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SUMMARY

In the past, aircraft energy systems had only marginal relevance during the early design of
commercial aircraft. The design problem was decomposed hierarchically based on a conventional
architecture using pneumatic, hydraulic, and electric secondary power. Requirements were
allocated and the actual design of individual aircraft energy systems was established in isolation
downstream in the design process. Today, this approach is in question, as airframers realize
that global optimization of the entire aircraft is the only remaining way to achieve substantial
improvements in the total aircraft package.

The ongoing integration of aircraft energy systems architecture design leads toward the
reduced use of hydraulic and pneumatic secondary power, and a “More Electric Aircraft”. At
the same time, business relationships change from “purchaser and supplier”-cooperations to risk-
sharing partnerships. These changes require methods and tools to support designing globally
optimized architectures. As a contribution toward this overall goal, the objective of this thesis is
to develop and implement a design methodology for the air conditioning system (Environmental
Control System), which imposes key requirements on the aircraft energy systems architecture.

The proposed concept is based on a physics-based design methodology. Herein, energy-
optimal open-loop control has to be defined. Otherwise, a rigorous assessment using aircraft-
level metrics cannot be established. For this purpose, inverse-modeling approaches are intro-
duced. These allow establishing energy-optimal open-loop control concurrently with optimal
aircraft energy system architecture.

As a physics-based design methodology requires a substantial modeling effort, flexibility
and reusability of mathematical plant models are of pivotal importance. For this purpose,
the equation-based object-oriented modeling language Modelica is adopted. In this regard,
substantial contributions are made to further improve the robustness of the code generated from
such modeling languages. In particular, robustness issues in established non-causal thermo-fluid
interfaces (“connectors”) are identified. Based on a rigorous analysis, a robust yet user-friendly
interface called “stream connectors” is proposed. Additionally, robustness issues with steady-
state initialization are addressed. In order to analyze this problem, a quantitative metric is
proposed. Then, a probability-one homotopy method is introduced to equation-based object-
oriented modeling languages. Using theorems from topology, the established method guarantees
convergence with probability one. This property is demonstrated on a number of case studies.

Exploiting these improvements, a robust and flexible modeling and simulation framework
for Environmental Control Systems and general cooling systems is implemented. It covers both
conventional low-speed fluid dynamics as well as high-speed gas dynamics. Building on this
modeling and simulation framework and the proposed design methodology, a physics-based
design environment for Environmental Control Systems and aircraft energy systems in general
is implemented. It can be applied to conventional and unconventional system architectures

alike.
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CHAPTER 1

INTRODUCTION

Progress in engineering and technology is sometimes made in small, and sometimes in large steps.
The development of object-oriented modeling languages was such a large step for system-level
simulation. This thesis explores the use of such concepts for the design of aircraft systems
architecture, a domain in which a similarly revolutionary change is currently taking place. As
the activities described in this thesis test and push the limits of the underlying modeling and
simulation technology, the subject area is in the intersection of aerospace systems design, fluid
dynamics, and applied mathematics.

This chapter provides a high-level overview of the industrial challenges motivating this thesis
and the problems it addresses. The state of the art is introduced and overarching research objec-
tives are derived. Detailed literature reviews of the sub-topics are presented in the subsequent
chapters.

1.1 Motivation

Despite recent political and economical crises and other enduring threats, the long term outlook
for world air travel is positive. According to the Airbus Global Market Forecast [2], the economic
recovery, the return of business confidence and corporate investment, the sustained trade in
commodities and a demand in worldwide leisure travel, have all resulted in a strong rebound of
air traffic.

e Passenger traffic in terms of revenue passenger kilometers is forecast to grow by an average
of 4.8% annually over the 2010-2029 period according to Airbus [2] and by 5.3% according
to Boeing [19].

e Cargo traffic will grow even faster: Airbus [2] and Boeing [19] both forecast an average
growth rate in terms of freight tonne kilometers of 5.9% over 2010-2029.

These growth rates are occurring in a competitive and globalized environment. The two
key competitors are under constant pressure to continuously improve the commercial aircraft.
The demanded improvements translate to superior capabilities at reduced emissions and cost.
According to Jackson [88], the aircraft can be divided into the airframe, propulsion, and other
segments. The other segments are referred to by the term aircraft systems (or aircraft energy
systems, aircraft equipment systems). While substantial improvements were achieved over the
last decades using traditional aircraft design, which puts the focus on airframe and propul-
sion [172], the aircraft systems become increasingly relevant today [144]. This is due to two
reasons. First, their contributions to emissions, weight, and cost are substantial. On long range
aircraft for example, the installation and operation of the aircraft systems account for more
than 5% of the fuel burn [102]. Additionally, they contribute arround 30% to both aircraft
empty weight and direct operating costs [38].

The second key reason for increased relevance of aircraft systems in early design is due to a
pending revolution [144]. Since the conception of modern, gas-turbine driven aircrafts, nearly
all airplanes, both commercial and military, have used three conventional types of secondary
power: hydraulics, pneumatics and electricity. Advances in aircraft systems occurred mostly
locally and brought the infusion of new technologies into existing systems, but no modifications
to the overall architecture. Following the principles of Systems Engineering [88], requirements
were formulated and addressed downstream in the design process. For this purpose, the so-called
Air Transport Association chapters [1] (ATA chapters) were used on civil aircraft. Based on
them, the architecture of the aircraft systems was broken down and requirements were allocated.
Design of the aircraft systems took place downstream in the design process.
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Today, improvements are becoming increasingly difficult to achieve by local changes to
existing designs, “as both fundamental physical barriers and conflicts between requirements
emerge” [144]. For this reason, engineers cannot continue to optimize each component and
subsystem individually. Instead, global optimization of the whole aircraft is considered as “the
only way to produce meaningful improvements in the total aircraft package” [144].

This global optimization leads toward the reduced use of hydraulic and pneumatic secondary
power, and a “More-Electric Aircraft” (MEA). Such concepts were initially proposed in the
1970s [37]. The reasons to promote the increased use of electric power include intrinsic losses in
pneumatic Engine Bleed Air Systems (both intrinsic to the turbofan thermodynamic cycle at
increased bypass ratios and related to losses in the pre-cooler and pressure regulating valves),
increased reliability of electric systems as well as the all but exhausted potential of power
electronics technology (in contrast to pneumatics and hydraulics). For examples of such MEA
architectures, see Moir and Seabridge [125].

The ongoing integration of aircraft systems design does not only have impact on technical
factors, but also directly affects the way business is conducted. In particular, the former pur-
chaser and supplier relationship is increasingly replaced by a risk-sharing partnership on several
commercial aircraft development programs. At the same time, the conventional nomenclature in
terms of ATA chapters becomes less adequate. The reason is that ATA chapters are based on a
conventional aircraft systems architecture. In unconventional architectures, system boundaries,
interfaces and so on change substantially. In this thesis, sub-problems in aircraft systems design
are thus classified according to the physical domain (thermal, thermo-fluid, electric, hydraulic
etc.).

The given need for globally optimized aircraft systems architectures and the implications
of more highly integrated architectures motivate the development of the methods and tools
in this thesis. An emphasis is put on aircraft system design problems involving thermo-fluid
dynamics (i.e., in the thermo-fluid domain). This includes the air conditioning system called
Environmental Control System (ECS) and electrified pneumatic systems in general.

1.2 Thesis Overview

The contributions of this thesis span three different levels. First and foremost, design and
optimization methods for thermo-fluid aircraft systems are considered. This is the first (highest)
level of the problem decomposition. These methods in turn rely on mathematical models of
the systems. Their development is addressed on the second level. Finally, such mathematical
models have to be formulated in a suitable programming or modeling language. These aspects
are considered on the third (lowest) level.

The structure is illustrated in figure 1. It shows the different elements on the three lev-
els. The definition of requirements and architecture is done informally in the present chapter
with an introductory review of the state of the art, the identification of knowledge gaps and
the formulation of objectives. The implementation, test, and integration is described in the
following chapters of this thesis. In particular, the bottom aspect of “Equation-based object-
oriented modeling and simulation technology” is addressed in chapters 2 to 10. The middle
topic concerning “Thermo-fluid dynamics modeling and simulation of aircraft systems” is stud-
ied in chapters 11 and 12. The top subject “Physics-based aircraft system design” is addressed
in chapter 13.

Note that these chapters do not include a documentation of all possible details but emphasize
the academically relevant topics.

1.3 Design of aircraft systems

In order to formulate requirements and objectives toward aircraft systems architecture design,
the state of the art is reviewed.
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Figure 1: Thesis overview via a methods and tools pyramid

Physics-based A/C
system design

1.3.1 Aircraft systems in conventional aircraft conceptual design

Conventional methods to cover aircraft systems in early aircraft design are based on statistical
regression of system weight. Such techniques have been used for several decades in conceptual
design and are well suited for handling the details of these aircraft systems downstream in the
design process. The purely statistical relations represent certain technological levels up to a
specific state of the art. Usage of such methods to estimate the performance of next-generation
systems or of aircraft using different architectural or technological features depends, if at all
possible, on modifying regression factors which do not have a physical meaning. Such methods
have been proposed by several authors including Torenbeek [172], Roskam [150] and Beltramo
et al. [16].

Several authors proposed ways to improve the quality of regression-based predictions for
different technological levels or physical architectures. In [7], for instance, the RDT&E period
was introduced as an explanatory variable into the regression to account for overall technolog-
ical trends. In the Fast and Advanced Mass Estimation method [107], a comparatively large
number of explanatory variables was used to establish regressions. The Subsystems Integrated
Design Assessment Technology [136] proposed the regression of sensitivities of key aircraft sys-
tem physical parameters against aircraft level performance parameters. Koeppen [99] proposed
the combination of simplified physical models with regression of physical parameters as pre-
dicted by the simplified models against their actual values.

These methods are useful for a comparative assessment of different technologies and partially
aircraft system architectures. Kirby [97] for instance demonstrates how to use such methods
for technology identification, evaluation, and selection. After the reduction of a technological
portfolio to a small number of candidate solutions, more stringent methods are of interest. The
difficulty in the assessment of such portfolios using regression-based methods lies in the lack of
rigorous methods to adapt simplified models and non-physical regression factors.

1.3.2 Conceptual design of aircraft system architecture

The industrial interest in unconventional aircraft systems architecture such as the MEA has trig-
gered the development of suitable design methodologies and supporting tools, both in industry
itself and academia. Even though several relevant contributions have been made along this
direction, integrated aircraft system architecture design methods that span multiple physical
domains are only at the beginning of development.

Until today, in the conceptual design of aircraft system architecture, the problem is fre-
quently decomposed using systems engineering into single physical domain aircraft system de-
sign. So-called trade factors are used to link one aircraft system design problem to the aircraft
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level. The trade-factors represent sensitivities (i.e., gradients) of aircraft level metrics such as
take-off gross weight and fuel consumption against aircraft system physical parameters such as
weight, secondary power consumption and so on. While trade-factors allow to take aircraft level
metrics into consideration in the design of individual aircraft systems, they neglect interaction.
First, interaction takes place between the aircraft and the aircraft system, because a change in
aircraft system physical parameters strictly requires an additional design iteration on aircraft
level. Frequently, this does not take place. Second, interaction takes place via changes in de-
rived requirements of one system toward the other. This is neglected, because every system is
often sized individually.

Eventually, such methods in conceptual aircraft design will be superseded by integrated
aircraft systems architecture design methods. Recently, first steps toward such methods and
software platforms were proposed. Bals et al. [13, 14] presented an integrated aircraft system
architecture simulation framework and applied MEA concepts. The simulation framework used
an inverse modeling technique to establish derived requirements on power distribution and
generation systems. It is also applied to optimize power consumption [156]. Liscouét-Hanke
later suggested a similar simulation platform [106, 105]. The latter approach was limited in
applicability in that it required structural assumptions on aircraft system-specific elements to
hold (a forward and a reverse loop, see section 13.1 for a relevant example not meeting these
assumptions). Mavris et al. [114, 39, 8] proposed a methodology for aircraft system architecture
definition based on functional decomposition and applied concepts from optimization.

Several authors contributed toward the goal of integrated aircraft systems architecture design
and optimization via building blocks of a future integrated design platform. Schallert [157, 158]
for instance suggested a design methodology for electrical power systems, which unifies the
aspects of performance, weight, and reliability. Scholz [159] presented a method for conceptual
design of flight control and hydraulic systems. Dollmayer and Carl [50, 49] proposed a method
to quantify the impact of aircraft system installation and operation on the propulsion system.
Kaslusky et al. [94] suggested processes to integrate the design of aircraft system architecture
into industrial context.

The ECS was subject of a number of manuscripts. In particular, Vargas and Bejan [186]
proposed a notional design methodology for ECS taking into account the assessment on aircraft
level. The problem was simplified in several regards however. For instance, the authors consid-
ered a single point along the mission only, studied a simplified system (a single heat exchanger,
no water separation, no ram air fan or ejector), addressed nominal on-design performance only
and optimized only a single component. Tipton et al. [171, 61] use a similar approach on
a complex architecture of ECS and thermal systems and similarly low fidelity. Ordonez and
Bejan [134] established ECS requirements based on a simple cabin model, which contained a
lumped heat generation and heat transfer element. The derived requirements are imposed on
a mostly idealized pack model (e.g., reversible compression and expansion, no pressure drops
on the heat exchanger). While their work is very interesting from a theoretical perspective,
the presented trade-off between pack outlet temperature and pack mass flow rate is of limited
practical value as it does not consider all relevant constraints. In industrial practice, the pack
mass flow rate for instance is directly driven by the fresh air requirements due to the high
cost of fresh air in terms of specific fuel consumption. These requirements are imposed by the
certification authorities in [92, paragraph 25.831a] and [59, paragraph 25.831a).

1.3.3 Objectives and contributions

The objective of this thesis with respect to the conceptual design of aircraft systems architecture
was to contribute an aircraft system design environment, which is suitable for use in integrated
aircraft systems architecture design. This aircraft system design environment used a generic,
physics-based approach! and was implemented for the ECS. This thesis contributes to the state
of the art in the following areas.

!Statistical regression was still useful in the environment (e.g., heat transfer correlations), but the plant model
was implemented using rigorous balance equations.
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e A suitable design methodology for general aircraft systems was defined. Herein, the
industrial perspective in commercial aircraft was taken into consideration. In contrast to
the contributions in literature, the methodology does not neglect or idealize the open-loop
control parameters, which is required for a rigorous assessment using aircraft-level metrics.
For this purpose, inverse-modeling approaches were introduced and compared. These
allow establishing energy-optimal open-loop control concurrently with optimal aircraft
energy system architecture.

e In contrast to the mentioned earlier publications, off-design performance was considered.
This was a relevant improvement in aircraft systems architecture optimization, as design
is all about making compromises and industrial applications require to routinely consider
a large number of different scenarios, in which certain performance constraints have to be
met.

e Causality of the physical plant model was not fixed to a predefined state. During design, it
was possible to establish model causality starting with the top-level aircraft requirements
and the functions to fulfill. Casting them into requirements allowed the formulation of
derived requirements for all other parts of the system. The conventional causality in turn
enabled performance computations to assess a given design.

These contributions were described in chapter 13.

1.4 Modeling and simulation of thermo-fluid dynamics

A physics-based design methodology required physics-based plant models. As the focus of
this manuscript was on ECS and thermo-fluid aircraft systems, a particular set of physical
phenomena were of interest. Within the present work, the term thermo-fluid dynamics was
used to refer to an informal union of fluid dynamics, thermodynamics as well as heat and mass
transfer, which was relevant for these applications.

1.4.1 State of the art

System-level simulation [32] in the domain of thermo-fluid dynamics is a wide topic yet relatively
mature. For instance, see Ding [47] for a review of system-level simulation for vapor compression
cycle applications. For reasons, which are outlined in the following section, the focus was put
on a particular modeling and simulation technology termed equation-based, object-oriented
modeling languages.

Several authors present applications using such languages in various technical domains. For
instance, Casella [29, 30] considers power plant simulation, Pfafferott [141], Tummescheit et
al. [180], Richter [147], and Prolf [143] study applications in sub-critical vapor compression
cycles, Casas [26, 27] addresses air conditioning using desiccant assisted cycles, and Vasel and
Schmitz [187] consider air conditioning using trans-critical cycles.

In all of the given applications, the governing equations are adapted to the specifics of the
underlying flow phenomena. According to the best knowledge of the author, the assumptions
are identical for all applications involving equation-based, object-oriented modeling languages
reported in literature. The corresponding flow, which allows to make these assumptions, is
called a low-speed compressible flow in this thesis. All previously referenced authors assume
that the flow is incompressible with respect to the flow phenomena, as it is low-speed. Density
variation is only encountered due to heat transfer and in lumped parameter components such
as compressors. Density variation due to flow phenomena is neglected, i.e., the Mach number
is typically below 0.3.

In particular, an analysis of model code revealed that the difference between static and
total pressure is neglected as the dynamic pressure is considered small and not of interest. For
the given applications in power plants or vapor compression cycle refrigeration systems this is
reasonable. Only in special devices, which involve large variations in flow cross-section such
as adapters between different pipe diameters or nozzles, total pressure is of interest. Total or
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stagnation enthalpy is often treated similarly; the kinetic term v?/2 is neglected. A typical
argument is that the order of magnitude of change in specific enthalpy due to heat transfer is
larger than that of such kinetic terms.

If kinetic terms in pressure and specific enthalpy are not neglected for such applications and
the common assumption of a steady-state momentum balance is made then coupled nonlinear
algebraic equation systems arise for density, which is required to establish flow velocity. These
coupled equation systems deteriorate simulation performance.

A relevant part of the applications of interest in this thesis involve a different type of flow,
which is called high-speed compressible flow herein. This applies to the ECS and electrified
pneumatic systems in particular. Kinetic terms and dynamic pressure may not be neglected
and have to be included in compressible formulations. Density variation is also encountered
with respect to flow phenomena, in particular dynamic conservation of momentum is relevant
and also shock waves may be part of the solution. The Mach number may be > 0.3 (including
the supersonic regime). The term “gas dynamics” refers to the same type of flow.

The key theoretical area to enable applications involving high-speed compressible flow is
the discretization method for the governing equations. The foundations of numerical solu-
tion methods in thermo-fluid dynamics are well understood. However, in the framework of
equation-based, object-oriented modeling languages, only methods suitable for low-speed com-
pressible flow have been applied. The classic finite volume method has been studied in partic-
ular by Tummescheit [181]. Moving boundary methods have been applied by Jensen [90, 89]
and Tummescheit [181]. Casella [30] proposed a mean density discretization, which is non-
conservative but results in continuous and continuously differentiable thermodynamic proper-
ties at phase boundaries of two-phase flow. Proll and Schmitz [142] discretized the governing
equations for frost formation on heat exchanger surfaces.

1.4.2 Objectives and contributions

System-level simulation of thermo-fluid dynamics is rather mature. However, even though
discretization methods suitable for high-speed compressible flow are available in literature (e.g.,
[174, 162]), they have not been applied in the framework of equation-based, object-oriented
modeling languages. The objective of this thesis with respect to modeling and simulation was
to contribute toward the application of such methods in the given modeling languages to enable
rigorous modeling and simulation of aircraft systems involving high-speed compressible flow in
the scope of integrated aircraft systems architecture design. The thesis contributes to the state
of the art in the following areas.

e Relevant concepts of the theory in numerical solution methods for high-speed compressible
flow were reviewed and translated from the algorithmic perspective taken in literature to
the acausal concepts of equation-based, object-oriented modeling languages.

e The elements of discretization schemes were decomposed in an object-oriented fashion and
implemented in a generic library.

e Object-oriented concepts were exploited for increased flexibility such as parametric poly-
morphism for exchangeable thermodynamic property models.

These contributions are described in chapter 12.

Additionally, the thesis presents how to address the requirements of the design method for
physics-based plant models at the example of the ECS. The aspects mentioned in section 1.3.3
such as variable causality and off-design performance simulation as well as a general requirement
for flexibility were addressed. These contributions are dealt with in chapter 11.

1.5 Modeling and simulation technology

Astrém et al. [9] reviewed the evolution of continuous-time modeling and simulation. Among
others, they mention the graphical block diagram modeling paradigm and the physical modeling
or equation-based, object-oriented approach.
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1.5.1 Graphical block diagram modeling

In order to use digital computers for system-level modeling and simulation, several researchers
adopted the analog simulation principles on digital computers. As Astrom et al. [9] wrote, “it
seemed easier to change the technology than to change the paradigm”.

Graphical block diagram modeling is based on the notion of graphical blocks, which have
fixed inputs and outputs. Arithmetic operations, integrators and transfer functions are typical
examples. Blocks may be composed hierarchically.

Typical implementation examples are EASY5 [129], originally developed by the Boeing
Company around 1976, and Simulink [72], developed by MathWorks around 1991.

Following the graphical block diagram modeling paradigm, models need to be expressed
in explicit ordinary differential equations (state form). As Astrém et al. [9] report, “a severe
consequence is that it is cumbersome to build physics-based model libraries in the block diagram
languages”. In particular, “a general solution to this problem required a paradigm shift”.

1.5.2 Equation-based object-oriented modeling languages

Several limitations of the graphical block diagram modeling paradigm can be lifted by allowing
the modeler to state the underlying physical balance equations of mass, energy, and momen-
tum in their natural form, i.e., differential algebraic equations (DAEs)?. Several advantages
immediately emerge from this approach. As the problem is largely posed in terms of equations,
symbolic processing of the resulting DAE is enabled. Like this, symbolic and numerical solution
techniques can be combined to allow for efficient simulation on real-world problems. At the same
time, this type of problem definition is declarative (in contrast to algorithmic). This implies
that a user has only to define what the problem is, not how to solve it. Finally, the problem
definition becomes non-causal, and therefore a single model can be used in place of a set of
models with permuted inputs and outputs, which is required in the graphical block diagram
modeling paradigm. Additionally, equation-based, object-oriented modeling languages combine
this equation-based approach with the concept of object-orientation. This largely increases the
flexibility and power of the resulting languages. For instance, parametric polymorphism allows
to separate and exchange distinct model elements such as the thermodynamic property model
and the device model.

Astrom et al. [9] also discuss the history of such equation-based, object-oriented modeling
languages. One of the most advanced generic (i.e., non domain-specific) equation-based, object-
oriented modeling languages is Modelica [113], even though there are others (VHDL-AMS [85],
gPROMS" [133] etc.). Modelica emerged from a unification effort “bringing together expertise
in object-oriented physical modeling” [9]. The open language standard is developed by the non-
profit Modelica Association. Relevant predecessors were for instance Smile [98] and Omola [112].

This language is particularly successful both in academia and industry. The Modelica web
page [121] currently lists eight commercial Modelica simulation environments and four free
Modelica simulation environments, each building on the same standardized language definition.

1.5.3 Objectives and contributions

As the aircraft systems architecture becomes more and more tightly integrated, non domain-
specific modeling and simulation technology was applied in this thesis. For the advantages they
provide, an equation-based, object-oriented modeling language was used in this context. Like
this, the requirements to allow performance calculation and requirement-driven computation
were fulfilled elegantly, i.e., with the same models. Furthermore, the object-oriented principles
mimicked the way physical systems are built and allowed for increased flexibility and reusability
of the models.

2Obviously, the natural form of most balance equations is in terms of partial differential algebraic equations.
If the partial derivatives with respect to space dimensions are discretized however, then differential algebraic
equation systems involving time derivatives only suffice.
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System-level simulation using equation-based, object-oriented modeling languages is rather
mature. However, during research into physics-based aircraft systems design methods certain
reoccurring issues were identified in two areas. The first one involved thermo-fluid dynamics
plant models in general and the second one steady-state initialization. With respect to the
former, the issues were traced to the thermo-fluid interfaces (“connectors”). Therefore, this
thesis contributes to the state of the art in the following areas.

Established thermo-fluid interface definitions were reviewed and discussed in a consistent
manner (chapter 2).

Requirements toward such interfaces were rigorously defined (chapter 3).

A consistent line of argument was established to trace the reported difficulties to defi-
ciencies of the thermo-fluid interfaces with respect to the given requirements. For this
purpose, a set of tools and test cases was established (chapter 4).

Improvements and alternatives for thermo-fluid interfaces were proposed (chapter 5).

Evidence was given to highlight how the improved thermo-fluid interface meets the given
requirements (chapter 6).

With respect to the reported difficulties with steady-state initialization, the thesis con-
tributes to the state of the art in the following regard.

The stated observation of robustness issues was analyzed rigorously. For this purpose,
a suitable quantitative metric was introduced and a testing environment was developed
(chapter 7).

A well-known class of alternative solution methods called homotopy methods was intro-
duced in a comprehensible, informal fashion (chapter 8).

Homotopy methods using generic maps were analyzed. Substantial reasons were given
why it is unlikely that they resolve the observed problem (chapter 9).

A proposal for homotopy methods using problem-specific maps in the context of equation-
based, object-oriented modeling languages was formulated. The proposal was based on
the theory of probability-one homotopy methods. Using theorems from topology, such
methods guarantee convergence with probability one. Additionally, the proposal was
illustrated on several case studies. Problems, which were time-consuming to solve before,
were solved robustly without manual interaction. Improvements were quantified in terms
of a rigorous metric (chapter 10).

In summary, this thesis contributes in several distinct aspects toward the overall goal of
integrated, physics-based design of aircraft systems architecture.



CHAPTER 2

ESTABLISHED NON-CAUSAL INTERFACE DEFINITIONS FOR
THERMO-FLUID DYNAMICS

The objective in this chapter is to review the results of several years of research about the
optimal design of non-causal thermo-fluid interfaces in equation-based, object-oriented model-
ing languages. All relevant design concepts that have been used for simulation of thermo-fluid
dynamics are reviewed together with the corresponding connector design and notional imple-
mentations of three exemplary standard components. For the reasons given in section 1.5,
emphasis is put on the equation-based, object-oriented modeling language Modelica.

The fundamental issue in the design of such thermo-fluid interfaces is how to treat the
quantities that are transported via convection, i.e., the quantities that are transported by the
fluid flow in the flow direction. Examples of such quantities are specific enthalpy and substance
mass fractions. All convected quantities can be handled similarly and thus, for the sake of
readability, only specific enthalpy is addressed explicitly. The extension to additional convected
quantities is trivial.

Historically, the development of non-causal thermo-fluid interfaces focused on low-speed
compressible flow as described in section 1.4.1. Therefore such applications are considered in
the chapters 2 to 6 of this thesis. High-speed compressible flow is addressed in chapter 12.

Before introducing established interface definitions, the governing equations and discretiza-
tion schemes in primitive variables are introduced. The presentation is short; for a more elab-
orate general treatment refer to Ferziger and Peri¢ [60] or Patankar [139], for a presentation
specific to equation-based, object-oriented modeling languages refer to Tummescheit [181].

2.1 Governing equations of thermo-fluid dynamics

In fluid dynamics, the governing equations of mass, energy, and momentum conservation may
be formulated under several different assumptions. The Navier-Stokes and Euler equations
each involve different assumptions. By convention, the Navier-Stokes equations cover a viscous
flow with the dissipative transport phenomena of friction, thermal conductance and mass dif-
fusion. The Euler equations model an inviscid flow, which neglects the effects of said transport
phenomena.
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Figure 2: One-dimensional problem domain with coordinate x, volume €2, and surface S

In one-dimensional system-level simulation, “real” viscous effects in terms of spatial deriva-
tives (shear and normal stresses on an infinitesimal control volume such as the ones that domi-
nate a boundary layer flow) cannot be resolved as no relevant space dimension is available (to
resolve, e.g., a boundary layer). Instead, generic friction forces based on empirical correlations
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in terms of a ( loss factor, Fanning friction factor or the like are usually introduced. More-
over, the thermal conduction and mass diffusion are neglected in several cases. This is also
done in this thesis. Consequently, unsteady quasi one-dimensional Euler equations suitable for
system-level simulation are considered. The equations are hyperbolic independently of the Mach
number. Next, the governing equations for a one-dimensional domain as depicted in figure 2
are introduced. In differential form, they are

Continuity:
2 (pa)+ 2 (o) =0 1)
ot P ox pUa) =
Conservation of momentum:
0 0 Op
5 (PvA) + o (p?A) = —A— — Apj, - A (2)
Conservation of energy:
0 0 ) .
= (puod) + o (pv (w0 +7)p) A) = G - A+ - A 3)

These equations are derived from first principles, see, e.g., Anderson [6]. Equations (1)
to (3) additionally consider a pressure difference due to viscous friction Apy, and a volumetric
heat transfer rate ¢,. Variable w,. denotes a volumetric work rate or power. In several cases, it
is not included in the equations below. This means that the work term was neglected.

The integral forms of the equations are as follows (here, the subscript (), denotes a reference
to the component in z-direction, €2 is the volume inside a control boundary, and S is its surface,
see figure 2).

Continuity:
0
/de—k/pﬁ-ﬁdSzO (4)
ot g
Conservation of momentum:
0
/pvde+/pvx17-ﬁdS— /(p indS), — Apys, - A (5)
ot Jo s s
Conservation of energy
0 . : .
puo dQ+ [ p(up+7)T-1dS = [ pg.dY+ [ pied (6)
ot s Q Q

Generic Conservation Equation: To discuss the different methods to discretize the
governing equations, a generic conservation equation of a quantity ¢ is introduced. In the
conservation equation, the first term stands for storage, the second term for convective flux, the
third one for dissipative flux, and the last one for a generic volumetric source.

Differential form:

0 . . .
pn (pp) + div (ppt) = div (I'grady) + g4 (7)

Integral form:

gt/ (de—i-/ ppv-ndS = /I‘grad@ ndS+/q¢dQ (8)

2.2 Daiscretization methods in primitive variables
2.2.1 The Finite Volume Method

A classic approach in Computational Fluid Dynamics is to discretize the governing equations
using a Finite Volume scheme. One advantage is that the conservation laws are automatically
fulfilled ezactly independently of the grid resolution.
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Figure 3: Computational mesh of a one-dimensional problem domain with cells I;, cell centers
zj, and cell sides z; /9

In the Finite Volume Method, the problem domain is discretized on a suitable computational
mesh, see figure 3. The control volumes are defined based on a grid of cell side coordinates on
an interval [a, b]

a:$1/2<$3/2<...<$n_1/2<$n+1/2:b (9)

Based on it, cells, cell centers and cell sizes are defined for ¢ = 1,2,...,n.
I = (212, Tt o)

Ti =5 (Ti_1/2 + Tit1)2) (10)
Az; = Lit1/2 = Li—1/2

[y

In this notation, x; /9 is the coordinate of the right side of a computational cell I; with cell
center z;. This grid is colocated. Furthermore, the maximum cell size is defined as follows.

Az = max (Ax;) (11)
The discretization scheme allows to deduce algebraic equations or differential algebraic equa-
tions that properly approximate the governing equations. Note that, in the context of equation-
based, object-oriented modeling languages, the goal is to deduce differential algebraic equations
and thus the equations have only to be discretized in space, not in time (“semi-discretized”).
The set of cell centers, which is used in a discretization scheme to deduce such equations
for each cell, is called the stencil. For the most simple schemes, the stencil for cell I; includes
1; itself and the cells to the left and to the right,

S(i) = {Li—1, Li, Lipa } (12)

2.2.1.1 Approximation of Surface Integrals

The surface integrals of governing equations such as equation (8) in integral form express the
influence of a fluxr f that crosses the control volume boundary. The surface integral is split up
into the contributions of each face according to the chosen grid with the number of faces per

control volume n.
/de:Z/ fds (13)
s —~JSn

A simple approximation is the product of the flux at the face center and the face surface
area (midpoint rule). Applying this rule to face i + 1/2 yields the following.
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/ fdS = Fis1pSivise = fig12Si1/ (14)
Siy1/2

An approximation of a surface integral involves two approximations. First, the integral is
approximated in terms of variable values on the cell face. Then, the required values on the cell
faces are approximated in terms of variables at the control volume center, i.e., on the nodes.

