
Seamless Integration of

Location-Linked Services for

Smartphones

Vom Promotionsausschuss der

Technischen Universität Hamburg-Harburg

zur Erlangung des akademischen Grades

Doktor-Ingenieur (Dr.-Ing.)

genehmigte Dissertation

von

Julian Christoph Ohrt

aus

Hamburg

2017

Date of Oral Examination May 3

rd

, 2017

Chair of Examination Board Prof. Dr. Alexander Schlaefer

Institute for Medical Systems

Hamburg University of Technology

First Examinor Prof. Dr. Volker Turau

Institute of Telematics

Hamburg University of Technology

Second Examinor Prof. Dr. Rolf-Rainer Grigat

Institute of Vision Systems,

Hamburg University of Technology

German National Library:

urn:nbn:de:gbv:830-88216556

c© 2017 Julian Christoph Ohrt

Zusammenfassung
Das Smartphone hat für viele Menschen die Rolle eines privaten Assis-

tenten eingenommen. Es enthält viele persönliche Informationen und wird

immer häufiger für private, sicherheitsrelevante Aufgaben benutzt. Gleich-

zeitig hat ein Smartphone meistens eine permanente Verbindung zum In-

ternet. Die Folge ist, dass private Informationen und sicherheitsrelevante

Aktionen immer häufiger über das Internet übermittelt werden. Im Hinblick

auf die stetig steigenden Zahlen von Datendiebstählen, Fällen von Spiona-

ge und Internetkriminalität, ist dieser Trend sehr bedenklich. Eine effiziente

Methode sich zu schützen, ist auf lokale Kommunikationskanäle statt Inter-

netverbindungen zu setzen.

In dieser Dissertation wird das System BLESS (Building-Linked, Expe-

ditious Services System) entworfen, das es erlaubt, gebäude-gebundene

Dienste auf Smartphones zu benutzen ohne vorherige Installation über einen

App-Store. Beispiele für solche Dienste sind Steuerungen für Heizung und

Licht, der private Familienterminkalender oder das Teilen von Gebäudeplä-

nen zum Navigieren. Ziel von BLESS ist es, für Entwickler eine Plattform

zu schaffen, mit der es möglich ist, auf einfache Art und Weise gebäude-

gebundene Dienste zu realisieren, die ähnliche Funktionalität wie existieren-

de Smartphone-Apps bereit stellen, jedoch komplett ohne Internetverbin-

dung auskommen. Dabei werden automatisches Auffinden von Diensten, Un-

abhängigkeit vom Betriebssystem, Schutz der Benutzerdaten und eine ver-

trauenswürdige Kommunikation zwischen Client und Server in den Vorder-

grund gestellt. Zum Authentifizierung von Client und Server, sowohl zum

Sichern der Verbindungen der beiden Kommunikationspartner werden Zer-

tifikate eingesetzt.

Anhand einer prototypischen Umsetzung wurde das entwickelte Design

bewertet und auf Funktionstüchtigkeit getestet. Das Design stellte sich im

Feldtest generell als geeignet heraus. Der Entwicklungsaufwand für BLESS-

Dienste wurde als angemessen eingestuft. Alle Kommunikationsmethoden

zwischen Client und Server funktionierten zuverlässig; ebenso das Auffin-

den von Diensten. Die Nutzung von Zertifikaten zum Absichern von Kom-

munikation zwischen Client und Server stellte sich jedoch als impraktikabel

heraus. Grundsätzlich wurde das Konzept von BLESS als praktikabel und

besonders für private Haushalte gut anwendbar eingestuft.

Contents

List of Figures vii

List of Tables viii

List of Abbrevations ix

1 Introduction 1
1.1 Contributions . 4

1.2 Structure of Dissertation . 5

2 State of the Art 7
2.1 Smartphones . 8

2.1.1 Mobile Operating Systems 8

2.1.2 Installation of Apps 9

2.1.3 Internet Access . 10

2.1.4 Trusting apps . 11

2.1.5 Limitations . 13

2.2 Localization . 14

2.2.1 Location-Based Services 15

2.2.2 Geofences . 15

2.2.3 Technologies . 16

2.2.4 Indoor Localization Systems 19

2.2.5 Indoor Map Technologies for Smartphones 21

2.3 Smart Home . 21

2.3.1 Smart Home Standards 22

2.3.2 Smart Home Systems 23

2.3.3 Limitations . 27

2.3.4 openHAB . 27

i

2.4 Discovery Protocols in IP Networks 29

2.4.1 IP multicast . 30

2.4.2 Current Discovery Protocols 31

2.5 Secure Networking . 34

2.5.1 Encryption . 35

2.5.2 Certificates . 36

2.5.3 Digital Access Control 38

2.6 Service Communication . 38

2.6.1 Server to Smartphone Communication 39

2.6.2 Smartphone to Server Communication 40

2.6.3 Invoking Server Methods 40

3 Location-Linked Services 43
3.1 Definition of Location-Linked Services 43

3.2 Motivation of Location-Linked Services 44

3.3 Generic Location-Linked Services Provisioning System 45

3.4 Examples of Indoor Location-Linked Services 47

3.4.1 Navigation . 47

3.4.2 Automated Door Bell 47

3.4.3 Audio messenger . 47

3.4.4 Counting People . 48

3.4.5 Switch Service . 48

3.4.6 Information Request 48

3.4.7 Data Archive . 49

3.4.8 User Configuration 49

3.4.9 Home Monitor . 49

3.4.10 Bulletin Board . 49

3.4.11 Trace Users . 50

3.4.12 Tour Guide . 50

3.4.13 Shop and Product Finder 50

3.4.14 Reception Service . 50

3.4.15 Smartphone Reminder 51

3.4.16 Intruder Alert . 51

3.5 Differences to Existing Technologies 51

3.5.1 LLSs vs. Conventional Apps 51

ii

3.5.2 LLSs vs. Location-Based Services 51

3.5.3 LLSs vs. Smart Home Applications 52

3.6 Areas of Application for LLSs 53

3.6.1 Private Homes . 54

3.6.2 Office Environments 54

3.6.3 Public places . 54

3.6.4 Incentives for Using LLSs 55

4 Basic Considerations and Requirements 57
4.1 Design Considerations . 57

4.2 Non-Functional requirements 59

4.2.1 Robustness . 59

4.2.2 Omniscient entities 60

4.2.3 Direct, Secure Communication 60

4.2.4 Flexible and Multi-Platform Development 61

4.2.5 Ease of Use . 61

4.3 Functional Requirements . 62

4.3.1 Functional Requirements of a LLSs System 62

4.3.2 Functional Requirements of LLSs 66

5 Design of BLESS 71
5.1 System Overview . 71

5.1.1 System Architecture 71

5.1.2 Naming Conventions 73

5.2 Mode of Communication . 74

5.3 Multi-Platform Approach . 74

5.4 Services . 77

5.4.1 Installation and Functions 77

5.4.2 Background Services 77

5.5 Security . 78

5.5.1 Authentication and Trust Levels 79

5.5.2 Encryption . 82

5.5.3 Service Permissions 82

5.6 Buildings and Service-Buildings-Linkage 83

5.6.1 BLESS Buildings . 83

iii

5.6.2 BLESS Sub-Buildings 84

5.6.3 BLESS Services . 85

5.7 Localization . 87

5.8 Navigation . 88

5.8.1 Design Choices and Implications 89

5.8.2 Routing Information 91

5.9 Detecting and Filtering Services 92

5.9.1 Applying Location Filter 93

5.9.2 Applying User Filter 93

5.9.3 Discovery Protocol 95

5.9.4 Enabling Service Detection 99

5.10Inter-Service Communication 101

5.10.1 Method of Communication 101

5.10.2 Server Methods Invocation Protocol 102

5.10.3 Push Messaging Protocol 104

5.11Assumed Preconditions . 106

6 Prototype of BLESS: MultiApp and Exemplary Services 107
6.1 Overview of BLESS Implementation 107

6.2 Implementation of MultiApp 108

6.2.1 Discovering BLESS Entities 108

6.2.2 Signature Handling 109

6.2.3 Listing and Filtering of Available Entities 110

6.2.4 Installation of Buildings and Services 110

6.2.5 Executing CP of Services 112

6.2.6 Sending CP into Background and Wake Events 112

6.2.7 Invoking Remote Calls 114

6.2.8 Push Notifications . 114

6.2.9 Localization . 114

6.2.10 Geofencing . 116

6.2.11 Permissions of CPs 117

6.3 Protocols . 117

6.3.1 Discovery Protocol 118

6.3.2 Installation of Buildings and Services 118

6.3.3 Server Method Invocation 118

iv

6.3.4 Push Messaging . 118

6.4 BLESS Pusher . 119

6.5 BLESS Buildings and Sub-Buildings 119

6.6 BLESS Services . 120

6.6.1 Service Skeleton . 120

6.6.2 Navigation . 124

6.6.3 Automated Door Bell 126

6.6.4 Door Guard (Home Monitor) 126

6.6.5 Heating Status (Information Request) 127

6.6.6 Light Switch (Switch Service) 127

6.7 Lines Of Code . 127

6.7.1 MultiApp . 127

6.7.2 Services . 128

6.7.3 Buildings . 129

7 Applying BLESS to private house hold 131
7.1 Description of Field Test Environment 131

7.2 Preparation for the Field Test 132

7.3 Procedure of Field Test . 133

7.4 Results of Field Test . 133

7.5 Comparing with openHAB . 135

7.5.1 Presence Detection with openHAB 136

7.5.2 Realizing Test Services using openHAB 136

7.5.3 Procedure of openHAB Test 137

7.5.4 Results of openHAB Test 138

8 Evaluation and Conclusion 139
8.1 Fulfillment of Requirements 139

8.1.1 Non-Functional Requirements, BLESS 139

8.1.2 Non-Functional Requirements, openHAB 143

8.1.3 Functional Requirements, BLESS 145

8.1.4 Functional Requirements, openHAB 148

8.2 Conclusion . 149

8.2.1 Contributions . 151

8.2.2 Lessons Learned . 152

v

8.2.3 Outlook . 154

Bibliography 157

Author’s Publications 169

vi

List of Figures

2.1 Entities involved in service discovery 29

2.2 Normal communication flow and attack patterns 34

2.3 Security properties . 35

2.4 Components and interactions of a remote invocation system 41

3.1 Architectural overview location-linked services 44

3.2 Relation of location-linked services to location-based services 52

3.3 Relation of smart home applications to location-linked services 53

5.1 Interaction between BLESS service and MultiApp 73

5.2 Schematic overview of how to use SvgNaviMap 89

5.3 Example of query for all BLESS entities 97

5.4 Example response of a building and a sub-building 98

5.5 Example response of a BLESS service 100

5.6 Example response of BLESS pusher 100

5.7 Overview of BLESS push messaging architecture 105

6.1 Architectural overview of BLESS 108

6.2 Screenshots MultiApp: List of buildings and services 111

6.3 Screenshots MultiApp . 113

6.4 UML class diagram of interface for door guard service 121

6.5 Screenshot SvgNaviMap: Overview 124

6.6 Screenshot SvgNaviMap: Floor plan 125

6.7 Screenshot SvgNaviMap: GPSmarkers 125

6.8 Overview of lines of code of MultiApp and its libraries . . . 128

6.9 Overview of lines of code of implemented BLESS services . 129

6.10 Lines of code of service skeletons and navigation service . . 130

6.11 Size of navigation data for sample buildings 130

7.1 Approximate lines of code of openHAB test services 137

vii

List of Tables

2.1 Market shares of mobile operating system in 2015Q2 8

2.2 Closed, proprietary smart home systems 24

2.3 Selection of available controller computers 26

4.1 Summary of non-functional requirements 59

4.2 Summary of functional requirements 63

4.3 Values for location filter and user filter for example services 64

4.4 Events by which each example service can be woken 67

4.5 Required permissions for example services 70

5.1 Packet types of custom push protocol 106

8.1 Fulfillment of non-functional requirements 144

8.2 Fulfillment of functional requirements 150

viii

List of Abbrevations

AP access point

app application for smartphones

BLESS Building-Linked, Expeditious Services System

cf. latin: confer (compare)
CORBA Common Object Request Broker Architecture

CP client part (of BLESS service)

DNS Domain Name System

DNS-SD DNS Service Discovery

e.g. latin: exempli gratia (for example)
GCM Google Cloud Messaging

GNSS global navigation satellite system

ID identification

IDL Interface Description Language

ie. latin: id est (that is)
IGMP Internet Group Management Protocol

IP Internet Protocol

JSON JavaScript Object Notation

LBS location-based service

LLS Location-Linked Service

m/DNS combination of DNS-SD and mDNS

mDNS Multicast DNS

MOS mobile operating system

openHAB Open Home Automation Bus (open source project)

OpenPGP Open Pretty Good Privacy (open protocol specification)

OSM Open Street Map (open source project)

PGP Pretty Good Privacy

ix

PKI public key infrastructure

POI point of interest

RFC Request for Comments

RMI remote method invocation

RPC remote procedure call

SDK software development kit

SLP Service Location Protcol

SOAP Simple Object Access Protocol

SP server part (of BLESS service)

SSDP Service Discovery Protocol (part of UPnP)

TCP Transmission Control Protocol

TCP/IP Internet protocol suite of TCP and IP

TTFF time to first fix

UDP User Datagram Protocol

UPnP Universal Plug and Play

VM virtual machine

XML Extensible Markup Language

XMT cross-platform mobile development tool

x

Chapter 1

Introduction

In recent years smartphones have become very popular for large population

groups due to a wide spectrum of available applications (apps) and falling

prices [Ric14]. The number of smartphone shipments is increasing steadily

and in North American and European countries smartphone penetration is

surpassing 50% these years [eMa14]. With GHz-multicore processors, gi-

gabytes of memory, various integrated sensors, and communication inter-

faces, the user benefit of smartphones is merely limited by available apps

and accessories.

Apps are usually installed via so called app stores. In fact, for most

mobile operating systems the app store operated by the vendor is the only

officially supported method to install new apps. While this makes installing

new apps very user-friendly requiring only a few clicks, app stores have two

major drawbacks: They offer a vast and unmanageable variety of apps and

the availability of apps cannot be restricted to certain user groups. Both

the Google Play Store and Apple’s App Store offer well over one million

different apps each [Sta15]. The user has to manually search through the

vast amount of information, only guided by categories, user ratings, and a

text based search. Secondly, due to missing access restrictions, app stores

are not well suited for hosting private or personalized apps with limited

applicability. For example, apps pre-configured with authentication data for

sharing the family calendar must only be available for family members; apps

providing internal information about a conference do not need to be world-

wide accessible. On the contrary, making such apps publicly available may

1

raise privacy and security issues.

To circumvent missing access restrictions, usually generic apps are of-

fered which connect to a central server authenticating themselves using

credentials entered by the user. Via this server the app can acquire private

data and access to private resources hosted by a public server, e.g. incom-

ing text messages or photos collection. Often apps also obtain data from

the user, examples include contact details and calendar events. At the same

time the smartphone hardware can be used to collect private data, e.g. by

determining the users position or by recording audio and video data. Large

amounts of private data are thus at the disposal of today’s smartphones.

While this is necessary to make smartphones user-friendly, helpful, and in-

telligent personal assistants, it must be made certain that private data is

not exposed [Goo15c, App15b].

Mobile operating systems enforce security policies to ensure that private

resources are not abused by apps. For each used feature – like access

to Internet, contact list, calendar, camera, or the geographical position of

the user – an appropriate permission must be owned by an app [FCH

+
11].

However, fine grained permissions, for example, to authorize an app to

obtain the user’s position only once or restricting Internet access to the

local network, are usually not supported. On the contrary, for iPhone apps

full Internet access is a basic privilege which does not need to be requested

but is owned by every app by design [Hof13]. During installation and usage

the user is informed which permissions are demanded. In general, if the user

objects, the only option is not to install and use the app.

As a result, many users install numerous apps granting them a wide range

of access privileges. Examples of apps requiring a wide range of permis-

sions include the Facebook [Goo15d] and WhatsApp Messenger [Goo15f]

apps as well as the app for updating apps from the Google Play Store

[Goo15e]. The former two apps have been installed by 1-5 billion An-

droid users, the latter is usually bundled with the operating system and

thus present on virtually all Android devices. All three apps are started

when the system booted. They can thus be considered as always running.

They own the permission to obtain the user’s position at any time and read

the local contact list. Given these capabilities and assuming the address

2

1 Introduction

book includes the users’ postal addresses, it is possible to exactly derive

where the users are living and when they are not at home. The Facebook

app can even scan the private calendar to find out when the users planned

their vacations. The WhatsApp app can listen to every conversation of its

user by accessing the microphone. Finally, all three apps have full Internet

access.

Considering such widely distributed and powerful apps, alert users may

ask questions like: Are my apps transferring private data? Where is the data

sent to? Is it safe and does it stay there? What is it used for? However,

most users do not ask these questions given that the apps are providing

convenient and well-performing services. This results in vast amounts of

private data collected by internationally active companies. App stores –

which can only be used by registered users – are prime examples of such

data sinks. They are aware of each app each user ever installed and how

much users paid for them. As described above, their corresponding updater

apps can even determine where the users are living. There can be no doubt

that this data might impose severe privacy issues and security risks. Be-

ing confronted with an increasing number of reported server break-ins and

incidents of leakage, theft, and espionage of data from Internet servers

[Inf14, PwC14], this is an alarming development.

The situation is growing even more critical with increasing popularity of

current smart home systems. These are usually controlled by smartphone

apps which cannot merely collect personal data but can also manipulate

physical objects, e.g., open garage doors, control shutters, or disarm the

house alarm. An additional security risk is the fact, that many smart home

systems relay control signals via Internet servers operated by the vendor.

On top of that, if a security vulnerability of a certain type of home automa-

tion system becomes known, the app store is technically able to determine

at which addresses this system is being used, when its inhabitants are not

at home, and thus where and when an easy break-in is possible.

3

1.1. CONTRIBUTIONS

1.1 Contributions

This dissertation proposes a new concept for offering apps which endeavors

to amend above mentioned drawbacks and uncertainties. The main innova-

tion is to avoid Internet connectivity, both during installation and runtime,

but to solely rely on WiFi communication within local networks. At the

same time the discrepancy is dissolved of being limited to install off-the-

shelf apps from a global, public mass-market instead of being able to install

private, personalized applications making the smartphones a real personal

assistant. As the apps introduced by the new concept are not installed via

apps stores, they are no traditional apps. They are further linked to the

WiFi covered area and will thus be called location-linked services (LLSs).
In this context, the following contributions are made:

• Potential fields of application for LLSs are identified. Also their limi-
tations are discussed. Based on 16 detailed use-cases, requirements

are formulated for providing LLSs. Emphasis is put on a convenient

user experience while protecting privacy and providing security.

• In order to provide protection against malware and other unwanted
services a concept for service identification is proposed. It allows the

user to make an informed decision whether a service can be trusted

before installing it. At the same time user authentication is supported.

Security related services can thus provide different levels of access

for authenticated users.

• After analyzing existing technologies which allow autonomous detec-
tion of services once users are admitted to the local infrastructure,

a light-weight discovery protocol is developed especially suited for

LLSs. Based on this protocol a concept is developed which allows

installing services that are comparably powerful as conventional app

but can be installed in a distributed manner eliminating the need for a

global app store.

• A concept is devised for integrating indoor localization technologies.
Allowing LLSs to obtain user location and as well as setting up geo-

fences.

4

1 Introduction

• The design of BLESS (Building-Linked, Expeditious Services System)
– a system for providing LLSs in buildings – is presented. Based on

existing technologies BLESS is implemented providing a platform for

platform-independent, location-linked services. The goal is to allow

easy creation of these distributed services which can access smart-

phone capabilities and communicate with their server counterparts.

• In a field test the system is tested and evaluated. Finally, it is com-
pared to the home automation system openHAB (Home Automation

Bus). Differences and similarities are discussed as well as potentials

for enhancing BLESS, e.g. by integrating features of openHAB.

1.2 Structure of Dissertation

This dissertation is organized as follows: Chapter 2 provides an overview

of technologies connected with LLSs. This comprises an introduction to

smart home systems in general, and openHAB in specified. Location-linked

services are introduced in detail in chapter 3. Here also examples are pro-

vided and areas of applications are highlighted. Chapter 4 considers what

requirements a system for providing LLSs must fulfill in order to be benefi-

cial for users as well as suppliers. Afterwards chapter 5 proposes a design

for the LLSs system BLESS which is design to comply well with these re-

quirements. The implementation of this system is detailed in chapter 6. As

proof of concept chapter 7 presents the application of BLESS to a private

household. It also explains how openHAB can be used to provide similar

services. Chapter 8 evaluates how well both BLESS and openHAB fulfill

the requirements from chapter 4 and finally concludes this dissertation.

5

1.2. STRUCTURE OF DISSERTATION

6

Chapter 2

State of the Art

This chapter summarizes the current state of technology and research in

context of location-linked service for smartphones.

Section 2.1 presents background information about smartphones: what

they are capable of, how they are used, and what current issues and limits

are. The following sections provide an overview of technologies which help

to create a concept for distributing LLSs for limited geographical areas in a

localized manner avoiding app stores and Internet access. LLSs are partic-

ularly useful in combination with indoor localization technologies. Conse-

quently, section 2.2 provides an overview of the state of the art of such.

It also presents map technologies for visualizing geographical location as

well as routing information. In order to compare LLSs to smart home ap-

plications, section 2.3 outlines the current state of smart home systems in

general and describes in detail the smart home system openHAB with which

the system developed by this research will be compared in chapter 7. An

important feature of LLSs is autonomous service discovery. According pro-

tocols are presented in section 2.4. Before using a discovered service, the

communication parties have to authenticate themselves in order to enter a

secured and trusted communication. Section 2.5 thus summarizes relevant

state of the art about secure networking concerning LLSs. Finally, section

2.6 presents current communication concepts usable by servers and mobile

clients of distributed systems in general and of LLSs in particular.

7

2.1. SMARTPHONES

2.1 Smartphones

The iPhone, the first smartphone with multi-touch screen was introduced

by Apple in 2007 [DB07]. The first Android device followed one year later

[Ger11]. In 2013 for the first time more smartphones than conventional

phones were sold worldwide [RM14]. Today smartphones are spread very

widely. While hardware capabilities and features of current devices are

similar, the operating system is the distinguishing attribute.

2.1.1 Mobile Operating Systems

The choice of the mobile operating system (MOS) directly determines which

application format can be installed on a device. Unlike for PCs the operating

system of smartphones can in general not be changed. Thus, already when

buying a smartphone the user implicitly decides which apps they will be able

to use.

Despite the prediction of IDC from June 2011 that the MOS market will

be almost evenly split between between the 4 largest MOS (Android, Win-

dows Phone, iOS, and BlackBerry OS) by 2015 [IDC2011], today just the

two earliest MOS have a market share above 10%, considering the shares

in unit shipments. All other MOSs together have a market share of about

3%. The detailed worldwide MOS market shares for the second quarter of

2015 are shown in figure 2.1.

Android iOS Windows Phone BlackBerry OS Others

82.8% 13.9% 2.6% 0.3% 0.4%

Table 2.1: Market shares of mobile operating system in 2015Q2

(Share in unit shipments) [IDC]

Even though the MOS market is not as badly segmented as it was pre-

dicted, it is still necessary to support multiple MOS to reach 90% of all

users. While for PCs multi-platform programming is common practice, e.g.,

using Java or the QT library for C++, for smartphones it is much less fre-

quently used. The main reasons are performance, user interface, and user

experience issues as discussed in [1].

8

http://web.archive.org/web/20121120210428/http://www.idc.com/getdoc.jsp?containerId=prUS22871611
http://www.idc.com/prodserv/smartphone-os-market-share.jsp

2 State of the Art

Due to its popularity and wide availability, for this dissertation project

the Android MOS was used. However, while technical implementations and

details may vary, all used concepts and technologies are in general also

applicable and available for other MOSs. If not stated otherwise in the

following, examples and details are given based on the Android MOS.

2.1.2 Installation of Apps

App is an abbreviation for application which is widely accepted and was
even admitted into many English dictionaries

1

. In the following app is used
for applications for mobile devices, whereas application refers to programs
for conventional personal computers.

Apps are the only way to add new functionalities to a smartphone. Each

executable program is an app. After installation it is usually listed in the

smartphone’s main app list and is thus launchable be the user. However,

many mobile operating systems also allow apps to be started when system

events occur, e.g. on boot or on connecting a charger.

The installation routine of new apps puts the biggest constraint on smart-

phone users currently. Whereas users can get software for personal com-

puters from various sources - including CDs, DVDs, or the Internet - and

can afterwards install it on any number of devices, they can only obtain

smartphone apps via dedicated app stores. Each MOS provider operates

its own app store that only offers applications for that MOS. After cre-

ating an application for a particular MOS, the developer submits it to the

corresponding app store. Each app store has its own admission policies

[Goo15b, App15a]. They may reject apps due to violent content or illicit

behavior. The exact test policies are usually not published, however. Once

an app store approves an app, all users of that MOS can download and

install it. While Android offers the possibility to install apps from not offi-

cially supported app stores - so-called unknown sources - , iOS does not
offer this ability, thus confining its user to Apple’s app store.

While the app store is convenient for users since they only have one place

to look for apps, it is at the same time a drawback. Quickly distributing

1

http://www.macmillandictionary.com/dictionary/american/app,

http://dictionary.cambridge.org/dictionary/british/app

9

2.1. SMARTPHONES

a beta version or a private app which is only meant for selected users is

not easily possible. Further, as app stores are ever growing it gets more

difficult to find a right app at the right time. The user has to manually

search through more than 1.5 million different apps [Sta15], only guided

by categories, user ratings, and a text based search. E.g., when looking for

a camera which allows to configure the filename of the taken photos and

searching for "camera filename" Google’s app store returns 176 hits, as of

November 2014.

An advantage for companies and developers is the integrated monetiza-

tion of apps. They do not have to bother about how end users can pay for

apps or returning bought apps, as the stores take care of that. A drawback

is, if apps are offered in multiple app stores - e.g. the official one and an

unknown source - with each new version the app has to be uploaded to
each store.

2.1.3 Internet Access

Smartphones are very often sold together with contracts including unlimited

data plans. Being on-line at all times is the normal state. Smartphones have
become a synonym for Internet access.

Indeed, there exist apps for which it is very convenient to be usable at any

time, e.g., messaging programs. However, MOSs make it very easy and even

encourage apps to make use of the permanent Internet connection. This

is the exact opposite to conventional personal computers. Until recently,

usually firewalls are used to block Internet access for most applications,

while access to files, camera and microphone is granted by default.

However, the trend of limited Internet access for desktop applications is

on the decrease. Many applications make use of the Internet connection to

check for updates, report usage statistic, or to send crash reports. While

these features are usually optional, there also exist applications which can-

not be used without an Internet connection, e.g. Microsoft Office 365.

Modern MOSs go one step further and do not try to limited Internet

access at all. As a result, all apps could transmit any available data to

any Internet server. MOSs must thus provide other means to protect user

10

2 State of the Art

privacy and to earn user trust.

2.1.4 Trusting apps

As apps may access all available resources of a smartphone, both user data

as well as data collected from hardware sensors, it is of uttermost impor-

tance to prevent apps from disclosing private data. If private data needs to

be shared, user consent is required. Further, it needs to be made certain

with whom and for what purpose the data is shared and that the data is

well protected at its destination and is not transferred to other entities. In

short, the user needs to trust apps.

To gain the users’ trust, all major MOSs pursue a two-fold strategy: App

stores and app permissions.

App Stores

App stores allow to efficiently control which apps can be installed by users.

If there is no harmful app available in app stores, the users are safe. This

is the idea the MOSs producers are promoting, e.g. by calling unofficial app

stores unknown sources, which is synonymous with untrusted sources. In
fact all major app stores state strict policies and review guidelines, clearly

stating under what conditions apps will not be admitted [Goo15b, App15a].

In theory, this approach is sounds plausible, in real live, however, there are

a number of shortcomings.

Most important, screening and filtering of admitted apps is not reliable.

In 2013 F-Secure determined that 0.1% of all apps in the Google Play Store

contained malware [F-S14, p. 27]. There also have been regularly reports

of malware which successfully landed in the App Store [Apv14, XWZ14].

In September 2015 it even became known that a manipulated developer

environment infects tens or even hundreds of apps [Xia15]. However, once

a new threat or malware type becomes known, app stores tend to be fast

in removing affected apps. They can even delete apps from all registered

devices without user cooperation nor explicit user consent. In the meantime,

however, apps may spread quickly as it is very convenient and fast to install

new apps.

11

2.1. SMARTPHONES

The second major issue identified by this dissertation is the fact that

there is no easy way for users to determine the authenticity of app de-

velopers. Even though each app needs to be signed by the app author,

MOSs offer no support to view these signatures before installing an app.

It is thus not possible for users to make sure that an app is indeed from a

certain author; even if the signature of the author was known. Instead only

a arbitrary, self-chosen developer name is shown to the users.

Most critically seen, however, is the role of app stores and its operator,

which is the vendor of the MOS. First, each user has to register with the

vendor usually providing real name and address. In case the user wants to

install apps with costs, also banking account details need to be transmit-

ted. Next, the vendor is aware of each app each user ever installed and

how much users paid for them. Next to other conclusions, the vendor can

use this information to deduce personal preferences and to identify user

groups, e.g. family members or employees of a company. Additionally,

when installing apps from the app store users are expected to trust the

vendor determining which apps are safe.

Consequently, there is no way for users to use a smartphone without

putting unconditional trust in the good nature, honesty, and security mech-

anisms of the vendor of the MOS. Users can hardly limit nor control which

data is collected nor can they ascertain what the data is used for. Even for

governments it is difficult to control vendors as they are usually interna-

tionally active companies. Data can easily be stored in different locations

worldwide, exposing it to any number of attacks.

Permissions

The second approach to enhance trust-level between user and app is being

achieved by limiting permissions of the app using the permission system of

the MOS. By denying permissions for certain features, these feature cannot

be used by an app, e.g. accessing the local address book or the user position

via GPS. Android 5 provides an impressive list of 151 different permissions

1

iOS’s permission system is much more coarse-grained. An official, complete

list is not available.

1

https://developer.android.com/reference/android/Manifest.permission.html

12

2 State of the Art

While the concept of permissions is sound and can efficiently help pro-

tecting user privacy, current implementations show several defi-

cits [JMV

+
12]. Following listing of shortcomings are based on Android

4. Newer versions as well as other MOS may already have amended some

of these issues.

A major issue diminishing the effectiveness of permission is presenting a

list of permissions to the user during install time. While the user is forced to

scrolled down to the end of the list before being able to proceed, the list is

often long and its content not well understood [FHE

+
12]. Resulting in de-

sensitize users especially since there are no direct, negative consequences if

the list is not read carefully but simply accepted [MVH88, SM94]. Besides,

the user has no choice but to accept in order to use the app.

Further, there are no time-restrictions for permissions. An app with per-

mission to access the camera, could technically start videotaping at any time

even if the app is running as background service. There are no one-time per-

missions, either, e.g. to obtain the user position only once. It is also not

possible to allow an app accessing a single contact instead of granting ac-

cess to the whole address book. Finally, the user is not aware when an app

is making use of which permission, e.g. when audio data is being recorded.

There is neither an indication of current activities in the notification bar nor

is a log made available to the user.

Considering reports of privacy issues and disclosure of personal data, it

is most notably that Internet access cannot be restricted for iOS apps at all.

Android only distinguishes between full and no Internet access. It is thus

not possible to restrict apps to communicate only with selected servers.

Also other conceivable restrictions, e.g. to limit number, amount, or rate of

data transmissions, are not available.

2.1.5 Limitations

While MOSs are trying to protect user privacy, they enforce the usage of

huge, publicly accessible, centralized app stores. As a result large amounts

of private data is collected which cannot easily be circumvented by users,

as app stores constitute the only officially supported method for installing

13

2.2. LOCALIZATION

apps.

Further, app stores are not suited for distributing following three types

of apps in a user-friendly and secure manner:

Location-Linked apps

Apps which are meant to be used in a limited geographical area should not

be installed via a global app store. For example, a shopping mall could offer

an app providing product finder services for customers. While publishing

such an app in an app store, does usually not cause any security concerns, it

is not practical. Customers would have to know in the first place that such

an app exists, they must actively search for it, and then install it.

Sensitive apps

For apps, owned by companies allowing employees to access internal doc-

uments, app stores are not a well suited distribution channel. Also apps

controlling physical, security related objects, such as doors, shutters, or

alarm systems, are sensitive apps. While these apps require users to en-

ter login credentials before private resources can be accessed, making them

globally available via app stores still poses a security risk. They could be

downloaded by attackers and be reverse engineered to find security vul-

nerabilities.

Private apps

Private apps need to be even better protected than sensitive apps. Any

private app being accessible by unauthorized users poses a privacy or even

security threat. Examples include pre-releases of beta versions for a lim-

ited group of test users or pre-configured apps containing access data for

private resources, like a family calendar.

2.2 Localization

Hansen et al. pointed out that mobile services often either rely funda-

mentally on the location of its users or may benefit substantially from it

14

2 State of the Art

[HWJT10]. While LLSs can imply that its users are close, a more fine-

grained localization of users is also beneficial for these types a applications.

This section introduces localization related concepts and technologies.

