the technology lifetime
- Real weighted average cost of capital set to 6%

BIUE

 CGH_2 Filling – 2030

1. Conditioning options – 2. Supply Chains – 3. Assessment – 4. Conclusion

BIVE

 CGH_2 Filling – 2030

(* = heat demand for the reconversion is supplied internally by using the needed energy fraction from the released hydrogen; ARG = hydrogen production in Argentina (Patagonia); CGH2 = compressed gaseous hydrogen supply chain; CH3OH = methanol supply chain; GER = centralized production in North Germany; LH2 = liquid hydrogen supply chain; LOC = local production directly at the airport in Central Germany; LOHC = liquid organic hydrogen carrier supply chain; NH3 = ammonia supply chain; Pip. = pipeline import; Pipe = pipeline distribution to filling station; Ship = ship import; TUN = hydrogen production in Tunisia; Truck = truck distribution to filling station

1. Conditioning options – 2. Supply Chains – 3. Assessment – 4. Conclusion

■H2 production - excl losses

BINE

 CGH_2 Filling – 2030

(* = heat demand for the reconversion is supplied internally by using the needed energy fraction from the released hydrogen; ARG = hydrogen production in Argentina (Patagonia); CGH2 = compressed gaseous hydrogen supply chain; CH3OH = methanol supply chain; GER = centralized production in North Germany; LH2 = liquid hydrogen supply chain; LOC = local production directly at the airport in Central Germany; LOHC = liquid organic hydrogen carrier supply chain; NH3 = ammonia supply chain; Pip. = pipeline import; Pipe = pipeline distribution to filling station; Ship = ship import; TUN = hydrogen production in Tunisia; Truck = truck distribution to filling station

1. Conditioning options – 2. Supply Chains – **3. Assessment** – 4. Conclusion

EIUE

(* = heat demand for the reconversion is supplied internally by using the needed energy fraction from the released hydrogen; ARG = hydrogen production in Argentina (Patagonia); CGH2 = compressed gaseous hydrogen supply chain; CH3OH = methanol supply chain; GER = centralized production in North Germany; LH2 = liquid hydrogen supply chain; LOC = local production directly at the airport in Central Germany; LOHC = liquid organic hydrogen carrier supply chain; NH3 = ammonia supply chain; Pip. = pipeline import; Pipe = pipeline distribution to filling station; Ship = ship import; TUN = hydrogen production in Tunisia; Truck = truck distribution to filling station

1. Conditioning options – 2. Supply Chains – **3. Assessment** – 4. Conclusion

EIUE

 CGH_2 Filling – 2030

(* = heat demand for the reconversion is supplied internally by using the needed energy fraction from the released hydrogen; ARG = hydrogen production in Argentina (Patagonia); CGH2 = compressed gaseous hydrogen supply chain; CH3OH = methanol supply chain; GER = centralized production in North Germany; LH2 = liquid hydrogen supply chain; LOC = local production directly at the airport in Central Germany; LOHC = liquid organic hydrogen carrier supply chain; NH3 = ammonia supply chain; Pip. = pipeline import; Pipe = pipeline distribution to filling station; Ship = ship import; TUN = hydrogen production in Tunisia; Truck = truck distribution to filling station

 CGH_2 Filling – 2030

(* = heat demand for the reconversion is supplied internally by using the needed energy fraction from the released hydrogen; ARG = hydrogen production in Argentina (Patagonia); CGH2 = compressed gaseous hydrogen supply chain; CH3OH = methanol supply chain; GER = centralized production in North Germany; LH2 = liquid hydrogen supply chain; LOC = local production directly at the airport in Central Germany; LOHC = liquid organic hydrogen carrier supply chain; NH3 = ammonia supply chain; Pip. = pipeline import; Pipe = pipeline distribution to filling station; Ship = ship import; TUN = hydrogen production in Tunisia; Truck = truck distribution to filling station