2.2.1.2  Approzimation of Volume Integrals

The remaining terms in the generic conservation equation involve volume integrals (storage and
source term). Consider the simple yet second-order approximation analogous to the above. In
place of the volume integral (the product of the average value with the volume), the product of
the value at the control volume center with volume of the control volume is used.

Q.

(3

2.2.1.83 Interpolation Schemes

Herein, only two basic schemes for discretization in primitive variables are introduced. One of
them is the second-order central difference scheme (CDS). Just like all other schemes of order
higher than one, it is not universally bounded and can lead to oscillations. The other scheme is
the upstream discretization (UDS), which avoids this. However, it is only first-order accurate
and introduces artificial diffusion.

The CDS uses linear interpolation between the neighboring nodes. The interpolation factor
s Niy172 = % in the general case and A; 1/ =1 /2 for equidistant meshes.
Central difference scheme:

Pit1/2 = Piv1Xir1/2 + i (1= Nig1y2) (16)

The CDS can also be used for the evaluation of diffusive fluxes. It assumes a linear profile
and is second-order accurate if the face is located midway between the nodes.
Central difference scheme for gradients:

O ) ip1y2  Tit1 = Ti

The UDS approximates the interpolated value by the upstream value and thus resembles
the nature of convection. As the scheme is bounded it does not lead to oscillations.
Upstream discretization scheme:

i == . S 18
Pi+1/2 { sy i (T n)i+1/2 <0 (18)

2.2.2 Application to the governing equations

Continuity Equation: Consider the continuity equation in integral form, equation (4). It is
discretized using the second-order approximation to the volume integral with centroid values
and the second-order approximation to the fluxes using the face values.

0
ot (Pif%) + (pvA);_1 /5 — (pvA); 410 (19)

Energy Balance: The energy equation in the integral form is used as introduced in equa-
tion (6). The stagnation internal energy is labeled uy and the stagnation specific enthalpy
hg. The Finite Volume Method approximations presented above are applied. This yields the
following equation.
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0 . .
i (Piv0iSh) + (pvhoA);_y s = (pvhoA)iy1jp = Pideili + pithe,ii (20)

The interpolation equations discussed above allow to establish the centroid velocity v; and
face velocity v;, /5 using the central difference scheme.

Momentum Balance:

The momentum balance in integral form is discretized as posed in equation (5).

0
ot (pivifdi) + (PU2A)Z<,1/2 - (PU2A)1;+1/2 = (pA)i—l/Q + (PA)¢+1/2 - AprA (21)

The pressures are assigned to the cell centers, and consequently interpolation has to be used
to establish pressures p; ;5 and p; ;5. The CDS is used according to equation (16). For the
moment, an evenly spaced grid is assumed (i.e., A\i_j/2 = A\iy1/2 = 1/2).

Pi—1 TP D; + Diy1
Di—1/2 = 177 DPiv1/2 = % (22)

If additionally constant cross-section area is assumed then the discretization of the pressure
term in equation (5) is as follows.

Pi-1tPi  PitD Pi—1 —Di
- (PA)i71/2 + (pA)i+1/2 =-A ( 12 - 9 +1> =-4 (12+1> (23)

As pressures p; cancel the grid resolution effectively is halved. This is a well-known problem
in Computational Fluid Dynamics known as odd-even decoupling or checker-board effect [139,
60]. Practically, this pathologic property results in oscillations in pressure or divergence in the
solution algorithm.

2.2.3 The staggered grid

A classic remedy against odd-even decoupling on discretization in primitive variables is the
staggered grid [78]. Some of the quantities of interest are allocated to a grid that is shifted by
half the length of a cell.

The mass and energy balances are formulated on the control volumes of the original grid
introduced in section 2.2.1. At the center of each such control volume, the thermodynamic
state variables, cross-section area, and momentum flux are stored. The momentum balances
are applied to staggered control volumes J;.

Ji = [z, 2i11] (24)

At the center i + 1/2 of each of them, a mass flow rate and enthalpy flow rate are stored.
As a consequence, the faces i — 1/2, i + 1/2 of the original grid coincide with the centers of the
control volume on the staggered grid and vice versa.

For the momentum balance in integral form (5), €2;41/o consequently spans the volume J;
around the centroid i + 1/2 between the faces ¢ and ¢ + 1. Using the finite volume approxima-
tions to surface and volume integrals presented above, the following equation is obtained.

0
ot (pz‘+1/27}i+1/291+1/2> + (PUQA)i - (PUQA)iH = - (PA)i + (PA)iH - ApfrA (25)

The goal of the staggered grid approach was to have the pressures p;, p;,; available at the
required locations without the need of an interpolation scheme.
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2.3 Common aspects

Before introducing established thermo-fluid interfaces, common aspects of non-causal thermo-
fluid interfaces are described. They result from the use of the concept of effort or potential
and flow variables in equation-based, object-oriented modeling languages. These imply either
equality-type equations at connection points or “sum to zero”’-type equations. The semantics
of thermo-fluid interfaces therefore classify the static' thermo-dynamic balance equations into
either of these types.

The mass balance is considered a “sum to zero”’-type equation. This does not involve any
approximation or idealization. Pressure in turn is usually treated as effort variable and thus
results in equality-type equations. The result is a momentum balance. Again, storage of mo-
mentum is neglected (static balance). Furthermore, assuming constant velocity (no variation
of density or cross-section area in an infinitesimal control volume) and considering conserva-
tion of mass immediately leads to constant momentum flux. Therefore, only pressure equality
remains. Assuming that this one-dimensional treatment is exact (the momentum balance is
a vector equation), this momentum balance is also exact if total pressure is conserved. The
resulting connection semantics include an idealization, as multiple-way connections usually re-
sult in dissipative losses, but this is justified if no explicit junction model is used. All of the
established interfaces can be used this way, but previous authors always used static instead of
total pressure. In this case, the pressure equality is only correct in case of equal cross-section.
This is motivated by applications involving low-speed compressible flow (see section 1.4.1).

The energy balance is formulated as “sum to zero”-type equation for the enthalpy flow rates.
As with the momentum balance, this equation is correct if total or stagnation enthalpy is used
(idealization of no heat transfer). Again, previous authors focused on low-speed compressible
flow and used static specific enthalpy. Therefore, the semantics are again only correct for
one-to-one connections with equal cross-sections.

2.4 Stencil based on staggered grids

In the context of equation-based, object-oriented modeling languages, Casella et al. [29, 30]
proposed a stencil thermo-fluid interface. As described in section 2.2.1, a stencil is the set of
the cells on a discretization mesh required to establish a specific discretization scheme. Casella’s
interface was adapted to a staggered grid such that the stencil accounts only for convectively
transported quantities but not pressure or mass flow rate. For the interface, two complementary
connector definitions are required.

1 connector FluidPort_a

2  Pressure p;

3  flow MassFlowRate m_flow;

4 output SpecificEnthalpy h_a;
5 input SpecificEnthalpy h_b;
6 end FluidPort_a;

Listing 1: Fluid connector type A using Stencil interface

connector FluidPort_b
Pressure p;
flow MassFlowRate m_flow;
input SpecificEnthalpy h_a;
output SpecificEnthalpy h_b;
end FluidPort_b

o Ol b W N

Listing 2: Fluid connector type B using Stencil interface

! Connection sets use static thermo-dynamic balance equations as they are supposed to mimic an infinitesimally
small control volume without storage.
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To avoid numerical problems with the convected quantities, the interface provides state
variables or state variables that were adequately transformed for both potential upstream ther-
modynamic properties. It has been first implemented in the context of the THERMOPOWER
library by the same author.

Figure 4 illustrates the concept of this interface with a three-point stencil. A dynamic
control volume model has one FluidPort_a instance port_a on the left, and one FluidPort_b
instance port_b on the right. To provide the own state variables to the other components,
both FluidPort_a.h_a= port,.h{* and FluidPort_b.h b= port,.h{® are set to equal the state
variable medium.h. The two variables FluidPort_a.h b= port,.h®) and FluidPort_b.h a=
porty.h'® are equally defined by neighboring components and complete the three-point stencil.

model Component
FluidPort a port a;
FluidPort b port b;
Medium.BaseProperties medium;
VA

end Component;

r
Lo Po‘;tb-h<a)
port,. | |
1 1
/y’

Figure 4: Three-point stencil interface for a dynamic control volume

In this concept, flow reversal is handled via a stencil with two specific enthalpies: h_a is
the enthalpy of the fluid if it was flowing from a FluidPort_a to a FluidPort_b, and h._b
is the enthalpy of the fluid if it was flowing from a FluidPort b to a FluidPort_a. The
“complete stencil” as commonly understood in Computational Fluid Dynamics is thus spread
over two connectors of, e.g., a flow model (a connector contains the “own” value of the convected
quantity and one “other” value). Casella et al. [29, 30] in turn describe the stencil interface
pragmatically. Each component has to provide one equation for one of the two specific enthalpies
on each connector. This is the “specific enthalpy if fluid was going out” and is usually prescribed
as function of “specific enthalpy if fluid was going in” on other connectors or state variables.
The other specific enthalpy on the connector has to be prescribed by the other component in
the connection set of the port.

To see how this works practically, consider the following code of a control volume model
describing the mass and energy storage of fluid in a vessel.

1 model CV
2 FluidPort_a port_a;

3 FluidPort_b port_b;

4 replaceable package Medium = PartialPureSubstance;
5  parameter Volume V;

6  Medium.BaseProperties medium;

7 Mass m;

8  Energy U;

9 Power H flow_a, H flow_b;

10 equation

11 port_a.p = medium.p;

12 port_a.h_a = medium.h;
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13 port_b.p = medium.p;

14 port.b.h b = medium.h;

15 m = V*medium.d;

16 U = m*medium.u;

17 der(m) = port_a.m_flow + port_b.m flow;

18 Hflow.a = port.a.m flow * (if port_a.m flow > O then

19 port_a.h b else port_a.h a);

20  Hflowb = port b.m flow * (if port b.m flow > 0 then
21 port_b.h_a else port_b.h b);

22 der(U) = H.flow.a + H_flow_b;

23 end CV;

Listing 3: Dynamic control volume model using Stencil interface

Here, the port_a.h_a and port_b.h b are both set to equal medium.h permanently. The
reason is that the specific enthalpy in connector port_a under the assumption of mass flowing
from a FluidPort_a to another FluidPort_b (not the instance in this dynamic volume) is indeed
medium.h independently of the actual mass flow rate port_a.m_flow. The situation for port_b
is analogous.

Additionally, consider the isenthalpic flow model with a detailed pipe friction correlation
based on the upstream density p,,, and dynamic viscosity 7,,,. To allow for smoothing of the wall
friction correlation at flow reversal, both potential upstream properties are required. Assuming
that the flow model is connected to a control volume on each side, the model is written using a
function f(dp, rho_a, rho_b) and the densities on both sides in order to implement a smooth
transition between positive flow and negative flow (the dependency on and the computation of
the dynamic viscosity are omitted from now on for readability). The code of this flow model is
the following.

1 model FM_pipeFriction
2  replaceable package Medium = PartialPureSubstance;
3 FluidPort_a port._a,
4 FluidPort_b port_b;

5 Density rho_a, rho_b;

6  Pressure dp;

7 equation

8 port_.a.m_flow 4 port_b.m flow = 0;

9 portb.hb = port_a.h by // Energy balance in design direction

10 port.a.h.a = port_b.h.a; // ... in non-design direction

11 rho.a = Medium.density ph(port_a.p, port_a.h b);

12 rhob = Medium.density_ph(port_b.p, port_b.h_a);

13 dp = port._a.p - port_b.p;

14 port_a.mflow = f(dp, rho_a, rho_b); // m_flow vs. dp correlation
15 end FM_pipeFriction;

Listing 4: Isenthalpic flow model using Stencil interface

If the fluid flows in design direction, then the specific enthalpy at port_b under the as-
sumption of mass flowing from FluidPort_b to some FluidPort_a (i.e., port_b.h_b) equals
port_a.h b. Non-isenthalpic flow models are implemented similarly. Consider a basic isentropic
component with an extra mechanical shaft to account for the extracted mechanical power.

1 model FM_stodolaTurbine

2 replaceable package Medium = PartialPureSubstance;
3 FluidPort_a port_a,

4 FluidPort_b port_b;

5  Temperature T_a;
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Modelica.Mechanical .Rotational.Interfaces.Flange_a shaft;
Power P_mechanical;

SpecificEnthalpy h_a_outflow;

SpecificEnthalpy h_b_outflow;

10 Power H flow_a, H flow_b;

11 parameter Real K.t = 0.5 "Stodola turbine constant";

12 equation

13 port.a.m_flow + port_b.m flow = O;

14  h.aoutflow = Medium.isentropicEnthalpy(port_a.p,

©O© 00 N O

15 Medium.setState_ph(port_b.p, port_b.h a));
16 hb_outflow = Medium.isentropicEnthalpy(port_b.p,
17 Medium.setState_ph(port_a.p, port_a.h b));

18 port.a.h.a = h_a outflow;

19  port_b.h.b = h_b_outflow;

20 T.a = Medium.density ph(port_a.p, port_a.h b);

21  P_mechanical = shaft.tau * der(shaft.phi);

22  Hflow.a = port_a.m flow*(if port_a.m flow > O then

23 port_a.h b else port_a.h a);
24  H.flowb = port b.m flow*(if port b.m flow > 0 then
25 port_b.h_a else port_b.h b);

26  port.a.m flow = K-t * ((port.a.p”2 - port.b.p ~2)/T.a)"0.5;
27 P_mechanical + H.flow.a 4+ H_flowb = 0;
28 end FM_stodolaTurbine;

Listing 5: Non-isenthalpic flow model using Stencil interface

The specific enthalpies are transformed according to the thermodynamic processes (here
isentropically) and set to equal to the respective interface variables. Note that the equations
involving the sign of the mass flow rate are only used to establish output variables.

2.5 Biased mizing volume

This thermo-fluid interface has been proposed by Tummescheit [181] and Eborn [53]. In particu-
lar, it was implemented in the THERMOFLUID library by Tummescheit, Eborn and Wagner [182]
and its predecessors. Also, this interface was later implemented in a first issue of the MODEL-
1ca_FLuiD library.

The original THERMOFLUID library used overdetermined connectors to avoid unnecessary
property inversions® as no language elements and tool support were available to avoid this in
a different way. However, the concept can be translated to the non-overdetermined connector
suggested by Elmqvist et al. [58]. As this connector definition is more concise, it will be used
in place of the original connector in the following. Note that this is an universal connector (in
contrast to the complementary connectors used for the stencil interface as described in sec. 2.4).

1 connector FluidPort

2  Pressure p;

3  flow MassFlowRate m_flow;

4  SpecificEnthalpy h;

5 flow EnthalpyFlowRate H_flow;
6 end FluidPort;

Listing 6: Fluid connector using Biased Mixing Volume interface

The interface uses a simple yet powerful approach to fulfill the requirement of numerical
robustness at zero mass flow rate. Instead of utilizing a stencil to access all required proper-
ties, a single intermediate thermodynamic state is defined on the connector. This intermediate

2This topic is discussed later in detail in section 3.1.3 and chapter 4.
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thermodynamic state does not conceptually represent the properties after ideal mixing in the
connection set but equals the thermodynamic properties in the dynamic volume model attached
to the connection set. This is done because the state variables representing the convected quan-
tities of a dynamic control volume remain well-defined at zero mass flow rate. The properties
in the connection set are thus “biased” toward the next dynamic control volume model.

When using this thermo-fluid interface, component models are implemented along a simple
rule. The effort variable representing the intensive convected quantity (i.e., “specific enthalpy”
for the present example) is set to equal that of the control volume model (which, for transient
problems, is either a state variable itself or based on a state variable). The corresponding flow
rate (e.g., “convected enthalpy flow”) is established inside the “flow model”-type components
as mass flow rate times this intensive convected quantity. Here, an upstream value has to be
used. Using this concept, a control volume model can be implemented using the following code.

1 model CV

2 FluidPort port;

3 replaceable package Medium = PartialPureSubstance;
4  parameter Volume V;

5  Medium.BaseProperties medium;

6 Mass m;

7  Energy U;

8 equation

9 port.p = medium.p;

10 port.h = medium.h; // specific enthalpy on the connector
11 m = V*medium.d;

12 U = m*medium.u;

13 der(m) = port.m_flow;

14 der(U) = port.H flow;

15 end CV;

Listing 7: Dynamic control volume model using Biased Mixing Volume interface

The isenthalpic flow model with a detailed pipe friction correlation based on the upstream
density p,,, and dynamic viscosity 7, is now implemented as follows.

1 model FM_pipeFriction
2  replaceable package Medium = PartialPureSubstance;
3 FluidPort port_a, port_b;
4 Density rho_a, rho_b;

5  Pressure dp;

6 equation

7 port_a.m_flow 4 port_b.m flow = 0;

8 port_a.H flow + port_b.H_flow = O;

9  // Enthalpy flow rate

10  port_a.H flow = semilinear(port_a.m flow, port_a.h, port_b.h);
11 dp = port_a.p - port_b.p;

12 rho.a = Medium.density ph(port_a.p, port_a.h);

13 rhob = Medium.density_ph(port_b.p, port_b.h);

14 port_a.m flow = f(dp, rho_a, rho b); // m_flow vs. dp correlation
15 end FM_pipeFriction;

Listing 8: Isenthalpic flow model using Biased Mixing Volume interface

While the original implementation of this concept used an if then else control structure,
the code fragment listed above uses the semilinear ()-operator. Conceptually, semiLinear(x,
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p, n) is translated to if x>=0 then p*x else n*x. Among some other subtleties, the oper-
ator triggers an analysis to avoid unnecessary property inversions®. The operator is defined in
the Modelica Language Specification (e.g., section 3.7.2.4 of [123]).

Putting the states on the interfaces works well whenever model topologies of alternating
dynamic control volume and static flow models are built. The reason is that then the port
enthalpies of each flow model are both a function of the state variables of the fluid stored in the
respective dynamic control volume models, and thus known at each time step. The simulation
problem can be solved at each time step without solving implicit equations.

The basic isentropic component with a mechanical shaft to account for the extracted me-
chanical power is implemented as follows.

1 model FM_stodolaTurbine

2 replaceable package Medium = PartialPureSubstance;

3 FluidPort port_a, port_b;

4  Temperature T_a;

5  Modelica.Mechanical.Rotational.Interfaces.Flange_a shaft;
6 Power P_mechanical;

7 SpecificEnthalpy h_a_outflow;

8  SpecificEnthalpy h_b_outflow;

9 parameter Real K.t = 0.5 "Stodola turbine constant";
10 equation

11 port_a.m_flow + port_b.m flow = O0;

12 port_a.H flow + port_b.H_ flow + P_mechanical = 0;

13  port_a.H flow = semilinear(port_a.m flow, port_a.h,
14 h_a outflow);

15  port.b.H.flow = semilinear(port_b.m flow, port_b.h,
16 h b_outflow);

17  h.a_outflow = Medium.isentropicEnthalpy(port_a.p,
18 Medium.setState_ph(port_b.p, port_b.h));

19  h-boutflow = Medium.isentropicEnthalpy(port_b.p,
20 Medium.setState ph(port_a.p, port_a.h));

21  T.a = Medium.temperature ph(port.a.p, port_a.h);

22  port_a.m flow = K.t * ((port.a.p”2 - port_b.p ~2)/T.a)"0.5;
23  P_mechanical = shaft.tau * der(shaft.phi);

24 end FM_stodolaTurbine;

Listing 9: Non-isenthalpic flow model using Biased Mixing Volume interface

Note that the complete isentropic compression and expansion model supports flow reversal.
As before, only Stodola’s turbine equation is (as implemented) meaningful for the design mass
flow direction only (from port_a to port_b).

2.6 Unbiased miring volume

Out of the established thermo-fluid interfaces, the one proposed by Elmqvist et al. [58] is the
most recent one. It was implemented in a second issue of the MODELICA_FLUID library [28§]
between 2003 and 2008. Like the “Biased Mixing Volume”-interface, it defines a single interme-
diate thermodynamic state on the connection set. The semantics of the interface are designed
such that the intermediate state represents the properties after ideal mixing in the connection
set. This is considered one of the key advantages of the approach, as the connectors and their
variables thus have a rather intuitive meaning. The properties in the connection set are thus
“unbiased”.

In the scope of this non-causal thermo-fluid interface, Elmqvist et al. [58] suggested the
connector definition, which was applied to the biased mixing volume interface already. It was

3This topic is discussed later in detail in section 3.1.3 and chapter 4.
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listed in 6 already and is repeated here for convenience.

1 connector FluidPort

2  Pressure p;

3  flow MassFlowRate m_flow;

4  SpecificEnthalpy h;

5 flow EnthalpyFlowRate H_flow;
6 end FluidPort;

Listing 10: Fluid connector using Unbiased Mixing Volume interface

When implementing component models, an equation for the enthalpy flow rate H.flow is
included for each connector instance in most of the cases. The equation makes use of the
semiLinear ()-operator, which was described in section 2.5. Using this thermo-fluid interface,
a control volume model is implemented using the following code.

1 model CV

2 FluidPort port;

3 replaceable package Medium = PartialPureSubstance;
4  parameter Volume V;

5  Medium.BaseProperties medium;

6 Mass m;

7  Energy U;

8 equation

9 port.p = medium.p;

10  port.H.flow = semilinear(port.m_flow, port.h, medium.h);
11 m = V¥medium.d;

12 U = m*medium.u;

13 der(m) = port.m_flow;

14 der(U) = port.H_flow;

15 end CV;

Listing 11: Dynamic control volume model using Unbiased Mixing Volume interface

Note that an equation for the enthalpy flow rate is given, which depends on the sign of the
mass flow rate. It therefore implements an upstream discretization as discussed in section 2.2.1.3.

The isenthalpic flow model with a detailed pipe friction correlation based on the upstream
density p,,, and dynamic viscosity 7, is implemented as follows.

1 model FM_pipeFriction
2 replaceable package Medium = PartialPureSubstance;
3 FluidPort port_a, port_b;
4 Density rho_a, rho_b;

5  Pressure dp;

6 equation

7 port_a.m_flow 4 port_b.m flow = 0;

8 port_a.H.flow + port_b.H_flow = O;

9  // Enthalpy flow rate

10 port_a.H flow = semilinear(port_a.m_flow, port_a.h, port_b.h);
11 dp = port_a.p - port_b.p;

12 rho_a = Medium.density_ph(port_a.p, port_a.h);

13 rhob = Medium.density_ph(port_b.p, port_b.h);

14 port_a.m flow = f(dp, rho_a, rho b); // m_flow vs. dp correlation
15 end FM_pipeFriction;

Listing 12: Isenthalpic flow model using Unbiased Mixing Volume interface
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Note that for this isenthalpic flow model, only one equation involving the enthalpy flow
rate and the semiLinear ()-operator is formulated (i.e., for one connector instance). Instead
of adding a second equation for the other connector instance, a static balance equation of the
enthalpy flow rates is posed. The basic isentropic component with a mechanical shaft to account
for the extracted mechanical power in turn is implemented as follows.

1 model FM_stodolaTurbine

2  replaceable package Medium = PartialPureSubstance;

3 FluidPort port_a, port_b;

4  Temperature T_a;

5  Modelica.Mechanical.Rotational.Interfaces.Flange_a shaft;
6 Power P_mechanical;

7 SpecificEnthalpy h_a_outflow;

8  SpecificEnthalpy h_b_outflow;

9 parameter Real K.t = 0.5 "Stodola turbine constant";
10 equation

11 port_a.m_flow + port_b.m_flow = O;

12 port._a.H flow 4 port_b.H_flow -+ P_mechanical = 0;

13  port.a.H flow = semilinear(port._a.m flow, port.a.h,
14 h a outflow);

15  port_b.H.flow = semilinear(port_b.m flow, port_b.h,
16 h b_outflow);

17  h_aoutflow = Medium.isentropicEnthalpy(port_a.p,
18 Medium.setState ph(port b.p, port b.h));

19  hboutflow = Medium.isentropicEnthalpy(port_b.p,
20 Medium.setState_ph(port_a.p, port_a.h));

21 T.a = Medium.temperature ph(port_a.p, port_a.h);

22  port.a.mflow = K-t * ((port.a.p”2 - port.b.p ~2)/T.a)"0.5;
23  P_mechanical = shaft.tau * der(shaft.phi);

24 end FM_stodolaTurbine;

Listing 13: Non-isenthalpic flow model using Unbiased Mixing Volume interface

Note that the exemplary component implementations using the unbiased mixing volume
thermo-fluid interface appear to be somewhat similar to those using the biased thermo-fluid
interface discussed in section 2.5. However, the underlying concept and the resulting properties
of the interfaces are quite different.
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CHAPTER 3

REQUIREMENTS ON INTERFACES

The objective of this chapter is to address the definition of metrics, which can be used to assess
the quality of a thermo-fluid interface. The metrics or requirements posed in this chapter can
then be used to rigorously assess non-causal thermo-fluid interface definitions.

3.1 Robustness and efficiency

In engineering, requirements for robustness and efficiency are nearly universal. These require-
ments are pivotal and are addressed at hand of representative metrics such as required compu-
tational time, and the handling of zero and reversing mass flows.

3.1.1 Computational time

The required computational time is an important metric to assess the efficiency of a thermo-fluid
interface. With the definition of relevant test cases, it provides a quantitative metric.
REQUIREMENT 1: The computational time to solve reference problems shall be low.

3.1.2 Zero and reversing mass flow

System-level simulation of thermo-fluid dynamics often involves conceptual simplifications of
physical phenomena such as thermal conduction and convection. For small mass flow rates and
non-idealized fluid continua as described by the Navier-Stokes equations, conduction is the dom-
inant phenomenon. For a flow model two idealizations are usually made. First, the flow model
does not define any storage. As a consequence, all convected properties are propagated instan-
taneously at flow reversal. Second, it is usually decided to neglect conduction. Consequently,
the thermodynamic properties are strictly speaking not defined at zero mass flow rate.

Oo-@ o-@
B

Figure 5: A chain of three static flow models between dynamic control volume models

The resulting problems can be illustrated at the example of numerically zero mass flow rate
through a series of flow models using upstream properties in their equations. The topology
is illustrated in figure 5. Depending on whether the numerical solver converges to mm = 0 + ¢
or mh = 0 — g, the upstream properties refer to the thermodynamic properties on one side or
the other of the series of flow models. Only the control volumes with dynamic states remain
well-defined and continuous.

An established approach to avoid such problems is to forbid such series of flow models and
require alternating control volume and flow models. While this leads to more robust models,
it restricts the user in his or her choice of model topology and increases the number of state
variables, which possibly results in a stiff DAE.

REQUIREMENT 2: A thermo-fluid interface shall handle zero and reversing mass flow in a
robust and efficient manner.

This requirement has further implications. Even if many applications apparently require
only upstream fluid properties, several applications call for access to downstream properties, too.
This may be required for specific types of models themselves or for smoothing of correlations
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at flow reversal. As an example of the latter, consider an algebraic flow model with a detailed
friction correlation based on the upstream density p,,, and dynamic viscosity 7,,,. Following the
reasoning above, at mass flow reversal, the upstream properties change discontinuously and may
show spurious oscillations at numerically zero mass flow rate between both potential upstream
conditions. To avoid numerical difficulties, the correlation is usually smoothed at small mass
flow rates using the properties on both sides of the flow model. This obviously requires access
to both properties (upstream and downstream).

REQUIREMENT 3: A thermo-fluid interface shall provide both upstream and downstream
properties to enable robust and efficient simulation code at zero and reversing mass flow.

As highlighted in the preceding section, convectively transported properties change their
values discontinuously when the mass flow is reverted and, at the same time, conductance or
dissipation is neglected. Similarly, the mixing enthalpy in an ideal mixing junction with n
fluid flows is also discontinuous when mass flows are reverting!'. Additionally, the component
equations may be formulated using Boolean conditions. If an algebraic loop contains a condition
on a variable that depends on the solution of said loop then the nonlinear equation system
contains a Boolean unknown.

REQUIREMENT 4: For a thermo-fluid interface, all such properties (discontinuous iteration
variables, discontinuous residuals, and mixed discrete continuous residual equations involving
Boolean unknowns) shall be avoided.

The reason is that they violate the prerequisites of a relevant fraction of algebraic equation
solvers and potentially result in poor robustness and efficiency if such variables or equations are
contained in algebraic equation systems that have to be solved numerically.

3.1.3 Fluid property inversion at connection points

Following a general minimality principle, a thermo-fluid interface should be defined using a
minimum set of variables that is required to describe the physical interactions taking place at
the interface. Based on the governing equations of thermal fluid dynamics given in section 2.1,
reasonable candidates for such a set are pressure and specific enthalpy. Consider a medium
model using pressure and temperature as independent variables (e.g., a perfect gas). If, based
on the suggested connector variables?, two components are connected together, the following
equations are obtained after the first pass of symbolic manipulation:

medium_a.h = Medium.h_pT(medium_a.p, medium_a.T);
medium_b.h = Medium.h_pT(medium_b.p, medium_b.T);
medium_a.h = medium_b.h;
medium_a.p = medium_b.p;

Assume now that medium a.p and medium a.T are state variables so that they are known
at each time step, while the corresponding medium b properties (e.g., within an adjacent tem-
perature sensor component) must be computed from the system equations. After applying alias
substitution for medium b.h and medium b.p, the Block Lower Triangular transformation allows
to solve these equations sequentially.

medium_a.h := Medium.h_pT(medium_a.p, medium_a.T);
0 = medium_a.h - Medium.h_pT(medium_a.p, medium_b.T);

If no further symbolic manipulation is applied, then the last equation must be solved for
temperature medium b.T numerically, which is inefficient and unfortunate, since it is apparent
that the thermodynamic properties of both medium models are the same.

To solve this problem, two different techniques have been employed.

If n — 2 flows are zero at some instance in simulation time.
2They are effort or potential variables and have thus to be set equal.
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e Instead of using a minimum set of variables in the connector, additional (redundant)
variables can be included. In the given example, temperature could be inserted. Then, the
thermodynamic properties are computed once (in the control volume model for example)
and provided via alias variables to the adjacent component (the temperature sensor in the
given example). While this is a feasible and proven technique, it has one major drawback
in that it allows only one-to-one connections. Consequently, it does not meet flexibility
requirements and is not considered a modern approach.

e In order to maintain well-defined, non-redundant connector designs an alternative ap-
proach can be taken to avoid a numerical solution of the implicit equation. Using a
standardized annotation, the function Medium.h_pT could be marked as monotonic with
respect to the second input argument. Like this, any tool can automatically infer that

v=fyv)rhe=[f(yw) =>v=w (26)
This allows to substitute the implicit equation with the simple assignment

medium_b.T := medium_a.T;

REQUIREMENT 5: A means to avoid property inversion shall be provided. This is an impor-
tant requirement for all component models using thermodynamic property computations that
do not use the connector effort variables as independent variables.

3.1.4 Semantics allow for meaningful simplifications

Efficient and robust handling of reversing flow is not required in all cases. For some applications,
users are explicitly only interested in flow in design direction. Notably, such simplifications
usually result in a relevant speed-up of computational time, which may be crucial for real-time
performance of complex models for example.

REQUIREMENT 6: The semantics of a thermo-fluid interface shall thus include a means
to prescribe assumptions on the flow direction of fluid through the interface. This may be
prescribed constantly or for initialization and time simulation separately.

One approach to do so is to prescribe the min or max attribute of floating point variables
on the connectors (e.g., the mass flow rate). Then, a Modelica translator can make such
simplifications based on the semantics of the interface.

3.1.5 Efficient handling of ideal mixing

Ideal mixing is a frequent assumption. In case of a large number of fluid flows n mixed in a
single ideal junction or media with many independent substances nx;, the ideal mixing may
become inefficient if the equations were not properly designed.

REQUIREMENT 7: Ideal mixing shall be robust and efficient for a thermo-fluid interface.
Ideally, the number of equations in the reduced algebraic equation system should be independent
of both the number of mixed flows n and the length of the independent substance vector nx;.

While no approach was formulated yet to reach both goals concurrently, it is certainly
possible to stay independent of one of the two parameters.