2.2.1 Location-Based Services

As pointed out by Küpper, the term location-based services (LBSs) is be-
ing used in the field of mobile communications and mobile computing for

many years, although there is neither a common definition nor a common

terminology [Küp05, p.1]. In general however, LBSs denote applications

integrating some type of geographical location, processing it, and making

use of it to generate an additional value for a service [SV04, p.10]. Either

the location of the user of the LBS, the location of one or several targets,

e.g. of close pizzerias, or both may be used. The term location service,
on the other hand, is usually used for subsystems generating and delivering

the raw location data to the LBS [Küp05, p.2]. However, to prevent over-

loading the term service, this terminology is not used in this thesis; instead
localization system is used.
LBS can be classified into reactive and proactive LBSs. A reactive LBS

needs to be explicitly activated by the user. On invocation it usually re-

quests the current user position from the localization system and performs

based on the obtained position an action, e.g. finding the closest pizzeria.

A proactive service on the contrary is automatically invoked as soon as a

predefined location event occurs. It could, e.g., send a voucher when the

user passes by the pizzeria.

2.2.2 Geofences

For describing location events often geofences are being used. The term

geofence is a coinage of words geographic and fence. It is a virtual perime-
ter for a physical geographic area. Geofences are an integral part of current

localization systems. Most MOSs offer a geofence API which allows apps

to register for events such as entering, leaving, staying in or outside a given

geofence. The operating system takes care about permanently observing

the current position and issuing notifications for each registered geofence

15

2.2. LOCALIZATION

to the according app. This concept of a location-based notification service

was first introduced by Munson and Gupta [MG02].

Next to facilitating implementation of applications, the geofence concept

also allows optimizing energy consumption [Bar12]. For example, when all

registered geofences are far away the MOS can rely on a coarse-grained po-

sitioning technology which usually is more energy-efficient than fine-grained

alternatives. Only when the geofences come closer more fine-grained lo-

cation sensors need to be activated.

A geofence API usually allows the programmer to specify the geofence

itself as well as the transition type. In case of Android’s Geofence API

1

the

former is specified as a circular area of given radius at a given geographical

location specified in latitude and longitude. Supported transition types are

enter, exit, and dwell, issued when the user enters or exits the geofence,
or dwells inside the geofence for a given amount of time, respectively.

2.2.3 Technologies

Localization systems and their technologies in general can rely on a number

of physically measurable quantities. Torres-Solis et al. [TSFC10] distin-

guish six categories: (1) radio frequency waves, (2) photonic energy, (3)

sonic waves, (4) mechanical energy (inertial or contact), (5) magnetic fields,

and (6) atmospheric pressure.

While there are many research projects for each category and combina-

tions of them, practically only radio frequency waves are used today: GPS

which is a subclass of Global Navigation Satellite Systems (GNSS) has be-

come the de-facto standard for outdoor localization [ME06], while for in-

door localization WiFi-based approaches are widely used since they avoid

cost for specialized equipment used solely for positioning [HT09]. How-

ever, also beacon-based systems are becoming more popular as hardware

prices are falling.

1

http://developer.android.com/training/location/geofencing.html

16

2 State of the Art

Global Navigation Satellite Systems

Today there are two GNSSs usable (GPS and GLONASS), while two other

are being deployed (GALILEO and Beidou). GNSSs are independent of lo-

cal infrastructures and provide worldwide coverage. Their satellites contain

highly accurate clocks and continuously transmit the time signal to the sur-

face of the earth. GNSS timing receivers can receive the signal and use it

to calculate its position with an accuracy of a few meters to several cen-

timeters. A more detailed description and technical details are provided by

[Heg12]. After a cold start of a GNSS receiver it takes approximately 60 s

to obtain a first valid position (time to first fix, TTFF) [Mau12, p. 76].

This time can be considerably reduced by assisted GNSS [Mau12, p. 77].

It employs an additional data link to quickly obtain data which is needed

for localization which includes of satellite ephemeris, almanac, differential

corrections and timing information. Without assistance this data is received

directly from the satellites at a much lower transmission rate.

GNSSs are very widely used and GPS receivers are integrated in most

smartphones. While they provide accurate positions outdoors, they cannot

be used for indoor applications due to very strong attenuation of GNSS

signal caused by building materials [Mau12, p. 76].

WiFi Localization

An additional receiver of radio frequency waves which is integrated in virtu-

ally all smartphones are WiFi adapters. Due to a high availability of local

WiFi infrastructure and due to a better penetration of building materials by

their radio frequency waves, WiFi is a promising technology to be used for

localization services [HWJT10].

Fingerprinting based on RSSI values is the prevalent method of usingWiFi

for positioning achieving accuracies of a few meters [Mau12, p. 64]. This

finding is also backed up by Torres et al [TSFC10, p.57]. Fingerprinting

works in two phases. During the off-line phase (before the system is oper-
ational), WiFi scans are conducted at positions throughout the space where

the localization system is to be used. All detected WiFi signals usually in-

cluding a signal strength indicator are stored in a database together with a

17

2.2. LOCALIZATION

ground-truth location of each scan. This database is often referred to as

radio map, each entry is called a fingerprint. During the online phase mobile
devices again take WiFi scans and perform afterwards a pattern matching

algorithm: In general, they use the radio map as lookup table to find the

fingerprint which is most similar and thus determine their own location.

Note that Hansen et all concluded from their experiments that when

combining multiple fingerprints into a single one while creating radio maps

accuracy will dramatically decrease even in a modestly dynamic environment

[HWJT10, p. 9]. As a result respective databases may grow very large in

size.

A wide variation of fingerprinting techniques has been developed over

the last years. For example, research proposes to enhance accuracy and

facilitate processing by:

• applying filters to reduce noise and inference[LBR+02].

• constructing radio maps as weighted graphs [HT09].

• favoring adaptive instead of static radio maps [HWJT10].

• using hyperbolic location fingerprinting to counter the problem that
mobile devices measure radio signal strength differently [Kjæ11].

• relying on signal strength differences for building radio maps [LZYP13].

Despite the continuously ongoing research, there is still no prevalent

WiFi-based indoor localization system available.

Beacons

On the contrary, commercial solutions rely often on beacons for localiza-

tion. Beacon-based localization techniques rely on proximity sensing and

optionally on lateration as detailed by [Küp05, pp.130]. Hence, they es-

sentially apply the same fingerprinting concept as introduced above. How-

ever, in this case fingerprints of the beacons instead of WiFi access points

(APs) are taken. Beacons usually have a much lower sending ranges, as a

18

2 State of the Art

consequence a dense net of beacons must be installed. This results in fine-

grained radio maps which even return accurate results if signal-strengths

are inaccurate, e.g. when Bluetooth hardware [Mau12, p.84].

A comprehensive benchmark covering every major beacon manufacturer

measuring among other things sending range and battery life time is pro-

vided by technology company Aislelabs [Ais15].

Other

More localization technologies exist. For example, angulation relies on mea-

suring the angle of arrival of signals [Küp05, pp.138]. If the clients sends

a signal which is received by at least three base stations at fixed positions,

a three-dimensional client position can be calculated.

Dead reckoning is a very old technology that was already used by Christo-

pher Columbus and which is still used today [Küp05, pp.141]. It uses a

known last position together with sensor data to deduce a new position.

While Columbus used a compass and a rope with knots to measure direc-

tion and speed of his ship, respectively, today accelerometers, odometers,

and gyroscopes often integrated into smartphones are used to determine

changes in position.

2.2.4 Indoor Localization Systems

This section presents available systems which can determine the location of

smartphones inside buildings.

Localization systems can be grouped into two classes: infrastructure-

based and infrastructure-free. Infrastructure-based are called systemswhich

require dedicated hardware which needs to be installed for localization. All

beacon-based systems fall into this category. Infrastructure-free are con-

sidered systems which do not use any infrastructure or infrastructure which

is already available, e.g. WiFi APs or GNSS satellites.

Infrastructure-Based

Many commercial products exist that fall into this category.

19

2.2. LOCALIZATION

One example is the indoor positioning system StepInside by Senionlab
AB from Sweden [Sen15] for smartphones. It combines WiFi fingerprint-

ing, beacon proximity sensing, as well as dead reckoning using the phone’s

integrated accelerometer, gyroscope, and magnetometer. Another compa-

rable system is indoors by indoo.rs GmbH from Austria1.

Indoor positioning systems that only rely on beacon proximity sensing

include SmartIndoor by E-Twenty Development Inc. from Canada2, a sys-
tem by Signal360, Inc. from the USA

3

, and another system is offered by

company Kontakt.io from Poland

4

.

All presented products offer software development kits (SDKs) which

facilitate creating smartphone apps which make use of the provided indoor

location. This includes showing maps being able to present the user’s posi-

tion as well as routes to selected destinations.

Infrastructure-Free

Opposed to infrastructure-based approaches, there exist only few options

for infrastructure-free indoor localization systems.

First, there exist large databases containing worldwide WiFi radio maps.

Examples include Google’s geolocation database [Goo16] as well as a col-

laborative databaseWigle

5

. Both provide an API which can be used to query

the geographic location of WiFi access points. However, these approaches

are not well suited for indoor localization as their accuracy is as low as 50m

to 100m and they cannot determine the building level users are in.

Other approaches are usually academic projects like SmartCampusAAU
[HTTA13] or the crowdsourced approach by Laoudias et al. [LZYP13] and

cannot be applied easily in own projects.

1https://indoo.rs/
2http://smartindoor.com/
3http://www.signal360.com/
4https://kontakt.io/
5

https://wigle.net/

20

https://indoo.rs/
http://smartindoor.com/
http://www.signal360.com/
https://kontakt.io/

2 State of the Art

2.2.5 Indoor Map Technologies for Smartphones

Without a usage for position data localization technologies are useless. One

very useful and wide spread use-case is showing the current position on a

map. Another relevant use-case for position data is navigation. It requires

additional navigational data. Many map engines and frameworks exist. Some

only support outdoor maps, some only indoor floor plans, a few try to

integrate both. In the following a indoor map technologies are presented

which can be applied to smartphones.

A well known product is Google Indoor Maps

1

. It allows building owners

to upload their building maps including all level. When users use Google

Maps and zoom in into such an enhanced building, the view changes to show

an indoor floor plan. As navigational data is not included, there is no option

for showing routes to the user.

Also Open Street Map (OSM) supports describing the interior of build-

ings

2

. It allows to render indoor maps and also to calculate routes both

indoors and outdoors.

Similarly is commercial productMapsIndoors 3 by danish company Maps-
People A/S. It extends Google Indoor Maps with navigational data also

allowing users to display routes both inside and outside buildings.

AskCody is among other things a way-finding tool only for indoors. It
applies its own map technology and allows to show maps and routes on

smartphones, websites, and digital information boards, e.g. within shopping

malls or hospitals.

Next to these dedicated map projects also the previously presented

commercial products for infrastructure-based localization provide SDKs for

creating and using indoor maps.

2.3 Smart Home

Controlling and automating technicals devices in private homes is a suitable

field of application for LLS. The idea of a smart home is already around since
1https://www.google.com/maps/about/partners/indoormaps/
2http://wiki.openstreetmap.org/wiki/Simple_Indoor_Tagging
3

http://mapspeople.com/

21

https://www.google.com/maps/about/partners/indoormaps/
http://wiki.openstreetmap.org/wiki/Simple_Indoor_Tagging

2.3. SMART HOME

the 1980s. Even though houses get smarter – e.g., by using motion sensors

for outdoor lighting or by integrating alarm systems which monitor unlocked

doors – a real smart home, however, which integrates many electronic and

electric devices into a single system as envisioned by [FHW85] is still the

exception.

The subject area of smart home covers today many different branches,
including: home automation, intrusion detection, video surveillance, fire de-

tection, patient health monitoring, and entertainment. For each a large

amount of research is and has been carried out. This section presents

projects, standards, products in the area of smart home which are relevant

for this dissertation.

2.3.1 Smart Home Standards

There exist multiple standards which are used by smart home products.

Many of these standards were originally developed by a single company;

their specifications are kept secret. However, there exist standards for

which the technical specifications are available, such that any vendor can

develop compatible products. They are called open standards in the fol-
lowing. Subsequently three open standards for communication for smart

home products are summarized; followed by an enumeration of the closed

standard systems.

X10

X10 is an industry standard for communication among electronic devices

primarily via power line wiring. It was developed in 1975 by Pico Elec-

tronics and changed a lot since its beginnings [Rye99]. Now the X10 also

defines a wireless based transport protocol. Even though it offers only low

bandwidth, it is still a popular standard.

Insteon

The Insteon protocol [Ins13] for smart home appliances primarily relies on

wireless communication between devices. However, it is compatible to the

22

2 State of the Art

X10 standard. It was first published in 2000 by companies Smarthome and

Insteon.

Z-Wave

Z-Wave is a radio-only network specification for controlling smart home

products. Opposed to Insteon which relies on broadcasting, Z-Wave routes

messages. The patent [Sho05] covering the Z-Wave standard was filed in

2005 by ZenSys.

Closed Standards

Next to open standards, multi-purpose technologies like Ethernet, WiFi, or

Bluetooth are also used for smart home products. However, due to a lack

of a standardized application protocol these devices are usually not easily

inter-operable.

Additionally, there exist many proprietary, non-public standards. These

are in general used only by a single company that offers their own, closed

smart home ecosystem. Examples are given in table 2.2. While offered

devices and functions as well as prices vary greatly, they require a matching

controller to manage the smart home system.

2.3.2 Smart Home Systems

Creating a smart home system from smart home devices requires a con-

troller which is able to manage all devices. For open standards two ap-

proaches can be distinguished: Either a dedicated controller computer or a

controller software can be used.

Controller Computer

A dedicated controller computer requires integrated hardware components

to interface the above listed standards. Since these controllers are in gen-

eral not standardized, they require customized firmware. It must provide

means to program application logic and to control and manage the whole

23

2.3. SMART HOME

System Vendor Internet address

Loxone Loxone www.loxone.com/

MAX! eQ3 www.eq-3.de/max-heizungssteuerung.html

brightup brightup brightup.de/

FS20 ELV www.elv.de/fs20-funkschaltsystem.html

HomeMatic ELV www.elv.de/homematic-hausautomation-smart-

home.html

Synco living Siemens www.siemens.de/buildingtechnologies/de/

de/gebaeudeautomation-hlk/home-automation-

system-synco-living/seiten/home-automation-

system-synco-living.aspx

xComfort Eaton www.eaton.de/EatonDE/ProdukteundLoesungen/

Electrical/ProdukteDienstleistungen/ Wohnbauk-

leinereZweckbauten/ xComfortFunkinstallation/in-

dex.htm

Dynalite Philips www.lighting.philips.com/main/subsites/dynalite/

projects/smart_home/

Miele@Home Miele www.miele-primus.de/media/shop/home/

_prospekte/aktionsprospekte/Miele_Home.pdf

Table 2.2: Examples of closed, proprietary smart home systems.

Links accessed: 2015-08-26

24

2 State of the Art

smart home system. For all reviewed controllers the firmware was propri-

etary and closed-source. The complexity of possible configurations is thus

bound to the capabilities provided by the firmware offered by the vendor of

the hardware.

An overview of a selection of available controller computers is provided

by table 2.3.

Controller Software

The alternative approach is to use a multipurpose computer and equip it with

hardware interfaces to make it interoperable with the smart home devices.

Then any available controller software can be deployed which uses the in-

terfaces offered by the connected hardware components to take control

of the smart home system. Again, the complexity of possible configura-

tions is bound to the capabilities of the software controller. Theoretically,

software controllers are interchangeable.

Next to research projects [KBY

+
12, VF02] which aim to provide soft-

ware controllers for managing devices belonging to different smart home

systems, there also exist commercial products, e.g., IP-Symcon

1

. Addition-

ally, there are many open source projects available having the same goal,

e.g., Domoticz

2

, LinuxMCE

3

, Fhem

4

, or openHAB.

Besides all differences concerning functions and capabilities, degree of

configurability, used programming language, system requirements, and op-

erating system support, all reviewed software controller systems share a

common or at least very similar basic structure: They all provide drivers

to connect to hardware interfaces which are capable to communicate with

smart home devices. Using some kind of configuration menu or scripts,

these devices can be controlled via a web interface or smartphone apps.

Further, the systems can react to events, like time or user events as well

as events triggered by smart home devices. Some software controller sys-

tems are even capable to interact and even manage controller computers

1

https://www.symcon.de/

2

http://www.domoticz.com/

3

http://www.linuxmce.org

4

http://fhem.de

25

2.3. SMART HOME

Controller name Insteon

Hub

a

ISY994i

b

Home

Center

Lite

c

Home-

Troller

Zee S2

d

Vera3

e

Vendor Insteon Universal

Devices

Fibaro HomeSeerVera

Requires Internet

connection

yes for App

only

no yes yes

Closed-Source yes yes yes yes yes

Need to register yes for App

only

no yes yes

Configure via App Browser Browser Browser Browser

App offered yes yes yes yes yes

By default reach-

able via Internet

no no no yes yes

Supports X10 no yes no yes no

Supports Insteon yes yes no yes no

Supports Z-Wave no no yes yes yes

Developer API of-

fered

yes yes no yes yes

API requires regis-

tration

yes no - no no

Table 2.3: Selection of available controller computers

a
http://www.insteon.com/insteon-hub/

b
https://www.universal-devices.com/residential/isy994i-series/

c
http://www.fibaro.com/de/the-fibaro-system/home-center-lite

d
http://www.homeseer.com/home-controllers.html

e
http://getvera.com/controllers/vera3/

26

2 State of the Art

if those provide appropriate programming interfaces. As example, section

2.3.4 provides details about the structure and configuration procedure of

openHAB.

2.3.3 Limitations

The major difficulty for a user is the large amount of standards and different

systems. Deciding which system is most appropriate for the personal use-

cases, while still having a manageable complexity and being within the limits

of the financial resources, is a cumbersome task. Research [KBY

+
12] and

economy has detected this problem and reacted by creating alliances aim-

ing to make devices and thus systems inter-operable. Unfortunately, there

are again multiple. Examples include: EnOcean alliance

1

and the Qivicon

alliances

2

.

An alternative way to handle fragmentation of the smart home market

are software controllers as introduced in the previous section.

Another problem is that many vendors design their systems based on

controller computers in such a way that Internet connectivity is mandatory

for a correctly working system. Resulting privacy, security, and connectivity

issues are ignored or claimed to be solved. Only theHome Center Lite does
not require Internet connectivity (cf. section Controller Computer on page
23).

None of the systems presented in section 2.3 offers a concept for au-

thentication and authorization of multiple users. Every authorized user is

allowed to perform all available actions and read all available data. While

for a private house-holds this is usually acceptable, for smart home systems

in larger buildings it is not. Neither it is for LLSs.

2.3.4 openHAB

This section introduces the smart home system openHAB. It is used as ref-

erence for determining capabilities of LLSs in the field of smart home appli-

cations in chapter 7.

1

https://www.enocean-alliance.org/

2

https://www.qivicon.com/

27

2.3. SMART HOME

The openHAB

1

project is a vendor and technology agnostic open source

automation software for private homes which is usually executed on a cen-

tral server computer. openHAB stands for Open Home Automation Bus. It
allows switching and dimming of lights, controlling shutters and simple mul-

timedia devices, and can be programmed to react to external events, e.g.,

weather forecasts and motion alarms. It is extensible so that any event and

data sources can be integrated and new hardware devices can be managed

and controlled. Software openHAB provides a flexible logging mechanism

which can be used to persist all received inputs and performed actions.

openHAB is meant to manually and automatically control home devices.

It is accessed via a list-based web browser interface which also supports

HTTPS. Additionally, Android and iOS smartphone apps are offered which

make use of the same web server interfaces. Usually one home automation

device is represented by several list items, displaying the device’s state via

icons and text and providing according control elements like sliders and but-

tons. It is even possible to provide customized views for control elements.

However, it is not possible to create advanced graphical user interfaces,

e.g. for displaying and interacting with maps or dynamic lists. Neither are

client-side actions – such as accessing the camera or playing audio files –

supported. No support for smartphone-triggered actions such as geofence-

events is provided.

openHAB uses a custom, Java-based language for configuring the smart

home system. The configuration for each function group is usually stored in

a separated file.

First, so called items have to be defined in a dedicated configuration
file. Items are similar to variables. When setting an item, actions may be

triggered, e.g. executing a light switch command. Items are available on

the eponymous bus offered by openHAB. Second, scripts (called rules in
openHAB speech) have to be programmed which respond to item changes,

e.g. by changing other items or executing other commands, like issuing an

HTTP GET request. Additionally, modules can be configured. They are Java

class files which can be loaded into the openHAB framework. Technically,

openHAB is a OSGi framework and mentioned class files are OSGi bun-

1

http://www.openhab.org/

28

2 State of the Art

dles. Modules can implement any program logic only limited by capabilities

offered by Java, including accessing hardware components which in turn can

be used to access smart home devices. Both rules as well as modules can

read from and write to any item available on the openHAB bus.

2.4 Discovery Protocols in IP Networks

Discovery protocols are used to detect available services and devices within

networks without or with little prior configuration. Many organizations have

developed such protocols in the years around the turn of the millennium.

Today only four protocols are actively maintained and used. Their specifi-

cations are public and all of them have in common that they rely at some

point on IP multicast, which is explained in section 2.4.1.

Each protocol distinguishes between the clients which search for items,

the items which offer some service, and an optional directory which col-

lects and lists all available items and their services. For easier comparison

in the following these three entities will be simply called client, service,

and directory, respectively. An overview of their interaction is depicted in

figure 2.1.

Service B

Service A

Directory

Client 2

Client 1
register

re
gi
st
er

query

query

Figure 2.1: Entities involved in service discovery

29

2.4. DISCOVERY PROTOCOLS IN IP NETWORKS

2.4.1 IP multicast

Multicast describes a one-to-many communication without the need for the

sending party to send its message multiple times. Multicast for IP-based

networks is defined by number of RFCs, RFC 1112 [Dee89] being the first.

IP Multicast is explained in great detail by [Wil00]. This book is used as

reference for this section.

Receivers of multicast packets have to register with a multicast address.

RFC 1112 reserves IP range from 224.0.0.0 to 239.255.255.255 for this

usage. Assignment of multicast addresses is controlled by the Internet As-

signed Numbers Authority

1

. Many addresses are reserved for applications

or protocols, e.g. address 224.0.1.1 is reserved for distributing the cur-

rent time via the Network Time Protocol. Further, addresses are grouped

into blocks. Relevant for this dissertation are two groups: The Local Net-
work Control Block mandates that multicasts in the range of 224.0.0.0-
224.0.0.255 are link-local, i.e. their Time-To-Live is set to 1, so that they

go no farther than the local subnet. Range 239.0.0.0-239.255.255.255

has been reserved as Administratively Scoped Block for use in private mul-
ticast domains. It enables administrators to limit multicast scopes within

their domains as required.

In order for multicast to work in heterogeneous networks, a series of

protocols is required for communication between active network compo-

nents. First, the Internet Group Management Protocol (IGMP) is used by

network clients to register with a multicast address at its network router.

Similarly a subscription is canceled later. Multicast messages are then mul-

tiplied and send on each active interface – that is those interfaces on which

at least one host has an active membership subscription to the according

multicast group. Routers that do not support IGMP, have no special treat-

ment for multicast addresses, resulting in unreliable forwarding. For for-

warding multicast packets between routers multicast routing protocols ex-

ist, such as Distance Vector Multicast Routing Protocol (DVMRP), Multicast

Open Shortest Path First (MOSPF), and Protocol Independent Multicast

(PIM).

In order for layer 2 network switches to efficiently support IP multicast,

1

Internet Assigned Numbers Authority (IANA), https://www.iana.org/

30

2 State of the Art

the multicast groups must be known. This problem is addressed by pro-

tocols IGMP Snooping, Cisco Group Management Protocol (CGMP), and

IEEE’s Generic Attribute Resolution Protocol (GARP). Switches that do not

support efficient multicast forwarding, broadcast according packets instead

(multicast flooding).

2.4.2 Current Discovery Protocols

As mentioned above, all current discovery protocols depend to some de-

gree on IP multicast. IP multicast in turn depends on network routers to

support IGMP. Switches should avoid multicast flooding. Thus, in order to

use IP multicast the network must be configured properly.

Currently maintained discovery protocols are mainly SSDP, mDNS com-

bined with DNS-SD, and SLP. They are summarized in the following sec-

tions. A more detailed explanation and comparison is provided by [Sch07].

Further, there exist other projects, e.g., Apache River [Apa13] which is a

Java based architecture for building distributed systems. It includes a ser-

vice discovery protocol which mandates a directory for locating the compo-

nents of the system. Since it is limited to Java environments and the discov-

ery protocol itself is similar to SLP, it not presented here. Also, there exist

open software libraries, e.g. KryoNet

1

, which use simple IP multicast for

automatic discovery. They are not intended to be used with other libraries,

as a result their protocols are usually not well documented and thus not

considered in this dissertation.

SSDP

The Simple Service Discovery Protocol (SSDP) is part of the Universal Plug

and Play (UPnP) stack. It is publicly specified by the UPnP Forum consist-

ing of more than 1000 companies in computing, printing, and networking

[UPn15]. UPnP is widely used as it is integrated by Microsoft – who origi-

nally introduced it – into its Windows operating system. The open specifi-

cation of UPnP version 2.0 was published in February 2015.

1

https://github.com/EsotericSoftware/kryonet

31

2.4. DISCOVERY PROTOCOLS IN IP NETWORKS

SSDP uses a multicast group address 239.255.255.250 which belongs

to the Administratively Scoped Block to discover and announce services.
Services are mainly described by a unique service name, a service type, an

expiration time, and a location. While the service name includes the type

and must never change, the location which is provided in form of a URL

may change at any time. Changes are to be announced by the service. An-

nouncements are valid during the time specified by the expiration time. The

announcement messages are HTTP formatted, however, are transported

using the UDP transport layer protocol.

SSDP devices are discovered by a multicast search. It is possible to

discover all devices, a certain service type, or a specific service – in this

last case also a unicast search to a given device is possible. Searching by

other attributes, like service description or manufacturer, is not supported.

All services receiving a discover request answer by sending a unicast UDP

reply.

Due to the unreliable nature of UDP, UPnP mandates that UDP packets

are sent up to three times. Further, each service needs to be hosted by an

device. Devices are arranged in a tree structure where only child devices

can contain services. Since all services and devices need to be announced –

with each announcement being sent twice – at least six packets have to be

multicast to make a single service known in the network.

Implementations of SSDP usually realize the whole UPnP protocol stack.

It supports next to service discovery also invocation of service methods and

push notifications of service variables to UPnP clients. Both features rely

on verbose XML documents which are exchanged between server and client.

DNS-SD and mDNS

Discovery protocols Multicast DNS (mDNS) and DNS Service Discovery

(DNS-SD) were introduced by Apple as Zeroconf or Bonjour (previously
called Rendezvous). Their specifications are publicly available as RFC
6762[CK13b] and RFC 6763[CK13a], respectively. Apple actively pushed

usage of these technologies by introducing them into their Mac operating

system beginning with version 10.2 [SC05].

DNS-SD uses Domain Name System (DNS) servers as service directo-

32

2 State of the Art

ries. It mandates that a service registers with its DNS server, adding SRV ,

TXT , and optionally PTR records containing information about its address

and service group. Additionally any number of properties can be added. The

update procedure is specified by RFC 2136[VTRB97] as DNS UPDATE. It
requires that the DNS server permits changes to its DNS configuration.

Clients query the DNS server for available services using standard DNS

queries. Using service groups listing all services of a type is possible.

Apple further introduced DNS Long-Lived Queries as well as Dynamic

DNS Update Leases. First enhancement aims to avoid continuous polling for

new services by introducing a push mechanism. The later extension makes

sure that dynamic DNS entries are deleted from the server if not renewed

by the service provider. Currently the only implementation for these exten-

sions are available as package for the open-source DNS server BIND.

Without a DNS server which fulfills this premise, mDNS is used, with m
standing for multicast. It describes how dynamic name resolution can be
performed in local networks using IP multicast. With services announcing

their own SRV , TXT , and optionally PTR records via multicast, mDNS

thus enables DNS-SD in networks without DNS servers. Used multicast

addresses belong to the Local Network Control Block.

SLP

The SLP (Service Location Protocol) specified by [GPVD99] is the only

protocol for service discovery designed by the Internet Engineering Task

Force (IETF). It is thus vendor independent and its usage does not require

license fees nor a consortium membership.

For small networks SLP supports usage without a service directory. In

this case it works similar to SSDP. Client multicast search requests and

solicited service answer using unicast packets. Services can also announce

their presence using multicast. Used multicast address 239.255.255.253

belongs to the Administratively Scoped Block.
For larger installation, a service directory should be used. In this case

clients can either multicast their request as before or they directly query the

directory for services. For the latter case the address of the directory must

be known; clients can either be pre-configured or the directory multicasts

33

2.5. SECURE NETWORKING

its address periodically to all clients.

SLP services are described by a type, a subtype, and an attribute map.

Clients can search for services by type and subtype. A strength of SLP is

the advanced query capabilities for attributes allowing to find substrings as

well as comparison operators such as ‘<=’ or ‘>=’. A major drawback is its

listening port 427, since UNIX system require root access for listening to

ports below 1024

1

.

2.5 Secure Networking

As detailed by Kruegel et al. in [KVV05, pp. 9], in computer systems in

general – and in networking particularly – information flows from a source

to a sink over a communication channel. Such a communication is considered

secure if only authorized parties according to the security policy in use can

access the transmitted data. Figure 2.2 shows the desired information flow

and also four categories of attacks.

Information
source

Information
sink

Communication

Interruption

Modification

Interception

Fabrication

Figure 2.2: Normal communication flow and attack patterns

(based on [KVV05])

1

https://www.w3.org/Daemon/User/Installation/PrivilegedPorts.html

34

2 State of the Art

Coulouris et al. pointed out that security for information resources has

three properties: confidentiality (protection against disclosure to unautho-

rized individuals), integrity (protection against alteration or corruption), and

availability (protection against interference with the means to access the

resources) [CDK05, p. 18].

As visualized in figure 2.3: While interruptions (e.g. by a denial of service

attack), violate the availability property, interceptions (e.g. by wiretapping)

and modifications (e.g. via man-in-the-middle attack) offend the confiden-

tiality property. Modifications also present an infringement of the integrity

property, as do fabrication attacks. Fabrications can either be a replay at-

tack by inserting a previously intercepted message into the communication

channel, or it can be masquerading if messages are sent and received using

the identity of a third party without their authority.

Confidentiality Integrity Availability

Interception Modification InterruptionFabrication

Figure 2.3: Security properties according to Coulouris et al. [CDK05] and

attacks patterns

For securing digital communications against eaves-dropping and tamper-

ing encryption is used. Modern cryptography also provides mechanisms

for protecting against malign repeating of messages and for ensuring the

sender’s authenticity. Confirming and trusting the sender’s authenticity in

turn allows digital access control.

2.5.1 Encryption

In order to establish a trust level between two (digitally) communicating

entities, they have to prove that they are indeed who they are claim to

35

2.5. SECURE NETWORKING

be. As of the current state of the art, there are two main classes used

as summarized by [CDK05, pp. 473]. They are both based on the use of

secrets called keys. Cryptographic keys are used by encryption algorithms
in such a way that the encryption cannot be reversed without knowledge of

a compatible key.

The first encryption class uses shared secret keys which must be only
known by the entities involved in the current communication. Message are

symmetrically encrypted and decrypted using a shared key. The other en-

cryption class is much more complex and was proposed by Diffie and Hell-

man [DH76]. It is called public-key cryptography since it uses public/pri-
vate key pairs. Each communicating entity owns its own key pair, where the
private key is only known by the entity itself and the public key is made

available to the public. The sender uses the public key of the intended re-

ceiver to encrypt a message. The receiver then needs to provide its private

key to the encryption algorithm to decipher the message. Since this asym-

metric encryption is much more expensive, it is often used only for sharing a

temporary, shared secret key, which is then used for symmetric encryption

[KVV05, p. 16].

2.5.2 Certificates

Public/private key pairs also allow to verify that a message or a document

is an unaltered copy of one produced by the signer. For digital signing the

sender encrypts the message or a compressed form of the message us-

ing its own private key. By decrypting the message using the public key

of the sender, the receiver assures that the message originated unaltered

from the sender. Digital information that was signed is often referred to a

certificate. The signer certifies the contained information. The concept of

digital certificates was developed by [Koh78].

In today’s Internet, certificates are most often used for authenticating

websites: A trusted entity signs the address of a website. The created

certificate is owned by the website and used to authenticate itself to web

users. It can also be used to create further certificates, thus creating a

certificate chain. An entity creating certificates is called a Certificate au-

36

2 State of the Art

thority. Certificate authorities are considered the public key infrastructure
(PKI) as they are required for starting a certificate chain. Details about SSL

and certificates are provided in [Hir97].

Similarly, certificates are also used to authenticate the origin of e-mails.

However, instead of relying on a PKI, for e-mailing the so called web of
trust was introduced. The main idea is that users create their own cer-
tificates containing their own e-mail addresses. The public parts of these

certificates are handed to other users who check and confirm that contained

e-mail addresses indeed belong to the certificate holder. The concept was

further described by Philip Zimmermann in 1992 in the manual for PGP

(Pretty Good Privacy) version 2.0:

As time goes on, you will accumulate keys from other people

that you may want to designate as trusted introducers. Every-

one else will each choose their own trusted introducers. And

everyone will gradually accumulate and distribute with their key

a collection of certifying signatures from other people, with the

expectation that anyone receiving it will trust at least one or two

of the signatures. This will cause the emergence of a decentral-

ized fault-tolerant web of confidence for all public keys.

Today the web of trust is well used and defined by the OpenPGP stan-

dard (RFC 4880). Next to the original PGP software for signing, encrypt-

ing, and decrypting e-mails and files, now also other software is available,

e.g. GnuPG

1

. Also multiple public key servers are available which provide a

directory of published public keys and keep their databases synchronized,

e.g. keys.gnupg.net and pgp.mit.edu.