(* = heat demand for the reconversion is supplied internally by using the needed energy fraction from the released hydrogen; ARG = hydrogen production in Argentina (Patagonia); CGH2 = compressed gaseous hydrogen supply chain; CH3OH = methanol supply chain; GER = centralized production in North Germany; LH2 = liquid hydrogen supply chain; LOC = local production directly at the airport in Central Germany; LOHC = liquid organic hydrogen carrier supply chain; NH3 = ammonia supply chain; Pip. = pipeline import; Pipe = pipeline distribution to filling station; Ship = ship import; TUN = hydrogen production in Tunisia; Truck = truck distribution to filling station

 CGH_2 Filling – 2030

(* = heat demand for the reconversion is supplied internally by using the needed energy fraction from the released hydrogen; ARG = hydrogen production in Argentina (Patagonia); CGH2 = compressed gaseous hydrogen supply chain; CH3OH = methanol supply chain; GER = centralized production in North Germany; LH2 = liquid hydrogen supply chain; LOC = local production directly at the airport in Central Germany; LOHC = liquid organic hydrogen carrier supply chain; NH3 = ammonia supply chain; Pip. = pipeline import; Pipe = pipeline distribution to filling station; Ship = ship import; TUN = hydrogen production in Tunisia; Truck = truck distribution to filling station

(* = heat demand for the reconversion is supplied internally by using the needed energy fraction from the released hydrogen; ARG = hydrogen production in Argentina (Patagonia); CGH2 = compressed gaseous hydrogen supply chain; CH3OH = methanol supply chain; GER = centralized production in North Germany; LH2 = liquid hydrogen supply chain; LOC = local production directly at the airport in Central Germany; LOHC = liquid organic hydrogen carrier supply chain; NH3 = ammonia supply chain; Pip. = pipeline import; Pipe = pipeline distribution to filling station; Ship = ship import; TUN = hydrogen production in Tunisia; Truck = truck distribution to filling station

(* = heat demand for the reconversion is supplied internally by using the needed energy fraction from the released hydrogen; ARG = hydrogen production in Argentina (Patagonia); CGH2 = compressed gaseous hydrogen supply chain; CH3OH = methanol supply chain; GER = centralized production in North Germany; LH2 = liquid hydrogen supply chain; LOC = local production directly at the airport in Central Germany; LOHC = liquid organic hydrogen carrier supply chain; NH3 = ammonia supply chain; Pip. = pipeline import; Pipe = pipeline distribution to filling station; Ship = ship import; TUN = hydrogen production in Tunisia; Truck = truck distribution to filling station

(* = heat demand for the reconversion is supplied internally by using the needed energy fraction from the released hydrogen; ARG = hydrogen production in Argentina (Patagonia); CGH2 = compressed gaseous hydrogen supply chain; CH3OH = methanol supply chain; GER = centralized production in North Germany; LH2 = liquid hydrogen supply chain; LOC = local production directly at the airport in Central Germany; LOHC = liquid organic hydrogen carrier supply chain; NH3 = ammonia supply chain; Pip. = pipeline import; Pipe = pipeline distribution to filling station; Ship = ship import; TUN = hydrogen production in Tunisia; Truck = truck distribution to filling station

(* = heat demand for the reconversion is supplied internally by using the needed energy fraction from the released hydrogen; ARG = hydrogen production in Argentina (Patagonia); CGH2 = compressed gaseous hydrogen supply chain; CH3OH = methanol supply chain; GER = centralized production in North Germany; LH2 = liquid hydrogen supply chain; LOC = local production directly at the airport in Central Germany; LOHC = liquid organic hydrogen carrier supply chain; NH3 = ammonia supply chain; Pip. = pipeline import; Pipe = pipeline distribution to filling station; Ship = ship import; TUN = hydrogen production in Tunisia; Truck = truck distribution to filling station