3.2 User Friendliness, end-user

A thermo-fluid interface should provide an intuitive mapping between the model topology ex-
posed in a graphical user interface and the mathematical model it represents. For instance, a
connection line is often interpreted as an infinitesimally short, idealized pipe segment between
the connected components. This implies that, for example, two dynamic control volume models
directly connected to each other, are not lumped into a single volume. While, following the
given interpretation of the connection line, the volume pressures have to be identical, their
temperature should, in general, be different.



26 CHAPTER 3. REQUIREMENTS ON INTERFACES

REQUIREMENT 8: To assist the end-user, the model decomposition shall be intuitive. Fur-
thermore, the thermo-fluid interface variables provided in simulation results shall have a clear
meaning.

3.3 User Friendliness, developer

Even if a developer thoroughly masters a thermo-fluid interface definition, it may be easy or
laborious to build models using the interface.

REQUIREMENT 9: To assist the the developer, the implementation of models using a given
thermo-fluid interface shall be intuitive and simple.

3.4 Flexibility

Flexibility is demanded by both library developers and users. This has many advantages be-
yond sparing the need to develop and maintain several incarnations of the same model (e.g.,
when using complementary connectors A and B the models with connectors AAA, AAB, ABB,
BBB). A thermo-fluid interface with such flexibility enables complex hierarchies, especially in
conjunction with advanced language features such as parametric polymorphism (i.e., type pa-
rameters). Otherwise, the varying need for junction models or junction parametrization and
potentially conflicting requirements on polarity conventions (e.g., design mass flow direction)
impose burdens on the developer.

As a practical example, consider figure 6. The element with three ports illustrates a hi-
erarchical model. Following some convention on component polarity (e.g., design mass flow
direction), all possible polarity combinations are required even for simple models. In general it
is not possible to accomplish this with vectorized interfaces (as in the case of junction models).

REQUIREMENT 10: A thermo-fluid interface shall utilize a single universal connector (instead
of, for example, two complementary ones). Furthermore, it shall allow multiple way connections
(as opposed to one-to-one connections, which require explicit junction models).

Figure 6: A notional hierarchical model
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CHAPTER 4

PRELIMINARY EVALUATION OF ESTABLISHED INTERFACES

The objective of this chapter is to apply the requirements on thermo-fluid interfaces, which were
defined in chapter 3. Like this, the established interfaces described in chapter 2 are assessed. In
particular, a consistent line of argument shall trace the difficulties reported in the introduction
to deficiencies of the interfaces with respect to the requirements.

Note that the assessment involves not only analysis of the semantics, but also actual compu-
tation on exemplary cases (due to, for instance, the requirement for low computational time).
For this reason, the chapter first introduces methods and tools that were developed for the
purpose of this comparison. Then, results are presented and discussed.

4.1 Methods and tools

In order to systematically compare thermo-fluid interfaces, dedicated testing tools were de-
veloped. These were compiled in a testing library FLUIDSANDBOX. The key concept was
to treat the thermo-fluid interfaces (i.e., connector definitions and connection semantics) via
parametric polymorphism [120]. The testing library was implemented in the equation-based,
object-oriented modeling language Modelica. Using parametric polymorphism (a class with
replaceable prefix [23]), it allows exchanging the non-causal thermo-fluid interface.

As a result, a plant model can be built independently of a specific thermo-fluid interface.
At the same time, this enforces that the only difference between models that are compared is
indeed the thermo-fluid interface. This allows to compare “apples to apples”.

4.1.1 The FluidSandbox library

Before discussing the concept and implementation, general constraints on model topologies that
can be depicted using this library are introduced. These constraints are due to limitations of
different thermo-fluid interfaces as described in chapter 2.

4.1.1.1 Topology constraints

Several implications on admissible model topologies result from the goal of allowing to swap the
thermo-fluid interface implementations freely without making any changes to a test model and
without changing what is modeled. After all, the test model has to meet all the restrictions of
the different interfaces. The most important generic rules for test models follow.

1. Only volume models with FluidPort_A connectors are allowed (inherited from the biased
mixing volume interface).

2. Only one-to-one connections are allowed (inherited from the stencil interface).

3. Only connections between FluidPort_A and FluidPort_B interfaces are allowed (inherited
from the stencil interface, recommended for the biased mixing volume interface).

4. A flow model has to provide two FluidPort_B connectors; an asymmetric distributed pipe
model using a staggered grid has to have a FluidPort_A and a FluidPort_B connector
(inherited from the biased mixing volume interface).

5. Adapters such as AA or BB shall not be used, as they infer with the alternating pattern
of control volumes and flow models (inherited from the biased mixing volume interface).
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6. Boundary conditions can be used with both FluidPort_A and FluidPort_B interfaces
as long as rule three is followed (connections are only made between FluidPort A and
FluidPort_B instances). Otherwise, the modeled system is not constant over the thermo-
fluid interface implementations as using a FluidPort_A boundary condition connected to
a dynamic volume results in a higher index problem (and possibly index reduction, which
removes the specific enthalpy state when using the biased mixing volume interface). When
using any of the other thermo-fluid interfaces, no higher index problem results.

4.1.1.2  Implementation

In FLUIDSANDBOX, each thermo-fluid interface is implemented using parametric polymorphism
and a replaceable package, which has to be a sub-type of PartialFluidInterface. This virtual
class defines the interface to which the thermo-fluid interface implementations have to conform.
First and foremost, it contains an interface for the connector definition.

1 partial package PartialFluidInterface

2 "Partial fluid interface implementation"

3

4 replaceable partial connector FluidPort

5 "Partial connector for FluidInterface"

6

7 replaceable package Medium = Media.Interfaces.PartialMedium
8 "Medium model";

9
10  end FluidPort;
11
12 replaceable partial connector FluidPort_a
13 "Generic fluid connector at design inlet"
14
15 replaceable package Medium = Media.Interfaces.PartialMedium
16 "Medium model";

17

18  end FluidPort_a;

19
20  replaceable partial connector FluidPort_b
21 "Generic fluid connector at design outlet"
22
23 replaceable package Medium = Media.Interfaces.PartialMedium
24 "Medium model";
25
26  end FluidPort_b;
27
28 /) ..
29

30 end PartialFluidInterface;
Listing 14: Virtual fluid interface, fluid connectors

These connector definitions are provided in the packages implementing thermo-fluid inter-
faces. Below, an example is attached for the implementation of the stencil approach described
in section 2.4.

1 package Stencil A

2 "Stencil on staggered grid (similar to the ThermoPower library)"
3

4 extends Interfaces.PartialFluidInterface;
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redeclare connector extends FluidPort
"Connector of thermo-fluid interface"

// Pressure in the connection point

Medium.AbsolutePressure p;

// Mass flow rate from the connection point into the component
flow Medium.MassFlowRate m flow

end FluidPort;

redeclare connector extends FluidPort_a
"Generic fluid connector at design inlet"

extends FluidPort;

// Upstream specific enthalpy if fluid flew out of this port
output Medium.SpecificEnthalpy h_a;

// Upstream specific enthalpy if fluid flew into this port
input Medium.SpecificEnthalpy h_b;

end FluidPort_a;

redeclare connector extends FluidPort_b
"Generic fluid connector at design outlet"

extends FluidPort;

// Upstream specific enthalpy if fluid flew into this port
input Medium.SpecificEnthalpy h_a;

// Upstream specific enthalpy if fluid flew out of this port
output Medium.SpecificEnthalpy h_b;

end FluidPort_b;

/)

42 end Stencil_A;

Listing 15: Implementation of fluid interface, fluid connectors

Additionally to the interface for connectors, PartialFluidInterface defines the interfaces

for model classes such as boundary conditions or isenthalpic flow models (SourceInterfaceA,
SourcelInterfaceB, LumpedVolumeInterface, FlowModelInterface, FlowModelInterfaceAA,
FlowModelInterfaceAB etc.). First, a simple example of the interface of a source model class
using a FluidPort_A connector is given. In PartialFluidInterface, it is defined as follows.

1
2
3
4
5
6
7
8

partial package PartialFluidInterface

"Partial fluid interface implementation"

/).

replaceable partial model SourceInterfaceA
"Partial fluid interface of a source model (one Port_a)"
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9 // Medium model

10 replaceable package Medium

11 = Modelica.Media.Interfaces.PartialMedium "Medium model";
12

13 // Internal connector for sources

14 Source.InternalBus.InterfaceToImplementation internal(
15 redeclare final package Medium = Medium);

16

17 // Sandbox settings

18 outer Settings.SandboxSettings sandboxSettings

19 "Globally prescribed sandbox settings";

20

21 // Connector declaration

22 FluidPort_a port(redeclare package Medium

23 = Medium) "Fluid connector";

24

25  end Sourcelnterfacel;

26

27  replaceable partial model SourceInterfaceB

28 "Partial fluid interface of a source model (one Port_b)"
29

30 /) ...

31

32 end SourcelInterfaceB;

33

34 /..

35

36 end PartialFluidInterface;
Listing 16: Virtual fluid interface, model classes

Using the unbiased mixing volume thermo-fluid interface described in section 2.6, the inter-
face of the model class is implemented in a straight-forward manner. Obviously, a component
model cannot be implemented using the interface of the model class alone. The connector vari-
ables for mass flow rate and pressure are defined via alias equations on variables on an internal
bus connector. The enthalpy flow rate is established via an equation in such variables. The
internal bus was declared in the previous listing 16 in line 14.

1 package Unbiased_A

2 "Unbiased mixing volume (similar to the Modelica Fluid library)"
3

5

6 redeclare model extends SourceInterfaceA

7 "Fluid interface of a source model (one Port_a)"

8

9  equation
10 // Provide the component implementation with the required
11 // variables from the connectors
12 port.m_flow = internal.m flow_in;
13
14 // Put the variables provided by the component implementation
15 // onto the connectors
16 port.p = internal.p_source;

17 port.H flow = semilinear(port.m flow, port.h, internal.h source);
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18  end SourcelnterfaceA;
19

20 // ...

21

22 end Unbiased_A;

Listing 17: Implementation of fluid interface, model classes

The internal bus establishes a link between the thermo-fluid interface implementation and
the generic component implementation. Figures 7 and 8 show the outside view and inside view
(icon and diagram) of a generic boundary condition model in FLUIDSANDBOX. The thermo-
fluid interface of the model class “boundary condition with FluidPort_A” discussed so far is
shown in figure 8 in the middle. The other model in this figure is the implementation of the
physical behavior of the boundary condition (as opposed to the thermo-fluid interface). Both
are connected via an orange line, which represents the connection between both internal bus
connectors.

p

>
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Figure 7: Outside view of a boundary condition model in FLUIDSANDBOX

p_in

»

»
¥

Figure 8: Inside view of a boundary condition model in FLUIDSANDBOX

The internal bus connector definition is specific to the type of component. This could
be generalized, but in order to arrive at a library design that is still easy to understand and
maintain, it was decided to not do so.

In order to implement new connection semantics for a new thermo-fluid interface, the
thermo-fluid interface package provides a Boolean package constant that indicates whether
or not to use a manual implementation of connection semantics. This is useful to test such
semantics and to substantiate the claim that an interface has superior properties and that a
regular implementation in a Modelica translator is required. Conceptually, a connection seman-
tics object is an instance of a model class that has two ports. It has to replace each connect ()
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statement with one instance and two connections at either port. In the following example, a
listing is provided that implements such an object for an obsolete interface iteration! [56].

1 redeclare replaceable model extends ConnectionSemantics

2
3
4
5
6
7
8
9

10

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

"Implements unsupported connection semantics"

equation

/*

Original form of equations generated from the
unsupported connection semantics

// Effort variables _without- inside prefiz: Equality
port_a.p = port_b.p;

port_a.h_outside = port_b.h_outside;

// Effort variables _with_ inside prefiz: Ignore

// Flow variables: Sum to zero

port_a.m_flow + port_b.m_flow = 0;

port_a.H_flow + port_b.H_flow = 0;

// Plus declaration equations inside connector (not listed)

Y/

// Manipulated form of connection equations using
// mew connection semantics

port_a.p = port_b.p;

port_a.m_flow 4 port_b.m_flow = 0;

// Enthalpy flow
port_a.h_inflow = port_b.h outflow;
port_a.h outflow = port_b.h_inflow;

port_a.h outside = noEvent(if -port_a.m flow > 0 then
port_a.h outflow else port_a.h inflow);

port_b.h outside = noEvent(if -port_b.m flow > 0 then
port_b.h outflow else port_b.h inflow);

port_a.H flow = -semilinear(
-port_a.m_flow,
port_a.h_inflow,
port_a.h outflow);

port_b.H flow = -semilinear(
-port_b.m _flow,
port_b.h_inflow,
port b.h outflow);

44 end ConnectionSemantics;

Listing 18: Implementation of fluid interface, connection semantics

'No example for such a connection semantics object for the stream connectors is given. First, this is the

case because the concept is only introduced later in chapter 5. Furthermore, the connection semantics object
is trivial for stream connectors, as it only has to flip the variables h_outflow and the ones representing the
inStream()-operator in the test implementation.
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Additionally to the thermo-fluid interface described so far, an interface for component im-
plementations and internal buses is therefore required. These are compiled in packages, too.
Each of them contains an internal bus definition, partial models with replaceable thermo-fluid
interface and replaceable component implementation, as well as a interface for component im-
plementations. The following listing provides an example of such an internal bus definition.

1 package Source "Interfaces for source models"

2

3 package InternalBus "Internal interfaces for sources"

4 connector InterfaceToImplementation

5 "Internal bus: Connects from interface to implementation"

6

7 // Medium model

8 replaceable package Medium

9 = Modelica.Media.Interfaces.PartialMedium "Medium model";
10

11 // Mass flow rate

12 output Medium.MassFlowRate m_flow_in "Mass flow rate into port";
13

14 // Thermodynamic properties of reservoir

15 input Medium.AbsolutePressure p_source "Pressure in source";
16 input Medium.SpecificEnthalpy h_source

17 "Specific enthalpy in source'";

18

19 end InterfaceToImplementation;
20
21 connector ImplementationToInterface
22 "Internal bus: Connects from implementation to interface"
23
24 // Medium model
25 replaceable package Medium
26 = Modelica.Media.Interfaces.PartialMedium "Medium model";
27
28 // Mass flow rate
29 input Medium.MassFlowRate m_flow_in "Mass flow rate into port";
30
31 // Thermodynamic properties of reservoir
32 output Medium.AbsolutePressure p_source "Pressure in source";
33 output Medium.SpecificEnthalpy h_source
34 "Specific enthalpy in source'";
35
36 end ImplementationToInterface;
37
38 connector Observer
39 "Internal bus: Allows to provide the variables to sensors etc"
40 /) ...
41 end Observer;
42  end InternalBus;
43
aa /) ...
45

46 end Source;

Listing 19: Virtual components, internal bus
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An example of partial models with replaceable thermo-fluid interface and replaceable compo-
nent implementation can be inferred from figure 8. The definition of the interface for component
implementations is simple in many cases, as it usually contains an internal bus connector and
common implementation elements such as parameters or non-fluid connectors (e.g., heat transfer
ports) only.

In order to control plant operation, sensors are often required. This is an important topic for
the present comparison, as sensor models may affect the robustness and efficiency of a simulation
model if not implemented properly. In FLUIDSANDBOX, the use of explicit sensor models is
discouraged, as it is difficult to avoid varying effects on the evaluation metrics for all thermo-
fluid interface implementations. Instead, component models provide additional sensor ports,
on which readily available thermodynamic properties are exposed (in particular pressure and
specific enthalpy). A sensor component may then take these values directly out of the component
implementation (it is not connected via a fluid connector but a causal data connector) and
compute derived quantities requested by the modeler such as saturation temperature. Like
this, adverse effects of sensors both on the robustness as well as the efficiency are circumvented,
as expensive computations of unnecessary thermodynamic properties are avoided.

4.1.2 Reference models

Several reference models were implemented for comparison of thermo-fluid interfaces. These
include examples of important topology elements such as ideal mixing and industrial application
models. Out of the latter type, a set of models was chosen as reference cases in this comparison.

These models implement a conventional vapor compression cycle using a sub-critical process.
The model fidelity is similar to that used by Pfafferott [141]. The model topology is shown in
figure 9. The illustration also shows how the thermo-fluid interface can be exchanged in a
Modelica editor at the click of a mouse button.
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Figure 9: Reference model of vapor compression cycle

In particular, the heat exchangers use a standard Finite Volume Method with a fixed grid
for discretization of the fluid passes. The discretization uses n = 12 cells per heat exchanger
refrigerant side and air side. The heat transfer was implemented using the Nusselt number
correlations of Shah [161] and Gungor and Winterton [75] for the refrigerant. For the air
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side, the Colburn correlation of Chang and Wang [34] was used. The refrigerant R134a was
modeled following Tillner-Roth and Baehr [170]. This model of the thermodynamic properties
was implemented outside of the present research by the company XRG Simulation GmbH. In
the model, a topology of alternating flow model and control volume models is implemented. The
model includes some simplifications, in particular, dry air is assumed and thus no condensation
is included.

The reference models are obtained by simulating the vapor compression cycle under vary-
ing boundary and initial conditions. They all involve transient simulation only; initialization
problems are addressed in chapters 7 to 10. In the end, the following reference models were
defined.

1. Relaxation transient
2. Change in set-point after initialization in steady-state

3. Shut-down using pump-down control after initialization in steady-state

4.2 Results

First, the results of the comparison are presented in table 1 and then each score is explained in
detail.

Criterion Biased Stencil Unbiased
Robustness and efficiency + + -

- Computational time ++ ++ -

- Zero and reversing flow + ++ .

- Property inversion + - ++

- Simplifications + + +

- Ideal mixing - + -

User fr., end-user - - +

User fr., developer + - +
Flexibility - . 4t

Table 1: Preliminary evaluation of established thermo-fluid interfaces

4.2.1 Robustness and efficiency
4.2.1.1 Computational time

Reproducibility of the simulation timings was high. Still, each reference model was run ten
times per thermo-fluid interface to establish the required computational time. The results were
checked for outliers, which did not exist in any sample, and an average was established over all
ten cases per interface.

Figure 10 shows the required computational time for the reference model “Relaxation tran-
sient”. These and all other computations were carried out on a Windows PC with a Intel®
Core” 2 Duo T7700 CPU and 2 giga bytes of RAM. The figure shows how much computational
time (ordinate) was required per simulation time (abscissa). A result below the angle bisector
would signal real-time capability. Figures 11 and 12 show the required computational time for
the reference models “shut-down” and “change in set-point” respectively.

In all three figures, the total required computational time is most relevant. It can be seen
on the far right of the figures (at maximum simulation time). From the figures we infer that
the required computational time is nearly identical for the biased mixing volume and stencil
thermo-fluid interfaces. The unbiased mixing volume thermo-fluid interface in turn requires
nearly twice the computational time in comparison to the other two approaches. This is why,
based on requirement 1, the thermo-fluid interfaces using the stencil and the biased mixing
volume were given a very good score and the unbiased mixing volume was given a poor score.
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Figure 10: Required computational time, reference case “Relaxation transient”

4.2.1.2  Zero and reversing flow

Unbiased mizing volume: The semantics of this thermo-fluid interface are constructed to pre-
scribe an infinitesimally small mixing volume in each connection set. Consider the case of a
series of flow models between dynamic control volume models (as shown in figure 5 in sec-
tion 3.1.2). After symbolic manipulation of the equations involving the semiLinear ()-operator
(see sections 2.5 and 2.6 for details), the specific enthalpy in the connection point between the
first and the second flow model will be established based on the following expression

1 flowModelTwo.port_a.h = if flowModelTwo.port_a.m flow > O then
2 volumeOne.medium.h else volumeTwo.medium.h;

Listing 20: Energy balance, unbiased mixing volume interface

Consequently, the densities such as flowModelOne.rho b and flowModelTwo.rho_a that are
required for the wall friction correlation will depend on the sign of the flow rate. This introduces
a discontinuity of density around zero mass flow rate (which is a critical case from a numerical
point of view), and creates a system of non-smooth nonlinear equations whose unknowns are
the port pressure, the port enthalpy, and the mass flow at the connection point between the
two flow models. Furthermore, at numerically zero mass flow rate, the port-specific enthalpy
shows spurious oscillations around both potential upstream values depending on which limit of
zero the nonlinear equation solver converges to.

The same kind of problem arises when multiple-way connections are made between flow
models and even for connections between flow models and control volumes (i.e., if a user sticks
to an alternating model topology). The unbiased mixing volume interface thus does not fulfill
requirement 2 adequately. Also, the interface does not provide both upstream and downstream
values of convected properties, and therefore fails to meet requirement 3. This is why this
thermo-fluid interface has a poor score for zero and reversing mass flow rates.

Stencil: For this thermo-fluid interface, the situation is different. By construction, it allows
propagation of both upstream and downstream convected quantities and thus fulfills requirement
3. Additionally, the approach results in high robustness and efficiency. This is obvious from an
analysis of the connection semantics on a series of flow models.

In case of such a topology, the specific enthalpies of the dynamic control volume models at
each end of the series of flow models are propagated in both directions. The specific enthalpies
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Figure 11: Required computational time, reference case “Shut-down”

of the control volume models are usually state variables themselves or computed based on
state variables and thus well-behaved. Like this, the density for the wall friction correlation
is permanently available for both potential flow directions and well-behaved. For isenthalpic
flow models along the topology, the control volume specific enthalpy is propagated without
any modification. In case of non-isenthalpic flow models, the specific enthalpy is explicitly
transformed according to the thermodynamic process (for examples, see section 2.4). In either
case, the two exemplary density variables are well-behaved for any value of the actual mass flow.
Furthermore, they do not change when the sign of the flow rate is inverted. No discontinuities are
generated in case of nonlinear algebraic equation systems as long as the component equations are
smooth. Consequently, this thermo-fluid interface also fulfills requirement 4 and thus receives
a very good score.

Biased mizing volume: When using this thermo-fluid interface, then the convected quantities
on the connectors are always well-behaved as long as alternating topologies of flow models and
volume models are used. The reason is that the convected quantities are state variables inside
the volume models (or established using explicit algebraic equations based on state variables).
Like this, even equations involving conditions on the sign of the mass flow rate such as ones
involving the semiLinear ()-operator will, in almost all sane applications, result in continuous
solutions for iteration variables and residuals. If this specific model structure that this concept
was designed for is followed, then it results in robust and efficient models. In case of a series
of flow models between control volume models (such as the topology discussed in the previous
paragraph), the semantics of this thermo-fluid interface also result in an infinitesimally small
mixing volume like those of the unbiased mixing volume interface do. Just like before, after
symbolic manipulation of the equations involving the semiLinear ()-operator, the specific en-
thalpy in the connection point between the first and the second flow model will be established
based on the following expression

1 flowModelTwo.port_a.h = if flowModelTwo.port_a.m_flow > O then
2 volumeOne.medium.h else volumeTwo.medium.h;

Listing 21: Energy balance, biased mixing volume interface

Again, the densities such as flowModelOne.rho b and flowModelTwo.rho_a that are re-
quired for the wall friction correlation will depend on the sign of the flow rate. This introduces
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Figure 12: Required computational time, reference case “Set-point”

a same discontinuity of density around zero mass flow, and creates a system of non-smooth
nonlinear equations. Furthermore the port-specific enthalpy shows spurious oscillations at nu-
merically zero mass flow rate around both potential upstream values depending on which limit
of zero the nonlinear equation solver converges to. In summary, the interface fulfills require-
ment 2 well for specific topologies. For these topologies (alternating flow models and control
volumes), it also fulfills requirement 32. In case of other topologies, robustness and efficiency
are poor. This is why, in summary, this interface received a good score for this metric.

Based on the discussion above, it is obvious that the thermo-fluid interfaces fulfill require-
ment 4 (avoid discontinuous residuals) in a similar fashion. The unbiased mixing volume inter-
face does not fulfill it at all, the biased mixing volume interface only for alternating topologies,
and the stencil interface for all topologies.

4.2.1.8 Fluid Property Inversion at Connection Points

Conceptually, an algorithm in symbolic preprocessing to avoid property inversions at connec-
tion points is orthogonal to the definition of the thermo-fluid interface. At the time of writing,
it is integrated into the semantics of the semiLinear ()-operator however. Therefore, the un-
biased mixing volume thermo-fluid interface fulfills requirement 5 and receives a very good
score. The biased mixing volume interface in turn used overdetermined connectors in it orig-
inal form, which is not considered an elegant solution to this problem. However, as shown in
section 2.5, this thermo-fluid interface can also be used with non-overdetermined connectors
and the semilinear ()-operator. Therefore, it can be modified to meet requirement 5 and re-
ceives a good score. On the other hand, the stencil thermo-fluid interface does not provide any
means to avoid unnecessary property inversions. Theoretically, it could be used together with
an overdetermined connector, too (and this would not result in additional constraints on pos-
sible connections, as the interface uses complementary connectors and one-to-one connections
only anyway). Still, this is not considered an elegant solution as it is not based on symbolic
preprocessing. This is why this interface does not properly fulfill requirement 5 and is given a
poor score.

2Note that this interface fulfills requirement 3 only for flow model-like components. For control volumes access
to both potential upstream properties is usually not required however and thus this requirement is considered
fulfilled for the given type of topology.
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4.2.1.4 Semantics Allow For Meaningful Simplifications

For all established thermo-fluid interfaces, simplifications in terms of a predefined flow direction
can be made easily by adapting equations. For the stencil interface, only the equations relating
the meaningful convected quantity variables (forward direction) need to be implemented, the
other one can even be removed from the connector. For the biased and unbiased mixing volume,
the conditional expression to establish the flow rate of the convected quantity is replaced by an
unconditional product of quantity and mass flow rate.

If a Modelica translator provides such symbolic preprocessing, then the min or max attributes
of floating point variables on the connector mass flow rate can alternatively be used to make such
simplifications. Such attributes may be set based on Boolean parameters indicating whether to
assume uni- or bi-directional flow. Then, the translator can, for example, select the appropriate
branch of a conditional expression of the semiLinear ()-operator.

To summarize, all three established thermo-fluid interfaces fulfill requirement 6 equally well
and are thus given a good score.

4.2.1.5 Efficient Handling Of Ideal Mizing

For ideal mixing between three flow models and a flue gas with six substances, the unbiased and
biased mixing volume interfaces result in an nonlinear algebraic equation system with twelve
to 23 iteration variables (after symbolic reduction using tearing [57, 33, 25]). Obviously, this
depends on the precise tearing heuristics of a Modelica tool. The given numbers apply for the
Modelica translator Dymola® in versions up to 7.4. Using the stencil thermo-fluid interface,
the coupled algebraic equation system had six to eight unknowns.

In summary, the efficiency and robustness of modeling ideal mixing together with fluids that
contain several substances and either the unbiased or the biased mixing volume interface are
poor. If these interfaces are used, it is usually advantageous to employ small dynamic mixing
volumes, even if this may increase stiffness of the resulting equation system. This is why the
latter interfaces were given a poor grade in this regard. The stencil interface in turn can be
used for such ideal mixing problems and therefore this interface is understood to comply with
requirement 7.

Note that the ideal mixing problem is analyzed in more detail in section 5.1.2.

4.2.2 User friendliness, end-user

Unbiased mizing volume: A goal of the development of the unbiased mixing volume thermo-
fluid interface was to arrive at an intuitive meaning of the connection sets, which conceptually
represents an infinitesimally small ideal mixing volume for this interface. For a simple model
topology, the resulting system boundaries are illustrated in figure 13.

System boundary flow model System boundary control volume

Figure 13: Control volume boundaries for example model topology (unbiased mixing volume
interface)
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For this thermo-fluid interface, interpreting the variables in the simulation results is easy.
Furthermore, if connecting two control volume models, their pressure states are lumped by
index reduction, their specific enthalpies remain separate however. This is a proper result.
Altogether, requirement 8 is considered fulfilled and the interface is given a good score.

Biased mixing volume: The key element of this concept is that the specific enthalpy of a
connection set is the specific enthalpy of the attached control volume model. This is illustrated
via the system boundaries in figure 14 and leads to a simple description of the connector
variables. Consider the case of mass flowing from left to right however. Then, the specific
enthalpy at the outlet of the flow model will not reflect the specific enthalpy of the flow exiting
said component in general. If, for example, the control volume model in the middle is attached
to some heat source or sink, then the specific enthalpy at that connector will represent the
thermodynamic properties subject to this heat transfer already. This behavior is not intuitive
and may be confusing to users. Even if the connector variables have a simple definition, their
meaning may not be always easy to understand for end-users. It might be necessary to declare
extra variables reflecting the outlet conditions to clarify the results.

System boundary flow model System boundary control volume

Figure 14: Control volume boundaries for example model topology (biased mixing volume
interface)

The same can be stated about other topologies. If a control volume is part of a connection
set, then the specific enthalpy in the connection set is always the specific enthalpy of the fluid
within this control volume, while in a connection set spanning flow models only it actually
depends on the direction of the flow. In fact, if a connection set included several control
volumes and flow models then a virtual mixing volume was formed spanning all the control
volumes and all the flow model connectors. This can be confusing for users, especially if this
virtual mixing volume was spread among different composite models.

Consider the connection between two control volume models. In this case, both the pressure
and the specific enthalpy of the fluid of the two volumes are the same. From a physical point of
view, this means that the two volumes are merged into a single bigger volume, rather than being
connected through a pipe of infinitesimal length. Modeling tools often employ index reduction
in this case, which might be problematic in cases of complex media models, as the required
derivatives may not be available at all or inefficient. Furthermore, this can be confusing to
end-users, again especially if the two control volumes are hidden inside two hierarchically built
models (two heat exchangers for example). In this approach, an ideal pipe model has to be used
to “separate” two volume models.

Considering these facts, requirement 8 is not properly fulfilled and the biased mixing volume
is awarded a poor score with respect to user friendliness for end-users.

Stencil: The physical meaning of the variables in the connector, which represent the con-
vected quantities, is not intuitive as that for the unbiased mixing volume interface for example.
Again, figure 14 illustrates the mapping of the components as shown in a graphical user in-
terface (blue) to the mathematical models they represent (black). The stencil provides access
to both system boundaries and thus upstream and downstream properties. The end-user has



4.2. RESULTS 41

to understand under which conditions what variable refers to the actual, not the hypothetical
case. If, for some reason, the exact compliance between interface instance name and class name
is not given, inspection of the interface quantities may be confusing to end-users.

System boundary flow model System boundary control volume

Figure 15: Control volume boundaries for example model topology (stencil interface)

Whenever a direct connection is made between two control volumes, the two volume pres-
sures are bound to be equal, but the enthalpies are not. The generated model corresponds to
two volumes that were connected by an infinitesimally short pipe and they are not merged into
a single, bigger volume.

All in all, requirement 8 is not properly fulfilled and the thermo-fluid interface is given a
poor score with respect to user friendliness for end-users.

4.2.3 User friendliness, developer

Unbiased mizing volume: In most cases, the thermo-fluid interface of models can be implemented
easily. For most models, exactly one equation per convected quantity has to be implemented
using the semilLinear ()-operator. If the convected quantity is a vector, then this obviously
has to be a vector equation. An exemplary exception to this rule is given by flow models
conserving the convected quantity statically® (as mentioned in section 2.6 already, examples are
isenthalpic and statically species conserving flow models). Here, such equations are provided for
one connector only. For the other, a static flow balance equation is formulated for the flow rate
variables of the convected quantities. Altogether, requirement 9 is fulfilled and the thermo-fluid
interface is awarded a good score.

Biased mizing volume: If a developer thoroughly understands this concept, the thermo-fluid
interface of model classes can be implemented easily, too. A developer has to understand the
distinction between connectors, for which the intensive convected quantity has to be prescribed,
and connectors, for which the convected flow rates are prescribed. For all connectors of com-
ponents that represent simple lumped parameter approximations of dynamic control volumes,
the former is the case. Also, for components, which represent discretized distributed domains
on a staggered grid, all connectors that expose a control volume of a dynamic mass and energy
balance are usually handled this way. Connectors of simple lumped parameter approximations
of flow models and ones that expose a control volume of a static momentum balance on a
staggered grid approximation of a distributed domain are handled differently. For them, the
convected flow rates are usually prescribed. This interface therefore fulfills requirement 9 and
is also given a good score.