OpenPGP allows to sign certificates with one of five different levels

of trust: I don’t know, I do NOT trust, I trust marginally, I trust fully, I

trust ultimately. Depending how many signatures and of which trust level

a certificate holds, the certificate can be considered validated or not. By

default a key K is validated if it meets both of the following two conditions:

1. It is signed by enough valid keys, meaning one of the following:

1

https://www.gnupg.org/

37

keys.gnupg.net
pgp.mit.edu

2.6. SERVICE COMMUNICATION

• You have signed it personally

• It has been signed by one fully trusted key

• It has been signed by three marginally trusted keys

2. The path of signed keys leading from K back to your own key is five

steps or shorter.

2.5.3 Digital Access Control

The basic concept of protecting and controlling access to digital resources

is described in a classic paper by [Lam71] and summarized by [CDK05, p.

479]. Simplified, for a specific service a server receives a request message

containing the operation, which is to be applied, the resource, on which

the operation is to be applied, and the identity of the requesting entity. In

the first authentication step, the server has to authenticate the requester

making sure that they are who they claim to be. During the following autho-

rization step – which is the actual digital access control – any request for

which the requesting principal does not have the necessary access right to

perform the requested operation on the specified resource is refused.

2.6 Service Communication

Since the beginnings of global networking Internet communication is based

on the Internet protocol suite (TCP/IP) which provides two-way end-to-end

communication between server and client. However, Internet communica-

tion used to purely adhere to the request-response pattern. Specifically

client-initiated communication was not envisaged. In fact, before WebSock-

ets

1

and HTTP/2

2

were introduced in 2011 and 2015, respectively, there

was no real, browser-based server to client push communication possible.

1

standardized by RFC 6455 and introduced by HTML5

2

tools.ietf.org/html/rfc7540

38

2 State of the Art

2.6.1 Server to Smartphone Communication

With the introduction of mobile networking clients, e.g. smartphones, pro-

viding push messaging became even more complex due to their mobile na-

ture and limited resources. Currently following techniques for realizing

push messaging for smartphones exist:

Smartphone becomes server by opening a TCP port and listening to in-
coming connections at any time. This is the traditional approach for server-

to-client-messaging. However, as smartphones do not have a fixed IP ad-

dresses, they must distribute it together with the listening port to all com-

munication partners. In case the IP address changes, all partners have to be

notified again. Further disadvantages are that communication partners have

to retry sending messages if the smartphone is temporarily not available.

Also the smartphone must be protected against attackers. The major issue

is, however, the network must be configured such that incoming connec-

tions to smartphones are allowed. In local networks this is usually given

via WiFi connectivity, however, not in cellular networks.

Smartphone keeps open connections to each of its servers. These con-
nections can be used by the servers at any time. If the phone loses connec-

tivity, it has to attempt to reconnect as soon as possible. While this ap-

proach works for common network configurations, it is resource consum-

ing as each server needs to hold an open connection for each client. Also

the smartphone needs to hold open connections: One for each connected

server. Due to keepalive signals frequent network activity is to be expected

even if no payload is transferred. High battery drain is inevitable. Further,

there exists an ARP protocol issue for servers running Windows operating

system and Android clients which entered the so called deep sleep mode.

It is discussed in detail by reference [Mil15].

Smartphone keeps a single open connection to a global server. The

global server assigns a random identification (ID) to each connected smart-

phone. A smartphone can pass its ID to third-party servers which in turn can

use it to instruct the global server to deliver a message to the smartphone

39

2.6. SERVICE COMMUNICATION

on their behalf. For bidirectional communication the smartphone needs then

to establish a TCP connection to the third-party server.

Today all popular mobile operating systems use this method to support

push notification services [Goo15a], [App15c], [Mic15], [Bla14]. These

systems are owned by the vendors and integrated into their mobile oper-

ating systems. Details about technical aspects, privacy, or security are in

general not available. Drawbacks of this method are that the user needs

to trust the relay server and needs an Internet connection to reach it. An

advantage is easy usage, as it is available and activated on all major mobile

operating systems by default.

Smartphone registers for multicast address in local network. Servers
can now send their messages to the known broadcast address. A disad-

vantage of this technique, which is for example applied by UPnP, is that

private notifications to a single recipient are not possible. All smartphones

listen to all multicasts and must process them. This is resource consum-

ing as it regularly wakes up sleeping devices. It can further cause privacy

issues and multicasts must be supported by the network infrastructure (re-

fer to section 2.4.1). Further, in order to detect lost packets a dedicated

acknowledgment mechanism has to be introduced.

2.6.2 Smartphone to Server Communication

Considering the method of contacting a network or Internet server, there is

no difference between a stationary client or mobile smartphone. Both es-

tablish a TCP connection by providing destination host name or IP address

and port. Neither the TCP/IP protocol stack nor the networking infrastruc-

ture distinguish between the type of client. Thus, smartphones can establish

network connections to servers like conventional clients.

2.6.3 Invoking Server Methods

Communication in distributed systems can be divided into three communica-

tion paradigms. All of them can be used for invoking methods on remote

40

2 State of the Art

servers. This section lists for this dissertation relevant approaches. A de-

tailed description can be found in [CDK05, pp. 145-277].

Interprocess Communication

Communication based on UDP datagrams and TCP connections – the sim-

plest form of interprocess communication – is the base for all other more

abstracted communication paradigms. In general, the programmer has to

define a protocol that describes the communication data at byte level. Even

though this approach is most flexible, it is also most complex and expensive.

More details in [CDK05, chapter 4].

Remote Invocation

Remote invocations provide a two-way data exchange between communi-

cating entities which usually resembles synchronous calling of remote meth-

ods which respond with a return value. A typical representative is Remote
Procedure Calls (RPC) described by [BN84].
RPC’s main purpose is that procedures in processes on remote comput-

ers can be called as if they were procedures in the local address space.

Remote method invocation (RMI) is similar to RPC. However as it is object-

oriented, it makes whole objects instead of procedures remotely available

as if they there locally present.

client servernetwork

client
program

local in-
vocation

local
result

client
stub

marshal-
ing

unmar-
shaling

request

response

commu-
nication
module

send

receive

commu-
nication
module

receive

send

server
stub

unmar-
shaling

marshal-
ing

server
imple-

mentation

local in-
vocation

local
result

Figure 2.4: The components of a remote invocation system, and their

interactions for a simple invocation (based on [BN84])

41

2.6. SERVICE COMMUNICATION

This transparency is achieved by introducing stub procedures and stub
objects for RPC and RMI, respectively. On the client-side stubs behave
like local procedures and objects, respectively. But each access request

is forwarded via the communication module to the according server stub.
For transferring invocation parameters - which may be complex object hi-

erarchies using inheritances and pointers -, they are marshaled into serial-

ized form. At the server the parameters are unmarshaled and passed to

the corresponding procedure or object implementation. Return values are

then passed back to the server stub, marshaled, and send to the client.

Finally, the client stub unmarshals the response and passes it to the origi-

nally requesting entity. A graphical representation of this process in shown

in figure 2.4. More details in [CDK05, chapter 5].

Note that the term marshaling as originally introduced by Nelson in the
context of RPC only refers "the process of packaging a parameter record

into a call or return message" [Nel81]. However, for remote invocations

also the method, to which the parameters are to be passed, needs to be

uniquely identified. For this reason in this dissertation, marshaling will be
used for packaging both the parameters together with all necessary infor-

mation about the called method. For packaging only parameters the term

serializing will be used, according to current literature.

Indirect Communication

Indirect communication takes abstraction even a step further. Its mani-

fold appliances include publish-subscribe systems, message queues, and

distributed shared memory. Details can be found in [CDK05, chapter 6].

42

Chapter 3

Location-Linked Services

This chapter describes the novel concept of location-linked services (LLSs).

First, LLSs themselves are introduced in section 3.1 and motivated in sec-

tion 3.2. Thereafter section 3.3 outlines a generic system for providing

LLSs to users. This chapter further presents use-cases for LLS (section

3.4), highlights difference to related concepts (section 3.5), and lists areas

of application for LLS (section 3.6).

LLSs were originally introduced in [2] as building-linked services.

3.1 Definition of Location-Linked Services

Location-linked services are distributed applications which are intended to

be used within bounded, WiFi covered geographic areas, such as a single

room, a private house, an office block, or a university campus

1

. A provider

offering LLSs holds both the client and the server application. The server

application is executed by the LLS provider. The client application is trans-

ferred to a smartphone and executed there. It is capable of providing similar

services as native smartphone apps, however by default it is limited to com-

municate with its corresponding server application. This definition of LLSs

is visualized in figure 3.1.

1

Note that WiFi roaming, i.e. the handover from one AP to the next, is drastically

quickened if WiFi standard 802.11r is supported by the network devices.

43

3.2. MOTIVATION OF LOCATION-LINKED SERVICES

LLS provider

LLS

Server
application

Client
application

Smartphone

Client
application

wireless

transfer

communicat
e

WiFi covered area

Figure 3.1: Architectural overview location-linked services

3.2 Motivation of Location-Linked Services

LLSs provide some advantages compared to conventional apps in terms of

privacy and user comfort. In particular, the introduction of LLSs is motivated

by three limitations of current MOSs and their concept of app distribution.

• As detailed in chapter 1, app stores collect large amounts of user
data. They can thus be considered omniscient. Most notably, users

cannot avoid them as they are the only officially supported method to

install new apps (cf. section 2.1.2).

• Apps stores require users to manually search and install apps of in-
terest. However, for apps with limited geographic area of usage (cf.

Location-Linked apps in section 2.1.5) it would be more user-friendly,

if they were presented proactively to users.

• App stores are globally and publicly accessible. Relying on them for
offering sensitive and private apps may foster privacy and security is-

sues as described in section 2.1.5.

LLSs – as defined in the previous section – allow to amend these short-

comings. In order to utilize their full potential a system is required which

44

3 Location-Linked Services

allows users to install, use, and manage LLSs.

3.3 Detailed Description of a Generic Location-
Linked Services Provisioning System

This section provides a description of a generic provisioning system for

LLSs. It also includes resulting consequences which are used to formulate

a set of requirements in chapter 4.

Ideally, LLSs do not need to be searched for by the user. Instead when

users enter a building offering a location-linked services provisioning sys-

tem, they are informed about available services. The notification type is

configurable by the user. It could be similar to an incoming message noti-

fication. Available services may be shown as list entries, to be activated at

any time by the user. Services must never be executed without user con-

sent.

Since buildings may offer a great many LLSs, they must be filtered. User,

location, and optionally context filters are proposed which allow to hide

services not of interest for users at the current point in time. User filters

allow LLSs to restrict its services to certain users. This implies that the

system provides means for authenticating users. Allowing LLSs to limit its

detection range, enables location filters which hide all services which are

not intended to be used at the current user position. This in turn requires

the provisioning system to provide a localization system to determine the

user position. Optionally, context or other advanced filters may be applied,

e.g., when just passing through a shopping mall in order to take a shortcut,

no notifications about available services should be issued.

LLSs – in particular their client applications – can access sensitive user

data. It is thus necessary to prevent users from installing and using mali-

cious or untrusted services. Hence, the provisioning system needs to pro-

vide an authentication mechanism which allows services to prove to users

their legitimacy and that it is safe to use them. LLSs must also be able

to present their benefits to users before installation, e.g. by providing a

descriptive text.

45

3.3. GENERIC LOCATION-LINKED SERVICES PROVISIONING SYSTEM

To increase trust in LLSs further, the provisioning system should imple-

ment a permission system. It needs to allow users to identify permissions

services are requesting. The user is to be informed in a non-disruptive man-

ner whenever a service is making use of its permissions. Excessive or un-

wanted permissions can be denied before they are granted or be revoked at

a later time. Services must handle limited access rights gracefully, e.g., by

avoiding features which depend on missing permissions. The services sys-

tem must protect user privacy wherever possible. If user data is shared or

published the user should be aware of it and be able to object.

Once all available, trusted, and usable services are found and displayed,

users can choose to execute any of them at any time. On first launch of

a service, the provisioning system must install the LLS by transferring the

client application from the service provider to the smartphone. Afterwards,

a started client application behaves similarly to a conventional smartphone

app, i.e., it should provide a graphical user interface, be able to access sys-

tem functionalities and components, and be able to stay in background to be

woken later when a specific event occurs. It should also be able to inter-

act with client applications of other services. Communication between the

service client running on the smartphone and the service back-end offered

by the corresponding server, needs to be bi-directional and secure. Both

entities need to be able to send messages at any time. A mechanism for

updating services needs to be available.

Services which require to contact their corresponding server application

should only be shown to the user while the server is available. However,

as the connection could break at any time, the client application and its data

files should be installed on the smartphone phone nonetheless. This way

the client application can inform the user that the service is temporarily not

usable because the server application is unavailable. On the other hand,

client applications which never or only rarely require server connectivity,

e.g. a navigator service, are always invokable.

46

3 Location-Linked Services

3.4 Examples of LLSs

This section lists 16 LLSs which are realizable by the previously introduced

generic services system. Some are fictional at this point in time. Many were

already discussed in literature. Even though the collection only contains a

fraction of conceivable services, it is assumed that a system, which is able

to model these presented services, can also be used to create many other,

useful services.

All following services can only be installed and used at the location to

which the service is linked. If not otherwise stated, linkage to a house is

assumed.

3.4.1 Navigation

Similar to GPS-based navigation systems, a navigation service is able to

show a map with the current user position. The viewing direction is de-

termined using the compass. Indoor maps with multiple levels need to be

supported. Users can choose points-of-interest from a list and calculate

paths between multiple positions.

The navigation service can also be invoked by other services. This way

other services can easily visually present routes or locations of points of

interests without implementing an own map viewer.

3.4.2 Automated Door Bell

Instead of having a visitor physically press the conventional bell button, this

service is used to ring the bell. Once the service is installed it detects when

the visitor approaches the building and rings the bell just before reaching

the door. It is intended for frequent visitors and inhabitants without key.

3.4.3 Audio messenger

Users having installed the audio messenger can send and receive audio mes-

sages. If the receiver’s phone is not muted and is located inside the building,

the announcement is played back as soon as it arrives. Otherwise the sender

47

3.4. EXAMPLES OF INDOOR LOCATION-LINKED SERVICES

is informed that the message is delayed or undeliverable, respectively. For

example, this service could be used to personally page a passenger at the

airport or an employee needed for assistance.

An enhancement would be a two-way intercom where the receiver can

immediately respond without accessing the phone. However, this version

might be too intrusive and only work well in quiet and private environments.

3.4.4 Counting People

This service counts the number of persons that are inside a given area. It

allows proactively informing the administrative user about persons entering

or leaving the geofence. For presence detection the server requires appro-

priate sensors. It is thus not necessary for people being detected to have

the service installed. For example, authorized airport staff could this way

be informed about a growing queue at the check-in counters, allowing to

take countermeasures.

3.4.5 Switch Service

This service is used to remotely control devices, like lights or shutters.

It can be used when the hardware switch is out of range or for remotely

switching groups of devices. An enhancement of this service for light de-

vices makes the light follow a user who is moving through the building.

Different users may have different access permissions: For example in a

private house hold, children can only control light of room being currently

in, parents can control all lights from anywhere within the house, neighbor

can only switch off lights and only if no family member is present and no

automation has been enabled.

3.4.6 Information Request

Telling this service where you are, will make it provide you with location-

linked information regarding a specific question. Services of this type could

answer questions, like "Who’s office is this?" or "Where is the closest color

printer?".

48

3 Location-Linked Services

3.4.7 Data Archive

A company can offer its employees a service offering a digital data archive.

Users are allowed to access and store internal documents only when being

in office. Executives and managers may be allowed remote access via a

secured, tunneled connection into the local network.

3.4.8 User Configuration

When approaching a predefined geofence (possibly at a certain time of day

or during a specified weather condition), this service activates a setting or a

function. Examples include: switching on the light when entering a room or

calling the elevator when approaching the office building. In case of multi-

user access of hardware devices priorities need to be managed.

This service can also be used for offering vouchers, e.g., used by a restau-

rant. Provided that this service is installed, whenever a user passes by the

establishment a voucher of limited duration is sent.

3.4.9 Home Monitor

The home monitor service checks for and warns about potentially dangerous

or undesirable situations. For example, when the last resident leaves the

house the service checks whether all doors and windows are locked; when

leaving the kitchen but stove is still on; or when the water in the swimming

pool needs attention. For detecting according situations the server requires

appropriate sensors. Users that were outside while an alarm occurred are

immediately notified as soon as the home monitor server is reachable. For

very important notifications a secured Internet communication may be used.

3.4.10 Bulletin Board

Users of this service can post and view multimedia messages at virtual,

room-linked bulletin boards. When entering a room with new messages,

the user is proactively informed. Optionally, messages are stored locally

for later reading.

49

3.4. EXAMPLES OF INDOOR LOCATION-LINKED SERVICES

3.4.11 Trace Users

Mobile users signed up for this service, regularly or when changing position,

send their own position. This way movement profiles of registered users

are created. Authorized users can query for current locations of users which

is, e.g., visualized using the navigation service.

3.4.12 Tour Guide

In a museum the tour guide service shows the visitors proactively informa-

tion about the closest exhibits. The sensors of the smartphone, e.g. com-

pass and microphone, can be used to sort the list by relevance. Additionally,

the user can choose an exhibit from a list. The tour guide then activates the

navigation service to show a route to the destination.

Further, the user can be informed about upcoming events, e.g. a guided

tour or feeding time in a zoo.

3.4.13 Shop and Product Finder

Inside a mall customers can use this service to find shops which offer a

certain product. A list of categories as well as a text-based search may be

offered. Once the user has selected the entry of interest, the navigation

service is started to guide the user.

3.4.14 Reception Service

This service must be made available to the user by the inviting host. First,

the host creates an appointment containing room and time of the meeting.

This information together with a the navigation service is encoded into a link

or QR code and sent to the guest (e.g., via e-mail). When the guest, who

is the user of the service, opens the link or scans the code, the service is

installed and stays idle in the background. Only when the user enters the

building at the time of the appointment, the service becomes active.

It welcomes the guest and starts the navigation service which leads the

user to the location of the appointment. Additionally, the host is informed

about the arrival of the guest.

50

3 Location-Linked Services

3.4.15 Smartphone Reminder

When leaving the office, room, or house – i.e. when the door sensor detects

that door is being closed – this service checks whether the owner’s smart-

phone is near by. If it is close but not moving, it was probably left inside the

office, and informs the owner audibly about this potential oversight.

3.4.16 Intruder Alert

Having a sensor attached to a door which detects the opening of the door,

this service determines whether any of the owners (of the office, house,

etc.) is close. If not, an intruder might have opened the door and all owners

are being alarmed via their smartphones. Additionally, a general alarm may

be raised.

3.5 Differences to Existing Technologies

While LLSs are capable to realize all above described use-cases other, ex-

isting technologies may be used as well. This section emphasis the pecu-

liarities of LLSs by comparing them to conventional apps, location-based

services, and smart home applications.

3.5.1 LLSs vs. Conventional Apps

Conventional apps and LLSs differ mainly in a single aspect: LLSs are dis-

tributed applications by definition and may communicate only with its server

counterpart by default. Conventional apps on the other hand may commu-

nicate with any Internet server if the according permission is owned by the

app which is the case for more than 66% of analyzed apps according to

research [FGW11] and [SLG

+
12].

3.5.2 LLSs vs. Location-Based Services

Even though the name of location-linked services might be misinterpreted

as location-based services (LBS), both are not equivalent. According to

51

3.5. DIFFERENCES TO EXISTING TECHNOLOGIES

section 2.2.1 LBS make use of some type of geographical location. LLS, on

the other hand, while being deployed inside a building are not necessarily

aware of any location at all, as for example the data archive service from

section 3.4.7. However, most LLSs are aware of the location of at least

one entity and can hence be considered LBSs. In particular, if LLSs need to

limit their detection area within the WiFi covered area, the position of the

user is required.

On the other hand, there are location-based services which are not LLSs.

E.g. a conventional app that is aware of the user’s location by accesses the

GPS module is a location-based service. However, as it is not a distributed

application it cannot be a LLS. Thus, there exists an overlap between both

kinds of services but none is a superset of the other, as visualized in fig-

ure 3.2.

Location-linked
services

Location-based
services

Figure 3.2: Relation of location-linked services to location-based services

3.5.3 LLSs vs. Smart Home Applications

Currently smart home systems provide home automation, intrusion detec-

tion, video surveillance, fire detection functions, occasionally even patient

health monitoring and entertainment support. They allow owners to auto-

mate procedures in their house, react to environmental changes or user-

triggered events, and interact with other systems or humans. They are

called smart home applications in the following. Unfortunately, there exist

a number of problems and unsolved design issues of current smart home

systems. Further, there is room for improvement.

LLSs extend and enhance the concept of smart home systems and their

applications. While smart home applications are executed on the server,

the user’s smartphone is merely used for displaying results, usually in a

standardized way, and basic user interaction. On the other side, a LLS can

be a distributed system, being executed both on the server as well on the

52

3 Location-Linked Services

client. The client can thus execute program logic, store data, and show

customized GUIs. Reducing the client to a simple browser application, a LLS

becomes an ordinary smart home application. A graphical representation

of the relation between LLSs and smart home applications including sub-

branches is provided in figure 3.3.

Smart home applications

Home automation

Intrusion
detection

Video
surveillance

Entertainment

Health
monitoring

Location-linked services

Figure 3.3: Relation of smart home applications to location-linked services

Out-sourcing program logic to the client-side enables services to locally

collect and process data. This improves scalability and allows to increase

privacy as the server does not need to be an omniscient entity. Further,

LLSs are executed as full-value programs on the server side. Consequently,

they can act as controller software for smart home systems (cf. section

2.3.2) and thus integrate devices of different vendors.

3.6 Areas of Application for LLSs

LLSs are particularly suited for providing location-linked, sensitive, and pri-

vate functionalities as introduced in section 2.1.5 due to their design. How-

ever, due to the limitation of local access only, LLS are not a replacement

for all conventional apps. However, there are a number of fields of ap-

plication where this restriction does not affect usability or where security

concerns outweigh loss of user-friendliness. With this in view, following

places and environments are particularly suited for applying LLS to:

53

3.6. AREAS OF APPLICATION FOR LLSS

3.6.1 Private Homes

Within private homes LLSs are well suited for offering home automation

services. For many home automation applications no remote access is re-

quired, examples include the automated door bell (3.4.2) and remote switches

(3.4.5), personal user configurations (3.4.8) and the home monitor service

(3.4.9), the smartphone reminder (3.4.15) and the intruder alert (3.4.16).

Using LLSs in private homes allows a high degree of flexibility and cus-

tomization and thus allowing the home owners to stay in control and to

defined there own personalized GUIs. However, most important is the

property of providing a closed system within the local network offering a

good measure of privacy and security.

3.6.2 Office Environments

The same property is very desirable for applying LLS to office environments.

It allows, for example, to provide navigation functionalities to employees

and guests (3.4.1) without making building maps globally available. Simi-

larly the data archive service (3.4.7) can be offered without disclosing data

to outsiders and even without making it accessible from the Internet.

Offering a reception service (3.4.14) for guests may increase user-friend-

liness without requiring the user to manually search and install an app from

an app store. Instead invited guests are welcomed proactively.

3.6.3 Public places

A third environment in which LLSs are also well suited to offer functional-

ities to users are public places like shopping mall, hospitals, airports, and

stadiums. In these environments all services are usually usable without

authentication. The advantageous strength of LLSs in this case is thus nei-

ther privacy nor security, but rather the automatic detection of services.

Customers can use indoor navigation services (3.4.1) or product finders

(3.4.13) without manually searching and installing appropriate apps for the

current building.

In special public places such as cruisers and airplanes, Internet access

54

3 Location-Linked Services

may be limited or very costly. Here, LLSs allow an alternative method to

provide user services.

3.6.4 Incentives for Using LLSs

Summarizing, four incentives have been identified for using LLSs:

• Security and privacy: All data stays in-house

• User-friendliness: Automatic discovery of services

• Customization of services including personalized GUIs and staying in
control

• Offering distributed services even if no Internet available

55

3.6. AREAS OF APPLICATION FOR LLSS

56

Chapter 4

Basic Considerations and
Requirements

After chapter 3 provided a definition, general description, concrete exam-

ples of LLSs and areas of application, the following section presents gen-

eral considerations about design, usability, as well as user acceptance of a

provisioning system for LLSs. In sections 4.2 and 4.3 non-functional and

functional requirements are formulated, respectively.

4.1 Design Considerations

The most fundamental requirement for a LLS provisioning system which

aims to be accepted by users, is to provide robust and beneficial services

while being comfortable and intuitive to use. Further, users must be certain

that personal data shared with LLSs is safe.

As explained in sections 5.1.1 and 5.5.3, the provisioning system must

comprise an app which is very powerful. It is likely that this app needs to

own even more permissions than the already very too powerful deemed

Facebook and WhatsApp Messenger apps mentioned in chapter 1. To cer-

tify that the app does not use its permissions mischievously or even ille-

gally, this dissertation proposes to make its source code public. This way

independent experts can attest the legitimate use of all permissions to help

gaining the trust of end users.

In order to provide beneficial services for users, LLSs must be at least

57

4.1. DESIGN CONSIDERATIONS

as powerful as conventional apps. By definition (cf section 3.1), LLSs are

distributed applications which allow centralized storage and processing of

user data as well as user interaction.

In order to prevent aggregation of very much sensitive, personal data,

each LLS should work independently and require as little data as possible

to be able to perform its tasks. That is, there must be no omniscient enti-

ties which collects large amounts of sensitive user data and may potentially

deduce even more information. As an additional security barrier all data

must stay in-house, that is, where the LLS is offered. Connections to ex-

ternal Internet servers must be avoided. At the same time by keeping LLSs

independent of each other, no single point of failure is induced.

In order for any system in general – and a provisioning system for LLSs

in specific – to be successful also its development, deployment, and main-

tenance must be comfortable and intuitive. For this reason configurable

systems are often designed in such a way that an average user is supposed

to set it up on its own. As a result the configuration must be kept simple and

intuitive. Resulting in limited settings options – often set up using a graphi-

cal interface or a very simplified programming language. Typical projects of

this kind are openHAB or IntuiSec, a framework for intuitive user interaction

with smart home security using mobile device [KS07].

However, home automation systems and also location-linked services

become quite complex fairly easily. For example, consider a shutter con-

trol comprising presence detection of the residents in the living room as

well as an outdoor light sensor: Usually the shutters should rise earlier on

weekdays than on weekends. However, if on a weekday some residents are

sleeping late shutters should go up later. If all residents are awake early,

shutters should also rise early, however not before it is light outside. Fur-

ther, there should be an option to overwrite the automatic behavior. Simpli-

fied configuration menus or programming languages cannot model wanted

behavior or configuring them becomes disproportionately complex. In ei-

ther case, it is not manageable by an average user. Thus, a programmer is

needed to set up and configure the system. For this reason, existing and

known technologies must be applied which allow programmers to develop

new LLSs without lengthy initial training.

58

4 Basic Considerations and Requirements

Finally, in order to easily reach a large audience, LLSs should be platform

independent.

4.2 Non-Functional requirements

From previous design considerations a number of non-functional require-

ments are deduced in the following. According to Borque et all, non-func-

tional requirements constrain the solution. They are sometimes also known

as constraints or quality requirements [BF

+
14, p.1|3]. For later reference

worked out non-functional requirements are consecutively numbered pre-

ceded by a capital N, e.g. {N2}, and summarized in table 4.1.

Summarized description

{N1} no single point of failure

{N2} no omniscient entity

{N3} building provides its own data

{N4} local communication only

{N5} authenticated and encrypted communication

{N6} services as powerful as conventional apps

{N7} ease of development and administration

{N8} platform independent services

{N9} ease of usage

Table 4.1: Summary of non-functional requirements

4.2.1 Robustness

The system must be fault tolerant. When a single service fails, the rest

of the system must not be affected. For this reason a distributed system

design is to be favored. Wherever possible services should not depend

on each other. Ideally each service is offered by a different server device.

For example, the door bell service from section 3.4.2 can be offered by a

micro-controller embedded in the bell.

No single component shall be introduced into the system which allows a

complete breakdown, i.e., any single point of failure must be avoided {N1}.

59

4.2. NON-FUNCTIONAL REQUIREMENTS

4.2.2 Omniscient entities

In order to protect user privacy and the private resources, there shall be no

omniscient entities {N2}. In particular, no system component must collect,

receive, or calculate user locations. From this requirement follows that

each mobile device must support offline localization, e.g. must be able to

determine its position on its own. There can be no infrastructure which

performs the actual localization, as this component would be potentially

aware of the locations of all users at all times.

For offline localization mobile devices need a localization database. Fur-

ther, map data may be required by some services. This kind of building-

linked data must be provided by the building itself (or by some entity inside

it) {N3}. In particular, there may be no global server managing and offering

building-data for multiple buildings. Building data belongs to the building.

It must be in direct control of the owner.

For security and simplicity reasons as well as to ensure fault tolerance,

user management, authorization, and access control have to be performed

by the services themselves. There shall be no login nor authorization server

which determines which users may access which services and perform which

actions. Such an authorization server would imply global knowledge about

known users and available service actions. It would further require config-

uration when adding a new or modifying an existing service which contrasts

the requirement of Ease of Use from section 4.2.5.

4.2.3 Direct, Secure Communication

On the one hand, LLSs can control security relevant objects, such as shut-

ters and garage doors. On the other hand, [CBR03] pointed out: Buggy

host software is a major security issue; the only solution to run it nonethe-

less, is to isolate it behind a firewall. As consequence, the provisioning

system must not rely on Internet connectivity by default but rather use a

local network {N4}. This implies that push message mechanisms provided

by mobile operating systems cannot be used as they rely on a third-party

Internet server.

If the local network is separated from the Internet, the system cannot

60

4 Basic Considerations and Requirements

be attacked from outside which reduces the number of potential attackers

considerably. In order to protect the system also from malign user within

the local network, communication partners need to be authenticated and an

encrypted connection must be used – ensuring that the conversation cannot

be overheard and inadvertently revealed to third parties {N5}.

If remote access is inevitable by a service, a secured, tunneled connection

into the local network must be established first. However, this is not in the

scope of this dissertation.

4.2.4 Flexible and Multi-Platform Development

As stated in section 3.3, a service should be comparable powerful as a

native app {N6}. Existing technologies and programming languages should

be used where appropriate. Learning a new language in order to create a

LLS is inadequate. Instead the framework envisioned by this dissertation

should make developing new and administering existent services as easy as

possible {N7}. At the same time both the server as well as the client part

of a service shall be platform independent to keep developments efforts

low {N8}.

4.2.5 Ease of Use

A major demand to a provisioning system is ease of use {N9}. A common

smartphone user must be able to use the provisioning system, including in-

stalling and setting up the client side as well as launching and using services

in any building.

Also for administrators the provisioning system should be easily man-

ageable. New services must be able to be installed without changing any

system wide configuration settings which would violate requirements of no

single point of failure {N1} and also the requirement of no omniscient entity

{N2}. Instead installing a service should be as easy as starting a program

on a network attached device.

61

4.3. FUNCTIONAL REQUIREMENTS

4.3 Functional Requirements

As formulated by Bourque et al.: Functional requirements describe the func-

tions that the software is to execute; for example, formatting some text or

modulating a signal. They are sometimes known as capabilities or features.

A functional requirement can also be described as one for which a finite set

of test steps can be written to validate its behavior. [BF

+
14, p.1|3]

For this dissertation two different sets for functional requirements are

to be considered. On the one hand, the provisioning system needs to fulfill

a set of demands, on the other, each LLS needs to be able to execute a set

of functions.

Following functional requirements are derived from the detailed descrip-

tion of a LLSs provisioning system (Sec. 3.3) as well as the example service

from section 3.4. A summary of all function requirements is shown in table

4.2.

4.3.1 Functional Requirements of a LLSs System

In the following subsections the functional requirements are listed which

must be fulfilled by a LLSs.

Service Detection and Filtering

The system must support an auto-detection mechanism allowing all users

(including guests) to find all entities offered by the provisioning system

{F1}.

Next, found services must be filtered. Too restrictive filtering will hide

the service from users, while too lax filtering will clutter the list of available

services. A system being able to provide filtered detection of all services

from section 3.4, must filter by at least two filter criteria: location and

user {F2}. Specific values for these filter criteria for the sample use cases

are given in table 4.3. Other criteria like time, weather, or context are not

considered at this point.

After filtering LLSs, the system must notify the user about available ser-

vices, e.g. by presenting a list {F3}. Therefore, each service must have a

62

4 Basic Considerations and Requirements

Summarized description

{F1} find services

{F2} filter services

{F3} list services

{F4} show service description

{F5} trust level for services

{F6} services must authenticate themselves

{F7} users must authenticate themselves

{F8} services requires permissions for security-related functions

{F9} inform user about permissions being used

{F10} localize user

{F11} support offline services

{F12} two way communication

{F13} service update mechanism

{F14} user can launch service manually

{F15} wake event: other service can invoke service

{F16} wake event: by geofence

{F17} wake event: on receiving server push message

{F18} wake event: on timer

{F19} wake event: when service provider becomes available

{F20} services can be running in background

{F21} client part: flexible GUI

{F22} client part: play audio

{F23} client part: user notification

{F24} client part: use accelerometer

{F25} client part: use compass

{F26} client part: access building map data

{F27} client part: access user position

{F28} client part: initiate server communication

{F30} client part: invoker other service

{F31} client part: use private storage

{F29} client part: receive server push messages

Table 4.2: Summary of functional requirements

63

4.3. FUNCTIONAL REQUIREMENTS

Service Detection area Allowed users

Navigation service whole building anybody

Automated door bell near entrance authorized guests

Audio messenger whole building authorized users

Counting People administrator’s of-

fice

administrator

Switch service default: room,

janitor: building

anybody

(janitor is authorized user)

Information Request whole building anybody

User Configuration in the proximity of

controlled devices,

usually: room

owners

Home Monitor whole building owners

Bulletin Board whole building anybody

Trace Users administrator

office

administrators

Tour Guide whole building anybody

Reception Service via link only link receiver

Smartphone Reminder office owners

Intruder Alert office owners

Table 4.3: Values for location filter and user filter for example services

name and provide a description {F4}. Further, the system must assign trust

levels for each service {F5}. They may warn users about potentially ma-

licious services or services offered by untrusted entities. By default only

trusted services should be installable. However, users must be able to

override values determined by the system.