(* = heat demand for the reconversion is supplied internally by using the needed energy fraction from the released hydrogen; ARG = hydrogen production in Argentina (Patagonia); CGH2 = compressed gaseous hydrogen supply chain; CH3OH = methanol supply chain; GER = centralized production in North Germany; LH2 = liquid hydrogen supply chain; LOC = local production directly at the airport in Central Germany; LOHC = liquid organic hydrogen carrier supply chain; NH3 = ammonia supply chain; Pip. = pipeline import; Pipe = pipeline distribution to filling station; Ship = ship import; TUN = hydrogen production in Tunisia; Truck = truck distribution to filling station

 LH_2 Filling – 2030

(* = heat demand for the reconversion is supplied internally by using the needed energy fraction from the released hydrogen; ARG = hydrogen production in Argentina (Patagonia); CGH2 = compressed gaseous hydrogen supply chain; CH3OH = methanol supply chain; GER = centralized production in North Germany; LH2 = liquid hydrogen supply chain; LOC = local production directly at the airport in Central Germany; LOHC = liquid organic hydrogen carrier supply chain; NH3 = ammonia supply chain; Pip. = pipeline import; Pipe = pipeline distribution to filling station; Ship = ship import; TUN = hydrogen production in Tunisia; Truck = truck distribution to filling station

 LH_2 Filling – 2050

(* = heat demand for the reconversion is supplied internally by using the needed energy fraction from the released hydrogen; ARG = hydrogen production in Argentina (Patagonia); CGH2 = compressed gaseous hydrogen supply chain; CH3OH = methanol supply chain; GER = centralized production in North Germany; LH2 = liquid hydrogen supply chain; LOC = local production directly at the airport in Central Germany; LOHC = liquid organic hydrogen carrier supply chain; NH3 = ammonia supply chain; Pip. = pipeline import; Pipe = pipeline distribution to filling station; Ship = ship import; TUN = hydrogen production in Tunisia; Truck = truck distribution to filling station

Conclusion

• Gaseous hydrogen supply chain is the lowest cost option for a supply of gaseous hydrogen filling stations

≈ 5 €₂₀₂₀/kg_{CGH2} & 60 % (2030) ≈ 4 € // (2050)

- ≈ 4 \in_{2020} /kg_{CGH2} & 65 % (2050)
- Liquid hydrogen and gaseous hydrogen supply chains are the lowest cost options for a supply of liquid hydrogen filling stations
 - ≈ 7 €₂₀₂₀/kg_{LH2} & 50 % (2030) ≈ 6 €₂₀₂₀/kg_{LH2} & 55 % (2050)
- LOHCs (dibenzyltoluene), ammonia and methanol as a hydrogen carrier appear to be not a viable option for a hydrogen supply of filling stations caused by the heat demand for dehydrogenation/cracking, the educt cost (LOHCs and methanol) and purification losses (ammonia)
- The hydrogen supply by a **national** production (by offshore wind power) shows only **slightly higher cost** than the **import** from North Africa (e.g., Tunisia), while the average **local** hydrogen production for gaseous filling shows partly **significant higher cost**

Hamburg University of Technology (TUHH) Institute of Environmental Technology and Energy Economics (IUE) Eissendorfer Str. 40; D-21073 Hamburg

References

BIVE

- Images slide 1, from left to right:
 - [1] <u>https://images.app.goo.gl/q2W7NAgYantkJjKZ9</u>
 - [2] <u>https://images.app.goo.gl/tgVUA1EQwqGEsxhm8</u>
 - [3] <u>https://images.app.goo.gl/emZiwi4GPQbrGvHu6</u>
 - [4] https://images.app.goo.gl/wpf5beDJPAXoCJxF6
 - [5] https://images.app.goo.gl/bD24v1L26ANsmx4n8
 - [6] <u>https://images.app.goo.gl/58YNgjNLviaWJ1rZA</u>
 - Images slide 3, from left to right:
 - [7] https://gasforclimate2050.eu/sdm_downloads/european-hydrogen-backbone/
 - [8] http://www.hystra.or.jp/en/gallery/article.html
 - [9] https://www.hydrogenious.net/index.php/en/2020/07/21/lohc-global-hydrogen-opportunity/
 - [10] https://vision-mobility.de/news/gumpert-will-methanol-brennstoffzelle-weiterentwickeln-58015.html
 - [11] <u>https://www.wasserstoff-leitprojekte.de/leitprojekte/transhyde</u>