Stencil: Even if a developer understands this concept, the thermo-fluid interface of a model
class can be laborious to implement. The reason is that the conceptual cases of fluid flowing
into or out of a connector need to be translated to the A-B or B-A pairing at the respective
connectors. In order to do so, the correspondence between h_a for fluid leaving a FluidPort_A

3This is obviously a redundant (statically plus flow model) but emphasizes the point.
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connector and h_b for fluid entering the FluidPort_A connector on one hand and h_b for fluid
leaving a FluidPort_B connector and h_a for fluid entering the FluidPort B connector on the
other need to be present. With some practical experience this correspondence is obvious but it
may still be required to look up the fluid connector class if the instance name does not properly
reveal whether a type A or type B connector is used. In summary, this concept does not properly
fulfill requirement 9 and is given a poor score in this regard.

4.2.4 Flexibility

Stencil: The Stencil concept does not comply with the flexibility requirements defined in sec-
tion 3.4. The need of connecting complementary connectors introduces artificial constraints
in how models can be connected, and requires usage of different models for the same physical
object, which only differ by the type or polarity of their connectors. This also imposes con-
straints on complex model hierarchies, especially ones using advanced language features such as
parametric polymorphism. Obviously, in this concept, multiple-way connections require explicit
junction models, where the ideal mixing has to be modeled explicitly, i.e., it is not a result of the
connection semantics. Therefore, requirement 10 is not fulfilled and the thermo-fluid interface
performs poorly in this regard.

Biased mizing volume: This thermo-fluid interface does not fully comply with the flexibility
requirement 10 defined in section 3.4. While it utilizes a universal connector that does allow any
type of connection in theory, there are some limitations in practice. One is that the connection
set should only contain one control volume model, otherwise they are lumped together (see
section 4.2.2). A second limitation is that connection sets between two or more flow models
without a control volume tend to deteriorate the robustness of this approach (see section 4.2.1.2).
In consequence, to fully exploit the “good” robustness of this concept, the alternating use of
control and flow models is required and thus the flexibility is limited.

Unbiased mizing volume: The unbiased mixing volume thermo-fluid interface utilizes a
universal connector and allows multi-way connections. The connection semantics directly result
in appropriate static balance equations for the connection set and explicit junction models are
not needed. Therefore, this thermo-fluid interface fulfills requirement 10 and receives a very
good score.

4.3 Summary

Altogether, either robustness and efficiency or user friendliness and flexibility have to be selected.
This is considered a systematic error and explains the observations described in section 1.5.3.
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CHAPTER 5

IMPROVEMENTS AND ALTERNATIVES

The objective of this chapter is to suggest improvements to fulfill the requirements defined in
chapter 3 in a more satisfactory manner. Much of the development was triggered in the year
2007 when it became clear to the Modelica community that the existing thermo-fluid interfaces
for equation-based, object-oriented modeling languages did not meet the high standards the lan-
guages set in other domains. Consistently treating the convected quantities as “effort variable”
using the unbiased mixing volume interface as described in section 2.6 was essentially impracti-
cal around flow reversal for large-scale modeling. This is the case, because convected properties
are not effort variables. The stencil interface in turn resulted in superior robustness but was
not physical as it could only be implemented using signal semantics as shown in section 2.4.

This chapter thus discusses key contributions that advanced the state of the art in this
regard. As it also contains results from a collaborative effort of the Modelica community!, it is
different to the other chapters and contains a separate section 5.3 on acknowledgments. With
the information presented therein, the reader can understand who the contributors are.

5.1 Stream connectors

As indicated above, convective transport does not follow the semantics of conventional “effort”
or “flow” variables. Thermo-fluid interfaces that attempt to ignore this fact fail as described in
chapter 4. A break-through was thus achieved by casting the notion of the stencil, which was
very successful with respect to robustness and efficiency in said chapter 4, into the connection
semantics of a new third fundamental connector variable, which was eventually called stream
variable.

5.1.1 A notional concept for semantics

Connection semantics should ideally be simple and take away possible pitfalls via complicated
connector definitions or unnecessary operator arguments. Their definition is not a trivial prob-
lem and several iterations were required until Casella proposed [122] a first solution that met the
spirit of the requirements for user friendliness in chapter 3. It was later simplified considerably
and finalized by Franke et al. [64, 63], who also coined the term “stream variable”.

A fluid connector utilizing stream variables is defined as follows. Here, a stream variable is
defined for each quantity that is governed by convective transport, i.e., it is carried along via
the flow variable declared in the connector, here m_flow.

1 connector FluidPort

2  Pressure p;

3  flow MassFlowRate m_flow;

4 stream SpecificEnthalpy h_outflow;
5 end FluidPort;

Listing 22: Stream connector

Each connector containing stream variables is called a stream connector. A stream con-
nector must have exactly one scalar variable with the flow prefix. The idea is that all stream
variables of this connector are associated with this flow variable. A stream variable then de-
fines a quantity that is transported by a flow through the stream connector and represents the
value of the transported quantity for the case of outflow through the stream connector, i.e.,

!This is considered necessary, as the contributions of the author of this thesis in this subject area are closely
related to the overall effort.
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m_flow < 0. Therefore, the variable is declared as h_outflow in the exemplary connector. The
value under assumption of fluid leaving the connector is, just like when using the stencil con-
nector, known from internal storage or from inflow values of other connectors, independently of
the flow direction.

A stream variable does not lead to the generation of any connection equations?®. Instead, the
value under assumption of fluid entering through the connector can be queried in a model on de-
mand by using an operator inStream(), e.g., inStream(h_outflow). This operator implements
the static balance equation for each convected quantity.

In order to establish a definition of the operator, the approach Casella proposed to for-
mulate the ideal mixing equations in the context of his library using the stencil thermo-fluid
interface [29, 30] is reviewed and compared with an obvious alternative.

5.1.2 Efficient handling of ideal mixing

In order to introduce the approach of Casella [29, 30], consider an ideal junction with three
ports (two of A-type and one of B-type).

Case 1: l Case 2: l

port,

-
port, port, port, port,
Case 3: T Case 4: T
port, port,
- E—
port, port, port, port,

Figure 16: Four cases in computing port_1.h_a= h§a>

When computing port_1.h a = h§a> (i.e., the enthalpy that the flow would have if it was
flowing out of the component), there are four possible cases, depending on the signs of the other
two flow rates (see figure 16, port_1 and port_3 are of A-type).

1. Both other flow rates are entering the junction, so the mixing enthalpy must be computed
via a static energy balance. If all the flow rates of the other ports become zero or negative
(i.e., going out of the junction component), the mixing enthalpy is undefined. Casella [29,
30] thus proposes to introduce suitable small “epsilon flows” for regularization of this case
so that the mixing enthalpy is always well-defined and continuous around zero mass flow.

(a)

max (12, €) hy' {0

+ max (13, €) hg

h<a> —
! max (g, €) + max (s, €)

“For hierarchical component connections (called “outside” connections) the situation is different and handling
is described by Franke et al. [63].
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2. If only mass flow rate 73 is positive, then its specific enthalpy solely determines the mixing

enthalpy

. b
pa) _ Max (s, €) h§>
! max (1ms, €)

If only mass flow rate 1o is positive then the equation for specific enthalpy at port_1
under assumption of mass flow entering the latter is similar to that for case two

max (12, €) h§a>

=

max (12, €)

If none of the flows through ports two and three are entering, the regularization using
epsilon flows is used. It results in an arithmetic mean of the specific enthalpies at ports
two and three under assumption of fluid entering.

(a) €h§a> + €h§b>
hl -

E+e

Obviously cases two to four are actually particular cases of the equation for case one, which

covers all of them. Notice that the flow via port_1 does not enter the balance equation. This
is motivated by the assumption of negative mass flow via this port for the specific enthalpy
port_1.h a. This results in different hypothetical mixing enthalpies for each port and thus a
“flow-specific mixing enthalpy”.

By using this procedure for the remaining two connectors of the junction, similar equations

are derived for the other port-specific enthalpies and the complete junction model is fully defined.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

model JunctionAAB

replaceable package Medium = PartialPureSubstance;
FluidPort_a port_1;

FluidPort_b port_2;

FluidPort_a port._3;

parameter MassFlowRate eps = 1le-8;
Medium.AbsolutePressure p "Pressure'";

equation
port_1.p = p;
port_2.p = p;
port_3.p = p;
port_1.m flow + port_2.m flow + port_3.m_flow = O;
port_.1.h.a =

(max(port_2.m_flow,eps)*port_2.h a +
max(port_3.m_flow,eps)*port_3.h b)/
(max(port_2.m_flow,eps) + max(port_3.m_flow,eps));
port_2.h.b =
(max(port_1.m flow,eps)*port_ 1.h b +
max(port_3.m_flow,eps)*port_3.h b)/
(max(port_1.m_flow,eps) + max(port_3.m_flow,eps));
port_3.h.a =
(max(port_1.m flow,eps)*port_ 1.h b +
max(port_2.m_flow,eps)*port_2.h a)/
(max(port_1.m_flow,eps) + max(port_2.m_flow,eps));

25 end JunctionAAB;

Listing 23: Static junction model, Stencil interface

These are the ideal mixing equations for the stencil interface of Casella [29, 30]. As they

are not the only option to express ideal mixing for stencil-type thermo-fluid interfaces they are
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taken as starting point for an analysis of different options to define the operator to be used with
stream connectors.

The following analysis is concerned with the algebraic equation system that different po-
tential operator semantics imply for ideal mixing and considers two alternatives. Particular
emphasis is put on the reductions in the dimension of the equation system that a particular
substitution technique called tearing [57, 33, 25] can yield ideally. This is of interest, as a cor-
relation is assumed between robustness and efficiency on one hand and the dimension of the
nonlinear algebraic equation system on the other.

5.1.2.1 Candidate formulations

Based on the formulation for the stencil thermo-fluid interface above, the actual specific mixing
enthalpy can be established via a static energy balance. It can be shown to obey the following
equation [63, appendix Al].

2. hj - max (=i, 0)
j=1

n
Zlmax (—m4,0)
j:

(27)

hmix =

A first option to define the instream() operator is such that it approximates the properties
after a hypothetical flow reversal by the actual mixing properties. Such semantics neglect the
effect of any hypothetical flow reversal but result in a “common” mixing enthalpy. Informally,
we describe this first option (“method 17) using (27) as follows.

1 instream(a.port.h outflow)

2 = instream(b.port.h_outflow)
3 = instream(c.port.h outflow)
4 = hmix

The approach postulated by Casella in turn is to set the convected properties after a hy-
pothetical flow reversal equal to the mixing properties minus the “own contribution” (see sec-
tion 2.4). This is close to the notional meaning of these connector variables but results in
different “flow-specific” mixing enthalpies. Informally, this second option (“method 2”) is thus
described as follows.

1 instream(a.port.h outflow) = hmix(a.port.m flow=0)
2 instream(b.port.h outflow) = hmix(b.port.m_flow=0)
3 instream(c.port.h outflow) = h mix(c.port.m flow=0)

Using equation (27), these expressions can be expanded. The result is summarized in the
following listing.

1 instream(a.port.h outflow) =

2 (max(-b.port.m_flow,0)*b.port.h outflow +

3 max(-c.port.m flow,0)*c.port.h outflow) /
4 (max(-b.port.m flow,0) + max(-c.port.m_flow,0))

5 instream(b.port.h outflow) =

6 (max(-a.port.m flow,0)*a.port.h outflow +

7 max(-c.port.m flow,0)*c.port.h outflow) /
8 (max(-a.port.m_flow,0) + max(-c.port.m_flow,0))

9 instream(c.port.h outflow) =

10 (max(-a.port.m flow,0)*a.port.h outflow +
11 max(-b.port.m_flow,0)*b.port.h outflow) /
12 (max(-a.port.m flow,0) 4+ max(-b.port.m flow,0))

Listing 24: Expanded candidate formulation 2
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Note that this is not an academic problem. The two formulations were not only implemented
in the FLUIDSANDBOX library for analysis but even later in the commercial Modelica translator
Dym01a® 7.0% to allow other people to consider the trade-off between both formulations.

5.1.2.2 Reference problem

In order to identify discontinuities in potential iteration variables of the nonlinear equation
system or residuals and to assess tearing results, a reference ideal mixing point problem is ana-
lyzed for both alternatives. Three pipe models using a detailed pipe friction correlation for the
laminar and turbulent flow regimes are joined in a single static mixing point. Thermodynamic
properties are established based on equations for dry air. The topology is shown in figure 17.

| |ﬂ

Figure 17: Ideal mixing reference problem

5.1.2.3 Size of the nonlinear equation system

For now, only single-substance media are considered and the minimum size of the nonlinear cou-
pled algebraic equation system after symbolic reduction is established. For the common mixing
enthalpy (method 1), the algebraic equation system that is created for the model shown above
can theoretically be as small as two, which is independent of the number of flow components
connected together in the ideal junction.

In this case, the pressure and the mixing enthalpy h,,;, in the connection point are used as
iteration variables for the connection point of n flow models. It is then possible to compute all
inStream()-operator return values, then all densities and dynamic viscosities in the flow model
components and finally all mass flow rates. The two residue equations are the equation for the
mixing enthalpy and the equation for the mass balance.

In general, the two variables will only be the pressure (or a single Ap) and specific enthalpy if
a thermodynamic property model with the independent variables pressure and specific enthalpy
is used. If, for example, an ideal gas using pressure and temperature as independent variables
is contained in the model, a Modelica translator will usually choose pressure (or a single Ap)
and temperature in the mixing point as iteration variables.

For the flow-specific mixing enthalpy (method 2), it is theoretically possible to solve the
algebraic system of equations created for the model shown above with three iteration variables:
Two mass flow rates and the pressure in the mixing point. If two mass flow rates are given,
the third mass flow rate can be computed via the mass balance. The equations for the mixing
enthalpies depend all on h_outflow’s of the flow model components, i.e., of the (potentially
transformed) control volume state variables not shown in figure 17. Therefore the inStream()-
operator return values can be computed, once the mass flow rates are known. With the pressure
in the mixing point, all pressure differences can be computed. With the pressure differences,
together with all specific enthalpies, the mass flow rates can be computed from the pressure
drop equations for all three flow models. These are the three residue equations for the nonlinear
system of equations.

3In March 2008, Sven-Erik Mattsson implemented both forms for the now obsolete upstream() operator.
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The given number of iteration variables (in the general case equal to n, the number of
flow models connected in an ideal mixing point) is the minimum, which is only obtained if a
thermodynamic property model with independent variables pressure and specific enthalpy is
used. Only in this case the specific mixing enthalpies computed by the mass flow rates can be
used directly to compute the densities and dynamic viscosities used in the pipe models. If, for
example, an ideal gas with independent variables pressure and temperature is used, a Modelica
translator will typically recognize that n property inversions would be necessary to obtain these
quantities from the specific mixing enthalpies and therefore choose to use a single pressure (or
Ap) and n temperatures as iteration variables.

In order to enforce the tearing of the equation system described in the penultimate para-
graph also for thermodynamic property models using pressure and temperature as independent
variables, flow models can be rewritten using pure function calls such as density_ph() to com-
pute the density. Then, a local nonlinear equation system will be solved inside these functions.
In general, also the viscosity must be computed and it is thus not meaningful to use pure func-
tion calls, as they required the inversion to compute the state (p, T") from (p, h) twice. This can
be avoided by first computing the thermodynamic state record:

1 state = setState_phX(port_b.p, inStream(port_b.h outflow));

For the moment, the situation can be summarized as follows. For the common mixing
enthalpy (method 1) and general n way ideal mixing of single-substance media, the coupled
nonlinear algebraic equation set can be reduced symbolically to a system of two residual equa-
tions and several forward evaluations. These two variables depend on the independent variables
of the model of the thermodynamic properties. Typical examples are pressure (or Ap) and the
mixing enthalpy Ay, for thermodynamic properties based on (p,h), and pressure (or a Ap)
and the mixing temperature T),;, for thermodynamic properties based on (p,T).

For the flow-specific mixing enthalpy (method 2) and general n way ideal mixing of single-
substance media using (p, h) as independent variables, the coupled nonlinear algebraic equation
set can be reduced symbolically to a system of n residual equations and several forward evalua-
tions. The iteration variables are n — 1 mass flow rates and the pressure in the mixing point (or
a Ap). When using thermodynamic property models with independent variables (p, T") in turn,
the problem has at n + 1 iteration variables and residuals. These are the mixing point pres-
sure (or a Ap) and n temperatures (one per inStream()-operator). Alternatively, the model
equations can be modified to yield {n,1,...,1} nonlinear equation systems. This is one equal
to the equation system for single-substance media using (p, h) as independent variables and n
property inversions from h to T" using setState_phX() calls.

5.1.2./ Characteristics of potential iteration variables

Arguing strictly from the size of the reduced equation system, the common mixing enthalpy
(method 1) appears to be superior. However, the iteration variables pressure, mass flow rate,
specific enthalpy, and temperature have different characteristics and these shall be considered
additionally to the dimension of the equation system in order to arrive at a robust and efficient
formulation.

Specific enthalpy and temperature as iteration variable: To illustrate the characteristics of
specific enthalpy and temperature as iteration variables, the two types of flow reversal in a
three-way ideal junction are considered. The first one is labeled “flow reversal in a regular
junction” as there are two and one entering flows (both before and after flow reversal). In
particular, mass flows enter the junction through two pipes a and b. Following continuity, the
mass flow rate through pipe ¢ has to be out of the junction (i.e., negative). At the time instance
of interest, the flow through pipe a changes sign while the flow directions of pipe b and ¢ remain
unchanged.

In this case the common mixing enthalpy (method 1) reduces to the following expressions
before flow reversal.
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1 instream(a.port.h outflow) = hmix

2 = (max(-a.port.m flow,0)*a.port.h outflow +
3 max(-b.port.m_flow,0)*b.port.h outflow) /
4 (max(-a.port.m flow,0) + max(-b.port.m flow,0))

After flow reversal the common mixing enthalpy reduces to a simple expression.

1 instream(a.port.h outflow) = hmix = b.port.h_outflow

Without regularization, this expression is discontinuous in the first derivative as shown in
figure 18.

inflow(a.port.h outflow)

b.port.h outflow

a.port.h outflow

' a.port.m_flow

Figure 18: Common mixing enthalpy for case 1

Additionally to flow reversal in a regular junction, the second case of “flow reversal in a
degenerate junction” is considered. In this case, flow reversal with strictly one entering flow
is studied. In particular, mass enters the junction only through one pipe a. The mass flow
through pipe b is out of the junction (negative). To construct a case that is different from case
1, zero flow through pipe c has to be considered (for non-zero flow through pipe c the setup
corresponds to case 1). Therefore, a degenerate junction is considered, which also frequently
occurs in practice. At the time instance of interest, the flows through pipe a and b change sign
(while c.m_flow=0). After flow reversal only flow through pipe b enters the junction.

In this case, manipulation of the common mixing enthalpy (method 1) results in the following
expression before flow reversal.

1 inflow(a.port.h outflow) = hmix = a.port.h outflow
After flow reversal the common mixing enthalpy reduces to the following expression.

1 inflow(a.port.h outflow) = hmix = b.port.h outflow

As shown in figure 19 this expression is discontinuous at flow reversal.

inflow(a.port.h outflow)

b.port.h outflow

a.port.h outflow

- a.port.m flow

Figure 19: Common mixing enthalpy for case 2

When using the flow-specific mixing enthalpy (method 2) the results are as follows. Again,
consider case 1 first (regular junction). The mass flows enter the junction through two pipes
a and b. Following continuity, the mass flow through pipe ¢ has to be out of the junction
(negative). At the time instance of interest, the flow through pipe a changes sign. The flow
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directions of pipes b and ¢ remain unchanged. In this case, the following expression holds before
flow reversal.

1 instream(a.port.h outflow) = hmix(a.port.m flow=0) = b.port.h_outflow

After flow reversal, the flow-specific mixing enthalpy reduces to the same expression.

1 instream(a.port.h outflow) = hmix(a.port.m_flow=0) = b.port.h_outflow

This expression is continuous as shown in figure 20. Therefore, for this relevant case, the
nonlinear equation system is continuous and differentiable in the critical point whereas for the
common mixing enthalpy (method 1), the nonlinear equation system is continuous but no longer
differentiable. In most cases, a nonlinear solver will therefore have less difficulties to compute
the solution when using the flow-specific mixing enthalpy (method 2) instead of the common
mixing enthalpy (method 1).

inflow(a.port.h outflow)

b.port.h outflow

a.port.h outflow

a.port.m flow

Figure 20: Flow-specific mixing enthalpy for case 1

For case 2 (flow reversal in a degenerate junction) and the flow-specific mixing enthalpy
(method 2), the following expression holds before flow reversal.

1 instream(a.port.h outflow) = hmix(a.port.m flow=0) =
2 (max(-b.port.m_flow,0)*b.port.h outflow +

3 max(-c.port.m_flow,0)*c.port.h outflow)

4/ (max(-b.port.m_flow,0) 4+ max(-c.port.m_flow,0))

To avoid division by zero the 0/0 term is approximated by the average of the two h_outflows
(using epsilon flows). Therefore, the following equation holds.

1 instream(a.port.h outflow) = (b.port.h outflow + c.port.h outflow)/2

After flow reversal, this results in

1 instream(a.port.h outflow) = hmix = b.port.h outflow

This expression is discontinuous as shown in figure 21. If the deviation of c.port.h_outflow
from b.port.h_outflow is less than twice that of a.port.h_outflow from b.port.h outflow
then the discontinuity is smaller than for the common mixing enthalpy (method 1). This case
is depicted in figure 21.

Mass flow rate as iteration variable: Mass flow rate 7 is assumed to be a more well-
behaved iteration variable than temperature T" or specific enthalpy h of inflowing fluid, because
a discontinuity occurs at i = 0 in convected quantities such as T" and h only. If mass flow rate
is computed via 1 = f(Ap, pu> Pbs Na> M), then 1 is continuous? at this point, even if p,, pp, 74,
1, change discontinuously. Stated differently, if 7" and & are plotted over time, discontinuities
can be present. However, when plotting mass flow rate over time, it is always continuous. A

4Depending on the quality of regularization, mass flow rate and pressure may also be continuously differentiable
at flow reversal.
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inflow(a.port.h outflow)

b.port.h outflow
c.port.h outflow

a.port.h outflow
- a.port.m_flow

Figure 21: Flow-specific mixing enthalpy for case 2

nonlinear solver will have less difficulties to solve the nonlinear system over time, if all iteration
variables are continuous over time, instead of having discontinuities. Therefore, mass flow rates
are preferred iteration variables.

Pressure as iteration variable: Pressure or pressure difference Ap are included in either
formulation and are thus not optional iteration variables for ideal mixing as analyzed herein.
Fortunately, however, a similar argument as the one on mass flow rate in the last paragraph
leads to the conclusion that pressure is also continuous over flow reversal.

Taking these results into consideration, it is concluded that the dimension of the symboli-
cally reduced coupled nonlinear algebraic equation system is not the only metric to consider.
For robustness and efficiency, it is also important to consider the characteristics of the itera-
tion variables. In this regard, the flow-specific mixing enthalpy (method 2) leads always to a
smoother nonlinear equation system in case of a proper junction (which may be the most often
occurring case). In the case of a degenerate junction, both alternatives lead to discontinuous
equations and it depends on the situation for which of the alternatives the discontinuity is
smaller. However, it would be still better if a thermo-fluid interface did not use either one of
these specific enthalpies or temperature but exclusively pressures and mass flow rates, as they
are at least continuous in the general case.

5.1.2.5 Characteristics of potential residual equations

Flow reversal in a regular junction: For flow reversal in a regular junction, common mixing
enthalpy (method 1), and a model of the thermodynamic properties, which uses pressure and
temperature as independent variables, the following problem is posed using FLUIDSANDBOX.
The nonlinear algebraic equation block is reduced from 16 to two dimensions. Typical remaining
iteration variables are

e a.dp: Pressure drop over pipe a

e a.medium nonDesignDirection.state.T: Temperature of the medium model instance
reflecting the upstream conditions for the (potentially hypothetical) reverted mass flow
direction. Via the thermodynamic properties model, h,,;; can be computed explicitly
from these two variables. Therefore, this variable can be understood as a T},;:.

A typical set of residual equations as obtained for this formulation is given in the following
listing.

a.m_flow - massFlowRate dp(a.dp, ...);
= (if pipeFrictionl.m flow > O then a.m flow else O
+ if -b.m_flow > 0 then -b.m_flow else 0
+ if -c.m_flow > 0 then -c.m flow else 0)
* a.medium nonDesignDirection.state.h
- (273504%*(if pipeFrictionl.m flow > O then a.m flow else 0)
+ 1364510*(if -b.m_flow > 0 then -b.m_flow else 0)
+ 684916*(if -c.m_flow > O then -c.m_flow else 0));

o O

0 N O Ol W N -

Listing 25: Torn residual equations for regular junction, common mixing enthalpy
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The residual equations include either the mass balance or an equation comparing the pressure
difference using the mixing point pressure at the current iterate vs. the wall friction correlation.
Above, the latter is shown. The second residual equation is the energy balance.

In the listing, some details were simplified for readability (e.g., use of the noEvent () operator
is not shown, floating point numbers of the inflowing specific enthalpies are shown without
decimal digits). The residual equations can be identified in the figures in this section via their
color. The given residual equations are illustrated in orange, blue, green and red going from
first to last (the latter two colors are used in figures below only).
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Figure 22: Residuals over iterates for common mixing enthalpy, regular junction, properties
explicit in p, T

For this case, the residuals as a function of the iterate values are shown in figure 22. Here,
a.medium nonDesignDirection.state.T is abbreviated as T),;;. In this and several of the
following figures each residual has been scaled differently, i.e., the order of magnitude of the
first residual (a mass flow rate residual) is smaller than that of the second residual (a enthalpy
flow rate residual) and thus, for figure 22, the first residual was scaled with a factor 1.0 and the
second one with a factor 5-1076. The black vertical line points at the solution of the problem.

For the same problem but the flow-specific mixing enthalpy (method 2) and thermodynamic
properties explicit in pressure and specific enthalpy, the equation set of the reference model
using FLUIDSANDBOX is reduced from a block of 18 dimensions to one of three dimensions.
Typical remaining iteration variables are

e a.dp: Pressure drop over pipe a,
e -b.m_flow: Mass flow rate through pipe b, and
e c.m_flow: Mass flow rate through pipe c.

Typical residual equations are either all equations comparing the pressure difference using
the current iterate of the mixing point pressure vs. the wall friction correlations. Or they include
two such equations and the mass balance. Then, the third equation of the former type is used
in a torn forward assignment. A typical example using the latter option is as follows. Here,
only one argument of the wall friction correlation massFlowRate_dp() is shown, the difference
in total pressure. Usually, densities, dynamic or kinematic viscosity, pipe length, diameter and
roughness are additionally required.

10 =a.mflow - b.m flow - c.m_flow;
2 0 = b.m flow - massFlowRate dp(b.dp, ...);
3 0 = c.mflow - massFlowRate dp(c.dp, ...);

Listing 26: Torn residual equations for regular junction, flow-specific mixing enthalpy
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The solution space is three dimensional for this problem. In order to visualize the topology
of the residuals, two plots are presented with a pair of tearing variables as x and y axes each.
The z axis is, as before, the residual. Due to the third independent tearing variable for each plot
a value has to be prescribed for that, too. In the figures shown here, it is the value for which
the solution of the nonlinear equation system is obtained. That is, in the left plot of figure 23,
c.m_flow = —0.44 and in the right plot -b.m_flow= 0.63.
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Figure 23: Residuals over iterates for flow-specific mixing enthalpy, regular junction, properties
explicit in p, h

Due to the specific problem formulation, the solution to the problem evolves in the quadrant
of negative c.m_flow. However, due to the increased number of tearing variables, the solution
space contains regions (for positive c.m_flow), in which the discontinuous characteristics of the
degenerate junction case can be observed. For instance, in the right graph of figure 23, the green
residual surface for residual 3 is discontinuous for negative a.dp (i.e., flow out of the junction
through pipe a) based on the following forward substitution.

1 a.mflow := massFlowRate_dp(a.dp, ...);

That is, the b.m_flow required to fulfill residual equation 3 changes discontinuously (from
one negative value to another, i.e., flow through b out of the junction in both cases) when
c.m_flow changes sign. Residual equation 3 is the compliance of the mass flow rate vs. pressure
loss correlation though pipe b with the tearing variable b.m_flow. As both a.m_flow and
b.m flow are negative (out of the junction) for the flow-specific mixing enthalpy the following
equation holds.

1 instream(c.port.h outflow)=(a.port.h outflow + b.port.h outflow)/2

Then, the sign of the mass flow rate through pipe ¢ determines whether the boundary condi-
tion properties or instream( c.port.h_outflow) are returned and the observed discontinuity
arises. Obviously, for the present problem (flow reversal in regular junction), the nonlinear equa-
tion system does contain quadrants that correspond to flow reversal in the degenerate junction
due to the increased number of tearing variables.

For the same problem but thermodynamic properties explicit in pressure and temperature,
the equation set of the reference model using FLUIDSANDBOX is reduced from a block of 21
dimensions to one of four dimensions. The following is a list of exemplary iteration variables.

e a.dp: Pressure drop over pipe a,

e a.medium nonDesignDirection.state.T: Flow specific mixing temperature in pipe a,
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e b.medium nonDesignDirection.state.T: Flow specific mixing temperature in pipe b,

and

e c.medium nonDesignDirection.state.T: Flow specific mixing temperature in pipe c.

0 =a.mflow + b.m flow + c.m flow;
0 = a.medium nonDesignDirection.h

- h.-T(a.medium nonDesignDirection.state.T);
= b.medium nonDesignDirection.h

- h.-T(b.medium nonDesignDirection.state.T);
0 = c.medium_nonDesignDirection.h
- h-T(c.medium nonDesignDirection.state.T);

~N O O WN -
o

The solution space is obviously four dimensional for this problem. The data is visualized at a
constant value of a.medium nonDesignDirection.state.T in order to illustrate the topology
of the residuals. As fluid always flows though pipe b into the junction and through pipe c
out of the junction this variable is always set to the value of the attached dynamic volume
or boundary condition, say, source_b.medium.T. As before, both plots are based on a pair of
tearing variables as x and y axes each. The z axis is the residual for both remaining tearing
variables at the solution value.

10 10
®» 54 1%

S S
S 0 o

3 3
¥ -5 o -5

-10] -10]

200 200

600 -100 600 -100
1000 0 1000 0

_b.design_T [K]'400 100 a.dp [Pa] c.design T K] 1490 100 adp[Pa]

Figure 24: Residuals over iterates for flow-specific mixing enthalpy, regular junction, properties
explicit in p, T

The first residual (orange, mass balance) is dominated by the pressure difference over pipe a
that drives the mass flow rates and is well behaved. The other three residuals have gradients
with respect to the mixing point pressure and one of the remaining tearing variables only.
They do have several discontinuities and this formulation should therefore be avoided. In case
of thermodynamic properties explicit in, e.g., pressure and temperature, the tearing procedure
using {n, 1, ..., 1} coupled systems described at the end of section 5.1.2.3 should be used instead.

Flow reversal in a degenerate junction: Flow reversal in a degenerate junction, common
mixing enthalpy (method 1), and a model of the thermodynamic properties, which uses pres-
sure and specific enthalpy as independent variables®, results in the following problem when
implemented in FLUIDSANDBOX. The nonlinear algebraic equation block is again reduced from
16 to two dimensions. Typical remaining iteration variables are

5For the common mixing enthalpy, the characteristics of the residuals for the cases of thermodynamic properties
being explicit in pressure and temperature on one hand and explicit in pressure and specific enthalpy on the
other are equivalent. Therefore, we illustrate the latter case in this example and the former at the beginning of
section 5.1.2.5.
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e a.dp: Pressure drop over pipe a

e a.medium nonDesignDirection.state.h: Common specific mixing enthalpy h,z-

The residual equations are equal to those in the first case analyzed in this section. The for-
ward assignments differ however due to the different iteration variables for the thermodynamic
property computations. Figure 25 illustrates the residuals as function of the iteration variables.
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Figure 25: Residuals over iterates for common mixing enthalpy, degenerate junction, properties

explicit in p, h

For the flow-specific mixing enthalpy (method 2) and thermodynamic properties explicit in
pressure and specific enthalpy, the same residual equations and iteration variables are obtained
as before.