Authentication, Authorization, and Permissions

Before installing a service the user must know whether it is trust worthy.

Thus, services have to authenticate themselves to users {F6}. Based on the

provided authentication the user can decide whether to install (and hence

64

4 Basic Considerations and Requirements

trust) the service or not.

Also users have to authenticate themselves if asked for by a service.

User authentication must be offered by the system {F7}. Services can rely

on the user authentication obtained from the system. However, authoriza-

tion is left to the services. They may provide different quality of service to

different users or reject access all together.

Even when connected to a trusted service, the user needs to be aware of

private or personal data which is shared with the service. The user must be

able to inspect and restrict service permissions at all times {F8}. Further,

the user should be proactively informed when a service actually makes use

of its owned permissions {F9}.

Localization

To be able to provide location-based services and to provide filtering by

user location, the system needs to be able to determine the geographical

position of users {F10}. Considering the use cases from section 3.4, pri-

marily a localization inside the WiFi network is needed of room-based gran-

ularity. More precise or outdoor localization is optional. In order to avoid

an omniscient entity which is aware of the locations of all users ({N2}) ,

localization must be performed by the mobile devices and only when a user

position is required. It must not be performed by a localization infrastruc-

ture.

Service Launch, Communication, and Update

While for a distributed system a network connection is essential, a LLSs

system must still be able to operate – with limited functionalities – in off-

line mode {F11}. This implies that LLSs can even be launched when their

corresponding servers are not available. Missing server connectivity must

be detectable by LLSs.

Whenever the corresponding server is available, the LLSs system must

provide a two-way communication {F12}. This implies in particular, that

a server may push messages at any time to its service clients. This must

even be possible, if the corresponding client is not running. In this case

65

4.3. FUNCTIONAL REQUIREMENTS

the message must be cached and delivered as soon as the client becomes

available again.

In order to extend functions and capabilities, the LLSs system must pro-

vide means to update services {F13}.

4.3.2 Functional Requirements of LLSs

As mentioned above, LLSs need to be comparable powerful as conventional

apps. In particular this means that LLSs need a flexible GUI, be able to

run as background process, access system and framework functions, and to

interact with each other. These four properties are detailed in the following

sections.

Activating LLSs

Usually a LLS is started manually by the user. However, conventional apps

can also be started when system events occur (cf. section 2.1.2). Consid-

ering the example services described in section 3.4, a LLSs system needs

to support following wake events:

• user launches service {F14}

• service is invoked by other service {F15}

• user location triggers geofence event {F16}

• push message is received {F17}

• a previously scheduled alarm is fired {F18}

• the service’s server becomes available {F19}

In general, whenever one of these events occurs, the LLSs system must

inform all services which subscribed to the event. If the service is not active,

it needs to be started. Except the first two wake events, all other events

should only be active when enabled previously by the LLS. This is necessary

to avoid unwanted and repeated launches of LLSs, e.g. every time their

corresponding server becomes available. In other terms, the latter events

66

4 Basic Considerations and Requirements

should activate a LLS only if it was already running. As multiple services

need to be able to run at the same time, LLSs running in background need

to be supported {F20}.

Table 4.4 lists which wake events are used by each example service.

Service us
er
la
un
ch

in
vo
ke
d
by
se
rv
ic
e

ge
of
en
ce

pu
sh
m
es
sa
ge

sc
he
du
le
d
al
ar
m

se
rv
er
av
ai
la
bl
e

Navigation service

Automated door bell

Audio messenger

Counting People

Switch service

Information Request

User Configuration

Home Monitor

Bulletin Board

Trace Users

Tour Guide

Reception Service

Smartphone Reminder

Intruder Alert

Table 4.4: Events by which each example service can be woken

User Interface

LLSs must have a flexible GUI {F21}. Standard elements like labels, text

fields, input forms, buttons, radio buttons, canvases, and multimedia con-

tainers need to be supported. Further, LLSs should be able to customize

67

4.3. FUNCTIONAL REQUIREMENTS

the rendering of those elements. The goal is to put no constraints on the

way LLS and user can interact.

Also audible signals need to be supported {F22}. This comprises playing

audio files while the LLS is running as background process.

Finally, LLSs must be able to issue system user notifications {F23}. These

are usually displayed in the system’s header bar and consist of text and

images. Additionally, when activated a notification sound is played which

obeys the system’s notification volume.

Calling functions provided by MOS and LLSs system

As services are similar to smartphone applications and can thus access and

forward private data, a permission system is required which limits access

right and capabilities of services. This system should be similar to the per-

mission system provided by MOSs (cf. section 2.1.4). The less permissions

a service earns, the less harm can it do in case it should turn out malicious.

E.g., a service which cannot access localization data, cannot disclose the

user’s positions; a service without network access cannot transfer any data.

While the number of system functions offered by MOSs is very large, the

example services from section 3.4 only make use of following three:

• issue user notifications {F23}

• use acceleration sensor {F24}

• use compass {F25}

Next to system functions provided by the MOS, also the LLSs system

needs to provide functions which can be used by services which own the

according permission. The example services from section 3.4 require fol-

lowing functions. They thus need to be supported by the LLSs system. For

each function must exist an according permission:

• access map and navigation data {F26}

• access user position with room granularity {F27}

• communication: client initiated server communication {F28}

68

4 Basic Considerations and Requirements

• communication: server to client push messages {F29}

• invoke other service (and share data) {F30}

• private file storage {F31}

While the number of functions – and thus permissions – used by the

example services is low, there exist many more conceivable functions which

are useful for other LLSs. E.g., if a service should be able to initiate a

telephone call, send an SMS, and read contacts from the local address

book, according permissions would be necessary.

Table 4.5 details which example service requires which functions and

must hence according permissions.

69

4.3. FUNCTIONAL REQUIREMENTS

Service A
cc
es
s
m
ap
an
d
na
vi
ga
ti
on
da
ta

A
cc
es
s
us
er
po
si
ti
on

C
lie
nt
to
se
rv
er
co
m
m
un
ic
at
io
n

Is
su
e
us
er
no
ti
fi
ca
ti
on

In
vo
ke
ot
he
r
se
rv
ic
e

Pr
iv
at
e
fi
le
st
or
ag
e

Se
rv
er
to
cl
ie
nt
pu
sh
m
es
sa
ge
s

U
se
ac
ce
le
ra
ti
on
se
ns
or

U
se
co
m
pa
ss

Navigation service

Automated door bell

Audio messenger

Counting People

Switch service

Information Request

Data archive

User Configuration

Home Monitor

Bulletin Board

Trace Users

Tour Guide

Shop&product finder

Reception Service

Smartphone Reminder

Intruder Alert

Table 4.5: Required permissions (sorted alphabetically) for each example

service (sorted in order of occurrence)

70

Chapter 5

Design of Service Provisioning
System

This dissertation is at the crossroad of many research areas, including:

Smartphone software, distributed systems, ambient intelligence, indoor lo-

calization, multimedia and building maps, service discovery, and security.

To be able to present a prototype of a service provisioning system which

combines all these research areas in chapter 6, this chapter provides an

overview about major design choices necessary in order to fulfill the re-

quirements from the previous chapter. The here developed design was the

result of theoretical considerations and practical testing.

5.1 System Overview

The system architecture is strongly influenced by technical aspects and re-

quirements presented in chapter 4. An overview of the resulting system

structure is summarized in this section.

5.1.1 System Architecture

Since the only officially supported method to add new functionalities to a

smartphone, is to install apps (cf. Sec. 2.1.2), this dissertation also re-

quires an installed app. It is assumed to be pre-installed. It is further

assumed that the client is connected to the local network via WiFi. Us-

71

5.1. SYSTEM OVERVIEW

ing this connection the app performs all responsibilities of the provisioning

system on the smartphone, including installing, running, and managing new

services as well as displaying their graphical user interfaces. As an impor-

tant responsibility is finding and loading services which are comparable to

conventional apps and since there are usually multiple services, this app
will be called MultiApp. The complete system will be called BLESS, stand-
ing for Building-Linked, Expeditious Services System.

BLESS services are distributed applications. They are offered by a ser-

vice provider, which can be a powerful server belonging to a building or a

micro-controller embedded in some component of the building, e.g. the ele-

vator. The service provider executes the server part (SP) of the service. The

number of hosted services is only limited by hardware performance. The SP

announces its presence and offers the client part (CP) for download. One

SP can communicate with many clients, i.e. instances of MultiApp. If exter-

nal devices (except the user’s smartphone) are to be controlled by a service,

they must be connected to the service provider; i.e., they must be control-

lable by the SP. For achieving platform-independence for SPs (requirement

{N8}), Java will be used in this dissertation. However, no technical depen-

dencies are introduced, so that instead of Java also the QT library for C++

could be applied.

The CP can be queried for and be installed by MultiApp. Considering that

a service must be able to interact with the user while the service provider

is not reachable, it must contain program code which has to be executed on

the client.

Further, BLESS introduces the concept of buildings and sub-buildings to

fulfill requirement {N3} and to avoid omniscient servers storing building

data of multiple buildings (requirements {N1} and {N2}). They are like ser-

vices discoverable network entities and provide data – including map and

navigation data – about the areas in which services are hosted. Details are

presented in section 5.6.

Another discoverable network entity is the BLESS pusher. It is intro-

duced in section 5.10 and an essential part of BLESS’s push messaging

system required for fulfilling requirement {F29}.

Previously introduced names of BLESS entities are summarized in the fol-

72

5 Design of BLESS

lowing section. Figure 5.1 visualizes the interaction between BLESS service

and MultiApp.

Provider

BLESS Ser-
vice (SP)

CP

Smartphone

MultiApp

CP

Smartphone

MultiApp

external device,
e.g. light switch

external device,
e.g. door sensor

install

communicate

discover
discover

Figure 5.1: Overview of interaction between BLESS service and MultiApp

5.1.2 Naming Conventions

Following list summarizes the naming conventions for integral parts and the

provisioning system itself.

BLESS Building-Linked, Expeditious Services System, the services provi-
sioning system presented by this dissertation.

MultiApp Smartphone application which is the entry point for BLESS on the
client side.

Entity BLESS software components which are discoverable by and interact
with MultiApp, these are: The server part of services, buildings and

sub-buildings, as well as pushers.

Provider A computer system or micro-controller hosting a BLESS entity.

Service An entity providing a BLESS service which consists of a server part
(SP) and a client part (CP).

Server Part (SP) The runnable program which offers the service function-
alities. It is bundled with the CP.

73

5.2. MODE OF COMMUNICATION

Client Part (CP) Executable code which is transferred from the SP to the
client and runs inside MultiApp.

External devices Hardware components connected to a provider and con-
trollable by an SP.

Building and sub-building Entities providing data about the area in which
services are hosted.

Pusher An entity responsible for delivering push messages.

5.2 Mode of Communication

A pessimistic but realistic assumption is made by Cheswick et al. which can

be summarized as: All network programs are buggy. As consequence all

network programs can be hacked [CBR03].

Considering that location-linked services are meant to be used in a fixed

physical area only, there is no need to access them globally via Internet. It

thus seems reasonable to limit access to the system to that area. Hence,

service providers are not connection to the Internet. If this restriction is en-

forced strictly, any potential attacker must be physical present. This limits

the number of attackers drastically and thus provides an essential contribu-

tion towards increasing security. For these reasons BLESS will exclusively

use WiFi for communication between SP and CP, fulling requirement {N4},

and assumes that the local network is strictly separated from the Internet.

5.3 Multi-Platform Approach

Quoting from [1]:

The diverse and continually evolving MOS landscape consti-

tutes a huge challenge for application developers. Unlike the

desktop computer market, where more than 90 percent of users

use Windows, mobile app developers must target multiple plat-

forms to reach the same number of users. However, MOSs come

with their own software development kit (SDK), each of which

74

5 Design of BLESS

uses a unique programming language [CL11], and provide their

own custom API. In short, developers must write an application

separately for each mobile platform. Mobile app providers thus

face a dilemma: either invest considerable resources developing

the same app for all mobile platforms, or leave some platforms

unsupported and risk alienating potential customers. [...]

Anthony Wasserman outlined two options for reducing appli-

cation development efforts while still supporting multiple mo-

bile platforms [Was10]: use Web browsers to create platform-

independent apps, or use cross-platform mobile development

tools (XMTs) to create apps for different smartphone platforms

from the same code base.

As the CP of a BLESS service is comparable to an app, same challenges

arise here. It thus seems a reasonable approach to adopt technology for

cross-platformmobile development for BLESS services. Since pure browser

applications are neither able to access the integrated smartphone compass

nor able to discover network services, only XMTs are considered in the

following as valid option.

All XMTs presented in cited research create apps independently exe-

cutable from any external interpreter or virtual machine. This is not required

nor wanted for BLESS. Instead the CP should only contain program code di-

rectly belonging to the BLESS service. Any additional software components

which are required for all services, should be shared and thus be included

within MultiApp. As consequence, only an open-source XMT may be used

which can be adapted as required. Of currently available tools from the

above cited paper, this leaves Apache Cordova

1

, MoSync

2

, and RhoStudio

3

.

Applications created with RhoStudio require about 3 seconds to launch and

have a file size of at least 2 MB. The used virtual machine is thus quiet heavy

and is for this reason discarded.

The reason for favoring Cordova over MoSync, is MoSync’s complex

compilation process. Depending on the target platform, apps can contain

1

https://cordova.apache.org/ (formerly known as PhoneGap)

2

https://github.com/MoSync/MoSync

3

https://github.com/rhomobile/rhostudio

75

5.3. MULTI-PLATFORM APPROACH

native code or MoSync byte code. In case of byte code, the in the app

included virtual machine (VM) can either directly interpret the code or inte-

grate an ahead-of-time compiler that compiles MoSync bytecode to native

code on the smartphone. Even though the technical details are well doc-

umented, integrating MoSync’s VM inside MultiApp and creating a compile

chain for translating BLESS services into MoSync byte code, without im-

pacting performance is a highly complex task, which is deemed to be unnec-

essary for this dissertation. Further, MoSync creates different application

packages for different target platforms. The SP would thus have to contain

multiple CPs and serve the correct file for each requesting MultiApp in-

stance. This again introduces unnecessary complexity both at compile-time

as well as at run-time. It further infringes to some degree the requirement

of platform-independent services {N8}. Finally, MoSync is no longer being

maintained.

For completeness reasons, a newer approach calledWebAppBooster in-
troduced by Puder et al. [PTM14] is to be mentioned. It is a technology

allowing Internet pages to access local system resources which are beyond

HTML5 and JavaScript in a secure manner. WebAppBooster is a mobile app

offering an embedded web server, which authorized web sites can use via

WebSockets to access system functionalities. Even though it is intended

for Internet applications, it can also be used to view and execute local web-

sites. It is thus comparable to Cordova. However, it promises better per-

formance because the web application is executed in the default browser in-

stead of an embeddedWebView. On most platforms theWebView browser

widget is not optimized in the same way the standalone browser app is

[PTM14]. Only with version 7 released in Q3 2016, Android starts to ship

only a single browser engine which is updatable – hence optimized – and

used by both browser and WebView element.

Even though the source code of WebAppBooster is available, integrating

it into MultiApp is expected to be much more costly than Cordova because

it is the outcome of a single research project. Further, the libraries offered

by Cordova are much more powerful than the functionalities integrated into

WebAppBooster. Finally, with Android 7 no performance gain is to be ex-

pected anymore.

76

5 Design of BLESS

5.4 Services

Summarizing previous section, BLESS will use the Cordova approach for

realizing platform-independent CPs of services. A CP application will thus

be a kind of web application. Its logic is programmed in JavaScript.

5.4.1 Installation and Functions

On installation, the CP of the services is transferred from the SP to Multi-

App and persistently stored. Here it can be started even if there is no

connectivity to the SP, fulfilling offline mode requirement {F11}. MultiApp

interprets the code inside a browser element which is also used for display-

ing the GUI. This allows creating highly flexible GUIs fulfilling requirement

{F21}. MultiApp further exposes any required system functionality to the

JavaScript code, so it is accessible by the CP of services making the CP as

powerful as a native app and fulfilling requirement {N6}. In particular all

required functions accessible by CP can be implemented this way. This ap-

proach further fulfills requirement of facilitating development {N7} by using

existent technologies and the requirement of platform independence {N8}.

5.4.2 Background Services

The browser element in which the CP of a service is executed requires sys-

tem resources. The more services are running – in foreground or back-

ground – the more resources are used. Further, apps running in background

can usually be terminated by a mobile operating system if resources need to

be freed. Thus, keeping multiple services running within browser elements

is to be avoided. It is not required, either, as services are always displayed

full screen and thus only one service can be in foreground at a time.

Instead MultiApp closes services which are sent into background. This

implies that services cannot perform background operations, e.g. lengthy

calculations. However considering the example services from section 3.4,

there is no need for background operations. They will thus not be sup-

ported. Instead wake events will be offered.

Three different running states for services are distinguished: stopped,

77

5.5. SECURITY

running, and minimized. The state stopped means that the service was not
started, yet, or it was explicitly closed. It can only be manually started by

the user by selecting it from the services list introduced in section 3.3. A

service is running while it is being executed and being displayed to the user.
In running mode a service can register for one or more wake events. If it
is closed then, its state changes to minimized. It thus does not consume
resources as its browser element was destroyed but it can be activated

by MultiApp on wake events. The service thus appears to be running in

background, on the one hand fulfilling requirement {F20}, on the other not

consuming additional resources.

Wake events which need to be supported are listed in table 4.4. They

correspond to requirements {F14} through {F19}. The wake events user
launch and launch by other service are special, as they are always enabled.
All others need to be activated by the CP during running state. This is done
by JavaScript methods offered by MultiApp.

While a service is registered for some wake event, MultiApp itself listens

for the corresponding event. Once it occurs it ensures that the registered

service is activated and informed about the occurrence of the event. If Multi-

App is closed while services are minimized, they cannot be wakened. It is
thus assumed that MultiApp is running at all times.

5.5 Security

One of the most important attributes for a services provisioning system

which aims to handle private data and to control security relevant devices, is

security. Users must be certain that their data is only transferred to trusted

entities and that services only accept control commands from authorized

users. A bilateral authentication is thus required as well as encryption for

network traffic.

However, a framework for LLSs cannot secure services by itself. It can

rather enforce security policies and provide mechanisms which can be ap-

plied and used by services and users to increase security. The first essen-

tial contribution in increasing security is the design choice of relying on local

communication only as introduced in section 5.2. Further contributions are

78

5 Design of BLESS

the introduction of certificates used for authentication and encryption as

well as permissions for limiting capabilities of CPs. These are presented in

the following subsections.

Computer and network security is a highly complex topic. Full security

can never be guaranteed. A completely safe system can thus not be the goal

of this dissertation. For this reason no details about how to use certificates

for authentication and encryption are presented. The intention is rather,

to lay out the foundation for a state-of-the-art security concepts for the

system which can be configured and enhanced after a thorough security

audit of the working system at a later time.

5.5.1 Authentication and Trust Levels

For authentication either a ticket system can be used or authentication can

rely on certificates. Using the former approach requires an authentication

server which knows all services and users and would also present a single

point of failure which violates requirements {N2} and {N1}, respectively.

The same issue arises when applying the certificates approach and intro-

ducing a root authority as PKI.

Consequently, this dissertation relies on certificates without PKI. Specif-

ically OpenPGP was chosen due to its open specification and wide usage.

Existing certificates can thus be used if available.

It has to be noted that in order to fulfill requirement of local network

only {N4}, access to public key servers has to be circumvented. Details are

explained in the following.

Entity Authentication

When MultiApp detects a new entity its trust level needs to be set ac-

cording to requirement {F5}. A service can either be trusted or untrusted.

Further, there is an option when the user needs to decide whether to trust

a service. This concept is applied for all entities.

Since BLESS is a framework open for anybody to create new services,

it is impossible to predict which service is trustworthy. MultiApp could in-

tegrate sophisticated code analysis tools which might be able to determine

79

5.5. SECURITY

what the CP of a service does, however, the code of the SP stays hidden.

There are thus no means to determine what happens to data transferred to

it. For this reason BLESS does not attempt to interpret code to judge its

trustworthiness.

Instead BLESS uses OpenPGP certificates for all entities in order to ful-

fill requirement {F6}. For each service a dedicated certificate is to be used.

Discovery responses are signed using that certificate and it is later used to

establish secure communication. For determining whether to trust a certifi-

cate, MultiApp relies on OpenPGP’s validation procedure as summarized in

section 2.5.2.

For private households and small companies in which BLESS entities are

developed by a family member or an employee, respectively, it is considered

likely that users know the author in person. It is further assumed that users

already trust the author’s certificate and can make it available to MultiApp.

This way, entities fully trusted by the author are also trusted by the end

users.

For public facilities and buildings in which BLESS entities are developed

by a third party, building and service certificates are proposed. The build-

ing certificate is created by the building owner or administrator and is the

root of the certificate chain for the building. For each entity a dedicated

certificate is created. These are signed as fully trusted using the building

certificate. This way users only have to explicitly trust the root certificate

and can be certain that only officially supported entities will be used. Re-

sponsible handling of the building’s root certificate is assumed.

The public part of the building certificate must be made available to users

via a secondary, secure channel. As a public key server cannot be used as

it would require Internet access, the building certificate could be stored on

some server inside the local network. The internal URL is then encoded as

QR-code. This code could, e.g., be shown to all guests entering the building

inside a locked display case in the entrance hall. MultiApp would need to

offer an option to scan that QR-code, download the linked certificate, and

installed it after asking the user whether to trust it. For security reasons

the QR-code should additionally to the URL also contain a hash value of

the certificate. Note that using this approach service can only be used after

80

5 Design of BLESS

entering the building and scanning the code. Using door bell service (3.4.2)

when visiting the building for the very first time is thus not possible.

User Authentication

For security relevant services also user authentication is of major impor-

tance. Next to using user certificates, also user names and passwords

could be used. This later approach, however, is not user-friendly as it

requires users to enter – possibly for each service different – login data.

Further, as there is no centralized authentication server, changing a compro-

mised or expired password is costly. A certificate is assumed to be changed

less often. It can further not be stolen verbally nor using key loggers. Thus,

user certificates are used in this dissertation for user authentication in order

to fulfill requirement {N7}.

Ideally, a user already owns an OpenPGP certificate which is trusted

by friends and other contacts and which is already being used for signing

and encrypting e-mails. If this certificate is available on the user’s mobile

device, it could also be used by MultiApp for authentication. The authors

of a BLESS service need to be aware of the users certificate. They further

need to make the service trust the certificate.

Otherwise, a new certificate must be created, e.g. by MultiApp itself,

and must be made available to the service author in a trusted manner. This

could be for example be achieved if the users visit the author in person

and prove that they are able to decrypt a message which was previously

encrypted by the author using the users certificate. The author can then

add the certificate to the service’s certificate store and declare it as trusted.

In either case, it is assumed that users own a personal certificate and the

public key is made available to BLESS.

In a second step appropriate access control rights have to be granted for

the certificate owner.

Mutual Authentication

Having certificates of both communication parties in place, mutual authenti-

cation becomes possible. At this point the design of BLESS is intentionally

81

5.5. SECURITY

kept open as there is no standard method available. SSL/TLS could be ap-

plied enhanced with user authentication or a custom mutual authentication

protocol could be introduced. Thus, even though the usage of certificates

for all communication parties is envisioned, the actual procedures for au-

thentication (requirement {F6} and requirement {F7}) and hence setting up

secure communication channels (requirement {N5}) is not included in this

design.

5.5.2 Encryption

All communication except for discovery requests and responses need to

be encrypted according to requirement {N5}. This could either be accom-

plished by encrypting every message using the receiver’s public certificate.

Alternatively, an SSL connection can be established. Using certificate en-

cryption both communication parties then agree on a shared key which is

afterwards used for symmetric encryption.

5.5.3 Service Permissions

At this point users, who are about to install and use a service, can be certain

of the author of the service. Further, they can assume that the communi-

cation channel is secure. However, there is no way to give any guarantee

what the service does with shared data. For this reason service permissions

are introduced. The major idea is to limit the amount of data a service can

access and is thus able to share.

For this reason MultiApp requires the user to consent before the CP of a

service can:

• access the user position (requirement {F27})

• communicate with its SP (requirement {F28})

• receive push messages from its SP (requirement {F29})

• invoke other services (and pass data) (requirement {F30})

82

5 Design of BLESS

The other permissions listed in table 4.5 are not considered security rel-

evant. User consent is thus not necessary. However, it might be added at a

later point to allow better user control.

The user is asked for consent before a service is about to use the per-

mission the first time. Options are grant always, grant this time, deny al-
ways, and deny this time. Additionally, the user can view a list containing
all permission choices for a service and change each setting. This fulfills the

service permission requirement {F8}.

It has to be noted that MultiApp requires all permissions any LLS could

request. This results in a very powerful app which could easily publish a

great amount of private user data. As proposed in section 4.1, to gain the

users’ trust anyway, the source code of MultiApp should be made public.

5.6 Buildings and Service-Buildings-Linkage

As services are linked to buildings, a consistent notion a building and service
needs to be defined. Further, an appropriate service-to-building linkage is

developed in this section.

5.6.1 BLESS Buildings

A building in the general sense is structure which can be entered by humans

usually delimited by walls and a roof. In this dissertation, however, it is

used as synonym for the area covered by a WiFi network. This often corre-

sponds roughly to a physical building. However, in case of large institutions,

like universities, hospitals, or companies, a WiFi network may cover a whole

building complex, i.e., multiple physical buildings.

In this dissertation building may refer to both: a building in the general
sense or a campus-like structure. If the context does not clarify which

is meant, a building spanning several sub-buildings will be called building
complex or campus from now on.
According to table 4.3 all services detectable in the whole building, are

actually linked to the building complex. For example, considering a naviga-

tion service 3.4.1 for a university campus or a tour guide 3.4.12 for an open

83

5.6. BUILDINGS AND SERVICE-BUILDINGS-LINKAGE

air museum, all buildings belonging to the same campus must be covered by

these services. For simplicity, a service is always linked to a building. Link-

age to a sub-building is not supported.

When entering a building, its services are to be presented to the user.

At the same time, the user should have the option to list all services which

where installed in other buildings. A unique identification for each building

is thus needed. Further, a human-readable name is helpful for the user to

distinguish buildings easily (requirement {F4}). As providing building iden-

tification and name through each service would imply duplicated and thus

potentially inconsistent information, an entity representing the building will

be introduced fulfilling requirement {N3}.

This building entity needs to be detectable by MultiApp and thus needs

to be an auto-discoverable network service. For consistency, the same dis-

covery protocol as BLESS services implement will be used. It is detailed in

section 5.9.3. Further, these building services will provide localization data

to enable offline localization within the building. They also supply a building

map which can be used by all services belonging to the building. For building

services assumption 1 must hold:

Assumption 1. Within each WiFi network there is at maximum one BLESS
building service available. If BLESS services are offered there must be ex-
actly one building service running.

As BLESS buildings may not overlap and with assumption 1 applied,

MultiApp can unambiguously determine in which building it is residing, by

detecting building services. Further, it can thus determine to which building

a service is linked. It is thus not necessary for services to explicitly state its

building-linkage which is in line with requirement {N9} (ease of usage and

administration). Then the localization data of the building can be used to

determine a more accurate position inside the building which in turn is used

for the filtering mechanisms described in section 5.9.

5.6.2 BLESS Sub-Buildings

A building containing sub-buildings – that is a campus – needs to represent

each sub-building by a dedicated network service. Also these sub-building

84

5 Design of BLESS

services provide a name, unique identification, localization data, and option-

ally a building map. Additionally, they need to provide data about their di-

mension and location. Using these information MultiApp is able to determine

when a sub-building on a campus is entered. This is necessary to determine

a more accurate position inside sub-buildings using the localization data of

the corresponding sub-building. Areas of sub-buildings must not overlap.

This can be ensured by using real, physical building dimensions.

For example, a university campus providing BLESS services will have a

campus service providing a campus map and localization for the campus.

Further, there are sub-building services each providing a building map and

data for indoor localization of the building it belongs to.

5.6.3 BLESS Services

An important meta design choice pursued by this dissertation is keeping de-

velopment of BLESS services as easy as possible while offering high flexi-

bility. An important component to keeping complexity low is by avoiding un-

necessary interconnections between services, buildings, and sub-buildings.

E.g., it should not be necessary to know the exact building identification dur-

ing development of a service. It should further not be necessary to make a

new service known to building or sub-building services. Instead it should be

sufficient to know where the service is to be installed, i.e. geo coordinates

and if required room numbers. This eases development as demanded by

requirement {N7}.

Providing an implicit service-building-linkage is easily possible because

there is always exactly one building service available within a BLESS WiFi

network. All detectable services belong to that building. Thus, if the name

or the identification of a building changes or its services are moved to an-

other building, no further modifications are necessary.

As can be seen from table 4.3 about half of the sample service should be

detectable and thus installable not in the whole building but rather a small

section of it. This dissertation proposes to use a single room as smallest

possible detection area in order to fulfill requirement {F2}. This is a plau-

sible approach as most buildings are divided into rooms and rooms can be

85

5.6. BUILDINGS AND SERVICE-BUILDINGS-LINKAGE

distinguished easily. In case of very large rooms, they may be split into

sections with each section being a virtual room. Alternatively, the detection

area might be specified using geo coordinates. However, precisely deter-

mining latitude, longitude, and altitude inside buildings is a non-trivial task,

both for the administrator during design time as well as for the localization

algorithms of MultiApp while operating the system. Further, as suggested

in section 2.2, it is not to be expected that WiFi localization will yield much

better results than room-based localization. Defining detection areas for

services inside buildings via geo coordinates will thus not be supported.

As will be described in section 5.7, indoor positions will be provided as

discrete room labels by MultiApp’s localization algorithms. Services which

need to narrow their detection area to a set of rooms are required to use the

same room labels. Thus, a linkage between these services and their parent

building via room labels is inevitable. To minimize difficulties due to naming

and spelling differences, this dissertation proposes to use already existing

room numbers as labels where ever possible. Labels containing names of

people working or living in a room are to be avoided as they are subject to

change.

Even though services are always linked to a building, their detection area

can also be limited to a set of rooms in a sub-building. In this case the ser-

vice is said to belong to the sub-building. For such services an unambiguous

mapping is imperative, since identical room labels may be used in multiple

sub-buildings. Unfortunately, even though the service-building-linkage can

be determined autonomously due to BLESS’s structure, in order to link a

service to a sub-building, additional input has to be provided by the devel-

oper of the service. Again to avoid ambiguities due to naming and spelling

differences, this dissertation suggests that each service belonging to a sub-

building must provide geo coordinates of its location. The coordinates may

be an estimate and must only be located within the borders of the sub-

building. Since the dimensions of sub-buildings are known, MultiApp can

use the service position to map service to sub-building. Alternatively also

the unique identifier of the sub-building may be provided. Note that if no

service location is provided a service always belongs to a building rather

than a sub-building.

86

5 Design of BLESS

5.7 Localization

Since omniscient entities – including those that are aware of the locations

of all users – are to be avoided according to requirement {N2}, MultiApp

needs to be able to determine the user position autonomously. Further, no

external hardware should be necessary such that the system can be applied

to any building without additional infrastructure costs (cf. section 3.3).

According to section 2.2 WiFi localization using fingerprinting seems to

be the most promising approach, it is applied here for the inside of buildings

in order to fulfill localization requirement {F10}. Locations will thus be

given as discrete labels each standing for a room. However, if a localization

technique provides continuous positions as geo coordinates, those may be

unambiguously translated to a room label using the localization and map

data provided by building services. If available, geo coordinates shall be

passed from MultiApp to its services.

Also localization outside buildings will be supported. Only hardware

integrated into smartphones may be used. Outside locations are specified

as geo coordinates using latitude and longitude. The altitude for outdoor

positions is not be required by BLESS.

In order to prevent location aware entities, a server-based location query

API cannot be used. It would know where its users are by analyzing the

queries it receives. Also infrastructure-based or other commercially avail-

able systems cannot be applied in this project.

Instead BLESS will include a custom localization framework which allows

buildings to make any number of radio maps available to its users. The lo-

calization algorithms are integrated into MultiApp. Depending on which kind

of radio map is offered by a building the according localization algorithms

is used. If multiple radio maps are available, the first algorithm provides

a coarse location which is improved by subsequent algorithms. Note that

using this approach, any offline localization technology can be supported.

Even though WiFi localization is used here, e.g. also a beacon-based ap-

proach could also be adopted by storing location data about the individual

beacons within the buildings’ localization databases.

Every localization procedure costs processing power and thus battery

87

5.8. NAVIGATION

life. Localization must only be performed when needed.

5.8 Navigation

In order to make use of the position provided by the localization system of

BLESS, a map technology is required which fulfills the requirements. Un-

fortunately both Google Indoor Maps as well as MapsIndoors require an

Internet connection and can therefore not be used. The commercial prod-

ucts from section 2.2.5 cannot be used in this project due to their price.