Detailed Supply Chains

Optimized Hydrogen Production

BAT = Battery; CAV = Cavern; COMP = Compressor; GH_2 = Gaseous Hydrogen; PT = Pressure Tank

割UE

	Year	PV	Onshore Wind	Offshore Wind	PEMEL
CAPEX [€ ₂₀₂₀ /kW _{el}]	2030	400 (310 – 570)	1,110 (1,010 – 1240)	1,890 (1,750 – 2,020)	860 (580 – 1,230)
	2050	270 (170 – 350)	990 (860 – 1,140)	1,620 (1,320 – 1,930)	510 (350 – 760)
Efficiency [kWh _{H2,LHV} /kWh _{el}]	2030	-	-	-	67% (63 – 69%)
	2050	-	-	-	71% (67 – 74%)

Seasonal storage capacities:

- Local (LOC) scenario: 15 days
- National (GER) scenario: 30 days
- Import (TUN & ARG) scenario: 60 days

Filling station capacity rate:

- Baseline: 50%
- Progressive: 60%
- Conservative: 40%

 $\eta_{supply \ chain} = \frac{q_{H2,nozzle}}{q_{overall}}$

 $q_{overall} = q_{production} + q_{conversion} + q_{storage} + q_{transport} + q_{reconversion} + q_{fill}$

 $q_{production} = q_{production,ideal} + q_{production,losses}$

$$q_{compression} = \frac{R_s T_{comp}}{\eta_{comp}} \left[z_{out} \ln \left(\frac{p_{out}}{1.0135 \text{ bar}} \right) - z_{in} \ln \left(\frac{p_{in}}{1.0135 \text{ bar}} \right) \right]$$

$$c_{overall} = c_{production} + c_{conversion} + c_{storage} + c_{transport} + c_{reconversion} + c_{fill}$$

$$c_{section,i} = \frac{ACAPEX_i + OPEX_i}{m_{H2,fill,annual}}$$

$$ACAPEX_{i} = CAPEX_{i} \frac{WACC_{real} (1 + WACC_{real})^{d_{i}}}{(1 + WACC_{real})^{d_{i}} - 1}$$

$$WACC_{real} = \frac{1 + WACC_{nom}}{1 + INFL} - 1$$

CAPEX Calculation

$$CAPEX_1 = f_{inst} f_{infl} CAPEX_{ref} \left(\frac{C_1}{C_{ref}}\right)^{\alpha}$$

- $\alpha = \text{scaling factor}$
- $C_1 = capacity of plant 1$
- $C_{ref} = capacity of reference plant$
- $CAPEX_{1,inst} = installed 2020 \in capital expenditure plant 1$
- CAPEX_{ref} = capital expenditure for reference plant
- $f_{infl} = inflation factor (adjustmend to 2020 \in)$
- f_{inst} = installation factor (includes equipment, materials, construction and engineering)

LOHC CAPEX

$$c_{LOHC} = \frac{CAPEX_{LOHC}}{Cycle_{LOHC,annual}} \frac{WACC_{real} (1+WACC_{real})^{d_{LOHC}}}{(1+WACC_{real})^{d_{LOHC}}-1}$$

$$cycle_{LOHC,annual} = 8760 \frac{h}{a} / t_{LOHC,cycle}$$

 $t_{LOHC,cycle} = \sum_{i=1}^{n} t_i$

	(De)Hydrogenation Plant		
	Storage		
	Import Ship		
000 0.0	Transportation Truck		
	Refill Station		
	Use HDV		