The solution space is similar to the one for flow reversal in a regular junction. Again, the
results are illustrated using two plots with a pair of tearing variables as x and y axes each. In
figure 26, the z axis is, as before, the residual. The third independent tearing variable is set
to the value for which the solution of the nonlinear equation system is obtained (these values
are -b.m_flow= 1.34 for the left graph and -c.m_flow= 0.0 for the right one). Note that even
though more than one intersection of the residual surfaces can be seen in the figure, only the
marked solution is an intersection at zero residual.
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Figure 26: Residuals over iterates for flow-specific mixing enthalpy, degenerate junction, prop-
erties explicit in p, h

To summarize, the characteristics of the residual equations depend on the quantity, in which
they formulate a residual. Residuals in temperature or specific enthalpy are, just like iteration
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variables in these quantities, generally less well-behaved (see also discussion in section 5.1.2.4).
Note that one residual in figure 22 is enthalpy flow rate and thus well-behaved. Residuals in
pressure or mass flow rate have usually better characteristics with respect to continuity and
differentiability, too.

5.1.2.6 Multiple-substance media

Common mixing enthalpy: It was shown earlier in this section that the size of the nonlinear
equation system was two for n connected flow models in an ideal junction for a single substance
fluid. This tearing procedure used the pressure p and the mixing enthalpy h,,;, in the connection
point as iteration variables.

To generalize the concept of the common mixing enthalpy (method 1) to multiple substance
media, nx; mixing mass fractions are required analogously to the mixing enthalpy. Based on
these quantities all densities and dynamic viscosities in the flow model components can be
calculated and then all mass flow rates based on the pressure differences. The residue equations
are the equation for the mixing enthalpy, the equation for the mass balance, and the independent
substance mass balances. In this case the size of the equation system is 2 4+ nx;.

If the independent mass fraction vector becomes large, an alternative procedure results in a
smaller problem, namely using n — 1 mass flow rates and the mixing pressure. The upper limit
on the size of the equation system is therefore n.

The tearing works as follows: If all but one mass flow rates are known the remaining mass
flow rate can be established based on the continuity equation. With all mass flow rates known,
the mixing enthalpy and the independent mass fractions in the mixing point can be established
from the pipe outflows. Based on this, the densities and dynamic viscosities are calculated
for the pipe models, and the mass flow rates can be established according to the pressure loss
correlations. The n residual equations are the comparison of the mass flow rate tearing variables
with the mass flow rate vs. pressure loss correlations.

For multiple substance fluids and the common mixing enthalpy (method 1), the size of the
equation system can consequently be reduced to a minimum of min(2 + nx;, n).

Flow-specific mizing enthalpy: Based on the analysis of the discontinuities, the flow-specific
mixing enthalpy (method 2) using a coupled system with n + 1 dimensions was rejected earlier.
Consequently, the remaining alternative is the formulation using n tearing variables and, in case
of thermodynamic property computations explicit in other variables than pressure and specific
enthalpy, {n,1,...,1} coupled systems.

Recalling the tearing procedure suggested for this formulation, it immediately becomes
obvious that the size of the algebraic loop is n, independently of the number of independent mass
fractions nyx;. Furthermore, the procedure is identical to the one alternatively introduced for
the common mixing enthalpy (method 1). n — 1 mass flow rates and the pressure in the mixing
point are utilized as tearing variables. The remaining mass flow rate can be computed via the
mass balance. The flow specific mixing enthalpies are calculated differently but have similar
dependencies and can be computed. With the pressure in the junction and the thermodynamic
properties based on the mixing properties, all pressure differences and mass flow rates can be
computed. These are the n residue equations for the nonlinear system of equations.

For multiple substance fluids and the flow-specific mixing enthalpy (method 2), the size of
the equation system is consequently n.

5.1.2.7 Conclusions

The common mixing enthalpy (method 1) and the flow-specific enthalpy formulation (method 2)
resulting in either a single equation system of dimension n or several systems of size {n, 1,...,1}
are the two alternatives still considered at this point. The flow-specific mixing enthalpy (method
2) using a coupled system with n 4+ 1 dimensions was rejected earlier. The two remaining
alternative compare as follows.

Based on the previous sections, the reasoning for these scores and additional differences
between the two remaining alternatives are discussed.
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Criterion Common Flow-spec. n Flow  spec.
n+1

Problem dimension ++ + -

Char. it. variables -- ++ i

- Regular junction - ++ +

- Degenerate junction  -- ++ -

Char. it. residuals  + + —

Table 2: Evaluation of ideal mixing formulations

In several cases, the size of the equation system is smaller for the common mixing enthalpy
(method 1), i.e., for n > 2+nx;. The most relevant case is probably n = 3 and nx; = 0. In
this case, the common mixing enthalpy (method 1) results in a system of two dimensions
while the flow-specific mixing enthalpy (method 2) requires three iteration variables.

The iteration variables are discontinuous for the common mixing enthalpy (method 1) and
continuous or continuously differentiable for the flow-specific mixing enthalpy (method
2). This is the case because the pressure in mixing point and mass flow rates are used as
iteration variables.

For mass flow reversal in a degenerate junction, the approximation of the inStream()
specific enthalpy using the flow specific mixing enthalpy is superior than for the common
mixing enthalpy (method 1).

inStream(a.port.h outflow) = (b.port.h outflow + c.port.h outflow)/2 vs.
inStream(a.port.h_outflow) a.port.h_outflow

e The discontinuities and nonlinearities of the residual surfaces are comparable. It has,
however, to be stated that close to the solution point, the flow-specific mixing enthalpy
(method 2) is smooth (for the regular junction) whereas the common mixing enthalpy
(method 1) can be continuous with discontinuous first derivative.

For the calculation of the thermodynamic properties in the flow models attached to the
junction, the common mixing enthalpy (method 1) utilizes one state record while the
flow-specific mixing enthalpy (method 2) requires n state records (the flow-specific mixing
enthalpies are different for each branch). Each of them may lead to one local nonlinear
equation system.

As a result, the flow-specific mizing enthalpy (method 2) was judged more favorable. Based
on this analysis, the semantics of the inStream()-operator were defined.

During implementation, it is important to write flow models using pure function calls. First,
the thermodynamic state is computed (potentially requiring the solution of a local nonlinear
equation system in case of thermodynamic properties explicit in, e.g., pressure and tempera-
ture). A notional example is given next.

1 model FM

2 replaceable package Medium = PartialMedium;

3

5

6 equation

7  port_a.h_outflow = inStream(port_b.h_outflow);
8 port_b.h_outflow = inStream(port_a.h outflow);
9 port_a state inflow = Medium.setState phX(

10 port_a.p, inStream(port_a.h outflow),...);

11 port b_state _inflow = Medium.setState phX(
12 port_b.p, inStream(port_b.h outflow),...);
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13 d.a_inflow = Medium.density(port_a_state_inflow);
14  d.b_inflow = Medium.density(port_b_state_inflow);

15
16 // ..
17
18 end FM;

Listing 27: Component model using function calls

Then, the necessary properties are established from the state record (dynamic viscosity,
density etc.). Note that because the setState phX() function implies a specific causality the
state record variables will not appear as iteration variables of the nonlinear equation system.
The given function solves internally a nonlinear equation system using Brent’s algorithm [22],
which is fast and reliable.

5.1.3 Stream connector semantics

In this section, the inStream() and other related operators are defined. Also, suggested regu-
larizations of the inStream()-operator are described. The information presented in this section
is based on the work by Franke et al. [64, 63].

Following the analysis presented in section 5.1.2, the inStream()-operator was supposed to
implement the flow-specific mixing enthalpy (method 2). Using the original regularization of
Casella [29, 30], the operator is thus defined as follows.

2. hjmax(—rj,e)
inStream(h;) := I=Lnd 7 (28)

Y. max(—rhy,¢)
=1

Note the condition j # 7 in the summation in contrast to (27). ¢ are the epsilon flows
introduced by Casella and described in section 5.1.2. In case of one-to-one connections and series
of flow models, this definition leads to propagation of specific enthalpy variables as the stencil
thermo-fluid interface. Additional provisions are taken to handle sensors and uni-directional flow
efficiently. This works by setting the min and max attributes on the flow variable of the stream
connector. A Modelica translator can deduce symbolic simplifications from such information.
Furthermore, an operator actualStream() is introduced to provide access to the actual value
of the convected quantity on the stream. It can be used to formulate the enthalpy flow rate
across a connector conveniently. This is illustrated in the following code example.

FluidPort c;
actualStream(c.h_outflow) :=
if c.m flow > 0 then inStream(c.h outflow)
else c.h_outflow;
EnthalpyFlowRate H_flow =
c.m_flow * actualStream(c.h_outflow);

o Ol b W N

Listing 28: Use of the actualStream()-operator

As already sketched in section 5.1.2, the inStream()-operator return value cannot be
uniquely determined in case of zero mass flow rate. An exact version of the inStream()-
operator without any approximation is illustrated in figure 27. The region with mass flow rates
1 and 1o zero or positive is left open as the value of the inStream()-operator is arbitrary by
definition here.

The regularization suggested by Casella using epsilon flows and described in section 5.1.2
in turn is illustrated in figure 28. The use of epsilon flows results in use of the arithmetic mean
for the arbitrary region (shown in blue).

The regularization does not result in C' or higher continuity; instead, the operator is still
discontinuous in its first derivative due to the max () operator. Furthermore, the regularization is
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Figure 27: Exact version of the inStream()-operator without regularization

obviously not restricted to the € neighborhood of flow reversal. As can be inferred from figure 28,
this formulation does not identically fulfill equation (27) outside an open ¢ neighborhood around
flow reversal. Therefore, an alternative regularization was proposed in [63].

First, the sum of the mass flow rates considered in the inStream()-operator when applying
it on connector i, o;, is introduced.

o; = Z max(—rnj,0) (29)
j=1..n,j#i
Then, the simple regularization using max(0, ) in equation (28) is substituted by a custom
operator positiveMax(x, o;), which is defined to always return a positive, non-zero value.

Y>> hj - positiveMax(—ri;, 0;)
) j=1...n,j#i
St hi) = * Y
inStream(h;) > positiveMax(—mj,O'i) )

The custom operator positiveMax(x, o;) is defined as a linear combination of max(x,0)
and € € RT along a variable a.

positiveMax (z, 0;) := a - max (z,0) + (1 —«a) - € (31)

Auxiliary variable « is defined as a C! smooth approximation to the step function of o;.

1 if o, >¢
afo) =4 (3-2%) (%) if0<o;<e (32)
0 if0; <0

Figure 29 shows an illustration of this regularization. Again, the arithmetic mean value for
the arbitrary region is shown in blue. Note that outside of the regularization domain points
remain, which are not continuously differentiable. This is necessary due to a requirement that
the approximation shall be exact whenever the sum of the absolute values of all flow variables
is greater than the given small value €.

One important property of this approach is the propagation of state variables for convected
quantities along chains of low models. This is illustrated in figure 30. The left dynamic volume
model prescribes its state variable medium.h on its connector b. This variable is propagated via
explicit algebraic equations through the chain of flow models, independently of whether they
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Figure 28: Simple version of inStream()-operator regularization

are isenthalpic or not. The specific enthalpy state variable of the right dynamic control volume
is propagated similarly in the reverse direction.

5.1.4 Exemplary component models

As the streams thermo-fluid interface is essentially a stencil thermo-fluid interface, the model
code when using these interfaces is similar. In this section, examples of such models are given.
First, consider the model of a dynamic control volume.

1 model CV

2 FluidPort_a port_a;

3 FluidPort_b port_b;

4 replaceable package Medium = PartialPureSubstance;
5  parameter Volume V;

6  Medium.BaseProperties medium;

7 Mass m;

8  Energy U;

9 Power H flow_a, H flow_b;

10 equation

11 port_a.p = medium.p;

12 port_a.h outflow = medium.h;

13 port_b.p = medium.p;

14 port_b.h outflow = medium.h;

15 m = V¥*medium.d;

16 U = m*medium.u;

17 der(m) = port_a.m_flow + port_b.m flow;

18 H.flow.a = port.a.m flow * actualStream(port_a.h outflow);
19 H.flowb = port b.m flow * actualStream(port_b.h outflow);
20  der(U) = H.-flow.a + H.flow_b;

21 end CV;

Listing 29: Dynamic control volume model, Streams interface

Here, port_a.h outflow and port_b.h_ outflow are both set to equal medium.h perma-
nently. The reason is that the specific enthalpy under the assumption of mass flowing out
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Figure 29: Recommended version of inStream()-operator regularization

of the connectors h_outflow is indeed medium.h independently of the actual mass flow rates
port_a.m_flow and port_b.m_flow.

Additionally, consider the isenthalpic flow model with a detailed pipe friction correlation
based on the upstream density p,, and dynamic viscosity 7,,. To allow for smoothing of
the wall friction correlation at flow reversal, both potential upstream properties are required.
Assuming that the flow model is connected to a control volume on each side, the model is written
using a function £ (dp, rho_a, rho_b) and the densities on both sides in order to implement a
smooth transition between positive flow and negative flow. The code of this flow model is the
following.

1 model FM_pipeFriction
2  replaceable package Medium = PartialPureSubstance;
3 FluidPort_a port_a,
4 FluidPort_b port_b;
5 Density rho_a, rho_b;
6  Pressure dp;

7 equation

8 port_a.m_flow 4 port_b.m_flow = 0;

9  // Energy balance in design direction

10 port._b.h outflow = inStream(port_a.h_outflow);

11 // ... in non-design direction

12 port_a.h outflow = inStream(port_b.h outflow);

13 rho.a = Medium.density ph(port_a.p, inStream(port_a.h outflow));
14 rhob = Medium.density_ph(port_b.p, inStream(port_b.h outflow));
15 dp = port._a.p - port_b.p;

16 port.a.m_flow = f(dp, rho_a, rho_b); // m_flow vs. dp correlation

17 end FM_pipeFriction;

Listing 30: Isenthalpic flow model, Streams interface

If the fluid flows in design direction, then the specific enthalpy of fluid leaving the com-
ponent through port_b equals inStream(port_a.h_outflow). Non-isenthalpic flow models are
implemented similarly. Consider a basic isentropic component with an extra mechanical shaft
to account for the extracted mechanical power.
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Figure 30: Forward and backward propagation of specific enthalpy along a chain of flow models

1 model FM_stodolaTurbine

2 replaceable package Medium = PartialPureSubstance;

3 FluidPort_a port._a,

4 FluidPort_b port_b;

5  Temperature T_a;

6  Modelica.Mechanical.Rotational.Interfaces.Flange_a shaft;
7 Power P_mechanical;

8 Power H flow_a, H flow_b;

9 parameter Real Kt = 0.5 "Stodola turbine constant";
10 equation

11 port_a.m_flow + port_b.m_flow = O;

12 port_a.h outflow = Medium.isentropicEnthalpy(port_a.p,

13 Medium.setState_ph(port_b.p, inStream(port_b.h outflow)));
14 port b.h outflow = Medium.isentropicEnthalpy(port_b.p,
15 Medium.setState_ph(port_a.p, inStream(port_a.h outflow)));

16  T.a = Medium.density_ph(port.a.p, inStream(port_a.h outflow));
17 P_mechanical = shaft.tau * der(shaft.phi);

18 H.flow.a = port.a.m flow*actualStream(port_a.h outflow);

19 H.flowb = port_b.m flow*actualStream(port_b.h outflow);

20 port.a.m flow = K-t * ((port.a.p”2 - port_b.p ~2)/T_-a)"0.5;

21 P _mechanical + H flow.a 4 H flowb = 0;

22 end FM_stodolaTurbine;

Listing 31: Non-isenthalpic flow model, Streams interface

The specific enthalpies are transformed according to the thermodynamic processes (here
isentropically) and set to equal the respective interface variables. Again, the equations involving
the sign of the mass flow rate are only used to establish output variables. Note that the code is
exemplary and could be made more efficient using intermediate thermodynamic state records.

5.2 Fluid property inversion at connection points

In order to avoid unnecessary fluid property inversions without resorting to overdetermined
connectors, an annotation was introduced in Modelica 3.1 to define inverses of functions. The
following listing gives an example of use for a thermodynamic property model using pressure
and temperature as independent variables.
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1 function h_pT

2 input Real p "Pressure';

3 input Real T "Temperature";

4  output Real h "Specific enthalpy";
5 algorithm

6 //..

7
8
9

end h_pT;

function T_ph
10  input Real p "Pressure";
11 input Real h "Specific enthalpy";
12 output Real T "Temperature';
13  annotation(inverse(h = h pT(p,T));
14 algorithm

5 // ..

16 end T_ph;
Listing 32: Inverse function annotation for thermodynamic properties

For such a thermodynamic property model, the specific enthalpy h is computed explicitly
via a function h_pT(). Additionally, the inverse function T_ph() is needed in the general case,
which will in many cases require a call to a nonlinear algebraic equation solver in order to
invert function h_pT(). If function T_ph() has the annotation inverse(h = h_pT(p,T)) then
the modeler states that an inverse of T_ph() is function h_pT. The essential requirement is that
the inverse function must have the same input and output arguments as the direct function,
but with possibly permuted order. Especially, a variable that was declared as input, is used as
output in the inverse function.

This allows to avoid property inversions not only when using the streams thermo-fluid in-
terface but also when using any other thermo-fluid interface.

5.3 Acknowledgments

In 2002, Casella [29, 30] suggested the stencil thermo-fluid interface with the THERMOPOWER
library. This is the foundation of the streams thermo-fluid interface. With the evolution of
the library, Casella suggested the corresponding formulation of ideal mixing with epsilon flow
regularization, which became the basis of the inStream()-operator. Also in 2002, the unbi-
ased mixing volume thermo-fluid interface was proposed by Elmqvist [58]. Together with the
MoDELICA_FLUID library, it was refined until 2008 but the interface never became sufficiently
reliable. In January 2008, Elmqvist proposed a new operator (for an overview, see [122]), which
eventually triggered further development and thinking outside the box. Several thermo-fluid
interfaces were considered. Most notably, Casella [122] proposed simpler semantics for an in-
terface based on the stencil thermo-fluid interface in January 2008. It used two operators. In
March 2008 it was simplified considerably by Franke et al. [64], who proposed to use one essen-
tial operator only and coined the term “stream variable” based on a new prefix in connector
definitions. These results were presented in section 5.1.1.

Beyond the definition of improved semantics, the thermo-fluid interface included three rele-
vant improvements, which are all related to the numerical aspects. The first one was a reformu-
lation to improve the numerical aspects of ideal mixing, which was contributed by Sielemann
and Otter. A summary was provided in [63] already but the details were laid out in sec-
tion 5.1.2. The second and third relevant improvements were an improved regularization of the
inStream()-operator and the inverse function annotation, which were both proposed by Otter.
They were presented in sections 5.1.3 and 5.2 respectively. All these analyses were established
around April 2008.
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Test implementations were developed by Mattsson in Dymola® and by Sielemann in FLU-
IDSANDBOX. Franke and Sielemann tested the concept and contributed to the test implemen-
tations. Olsson contributed an improved definition of inside and outside connectors. Otter
introduced stream connectors to the MODELICA_FLUID library.

Sielemann evaluated the streams thermo-fluid interface against established interfaces using
a rigorous set of requirements. The results of this comparison justified the introduction of this
thermo-fluid interface. The requirements on and comparison of thermo-fluid interfaces were
given in detail in chapters 3, 4, and 6.

In May 2008, a final proposal was developed by the Modelica Fluid Working Group based
on these contributions at the 57" Modelica Design Meeting. At this Design Meeting, Modelica
Association members voted for acceptance of this proposal and inclusion of the concept in the
Modelica language specification version 3.1. The results were summarized and put into context
by Franke et al. [63].

Note that [124] contains contributions by Sielemann, which have been included in chapters 3
and 4 in refined form. All illustrations shown in this chapter were created by Sielemann.
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CHAPTER 6

FINAL EVALUATION OF INTERFACES

The objective of this chapter is to give evidence how the improvements suggested in chapter 5
lead to a superior non-causal thermo-fluid interface with respect to the requirements given in
chapter 3. The methods and tools described in section 4.1 are re-used and applied to the streams
thermo-fluid interface.

Criterion Biased Stencil Unbiased Streams
Robustness and efficiency + + - ++

- Computational time ++ ++ - 4

- Zero and reversing flow + 4+ — .

- Property inversion ++ ++ ++ 4+

- Simplifications + + + +

- Ideal mixing - ++ - T
User fr., end-user - - + 4

User fr., developer + - + +
Flexibility - - ++ 44

Table 3: Final evaluation of thermo-fluid interfaces

Notably, the scores with respect to two metrics and requirements changed for established
thermo-fluid interfaces in comparison to table 1. This is the case for “ideal mixing” and “prop-
erty inversion”. The changed scores are due to the contributions presented in sections 5.1.2
and 5.2. Their application to other thermo-fluid interfaces than streams is discussed below.

6.1 Robustness and efficiency
6.1.1 Computational time

As before, reproducibility of the simulation timings was high. Still, each reference model was
run ten times per thermo-fluid interface to establish the required computational time, and an
average was established over all ten cases per interface.

Figure 31 shows the required computational time for the reference model “relaxation tran-
sient”. Here, the required computational time when using the streams thermo-fluid interface is
also shown. As before, the figure shows how much computational time (ordinate) was required
per simulation time (abscissa). Figures 32 and 33 show the required computational time for the
reference models “shut-down” and “change in set-point” respectively.

As before, the total required computational time is of particular interest. The required
computational time for models using the streams thermo-fluid interface is nearly identical to
that of models using the biased mixing volume and stencil thermo-fluid interfaces. The unbiased
mixing volume thermo-fluid interface in turn requires nearly twice the computational time. This
is why, based on requirement 1, the thermo-fluid interfaces using the streams, stencil and the
biased mixing volume were given a very good score and the unbiased mixing volume was given
a poor score.

6.1.2 Zero and reversing flow

The streams interface is a type of stencil interface. Therefore, by construction, it allows prop-
agation of both upstream and downstream convected quantities and thus fulfills requirements
2 and 3. Like the stencil interface, the approach results in high robustness and efficiency. The
thermo-fluid interface also fulfills requirement 4 for continuous residuals and iterates and thus
receives a very good score.
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Figure 31: Required computational time , reference case “Relaxation transient”, including
streams interface

6.1.3 Fluid property inversion at connection points

Using the inverse function annotation, all relevant information can be expressed for an algo-
rithm in symbolic preprocessing to avoid property inversions at connection points. As the
implementation is orthogonal to a specific thermo-fluid interface, all thermo-fluid interfaces
fulfill requirement 5 and receive a very good score.

6.1.4 Semantics allow for meaningful simplifications

For all thermo-fluid interfaces, simplifications in terms of a predefined flow direction can be made
easily by adapting equations. If a Modelica translator provides such symbolic preprocessing,
then the min or max attributes of floating point variables on the connector mass flow rate can
alternatively be used to make such simplifications. Then, the translator can, for instance,
simplify the inStream()-operator.

To summarize, all established thermo-fluid interfaces fulfill requirement 6 equally well and
are thus given a good score.

6.1.5 Efficient handling of ideal mixing

The formulation suggested in section 5.1.2 can be applied both to the stream interface and the
stencil interface. With this modification, these interfaces thus result in a robust and efficient
formulation of ideal mixing they are understood to comply with requirement 7.

The efficiency and robustness of ideal mixing together with fluids that contain several sub-
stances and either the unbiased or the biased mixing volume interface are poor. Again, small
dynamic mixing volumes can be suggested for models using these interfaces, even if this may
result in stiffness of the equation system. This is why the interfaces were given a poor grade in
this regard.

6.2 User friendliness, end-user

The physical meaning of the variables in the streams connector, which represent the convected
quantities, is not as intuitive as that for the unbiased mixing volume interface. However, it is
much simpler than that of the variables in the stencil interface, as the subscript always refers
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Figure 32: Required computational time, reference case “Shut-down”, including streams inter-
face

to a plain flow direction instead of a flow direction between FluidPort_a and FluidPort_b
instances. Furthermore, if connecting two control volumes, their pressure states are lumped by
index reduction, their specific enthalpies remain separate however. This is the proper result.
Altogether, requirement 8 is considered fulfilled and the interface is given a good score.

Again, figure 34 illustrates the mapping of the components as shown in a graphical user
interface (blue) to the mathematical models they represent (black). The system boundaries are
identical to those when using the stencil interface.

6.3 User friendliness, developer

In most cases, the streams thermo-fluid interface of models can be implemented easily. Ex-
actly one equation has to be provided for each convected quantity on the connector definition.
Altogether, requirement 9 is fulfilled and the thermo-fluid interface is awarded a good score.

6.4 Flexibility

The streams thermo-fluid interface utilizes a universal connector and allows multi-way con-
nections. The connection semantics directly result in appropriate static balance equations for
the connection set and explicit junction models are not needed. Therefore, this thermo-fluid
interface fulfills requirement 10 and receives a very good score.

6.5 Summary

With the improvements and alternatives introduced in chapter 5, a thermo-fluid interface
emerged that concurrently fulfills the requirements for robustness and efficiency on one hand
and user friendliness and flexibility on the other. The systematic error identified in section 4.3 is
solved in a reasonable way. This concludes the contributions to the state of the art in non-causal
thermo-fluid interfaces.
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CHAPTER 7

ROBUST SOLUTION OF NONLINEAR ALGEBRAIC EQUATION
SYSTEMS: PROBLEM ANALYSIS

The objective of this chapter is to rigorously analyze the observation of robustness issues with
steady-state initialization stated in the introduction. In order to allow for a meaningful compar-
ison, a rigorous quantitative metric is defined and a means for a concise graphical comparison
of solver robustness for a given test problem is presented. A set of test problems is defined,
which includes benchmarks that are relevant from an industrial perspective. Different state of
the art solvers for nonlinear algebraic equation systems are compared with the solver provided
in a commercial object-oriented modeling environment. Finally, conclusions are presented and
it is argued whether the reported difficulties with steady-state initialization form a legitimate
objection to current practice in object-oriented modeling and simulation.

7.1 Introduction

Equation-based, object-oriented modeling languages allow for a declarative high-level descrip-
tion. This is written by the modeler and processed by symbolical manipulation algorithms
and transformed into a form that can be solved by standard numerical integration methods.
A fundamental element of this concept is the separation of the code of the model from the
numerical solver. Obviously, this increases readability and maintainability of both the model
code and the solver implementation, but it also implies that no knowledge of the mathematical
characteristics of the problem equations can be infused into the solver. Instead, a solver has to
consider a general mathematical problem. In many domain-specific approaches, this is different.
In the area of Computational Fluid Dynamics, for instance, problem-specific, yet rather simple,
algorithms such as SIMPLE [139] or PISO [87] are applied to nonlinear problems with vast
success.

As mentioned in section 1.5.3, the author of this thesis found that the large majority of
state of the art algorithms for the processing steps involved in declarative languages are highly
mature and robust for such general systems. There is however at least one sub-problem, for
which difficulties were observed at times, that is steady-state initialization. In the context of
system-level simulation, steady-state initialization is an initial value problem for a DAE with
dim (F') = n, + n, equations, 0 = F' (%, z,w,t). Here, z(t) € R is the vector of state variables
and w(t) € R™ is the vector of algebraic unknowns. As before, variable t € R denotes time.
For simplicity of the discussion, the DAE is assumed to be index-reduced, i.e., it has index 1,
which means that the following expression be regular

[ % %]

Initialization means to provide consistent initial values for Zq, zg, wq such that the differential
algebraic equation system is fulfilled at the initial time ¢g. Since these are 2n, + n,, unknowns
and the equation system has n, + n,, equations, additional n, equations must be provided, 0 =
G (%, z,w,t) with dim (G) = n.. For example, steady-state initialization implies G (2, z, w, t) =
%z = 0. Formally, this usually results in a system of nonlinear algebraic equations, which has to
be solved numerically. This is a particular instance of an algebraic loop. Note that the quoted
problem is present in legacy block diagram simulators as well and is usually more severe as no
symbolic processing takes place.

Practitioners employ various approaches to circumvent these difficulties. A short overview
on ways to avoid them is provided for completeness.

Start iterates A reason for the inability to find a solution may be the local convergence
properties of the underlying algebraic equation system solver. Obviously, providing a start
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iterate, which is close to the solution, may solve the problem. For industrial problems, this
is tedious and error-prone work however, as the solution is not known a-priori. Especially
for automated optimization, this can be a major obstacle. The merit of this approach
may further deteriorate if the modeler is unable to maintain a fixed set of variables as
unknowns, either because the tool does not offer such a feature or because this set cannot
be kept due to evolutionary changes in model topology.

Transient formulation Instead of solving the initial value problem, one may also start in-
tegration at some value of the state variables and continue until the transient behavior
is dissipated and only the steady-state solution remains (“relaxation transient”). For
industrial problems, this may however take prohibitively large wall time. Furthermore,
practitioners report that imprecise initial state values may result in unrealistic behav-
ior, such that, for example, in the area of thermo-fluid dynamics, the initial mass and
heat flows are out of the valid range of the models themselves. Then, practitioners have
to tweak initial state values instead of initial iterates, which clearly does not solve the
problem properly.

Pseudo-transient formulation Many intermediate solutions between the original problem
and the transient formulation have been used in practice. Additional state variables can
be infused into algebraic loops by first-order differential equations, as their value is always
known from the last step of the integrator and they therefore “break” the algebraic loops.
Alternatively, the computational expense of the transient formulation may be reduced
by modifying the time constants of underlying physics. Obviously, only the steady-state
solution is meaningful then.

Reformulation In several cases, the problem equations may be reformulated using a different
set of variables as unknowns, which can lead to more benevolent properties of an algebraic
loop, or ideally, a convex problem. For industrial problems, this often requires many
engineering hours and may be beyond the time scale of project work.

Approximate solution In several applications, it may be sufficient to solve the problem only
approximately, for instance in optimization. For such applications, the problem is solved
several times. Therefore, the initialization problem can be relaxed and solved only ap-
proximately. An additional equality constraint is introduced and the optimizer ensures
consistency of the original DAE system [18].

7.2 Concise illustration of solver robustness
7.2.1 Literature review

Given the moderate number of published comparisons between nonlinear algebraic equation
solvers, it is noted that the majority of them focuses on performance (i.e., the number of
residual evaluations, Jacobian evaluations, wall time and so on). Several potential problems
arise.

Tabular data Many authors focus on tabular data (e.g., [160, 83, 42, 43]), which usually
include Boolean information on whether a given solver failed on a test problem. For
large data sets, such tables are hard to read. Furthermore, they always leave room for
interpretation.

Low number and choice of start iterates In general, the choice of starting points is arbi-
trary. In several published comparisons this is not reflected properly, as the number of
starting points is low. Dent et al. [43] for example compare solver robustness by multiply-
ing all components of the known solution with multiples of 10% and using them as start
iterate. Ideally, the number of starting points investigated should be large and properly
distributed.
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Data analysis In some contributions, an interval of convergence is defined (e.g., [43]). For
problems in several dimensions this seems simplistic. Basins of attraction for, e.g., plain
Newton Method have been shown to have complex geometric character (fractals) and
cannot be expressed in such intervals [31]. Other authors use medians and quartiles to
process the data or create rankings. In any case, information on the relative size of
improvement from one solver to the other is lost. Also, interpreting such data may be no
easier than reading the raw data.

In the literature on benchmarking efforts of optimization problems, a more sophisticated
approach was suggested. Dolan and Moré [48] suggested using a cumulative distribution function
of a solver performance metric to assess and compare solvers. The result is called a performance
profile. Typically, the ratio of the wall time of a solver over the lowest wall time of all solvers
is used as performance metric. Given a factor 7 € R, the performance profile reports the
probability for a solver that the performance metric is within this factor 7 of the best possible
value. For example, given that a user wants to wait at most twice the wall time of the fastest
solver (7 = 2), he or she can extract the probability that a given solver finds the solution during
the prescribed wall time of one of the problems in the problem set.