The free project OSM could be used for BLESS. However, creating maps

and especially indoor maps for OSM is very complicated and time-consuming.

For this reason a simpler map technology was created which is presented

in the following.

The remainder of this section 5.8 is an extract from [3].

The presented system - SvgNaviMap - is intended to provide indoor nav-

igation on smartphones. It bases on existing floor plans without modifying

them. Thus, colors and outline of maps are the same on wall-mounted

maps and the navigation application. This facilitates orientation for the user

as recommended by [PSH

+
09], reduces workload for creating maps, and

enables a uniform corporate identity through maps on different media. Fur-

ther, emphasis is put on easy creation of navigation models. To the best

of our the knowledge SvgNaviMap is the first open-source project which

allows navigation on existing 2D maps across several floors.

The basic work flow for making existing maps navigable is shown in fig-

ure 5.2. First, a floor plan of the building in question in the SVG format is

required (a). This map is then loaded with the SvgNaviMap editor. Visually

routing information is drawn on top on the map (b). This includes defining

points of interest (POIs) and grouping them into categories. Further, the

map has to be pinned to a global coordinate system (c). After the con-

figuration phase is completed, the map including navigation information is

supplied to a smartphone, e.g., via a web server (d). Assuming that a po-

sition provider is installed (e); the user can choose a destination and start

navigation.

88

5 Design of BLESS

use existing map (a)

position
provider

Choose destination:
Entrance hall
Restroom
Roof garden

(e)

pin to geolocation (c)

add routing
information (b)

Send to smartphone (d)

SvgNaviMap

Use map for indoor navigation (f)

Editor’s View

User’s View

Figure 5.2: Schematic overview of how to use SvgNaviMap

In the following we present our design choices for SvgNaviMap. After-

wards we explain what kind of routing information is required.

5.8.1 Design Choices and Implications

Assuming that each large building in which a navigation system would be

useful also has a server, we decided to use a distributed approach for Svg-

NaviMap. This way, map data is under control of the owner or IT adminis-

trator of the building in question. [...] Even though the system implements a

89

5.8. NAVIGATION

server-client-architecture, the web server is merely necessary for providing

data. No dynamic procedures are performed on the server reducing load on

the server and assuring good scalability.

As there are many mobile clients in use, and web technologies are be-

ing unified in the HTML5 standard, we chose to rely on web technologies.

In specific, we designed a web application that strongly relies on SVG and

JavaScript. No browser plugins are required. Route calculation is done on

the client-side using JavaScript. Browsers are powerful SVG viewers which

supports most features

1

. Zooming and panning is enabled by default. Fur-

ther, the SVG DOM tree can be accessed and manipulated using JavaScript.

For Android devices, SVG in the default browser is supported since version

3 [Chi11].

Further, it should be possible to use existing maps without modifying

them. However, bitmap graphics need to be vectorized first in order to

profit of the interactive features of SVG as well as lossless scaling. Svg-

NaviMap supports any number of levels and needs thus to support one

separated SVG file per floor.

In order to be able to use any positioning technology which may become

available in the future, global coordinates in the format of theWorld Geode-

tic System are being supported. Since SVG uses its own coordinate system,

a mapping between the internal Cartesian SVG coordinates and global lati-

tude and longitude is required. SvgNaviMap even supports maps which are

not drawn to scale.

Navigational data is stored independently of the map data. We assume

that a visitor’s routing destination may be located on any floor. It is thus

not practical to split routing information per level. It is not required, either,

since routing information - even for a large building - is relatively small.

Thus, before starting navigation, the client needs to download the complete

routing information.

The actual web application is split into two independent parts. First is

the Editor’s View. It allows the developer to load an SVG map, then to add

1

Overview of officially supported SVG elements in Firefox and WebKit:

https://developer.mozilla.org/en/docs/SVG_in_Firefox

http://www.webkit.org/projects/svg/status.xml

90

5 Design of BLESS

and configure navigational data during setup phase. The other part is the

User’s View which simply displays the map and shows the current position

and routing directions to the end user.

5.8.2 Routing Information

Being able to show the route, SvgNaviMap needs to have navigational infor-

mation as well as the map itself. The configuration XML file combines both

parts. It is thus the starting point when loading a new SvgNaviMap project.

It contains links to all required SVG files. Links may either be absolute

URLs or local, relative paths. Further, it contains all information required

for calculating and displaying routes which is detailed in the following.

Routing is performed using a directed graph which is drawn as overlay

on top the SVG map. When the user enters a destination, their location is

mapped to a close vertex. From this start position routing information is

displayed as arrows along the edges toward the destination vertex.

Vertices are either helper points, solely used to calculate and show

routes or they are POIs. Latter are detailed by a description and can be

chosen as routing destinations. They can also be grouped into self-defined

categories, which allow e.g., to offer a list of all restaurants in a shopping

mall. Group names are also stored within the configuration file.

The weight of each edge is by default equal to its length. Optionally, a

weight factor can be manually added allowing to increase or decrease the

total weight of the edge. This way e.g., stairs can be rated more expensive

than an elevator; an auto walk cheaper than a normal corridor. Further, flags

can be set indicating in which direction the edge is routable and whether it is

wheelchair accessible. All routing information is stored in the XML format.

This way more edge-specific information can easily be added.

For multistory buildings, navigation maps should provide multiple floors.

SvgNaviMap is able to span the routing tree over multiple floors. Each floor

is assigned a lower and upper height (floor and ceiling) allowing to map a

given altitude to a floor.

Finally, for mapping between the global, geographic coordinates system

and the local SVG coordinates system, two concepts are integrated in Svg-

91

5.9. DETECTING AND FILTERING SERVICES

NaviMap and its configuration file. For one, we included GPSMarkers which

lock an SVG position to a real-world coordinate. As floor maps are often

not true to scale any number of markers are supported. For correct rotat-

ing and scaling of the coordinates systems during mapping, at least three

GPS markers are required. So called affiliation areas, on the other hand,

allow mapping from any SVG coordinate to one routing vertex. Thus, each

affiliation area is a self-defined area around its corresponding vertex. This

concept is similar to cells in a Voronoi graph, however, note that due to

obstacles like walls affiliation areas cannot be computed automatically but

have to be defined manually by the editor. Care must be taken in order

to not overlap affiliation areas to prevent ambiguous mappings. Further,

complete mapping is only possible if they cover the whole map.

5.9 Detecting and Filtering Services

According to section 5.4.2, it is assumed that MultiApp is running in back-

ground at all times. This is a major premise for autonomous service de-

tection. In fact, MultiApp is responsible for detecting all available services

(requirement {F1}), filtering for the user unappealing or unavailable services

(requirement {F2}), and presenting all other services to the user (require-

ment {F3}).

Filtering services needs to be performed in multiple steps. The first fil-

ter should be location based: Only services which are usable at the user’s

current position are selectable (location filter). The next filtering step, in-

volves checking whether the current user is legitimated to use the service

(user filter). More advanced filtering steps – e.g. filtering by context – are

out of scope for this dissertation.

Both, the location filter and the user filter can either be applied by Multi-

App or by each service. Both options are explained in the following section

and advantages and drawbacks thereof are discussed.

92

5 Design of BLESS

5.9.1 Applying Location Filter

According to subsection Localization in section 4.3.1, MultiApp calculates
its user’s position autonomously. Each service can limit its detection area

according to section 5.6.3.

For MultiApp applying the location filter, it queries for all services in the
building. Each service answers and provides its detection area. MultiApp

then filters out all services which are not intended to be used at the current

position.

Alternatively, MultiApp queries for all services at the current position.
Thus, the user’s position has to be transmitted to all services. Each service

only responds if the user’s position is within its detection area.

The first approach, has the advantage that location privacy is ensured by

design. In order to avoid broadcasting interceptable user positions within

the network, homomorphic encryption or a similar approach for location

privacy would have to be applied [ZGH07]. A drawback of the former ap-

proach is an increased network traffic compared to the later, as all services
respond but only a fraction of the replies is relevant. Note however, that

no privacy issue is introduced, as all services which respond are public and

supposed to be accessible at some location. The drawback can be amended

by introducing an assumption:

Assumption 2. All services are static. That is, services are always online
and reachable at a fixed IP address and port.

Applying assumption 2, services have to be queried only once within each

building. This decreases network traffic rigorously compared to the later

approach which needs to query for available services whenever the user

moves. BLESS will thus follow the former approach, which requires each

MultiApp client to store a list of all services per building and perform loca-

tion filtering locally. Services are assumed to be online as soon as a location

within the owning building was calculated.

5.9.2 Applying User Filter

It is assumed that each user owns a certificate which is known by MultiApp

and by all services which the user may use as administrator or authorized

93

5.9. DETECTING AND FILTERING SERVICES

user. Filtering services by user has to be applied only for services which are

available only for authorized users or administrators. Anonymously usable

services are accessible by all users without providing authentication and

hence are never filtered by the user filter.

Letting MultiApp apply this filter requires all services to respond to a dis-

covery query. The response must contain a list of allowed users. MultiApp

can then decide whether to display or hide services. Alternatively, MultiApp

can include its user identification in service discovery requests. Each service

will then only respond if it is usable by the requesting user.

The former approach introduces privacy and security issues. Malicious

users can obtain the names, descriptions, and entry points of all services –

even those which are not meant for them – and can thus detect available

targets. The security threat should be kept low by hiding private service

from not permitted users. This is better possible using the later approach.

Using public-private-key encryption, service discovery requests cannot

be encrypted. This implies for the later approach that the user ID must

not be sent as clear text in order to avoid privacy issues in case network

traffic is sniffed. Instead using a one-way hash function the hashcode of the

user ID may be transmitted. This way an attacker who is sniffing discovery

request packets can match multiple requests to a single user. However,

the real identity of the user stays hidden. A major drawback remains: An

attackers can replay the request to discover services which are not meant

to them.

Using cryptographically advanced keyed hash functions such as summa-

rized in [BSNP

+
95], solves this problem: The client app generates a random

key for each service request and uses this key to hash its user ID. By send-

ing the keyed hashcode together with the key, each service can determine

whether the requester is a permitted user. This however, requires each

service using the given key to calculate the hash of each permitted user on

each received service discovery request. This facilitates denial-of-service

attacks.

As a compromise instead of a random key the current hour or day could

be used. This way each service has to calculate hashcodes for all allowed

user IDs only once an hour or day, respectively, and can store them. This

94

5 Design of BLESS

way replay attacks can only be performed within the chosen time slot.

However, this requires that the clocks of servers and clients are synchro-

nized. Further, replaying a service request needs to be performed only once

to discover the existence and the permanent address of a service. Even the

shortest time slot may thus be sufficient for an attacker.

As all proposed attempts to hide the existence of authorized services

from unauthorized users have a major drawback and as user privacy is con-

sidered more important than hiding services, the very first approach will be

applied: MultiApp is responsible for filtering for authorized services. All

services will thus respond to all service discovery requests. Responses to

discovery requests contain a list of hashed user IDs which are allowed to

install the service. MultiApp filters out all services which are not meant for

its current user. This way the part of user filtering of requirement {F2} is

fulfilled. All services further must fulfill following assumption:

Assumption 3. All services are secure by design. Services must not rely
on hiding or obscuring their existence to provide (additional) security. They
must only allow authorized users to download its CP and use its offered
services.

5.9.3 Discovery Protocol

A positive side-effect of above choices to rely on MultiApp for filtering ser-

vices, is that the service discovery protocol – which is introduced in the very

next section – does not need to provide support for filtering on protocol

level.

Existing Discovery Protocols

Current discovery protocols for IP networks are: SSDP, DNS-SD/mDNS,

and SLP as described in section 2.4.2. Ignoring the fact that SLP requires

root permission, all of them could be used use for BLESS. Unfortunately,

none of them is considered ideal.

The common disadvantage of SSDP and the combination of DNS-SD and

mDNS (m/DNS) is their complexity. While SSDP requires elaborate XML

95

5.9. DETECTING AND FILTERING SERVICES

handling and needs to be extracted from the UPnP protocol stack, m/DNS

uses a complex workaround to allow service discovery via standard DNS

queries. SLP on the other hand is much simpler. However, it cannot be

applied on non-rooted smartphones.

Considering mDNS opposed to SSDP and SLP in multicast mode, it uses

a link-local multicast address. It can thus not be used in a network consist-

ing of multiple subnets. In this case DNS-SD would be required. However,

like SLP with service directory, it introduces a single-point of failure which

contradicts the vision of an ideal services system from section 3.3. Addi-

tionally, there is only a single implementation of a fully compatible DNS-

SD server available which is most likely not present in most networks and

needs thus to be set up, complicating the adoption of BLESS.

A drawback of all three of them is, that responses to search queries

do not contain all relevant information about the service. For example for

SSDP a dedicated XML file has to be requested while SLP needs an explicit

request for obtaining the service’s attributes. Another common inadequacy

for location-linked services is the timeouts for service announcements. Li-

braries of discovery protocol are usually implemented such that they delete

services from the internal discovery list if the corresponding announcement

is not renewed. As this is consistent with the protocols, libraries do not

offer a method to circumvent deletion. Services which are not listed cannot

be accessed. Consequently, if any of the considered discovery protocols

was used, service announcement would have to be repeated. However, ac-

cording to section 5.9.1 services are static, i.e. they do not appear and dis-

appear frequently. Repeated announcements and service discovery queries

are thus not required and would unnecessarily increase network traffic.

For BLESS a simpler discovery protocol is preferable. It is specified in

the following section.

Discovery Protocol Specification for BLESS

As described above none of the existing discovery protocols are suited for

BLESS. Since BLESS does not require communication with any existing, ex-

ternal entities, a custom protocol may be incorporated without introducing

incompatibilities. The protocol presented by this dissertation is kept as sim-

96

5 Design of BLESS

ple as possible and avoids generalization, to allow easy adaption by future

BLESS services. Learning from the analyzed protocols, following charac-

teristics are required:

• Queries: Find all BLESS services, find all BLESS buildings with sub-
buildings, find BLESS pusher (cf. section 5.10), find all three types at

once

• Query responses include all details of service or building
• No timeout for discovered services
• Multicast address from Administratively Scoped Block
• Listening port above 1024

For service discovery of discoverable BLESS entities, following simple

protocol specification will be observed. Searching entities will be called

clients while servers answer to query requests.
Clients send multicast search requests as UDP datagram to multicast ad-

dress 239.255.81.35 and port 8135 . Content of the datagram is UTF-

8 encoded. The first character specifies and query type: S for BLESS ser-

vices, B for BLESS buildings and sub-buildings, P for the BLESS pusher,

A for all types. Separated by a colon, follows the port to which the re-

sponse is to be sent to as visualized in figure 5.3.

192.168.61.32
Query (UDP)

238.255.81.35:8135
A:23231

Figure 5.3: Example of query for all BLESS entities

Responses are considered important and must not be lost. Further,

they are usually too big to fit into a UDP datagram. Thus, all servers

receiving a query request for its type, respond via unicast to the sender

by sending a TCP packet to the provided port. The content is a UTF-8

encoded JavaScript Object Notation (JSON) object. It must contain fol-

lowing fields: type , id (identification), and entrypoint . Content

of type is: service for BLESS service, building for BLESS build-

ing, sub-building for BLESS sub-building, pusher for BLESS pusher.

Field id must contain a unique identifier for the BLESS entity. Field

97

5.9. DETECTING AND FILTERING SERVICES

entrypoint indicates the destination address at which the server pro-

vides its functionalities. For services it is the path to the remote interface,

for buildings the path to obtain building data, and for the pusher the path

where it is listening for incoming connections. For all three cases the path

may be preceded by a colon followed by the TCP port.

Both building types must provide additionally fields name and area .

Former is a friendly name which is shown to the user. Latter is a sorted ar-

ray containing at least 3 geographic coordinates in decimal degrees format

defining the area of the building. Latitude and longitude are separated by

a comma and use a dot as decimal separator. Northern latitude and east-

ern longitude are stated as positive numbers. The coordinates indicate the

vertices of the building. Further, sub-buildings must specify the ID of its

parent building via field parent . An example of a response of a building

and a sub-building is shown in figure 5.4.

192.168.61.32:23231
Building (TCP)

192.168.61.35
{

"type": "building",

"id": "bliss.building.tuhh",

"name": "TUHH Campus",

"area": [

"53.463897841281856,9.971320925598093",

"53.45842992675125,9.971320925598093",

"53.45842992675125,9.967469300552466",

"53.463897841281856,9.967469300552466"

],

"entrypoint": ":8080/ tuhh.zip"

}

192.168.61.32:23231
Subbuilding (TCP)

192.168.61.35
{

"type": "subbuilding",

"id": "bliss.building.tuhh.sbs95e",

"parent": "bliss.building.tuhh",

"name": "TUHH SBS95E",

"entrypoint": ":8080/ buildings/e.zip",

"area": ...

}

Figure 5.4: Example response of a building and a sub-building

98

5 Design of BLESS

Also, BLESS services must provide field name . Additionally, they must

define a description for the entity which is shown to the user. With

these two fields the requirement of providing service details {F4} is ful-

filled. Restricted services for authorized users only must define field users .

It is an array containing hashes of authorized user identifications used by

MultiApp for the user filter. As one-way hash function SHA3-256 is pro-

posed.

Optionally, if a service belongs to a sub-building rather than a building,

field subbuilding is required. It must either contain the identifier of or

a geo coordinate inside a sub-building which belongs to the current building.

If the area of usage of a service is to be limited also within the sub-building,

field rooms needs to be defined. It is an array containing names of rooms

in which the service should be detected. Note that the names of the rooms

must be those also used by the localization data provided by the building

service.

An example of a response of two services is provided in figure 5.5. Note

that the first service is linked to a building because no subbuilding is

defined, in this case building TUHH Campus (from Figure 5.4). The latter

service belongs to sub-building TUHH SBS95E and is only intended to be

used in the defined rooms.

Clients should listen for several seconds (e.g. 10) for server responses

before closing the listening port. Clients should issue query requests when

entering buildings. Periodic queries must be avoided. Manual queries can be

supported. All variable names and strings are case-sensitive. Servers may

ignore requests from clients which query too frequently (e.g. more often

than once in two minutes).

For completeness sake, figure 5.6 shows an example of a response sent

by a BLESS pusher entity.

5.9.4 Enabling Service Detection

Discovery of services is closely linked to localization, because BLESS ser-

vices are only available within buildings, that is withinWiFi networks. When-

ever localization determines that the user is outside any building, service

99

5.9. DETECTING AND FILTERING SERVICES

192.168.61.32:23231
Service (TCP)

192.168.61.101
{

"type": "service",

"id": "bliss.service.tuhh.navigator",

"name": "Navigator",

"description": "Find your way at TUHH",

"entrypoint": "/svcs/navigator.zip"

}

192.168.61.32:23231
Service (TCP)

192.168.61.102
{

"type": "service",

"id": "bliss.service.tuhh.sbs95e.telematik.lights",

"name": "Light Control Telematics",

"description": "Switch lights in Telematics offices",

"entrypoint": ":81/ lcTelematics.zip",

"subbuilding": "bliss.building.tuhh.sbs95e",

"rooms": ["4.075", "4.076", "4.077", ..., "4.091"],

"users": ["dbd487b601282fc86308b4f5f4b283c7af0fa97db

64 b3f6f0c0c47f472c61d26"]

}

Figure 5.5: Example response of a BLESS service

192.168.61.32:23231
Pusher (TCP)

192.168.61.35
{

"type": "pusher",

"id": "bliss.pusher.tuhh",

"entrypoint": "3265"

}

Figure 5.6: Example response of BLESS pusher

discovery cannot yield any results and should thus be disabled. On the

other hand, when service discovery detected a BLESS building, the localiza-

tion algorithm is expected to be able to determine a position. It should be a

position within or close to the building.

This interconnection is most important for detecting when the user enters

a BLESS-enabled building. In this case the user needs to be informed about

available BLESS services as explained in section 3.3. However, neither pe-

riodically searching for building services nor continuous location scans are

appropriate, as both procedures require processing power and use the WiFi

adapter. They will thus quickly drain the battery. Decreasing the scan inter-

100

5 Design of BLESS

val results in worse performance in terms of speed of detecting buildings.

Fortunately, modern smartphone operating systems provide means of

detecting changes in the WiFi connection. Apps can thus be informed when

the WiFi adapter connects to or detects a new network. The actual detec-

tion is thus delegated to the operating system. As detecting WiFi networks

is a fundamental part of mobile operating systems, it is highly optimized.

MultiApp will thus listen to WiFi network changes and start a discov-

ery request when connected to a new network. The results need to be

stored to avoid unnecessary, repeated scanning of networks. If the WiFi

connection is lost, it is likely that the user left the building. This should be

confirmed by using the localization algorithm to avoid false location events

due to poor WiFi coverage inside the building.

5.10 Inter-Service Communication

For BLESS two communication patterns between MultiApp and services are

required as specified in section 4.3.1. First, the client must be able to

invoke actions which includes retrieving data from the server. Second, via

the pusher the server needs to send notifications which in turn may invoke

actions on the client. Further, it has to be observed that the CP is written

in JavaScript while the language for the SP is not specified.

5.10.1 Method of Communication

As specified by the requirements, a two-way communication between SP

and CP is mandatory. According to section 2.6.1, there exist currently four

options for pushing messages to smartphone clients. This dissertation will

apply the approach of keeping a single open connection from smartphone to

a third party relay service. It promises best scalability and is less resource

consuming for smartphones while not depending on a special network con-

figurations. However, for privacy, security, and connectivity reasons BLESS

must not rely on the push message mechanism offered by the mobile oper-

ating system. Instead BLESS introduces a custom push messaging mecha-

nism.

101

5.10. INTER-SERVICE COMMUNICATION

To avoid requiring an Internet connection, each building must provide such

a relay service. It will be called pusher in the following to circumvent over-
loading the term service. The pusher must implement the same discovery
protocol as BLESS services. This allows smartphones as well as services

to detect the relay service in order to use it without configuration. The

smartphone identification is to be sent by MultiApp to the SP of a service

when necessary.

This approach introduces a single point of failure for communication from

server to client. This is according to the design requirement {N1} to be

avoided. However, the alternative would be either resource consuming

on the smartphone part or would require a special network configuration

as described in section 2.6.1. Further, without a pusher acting as relay

service, the server part of each service would have to implement message

caching and re-sending mechanisms in case clients are temporarily not avail-

able. Thus, this single point of failure is deemed acceptable considering the

drawbacks of alternatives. Further, services can implemented a poll mech-

anism as fallback option.

For the opposite direction, i.e. for messages sent by clients to servers,

any state-of-the-art communication protocol over TCP/IP may be used.

5.10.2 Server Methods Invocation Protocol

As creating services shall be kept easy for developers, pure interprocess

communication as described in section 2.6.3 is due to its development ef-

forts not an option. Also indirect communication is not an option as it would

introduce unnecessary complexity into the BLESS framework. The remote

invocation approach, however, fulfills the requirements well.

For BLESS there two options available to implement remote invocations

on the client-side, i.e. within MultiApp. Either the CP itself can perform the

remote method invocations or an indirection layer could be introduced. Lat-

ter approach would mean that MultiApp determines which remote interfaces

are offered by the server part and makes according JavaScript interfaces

available to the client side. Marshaling and communication would then be

the responsibility of MultiApp. This approach, however, comes with a num-

102

5 Design of BLESS

ber of disadvantages: The JavaScript interface for remote calls would have

to be created dynamically during runtime. This would increase the complex-

ity of MultiApp and further, the remote interface would not be available

during design time, hampering development. The indirection layer might

also negatively impact performance. Further, it is not required because also

JavaScript code can directly contact the server part either using AJAX calls

or by using the WebSocket technology. Thus, the first approach is to be

considered more appropriate and will be followed by this dissertation.

Today there are many protocols and implementations of remote invoca-

tions available. In general two kinds of RPC projects can be distinguished.

The first type aims primarily to define complete protocol specification,

fixing the byte sequences which are to be transfered between client and

server. This is often done in form of an IDL (Interface Description Lan-

guage). The specification then may be implemented using any programming

language on any operating system. Prominent examples include JSON-RPC,

XML-RPC, Common Object Request Broker Architecture (CORBA), Simple

Object Access Protocol (SOAP), and UPnP. For these protocols many im-

plementations and helper libraries in different programming languages are

available.

The second type of RPC projects primarily aims to provide an RPC frame-

work to be used by programmers. Usually these projects also provide a

detailed protocol specification, however, for a programmer it is intended

to be of minor interest. Projects of this type include Apache Thrift

1

, Java

RMI

2

, and ZeroC ICE

3

.

To reduce development efforts for BLESS, in a first step projects of

the second type were evaluated. Unfortunately, none of them can be ap-

plied directly. The major issues are that JavaScript is not supported, the

documentation is incomplete or incomprehensible, or both. ZeroC ICE was

discarded due to its complexity to set up. A primary goal is to keep de-

velopment of services as easy as possible. An integration into the BLESS

framework would - besides making BLESS itself unreasonable complex -

also presumably hamper the work of service developers.

1

https://thrift.apache.org/

2

https://docs.oracle.com/javase/8/docs/technotes/guides/rmi/

3

https://zeroc.com/products/ice

103

5.10. INTER-SERVICE COMMUNICATION

Of the first set of projects CORBA was discarded because it is too

generic and as a result very complex. UPnP could not be used due to sev-

eral architectural shortcomings, including: While discovering services it is

very verbose (cf. section 2.4.2) and notifications are always broadcasted

impeding private messages to single users (cf. section 2.6.1).

XML-RPC and SOAP which both rely on the Extensible Markup Language

(XML) for formatting messages are not used due to the verbose nature of

XML. Instead in this dissertation remote invocations will be marshaled ap-

plying the JSON-RPC format. It was chosen as protocol for exchanging

remote invocations message mainly due to its simplicity. It further was con-

sidered as a good choice because it uses JSON encoding format which is

natively supported by JavaScript engines and is less verbose than the XML

format. Better performance on client-side is thus to be expected due to

favoring JSON over XML. Consequently also for serializing method argu-

ments and return values JSON will be used.

Using JavaScript the communication module can be either based on asyn-

chronous HTTP calls or the WebSocket technology. Considering the cur-

rent HTTP 1.1 standard enables the keep-alive option by default, both ap-

proaches reuse open TCP connections. However, using WebSockets it is

possible for the server to push messages to the client. For this reason

in this dissertation the recent WebSockets technology will be applied but

HTTP is used as fallback.

5.10.3 Push Messaging Protocol

As motivated in section 5.10.1 for push messages from server to client a

custom messaging protocol is introduced. It involve three entities. Their

interaction is shown in figure 5.7. Table 5.1 provides an overview of the

packet types of the protocol.

A running CP can inform MultiApp at any time, that it is expecting push

messages. MultiApp will then register itself with the SP as well as with

the pusher which belongs to the same building as the requesting service.

Registering involves sending a unique device identifier to the pusher and the

SP. Former is part of this protocol. Later, i.e. passing the device identi-

104

5 Design of BLESS

PC or micro-
controller

Pusher

Service provider

SP

Service provider

SP

Smartphone

MultiApp

CP

CP

send

send
register

push

register

register

Figure 5.7: Overview of BLESS push messaging architecture

fier to the SP, is accomplished via a service method invocation. This way,

the SP does not need to open an additional server socket, helping to keep

complexity of the SP low.

Further, MultiApp establishes a permanent TCP connection to the pusher.

If the connection breaks it is re-established as long as at least one CP be-

longing to the current building is registered for push messages while being

connected to the according WiFi network. For detecting broken connections

which are not reported by the TCP layer a heart beat named awake beacon
is proposed. It is sent regularly by the pusher to each client with the first

being the registration acknowledgment. Clients which do not receive the

beacon in time, must assume their connection to the pusher is broken and

must thus try to reconnect.

At this point a SP can send a forward request to the pusher. It contains

as payload the message which is to be pushed to the client as well as the

device identifier. If the message is signed with the service’s certificate the

origin of the sender can be reliably identified by the pusher. Only if the

sender is trusted, the message is forwarded to the client via the TCP con-

nection corresponding to the identifier. Additionally, a service identifier is

included. If a signature is used, it is redundant and should be empty. If

the connection is down, the message is stored later delivery. The device

identifier generated by MultiApp is stored persistently and reused for all

105

5.11. ASSUMED PRECONDITIONS

future registrations. This ensures that messages sent from a SP to the

pusher can be delivered when the connection between MultiApp and pusher

is re-established.

A message received by MultiApp may be checked again using the signa-

ture of the message. Only messages from the SP belonging to the same

service are delivered to the CP.

Packet name Contained data Sender→ receiver

RegAtPusher clientId MultiApp→ Pusher
SP2Pusher signature, clientId, serviceId,

payload

SP→ Pusher

Pusher2CP serviceId, payload Pusher→ MultiApp
AwakeBeacon Pusher→ MultiApp

Table 5.1: Overview of packet types of custom push messaging protocol

5.11 Assumed Preconditions

This section summarizes all preconditions which need to be fulfilled in order

to apply this design.

In order to be able to use the introduced service provisioning systems,

MultiApp must be installed by all users. Further, it is assumed that it is

running at all times so that it can detect available BLESS entities. Buildings

offering BLESS services must be equipped with APs to provide complete

WiFi coverage. It is assumed that users are connected with the local net-

work.

For user authentication each user requires a personal certificate. The

public key must be known to servers which need to authenticate the user.

For authenticating services the users must trust the certificate of the author

of the services. For public buildings trusting the building’s root certificate

is assumed (cf. section 5.5.1).

106

Chapter 6

Prototype of BLESS: MultiApp
and Exemplary Services

This chapter describes the prototypical implementation of service provision-

ing system BLESS, fulfilling the requirements from chapter 4 by implement-

ing the design from chapter 5. The goal is not a complete implementation

of the design but rather a system which can be used to evaluate the design.

This chapter provides details about implementations of all major software

components.

6.1 Overview of BLESS Implementation

The BLESS architecture comprises five different software component types:

MultiApp, services, pusher, buildings, and sub-buildings, whereas the last

two are very similar. There are further four different protocols used for

communication between component types. Their interaction is graphically

presented in figure 6.1. Details about each software component and the

protocols are presented in the following sections.

The functioning prototype of BLESS created in this dissertation com-

prises – next to MultiApp and pusher – five services and three buildings

including sub-buildings. For all components the design choices from chap-

ter 5 were regarded best possibly. Simplifications in order to reduce imple-

mentation efforts were only made if they do not affect functionality. Omis-

sions of design details were only allowed for parts that were considered

107

6.2. IMPLEMENTATION OF MULTIAPP

pure routine pieces of work.

The result is a functional prototype of the BLESS system. Its Android

client application is mainly missing secure authentication and user permis-

sions. Still the prototype demonstrates the general soundness of the de-

sign.

MultiApp

Pusher

Service 1

Service 2

Building 2

Building

Subbuilding 1

Subbuilding 2

load building data

discover

remote call

push messaging

Key

Figure 6.1: Architectural overview of BLESS

6.2 Implementation of MultiApp

MultiApp is the most complex component of BLESS. It was implemented

as Android app only. However, there is no technical reason which would

hamper implementation for other mobile platforms. Its main internal com-

ponents are presented in the following.

6.2.1 Discovering BLESS Entities

MultiApp employs two discovery protocols for detecting BLESS entities in

local networks in order to fulfill requirement {F1}. In a first approach UPnP

108

6 Prototype of BLESS: MultiApp and Exemplary Services

discovery was used by deploying open source library Cling

1

. Afterwards

the m/DNS approach presented in section 5.9.3 was implemented relying

on mDNS library JmDNS

2

. The according unicast protocol DNS-SD was

tested as proof-of-concept by setting up a BIND DNS server

3

which sup-

ports dynamic DNS updates. The client-part of DNS-SD for creating and

deleting DNS entries was implemented using library dnsjava

4

. However,

DNS-SD was not integrated in MultiApp. Neither the custom discovery

protocol proposed in section 5.9.3 was implemented, as it is only designed

to reduce network traffic but does not provide additional functionalities.

All protocols offer a field for a friendly name which is used as name for

the BLESS services to partly fulfill requirement {F4}. However, only the

custom protocol provides means to offer a textual description for services.

As required by requirement {F19}, CPs of services which registered for

online events are notified whenever their corresponding SP is discovered or

becomes unavailable.

6.2.2 Signature Handling

The specification of BLESS proposes that certificates are used for authen-

ticating entities as well as users (cf. section 5.5.1). However, as authen-

tication via certificates is already state-of-the-art, no proof-of-concept is

required for the prototypical implementation of BLESS. Thus, signature han-

dling was implemented in a strongly simplified manner.

Instead of signing their communication packets, entities and MultiApp ap-

pend the author’s and user’s e-mail address, respectively, as placeholder

for the certificate. MultiApp and each service thus manage a list of e-mail

addresses instead of public certificates. Upon receiving a message the in-

cluded e-mail address is used to uniquely identify the communication part-

ner. Complex cryptography can thus be avoided and facilitates implemen-

tation of MultiApp and services. However, no reliable authentication can

be provided by this approach and must be substituted after prototyping in

1

http://4thline.org/projects/cling/

2

http://jmdns.sourceforge.net/

3

Berkeley Internet Name Domain: https://www.isc.org/downloads/bind/

4

http://www.dnsjava.org/

109

6.2. IMPLEMENTATION OF MULTIAPP

order to fulfill security-related requirements {F5}, {F6}, {F7}, and {N5}.

6.2.3 Listing and Filtering of Available Entities

MultiApp manages separate lists for BLESS services and buildings together

with sub-buildings. Both lists can be displayed in the GUI. They show which

entities are online, trusted, and installed. For services also the running state

is displayed. On clicking an entry further details are displayed. Room-wise

filtering as envisioned by requirement {F2} and section 5.9.1 was not im-

plemented due to the fact that the used localization technology was not

accurate enough. Erratic list changes would have been the result. Instead

all services are displayed which belong to the current building. The cur-

rent building can either be detected automatically using the integrated lo-

calization algorithms and by manually choosing a building. Screenshots are

provided in figure 6.2.

Since signature handling was implemented in a strongly simplified man-

ner, filtering services according to the current user as described in section

5.9.1 could not be realized in a useful way. It was thus not implemented.

6.2.4 Installation of Buildings and Services

Discovered buildings and services which are online may be installed by the

user according to section 5.4.1. Untrusted entities can only be installed

after accepting an according warning dialog. During installation of a build-

ing the offline localization database and the maps are loading and stored

persistently in internal memory.

Installing a service involves loading and storing the CP. It is thus possible

to launch all services while their SP is not available, fulfilling requirement

{F11}. Further, during installation a mapping between service and current

building is created. It allows to filter services which do not belong to the

building being currently inside.

110

6 Prototype of BLESS: MultiApp and Exemplary Services

(a) Buildings list (b) Services list

Figure 6.2: Screenshots of MultiApp showing lists of available buildings

and services

111

6.2. IMPLEMENTATION OF MULTIAPP

6.2.5 Executing CP of Services

After installation, services can be launched. This involves opening a full

screen WebView element in which the web application contained within the

CP is displayed. This allows creating very flexible GUI fulfilling requirement

{F21}. For the WebView implementation of MultiApp relies on Apache Cor-

dova

1

. Cordova provides a number of plugins which allow a web app – in

this case the CP – to interact with the hosting operating system by providing

appropriate programming interfaces. Following requirements are fulfilled

this way: Playing audio files ({F22}), accessing the accelerometer sensor

(requirement {F24}) and getting the orientation from compass (requirement

{F25}).

Further, MultiApp offers an additional plugin for the Cordova framework.

It implements interfaces accessible from the CPs’ JavaScript code for fol-

lowing requirements: Obtaining details about the current building allow-

ing to access map and navigation data (requirement {F26}), accessing the

current user position (requirement {F27}), issuing notifications using the

system’s native notification bar (requirement {F23}), registering for server

push messages (requirement {F29}), and allowing services to invoke other

services and to share data with them (requirement {F30}).

Storing private data can be achieved directly using the LocalStorage which

is part of HTML5 (requirement {F31}). Also the client to server communi-

cation (requirement {F28}) relies on built-in JavaScript objects, which are

WebSocket and as fallback XMLHttpRequest . The entry point for the

remote connections, i.e. the address of the SP of the service, is provided

by MultiApp.

6.2.6 Sending CP into Background and Wake Events

The Android implementation of MultiApp realizes the three different running

states of services as described in section 5.4.2. This way requirement of

running services in background {F20} is fulfilled. For executing services a

single WebView element is used. This implies that only one service can be

in running state at a time.

1

https://cordova.apache.org/

112

6 Prototype of BLESS: MultiApp and Exemplary Services

All wake events from section 4.3.2 (requirements {F14} throughout {F19})

were implemented. While a user and another service can launch a service at

all times (requirements {F14} and {F15}), the other wake events need to be

enabled by the service itself. For each a corresponding JavaScript method

is offered by MultiApp.

(a) Services list with minimized services (b) Details view of service

Figure 6.3: Screenshots MultiApp

In the services overview list the user can see which services are currently

minimized as shown in figure 6.3a. Via the service’s details view – which

contains debug data in the prototype as shown in Figure 6.3b – the user can

kill the service which unloads the service from the WebView if it is currently

running and additionally removes all wake event registrations. Thus after

killing a service it always is in stopped mode.

113

6.2. IMPLEMENTATION OF MULTIAPP

6.2.7 Invoking Remote Calls

For invoking server methods (requirement {F28}), the JSON-RPC protocol

as described in section 5.10.2 was implemented. As the server side is im-

plemented in Java, a compiler was created which creates from a Java remote

interface a JavaScript stub which handles marshaling of remote calls and

corresponding responses. The stub can now be accessed by the JavaScript

code of the CP and directly create a connection to the SP. The stub can

also be used during design phase to enable code completion within inte-

grated development environments. All these functions are provided by a

service skeleton library which is presented in section 6.6.1.

Before any remote calls can be issued, the remote address of the server

needs to be set. It is published by the service during discovery process

(cf. section 5.9.3) and is thus known by MultiApp. A CP which needs to

communicate with its SP needs to register for remote calls using the appro-

priate interface offered by MultiApp. MultiApp in turn forwards the remote

address to the JavaScript stub which then becomes able to invoke remote

calls.

6.2.8 Push Notifications

CPs of services that need to receive push messages from its SP according

to requirement {F29}, need to register using the appropriate interface of-

fered by MultiApp. MultiApp then ensures that push messages can be sent

and received as described in section 5.10.3. For creating the permanent

TCP connection the free library PyroNet

1

is used. The device identifier is

transmitted using the appropriate remote interface offered by the SP.

6.2.9 Localization

Due to the lack of an available, directly applicable indoor positioning tech-

nology, four custom localization algorithms were implemented within the

localization framework of MultiApp to fulfill requirement {F27}.

1

https://code.google.com/p/pyronet/

114

6 Prototype of BLESS: MultiApp and Exemplary Services

The first algorithm relies on BLESS buildings and is self-learning. While a

building is detected to be online, the BSSIDs of each connected WiFi access

point is stored. When the mobile device connects to a known access point

again, a simple look-up function can determine which building was just en-

tered even before the building service was detected. Building-wise granu-

larity can thus be achieved almost instantaneous. This localization technique

is called BSSID-based localization in the following

The second approach works similarly, however, an existing database is

required and is called WiFi DB localization. The database contains BSSIDs

and their geo coordinates. By looking up currently available BSSIDs in

the database the current position can be approximated. An appropriate

database must be made available by BLESS buildings. While there exist

many such privately owned databases

1

there are also some well docu-

mented and query-able datebase available on the Internet

2

. As part of this

dissertation several tools were developed for extracting data from these

source, for collecting own data, and for converting data into appropriate

formats. By importing data into a SQLite database positions can be looked

up within a few milliseconds with a granularity of 10m to 50m.

The last two algorithms apply machine learning techniques Random For-

est as introduced by [Bre01] and Hyberbolic Location Fingerprinting pre-

sented by [KM08]. For both algorithms existing and freely available li-

braries were used

3

. Appropriate fingerprint databases were created using

a custom application based on the SvgNaviMap project. Both algorithms

achieve room-based granularity which provides correct results in about 50%

to 90% of all test cases. While the calculation time for both algorithms

heavily depends on the size of the database, the former algorithms tends

to be much faster and delivers the first result in less than 10 s and subse-

1

e.g. Apple: https://support.apple.com/en-us/HT201357,

Google: https://developers.google.com/maps/documentation/geolocation,

Mozilla: https://location.services.mozilla.com/

2

Examples include https://wigle.net/, http://openbmap.org/, and

http://www.openwlanmap.org/.

3

Fast Random Forest is available here: https://code.google.com/p/fast-random-

forest/, Hyberbolic Location Fingerprinting implemented as part of SmartCampusAAU:

https://github.com/BentThomsen/SmartCampusAAU

115

6.2. IMPLEMENTATION OF MULTIAPP

quent results in less than half a second.

If the user position has to be obtained, MultiApp always determines

the current building using the BSSID-based algorithm first. Next, the sec-

ond approach is pursued if the current building provides an according WiFi

database. Of the last two algorithms only the Random Forest was used

due to its advantage in terms of speed while providing similar accuracy. If

according fingerprint databases are available, this last algorithm is either

executed for the current building or, if sub-buildings are available, itera-

tively for all sub-buildings until a position was determined. However, it is

only executed if the second approach determined a position inside or close

to the according building or sub-building. It was empirically determined that

an appropriate value for determining close buildings is a radius of 50m.

6.2.10 Geofencing

MultiApp offers a geofence interface. Similar to Android’s Geofence API

(cf. section 2.2.2), it allows the CP of services to register for events which

indicate when the user enters or leaves a given area as envisioned by re-

quirement {F16}. It further enables events when the user dwells inside or

outside an area for a given duration of time.

Three types of geofence areas are supported: Collection of rooms in-

side a given building, a geographical area defined by geo coordinates, and

whole buildings. For the first type a room-wise location is required. Thus

the machine learning localization algorithm has to be applied. The second

area type can be determined using WiFi DB localization. Detecting whether

the user is inside or outside a building can be achieved using BSSID-based

localization. Depending on the installed geofences only the corresponding

localization algorithms are executed.

For performance and energy consumption reasons, machine learning lo-

calization is only applied if a close position was determined using WiFi DB

localization. It was empirically determined that an appropriate value for

determining closeness is a radius of 500m. The scan interval is configured

dynamically according the current distance to the closest registered geo-

fence. Following, empirically determined intervals are used: If the distance

116

6 Prototype of BLESS: MultiApp and Exemplary Services

is larger than 5 km no scans are initiated by MultiApp, however, all WiFi scan

results are evaluated to calculate a new distance and thus update the scan

interval. For distances smaller or equal to 5 km but larger than 1 km the scan

interval is set to 7min. With active geofences with a distances of equal or

less than 1 km every 3min a WiFi scan is initiated.

6.2.11 Permissions of CPs

Asking for the user’s permission before a service performs security rele-

vant actions as envisioned by requirement {N8} in section 5.5.3 was not

implemented.

However, all listed actions except communication with the SP are per-

formed via interfaces offered either by MultiApp or Cordova. MultiApp in

turn also relies on Cordova to offer its interfaces. Cordova uses internally a

single entry point for all JavaScript calls in Cordova’s class ExposedJsApi .

Each request from JavaScript code querying to access Cordova’s function-

alities is relayed through this function. It is a simple matters of extend-

ing named function to filter security relevant actions called by services not

owning the corresponding permissions. For each filter hit a security alert

dialog has to be displayed as described in section 5.5.3.

In order prevent communication with the SP, MultiApp needs to set all

JavaScript objects which allow to establish external communication to null.

These are currently the WebSocket and the XMLHttpRequest objects.

Without being able to access these objects, no network communication can

be performed by JavaScript code. Once a service requested and the user

granted the according permission MultiApp needs to recover these objects.

6.3 Protocols

Four distinct communication protocols between BLESS entities can be iden-

tified. While their design details are summarized in chapter 5, this section

provides an overview of their implementations including how they practi-

cally function.

117

6.3. PROTOCOLS

6.3.1 Discovery Protocol

Both discovery protocols applied by BLESS – UPnP’s SSDP as well as

mDNS – are used in a very similar way: MultiApp sends discovery pack-

ets via TCP multicast to all discoverable BLESS entities. Querying only for

a specific BLESS entity type is not possible. The receivers respond with

a summarized answer via unicast. MultiApp in turn has to request further

details in a separate query.

6.3.2 Installation of Buildings and Services

The installation of buildings and services is a simple download of a ZIP

compressed archive. As protocol HTTP is used. The URL is provided as

detail of the previously discovered building or service entity.

6.3.3 Server Method Invocation

Using the UPnP protocol server methods are invoked via UPnP actions ex-

ported by the SP of a service. The corresponding CP can invoke actions by

specifying the action names and passing it together with the required call

parameters to MultiApp. Since MultiApp is aware of the UPnP device it can

issue the UPnP remote call.

The custom remote invocation protocol specified in section 5.10.2 re-

quires JSON-RPC-formatted action requests. According marshaling is ac-

complished by the JavaScript client stubs which are created by the service

skeleton at development time. The remote entry point for remote invoca-

tions is determined byMultiApp during service discovery.

6.3.4 Push Messaging

The custom push messaging protocol introduced in section 5.10.3 defines

four message types:

• For sending message from service part of service to Bliss Pusher.

• For sending message from Bliss Pusher to CP.

118

6 Prototype of BLESS: MultiApp and Exemplary Services

• Register client at Bliss Pusher.

• Pusher periodically sends awake beacon to clients. First beacon is
sent as registration confirmation.

6.4 BLESS Pusher

The BLESS pusher was implemented as Java application. For realizing the

push messaging protocol as described in section 5.10.3, again library Py-

roNet was used. Service discovery was enabled both using UPnP library

Cling and also mDNS library JmDNS.

At this point no authentication is implemented. However, the service’s

signature is sent to the pusher which is displayed on the console for debug-

ging and testing reasons. Implementing filtering based on the sent signature

for this prototype would not bring additional benefits.

Due to the generic nature of the push messaging protocol, the pusher

implementation can be used as is in any number of buildings.

6.5 BLESS Buildings and Sub-Buildings

For this dissertation building service for the university campus of the TUHH

and a sub-building service for physical office building E of the TUHH was

implemented. Additionally, a building for the author’s home was created.

These three entities are called TUHH, Office, and Home, respectively, in

the following.

For TUHH and Home databases for WiFi DB localization were created

covering the buildings and also the surrounding neighborhood. Data was

taken from the Wigle project and complemented with self-collected WiFi

data. The two databases include 25211 and 10569 positions of WiFi ac-

cess points, respectively. Fingerprint databases were created for Home and

Office, covering the whole Home and all corridors of Office, respectively.

Further, for all three structures, building maps including navigational data

were created using SvgNaviMap. For Home these maps include three floors

with 26 rooms and relevant positions outside. The Office map covers five

119

6.6. BLESS SERVICES

floors with a total of 480 rooms. The fingerprint database for Home in-

cludes all 26 positions. Due to the large building size of Office and due to

access restrictions, only 102 position were mapped via WiFi fingerprinting.

The resulting file and database sizes are presented in section 6.7.3.

The implementations themselves again rely on earlier mentioned libraries

for providing UPnP and mDNS discovery. Creating new buildings is a simple

matter of configuration. First the map, navigation, and localization data

needs to be supplied, then dimension and the signature of the building is

set.

6.6 BLESS Services

For testing functionality of the prototype of BLESS, five BLESS services

were implemented. Further, five services which are meant only for debug-

ging were created. Former services are presented in sections 6.6.2 and

following. The following section introduces the service skeleton which was

created to facilitate development of BLESS services. Further details can be

found in [Zil15].

6.6.1 Service Skeleton

The base class of the service skeleton library is ServiceSkeleton which

each BLESS service implementation should extend. Its features are pre-

sented in the following.

Publish Services for Discovery

When ServiceSkeleton is instantiated it announces the service in the

local network. This can either be done as UPnP entity using SSDP or via

mDNS. Again the same libraries were used as for the implementation of

MultiApp as described in section 6.2.1.

120

6 Prototype of BLESS: MultiApp and Exemplary Services

Definition of Remote Interface on Server Side

For defining remotely invocable interfaces the service skeleton library de-

fines Java interface RemoteInterface which must be inherited by every

actual remote interface defined by a BLESS service. Consequently the ac-

cording implementations must implemented RemoteInterface . This is

illustrated as UML class diagram in figure 6.4 using the example of door

guard service from section 6.6.4. Note that RemoteInterface does not

define any methods. It is merely used for marking its implementations as

remote interface.

«interface»
RemoteInterface

«interface»
RemoteLight

getStatus():Boolean
setStatus(status:Boolean)
toggleLight()

RemoteLightImpl
− status: Boolean
+ getStatus():Boolean
+ setStatus(status:Boolean)
+ toggleLight()

Figure 6.4: UML class diagram of interface for door guard service

Accessing Remote Interface on Client Side

Methods defined by a Java remote interface – e.g. see listing 6.1 – by

the SP need to be made accessible as JavaScript calls by the CP. For this

purpose the client side requires corresponding client stubs. These client

stubs are also created by the service skeleton when ServiceSkeleton

is instantiated.

1 public interface RemoteDoor extends RemoteInterface {
2 /∗∗
3 ∗ Get status of guarded door.
4 ∗@return true if door is open, else false
5 ∗/
6 boolean getDoorStatus();
7 }

Listing 6.1: Definition of remote interface for door guard service

121

6.6. BLESS SERVICES

Listing 6.2 shows the generated JavaScript code for the door guard ser-

vice. It includes methods comments provided in the Java interface as well

as the type of arguments and return values. This is necessary because

JavaScript uses no type declarations. However, they provide valuable in-

formation to the developer of services.

1 var RemoteCall_RemoteDoor = {
2

3 /∗∗
4 ∗ Get status of guarded door.
5 ∗
6 ∗@return true if door is open, else false
7 ∗ (Java type: boolean)
8 ∗/
9 getDoorStatus : function(){}
10 };

Listing 6.2: Generatated JavaScript client stub for door guard

service

At this time all methods are empty shells whose content is dynamically

added at runtime. This is possible because JavaScript is a dynamic language

which allows to modify functions during runtime. The CP invokes remote

calls as shown in listing 6.3. Callbacks are handled using the JavaScript

concept of promises, it allows either function successCallback or func-

tion errorCallback to be executed after setStatus has completed

depending on its success value.

1 RemoteCall.setStatus(true).then(successCallback, errorCallback);

Listing 6.3: Invocation of remove call including callbacks

Implementation of Remote Call on Client Side

The actual creation of the content of the client stubs is performed on start-

ing the CP, using the function call shown in figure 6.4. Note that the IP ad-

dress of the server depends on the device which hosts the service. It thus

122

6 Prototype of BLESS: MultiApp and Exemplary Services

must be determined by MultiApp using the discovery protocol for BLESS

services.

1 JSRC.initializeClientStub(RemoteCall_RemoteDoor, <server IP>);

Listing 6.4: Call to initialized client stub at runtime

After the client stub is created it performs the serialization of parame-

ters and the marshaling of the function call itself. All relevant data is stored

in a JavaScript object according to the JSON-RPC format. For sending the

request to the service provider, the service skeleton offers two communi-

cation modules. The default methods relies on WebSockets which allows

reusing a single connection for multiple requests and also allows the server

to send messages as long as the connection persists. As fallback – in case

the client does not support WebSockets – standard HTTP is used.

Implementation of Remote Call on Server Side

The server side answering of remote calls is handled by Java class JsRcCore

which is also provided by the service skeleton. It embeds the web server

Jetty

1

which is used to host entry points /http and /websocket for

the two communication methods. During initialization of JsRcCore the

definition as well as the implementation of the remote interface must be

provided. This allows the service skeleton to initialize the service specific

remote interfaces as well as handling incoming calls appropriately. This

includes deserializing method argument from the JSON-RPC notation into

a Java object, invoking the given implementations of the remote calls, and

serializing the return values including sending them to the client. Also for

executing methods without return values an answer is sent to the client

so that it learns that the remote call was successful. In case of a failure

a JSON-RPC defined error object is returned containing the cause of the

error.

The service skeleton also contains a pusher control object. It manages

registered clients and allows the server part to send messages via the

pusher to the registered clients. The pusher is detected autonomously ac-

cording to the discovery protocol.

1

http://eclipse.org/jetty

123

6.6. BLESS SERVICES

Figure 6.5: Overview of Editor’s View of SvgNaviMap

6.6.2 Navigation

The Navigation service described in section 3.4.1 was implemented. Its

SP is a simple BLESS service relying on the service skeleton. It does not

provide a remote interface and is thus implemented as offline service. The

CP is a web-based map viewer including navigation functionality which uses

data provided by any BLESS building. It is based on the User’s View of

SvgNaviMap [3].

Creating Maps with Navigation Data

Maps with navigation data need to be created using Editor’s View of Svg-

NaviMap as explained in [3]:

[First, a new SvgNaviMap project has to be created and the

required building maps need to be added as SVG files.] Next,

routing information has to be created for the SVG using the Ed-

itor’s View (figure 6.5). Using a menu, all routing information

elements described above can be created. If available, routing

information can also be imported.

First, vertices need to be added. In general, in the center

of each room a POI vertex should be placed. Additionally, a

room label may be added as description. Helper vertices close to

each door will assure that direction arrows will not pass through

walls. Next, edges are added to connect vertices. For edges

124

6 Prototype of BLESS: MultiApp and Exemplary Services

Figure 6.6: SvgNaviMap floor map showing routing vertices and affiliation

areas

Figure 6.7: SvgNaviMap floor map showing GPSmarkers on the left and an

according anchor on an OSM map on the right.

connecting different levels, stepmarkers are inserted automati-

cally. Further, affiliation areas need to be assigned. All vertices

need to be inside their corresponding areas, as shown in fig-

ure 6.6.

GPS Markers are first added to the SVG map. Afterwards,

their corresponding GPS position is set either by explicitly en-

tering latitude and longitude or by choosing a position on a map

as shown in figure 6.7. Finally, lower and upper heights of all

levels need to be set.

User’s View of SvgNaviMap / BLESS Navigation

Once building’s map and navigation data is created, it needs to be made

available to user’s by adding it to a BLESS building. Even though as soon as

MultiApp installs the building, its data is available to all BLESS services, it

is required primarily by the navigation service.

125

6.6. BLESS SERVICES

The navigation service provides mainly two functionalities: It displays the

current position which is obtained from MultiApp and it allows to calculate

and display shortest routes between two points. Internally, an inverted

Dijkstra algorithm is used which calculates routes from any source node to

the destination. This way, the shown navigation directions can be updated

whenever the own position changes without recalculating the route. In case

a route contains floor changes, the navigation service shows stepmakers.

They indicate where floors are entered and exited.

Further, an interface is offered which allows CPs of other services to

display POIs and routes.

6.6.3 Automated Door Bell

The automated door bell service was implemented as detailed in section

3.4.2. The door bell is accessible by the service provider such that it could

be activated by the CP of a service.

When started, the service registers a large geofence of about 1 km diam-

eter around the bell. When the geofence is entered, the services registers

for online events. As soon as the SP of the services is available, the bell is

rung. Before the bell is rung again, the geofence has to be left. The service

is supposed to be running in background at all times. It is implemented as

offline service, so it can be started even if the SP is not available.

6.6.4 Door Guard (Home Monitor)

The home monitor from section 3.4.9 was implemented as door guard.

The door is equipped with a state sensor which can be read by the ser-

vice provider and thus the SP of the service. When the CP of the offline

service is started, it registers for push messages with the SP as soon as

it becomes available. The SP now pushes every state change of the door

to each client. The status is received silently by the CP and stored persis-

tently. Additionally, the CP registers a geofence which is triggered as soon

as the building is left. The CP now checks the last known state of the door,

if it was open an acoustic and vibration alarm is raised.

126

6 Prototype of BLESS: MultiApp and Exemplary Services

6.6.5 Heating Status (Information Request)

The heating status service is a simple information request service. When it

is opened by the user, the current hot water supply temperature as well

as the state of the circulation pumps of the heating system is displayed.

Status data can either be obtained via remote call from the SP or directly

from the heating server using a HTTP GET request. When the SP is available

the former approach is chosen, otherwise the later. If the called URL is

globally available via Internet, the heating status can even be obtained when

not being inside the service’s local network.

6.6.6 Light Switch (Switch Service)

The SP of the light switch service offers a single function for toggling the

light state. When the user launches the CP the light is toggled and the

CP exits. The service is intended to be used only when the SP is available

(online service) and when the user is within the room in which the light is

controlled. Feedback about the light state from the service is thus not re-

quired, but obtained directly by the user. The implementation of the light

switch includes a basic authentication and authorization method: It holds a

list of allowed users and relies on the e-mail address contained in light tog-

gle requests (cf. section 5.5.1) to identify the user. The toggle operation

is only performed is the requesting user is listed a allowed user.

6.7 Lines Of Code

To provide an estimate about the size of the BLESS framework and about

the development efforts, this section provides the numbers of lines of code

for the different components.

6.7.1 MultiApp

Including GUI which is defined in Android as XML files, MultiApp counts ap-

proximately 20,000 lines of code. About the same amount of lines are cov-

ered by the used UPnP library Cling. It includes about 1000 lines of XML

127

6.7. LINES OF CODE

Figure 6.8: Overview of lines of code of MultiApp and its libraries

schema data (XSD) describing the format of UPnP service and device de-

scription files. For the later approach using DNS discovery instead of UPnP,

the library JmDNS with almost 8000 lines of code is used. The library Cor-

dova which is also deployed by MultiApp counts more than 21,000 lines of

code. A graphical representation of these number is shown in figure 6.8.

6.7.2 Services

Except for the navigation service all services are very simple ones. Includ-

ing helper functions but exempting libraries, the JavaScript code of each CP

counts around 200 lines of code, the Java code of each SP between 150

and 300 lines of code. Including HTML and CSS code for the GUI, each ser-

vice consists of less than 800 lines. More details are shown in figure 6.9.

The navigation service contains a similar amount of CSS, HTML, and Java

code, however, it counts around 2500 lines of JavaScript code. This is

due to the logic which reads and parses the navigation data, performs the

shortest path algorithm, and dynamically builds the navigation overlay.

As comparison, a native Android app – which registers with Google’s

push service (GCM), sends its device ID to a custom server, and displays

received push messages – counts about 2000 lines of Java code. Addition-

128

6 Prototype of BLESS: MultiApp and Exemplary Services

Figure 6.9: Overview of lines of code of implemented BLESS services

ally, about 200 lines for the GUI are required and another 100 lines of PHP

code for the server. Further, the developer must have registered the app

with Google to obtain an API key required for using GCM.

Keeping the required Java code as low as 300 lines of code for BLESS

services is only possible because the functions for networking discovery as

well as communication are part of the service skeleton. The m/DNS version

counts about 1800 lines of code, while the UPnP version requires about

2400 lines. As comparison figure 6.10 shows these values together with

the navigation service.

6.7.3 Buildings

Also BLESS buildings are network discoverable entities and are thus also

built on the service skeleton. As a result buildings discoverable via m/DNS

only count 56 lines of code. The UPnP versions require about 250 lines.

However, the larger parts of a building are the SVG map, the navigation

data, as well as the databases for fingerprinting and WiFi DB localization.

These value are graphically represented in figure

129

6.7. LINES OF CODE

Figure 6.10: Overview of lines of code of service skeletons compared to

navigation service

Figure 6.11: Size of navigation data and localization databases for the

three sample buildings

130

Chapter 7

Applying BLESS to private house
hold

This chapter presents the setup (sections 7.1 and 7.2), procedure (section

7.3), and results (section 7.4) of a case study demonstrating the feasibility

of the BLESS concept. The goal is to provide subjective opinions and ex-

periences of test users. No measurements are performed nor is test data

collected as this data would primarily provide an indication about the quality

of the implementation of BLESS. However, the goal is to provide data for an

evaluation of the concept which was presented in chapter 5. The evaluation

itself can be found in chapter 8.

During development and testing more similarities between BLESS and

openHAB were encountered as originally expected. The second part of this

chapter – starting with section 7.5 – studies differences and common fea-

tures of BLESS and openHAB. The evaluation assesses how both projects

may be combined to create added value.

7.1 Description of Field Test Environment

The field test was performed in a three-story, duplex house. In one part

walls and floors are made of concrete, the other is mainly a wooden, light-

weight construction. The total floor area is about 200m2
. The house is

equipped with two WiFi access points (APs).

In the house an additional bell was installed and the backdoor was

131

7.2. PREPARATION FOR THE FIELD TEST

equipped with a sensor able to determine the opening state of the door.

Further, a floor lamp in the living room was connected to a digitally switch-

able power plug. The mentioned devices are controlled wirelessly using

the proprietary FS20 protocol

1

. According radio signals can be emitted and

received using a dedicated network-attached device (FS20Manager

2

) which

was installed close to the three wireless devices.

All BLESS entities were executed on a Linux computer located in the

basement. This BLESS provider has full access to the FS20Manager. All

relevant FS20 signals are forwarded to the provider computer via cabled

network.

7.2 Preparation for the Field Test

The preparation for the field test started with installing an additional WiFi

AP in the basement of the building due to a very poor signal strength in that

area. Afterwards collecting WiFi fingerprints for localization began. At 26

different locations both inside the house as well as in the close proximity

around the house fingerprints were taken. In total 64 different APs were

detected. At each location at least two and at the maximum 21 APs were

visible.

Afterwards collectedWiFi data was processed to be compatible with the

machine learning algorithms presented in section 6.2.9. Additionally, data

for WiFi DB localization was queried from the Wigle project’s website

3

for

an area of about 100 km2
. Further, in the vicinity of about 500m around the

house data was collected in person. Both data sets were combined and

transformed into the required format. It includes 10569 positions of WiFi

access points.

Finally, all BLESS services described in section 6.6 were activated on the

Linux computer. Also the pusher from section 6.4 and BLESS building Home

from section 6.5 were executed.

1

http://www.elv.de/fs20-funkschaltsystem.html

2

https://web.archive.org/web/20150102193202/http://www.crazy-hardware.de/

3

https://wigle.net/

132

7 Applying BLESS to private house hold

7.3 Procedure of Field Test

The field test was conducted from 21 to 31 March 2015. On the first

day all devices were activated, all services were started and MultiApp was

installed on the smartphones of the two test persons living in the house –

called A and B in the following. The provider and its services stayed active

for the whole duration of the test. MultiApp was supposed to be running

at all times on the mobile test devices. However, it could be started and

stopped at discretion of the test persons. As discovery protocol m/DNS

was used as described in section 6.2.1.

At the beginning of the test both test persons launched MultiApp. All of-

fered BLESS services were detected instantaneously as well as the BLESS

building. All these entities were installed on both test devices. As user

A was mainly at home during the duration of the test, the automated door

bell service was only installed on test device B. It stayed active during the

whole field test. The door guard service was enabled and stayed active on

both test devices. The remaining three services were opened and closed as

required by the test users. The navigation service – not needed by inhabi-

tants in their own home – was only used occasionally by user B in order to

visualize the currently detected position.

7.4 Results of Field Test

Programmatically all BLESS entities as well as MultiApp worked well. No

crashes nor inexplicable program behavior was observed. Initial detection

and installation of entities within MultiApp worked straight-forward and

smoothly. Also communication between entities and MultiApp functioned

well, including push messaging via the BLESS pusher.

However, serious issues resulted from the applied localization algo-

rithms. First, it often returned inaccurate localization data on room-level.

The navigation service was thus unusable because the current location of-

ten jumped from one end of the house to the other. The door guard service

often issued warnings even though the users did not leave the house.

Second, geofence events were not issued quickly enough. Thus, the door

133

7.4. RESULTS OF FIELD TEST

bell service never rang before user B entered the house, sometimes it took

several minutes until the bell was rung. This might be caused by too large

scan intervals in combination with a delayed service detection. However, the

third problem – a very high battery consumption – is the result of too many

localization scans. For device B, instead of lasting 3-4 days, the battery

was gone after a little over a day. For device A the battery depleted in even

less than a day with MultiApp running.

It has to be noted though, that there was a big quality difference between

the localization algorithms. The BSSID-based localization algorithm reliably

reported connecting and disconnecting to WiFi access points mapped to

known buildings. However, even using the optimized WiFi detection offered

by the operating system introduced a latency between multiple seconds up

to several minutes. Additionally, the implementation of the BSSID-based

localization algorithm waits until the connection to the WiFi is established

instead of issuing enter notifications as soon the network was seen. This

causes an additional delay of usually a few seconds.

The other algorithms – namely the machine learning techniques as well

as the WiFi DB localization – could not rely on an existing scheduler for

starting locations scans. Instead dynamic scan interval described in section

6.2.10 were used. Considering slow geofence detection, the intervals were

too large, however, taking the high energy consumption into account scans

should be started less frequently.

During the test it was also observed that the detection of entities via

DNS discovery was not reliable on entering a building. Often only a fraction

of available services were detected. However, since the detection of the

current building worked well using the BSSID-based localization technique

and all linked services were considered to be online implicitly (cf. section

5.9.1), this issue had no impact on functionality of BLESS during the field

test.

Additionally, the wireless connections to external devices posed an issue

due to unreliability. Sometimes the light switch service did not switch the

light without any error message. Also some opening state notifications of

the backdoor never reached the door guard server and the door bell did

not ring even if the ring command was issued according to the log files. All

134

7 Applying BLESS to private house hold

three phenomena are most likely to occur due to lost FS20 packets but are

not caused by a design failure of BLESS.

The performance of MultiApp was acceptable. Launching MultiApp itself

as well as installed services takes similarly long as starting other native

apps. However, the time until a service is completely loaded highly depends

on the JavaScript implementation. For example, while the heating status is

displayed almost instantly, it takes several seconds until the map is shown

by the navigation service.

Another issue which makes MultiApp rather user-unfriendly is the fact

that starting services involves opening a full screen WebView element (cf.

section 6.2.5). This implies that when MultiApp needs to pass some kind

of data, e.g. a geofence event, to a CP of a service, then the service over-

lays the currently active app. Even though all services were designed such

that they terminate themselves after they were activated by MultiApp for

accepting data only, a brief pop-up is still annoying and is interrupting the

user’s workflow.

7.5 Comparing with openHAB

During development of MultiApp and testing of openHAB is was determined

that by introducing small modifications to implemented location-linked ser-

vices they can be converted into smart home applications being executable

by openHAB. In order to compare both projects the four services Auto-

mated Door Bell, Door Guard, Heating Status, and Light Switch (sections

6.6.3 throughout 6.6.6) were realized – with some modifications – using

openHAB.

For this, it was necessary to allow openHAB to determine the presence

of the Android devices. It was further required to circumvent client-side

logic and actions. Details about these modifications are described in the

following sections.

135

7.5. COMPARING WITH OPENHAB

7.5.1 Presence Detection with openHAB

openHAB provides a module called NetworkHealth. It can be configured
to periodically connect to network devices and to report back their avail-

ability. A client which responds is at home. A timeout signals absence. For

this test the two test devices A and B were checked every 5min. The de-

tected presence status of the devices are stored as openHAB items and are

thus available to all smart home applications which are being executed by

openHAB.