While performance profiles capture the solver performance relative to other solvers on a given
problem set, this information may not be sufficient for computationally expensive problems.
Griffin and Kolda [74] and Moré and Wild [127] therefore suggested an alternative called data
profiles in the latter reference. These metrics answer the question of the percentage of problems
that can be solved (for a given tolerance) within a given number of function evaluations.

Ultimately, the performance and data profiles had to be rejected for the objective of the
present chapter, because they focus mostly on performance. While it is possible to read a single
“total” probability of convergence off a performance profile (in the limit of 7 — 7, ), the
abscissa is irrelevant for the question of robustness, which, from a practitioner’s point of view,
is the interesting question as the cost of additional computational time is low in comparison to
that of the engineering hours to solve a convergence failure.

To summarize, while performance and data profiles are a powerful method for the trade-off
between performance and robustness, a more meaningful illustration of the robustness data is
possible.

7.2.2 Robustness profiles

In this section, a rigorous approach to quantify robustness is suggested. In the context of
nonlinear algebraic equation systems, robustness is defined as the ability of a solver to find a
solution independently of the quality of the starting point. For the definition of robustness
profiles, it is suggested to quantify the “ability of a solver to find a solution” by a single
significant metric, namely, the probability to convergence, Pcon,. Additionally, it is presumed
that a relevant yet simple metric for the quality of the starting point is its distance from a
solution, an observation that was already discussed above. When starting iteration far away
from a solution, then convergence is usually harder to achieve than if starting close to a solution.

Obviously, it is impossible to establish such metrics for industrial problems using analytical
methods. Therefore, the stochastic method of Monte Carlo simulation [119] is adapted to the
present problem. The problem is sampled several thousand times and the results are condensed
into a single data set on Pgyny as a function of the lowest distance of the starting point to
a solution according to some norm. According to the best knowledge of the author, no such
systematic comparison of robustness has been published so far.

Assume that a set of solvers S shall be compared on a set of test problems P. In this and all
following definitions, a generic problem with a vector of unknowns x = [2; z0; wg] and residual
equations f = [F'; G| will be used in place of the variables introduced before. Each problem in
P is given as a vector of residual equations f and lower and upper bounds [, v such that the
vector of unknowns be = € [[,u]. Additionally, the solutions s; are given with j =1...ns and
ng as the number of solutions.
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For most technical problems upper and lower bounds are given naturally, be it by the
definition of the variables (e.g., negative pressure or concentrations beyond [0%, 100%)] are not
reasonable) or by the models themselves (e.g., elaborate two-phase models of thermodynamic
properties have strict bounds of validity).

In most technical problems, the order of magnitude of the unknowns varies greatly (e.g.,
pressure in Pascal is on the order of 10°, mass fractions are often on the order of 10~3). In order
to avoid biasing the suggested metric “distance from a solution” toward the scalar components
of the vector of unknowns with larger magnitude, the interval defined by [, u is used to define
an affine transformation of the vector of unknowns x to coordinates in the unit hypercube Z,
that is ©; = (x; — ;) /(u; — ;). In the unit hypercube, the distance d is defined as the Euclidean
norm between a starting point 7 and the closest solution sj.

d = min (7 - 51l,) (33)

This distance is used as abscissa for the robustness profiles. The ordinate is the probability of
convergence, P.ony. According to the principles of Monte Carlo simulation it is the number of
observed successful samples over the total number of experiments.

Given that a problem p € P is sampled a finite number of times at random starting points,
each observation has to be assigned to a bin or band in order to establish the number of observed
successful samples. This is much like creating a histogram; non-overlapping intervals are defined
in the distance d of same size. Then, the number of samples is counted for each bin.

Following the law of large numbers, the quality of a robustness profile depends on the
number of samples per bin. In order to condense the relevant information into a single figure,
a robustness profile shall therefore come with a small bar chart below the actual graph, which
presents the number of samples in each of the bins. Only if the number of samples per bin is
reasonably high, the quality of the robustness profile is sufficient (in the following section 7.2.3,
an indication of the approximate order of error is given for different numbers of samples per
bin). As this may take some wall time for completion, a (more noisy) robustness profile with
fewer samples may be considered, but with the information in the bar chart the quality is
immediately visible in the profile itself (if the number of samples per bin is constant however,
it may be advantageous to omit the bar chart in order to utilize space more efficiently).

7.2.3 Exemplary robustness profile

In order to illustrate the concept of robustness profiles, a simple two-dimensional example is
discussed next. For readability, the scaling step to the unit hypercube is excluded from this
example. Furthermore, the problem is treated analytically, which avoids the need for Monte
Carlo simulation.

The interval is defined by the lower and upper limits, | = (—20,—20) and u = (20, 20).
Furthermore, the residual equations are as follows.

( exp(—l/(z%/lOO-ﬁ-x%/lO)) )

x7/100+x3/10

flo)= sin (wz9/40)

(34)

The residual equations are illustrated in figures 35 and 36. The interesting one in this
problem is the first one. Note that this residual is non-convex. A local (damped) iterative
solver using only gradient information will, whenever it is outside of the “bucket” around the
origin, diverge from the solution s; = (0,0). This is the feature of the exemplary problem which
will lead to zero probability of convergence far away from the solution (outside the bucket).

In order to treat the problem analytically, a simplified convergence criterion is defined.
Given a starting iterate , if the Newton direction dy(z) = —J (z) " f () points to the inside
of the circle with the solution (0, 0) as center and through z, then it is assumed that a properly
damped algorithm succeeds to find the solution. If it points to the outside, then failure is
expected. Mathematically, this is tested using the dot product of  and the Newton direction
dy. If it is positive, then the Newton direction points to the outside of the circle and failure of
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convergence is assumed. If it is negative then it points to the inside and successful iteration to

a solution expected.
x - dy(z) < 0 = convergence (35)

This criterion is illustrated in 37. As expected, the outer limit of this region coincides with
the tip of the “bucket”. In the inside of this region, there are parts which do not fulfill the
simplified criterion. A properly damped method will however control the norm of the residuals
and will make sure that the solver does not leave the bucket. Therefore, the inner part of the
region is included in the convergence region, too. The residuals for this revised simple criterion
are shown in figure 38, from which it is clearly visible that the criterion is appropriate.
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Figure 37: Convergence acc. to eq. (35) Figure 38: Residuals for revised criterion

Assuming that each starting point x within the bounds is equally likely, the probability
of convergence can be expressed analytically as the volume in the n-dimensional Euclidean
space (area for the example in two dimensions) for which convergence is observed over the total
volume (area). Both can be expressed as a function of the Euclidean distance 71 from the known
solution sj.

+A 2
P o Acom} (Tl) o f:ll " 0 " Xeonv * Xboundsd()odr 36
conv (1) = A - m+Ar p2n (36)
total (Tl) frl 0 Xboundsdwdr

Here, indicator functions xp,,nqds are used to test whether a point is within the bounds [/, u
and X..n, t0 test whether the starting point yields convergence.

For the reasons discussed above, the bin width Ar cannot be reduced to zero when using
Monte Carlo simulation. For this analytically treated simple example, the limit Ar — 0 can



74 CHAPTER 7. SOLUTION OF EQUATION SYSTEMS: PROBLEM ANALYSIS

however be considered. The resulting robustness profile is shown in figure 39. If starting close
to the solution (inside the “bucket”), then the probability of convergence is 100%. This is in
accordance with the observation of the topology. As soon as the Euclidian distance from the
solution passes the value r; = /10 ~ 3.162 the starting point may be beyond the region of
convergence with finite probability. Consequently, Pcon, starts to decline. At an Euclidian
distance of r; = 10, all starting points will lead to divergence and Py, becomes 0%. As
the scaling step was omitted for readability, these values directly correspond to the limits in
figures 37 and 38. Note that this particular shape is a purely theoretic result for the arbitrarily
chosen convergence properties of an imaginary solver. It serves as illustration. Real world
impact, e.g., of scaling issues, is not included.
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Figure 39: Exemplary robustness profile

In figure 40, the numerical method is applied to obtain robustness profiles. The figure
illustrates the error in the robustness profiles for different numbers of samples per bin. This
allows to establish a notion of the order of magnitude of the error, which is O(10°) for 1 sample
per bin, approximately O(107!) for both 10 and 100 samples per bin and about O(10~2) for
1000 samples per bin. In order to yield a reasonable approximation, 1000 samples per bin
are therefore recommended. One has however to recognize that, as always in statistics, the
(computational) cost of doing this may be prohibitive. Furthermore, it is highlighted that a
robustness profile obtained by the numerical method always is an estimate and will generally
be subject to sample-to-sample variation.

7.3 Comparison of state of the art gradient-based iterative solvers

With robustness profiles, a proper tool is available to analyze the observation stated in the
introduction. A large number of different algorithms has been suggested for the solution of
nonlinear algebraic equation systems in literature. Probably the best-known and most utilized
algorithms are of the type of gradient-based iterative solvers, such as the Newton Method [41,
96, 45, 135]. These algorithms usually rely on a local linear or tensor model of the residuals
and are fast but converge only locally. Two other classes of algorithms shall be mentioned.
Continuation or homotopy methods [5] form a less widespread but commonly known alternative
to gradient based iterative solvers. In the context of nonlinear algebraic equation systems, the
idea is to start with a simple problem and continuously deform it to the difficult problem of
interest. While the concept sounds simple, the details of these methods and algorithms are
intricate. Unless proper provisions are taken, the existence of the homotopy trace between
the start and a solution, finite length, nonexistence of singularities along the path and other
important requirements are not guaranteed. A third exemplary class of algorithms is called
interval methods [131]. The strong advantage of these algorithms is that they guarantee to
find all solutions to a problem. They pose strict requirements however. Namely, they require
access to the symbolic expressions of the equations via directed acyclic graphs or the like (only
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Figure 40: Absolute value of error for different numbers of samples per bin

the wvalues of the residuals and possibly the Jacobian are not enough). Furthermore, these
algorithms can be computationally expensive, as these algorithms use exhaustive search and
therefore can suffer from combinatorial explosion.

In order to investigate the question raised in the introduction, algorithms of the most com-
mon class of gradient-based iterative solvers are considered and compared to the robustness of
a commercial software implementation.

7.3.1 Solvers

To achieve a meaningful assessment of the mentioned observation and to allow for a fair compar-
ison, requirements for quality of solver implementations were defined. They are either required
to be able to run the problems in the set of test cases or to compare “apples to apples”.

Inter-process communication with different platforms Inter-process communication via
Berkeley sockets is used in order to be able to freely combine solvers and problems. Like
this, residual equations can be implemented manually in C++ code (using CppAD [15] for
the automatic generation of derivative information), which is useful for testing. Further-
more, this approach is used to interface with commercial modeling environments. Like
this, any solver can be used to run industrial applications and, at the same time, exploit
the symbolic processing made by such tools. For this work, such an inter-process com-
munication interface was created for the Modelica tool Dymola [54] in versions 7.3 and
6.1.

Variable solver configuration via XML files Instead of hard coding solver parameters,
they are read from XML configuration files. Like this, a user can modify such settings
with a text editor and adapt the solver without repeated compilation.

Automatic scaling In system-level simulation, the Jacobian matrix is often ill-conditioned.
Due the automatic reduction of the size of the algebraic loops (tearing [57]), conditioning
may become even worse. Therefore, automatic scaling can become highly important to
achieve convergence.

Proper reaction to failure in residual evaluation In industrial test cases it happens rou-
tinely that the residual equations cannot be evaluated. Possibly, the solver suggested an
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iterate, which lies on a boundary and results in division by zero, or inherent limits of the
model validity were violated (e.g., thermodynamic property models). In any case, the
solver shall not immediately quit but react properly to this situation (often, the solver
simply reduces step size). At the same time, infinite cycles have to be avoided.

Numeric approximation of Jacobian Some representative test cases are provided without
analytic Jacobian matrices. While this has per-se negative impact on both performance
and robustness, these problems frequently occur in industrial practice. Some detailed
power plant models for example utilize the detailed IF97 model of the thermodynamic
properties of water and steam [188]. This model contains polynomial equations of order
well above 40, which lead, if differentiated using automatic differentiation methods, to
very inefficient code. Therefore, if the user opts to use this model, no analytic Jacobian
is used. In this case, a numeric finite difference approximation of the Jacobian has to be
created.

Robust yet fast configuration of solver parameters Obviously, the solver configuration
plays an important role in the performance and robustness of a solver. Unless ample
proof was given that a change was mandatory, the author stuck to the original parameter
set provided by the algorithm authors. As such, the quality of this parameterization is
difficult to assess. In the present chapter, the performance of a commercial Modelica tool
is used as reference for what “good” robustness is.

Convergence criteria Each solver uses a particular convergence criterion. They often involve
the norm of the step. Only if it drops below a prescribed limit, no further improvement
can be achieved. In order to implement a fair comparison, it was decided to neglect these
results however (i.e., the return codes of the solvers are not considered to decide whether
a problem was solved or not). Instead, each solver is run as is, and after it finished, a
constant convergence criterion is used to categorize the result. This convergence criterion
checks whether the infinity norm of the unscaled residuals is below a given threshold. The
set of allowable solutions is therefore defined by

{27 1f (@)l < 1077}

The comparison is conducted between the following six algorithms. As mentioned above,
they all belong to the class of gradient-based iterative solvers.

7.8.1.1 Minpack

The Minpack [126] algorithm HYBDJ developed in the late 1970s at Argonne National Laboratory
is the first solver considered herein. It is a modified Powell hybrid method. By itself, the
algorithm only provides automatic scaling of the unknowns z. Therefore, the algorithm was
equipped with automatic scaling in unknowns and residuals using row sums and nominal value
information. Care is taken to update the scaling factors every time the Jacobian is refreshed
and that all internal variables are updated properly, too. Furthermore, in its original form, the
solver cannot react properly to a failure in evaluating the residuals. Therefore, additional logic
was incorporated into the solver to reduce step size when this situation occurs. Even though
an alternative solver calculating a numeric Jacobian approximation is provided with Minpack,
the authors chose to not use the latter but to re-implement the finite difference logic in HYBDJ
due to its interaction with the automatic scaling mechanism.

7.8.1.2 Nleql and Nleq2

The algorithms Nleql and Nleq2 [45, 132] developed in the early 1990s at Zuse Institut Berlin
implement an affine-invariant Newton Method with and without rank reduction for poorly
conditioned Jacobian matrices. These algorithms provide scaling of the unknowns and the
linear system, which the author considers superior to what can be done in an interface layer as
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developed in the present effort, which is outside of the solver itself. See the technical report [132]
for details. In its original form, the solver cannot react properly to a failure in evaluating the
residuals. Therefore, additional logic was incorporated into the solver to reduce the damping
factor when this situation occurs.

7.8.1.3 Tensolve

The algorithm Tensolve [20] implements a tensor method, which uses a quadratic instead of a
linear local model. It was developed in the 1990s at Argonne National Laboratory. It provides
two globalization strategies, namely a line search method and a tensor trust region method.
Herein, the former is called Tensolve-LS, and the latter Tensolve-TR. The implementation
provides a rather simple scaling mechanism only. The user can provide constant scaling vectors
for the unknowns = and the residuals f. While nominal information may be used to establish
the former, automatic rescaling of the equation system during the solving process is considered
important for both the unknowns and the residuals. Also, the other implementations employ
such scaling and in order to compare “apples to apples” an automatic scaling method was
added to Tensolve. Care has been taken to ensure that an update of the scaling factors does
not turn the internal state of the solver inconsistent. Similar to the others, this solver did
not react properly to a failure in evaluating the residuals. Therefore, additional logic was
incorporated into the solver to reduce the step size when this situation occurs. For this solver
additional modifications were required to catch infinite cycles (e.g., in the standard line search
implementation TSLSCH).

7.8.1.4 Dymola Solver

The commercial Modelica environment Dymola [54] uses a proprietary solver for algebraic loops,
which is called the Dymola solver in this work. It is included in this comparison as reference
for commercial implementations to make sure that the conclusions drawn in this work properly
scale up to the situation practitioners face. The Dymola solver uses a method, which is not
further specified. It provides an automatic scaling mechanism which, due to more than a
decade of software development and industrial use, is considered mature. The solver also comes
with proper logic to react to failure to evaluate residual equations. Furthermore, the solver
configuration is considered mature.

7.3.2 Definition of test cases

The author reviewed a large number of models of technical systems. Out of them, a small
number of models was not solved with constantly full probability of convergence. These models
were considered relevant to the objective of this work and thus selected for inclusion in this
study. These 12 models are summarized in tables 4 to 7.

Name Nyt N Ns  Xaj Description

Aircraft ECS 1 427 51 1 1 Aircraft air conditioning system
using an air cycle architecture

Aircraft ECS 2 493 29 1 0 Aircraft air conditioning system
using a vapor cycle architecture

Air distribution 550 57 1 1 Aircraft air distribution system

Table 4: Test cases “Thermo-fluid dynamics”

Note that the Inverter Chain problem listed in table 7 can be solved sequentially. In the
test case, a fake dependency was injected into the Block Lower Triangular transformation to
require solving the problem in a single block.

In these tables, n,; is the number of equations and unknowns before symbolic reduction and
n is the number of equations and unknowns after reduction. The symbolic reduction technique
is called tearing [57] and was mentioned in the subsection on Automatic Scaling of section 7.3.1
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Name Nut N Ns  Xaj Description
Counter Cur- 6 5 1 1 Model of counter current reactors
rent Reac- with n =6

tors [109, 118]

Liquid Phase 6 4 5 1 Separation problem of two com-

Split [11] ponents in two phases using the
NRTL equations as liquid phase
activity coefficient model (with
exclusion of trivial solutions)

Homogeneous 794 88 1 1 Steady state of a distillation col-

Azeotropic Distil- umn (ternary system)

lation [77, 12]

Table 5: Test cases “Process engineering”

Name Nyt N Ns  Xaj Description

Racing Car 1 [40] 2616 15 1 1 Detailed model of a Formula 1
racing car, straight steady state

Racing Car 2 [40] 2647 17 1 1 Detailed model of a Formula 1
racing car, cornering steady state

Direct Kinemat- 11 11 2 1 Determine the pose parameters of
ics [118] the platform of a parallel robot
General Stewart- 18 8 8 1 Forward kinematics of the general
Gough Plat- Stewart-Gough platform

form [198]

Table 6: Test cases “Mechanics”

already. It is implemented within the modeling software Dymola [54]. ns is the number of
solutions to the problem. The value of x,; indicates, whether an analytic Jacobian is available
for this problem.

7.3.3 Results

The given test problems were analyzed using the methodology outlined so far. Following the
principles of Monte Carlo simulation, the abscissa was cut into 30 slices. Then, 1,000 starting
points per slice were analyzed for whether they yield convergence. Therefore, a total of 30,000
starting points were run for each solver on each problem. On average, wall time was between
23 hours and 7 days per problem for all solvers on a single processor computer. The robustness
profiles are shown in figures 42 to 53. Note that only figure 42 presents a complete profile; in
the remaining figures the bar chart was omitted due to the constant number of samples per bin.

7.8.3.1 Test cases “Thermo-fluid dynamics”

On both Aircraft ECS cases the robustness of the Dymola solver and the Minpack algorithm
is highest. Furthermore, the results for both algorithms are very similar. For Aircraft ECS 1,
Minpack is superior and for Aircraft ECS 2 Dymola is. On Aircraft ECS 1, the robustness of all
other solvers is only a fraction of that of Dymola and Minpack respectively. On Aircraft ECS
2, the algorithms Nleql and Nleq2 are worse than Dymola and Minpack but still competitive.

Name Nyt N Ns  Xaj Description
OA 741 [117] 52 11 2 1 Operational amplifier 741
Inverter Chain 151 50 1 1 Inverter Chain of n = 50 inverters

Table 7: Test cases “Analog circuits”
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Figure 41: Graphical representation of the Racing Car test model
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Figure 42: Robustness profiles for Aircraft ECS 1

The Tensolve algorithms are not competitive.

7.3.3.2  Test cases “Process engineering”

The solver Nleq2 performs best on the test case Counter Current Reactors. When relating this
to the robustness of Nleql, which is worst for this case, the potential of the rank reduction
device of Nleq2 becomes apparent (this is the only difference between Nleql and Nleq2). The
Tensolve algorithms are second only to Nleq2. On this test case, the Tensolve globalization
using the line search technique performs slightly better. Again, the Dymola solver and the
Minpack algorithm perform very similarly. Their robustness is still competitive.

The solvers that perform best on the Liquid Phase Split test case are Nleq2 and Tensolve
with line search globalization. The robustness of Nleql is nearly as good as that of the lead-
ing duo, highlighting that the rank reduction device does not alleviate difficulties on this test
case. The Dymola solver and the Minpack algorithm are not performing best but again pro-
viding competitive robustness. The same holds for the Tensolve algorithm with trust regions
globalization, even though the robustness is low when starting far away from the solution.

For Homogeneous Azeotropic Distillation, Nleq2 again performs best. Nleql in turn is again
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Figure 43: Robustness profiles for Aircraft ECS 2 (1000 samples per bin)
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Figure 44: Robustness profiles for Air Distribution (1000 samples per bin)
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Figure 47: Robustness profiles for Homogeneous Azeotropic Distillation (1000 samples per bin)
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Figure 51: Robustness profiles for Direct Kinematics (1000 samples per bin)
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less robust. All other algorithms provide competitive robustness.

7.8.3.3 Test cases “Mechanics”

On both Racing Car test cases, the Dymola solver, the Minpack algorithm and the two Nleq al-
gorithms perform best. In both cases, the Dymola solver and the Minpack algorithm are slightly
superior however. For Racing Car 1, the Tensolve algorithm with trust region globalization is
competitive, the one using the line search globalization is not.

On the remaining test cases (General Stewart-Gough Platform, Direct Kinematics), the
Dymola solver, the Minpack algorithm, Nleq2, and Tensolve with trust region globalization
provide most robustness. Tensolve with line search globalization is still mostly competitive,
only Nleql is not fully competitive on these cases (on Direct Kinematics in particular).

7.8.8.4 Test case “Analog circuits”

On the Operational Amplifier 741 test case the Tensolve algorithm with trust region globaliza-
tion performs most robustly. Minpack is second and both Nleq algorithms provide moderate
robustness only. These algorithms exited mostly with either too low damping factor or reduced
step size to extremely low values such that no progress was obtained in any reasonable number
of steps (5000 for a problem with 11 unknowns).

The Inverter Chain test case results in zero probability of convergence unless iteration starts
within about 20% of the maximum distance in the unit hyper cube from the solution. Algorithms
Nleql and Nleq2 provide spurious convergence when starting far away from the solution, which
is considered a coincidence due to the symmetry of the problem as probability of convergence
is zero when starting closer to the solution.

7.4 Conclusions

In this chapter, a rigorous approach to quantify robustness in the context of nonlinear alge-
braic equation systems was presented. The definition of robustness profiles was derived from a
clear, comprehensible statement on the meaning of robustness. The result is a straightforward
graphical means to assess the latter on different test problems.

This tool was utilized in a study of six gradient-based iterative solvers. All of them were
adapted to meet well-defined quality of implementation requirements. The results of this study
are summarized in the following paragraphs.

The first important conclusion is that the solvers used in this comparison are competitive
alternatives to the implementations used in state of the art commercial tools for declarative
modeling. Robustness may be even higher using one of the alternative solvers. The consequence
is that the conclusions drawn from this work are representative and relevant for practitioners.

The second conclusion concerns the robustness of the different solvers. As it differs largely
between the various test cases, it is difficult to make simple statements about which solver
performs best. Essentially, such a statement may not even be possible. It is highlighted however
that for the twelve industrial test cases, the robustness of the Dymola solver and the Minpack
algorithm on one hand and Nleq2 on the other is best. The former algorithms are better on some
cases (e.g., Aircraft ECS 1 and 2) and the latter is on others (e.g., Counter Current Reactors,
Homogeneous Azeotropic Distillation). Nleql is not competitive. Similarly, Tensolve-LS and
Tensolve-TR. may perform either very well or poorly on some problems. Likely, the question
of whether the line search globalization or the trust region globalization is more robust for the
tensor algorithm Tensolve cannot be answered in general. In some cases (e.g., Liquid Phase
Split, Counter Current Reactors) the line search globalization is more robust. In others (e.g.,
General Stewart-Gough Platform, Direct Kinematics), the trust region globalization performs
better.

The third and most fundamental conclusion is that the observed difficulties with convergence
of algebraic loops are real. As seen in several examples (e.g., Racing Car 1 in figure 48), the
probability of convergence can be effectively 0% if not starting in close vicinity of the (initially
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unknown) solution. It is noted however that the test cases analyzed herein are the worst cases
encountered in this study. The large majority of example cases were solved with constantly full
probability of convergence. For obvious reasons they were discarded for this work however.

It is therefore concluded that the initially stated observation on difficulties with steady-
state initialization forms a legitimate objection to current practice in object-oriented modeling
and simulation. Alternative approaches such as the ones mentioned in the first paragraph of
section 7.3 have to be considered in order to improve the current state of affairs in the context
of general declarative modeling languages.
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CHAPTER 8

INTRODUCTION TO HOMOTOPY METHODS

Several groups of alternative solution methods have been proposed in literature to numerically
solve the root finding problem defined in section 7.2.2. The objective of this chapter is to
introduce a well-known class of alternative solution methods called homotopy methods in a
comprehensible, informal fashion. In the context of nonlinear algebraic equation systems, the
idea is to start with a simple problem and continuously deform it to the difficult problem of
interest. Unless proper provisions are taken, the existence of the homotopy trace between the
start and a solution, its finite length, nonexistence of singularities along the path and other
important requirements are not guaranteed. Further examples of alternative approaches are
interval methods [131] and terrain methods [108].

Continuation is a technique for numerically approximating a solution curve which is im-
plicitly defined by an under-determined system of equations [4]. The system of equations,
p(x,\) = 0, is the homotopy, a continuous deformation from one map to another [10]. In the
context of solving a system of algebraic equations the homotopy is constructed such that one
equation set is easy to solve and the other is the one of interest, f(x) = 0. The additional
dimension is the new variable \, which is called the homotopy or continuation parameter and is
restricted to some range, e.g., [0,1]. Then, the augmented system p(z,0) = 0 is solved with ease
and reduces to the system of interest at A = 1, i.e., p(z,1) = f(z). “Homotopy” is a common
abbreviation for the exact term “homotopy map”. An overview of continuation algorithms and
homotopy in general is given by Allgower and Georg [5].

8.1 Homotopy methods and the root finding problem

Starting at p(x,0) = 0, a curve (z, \) is followed along p(x, \) = 0 until A = 1. Formally, this is
{z|p (z,A) = 0}. In traditional continuation or embedding methods a monotonically increasing
parameter \ is assumed [69]. This leads to a unique xz(A). The underlying assumption is not
generally fulfilled. Consider figure 54 that illustrates different types of traces. A continuation
method is not able to follow the bottom track with a turning point.

This limitation led to the wider use of pseudo-arc-length continuation methods, in which
both x and A are considered functions of some arc length s. The continuation algorithm then
follows p (x (s), A (s)) = 0 until A(s) = 1. In the context of the root finding problem, this type
of method is called a homotopy method [69]. Using such methods, the bottom track with the
turning point can be established.

For non-trivial problems, issues arise when tracing either of the other tracks however. These
issues are either qualitative (in case of divergence to +oo or closed loops called “isolae”) or
numerical (in case of bifurcations). All these issues do not arise when using probability-one
homotopy due to the construction of the homotopy map. This methodology is based on a
theory on convergence and is due to Chow et al. [36] and Watson et al. [190]. Alexander and
Yorke [3] and Garcia and Zangwill [68] provide additional information on degree arguments and
homotopy. According to the judgment of the author, Chow et al. [36] provide a body of theory
to guarantee global convergence under rather mild assumptions. As the resulting coercivity
conditions inherently also imply the existence of a solution it is not trivial to prove that a
specific problem fulfills them.

To illustrate how such singularities arise, an example that appeared in [117] is given. Con-
tinuation methods, both monotonic and pseudo-arc-length, have been used widely in analog
circuit simulators to calculate DC operating point problems. A typical approach is to multiply
the voltage of each source with the continuation parameter . Then, at zero excitation, an ob-
vious solution is 0V in the complete circuit. A continuation method is then used to increase A
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Figure 54: Different types of solutions to a homotopy map

to one, which yields the solution to the problem of interest. This type of ramping of the bound-
ary conditions (called source stepping [130]) is a representative example of natural parameter
continuation methods and continuation methods in general.
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Figure 55: Simple flip-flop circuit [116]

Consider the flip-flop shown in figure 55. The approach of ramping the boundary conditions
is applied to this exemplary problem. For this purpose, assume for the source voltage Vi = AV .
The collector resistances are R.; = R = 1k€), the base resistances Ry = Rpo = 20kQ.
Using the potentials of the connection sets as unknowns and the sum of the currents out of a
connection set as residual equations, the following equation set is established, which represents
the embedding of the source voltage into the circuit equations.

xcl—Avs + Ll —Tp2 —|— IC (Ibl,l'cla 0)

Re1 o1 e Rb2] ( 0)
5=+ 1y (Tp1, X1
P (:L.7 )\) = zeQ_AVSRbl Te2—Tp1 v (37)

Rea + Rp1 + IC (fEbQ, L2, 0)

Tp2 —Tcl
T T Iy (42, T2, 0)

Herein, I.(xy, z¢, xc) and Iy(xp, zc, . ) are the collector and base currents. They are functions
of the base, collector, and emitter voltages according to some transistor model, for instance
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Ebers-Moll EM1 [70]. Similarly, = [z¢1, Zp1, Tc2, xbg]T is the vector of unknowns.

During operation, the flip-flop has three DC operating points, out of which two are stable.
In contrast to this, for the case of zero source potential, the circuit has only a single solution.
The results of the continuation or homotopy approach are given in figure 56.

Xc1(A) ‘ Xp1 ()

0.0 0.2 0.4 0.6 0.8 1.0

ra)

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 04 0.6 0.8 1.0
N A

Figure 56: Natural parameter continuation for the flip-flop circuit

Here, the starting point at zero excitation is marked with a blue dot. From this point,
the continuation algorithm starts increasing the supply voltage. At a specific value of the
supply voltage the base-emitter junctions of the two transistors are turned on. From this point
three branches emerge to the direction of higher supply voltage (higher A). This point is a
bifurcation. Bifurcations are numerically challenging and coincide with a singular Jacobian
matrix. If a continuation algorithm manages to continue at all, it will often follow the middle
track that leads to the unstable solution. In reality, noise will drive the flip-flop into one of the
two stable states. The stable steady-state solutions are marked with a red and orange marker
respectively. The instable one is highlighted with a yellow one.

Note that even if a physical system has a unique solution at the final value of the boundary
conditions, it may have several steady-state solutions at the intermediate values.

Several generic homotopy maps have been constructed to solve a root finding problem f(z)
without embedding A in f. Three successful generic maps from literature are introduced next.
The first one is the fixed point homotopy map. It was used by many authors including Chow
et al. [36], who suggested to solve for fixed points and zeros using this map. The version for
finding roots is of interest herein,

p(x,A) = Af (2) + (1 = A) (z — o) (38)

A second map is the Newton homotopy map (also called global homotopy map), which, in
the form common today, is suggested by Keller [95],

p(,A) =Af (2) + (1= A) (f (=) = f(20)) = [ () = (1 = A) f (o) (39)

As Allgower and Georg [4] report, earlier formulations are due to Branin [21] and Smale [164].
Keller’s theoretical work is supported by Percell [140], who applied Sard’s theorem to this type
of homotopy.
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Finally, the affine homotopy map is attributed to Wayburn and Seader [192]. Here, [ (z)
denotes the Jacobian of f with respect to x at x.

p(z,A) = Af (2) + (1= A) f' (20) (x — x0) (40)

This homotopy map combines certain advantageous features of the fixed point homotopy map
(single solution of easy function) and of the Newton homotopy map (scale invariance). Interest-
ingly, Garcia and Gould [67] already mention this map as modified Merrill homotopy map and
attribute it to Fisher et al. [62]. Recent applications primarily cite the former work however,
and consequently this one is referenced herein, too.