Note that these modifications contradict the design requirement of avoid-

ing omniscient entities {N2}. Further, since no room-based position is de-

termined, neither the localization requirement {F10} can be considered ful-

filled. A complete comparison about which system fulfills which require-

ments is provided in the evaluation chapter in figures 8.1 and 8.2.

7.5.2 Realizing Test Services using openHAB

Implementing the four test services with openHAB and thus converting them

from location-linked services to smart home applications required some

modifications.

Without client-sided logic the automated door bell service (section 6.6.3)

had to rely on openHAB to detect its presence. The openHAB implemen-

tation of this application thus monitors the item indicating the presence of

test device B. When it changes from absent to presence, the bell is rung.

The openHAB implementation of the door guard service from section

6.6.4 cannot store the latest door state on the smartphone. Neither can

the client-side detect when the user leaves the house, nor can it execute ac-

tions on the smartphones to inform the user about the door being unlocked.

Instead the door guard application relies on the openHAB server to detect

the presence of users A and B. Also the state of the door is stored within

openHAB as item. When the absence of both test devices is detected and

the door sensor indicates that the door is open, the openHAB application

issues a command which causes the shutters to close.

Neither the design of the heating status service from section 6.6.5 nor

of the light switch service from section 6.6.6 need to be changed, as both

136

7 Applying BLESS to private house hold

Figure 7.1: Approximate lines of code of openHAB test services

services are actually already smart home applications. In case of the heating

status application the client is only used for displaying data to the user, for

the switch service the smartphone is only used for sending a switch input

to the server.

The navigation service could not be realized as openHAB application due

to its complex client-side logic and GUI.

Applying presented simplifications, implementing the four test services

required very little work. The approximate amount of number of lines using

openHAB’s configuration language for the four test services in shown in fig-

ure 7.1. The numbers include both, lines for configuring openHAB items as

well as lines for implementing application logic using openHAB’s Java-based

configuration language. It does not include code for presence detection of

the test devices.

7.5.3 Procedure of openHAB Test

The field test was conducted in June 2015. The openHAB server was exe-

cuted during the whole time on the same computer as previously the BLESS

137

7.5. COMPARING WITH OPENHAB

entities. All previously described applications were activated and the pres-

ence detection was configured and enabled for devices A and B.

During the test phase both participants launched and closed the openHAB

app on their smartphones as required. The via browser accessible web-

based interface was not used. The door bell and the door guards applica-

tions could not be stopped by the test persons. The heating status and light

switch applications were started and used at the test persons’ discretion.

7.5.4 Results of openHAB Test

Programmatically the openHAB server software, the openHAB Android app,

as well as the implemented services worked well. No crashes nor inexpli-

cable program behavior was observed.

Again, the major problem was the presence detection. As it was trig-

gered only every five minutes, the automated door bell never rang before

user B entered the house. Often test devices disappeared without obvious

reasons, resulting in shutters going down even though at least one test per-

son was present. After re-detecting test device B a false alarm ringing was

the result from the automated door bell service.

Also the wireless FS20 signals were reported to be unreliable. At times

the bell was not rung even though the presence of device B changed from

absent to present.

As there was no need to keep the openHAB app running, it was often

closed by the test persons. This resulted in a cumbersome light switching,

since first the openHAB app had to be started. It took up to 3 s for the

openHABclient to find its server and to list available applications. After-

wards the light application had to be invoked.

Due to unreliable presence detection it was very disadvantageous that

the test users could neither disable the door bell nor the door guard ap-

plication. It was positively perceived that the presence detection did not

noticeably affect the battery consumption. Note that during pre-tests the

detection interval was set from 10 s to 30 swhich caused a high energy drain.

138

Chapter 8

Evaluation and Conclusion

This evaluation chapter first analyses the fulfillment of requirements from

chapter 4 in section 8.1. Section 8.2 completes this chapter with a conclu-

sion about this dissertation.

8.1 Fulfillment of Requirements

In chapter 4 the innovative service provisioning system BLESS was envi-

sioned and 9 non-functional requirements as well 31 functional require-

ments were identified and described. This section evaluates which of these

requirements were fulfilled by the design from chapter 5 as well as the

implementation from chapter 6. It discusses reasons for unsatisfied items.

8.1.1 Non-Functional Requirements, BLESS

An overview of the fulfillment of the non-functional requirements is pro-

vided by table 8.1. As comparison it includes how many non-functional

requirements the smart home system openHAB fulfills (cf. section 8.1.2).

No Single Point of Failure {N1}

The design of BLESS allows each entity to be hosted by a different provider.

Each entity is a stand-alone Java program and can thus function indepen-

dently. Also the discovery protocol as defined in section 5.9.3 does not

depend on a service directory which would in case of failure render the

139

8.1. FULFILLMENT OF REQUIREMENTS

whole system unusable. However, the design of BLESS introduces multiple

interconnections between entities. While no failure of a single entity can

break the whole system, several components may have a negative impact.

During development and testing it became obvious that two entities are

particularly important for a smooth operation of a BLESS system. It is the

pusher and building together with sub-building entities. If the former fails,

services cannot send push messages to its CPs. While this is a severe

limitation, it does not break the whole system and does thus not violate

requirement {N1}. Even more severe is the failure of the building entities

for users entering a never-visited building. In this case detected services

cannot be linked to the building. Filtering by building becomes impossible.

Also localization will fail as no localization data is available. Again, while

these issues are severe, only parts of BLESS are affected and only for new

users. Requirement {N1} is not violated, either.

The effect a failed service has on other BLESS entities is minimal. Only

other services, that use function {F30} to invoke the failed service and only

if the failed service requires its SP, are affected. This is no single point

of failure, either. Further, the implementation from chapter 6 follows the

design and thus also satisfies requirement {N1}.

Other circumstances in which the BLESS system may fail are conceivable,

nonetheless. Examples are: The network fails and MultiApp cannot commu-

nicate with any BLESS entity; all entities are executed by the same provider

and that computer fails; or the MultiApp instances of all users crash due to

an illicit configuration of the BLESS system. However, all these failures are

not due to a poor design. The last failure is theoretical. No evidence of a

problem of this type was encountered during the field test.

No Omniscient Entities {N2}

The design of BLESS satisfies the requirement of avoiding all types of omni-

scient entities closely. In particular, there is no storage for data of multiple

buildings, no directory listing all service or building entities, and no unit

which is aware of all users or their permissions or locations. This design

was implemented accordingly. For design and implementation requirement

{N2} is thus fulfilled.

140

8 Evaluation and Conclusion

Building Data Provided by Building {N3}

Requirement {N3} demands that building data is to be provided by the build-

ing to the clients. This was realized in design and implementation by intro-

ducing building entities whose main purpose is to provide this data. They

also provide a name for the building as well as the geographical location

and dimensions. The requirement is thus fulfilled twice.

Local Network Only {N4}

The BLESS system was designed in such a way that it can work completely

independent from any Internet servers. The implementation of the proto-

type follows this design. Both parts thus fully satisfy requirement {N4}.

Secure Connections {N5}

The design of BLESS suggests to use certificates for encryption. As details

are missing, however, this requirement {N5} is fulfilled only partly. The

implementation does not provide any support for secured connections.

Services as Powerful as Apps {N6}

Even though a web-based application can never be as powerful as a na-

tive app, the design of BLESS allows to make any additional functionalities

available to BLESS services. For the design, requirement {N6} is consid-

ered fulfilled. The implementation supports all functionalities required by

the sample services from section 3.4 by relying on Cordova and HTML5 as

well as by explicit implementation by MultiApp (cf. section 6.2.5). Even

though in particular Cordova offers many more interfaces, BLESS services

cannot be considered to be as powerful as native apps. In order to make ad-

ditional functionalities available to BLESS services, extending, recompiling

and reinstalling MultiApp is necessary. For the implementation requirement

{N6} is considered to be fulfilled only partly.

141

8.1. FULFILLMENT OF REQUIREMENTS

Ease of Development and Administration {N7}

For implementing BLESS services web technologies like JavaScript, HTML5,

and CSS are used. As helper library the widely used Cordova project is in-

corporated. Remote server invocations rely on JSON encoding and adhere

to the JSON-RPC packet structure. For security in particular authentica-

tion and encryption the design of BLESS envisions the use of certificates

using OpenPGP standards. For displaying building maps, positions therein

and navigation routes, the vector graphics format SVG is used. Next to

these well-known state of the art technologies, also well-known and well-

documented algorithms were used, e.g.: Shortest routes are calculated us-

ing the Dijkstra algorithm; room-based localization was implemented re-

lying on existing machine learning algorithms Random Forest and Hyper-

bolic Location Fingerprinting. Since all these technologies can be considered

standards, no additional effort is required by the developer to learn, e.g., a

new programming language. This is in accordance with the requirement of

facilitating development efforts {N7}.

Further, the service skeleton presented in section 6.6.1 helps the de-

veloper to create BLESS services by handling remote invocations including

server communication and marshaling. It also facilitates server push mes-

sages.

Adding a new service just requires launching a Java program. No config-

uration except for the service itself is necessary. Hence, requirement {N7}

is considered to be fulfilled both for design and implementation.

Platform Independence {N8}

The SP of a service is programmed in Java and is thus executable in Java

runtime environments which are available for every major, current operating

system. The CP is implemented with web technologies by design runnable

within MultiApp with any mobile operating system. However, as MultiApp

was implemented only for the Android platform, requirement {N8} is ful-

filled only partly with respect to implementation.

142

8 Evaluation and Conclusion

Ease of Usage {N9}

The field test as shown that the implementation MultiApp is easily usable.

It is a regular Android app offering a user interface similarly to other apps.

By design, requirement {N9} is thus considered to be fulfilled. However,

considering that the implementation does not include certificate handling

with authorization and encryption, requirement fulfillment is not completed.

8.1.2 Non-Functional Requirements, openHAB

The Home Automation Bus, which is the origin of the name openHAB, col-
lects all available data – including the presence state of users – and makes

its accessible for all items connected to the bus. It must thus be considered

an omniscient entity and single point of failure. Requirements {N1} and {N2}

are thus violated.

Building data is not supported by openHAB. Requirement {N3} is thus

not fulfilled. In the other hand, requirement {N4} is fulfilled as openHAB

does not require any Internet connection.

Requirement {N5} of authenticated and encrypted communication is ful-

filled partly. The openHAB system can be configured that the client is re-

quired to authenticate by sending user name and password before using

the system. However, it is not possible for users to authenticate to in-

dividual services. Similarly, authentication of the openHAB system can be

provided by relying on SSL certificates to secure openHAB’s HTTP-based

communication, however this is not possible for individual services. Finally,

encrypted communication is given by using HTTP over SSL.

Since openHAB is a home automation system rather than a location-linked

service system, its services are rather applications which can only accept

user input and display status information to the user. There is no client part

which can be executed on the smartphone. Consequently services are not

slightly as powerful as apps, leaving requirement {N6} unsatisfied.

Existing technologies were used, e.g. openHAB is modularized using the

Java OSGi standard and relies on HTTP and SSL for communication. How-

ever, for creating services a custom rule engine is used. Admittedly, it is

very easy to learn but it does not allow to create complex services either.

143

8.1. FULFILLMENT OF REQUIREMENTS

Hence, requirement of ease of development {N7} is considered to be ful-

filled on partly.

Platform independence on the server side in achieved by using Java. As

the client side is a simple web application, it is also platform independent.

However, as offered functionalities are severely limited, requirement {N8}

can only be considered to be fulfilled partly. Similarly, the requirement of

ease of usage {N9} is satisfied only partly. Services are easily usable via

offered apps or web browser, however, the more services openHAB offers

the more complicated handling gets since there is no service filtering by

location. Neither is there filtering by user; all users can access all available

services. With these simplifications in mind, requirement ease of usage {N9}

can only be considered to be fulfilled partly.

Non-

functional

require-

Requirement summary De-

sign

Imple-

men-

tation

open-

HAB

ment BLESS

{N1} No single point of failure

{N2} No omniscient entities

{N3} Building data provided by building

{N4} Local network only

{N5} Secure connections

{N6} Services as powerful as apps

{N7} Ease of development and administration

{N8} Platform independence

{N9} Ease of usage

: Fulfilled, : Partly fulfilled, : Not fulfilled

Table 8.1: Comparison of fulfillment of non-functional requirements from

section 4 of BLESS design, its implementation, and of openHAB

144

8 Evaluation and Conclusion

8.1.3 Functional Requirements, BLESS

An overview of the fulfillment of the functional requirements is provided by

table 8.2. As comparison it includes how many functional requirements the

smart home system openHAB fulfills (cf. section 8.1.2).

Detect, Filter, and List Services {F1}, {F2}, {F3}

Usually services were detected automatically during the field test as de-

signed. However, sporadically detection of services failed until MultiApp

was restarted. The exact reason could not be determined. However, it is

likely that either within the used JmDNS library or the usage thereof caused

the problem. It is to be expected that an implementation which follows

the much simpler discovery protocol as presented in section 5.9.3 solves

the issue. Currently the implementation thus fulfills requirement {F1} only

partly.

Similarly, also the filtering of services (requirement {F2}) was imple-

mented only partly. This is due to the lacking implementation of user au-

thentication using certificates. Details are provided in section 6.2.3.

The presentation of available services worked well during the field test,

completely fulfilling requirement {F3}.

Service Description {F4}

The design of BLESS envisions the usage of a custom discovery protocol for

detecting services. This protocol includes a field for the description of ser-

vices. The design thus fulfills requirement {F4}. However, the implementa-

tion of the prototype tested during the field test uses m/DNS as discovery

protocol (cf. section 6.2.1). It only support a friendly service name but no

service description. The implementation thus fulfills requirement {F4} only

partly.

Trust Level Support {F5}

According to the design described in section 5.5.1, certificates are used to

establish trusted relation between users and services. In particular ser-

145

8.1. FULFILLMENT OF REQUIREMENTS

vices signed with a known and trusted certificate are considered trusted.

The design thus fulfills requirement {F5}. However, the implementation

of MultiApp handles signature management in a strongly simplified manner

(cf. section 6.2.2). Since these applied signatures are not forgery-proof,

requirement {F5} is fulfilled only partly.

Service/User Provides Authentication {F6}, {F7}

Section 5.5.1 advocates to use personalized certificates for authentication

and outlines how this could be done. As this sketch does not provide suf-

ficient design details in order to implement it, according requirements {F6}

and {F7} are considered to be only partly fulfilled. The implementation re-

frains from using certificates but uses strings of e-mail addresses for user

and service authentication. As this allows to identify communication part-

ners but does not provide any security measures, also the implementation

of referenced requirements are considered to be fulfilled only partly.

Services Restricted by Permissions {F8}, {F9}

The design of BLESS clearly explains which actions should be restricted by

enforcing permissions and how the user should be able to set these per-

missions (cf. section 5.5.3). This fulfills requirement {F8} for the design

part. However, as this specification was not realized for the prototype,

the implementation does not satisfy this requirement. Consequently the re-

quirement to notify the user about which permissions are currently being

used {F9} is not implemented nor is it included in the design, either. How-

ever, no difficulties are to be expected when adding this detail. It is thus

considered a pure routine piece of work and was hence omitted in this work.

Localize Users {F10}

According to design BLESS integrates a flexible framework for integrat-

ing localization technologies which are executed on the mobile device using

pre-loaded localization data from a BLESS building entity. However, the

implemented algorithms do not reliably achieve the required room-based

accuracy and thus fulfill the requirement only partly.

146

8 Evaluation and Conclusion

Offline Support {F11}

According to design specifications from section 5.4.1, a BLESS service should

be able to start even while the according SP is unavailable. The prototyp-

ical implementation achieves this behavior by loading all required files for

the CP upon installation. Both design and implementation thus fulfill re-

quirement {F11}.

Two-Way Communication {F12} and Service Update {F13}

During the field test communication between MultiApp and BLESS servers

worked smoothly. The design and implementation goals are thus reached.

Same holds for the requirements of allowing to update BLESS services.

Wake Events {F14}-{F19}

In order to (re-)activate stopped and minimized services (cf. section 5.4.2)

wake events are envisioned by the design. All required events were imple-

mented within MultiApp as explained in section 6.2.6. According require-

ments {F14} throughout {F19} are thus fulfilled.

Run in Background {F20}

Making BLESS able to run in background is inevitable in order to activate

multiple services at a time. According to design this feature was imple-

mented by the MultiApp prototype (cf. section 6.2.6). Both design and

implementation thus fulfill requirement {F20}. However, it has to be noted

that the field test revealed a shortcoming of the implementation concern-

ing passing data to a service running in background as detailed in the last

paragraph of section 7.4.

Capabilities for CP {F21}-{F31}

The required capabilities for the CP of a service are made available in three

different ways: 1) via standard Cordova plugins, 2) via Cordova plugins of-

fered by MultiApp, and 3) via JavaScript objects offered by HTML5. Details

147

8.1. FULFILLMENT OF REQUIREMENTS

are provided in section 6.2.5. During the field test all functions worked ac-

cording to design. Both design and implementation thus fulfill requirements

{F21} throughout {F31}.

8.1.4 Functional Requirements, openHAB

Software openHAB supports automated discovery of the openHAB server

which in turn makes the service available. Detecting individual services

themselves is thus not possible and can hence not be listed. Requirement

{F1} is therefore fulfilled only partly, requirement {F3} is not fulfilled. Fil-

tering services by user or user position is not supported, requirement {F2}

not satisfied. Requirement {F4} demands services to include a description,

which is not possible for openHAB. However, above the entry for each ser-

vice an entry can be added which contains a simple description string. Re-

quirement {F4} can thus be considered fulfilled partly. Trust levels for

services are not supported, requirement {F5} not satisfied.

Requirements {F6} and {F7} of mutual authentication are fulfilled partly.

The openHAB system can be configured that the client is required to au-

thenticate by sending user name and password before using the system.

However, it is not possible for users to authenticate to individual services.

Similarly, authentication of the openHAB system can be provided by rely-

ing on SSL certificates to secure openHAB’s HTTP-based communication,

however, this is not possible for individual services.

Since openHAB is a home automation system, it does not support the

concept of services being executed on the client-side. Consequently, the

concept of permissions is not applicable. Permission requirement {F8} is

thus not fulfilled, neither is requirement {F9} concerning notifying the user

about permissions in use.

The presence detection implemented for the field test must not be con-

sidered a localization technique of openHAB. It is rather networking tech-

nology which works well for Android devices. It does not work, e.g., for

Windows Phone. Further, it is performed by the server, not the client; and

it does not achieve the demanded room-based localization. Localization re-

quirement {F10} is hence not fulfilled.

148

8 Evaluation and Conclusion

Also due to the nature of openHAB, for displaying the user interface of

a service, direct server communication is necessary. Consequently, require-

ment {F11} is not satisfied. Further, there can be no push messages from

server to client; only communication initiated by the smartphone is possible.

As a result requirement {F12} is fulfilled only partly. Additionally, there

is no CP which can be updated or offer functionalities, nor are there back-

ground services which can be woken. Requirements {F13} through {F31}

are thus not fulfilled.

8.2 Conclusion

Smartphones are constantly growing more popular and become more pow-

erful with each new release. In Germany smartphone penetration rose in

January 2016 to 74% [eMa16]. The smartphone is for many people a per-

manent companion, e.g. for staying connected with friends and business

partners, for being reminded of upcoming calendar events, and for staying

informed about happenings in the world. It has thus become the personal

digital assistant which the PDAs during the 1990’ aimed to be.

At the same time intelligent buildings with integrated electronic devices

and controls are being constructed. Existing houses are enhanced accord-

ingly. For the future it is to be expected that even more technology will be

integrated into all kind of buildings.

All these integrated smart devices need to be controlled and managed.

Using the smartphone to control and to communicate with the building sys-

tems seems to be the logical choice. In fact as of August 2016, searching

for "smart home" in Google Play Store returns about 250 findings. Most

listed apps are offered by companies to control their proprietary smart

home devices. It thus becomes difficult to find that particular app which

is able to control the devices in the building where the user currently is in.

Indeed finding the right app at the right time at the right place is getting

more difficult because app stores - the only officially supported method of

installing new apps on smartphones - are growing rapidly. An increase of

50% of apps in one year is not uncommon for Google Play Store and Apple’s

App Store, which each offer well more than one million different apps.

149

8.2. CONCLUSION

Functional Requirement summary Design Implem. open-

requirement BLESS HAB

{F1} Detect services

{F2} Filter services

{F3} List services

{F4} Service description

{F5} Trust level support

{F6} Authenticate services

{F7} Authenticate users

{F8} Service permissions

{F9} Notify permission usage

{F10} Localize users

{F11} Offline support

{F12} Two-way communication

{F13} Updating services

{F14} Wake: User launch

{F15} Wake: By service

{F16} Wake: Geofence

{F17} Wake: Push message

{F18} Wake: Alarm

{F19} Wake: SP online

{F20} Run in background

{F21} CP: Flexible GUI

{F22} CP: Audio output

{F23} CP: User Notification

{F24} CP: Use accelerometer

{F25} CP: Use compass

{F26} CP: Access map

{F27} CP: Access position

{F28} CP: Client to server

{F29} CP: Server to client

{F30} CP: Invoke other services

{F31} CP: Private storage

: Fulfilled, : Partly fulfilled, : Not fulfilled

Table 8.2: Comparison of fulfillment of functional requirements from

section 4 of BLESS design, its implementation, and of openHAB

150

8 Evaluation and Conclusion

Despite the enormous size of app stores for some areas of applications

there is hardly diversity. For example, the Facebook and WhatsApp Mes-

senger apps are spread very wide. Resulting in millions and billions of users

trapped in a single provider’s services and technologies. This trend can be

compared with the automobile and fashion industries, which managed with

the beginning of the 20

th

century to introduce mass-production with stan-

dard models and sizes as well as predetermined colors. However, people

demanded custom configuration; with the result that nowadays, even indi-

vidualized customization appears to be within reach [SP13, GMR14].

Also for software products a new approach is required. Many users no

longer want to use pre-defined solutions and store their data on servers of

the big players as can be seen from the increasing popularity of personalized

storing solutions like Synology devices or the ownCloud platform.

In particular when considering that smart home systems may control se-

curity relevant devices like shutters and alarms, it is of paramount impor-

tance to be able to trust these systems. However, as long as relying on

globally accessible Internet servers for obtaining the control app or even

for accessing the smart devices at home, some vulnerability may be found

at any time by the sheer number of potential attackers worldwide. It is

thus justifiably to avoid Internet connectivity for accessing private, security

relevant data and devices.

8.2.1 Contributions

This dissertation presents the concept of location-linked services (LLSs).

These are distributed applications which are intended to be used in local

networks only. Considering that current buildings – even large structure

such as university campuses – are equipped with pervasive WiFi coverage,

there is often no need for Internet connectivity. A definition for LLSs is

presented and reasons for using them are motivated. Next to being used

for controlling smart homes also other areas of applications presented.

The design of system BLESS for providing LLSs is presented. One of its
specialties compared to smart home systems is the capability of executing

program logic on the client side. Consequently the client part of a service

151

8.2. CONCLUSION

is programmed rather than configured. This allows to create very power-

ful services which are able to perform complex operations and to display

customized user interfaces. At the same time it is not necessary to install

new smartphone apps for each new service. Instead services are detected

autonomously by the BLESS client called MultiApp.

Different from app stores, before installing a LLS it must authenticate

itself. Also user authentication is envisioned. The design of both processes

relies on public/private certificates which are also used for establishing en-

crypted connections. For users this implies that no passwords and user

names need to be remembered. Instead when signing up for authorized ser-

vices in a building, users need only to prove once that they are the owner

of their certificate. For creating new LLSs tools and libraries are presented

which facilitate development and administration. By providing platform in-

dependence BLESS can be deployed on any current computer architecture.

Ease of usage ensures that the system can be used by non-experts.

Another special property of BLESS is the avoidance of single points of

failures which could disrupt the functioning of the whole system. At the

same time no omniscient entity is introduced which could be aware of all

users or control their actions. Instead services are provided per building

only. Also building data is only offered for the current building. This data

can be used by MultiApp for localization, navigation, and for showing posi-

tions and routes on multi-level floor plans. All data and services thus stay

in-house; there is no global Internet server collecting technical and internal

details about a large number of buildings.

The implementation created as part of this dissertation closely follows

the design. It allows buildings to offer services in a local and trusted way.

It avoids massive, centralized collecting of user data, instead it allows the

user to track what and when personal data is shared with the server part

of the service.

8.2.2 Lessons Learned

In a field test the concept and implementation were examined. It was de-

termined that the created system is well suited for providing private and

152

8 Evaluation and Conclusion

secure services that are bound to a specific location. Even though the field

test was conducted in a private home, it is to be expected that BLESS could

also be applied to larger buildings. However, three subjects need to be

reconsidered.

Localization System

The applied localization system for positions at room-level caused serious

issues. It often returned wrong rooms, resulting in geofence events to be

reported falsely or late. It also caused a high battery drain. The presumed

reason for these problems lies in the WiFi technology. WiFi was created as

communication medium with high throughput. By no means it was intended

to be used as accurate, energy-efficient localization technology. For en-

hancing the value of BLESS, future work should focus on integrating a bet-

ter infrastructure-free localization technology which works reliably and al-

lows power-saving, continuous indoor, room-grained tracking of users on

client-side. Alternatively, even though associated with costs and poten-

tially regular battery changing using Bluetooth beacons may be a valuable

alternative. Costs could be kept low by not equipping the whole building

but rather only for localization relevant areas.

Omniscient Entities

BLESS was compared to smart home system openHAB. Differences were

outlined and vantages of BLESS opposed to smart home systems high-

lighted. During developing the test services for both BLESS and openHAB

it became evident, however, that collecting and sharing data on server side

– as done by openHAB – is helpful for smart home applications. In par-

ticular being aware of the presence status of users would facilitate the

door guard services considerably. What is more, without the SP know-

ing if users are present, implementing the shutter down functionality from

the openHAB version of the guard service is not possible with BLESS. The

avoidance of omniscient entities for private homes thus seems unnecessary.

Owners must trust their own system. Hence, systems must be developed,
set up, and installed by trustworthy persons – either owners themselves or

153

8.2. CONCLUSION

a trusted service provider. Finally, users are mainly family members, which

usually trust each other. Keeping e.g. location data hidden between users

is not of high priority.

On the other hand, even if the design of BLESS avoids all central points of

intelligence, consider shopping mall: Each shop offers its own service. Each

shop thus knows when a user is present. There is no way for users to find

out whether the SP of some shop services are linked. It is thus still possible

to create a shopping and movement profile for each customer. The situation

gets even worse by using (globally unique) user certificates. These allow to

easily compare and match users’ identities even across different shopping

malls. As consequence it is recommended for future versions of MultiApp

to create a new certificate for each building.

Background Actions

The field test also revealed a shortcoming in the implementation of Multi-

App: Services are executed as JavaScript applications inside aWebView ele-

ment. However, these elements are not intended to be used in background.

As a result it is not possible to launch BLESS services completely invisible.

Instead even when starting a service for a short background action, e.g.

when invoking the door guard service to update the state of the door, the

user will notice that the service opens and closes immediately afterwards.

To eliminate this annoyance it is necessary to analyze the inner mechanisms

of the WebView element. If not possible to execute JavaScript code with-

out making the WebView visible, it may be necessary to include an addi-

tional JavaScript interpreter in MultiApp which allows executing JavaScript

without GUI. This issue is considered to require the most effort to fix and

should have a high priority when continuing working on MultiApp. With-

out fixing and with running many BLESS services, regular interrupts of the

user’s workflow are inevitable.

8.2.3 Outlook

Next to fixing mentioned open issues, the future of LLSs in general and of

BLESS in specific strongly depends on the users. If people continue not

154

8 Evaluation and Conclusion

minding with whom they share their private data and instead trust every

service provider blindly, LLSs will have no prospects. The drawback of

LLSs is that they cannot be used out of the box. The price for staying in

control and for keeping personal data in-house, is setting up the wanted

LLSs first. This is laborious and costly. On the other hand, products of

the big, global players, like Google and Apple, can be used without lengthy

setup and often even without direct costs.

However, if the continuous reports about data-theft and espionage of

private data from centralized Internet servers do affect users’ actions, the

demand for more decentralized services and products will grow. As a re-

sult shopping malls, airports, and cruisers could offer dedicated wireless

networks for offering LLSs for their customers via BLESS. Skilled users

could develop and set up their own LLSs and invite friends, e.g. for sharing

their training progress in a friendly sports competition. It is even conceiv-

able that such services are made public, e.g. via BLESS markets. Similarly

to current app stores monetization and malware filtering features are pos-

sible. Even BLESS server containers are conceivable which help end users

to easily download and set up services from such markets.

155

8.2. CONCLUSION

156

Bibliography

[Ais15] AISLELABS: The Hitchhikers Guide to iBeacon Hardware:
A Comprehensive Report by Aislelabs (2015). http://

www.aislelabs.com/reports/beacon-guide/. Version: April

2015. – Accessed: 2016-08-08

[Apa13] APACHE: Apache River. http://river.apache.org/.

Version: 2013. – Accessed: 2015-06-10

[App15a] APPLE: App Store Review Guidelines. https://developer.

apple.com/app-store/review/guidelines/. Version: 2015.

– Accessed: 2015-10-27

[App15b] APPLE: App Store Review Guidelines – Privacy.
https://developer.apple.com/app-store/review/

guidelines/#privacy. Version: 2015. – Accessed: 2015-

11-09

[App15c] APPLE: Local and Push Notification Programming Guide:
Apple Push Notification Service. http://developer.apple.

com/library/mac/documentation/NetworkingInternet/

Conceptual/RemoteNotificationsPG/ApplePushService/

ApplePushService.html. Version:March 2015. – Accessed:

2015-06-01

[Apv14] APVRILLE, Axelle: iOS Malware Does Exist. https://blog.

fortinet.com/post/ios-malware-does-exist. Version: June

2014. – Accessed: 2016-08-29

[Bar12] BARETH, Ulrich: Privacy-aware and energy-efficient geofencing

through reverse cellular positioning. In: Wireless Communica-

157

http://www.aislelabs.com/reports/beacon-guide/
http://www.aislelabs.com/reports/beacon-guide/
http://river.apache.org/
https://developer.apple.com/app-store/review/guidelines/
https://developer.apple.com/app-store/review/guidelines/
https://developer.apple.com/app-store/review/guidelines/#privacy
https://developer.apple.com/app-store/review/guidelines/#privacy
http://developer.apple.com/library/mac/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/ApplePushService/ApplePushService.html
http://developer.apple.com/library/mac/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/ApplePushService/ApplePushService.html
http://developer.apple.com/library/mac/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/ApplePushService/ApplePushService.html
http://developer.apple.com/library/mac/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/ApplePushService/ApplePushService.html
https://blog.fortinet.com/post/ios-malware-does-exist
https://blog.fortinet.com/post/ios-malware-does-exist

BIBLIOGRAPHY

tions and Mobile Computing Conference (IWCMC), 2012 8th
International IEEE, 2012, S. 153–158

[BF

+
14] BOURQUE, Pierre ; FAIRLEY, Richard E. u. a.: Guide to the Soft-

ware Engineering Body of Knowledge (SWEBOK (R)): Version
3.0. IEEE Computer Society Press, 2014 http://www4.ncsu.

edu/~tjmenzie/cs510/pdf/SWEBOKv3.pdf

[Bla14] BLACKBERRY LIMITED: Push Service - BlackBerry De-
veloper. https://developer.blackberry.com/services/

push/?CPID=PUSHAPI00. Version: 2014. – Accessed: 2015-

06-01

[BN84] BIRRELL, Andrew D. ; NELSON, Bruce J.: Implementing remote

procedure calls. In: ACM Transactions on Computer Systems
(TOCS) 2 (1984), Nr. 1, S. 39–59

[Bre01] BREIMAN, Leo: Random forests. In: Machine learning 45
(2001), Nr. 1, S. 5–32

[BSNP

+
95] BAKHTIARI, Shahram ; SAFAVI-NAINI, Reihaneh ; PIEPRZYK,

Josef u. a.: Cryptographic hash functions: A survey. In: Cen-
tre for Computer Security Research, Department of Computer
Science, University of Wollongong, Australie (1995)

[CBR03] CHESWICK, William R. ; BELLOVIN, Steven M. ; RUBIN, Aviel D.:

Firewalls and Internet Security: Repelling the Wily Hacker. 2.
Boston, MA, USA : Addison-Wesley Longman Publishing Co.,

Inc., 2003. – ISBN 020163466X

[CDK05] COULOURIS, George F. ; DOLLIMORE, Jean ; KINDBERG, Tim:

Distributed systems: concepts and design. Fifth edition. Pear-
son Education, 2005

[Chi11] CHITU, Alex: Android Honeycomb’s Browser Supports
SVG. http://googlesystem.blogspot.de/2011/02/android-
honeycombs-browser-supports-svg.html. Version: February

2011. – Accessed: 2016-08-26

158

http://www4.ncsu.edu/~tjmenzie/cs510/pdf/SWEBOKv3.pdf
http://www4.ncsu.edu/~tjmenzie/cs510/pdf/SWEBOKv3.pdf
https://developer.blackberry.com/services/push/?CPID=PUSHAPI00
https://developer.blackberry.com/services/push/?CPID=PUSHAPI00
http://googlesystem.blogspot.de/2011/02/android-honeycombs-browser-supports-svg.html
http://googlesystem.blogspot.de/2011/02/android-honeycombs-browser-supports-svg.html

8 Evaluation and Conclusion

[CK13a] CHESHIRE, Stuart ; KROCHMAL, Marc: DNS-Based Service Dis-
covery. RFC 6763 (Proposed Standard). http://www.ietf.
org/rfc/rfc6763.txt. Version: Februar 2013 (Request for

Comments)

[CK13b] CHESHIRE, Stuart ; KROCHMAL, Marc: Multicast DNS.
RFC 6762 (Proposed Standard). http://www.ietf.org/rfc/

rfc6762.txt. Version: Februar 2013 (Request for Comments)

[CL11] CHARLAND, Andre ; LEROUX, Brian: Mobile Appli-

cation Development: Web vs. Native. In: Queue
9 (2011), April, 20:20–20:28. http://dx.doi.org/

http://doi.acm.org/10.1145/1966989.1968203. – DOI

http://doi.acm.org/10.1145/1966989.1968203. – ISSN

1542–7730

[DB07] DOWLING, Steve ; BARNEY, Amy: iPhone Premieres This
Friday Night at Apple Retail Stores. http://www.apple.com/
pr/library/2007/06/28iPhone-Premieres-This-Friday-

Night-at-Apple-Retail-Stores.html. Version: June 2007.

– Accessed: 2016-08-29

[Dee89] DEERING, Steve: Host extensions for IP multicasting.
RFC 1112 (Internet Standard). http://www.ietf.org/rfc/

rfc1112.txt. Version: August 1989 (Request for Comments)

[DH76] DIFFIE, Whitfield ; HELLMAN, Martin E.: New directions in

cryptography. In: Information Theory, IEEE Transactions on
22 (1976), Nr. 6, S. 644–654

[eMa14] EMARKETER: Worldwide Smartphone Usage to Grow 25%
in 2014. http://www.emarketer.com/Article/Worldwide-

Smartphone-Usage-Grow-25-2014/1010920. Version: June

2014. – Accessed: 2015-11-09

[eMa16] EMARKETER: Germany’s Smartphone Market Surges Ahead.
http://www.emarketer.com/Article/Germanys-Smartphone-

159

http://www.ietf.org/rfc/rfc6763.txt
http://www.ietf.org/rfc/rfc6763.txt
http://www.ietf.org/rfc/rfc6762.txt
http://www.ietf.org/rfc/rfc6762.txt
http://dx.doi.org/http://doi.acm.org/10.1145/1966989.1968203
http://dx.doi.org/http://doi.acm.org/10.1145/1966989.1968203
http://www.apple.com/pr/library/2007/06/28iPhone-Premieres-This-Friday-Night-at-Apple-Retail-Stores.html
http://www.apple.com/pr/library/2007/06/28iPhone-Premieres-This-Friday-Night-at-Apple-Retail-Stores.html
http://www.apple.com/pr/library/2007/06/28iPhone-Premieres-This-Friday-Night-at-Apple-Retail-Stores.html
http://www.ietf.org/rfc/rfc1112.txt
http://www.ietf.org/rfc/rfc1112.txt
http://www.emarketer.com/Article/Worldwide-Smartphone-Usage-Grow-25-2014/1010920
http://www.emarketer.com/Article/Worldwide-Smartphone-Usage-Grow-25-2014/1010920
http://www.emarketer.com/Article/Germanys-Smartphone-Market-Surges-Ahead/1013634
http://www.emarketer.com/Article/Germanys-Smartphone-Market-Surges-Ahead/1013634

BIBLIOGRAPHY

Market-Surges-Ahead/1013634. Version: February 2016. –

Accessed: 2016-08-29

[F-S14] F-SECURE: THREAT REPORT H2 2013. https:

//www.f-secure.com/documents/996508/1030743/Threat_

Report_H2_2013.pdf. Version: 2014

[FCH

+
11] FELT, Adrienne P. ; CHIN, Erika ; HANNA, Steve ; SONG, Dawn

; WAGNER, David: Android Permissions Demystified. In: Pro-
ceedings of the 18th ACM Conference on Computer and Com-
munications Security. New York, NY, USA : ACM, 2011 (CCS
’11). – ISBN 978–1–4503–0948–6, 627–638

[FGW11] FELT, Adrienne P. ; GREENWOOD, Kate ; WAGNER, David: The

effectiveness of application permissions. In: Proceedings of
the 2nd USENIX conference on Web application development,
2011, 75–86

[FHE

+
12] FELT, Adrienne P. ; HA, Elizabeth ; EGELMAN, Serge ; HANEY,

Ariel ; CHIN, Erika ; WAGNER, David: Android permissions:

User attention, comprehension, and behavior. In: Proceedings
of the Eighth Symposium on Usable Privacy and Security ACM,
2012, S. 3

[FHW85] FISCHETTI, Mark ; HORGAN, Jonathan ; WALLICH, Paul: The su-

perstructure: Designing for high-tech: The high-tech house is

hardly passive; its heating, security, communications, and light-

ing systems function independently, yet talk with one another

at the command of computers. In: Spectrum, IEEE 22 (1985),
Nr. 5, S. 36–40

[Ger11] GERMAN, Kent: A brief history of Android phones. http://

www.cnet.com/news/a-brief-history-of-android-phones/.

Version: August 2011. – Accessed: 2016-08-29

[GMR14] GANDHI, Anshuk ; MAGAR, Carmen ; ROBERTS, Roger:

How technology can drive the next wave of mass cus-
tomization. http://www.mckinsey.com/insights/business_

160

http://www.emarketer.com/Article/Germanys-Smartphone-Market-Surges-Ahead/1013634
http://www.emarketer.com/Article/Germanys-Smartphone-Market-Surges-Ahead/1013634
https://www.f-secure.com/documents/996508/1030743/Threat_Report_H2_2013.pdf
https://www.f-secure.com/documents/996508/1030743/Threat_Report_H2_2013.pdf
https://www.f-secure.com/documents/996508/1030743/Threat_Report_H2_2013.pdf
http://www.cnet.com/news/a-brief-history-of-android-phones/
http://www.cnet.com/news/a-brief-history-of-android-phones/
http://www.mckinsey.com/insights/business_technology/how_technology_can_drive_the_next_wave_of_mass_customization
http://www.mckinsey.com/insights/business_technology/how_technology_can_drive_the_next_wave_of_mass_customization

8 Evaluation and Conclusion

technology/how_technology_can_drive_the_next_wave_of_

mass_customization. Version: February 2014. – Accessed:

2015-10-27

[Goo15a] GOOGLE: Google Cloud Messaging for Android - Android
Developers. http://developer.android.com/google/gcm/

index.html. Version:May 2015. – Accessed: 2015-06-01

[Goo15b] GOOGLE: Google Play Developer Program Policies.
https://play.google.com/intl/ALL_us/about/developer-

content-policy.html. Version: 2015. – Accessed: 2015-

10-27

[Goo15c] GOOGLE: Google Play Developer Program Poli-
cies – Personal and Confidential Information. https:

//play.google.com/about/developer-content-policy.

html#personal-confidential. Version: 2015. – Accessed:

2015-11-09

[Goo15d] GOOGLE: Google Play Store – Facebook. https://play.

google.com/store/apps/details?id=com.facebook.katana.

Version:November 2015. – Accessed: 2015-11-09

[Goo15e] GOOGLE: Google Play Store – Google Play ser-
vices. https://play.google.com/store/apps/details?id=

com.google.android.gms. Version:November 2015. – Ac-

cessed: 2015-11-09

[Goo15f] GOOGLE: Google Play Store – WhatsApp. https:

//play.google.com/store/apps/details?id=com.whatsapp.

Version:November 2015. – Accessed: 2015-11-09

[Goo16] GOOGLE: The Google Maps Geolocation API.
https://developers.google.com/maps/documentation/

geolocation/intro. Version: August 2016

[GPVD99] GUTTMAN, E. ; PERKINS, C. ; VEIZADES, J. ; DAY, M.: Ser-
vice Location Protocol, Version 2. http://www.ietf.org/rfc/

161

http://www.mckinsey.com/insights/business_technology/how_technology_can_drive_the_next_wave_of_mass_customization
http://www.mckinsey.com/insights/business_technology/how_technology_can_drive_the_next_wave_of_mass_customization
http://www.mckinsey.com/insights/business_technology/how_technology_can_drive_the_next_wave_of_mass_customization
http://developer.android.com/google/gcm/index.html
http://developer.android.com/google/gcm/index.html
https://play.google.com/intl/ALL_us/about/developer-content-policy.html
https://play.google.com/intl/ALL_us/about/developer-content-policy.html
https://play.google.com/about/developer-content-policy.html#personal-confidential
https://play.google.com/about/developer-content-policy.html#personal-confidential
https://play.google.com/about/developer-content-policy.html#personal-confidential
https://play.google.com/store/apps/details?id=com.facebook.katana
https://play.google.com/store/apps/details?id=com.facebook.katana
https://play.google.com/store/apps/details?id=com.google.android.gms
https://play.google.com/store/apps/details?id=com.google.android.gms
https://play.google.com/store/apps/details?id=com.whatsapp
https://play.google.com/store/apps/details?id=com.whatsapp
https://developers.google.com/maps/documentation/geolocation/intro
https://developers.google.com/maps/documentation/geolocation/intro
http://www.ietf.org/rfc/rfc2608.txt
http://www.ietf.org/rfc/rfc2608.txt

BIBLIOGRAPHY

rfc2608.txt. Version: Juni 1999 (Request for Comments). –

Updated by RFC 3224

[Heg12] HEGARTY, Christopher J.: GNSS signals - An overview. In:

Frequency Control Symposium (FCS), 2012 IEEE International
IEEE, 2012, S. 1–7

[Hir97] HIRSCH, Frederick J.: Introducing SSL and certificates using

SSLeay. In: World Wide Web Journal 2 (1997), Nr. 3, S.
141–173

[Hof13] HOFFMAN, CHRIS: iOS Has App Permissions, Too: And They’re
Arguably Better Than Android’s. http://www.howtogeek.

com/?p=177711. Version:December 2013. – Accessed: 2016-

08-29

[HT09] HANSEN, René ; THOMSEN, Bent: Efficient and accurate wlan

positioning with weighted graphs. In: Mobile Lightweight
Wireless Systems. Springer, 2009, S. 372–386

[HTTA13] HANSEN, René ; THOMSEN, Bent ; THOMSEN, Lone L. ;

ADAMSEN, Filip S.: SmartCampusAAU – An Open Platform En-

abling Indoor Positioning and Navigation. In: 2013 IEEE 14th
International Conference on Mobile Data Management Bd. 2
IEEE, 2013, S. 33–38

[HWJT10] HANSEN, Rene ; WIND, Rico ; JENSEN, Christian S. ; THOM-

SEN, Bent: Algorithmic strategies for adapting to environmen-

tal changes in 802.11 location fingerprinting. In: Indoor Posi-
tioning and Indoor Navigation (IPIN), 2010 International Con-
ference on IEEE, 2010, S. 1–10

[Inf14] INFOWATCH: Global Data Leakage Report 2014 – Number of
registered data leaks, 2006-2014. http://infowatch.com/

report2014. Version: 2014. – Accessed: 2016-08-29

[Ins13] INSTEON ; INSTEON (Hrsg.): Insteon Whitepaper: The De-
tails. http://cache.insteon.com/pdf/insteondetails.pdf.

Version:October 2013. – Accessed: 2015-08-25

162

http://www.ietf.org/rfc/rfc2608.txt
http://www.ietf.org/rfc/rfc2608.txt
http://www.howtogeek.com/?p=177711
http://www.howtogeek.com/?p=177711
http://infowatch.com/report2014
http://infowatch.com/report2014
http://cache.insteon.com/pdf/insteondetails.pdf

8 Evaluation and Conclusion

[JMV

+
12] JEON, Jinseong ; MICINSKI, Kristopher K. ; VAUGHAN, Jef-

frey A. ; FOGEL, Ari ; REDDY, Nikhilesh ; FOSTER, Jeffrey S.

; MILLSTEIN, Todd: Dr. Android and Mr. Hide: fine-grained

permissions in android applications. In: Proceedings of the
second ACMworkshop on Security and privacy in smartphones
and mobile devices ACM, 2012, 3–14

[KBY

+
12] KIM, Ji E. ; BOULOS, George ; YACKOVICH, John ; BARTH, Tas-

silo ; BECKEL, Christian ; MOSSE, Daniel: Seamless integration

of heterogeneous devices and access control in smart homes.

In: Intelligent Environments (IE), 2012 8th International Con-
ference on IEEE, 2012, S. 206–213

[Kjæ11] KJÆRGAARD, Mikkel B.: Indoor location fingerprinting with

heterogeneous clients. In: Pervasive and Mobile Computing 7
(2011), Nr. 1, S. 31–43

[KM08] KJAERGAARD, Mikkel B. ; MUNK, Carsten V.: Hyperbolic lo-

cation fingerprinting: A calibration-free solution for handling

differences in signal strength (concise contribution). In: Per-
vasive Computing and Communications, 2008. PerCom 2008.
Sixth Annual IEEE International Conference on IEEE, 2008, S.
110–116

[Koh78] KOHNFELDER, Loren M.: Towards a practical public-key cryp-
tosystem, Massachusetts Institute of Technology, Diss., 1978

[KS07] KALOFONOS, Dimitris N. ; SHAKHSHIR, Saad: IntuiSec: a

framework for intuitive user interaction with smart home se-

curity using mobile devices. In: 2007 IEEE 18th International
Symposium on Personal, Indoor and Mobile Radio Communica-
tions IEEE, 2007, S. 1–5

[Küp05] KÜPPER, Axel: Location-based services: fundamentals and op-
eration. John Wiley & Sons, 2005

[KVV05] KRUEGEL, Christopher ; VALEUR, Fredrik ; VIGNA, Giovanni:

Computer security and intrusion detection. In: Intrusion De-

163

BIBLIOGRAPHY

tection and Correlation: Challenges and Solutions (2005), S.
9–28

[Lam71] LAMPSON, Butler W.: Protection. In: Proceedings of the 5th
Princeton Symposium on Information Sciences and Systems
(1971), S. 437–443. – reprinted in ACM SIGOPS Operating

Systems Review, 8,1, Janaury, 1974, pp. 18–24

[LBR

+
02] LADD, Andrew M. ; BEKRIS, Kostas E. ; RUDYS, Algis ;

MARCEAU, Guillaume ; KAVRAKI, Lydia E. ; WALLACH, Dan S.:

Robotics-based Location Sensing Using Wireless Ethernet. In:

Proceedings of the 8th Annual International Conference on
Mobile Computing and Networking. New York, NY, USA :
ACM, 2002 (MobiCom ’02). – ISBN 1–58113–486–X, 227–

238

[LZYP13] LAOUDIAS, Christos ; ZEINALIPOUR-YAZTI, Demetrios ;

PANAYIOTOU, Christos G.: Crowdsourced indoor localization

for diverse devices through radiomap fusion. In: Indoor Posi-
tioning and Indoor Navigation (IPIN), 2013 International Con-
ference on IEEE, 2013, S. 1–7

[Mau12] MAUTZ, Rainer: Indoor positioning technologies, Institute of
Geodesy and Photogrammetry, Department of Civil, Environ-

mental and Geomatic Engineering, ETH Zurich, Diss., February

2012. http://e-collection.library.ethz.ch/eserv/eth:

5659/eth-5659-01.pdf. – Habilitationsschrift

[ME06] MISRA, Pratap ; ENGE, Per: Global Positioning System: Sig-
nals, Measurements and Performance Second Edition. Lincoln,
MA: Ganga-Jamuna Press, 2006

[MG02] MUNSON, Jonathan P. ; GUPTA, Vineet K.: Location-based no-

tification as a general-purpose service. In: Proceedings of the
2nd international workshop on Mobile commerce ACM, 2002,
S. 40–44

164

http://e-collection.library.ethz.ch/eserv/eth:5659/eth-5659-01.pdf
http://e-collection.library.ethz.ch/eserv/eth:5659/eth-5659-01.pdf

8 Evaluation and Conclusion

[Mic15] MICROSOFT CORPORATION: Push notifications for Windows
Phone 8. https://msdn.microsoft.com/library/windows/

apps/ff402558(v=vs.105).aspx. Version: 2015. – Accessed:

2015-06-01

[Mil15] MILLER, Jack: TCP connection between Android client
and Windows server breaks after random time. http://

stackoverflow.com/questions/28212680/. Version: 2015. –

Accessed: 2015-06-23

[MVH88] MAGAT, Wesley A. ; VISCUSI, W K. ; HUBER, Joel: Consumer

processing of hazard warning information. In: Journal of Risk
and Uncertainty 1 (1988), Nr. 2, S. 201–232

[Nel81] NELSON, Bruce J.: Remote Procedure Calls. Xerox, Palo
Alto Research Center, Carnegie-Mellon University, USA, Diss.,

1981

[PSH

+
09] PUIKKONEN, Arto ; SARJANOJA, Ari-Heikki ; HAVERI, Merja ;

HUHTALA, Jussi ; HÄKKILÄ, Jonna: Towards designing better

maps for indoor navigation: experiences from a case study.

In: Proceedings of the 8th International Conference on Mobile
and Ubiquitous Multimedia. New York, NY, USA : ACM, 2009
(MUM ’09). – ISBN 978–1–60558–846–9, 16:1–16:4

[PTM14] PUDER, Arno ; TILLMANN, Nikolai ; MOSKAL, Michał: Exposing

native device APIs to web apps. In: Proceedings of the 1st
International Conference on Mobile Software Engineering and
Systems ACM, 2014, S. 18–26

[PwC14] PWC NETWORK: Managing cyber risks in an intercon-
nected world. http://www.pwc.com/gx/en/consulting-

services/information-security-survey/assets/the-

global-state-of-information-security-survey-2015.pdf.

Version: September 2014. – Accessed: 2016-08-29

[Ric14] RICHTER, Felix: The Price Gap Between iOS and Android Is
Widening. http://www.statista.com/chart/1903/average-

165

https://msdn.microsoft.com/library/windows/apps/ff402558(v=vs.105).aspx
https://msdn.microsoft.com/library/windows/apps/ff402558(v=vs.105).aspx
http://stackoverflow.com/questions/28212680/
http://stackoverflow.com/questions/28212680/
http://www.pwc.com/gx/en/consulting-services/information-security-survey/assets/the-global-state-of-information-security-survey-2015.pdf
http://www.pwc.com/gx/en/consulting-services/information-security-survey/assets/the-global-state-of-information-security-survey-2015.pdf
http://www.pwc.com/gx/en/consulting-services/information-security-survey/assets/the-global-state-of-information-security-survey-2015.pdf
http://www.statista.com/chart/1903/average-selling-price-of-android-and-ios-smartphones/
http://www.statista.com/chart/1903/average-selling-price-of-android-and-ios-smartphones/

BIBLIOGRAPHY

selling-price-of-android-and-ios-smartphones/.

Version: June 2014. – Accessed: 2015-11-09

[RM14] RIVERA, Janessa ; MEULEN, Rob van d.: Gac Annual Smart-
phone Sales Surpassed Sales of Feature Phones for the
First Time in 2013. http://www.gartner.com/newsroom/id/

2665715. Version: February 2014. – Accessed: 2016-08-29

[Rye99] RYE, Dave ; HOMETOYS.COM (Hrsg.): Dave Rye @
X10. http://www.hometoys.com/content.php?url=

/htinews/oct99/articles/rye/rye.htm. Version:October

1999. – Accessed: 2015-08-25

[SC05] STEINBERG, Daniel H. ; CHESHIRE, Stuart: Zero Configura-
tion Networking: The Definitive Guide: The Definitive Guide. "
O’Reilly Media, Inc.", 2005

[Sch07] SCHMIDT, Stefan: Service Location - Survey of mechanism to
search and configure services. http://datenfreihafen.org/
~stefan/papers/university/service-location-paper.pdf.

Version: 2007. – Accessed: 2015-06-10

[Sen15] SENIONLAB ; SENIONLAB (Hrsg.): Indoor positioning
101. https://senion.com/wp-content/uploads/2015/07/

Technical-White-paper.pdf. Version: July 2015. – Ac-

cessed: 2016-08-05

[Sho05] SHORTY, Peter: System and a method for building routing ta-
bles and for routing signals in an automation system. April 12
2005. – US Patent 6,879,806

[SLG

+
12] SARMA, Bhaskar P. ; LI, Ninghui ; GATES, Chris ; POTHARAJU,

Rahul ; NITA-ROTARU, Cristina ; MOLLOY, Ian: Android permis-

sions: a perspective combining risks and benefits. In: Proceed-
ings of the 17th ACM symposium on Access Control Models
and Technologies ACM, 2012, 13–22

[SM94] STEWART, David W. ; MARTIN, Ingrid M.: Intended and un-

intended consequences of warning messages: A review and

166

http://www.statista.com/chart/1903/average-selling-price-of-android-and-ios-smartphones/
http://www.statista.com/chart/1903/average-selling-price-of-android-and-ios-smartphones/
http://www.gartner.com/newsroom/id/2665715
http://www.gartner.com/newsroom/id/2665715
http://www.hometoys.com/content.php?url=/htinews/oct99/articles/rye/rye.htm
http://www.hometoys.com/content.php?url=/htinews/oct99/articles/rye/rye.htm
http://datenfreihafen.org/~stefan/papers/university/service-location-paper.pdf
http://datenfreihafen.org/~stefan/papers/university/service-location-paper.pdf
https://senion.com/wp-content/uploads/2015/07/Technical-White-paper.pdf
https://senion.com/wp-content/uploads/2015/07/Technical-White-paper.pdf

8 Evaluation and Conclusion

synthesis of empirical research. In: Journal of Public Policy &
Marketing (1994), S. 1–19

[SP13] SPAULDING, Elizabeth ; PERRY, Christopher: Having It
Their Way: The Big Opportunity In Personalized Prod-
ucts. http://www.forbes.com/sites/baininsights/2013/

11/05/having-it-their-way-the-big-opportunity-in-

personalized-products/. Version:November 2013. –

Accessed: 2014-04-27

[Sta15] STATISTA: Number of apps available in leading app stores as of
July 2015. http://www.statista.com/statistics/276623/

number-of-apps-available-in-leading-app-stores/.

Version: July 2015. – Accessed: 2015-10-26

[SV04] SCHILLER, Jochen ; VOISARD, Agnès: Location-based
services. Elsevier, 2004 https://books.google.

de/books?hl=en&lr=&id=wj19b5wVfXAC&oi=fnd&pg=

PP2&dq=location-based+services&ots=lcPp8zwiOp&sig=

-HFa1bmFQw4yGAG9BZLqNOJRiO4#v=onepage&q=benefit&f=

false

[TSFC10] TORRES-SOLIS, Jorge ; FALK, Tiago H. ; CHAU, Tom: A
review of indoor localization technologies: towards naviga-
tional assistance for topographical disorientation. INTECH
Open Access Publisher, 2010 http://cdn.intechweb.org/

pdfs/9895.pdf

[UPn15] UPNP FORUM: UPnP Forum. http://upnp.org/.

Version: 2015. – Accessed: 2015-06-10

[VF02] VALTCHEV, Dimitar ; FRANKOV, Ivailo: Service gateway archi-

tecture for a smart home. In: Communications Magazine, IEEE
40 (2002), Nr. 4, S. 126–132

[VTRB97] VIXIE, Paul ; THOMSON, Susan ; REKHTER, Yakov ; BOUND, Jim:

Dynamic Updates in the Domain Name System (DNS UPDATE).
Internet RFC 2136, April 1997

167

http://www.forbes.com/sites/baininsights/2013/11/05/having-it-their-way-the-big-opportunity-in-personalized-products/
http://www.forbes.com/sites/baininsights/2013/11/05/having-it-their-way-the-big-opportunity-in-personalized-products/
http://www.forbes.com/sites/baininsights/2013/11/05/having-it-their-way-the-big-opportunity-in-personalized-products/
http://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/
http://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/
https://books.google.de/books?hl=en&lr=&id=wj19b5wVfXAC&oi=fnd&pg=PP2&dq=location-based+services&ots=lcPp8zwiOp&sig=-HFa1bmFQw4yGAG9BZLqNOJRiO4#v=onepage&q=benefit&f=false
https://books.google.de/books?hl=en&lr=&id=wj19b5wVfXAC&oi=fnd&pg=PP2&dq=location-based+services&ots=lcPp8zwiOp&sig=-HFa1bmFQw4yGAG9BZLqNOJRiO4#v=onepage&q=benefit&f=false
https://books.google.de/books?hl=en&lr=&id=wj19b5wVfXAC&oi=fnd&pg=PP2&dq=location-based+services&ots=lcPp8zwiOp&sig=-HFa1bmFQw4yGAG9BZLqNOJRiO4#v=onepage&q=benefit&f=false
https://books.google.de/books?hl=en&lr=&id=wj19b5wVfXAC&oi=fnd&pg=PP2&dq=location-based+services&ots=lcPp8zwiOp&sig=-HFa1bmFQw4yGAG9BZLqNOJRiO4#v=onepage&q=benefit&f=false
https://books.google.de/books?hl=en&lr=&id=wj19b5wVfXAC&oi=fnd&pg=PP2&dq=location-based+services&ots=lcPp8zwiOp&sig=-HFa1bmFQw4yGAG9BZLqNOJRiO4#v=onepage&q=benefit&f=false
http://cdn.intechweb.org/pdfs/9895.pdf
http://cdn.intechweb.org/pdfs/9895.pdf
http://upnp.org/

BIBLIOGRAPHY

[Was10] WASSERMAN, Anthony I.: Software engineering issues for mo-

bile application development. In: Proceedings of the FSE/SDP
workshop on Future of software engineering research. New
York, USA : ACM, November 2010 (FoSER ’10). – ISBN 978–

1–4503–0427–6, 397–400

[Wil00] WILLIAMSON, Beau: Developing IP multicast networks. Bd. 1.
Cisco Press, 2000

[Xia15] XIAO, Claud: Novel Malware XcodeGhost Modifies
Xcode, Infects Apple iOS Apps and Hits App Store.
http://researchcenter.paloaltonetworks.com/?p=10322.

Version: September 2015. – Accessed: 2015-10-27

[XWZ14] XUE, Hui ; WEI, Tao ; ZHANG, Yulong: Masque
Attack: All Your iOS Apps Belong to Us. https:

//www.fireeye.com/blog/threat-research/2014/11/

masque-attack-all-your-ios-apps-belong-to-us.html.

Version:November 2014. – Accessed: 2016-08-29

[ZGH07] ZHONG, Ge ; GOLDBERG, Ian ; HENGARTNER, Urs: Louis, lester

and pierre: Three protocols for location privacy. In: Privacy
Enhancing Technologies Springer, 2007, S. 62–76

[Zil15] ZILT, Hannes: Service Discovery and JavaScript Remote Calls
for Building-Linked Services using Smartphones, Hamburg Uni-
versity of Technology, Institute of Telematics, Master’s thesis,

2015

168

http://researchcenter.paloaltonetworks.com/?p=10322
https://www.fireeye.com/blog/threat-research/2014/11/masque-attack-all-your-ios-apps-belong-to-us.html
https://www.fireeye.com/blog/threat-research/2014/11/masque-attack-all-your-ios-apps-belong-to-us.html
https://www.fireeye.com/blog/threat-research/2014/11/masque-attack-all-your-ios-apps-belong-to-us.html

Author’s Publications

[1] Julian Ohrt and Volker Turau. Cross-platform development tools for

smartphone applications. IEEE Computer, 9(45):72–79, September
2012.

[2] Julian Ohrt and Volker Turau. Building-linked location-based instanta-

neous services system. In Proceedings of the 5th International Con-
ference on Ambient Systems, Networks and Technologies (ANT2014),
June 2014.

[3] Julian Ohrt and Volker Turau. Simple indoor routing on svg maps. In In-
door Positioning and Indoor Navigation (IPIN), 2013 International Con-
ference on, pages 1–6. IEEE, October 2013.

169

	List of Figures
	List of Tables
	List of Abbrevations
	1 Introduction
	1.1 Contributions
	1.2 Structure of Dissertation

	2 State of the Art
	2.1 Smartphones
	2.1.1 Mobile Operating Systems
	2.1.2 Installation of Apps
	2.1.3 Internet Access
	2.1.4 Trusting apps
	2.1.5 Limitations

	2.2 Localization
	2.2.1 Location-Based Services
	2.2.2 Geofences
	2.2.3 Technologies
	2.2.4 Indoor Localization Systems
	2.2.5 Indoor Map Technologies for Smartphones

	2.3 Smart Home
	2.3.1 Smart Home Standards
	2.3.2 Smart Home Systems
	2.3.3 Limitations
	2.3.4 openHAB

	2.4 Discovery Protocols in IP Networks
	2.4.1 IP multicast
	2.4.2 Current Discovery Protocols

	2.5 Secure Networking
	2.5.1 Encryption
	2.5.2 Certificates
	2.5.3 Digital Access Control

	2.6 Service Communication
	2.6.1 Server to Smartphone Communication
	2.6.2 Smartphone to Server Communication
	2.6.3 Invoking Server Methods

	3 Location-Linked Services
	3.1 Definition of Location-Linked Services
	3.2 Motivation of Location-Linked Services
	3.3 Generic Location-Linked Services Provisioning System
	3.4 Examples of Indoor Location-Linked Services
	3.4.1 Navigation
	3.4.2 Automated Door Bell
	3.4.3 Audio messenger
	3.4.4 Counting People
	3.4.5 Switch Service
	3.4.6 Information Request
	3.4.7 Data Archive
	3.4.8 User Configuration
	3.4.9 Home Monitor
	3.4.10 Bulletin Board
	3.4.11 Trace Users
	3.4.12 Tour Guide
	3.4.13 Shop and Product Finder
	3.4.14 Reception Service
	3.4.15 Smartphone Reminder
	3.4.16 Intruder Alert

	3.5 Differences to Existing Technologies
	3.5.1 LLSs vs. Conventional Apps
	3.5.2 LLSs vs. Location-Based Services
	3.5.3 LLSs vs. Smart Home Applications

	3.6 Areas of Application for LLSs
	3.6.1 Private Homes
	3.6.2 Office Environments
	3.6.3 Public places
	3.6.4 Incentives for Using LLSs

	4 Basic Considerations and Requirements
	4.1 Design Considerations
	4.2 Non-Functional requirements
	4.2.1 Robustness
	4.2.2 Omniscient entities
	4.2.3 Direct, Secure Communication
	4.2.4 Flexible and Multi-Platform Development
	4.2.5 Ease of Use

	4.3 Functional Requirements
	4.3.1 Functional Requirements of a LLSs System
	4.3.2 Functional Requirements of LLSs

	5 Design of BLESS
	5.1 System Overview
	5.1.1 System Architecture
	5.1.2 Naming Conventions

	5.2 Mode of Communication
	5.3 Multi-Platform Approach
	5.4 Services
	5.4.1 Installation and Functions
	5.4.2 Background Services

	5.5 Security
	5.5.1 Authentication and Trust Levels
	5.5.2 Encryption
	5.5.3 Service Permissions

	5.6 Buildings and Service-Buildings-Linkage
	5.6.1 BLESS Buildings
	5.6.2 BLESS Sub-Buildings
	5.6.3 BLESS Services

	5.7 Localization
	5.8 Navigation
	5.8.1 Design Choices and Implications
	5.8.2 Routing Information

	5.9 Detecting and Filtering Services
	5.9.1 Applying Location Filter
	5.9.2 Applying User Filter
	5.9.3 Discovery Protocol
	5.9.4 Enabling Service Detection

	5.10 Inter-Service Communication
	5.10.1 Method of Communication
	5.10.2 Server Methods Invocation Protocol
	5.10.3 Push Messaging Protocol

	5.11 Assumed Preconditions

	6 Prototype of BLESS: MultiApp and Exemplary Services
	6.1 Overview of BLESS Implementation
	6.2 Implementation of MultiApp
	6.2.1 Discovering BLESS Entities
	6.2.2 Signature Handling
	6.2.3 Listing and Filtering of Available Entities
	6.2.4 Installation of Buildings and Services
	6.2.5 Executing CP of Services
	6.2.6 Sending CP into Background and Wake Events
	6.2.7 Invoking Remote Calls
	6.2.8 Push Notifications
	6.2.9 Localization
	6.2.10 Geofencing
	6.2.11 Permissions of CPs

	6.3 Protocols
	6.3.1 Discovery Protocol
	6.3.2 Installation of Buildings and Services
	6.3.3 Server Method Invocation
	6.3.4 Push Messaging

	6.4 BLESS Pusher
	6.5 BLESS Buildings and Sub-Buildings
	6.6 BLESS Services
	6.6.1 Service Skeleton
	6.6.2 Navigation
	6.6.3 Automated Door Bell
	6.6.4 Door Guard (Home Monitor)
	6.6.5 Heating Status (Information Request)
	6.6.6 Light Switch (Switch Service)

	6.7 Lines Of Code
	6.7.1 MultiApp
	6.7.2 Services
	6.7.3 Buildings

	7 Applying BLESS to private house hold
	7.1 Description of Field Test Environment
	7.2 Preparation for the Field Test
	7.3 Procedure of Field Test
	7.4 Results of Field Test
	7.5 Comparing with openHAB
	7.5.1 Presence Detection with openHAB
	7.5.2 Realizing Test Services using openHAB
	7.5.3 Procedure of openHAB Test
	7.5.4 Results of openHAB Test

	8 Evaluation and Conclusion
	8.1 Fulfillment of Requirements
	8.1.1 Non-Functional Requirements, BLESS
	8.1.2 Non-Functional Requirements, openHAB
	8.1.3 Functional Requirements, BLESS
	8.1.4 Functional Requirements, openHAB

	8.2 Conclusion
	8.2.1 Contributions
	8.2.2 Lessons Learned
	8.2.3 Outlook

	Bibliography
	Author's Publications