The affine homotopy map can be considered a type of fixed point homotopy map. For the
latter, the use of a scaling matrix G is common,

p(x,A) = Af (2) + (1 = A) G (z — z0)

Then, for the special case G = f’(x) the affine homotopy map results from the fixed point
homotopy map with scaling matrix. The author considers the affine homotopy an indepen-
dent map however, because of its scale-invariance and because G is in several cases a diagonal
matrix [117, 197]. Also this distinction appears in literature [192].

These three generic homotopy maps have different characteristics and may (unless they are
used in a probability-one homotopy method) prescribe ill-posed traces as already illustrated in
figure 54. As Wayburn and Seader [192] point out, the Newton homotopy map has the advantage
of being scale invariant and that homotopy traces may be contained in an open bounded set.
However, as the simple problem p(z,0) = 0 may have more than one zero, more than one trace
may exist for a given start iterate. In this case it cannot be guaranteed that a given track, which
is selected via the choice of the start iterate, leads toward a solution of the actual problem (i.e.,
A = 1). Instead, it may return toward a solution of the simplified problem (i.e., A = 0). As
Choi and Book [35] report, it is possible that such tracks become infinite loops, which do not
cross A = 1. Such tracks are called isolae. The fixed point homotopy map and affine homotopy
map in turn have the advantage of allowing only a single zero of the easy problem p(z,0) = 0.
Therefore, it is impossible to start tracking inside an isola. The fixed point homotopy map has
a poor scaling property however, which is due to the connection of the independent and the
depended variables [192]. The affine homotopy map in turn is scale invariant like the Newton
homotopy map [192]. Fixed point and affine homotopy maps may in turn produce tracks, which
diverge toward an infinite value of components of the vector of unknowns z. Such tracks cannot
be traced numerically.

Some authors suggest to use complex arithmetic to connect homotopy tracks that are un-
connected in real space. In particular, Wayburn and Seader [192] and Kuno and Seader [100]
provide examples in which all real solutions are connected via complex space. The hypothe-
sis that all real solutions can be found using complex arithmetic using fixed point homotopy
maps and arbitrary starting points is shown to be invalid by the already cited work of Choi
and Book [35], example 2. For completeness, note that Gustafson and Beris [76] show that
this particular example can be solved by using one of the variables (i.e., one element of the
vector of unknowns x) as a continuation parameter and allowing the rest of the variables as
well as the homotopy parameter to be complex and / or infinite. Independently, Wolf and
Sanders [195] analyze multi-parameter homotopy continuation methods utilizing complex con-
tinuation parameters in analog electronic circuit simulation. The convergence properties still
pose an open issue. Such methods are not considered here. Instead, the focus is on the described
probability-one homotopy method.

Due to the described characteristics of the tracks prescribed by homotopy methods, addi-
tional means were proposed in literature to make the procedure more efficient or more robust.
First, as the traces may strike the boundaries of definition of the residual equations, or even
diverge to +o00, homotopy bounding methods are introduced following Paloschi [137, 138]. Here,
the homotopy p (z, A) is used in the following bounding equation (7(x) and v(z) are auxiliary
functions and z°(z) is a specific map of the present iterate 2 to some open and bounded subset
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Figure 57: Robustness profiles for Operational Amplifier 741, generic homotopy maps (60
samples per bin)

of R2n=H7mw),
py (2, X) = () p (2, A) + v () — v(2”)

Second, the bounding method of Malinen and Tanskanen [110] is considered. Here, the same
bounding equation is used but the numerical tracing algorithm is applied in mapped variables.
The authors claim some advantages such as superior robustness (in particular in connection
with tight bounding zones). They introduce the infinity norm in their version of the auxiliary
function 7(x) however, which destroys the property of C? smoothness of the original approach.
For this reason, both bounding procedures are considered.

8.2 Illustrative examples

For illustration, a test case analyzed in chapter 7 is considered, the semi-conductor opera-
tional amplifier. Probability-one homotopy and plain homotopy methods are applied to this
example. The continuation algorithm used was Alcon2 [44], which used an implicit change
of parametrization with QR-decomposition and an automatic step length control for tangent
continuation derived from theoretical considerations.

The results of the semi-conductor operational amplifier with respect to robustness are com-
piled in figure 57. In this robustness profile all generic homotopy maps are abbreviated (FH for
fixed point homotopy map, NH for Newton homotopy map, AH for affine homotopy map with
prefixes B for the plain homotopy bounding after Paloschi [137, 138] and MB for the modified
homotopy bounding after Malinen and Tanskanen [110]).

For this particular test case, the algorithm results can be split into two groups. One group
of algorithms provides poor robustness, partially even worse than the local gradient-based al-
gorithms considered in section 7.3.1. The second group of algorithms provides nearly 100%
probability of convergence independently of the quality of the start iterate. This is the group
of algorithms using probability-one homotopy. Note that the homotopy maps are similar; the
difference lies in the underlying theory. For the operational amplifier the residual equations were
formulated such that coercivity, a relevant condition, is fulfilled [117]. Definitions of coercivity
and corresponding theorems are introduced in the following chapter 9.
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Furthermore, figure 57 indicates that for this particular test case the homotopy bounding
algorithms do not influence the robustness much. In fact, all differences lie within measurement
accuracy. Based on this result and similar findings for other cases, such bounding mechanisms
are not addressed any further in this thesis.

The robustness profiles indicate the importance of coercivity in the context of homotopy
methods. Theory guarantees convergence for problems satisfying the relevant theorems with
probability-one. Figure 57 illustrates that indeed slightly less than 100% total probability of
convergence is obtained for this particular test case. Additionally to the theoretic limitation in
probability of convergence, challenges in the area of scientific computation are the reason for
this observation. As Roychowdhury and Melville [152] report, practical probability of conver-
gence may be deteriorated via ill-conditioned numerics leading to failure of path following and
homotopy paths that continue forever (i.e., impractically long) without reaching A = 1.

Therefore, the need for homotopy maps that are well-conditioned except near the solution
becomes obvious from the example. Ill-conditioning is illustrated for the present example via
the introduction of a diagonal scaling matrix G in the fixed-point homotopy map.

p(x,A) = Af (2) + (1 = A) G (z — z0) (41)

The results are shown in figure 58. Each row ¢ shows a plot of z; over A for different values of
the diagonal entries on the scaling matrix G. From left to right, these start at 1 and are reduced
with j from left to right to 1017, i.e., 0.0001 on the right of the figure. Therefore, a column in
the graphic shows all unknowns for a fixed value of the scaling matrix. Obviously, the scaling
matrix can spread out the gradients over the continuation path. If this simple homotopy map
was used in practice however, some heuristic was required to establish all individual entires on
the scaling matrix, as the shown values are too high for variables x3, x5, x19 but too small for
x6, . An example of such an heuristic is given in [65]. An alternative to setting parameters of
generic homotopy maps to problem-specific values to arrive at well-behaved trajectories is the
definition of problem-specific homotopy maps. This is addressed in more detail in chapter 10.

As seen on this illustrative example, probability-one homotopy can work well in practice.
In the following chapters, approaches to implement such methods are analyzed in the con-
text of general multi-domain physical modeling and equation-based, object-oriented modeling
languages.
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Figure 58: Influence of scaling matrix G on Fixed Point Homotopy Map and Operational
Amplifier 741: Columns of homotopy traces for all 15 unknowns are shown for five different
values of G from 1 to 1074,
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CHAPTER 9

PROBABILITY-ONE HOMOTOPY FOR GENERIC MULTI-DOMAIN
MODELING

Based on the introduction on homotopy methods in the previous chapter 8, it is concluded that
ideally a probability-one homotopy should be implemented for multi-domain physical modeling
and equation-based, object-oriented modeling languages. While homotopy in general has been
used in system-level simulation of several physical domains (e.g., Wayburn and Seader [192]
in chemical engineering), the results from analog electronic circuit simulation are particularly
well-developed [177, 175, 176, 117, 115, 86, 73, 179, 111, 151, 197, 152].

In particular, Melville et al. [117] provide a rigorous application of the theory of Chow et
al. [36] to analog electronic circuit simulation. Their work appears to indicate a potential route
for such a proof in multi-domain physical modeling. Melville et al. [117] present two alternative
arguments on coercivity conditions. The first one is based on the no-gain property of a large
set of analog electronic components, the second one on passivity, an energy argument.

The no-gain property and related conditions were defined for several relevant cases by Will-
son [193]. An element has this property if “any connected network containing that element
[...] possesses the [...] no-voltage-gain and no-current-gain properties”. Passivity was formally
defined by Wyatt et al. [196]. A short definition is given in [178, p. 78] as “at any operating
point, the net power delivered to the element is non-negative”.

While it is unlikely to find an analogous property to no-gain in all domains possibly covered
by multi-domain physical modeling, energy is a general concept. Furthermore, conservation of
energy is a fundamental principle and thus the second argument appears to hold considerable
potential for a widened scope. The objective of this chapter is therefore to present an analysis
of this proof involving energy arguments.

This analysis reveals that passivity is not sufficient for analog circuits due to boundary
conditions. The first argument in [117] (no-gain) remains intact however and furthermore
the typical circuit components happen to be sufficiently dissipative, so no harm is done to
the theory for circuit applications. After all, as seen in chapter 8, the theory works well in
practice. However, several physical domains exist in which the amount of dissipation is much
lower. Therefore, the chapter eventually highlights that the energy argument cannot be used
to generally proof coercivity for general multi-domain physical modeling.

9.1 Theory

Several authors contributed to global convergence theory for homotopy methods; in particular
Scarf [155], Eaves [52], and Saigal [154]. Allgower and Georg [4, 5] provide an overview. Herein,
the focus is set on the work of Chow et al. [36], which requires considerably weaker assumptions.
To start, a number of theorems for probability-one homotopy is reviewed based on their work.

Following the problem statement in chapter 7, a root x* € R™ shall be found such that
f(z*) =0 with f: R™ — R". Alternatively, algorithms for fixed point problems F'(z*) = z*
with F': R™ — R" can be considered, because one type of problem can be easily transformed
into the other, F(z) — x = f(x).

In order to present the supporting theory, transversality to zero [191] is defined next.

Definition 1. Let U C R™ and V C R" be open sets, and let p: U x [0,1) x V — R" be a C?
map. p is said to be transversal to zero if the Jacobian matriz Op has full rank on p~1(0).

The map p (a, A, x) represents the embedding of the equations f to be solved for a root z*
as introduced informally in chapter 8. It is a key element in all homotopy methods. On top of
the arguments listed before, it has an additional parameter dependency on a vector a € R™ (in
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the remainder of this work m = n and thus a € R™). The Jacobian matrix dp is a n x (2n + 1)
matrix and can be written as concatenation of three sub-matrices.

=[5 &K &I (42)

In the informal terms of chapter 8, the expression p~' (0) could be described as the set of roots
of p given some A. Formally, it is defined as follows.

p 1 (0) ={(a,\,2) |[a e R",0 < A < 1,2 € R", p(a, \, ) = 0} (43)

The following theorem, which is based on differential geometry and the Parametrized Sard’s
Theorem, is a generic formulation of probability-one homotopy methods.

Theorem 1. Let f : R" — R™ be a C? map, p : R® x [0,1) x R* = R" a C? map, and
P (A x) = p(a,\,x). Suppose that

1. p is transversal to zero, and, for each fized a € R™,

2. p, (0,2) has a unique nonsingular solution x,

3. pa(L2) = f ().

Then, for almost all a € R™, there exists a zero curve Iy of p, emanating from (0,x¢), along
which the Jacobian matrix Op, has full rank. If, in addition,

4. pa1(0) is bounded, then T, reaches a point (1,z*) such that f(x*) = 0. Furthermore, if
Of(x*) has full rank, then Ty has finite arc length.

This theorem is due to Watson [191] and is therefore called Watson’s Theorem in this work.
In order to apply this theorem, homotopy maps are constructed to meet prerequisites (2) and
(3) by design. Prerequisite (1) may be trivial to verify for some homotopy maps and harder for
others, in which A and a are involved nonlinearly. According to [189], prerequisite 4 may be
hard to verify and often is a “deep result” as (1)—(4) holding implies the ezistence of a solution
to f(z) =0.

A remark is in order on the statement of probability one. This characteristic of the theorem
is inherited from the Parametrized Sard’s Theorem and is motivated by probability of failure
being 0 in the sense of a Lebesgue measure. Figuratively speaking, this means that the set
of points leading to failure forms at most an n — 1 dimensional manifold inside n-dimensional
space, that is, it does not occupy any “volume”.

Informally, Watson’s Theorem can be understood as a statement on the probability of singu-
larities along a continuation path. A bifurcation for instance may occur on a problem fulfilling
this theorem. But a random variation of the parameter vector a will be sufficient to avoid
the singularity on a following attempt (with probability one). On problems with more than
one solution (such as the flip-flop circuit introduced earlier), this choice of a determines what
solution the homotopy map converges to.

Next, different specialized theorems on probability-one homotopies are reviewed, which are
considered for the application to the problem at hand.

9.1.1 Brouwer Fixed Point Theorem

Historically, solutions to difficult fix point problems were among the first successes of probability-
one homotopy methods. As a root finding problem can easily be converted into a fix point
problem, this theorem is considered for the problem at hand. Before stating the theorem
some notation is introduced. Additionally to the real n-dimensional space R™ with norm |-|,
the interior of the unit ball is B" = {z € R": |z| < 1}. Furthermore, the closed unit ball is
B" = {x € R": |z| < 1} and its surface 8" = {z € R" : |z| = 1}.
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Theorem 2. Let F : B" — B" be a smooth map C? of the closed unit ball B" C R™ into itself.
Define p: R™ x (0,1) x B" — R" as follows.

pla,\2) =1 =X (x —a)+ X(z— F (2)) (44)

For a € B"™ we define p, (\,x) = p(a,\,z). Let T', be the component of p;'(0) N (0,1) x B"
whose closure contains (0,a). Furthermore, let I — OF (x*) be regular for every fixed point x*
(with the identity matriz I). Then, for almost every a € B", the curve I'y is a smooth curve
connecting (0,a) to (1,2*) where x* is a fized point of F', F(z*) = x*. In particular, T, lies
inside (0,1) x B" and has finite length.

This theorem is called the Brouwer Fixed Point Theorem. It was given as theorem 2.4 by
Chow et al. [36]. This theorem is now adapted to the root finding problem. f(z) = 0 holds for
the zero finding problem, which can be translated as follows.

Fz)=f(z)+z=2x (45)

The principal prerequisite of the theorem is that F' be a map into itself, F' : B" — B". A key
challenge for the application of this method to the context of equation-based, object-oriented
languages is therefore to provide a procedure to pose the equation system such that the sum of
the residuals f (z) and the unknowns x remains inside B" for any unknown = € B".

For completeness, it is described how the prerequisites of this theorem fulfill the conditions
of Watson’s Theorem. With respect to assumption (1), it is noted that the Jacobian matrix dp
has been defined in equation (42). If it has rank n on p~! (0) then p is transversal to zero. This
can be verified easily as % = —(1 — A)diag (n) is a diagonal matrix, which, by definition, has
full rank.

Prerequisite (2) of Watson’s Theorem is fulfilled trivially. It is obvious that p,(0,z) =
G(z) = x —a = 0 has a unique solution z¢ = a.

Prerequisites (3) and (4), covering the boundedness and thus the existence of a solution, are
a result of the properties of the map f : B" — B", i.e., the fact that it maps into itself. This is
a fundamental result!, which, in the context of probability-one homotopy methods, is derived
in [36].

9.1.2 Inner Product Theorem

In their 1976 work, Chow et al. [36] also considered root finding problems directly. The corre-
sponding theorem (theorem 4.1 in [36]) contains a condition on the inner product, which is why
it is labeled Inner Product Theorem herein.

Theorem 3. Let f : R — R™ be a smooth map C?. Suppose that for 0 < r € R the following
holds.
2T f(z) >0 when |z| =7 (46)

Again, let T, be the component of p; ' (0) N (0,1) x R™® whose closure contains (0,a). The
homotopy map p (a, A\, z) is defined as follows.

pla, \yx) = (1 =X (x—a)+ A\f(x) (47)

Be 0f(x*) regular in every root x*. Then, for almost any |a| < r, we have a root x* in f
with |x*| < r. Furthermore, the smooth homotopy track I'y, connects (0,a) to (1,x*) with finite
length.

Note that 27 f (x) > 0 has to be fulfilled for any = with || = r, not only for some root x*.
Therefore, the residual equations f () = 0 cannot be utilized, as they are only valid for roots,
not all x.

'Note that for the fix point perspective p,(1,z) = —F (), i.e., not p,(1,z) = F(x) as when using one of the
other homotopy maps considered in this thesis.



98 CHAPTER 9. HOMOTOPY FOR GENERIC MULTI-DOMAIN MODELING

Consider again the four prerequisites for Watson’s Theorem. Assumption (1) is fulfilled,
because the sub-matrix % of the Jacobian equation (42) is identical to the one using the ho-
motopy map of the Brouwer Fix Point Theorem and has rank n. Assumption (2) is fulfilled as
p,(0,2) = G(x) = © — a = 0 has a unique solution zyp = a. The same holds for prerequisite
(3); substitution of A = 1 into equation (47) yields p,(1,z) = f(x). Finally, the boundedness
and therefore existence of solution is a fundamental result of the inner product condition equa-
tion (46). A proof of the latter is beyond the scope of this thesis and the reader is referred

to [36].

9.1.3 Watson’s Theorem using a standard homotopy map

Alternatively to using the one of the two anterior theorems, one may choose to apply Watson’s
Theorem directly. For this purpose a suitable homotopy map p(a, A, z) has to be defined. One
obvious option is to use the standard convex combination of f(z) and g(z) with g(z) linear as
defined in equation (47).

In this case, prerequisite (1) is fulfilled because the sub-matrix %pl of the Jacobian equa-
tion (42) has rank n. Similarly, prerequisite (2) is fulfilled as p,(0,z) = x — a = 0 has a unique
solution. Furthermore, applying A = 1 in equation (47) results in p,(1,2) = f(x), which fulfills
prerequisite (3). Prerequisite (4), i.e., p;1(0) is bounded, practically requires that the solution
x to p, (A, x) does not grow beyond a specific limit?, which need not be known explicitly—only
its existence is relevant. This prerequisite has to be considered in context with the particular
set of residual equations f(x).

9.1.4 Polynomial systems

For any nonlinear equation system consisting of polynomials only, an established solution
method exists based on probability-one homotopy methods [194, 165]. Due to the the char-
acteristics of the application at hand, this body of theory cannot be utilized but is mentioned
here for completeness.

9.1.5 Summary

Three suitable theorems were identified for the application of globally convergent probability-
one homotopy methods to general systems of nonlinear algebraic equation systems. They are:

Brouwer Fix Point Theorem Application of this theorem requires the following prerequi-
sites to be met:

1. The homotopy map p and thus the residual equations f(x) + = are C?,

2. The residual equations are posed such that f(z)+z : B" — B” be map of the closed
unit ball into itself.

Then, the fix point homotopy equation (44) will be successful for almost any a € B".
Furthermore, if I —0F (z*) is regular for every fixed point z*, then I, is of finite length. All
other prerequisites of Watson’s Theorem are fulfilled by the construction of the homotopy
map or result from the given two assumptions.

Inner Product Theorem Application of this theorem requires the following assumptions to
hold:

1. The homotopy map p and thus the residual equations f(x) are C?,

2. The residual equations are posed as a map f : R” — R", for which 27 f () > 0 holds
for any || =r with 0 <r € R.

2Notably, there are similarities with the Brouwer Fixed Point Theorem. As both may employ different
homotopy maps, they are treated as separate options in this work.
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Then, the root finding homotopy equation (47) will be successful for almost any a € R”
with |a| < r. Furthermore, if 0f(x*) is regular in every root z*, then I', will be of finite
length. All other prerequisites of Watson’s Theorem are fulfilled by the construction of
the homotopy map or result from the given two assumptions.

Watson’s Theorem using a standard homotopy map Application of the theorem requires
the following assumptions to be fulfilled:

1. The homotopy map p and thus the residual equations f(x) are C?,
2. The zero set p,1(0) is bounded.

Then, the root finding homotopy equation (47) will be successful for almost any a € R".
Furthermore, if 0f(x*) is regular in every root x*, then I', will be of finite length. All
other prerequisites of Watson’s Theorem are fulfilled by the construction of the homotopy
map.

Once more, it is highlighted that this list of theorems is not complete and that other theorems
are in use today for probability-one homotopy. For example, Yamamura et al. [197] use a
theorem of Garcia and Zangwill [199].

9.2 Application to multi-domain modeling

In the previous section, different theorems for probability-one homotopy have been introduced.
From the preceding discussion it became evident that such methods cannot be applied directly
to randomly posed equation systems. Instead, they have to be formulated carefully in order to
fulfill the conditions of one of the given theorems (or any other suitable one). In the remainder
of this chapter, procedures are analyzed that are suitable to do so for generic models of physical
systems. Herein, the proofs utilized by the analog electronic circuit simulator community receive
particular attention.

A common prerequisite is the C? smoothness of the residual equations. This has to be met
in any case and is therefore not elaborated any further.

9.2.1 The Inner Product Theorem and passivity

When utilizing the Inner Product Theorem, a key condition on the problem is that z” f () > 0
holds for any |z| = r and 0 < r € R. When considering generic models of physical systems,
a single overarching principle comes to mind, which may be leveraged in order to fulfill this
theorem: conservation of energy. Exclude boundary conditions for a moment. Then, if a
component is formulated properly, the sum of the powers delivered to any component has to
be zero (conservation of energy) or positive (dissipation of energy). If the residual equations
and the vector of unknowns are set up such that =7 f (z) is a sum of powers delivered to the
components, then the sum of them will be zero or positive, i.e., 2 f (x) > 0 for any |z| = r.

Melville, Trajkovic and co-workers [117, 177] provided such a proof for analog electronic
circuit simulators. In this domain, the energy criterion is called passivity, which was defined in
the introduction of this chapter 9. Therefore, this section can be understood as an analysis of
whether this type of coercivity argument can be generalized to physical modeling in different
domains.

9.2.1.1 Topologies without boundary conditions

Consider the connection set illustrated in figure 59, which can be considered a part of some
general model topology. To each connection set, a vector of node potentials is assigned, whose
length is the number of pairs of potential and flow variables in the corresponding connector
definition. In the figure, three components are connected in connection set i, each designated
with a number 1 to 3. Each of these components has a vector of flow variables, whose length is
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Figure 59: A general connection set without boundary condition

again equal to the number of pairs of potential and flow variables in the connection set. These
flow variables have indices referring to the component (e.g., 3) and the node (e.g., i), e.g., ©3;.

In a multi-domain physical model each of the nodes can implement interactions in a different
physical discipline (e.g., thermal conduction, mechanical connection). Independently of this,
each of these interactions can be described by pairs of potential and flow variables in such a way
that the product of potential and flow is the power delivered to a component at the corresponding
connector. For several exemplary physical domains, such pairs are given in table 8 below. It
is admitted that these pairs are, in some cases, unconventional. For translatory mechanics, the
given pair is only reasonable for a subset of mechanical systems for which position is not relevant.
Otherwise, the position vector or transformation matrix has to be used as potential. In that
case, the product of potential and flow is not power anymore. Likely, the convective transport
of energy (i.e., enthalpy flow) is split for the unidirectional fluid flow into the sum of flow work
and convective transport of inner energy. It is highlighted that this work considers these pairs as
working hypotheses in order to assess the applicability of certain homotopy methods. They are
not understood as universally preferable pairs of potential and flow variables. Furthermore, it is
noted that it is not necessary to actually define these variables on the connectors or component
interfaces; instead, these types of pairs may be highlighted using annotations.

Physical domain Potentials = Flows ¢

Translational mechanics Velocity v Force F'

Rotational mechanics Angular velocity w Torque 7

Electrical circuits Voltage V Current [/

Heat transfer Temperature T Rate of entropy change S

Unidirectional thermo-fluid Pressure p, Volumetric flow rate V,
inner energy u mass flow rate m

Table 8: Potential and flow variable pairs whose product is power or heat flow

Next, the equation system is posed. As unknowns z the node potentials are chosen. The
residual equations f(z) shall each be the sum of the flows for the different connection sets,
which have to be zero according to potential and flow semantics. Then, for node i, ¢;(z) =
©1; + p9; + ¢3;- Note that this equation for node 7 may be a vector equation if the number of
pairs of potential and flow variables in the connector employed in node i is larger than one.

This leads to the following value of the inner product of the vector of unknowns with the
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transpose of the residual equations.
xif; (I)T
of (@) = Tipy + Ty + vipy; + (48)
Tjp1; + TkPop + TiPoy + TmPay, + - -

Based on the rationale outlined above, P, is introduced, the power delivered to a component
r. For physical models these powers have to be non-negative, e.g., P1 = xipy; + xjp1; > 0.
Rearranging equation (48), the following equation is obtained.

cf (£) =Py +Py+Psy... (49)

Here, P1+ P2+ P3 > 0. Therefore, the inner product condition is fulfilled for the topological
elements shown in figure 59. As this argument can be repeated for all possible connections sets,
the inner product condition is fulfilled for general topologies without boundary conditions.

9.2.1.2 Topologies with boundary conditions

In order to cover practically relevant topologies, boundary conditions have to be addressed.
Consider figure 60, which shows a part of some topology that features an independent potential
boundary condition at connection set m. Independent potential boundary conditions are the
only boundary conditions analyzed at this point.

[ P21 P2k ke

Figure 60: A general connection set with boundary condition

As the potentials in connection set m are not unknown anymore, no corresponding x,, is
included in x and no residual ¢, (x) is included in f(x). Consequently, the inner product
changes as follows?.

of ()7 = @ipy; + Titpo; + Titpa;+ (50)
Tjp1j + TrPop + Tipg + - ..

If it is again assumed that the power delivered to any component is conserved or (par-
tially) dissipated, the inner product condition can be reduced to the following inequality for
a single independent potential boundary condition (using the same algebra as in the previous
section 9.2.1.1, and P; = 0, the case imposing the strictest conditions).

Tigz; > 0 (51)

3At a first glance, one might be tempted to maintain x,, as an additional, artificial unknown in z. However,
the corresponding residual equation would then be ¢, (z) = ¢pc , + ©3,, = 0. Due to the presence of ¢po ,,
the imbalance in egs. (50) and (51) is not solved. Furthermore, no equation is available for the flow ¢zc ,,, by
an independent potential boundary condition.
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Melville, Trajkovic and co-workers [117, 177] assume that only resistive elements are con-
nected to potential boundary conditions. For resistive elements, the following equation holds
with & € RT.

p3i =k (zi — Tm) (52)

In particular, for resistors in electronic circuits, K = 1/R is constant. At this point, general

resistive components according to equation (52) are assumed to be connected to the boundary
conditions and thus the latter equation is substituted into equation (51).

ik (x5 — ) >0 (53)

Figure 61 illustrates for which z; inequality (53) is fulfilled. For these regions the inner
product condition is fulfilled. Note that the shown domains hold independently of the particular
value of k as long as k > 0.

X Xi

Figure 61: Inner product condition with independent potential source (inequality (53))

Melville, Trajkovic and co-workers [117, 177] finish their proof with inequality (53), which,
according to their understanding, states that the inner product condition is satisfied. For the
one-dimensional case illustrated in figure 61 the value of r can be made sufficiently large in
order to fulfill the inner product condition. For the multi-dimensional case, the assumptions
given in this article so far and employed by the cited authors do not suffice. Obviously, the
inner product condition need not only hold for some x but for all |z| = r with r € RT (see
section 9.1.2). Consider for a moment the topology shown in figure 60 and assume that, in
addition to component 3, n other components are connected forming loops such that each
connection set links at least two components. Posing the equation system as suggested in the
preceding paragraphs leads to an equation system with a vector of unknowns that includes x;,
xj, and other unknowns for the other connection set potentials. For the moment, the focus
is on z; and x;. All other potentials influence the power delivered to the n components, for
which the inequality P; > 0 holds. For this topology, the inner product condition leads to the
following inequality.

z;k (xl — ij) + ZPz >0 (54)
n

According to Melville, Trajkovic and co-workers [117, 177], assuming P; = 0 does not violate the
inner product condition. The regions in which this conditions is fulfilled under this assumption
are illustrated in figure 62. Obviously, the radius r can be increased to any value without
fulfilling the inner product condition. Only if an additional non-zero contribution is available
via the P; in equation (54) then the inner product condition can be fulfilled for all |z| = r.

Therefore, the proof given by Melville, Trajkovic and co-workers [117, 177] that passiv-
ity establishes the prerequisites of the inner product condition and thus the success of the
probability-one homotopy method is not complete. Based on this, the question for the success
of the method for analog electronic circuit simulators arises. There are at least two straight
forward answers. First, investigations of electronic circuit devices show that several common
electronic circuit elements are rather dissipative. Therefore, the power delivered to their ports
is larger than zero, P; > 0. Moreover, the dissipated power happens to increase with the poten-
tial difference at the component, which allows to compensate the negative contribution to the
inner product when equation (53) is not fulfilled. For electronic circuits, this dissipated power
eventually allows to satisfy the inner product condition for some (potentially larger) radius 7.
Second, the first argument of Melville, Trajkovic and co-workers [117, 177] (no-gain) remains
intact, so no harm is done to the theory for circuit applications. After all, as seen in chapter 8,
the theory works well in practice.
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Figure 62: Inner product condition with independent potential source for two unknowns

To summarize, for the application of the energy conservation perspective to the inner product
condition of probability-one homotopies and multi-domain physical modeling, energy conserving
components are not sufficient. Similarly, general energy dissipating components that dissipate,
e.g., an infinitely small amount of energy may not be sufficient either. Instead, a well-defined
amount of power has to be dissipated (the net power entering the connection sets through
components connected to boundary conditions).

Furthermore, it is not possible to fulfill this requirement for dissipative components in general
multi-domain physical modeling. In several physical domains it is not possible to create such
dissipative components (an example is given in the following section). As a consequence, the
present energy argument for the inner product condition is considered not applicable to general
multi-domain physical modeling.

9.2.1.3 Ezxample

In order to illustrate the findings with respect to electronic circuits and general physical mod-
eling, an example of the failure of the inner product condition is provided. Consider a serial
network of three electrical or, respectively, thermal resistors shown in figure 63. At each end,
independent potential boundary conditions prescribe the electric potentials V; and Vi or,
respectively, temperatures T’y and T'g.

1 2 3
F— o+ J+——o— R
BC, ©01q @ P2a  P2b b P3b BCgr

Figure 63: Exemplary network topology

The vector of unknowns is the vector of potentials at the connection sets without boundary

condition.
o (55)
=\ n
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Similarly, the residual equations are the sums of the flows for each connection set.

_ Pla + P2q
J (@) = ( Pap T P3p > (56)

First, consider the electrical circuit interpretation. The potentials and flows are substituted
(according to table 8, set x = V and ¢ = I). The inner product of the unknowns and the
transpose of the residual equations is therefore as follows.

af (2)" = Valia+ Valoa + Viploy +Vilsy (57)
—_—
Py

Assuming resistances R; for components i = 1...3 and applying Ohm’s Law, one arrives at the
following equation for the inner product with Py = (V, — V3)?/Ra.
V-V

of @) = v Lo Ve p, oy, Yo Ve

58
Rl R3 ( )

The implications on the inner product condition are illustrated in figures 64 and 65. On
the left figure, the value of the inner product is shown assuming P, = 0, which is admissible
for passive components according to Melville, Trajkovic and co-workers [117, 177]. In order
to identify the regions in which the inner product condition is fulfilled, the domain in which a
negative value results is shown in gray (the darker, the larger the absolute value). Here, an inner
product condition would be false. In the green regions the value is positive with the absolute
value increasing from light green to green. To summarize, the inner product condition is fulfilled
in the domain marked with colors ranging from white to green. In the given figure, a circle
with an exemplary radius » = 15 is shown. From that, one can infer that the inner product
condition can be fulfilled with a conservative component 2 (i.e., P2 = 0). The value of Py for
this particular resistor circuit is, as required for a conservative or dissipative component, always
larger than or equal to zero. The correct inner product condition (with the actual non-zero
value of Ps) is shown in figure 65. Again, the condition can be fulfilled assuming some finite
radius r. So far, this example is in line with the findings reported by Melville, Trajkovic and
co-workers [117, 177].

/

Vs Vs

&

577
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=

Figure 64: IPC assuming P, =0 Figure 65: TPC with actual Py

This is mostly the case for the thermal network interpretation of figure 63, too. In this case,
Py = 0. In the following equations, the expression \;A;/ (Az;) with thermal conductivity A,
area A and thickness Az is abbreviated with the letter ;.

af (2)" = Ta% (Te—Tpr)+ Tb% (Ty—Tr)
a
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This inner product condition for the thermal conductor network is shown in figure 66.
Pathologic behavior is observed in that no radius r can be chosen which leads to fulfilling
the inner product condition. The reason is that the condition on resistive elements & > 0
(e.g., k = x1/Ta) in equation (53) is not fulfilled if 7, < 0. To illustrate the key difficulty
with the proof of Melville, Trajkovic and co-workers [117, 177], this complication is skipped
by arguing that for temperatures in Kelvin, the values of zero and below are not practically
relevant and therefore introduce a small minimum temperature 7, ~ 10~ for regularization.
The generalized resistance is then regularized as

X1/Ta = { X1/Ta if Tq > Trmin
v X1/Tmin (2 = T/T min) else

This leads to the inner product condition depicted to the right, for which a radius r exists
to fulfill the condition. The parameter values used for figures 64 and 65 are Ry = Ry = 11,
Ry = 29, Vi = 5V, Vi = 1V. The ones used for figures 66 and 67 are x; = 1W/K,
x3 =2W/K, T, =12K, Tr = 0K.

Figure 66: IPC as is Figure 67: Regularized IPC

In order to illustrate the key weakness of the proof of Melville, Trajkovic and co-workers [117,
177], consider a serial network similar to the one shown in figure 63 but with four instead of three
electrical or, respectively, thermal resistors in series. Again, independent potential boundary
conditions prescribe the potentials.

Consider the electrical circuit interpretation first. The inner product of the unknowns and
the transpose of the residual equations is therefore as follows.

of ()7 = Valia + Valoa + Vilo+ Vilsy + Velse +Velae (59)
P Ps

According to the proof by Melville, Trajkovic and co-workers [117, 177], assuming passive
components and thus Po = 0 and P3 = 0 does not violate the inner product condition. An
analogous illustration to figure 64 for the present case of four resistive elements is given in
figure 68. Here, the two-dimensional circle with radius r is replaced by three-dimensional
spheres with different radii 7. On the surface of the spheres, information is given on whether
the inner product condition is fulfilled or not by either drawing the surface (formerly green
regions) or using exclusions (formerly gray regions). A cut perpendicular to the V, axis results
in an elliptical exclusion similar to the gray region shown in figure 64.

As can be inferred from the following figure 68, the contrary of what Melville, Trajkovic and
co-workers [117, 177] suggest is the case. Even for large values of r, no compensation for the
negative contribution to the inner product is available and thus the inner product condition is
not valid for all || = r.
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Figure 68: Inner product condition for example topology (electrical network, passive compo-
nents 2 and 3)

As mentioned earlier, the power dissipated in actual electronic circuit components increases
with the potential difference over the components. Therefore, as r is increased, the values of
P, P3 increase. In particular the following type of equality holds for the resistors.

Py = (Vo —V3)?/Rs (60)

Only when considering these dissipative properties of the electronic circuit components, the
inner product condition can be fulfilled. This is illustrated in figure 69 (here, an additional
green surface marks the boundary between the regions, in which the condition is fulfilled, and
regions, in which this is not the case). For the maximum value shown (r = 50), the inner
product condition is finally fulfilled. The values used for figures 68 and 69 are Ry = 0.3€,
Ry = R3 = Ry =1Q, V[ =35V, Vp = 0V. The value of the radius was r = {10, 20, 30,40, 50}.

Next, consider the thermal network interpretation of the four resistor topology similar to
the one shown in figure 63. Again, the potentials and flows are substituted (x = T and ¢ = S)
The inner product of the unknowns and the transpose of the residual equations is therefore as
follows. . ‘ ‘ _ ‘ ‘

l‘f ("E)T = Tasla + TaS2a + TbSZb + TbS3b + TCS3C +TCS4C (61)
Py P3

Fourier’s Law allows to establish expressions for the rate of entropy change, e.g., Soq =
—X3 (Ta/7, — 1) with thermal conductivity times area divided by thickness x,. Substituting such
expressions into the power delivered to the components, P;, the result Po = P3 = (0 emerges.
With this and similar expressions for components 1 and 4, equation (61) is manipulated to
arrive at the following final inequality for the inner product condition.

af (z)" = —x1Ta (T/r, — 1) — x4Te (Trfr, — 1) > 0 (62)

The contribution of component 1 to the inner product will be negative whenever T, < T'r.
Analogously, the contribution of component 4 to the inner product will be negative whenever
T. < Tpg. The sphere in three dimensions (due to three unknowns in the counterpart of
equation (55) for four resistive components) includes points, for which both T, < T and
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Figure 69: Inner product condition for example topology (electrical network, dissipative com-
ponents 2 and 3)

T. < Tr. As can be seen from equation (62) no positive contribution due to variation of T}
can be obtained. Therefore, the Inner Production Condition does not hold for all |x| = r. This
is independent of the value of r and similar to the result observed for the electronic circuit
interpretation with passive components?.

Figure 70 illustrates where the inner product condition holds for different values of radius
r = {10, 20, 30, 40,50} (this figure is the three-dimensional counterpart of figure 67). At T, =
Tr and T. = Tg, the condition is fulfilled; if either one of them is reduced the other has to
be increased (the actual amount depends on the ratio of the coefficients x;/x4). If, however,
T, <Tp and T, < Tg, then the inner product condition is not fulfilled; furthermore, this is
independent of the value of T’,. The figure uses the given regularizations for small and negative
temperatures. Without it, the region, in which the inner product condition is fulfilled, is even
smaller. The particular parameter settings used in figure 70 are x; = 1W/K, y, = 1.5W/K,
T, =20K, and T = 20K.

9.2.2 Brouwer Fixed Point Theorem

Within the scope of the present work, no general physical principle was identified, which could
be utilized to prove that F'(z)+z : 8" — B" in the context of multi-domain physical modeling.

9.2.3 Watson’s Theorem and boundedness

No generic principle to fulfill coercivity in multi-domain physical modeling was identified. This
holds for the Inner Product Theorem, the Brouwer Fixed Point Theorem and also Watson’s The-
orem. The latter, however, can be utilized to prove coercivity for individual physical domains.
As already mentioned, this has been done by Melville, Trajkovic and co-workers [117, 177] for
analog electronic circuits using the no-gain property.

4For completeness, note that while these trivial examples do not fulfill the inner product condition, they do
meet the conditions of Watson’s Theorem via the Second Law of Thermodynamics or the no-gain property of
electronic resistors.
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Figure 70: Inner product condition for example topology (thermal network)

9.2.8.1 Analog Electronic Clircuits

Boundedness of the solution to a technical system may be utilized to fulfill the prerequisites of
probability-one homotopy. In their articles, Melville, Trajkovic and co-workers [117, 177] do this
in the context of analog electronic circuit simulators. By excluding a small set of components
(components that do not have the so called no-gain property [193] such as amplifiers), the au-
thors are able to guarantee that the vector of unknowns (the node potentials) remain within the
sum of the source potentials and ground potential. This is a statement on boundedness, which
can be utilized to fulfill the boundedness condition of Watson’s Theorem for these applications.

If components shall be considered that do not fulfill the no-gain property, then properly
modeling saturation is an approach to still meet the boundedness criterion. Saturation is a
limiting behavior and may or may not be modeled for a component. Melville, Trajkovic and co-
workers [117, 177] consider analog electronic components that do not fulfill the no-gain property,
e.g., an amplifier. The amplifier receives a reference potential, which is amplified by some gain.
In a simple model, the gain could be a constant value. The behavior would however be realistic
only for small values of the reference potential. As soon as the amplified signal reaches the
potential of the supply voltage of the amplifier, the amplifier starts to saturate. Therefore,
independently of the value of the reference potential, the amplified potential is bounded if the
component properly models saturation. Thus, the boundedness criterion of Watson’s theorem
may be fulfilled for analog electronic circuits with properly modeled no-gain components or ones
that implement saturation.

9.2.83.2  Thermo-Fluid Dynamics

Willson [193] provided theorems to test whether two-port and three-port elements fulfill the
no-gain property. These theorems can be generalized to other physical domains such as thermo-
fluid dynamics. This allows proving that open networks consisting of wall friction elements and
heat exchanger models fulfill the boundedness criterion of Watson’s Theorem. A short example
is given below for an isothermal hydraulics wall friction element. Here, pressure p serves as
potential and volumetric flow rate V serves as flow variable. Then, the thermo-fluid dynamics
counterpart of theorem 1 of [193] is as follows.
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Theorem 4. A two-terminal element is a no-gain element if and only if its behavior is char-
acterized by a Ap-V relation for which ApV > 0, with Ap = 0 if and only if V = 0.

Assume that a pressure loss coefficient ¢ is used to describe the wall friction. Therefore,
total pressure loss due to wall friction is Ap = 1/2(p-v-|v|. Here, p is density, v is fluid velocity.

Immediately, Ap = V- ‘V’ emerges as Ap-V relation for this element with o = 1 / (2A2) Cp>0

with cross-section area A. Obviously, ApV > 0 with Ap = 0 if and only if V = 0.

Other components such as turbo compressors and turbines do not fulfill such a generalized
no-gain property and have thus to be modeled, if at all, with saturation effects. The second law
of thermodynamics provides a boundedness argument for thermal conduction®.

9.2.8.8 Mechanics

Similarly to the other domains considered so far, models in mechanics may contain some el-
ements that do fulfill boundedness criteria and some that do not. Quaternions are usually
bounded because ¢7 + g3 + q?,) + ¢2 = 1. Rotational angles may be considered bounded during
initialization, i.e., —m < ¢ < 7 if 27 is added or subtracted when reaching the given limits.
After all, it is only possible to specify an angle in the range of 27 if it is not known how a config-
uration was formed. Translatory coordinates are, in case of non-mobile applications, bounded
by finite length components, which are attached to some reference position in space. Some
components may require modeling of saturation behavior (e.g., spring).

The boundedness criterion of Watson’s Theorem provides a means to prove coercivity for
problems in technical domains beyond electronic circuits. Such proofs have to be constructed
for each physical domain and possibly technical problem separately.

At a first glance, this appears to be a limitation. After all, no “one fits all”-probability-one
homotopy for multi-domain physical modeling has been devised in this chapter. Notably how-
ever, the most successful probability-one homotopy applications (e.g., [117, 152]) are reported
in conjunction with problem-specific approaches to coercivity and the construction of homo-
topy maps. This was already hinted at by the initial results of the introduction to homotopy
methods in section 8.2. In particular, successful maps capture the physics of the problem, are
well-conditioned except near the solution, and possibly have A deeply and nonlinearly embed-
ded. With such problem-specific maps, probability-one homotopy methods hold potential to
yield a relevant improvement over the robustness of local gradient-based algorithms.

5The second law of thermodynamics is not used explicitly in simulation models, but imposes the direction of
heat flux.
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CHAPTER 10

PROBABILITY-ONE HOMOTOPY AND PROBLEM-SPECIFIC MAPS

The objective of this chapter is to formulate a proposal for homotopy methods using problem-
specific maps. For this purpose, the work of Melville et al. [117] on analog electronic circuits
is considered to establish coercivity in multi-domain physical modeling. Melville et al. [117]
present two alternative arguments. The one utilizing energy arguments such as passivity was
analyzed in detail in chapter 9. It was not possible to apply it to generic multi-domain physical
modeling. The other one is based on a domain-specific argument on boundedness (the no-gain
property). In this chapter, problem-specific approaches to coercivity and the construction of
homotopy maps are considered.

10.1 General problem-specific homotopy
10.1.1 Concept definition

In a number of articles [86, 197], generic homotopy maps are utilized for probability-one ho-
motopy. Some references [117, 152, 69, 17] indicate however that homotopy maps that capture
the physics of a problem, are well-conditioned except near the solution, and possibly have A
deeply and nonlinearly embedded may provide substantially higher potential for efficiency and
robustness. Methods utilizing such maps are called general problem-specific homotopy methods
in this thesis. Ideally, they are based on coercivity and are thus probability-one homotopy
methods.
For a general problem-specific probability-one homotopy, it is proposed to

1. Derive the simplified system from the actual system of interest, and

2. Prove global convergence using a suitable theorem such as Watson’s Theorem (see sec-
tion 9.1).

The formulation of the homotopy map including a simplified system is problem-specific and
allows modelers to infuse their knowledge about the physics of the problem into the way the
equation system is solved. After all, as Roychowdhury and Melville [152] report, theoretical
guarantees of probability-one homotopy on global convergence may still be deteriorated via
at least two failure mechanisms, ill-conditioned numerics leading to failure of path following
and homotopy paths that continue forever (i.e., impractically long) without reaching A = 1.
Therefore, the construction of general problem-specific homotopies is considered a question of
engineering skill and to some extend an art.

Numerous approaches can be followed to derive the simplified system. For example, the
residual equations may be linearized at some nominal operating point. Alternatively they can
be split into a linear and a nonlinear part. Two approaches to do so have been considered by
Mathis and Trajkovic [111, 179]. They assume that the problem is described by Lz + N (z) = b.
Then, a simplified linear system may be constructed as Lz = b. Mathis and Trajkovic [111, 179]
found that a homotopy map f (x,\) = (Lz — b) + N (Az) results in a more efficient homotopy
than f (z,\) = (Lx —b) + X\ - N (z) for their problems. Obviously, the former homotopy map
can only be implemented if the nonlinear operator N satisfies N(0) = 0. According to the
experience of the author, such formalistic approaches are often less powerful however than ones
that deeply address the specifics of the actual problem (cf. first paragraph).

It is up to the user to implement homotopy maps, which adhere to the second step given
above (prove global convergence). It is important to understand that such reasoning may yield
formally similar homotopy maps but either a conventional homotopy method or a modern
probability-one homotopy method.
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It is highlighted that the proposal is compatible with the concept of object-orientation.
Based on this, homotopy should be considered as a feature introduced by domain experts to
selected key equations and models.

10.1.2 Application to equation-based, object-oriented modeling languages

As mentioned in section 7.1, equation-based, object-oriented modeling languages are meant to
allow a declarative problem description. That is one in which no information has to be provided
on how to solve the problem. Instead, the problem itself is described. The solution algorithms
are encapsulated in the language compilers and simulators.

In order to be useful for practitioners, the notion of problem-specific homotopy maps has to
be integrated into simulation tools. As before, the integration of the generic problem-specific
homotopy is discussed in context of equation-based, object-oriented modeling languages. As
described above, such languages enable a declarative description of the problem. The goal was
thus to extend the declarative description to homotopies.

Using object-oriented modeling languages, one structures a model in terms of classes and
objects. Therefore, it is proposed to specify a homotopy map p, (z,A) on the level of the
equation set of the model classes, too.

In order to implement the suggested approach, it is proposed to utilize two built-in opera-
tors, homotopy () and lambda()'. The operator homotopy () has one argument, an expression
involving A\, which describes the problem-specific homotopy map. This expression is written us-
ing the second operator lambda () for each occurrence of variable A. This operator may return a
value in [0, 1] during the numeric solution of algebraic equation systems and strictly 1 during the
generation of simulation results. The operator lambda() may only be used inside an argument
to homotopy (). The operator homotopy () has no functionality but to mark homotopy expres-
sions. If the operator lambda () is used without an argument then a single-phase homotopy map
is implemented. If integer arguments are used then a homotopy map is implemented, which
consists of n phases, where n is the maximum over all arguments of the operator lambda().
For example, when using lambda(1) and lambda(2), then a homotopy map is implemented in
which A1 values are first swept from 0 to 1. After this is finished, Ay values are swept from 0
to 1. X has to be swept from 0 to 1 during these sequential continuation runs of \; in order to
infuse the random element required by theory?.

In order to simulate a given model efficiently, simulation software may apply symbolic pre-
processing steps. A step that has to be considered in the context of homotopy is equation
sorting. A typical example of a sorting algorithm used for equation-based, object-oriented
modeling languages is the Block Lower Triangular (BLT) transformation [55], using a graph-
theoretical algorithm by Tarjan [169]. This algorithm re-orders and partitions the equations in
a system so that they can be solved as much as possible in a sequential fashion. At the same
time, algebraic loops are identified, i.e., the nonlinear algebraic equation systems, which are
subject of this chapter.

Consider the following representative example, where equations and variables have already
been re-ordered into BLT form, and the dependency on the homotopy parameter \ is made

!Note that this proposal is different from an earlier proposal of an operator homotopy() by Sielemann et
al. [163]. In the earlier proposal, the operator was supposed to depend on two arguments, namely actual, an
expression of the actual problem, and simplified, an expression corresponding to the simple problem. Following
the earlier proposal, the compiler was then able to expand this operator according to some predefined homotopy
map. As this original operator is less powerful for modern problem-specific probability-one homotopy, the present
proposal is made.

When using the homotopy operator with integer arguments, several distinct continuation runs have to be
started as the trajectories will in general not be smooth at the joining point of traces in any A; and A\jy1 . In
general, the trajectories will be continuous but not differentiable. Even if a continuation algorithm manages to
“hop over” such a joining point, starting continuation separately will be more efficient.
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Conceptually speaking, the continuation must be applied to the equation set as a whole. If
the homotopy operator was not considered in the sorting process, then it would be possible to
initially solve the first equation alone for x1, then solve the second and the third for zs, z3, by
using the already computed value of x1, then the fourth for x4, and finally the fifth for x5, by
using the already computed value of x4. It is apparent that this strategy is not equivalent to
applying the continuation to the entire system, since the second and third equations would be
solved without any homotopy, by only considering the value of x1 obtained for A = 1. Such a
blind application of the BLT partitioning must be avoided, as it leads to an unwanted result.
The correct approach is instead to simultaneously solve via continuation all the equations that
are either directly or indirectly influenced by the homotopy operator, in this case the first three
ones.

Note that if any of the theorems introduced in section 9.1 is fulfilled, then a large fraction
of potential problems is avoided. For example, no singular Jacobian matrix at A = 0 can arise.

10.1.3 Test implementation

In order to validate the methodology, a test implementation was developed. It was based on
the equation-based, object-oriented modeling language Modelica and the compiler Dymola® in
versions 7.3 and 6.1. This test implementation utilized the LOCA continuation algorithms of
Trilinos [82] and had the following properties.

e It provided three options for the treatment of the suggested homotopy operator. Normally,
it was expanded according to a homotopy map. Alternatively, reduced equation sets were
obtained by inlining the homotopy expression assuming \; = 1.0 or A; = 0.0. In the latter
case, maximum structural simplification of the equation system resulted.

e The user was able to manually prescribe whether to use homotopy initialization or not.
This was an important feature for library development and debugging, and may be useful
for users, too (e.g., if a local gradient-based solver converges to a mathematically valid,
but physically unreasonable or unstable solution or when a local gradient-based solver
does not converge and a user does not want to wait at the start of each simulation until
the software realized this).

e Verbose information on the homotopy was optionally provided, which was useful for library
development and debugging. In particular, the homotopy traces were visualized. Like this,
it was possible to reconstruct what happened during the solution of the simplified problems
and the homotopy transformation.

Several implementation aspects such as automatic scaling and solver configuration via XML
files have been described in section 7.3.1 and equally apply to this solver implementation.

10.2 Applications in analog electronic circuits

As mentioned in the introduction to chapter 9, the use of probability-one homotopy is particu-
larly well-developed in the area of analog electronic circuit simulation [177, 175, 176, 117, 115,
86, 73, 179, 111, 151, 197, 152]. Before establishing a probability-one homotopy for thermo-fluid
dynamic applications, results from this area are therefore reviewed.

3This analysis can be trivially extended to cases with more than one \.
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10.2.1 Variable Stimulus

Melville et al. [117] proposed the Variable Stimulus Probability-One Homotopy. Its homotopy
map is as follows.

p(z,\)=(1=N)G(x—a)+ f(z,)N) (63)

Here, the residual equations f (z,\) are posed in the nodal analysis form [46] and the node
voltages of the nonlinear elements are multiplied by A. Therefore, the influence of the nonlinear
elements is removed from the circuit at A = 0.0 and a linear circuit has to be solved. The
matrix G defines the leakage from voltage sources of value a. These voltage sources and the
associated vector a provide the random element needed in the probability-one approach. The
leakage matrix G is a diagonal matrix with coefficients Gleak.

In order to substantiate that the Variable Stimulus Homotopy is globally convergent, Melville
et al. [117] utilize Watson’s Theorem as stated on page 96. Their arguments are as follows.

e The homotopy map (63) is twice continuously differentiable if and only if the device models
used to assemble the residual equations in nodal form f(x) are sufficiently smooth. It is
assumed that this is fulfilled.

e The homotopy map p is transversal to zero as dp/da in (42) is a diagonal matrix with
entries — (1 — \) - Gleak. For \ < 1, this matrix has full rank.

e p,(0,x) has a unique non-singular solution, because for A = 0 the circuit consists of resis-
tors and voltage sources only. Such a linear problem has a unique non-singular solution.

e p,(1,z) = f(x) because the leakage circuitry is removed completely at A = 1 and each
nonlinear device model is stimulated by the actual voltage.

e The zero set p, 1(0) is bounded due to the no-gain property of the actual circuit and any
partially stimulated circuit with leakage circuitry.

Additionally, Melville et al. [117] make the engineering assumption that the Jacobian of p,
has full rank at the solution z*.

This Variable Stimulus Homotopy can be implemented on analog circuits using the proposed
homotopy operator. First, a model of a NPN bipolar junction transistor is provided.

1 model NPN

2 // Connectors

3 Modelica.Electrical.Analog.Interfaces.Pin C "Collector";
4 Modelica.Electrical.Analog.Interfaces.Pin B "Base'";

5 Modelica.Electrical.Analog.Interfaces.Pin E "Emitter";

6

7 // Parameters

8 parameter Real af = 0.995 "Forward current gain';

9  parameter Real ar = 0.5 "Reverse current gain";

[
o

11 equation
12 C.i = homotopy(iCollectorNpn(

13 lambda()*B.v, lambda()*C.v, lambda()*E.v, af, ar));
14 E.i = homotopy(iEmitterNpn(

15 lambda()*B.v, lambda()*C.v, lambda()*E.v, af, ar));
16 B.i = homotopy(iBaseNpn(

17 lambda()*B.v, lambda()*C.v, lambda()*E.v, af, ar));
18 end NPN;

Listing 33: NPN transistor model using variable stimulus
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Here, three functions iCollectorNpn(), iEmitterNpn(), and iBaseNpn() are used to es-
tablish the collector, emitter, and base currents respectively. In order to implement the leakage
circuitry, a model instance of the following class is attached to each connection set.

1 model ElectricalNode

2 // Connectors

3  parameter Integer n=0 "Number of pins"

4 annotation(Evaluate=true, Dialog(connectorSizing=true));
5 Modelica.Electrical.Analog.Interfaces.Pin pin[n| "Pin array";
6

7 // Parameters

8 parameter Real Gleak "Leakage';

9 parameter Real a "Random source voltage";

10

11 equation

12 0 = -sum(pin[:].i) + homotopy((1.0 - lambda())*Gleak™®(pin[1].v-a));
13 for i in 1:n-1 loop

14 pin[i].v = pin[i+1].v;

15  end for;

16 end ElectricalNode;

Listing 34: Electrical node class

Note the negative sign in front of the summation of the currents of the pins. This is necessary
as the nodal analysis form [46] summarizes the currents going into the components attached to
a node.

According to the experiments of Melville et al. [117], the solution trajectories of this homo-
topy are “much smoother” than those of the generic homotopy map (38). Additionally, “the
action is spread out evenly over all values of \”. The experiments conducted in the scope of
this thesis arrived at similar results and support these findings.

10.2.2 Variable Gain

Melville et al. [117] also proposed the Variable Gain homotopy, which is similar to the Variable
Stimulus homotopy but addresses bipolar transistors differently. Instead of multiplying the
terminal voltages of all nonlinear elements by A, the forward current gain ar and the reverse
current gain ar are multiplied by A. The simplified problem with ar = 0 and ar = 0 therefore
consists of resistors, voltage sources, and diodes only.

p(x,N)=(1-XN)G(z—a)+ f(x,\) (64)

Again, the residual equations f (z, Aa) are posed in the nodal analysis form [46]. Due to the
diodes, the leakage circuitry is not necessary to avoid floating nodes. However, it is still included
in this homotopy to provide the random element to avoid bifurcations [117].

Originally, the Variable Gain homotopy was implemented as a two-stage procedure. First,
the Variable Stimulus homotopy was used to solve the A = 0 problem of the Variable Gain
homotopy. Then, continuation was started on the Variable Gain homotopy map (64) and the
actual problem was solved. Today, Variable Gain Homotopy is commonly understood as what
was originally labeled the “hybrid approach” in reference [117]. A local gradient-based algorithm
is used to solve the A = 0 problem and the continuation is applied directly on the Variable Gain
homotopy map. The robust convergence of a local gradient-based algorithm on the A\ = 0
problem is justified by Melville et al. [117] in case of norm-reducing algorithms (algorithms
using so-called globalizations) by the work of Duffin [51]. The single-stage procedure is “two to
three times faster than using homotopy alone” [117].

In order to show that the Variable Gain Homotopy is globally convergent, Melville et al. [117]
again utilize Watson’s Theorem. Their arguments are as follows.
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e As before, the homotopy map (64) is twice continuously differentiable if and only if the
device models used to assemble the residual equations in nodal form f(z) are sufficiently
smooth. Again, it is assumed that this is fulfilled.

e The homotopy map p is transversal to zero as dp/da in (42) is a diagonal matrix with
entries — (1 — A) - Gleak. For A < 1, this matrix has full rank.

e p,(0,x) has a unique non-singular solution, because for A\ = 0 the circuit consists of
resistors, voltage sources, and diodes only. Duffin [51] proved that such a problem has a
unique solution.

e p,(1,2) = f(z) because the leakage circuitry is removed completely at A = 1 and each
nonlinear device model uses the nominal forward and reverse current gains.

e The zero set p, ' (0) is bounded as Melville et al. [117] showed. This is due to the results
of [193], who showed that bipolar transistors exhibit the no-gain property as long as the
absolute values of the current gains remain less than or equal to one.

This Variable Gain Homotopy can be implemented on analog circuits using the proposed
homotopy operator. Again, a model of a NPN bipolar junction transistors is given.

1 model NPN

2 // Connectors

3 Modelica.Electrical.Analog.Interfaces.Pin C "Collector";
4  Modelica.Electrical.Analog.Interfaces.Pin B "Base'";

5 Modelica.Electrical.Analog.Interfaces.Pin E "Emitter";

6

7 // Parameters

8  parameter Real af = 0.995 "Forward current gain'";

9 parameter Real ar = 0.5 "Reverse current gain";

[
(@]

11 equation
12 C.i = homotopy(iCollectorNpn(

13 B.v, C.v, E.v, lambda()*af, lambda()*ar));
14  E.i = homotopy(iEmitterNpn(

15 B.v, C.v, E.v, lambda()*af, lambda()*ar));
16 B.i = homotopy(iBaseNpn(

17 B.v, C.v, E.v, lambda()*af, lambda()*ar));
18 end NPN;

Listing 35: NPN transistor model using variable gain

As before, three functions iCollectorNpn(), iEmitterNpn(), and iBaseNpn() are used to
establish the collector, emitter, and base currents respectively. Instead of the terminal voltages,
the current gains are multiplied with A. The leakage circuitry can be implemented using model
instances of the class listed in section 10.2.1 and is not repeated here.

According to Melville et al. [117], this is their fastest converging homotopy map. In particu-
lar, “the time required to solve a system of operating point equations with this homotopy [map]
is not more than two to three times slower than the time required to solve the same equations
by less widely convergent methods”.

10.2.3 Example using Bipolar Junctions Transistors

Results are presented on probability-one homotopy using bipolar junction transistors and both
the variable stimulus and the variable gain method on the operational amplifier example listed
in table 7 of chapter 7. See figure 71 for results on using probability-one homotopy methods and
figure 52 on using local gradient-based algorithms in comparison. In terms of computational
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Figure 71: Robustness profiles for Operational Amplifier 741, problem-specific homotopy maps
(60 samples per bin)

time, the variable gain homotopy map was superior to the variable stimulus homotopy. These
results are in line with the findings of Melville et al. [117].

10.2.4 Arc-Tangent Shichman-Hodges

The Arc-Tangent Shichman-Hodges or ATANSH model was proposed by Roychowdhury and
Melville [152, 151] for probability-one homotopy and large-scale integrated circuits of metal-
oxide semiconductor field-effect transistors. Conceptually, it is similar to the Variable Gain
homotopy in that it varies key nonlinearity in component models. The ATANSH model uses
two homotopy parameters A\; and Ao. Parameter \; influences the drain—source driving point
characteristic without affecting the gain. Parameter Ay in turn controls the transfer character-
istic, i.e., the gain, without affecting the driving point characteristic.

,O(:E,)\,)\l,)\g):(1—)\)G(l‘—a)+f($,)\1,)\2) (65)

The ATANSH MOS homotopy model is a single-piece model. The drain—source current, [ 4
is given via the following equation [152].

B

s =9 Vs (Vs Van, Vb, A2, M2 B (Vay = Vi, M) (66)

Iq

Roychowdhury and Melville [152, 151] remark that their probability-one homotopy map is

a heuristic. In an attempt to justify its success, Watson’s Theorem as stated in section 9.1.3 is
considered.

e The homotopy map (65) is twice continuously differentiable if and only if the device models
used to assemble the residual equations in nodal form f(x) are sufficiently smooth. For
the given MOS model this is fulfilled.

e The homotopy map p is transversal to zero as dp/da in (42) is a diagonal matrix with
entries — (1 — A) - Gleak. For A < 1, this matrix has full rank.

e p,(0,x) has a unique non-singular solution, because for A\ = 0 the circuit consists of
resistors, voltage sources, and simplified MOS transistors only. At Ay = 0 and Ao = 0
the simplified MOS devices become two-terminal almost-linear resistors. It is a reasonable
engineering assumption to assume that such a problem has a unique non-singular solution.

e p,(1,z) = f(z) because the leakage circuitry is removed completely and each MOS device
model is restored to its original form.
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e The zero set p, !(0) is bounded due to the no-gain property of the actual circuit and the
simplified one with leakage circuitry and simplified MOS device models.

Additionally, one can make the engineering assumption that the Jacobian of p, has full rank
at the solution z*.

This MOS model for probability-one homotopy can be implemented using the proposed
homotopy operator. The following listing illustrates this on an n-channel MOS transistor.

equation
// Drain-source current according to ATANSH

10 D.i = homotopy(idsNchannel(G.v-B.v, D.v-B.v, S.v-B.v,
11 lambda(1), lambda(2)));
12 8.1 = -D.i;
13 // Gate, source
14 G.i = 0;
15  B.i = 0;
16 end NMOS;

1 model NMOS

2 // Connectors

3  Modelica.Electrical.Analog.Interfaces.Pin G "Gate";

4 Modelica.Electrical.Analog.Interfaces.Pin D "Drain";
5 Modelica.Electrical.Analog.Interfaces.Pin S "Source";
6  Modelica.Electrical.Analog.Interfaces.Pin B "Bulk";

7

8

9

Listing 36: MOS-FET model using ATANSH

Function idsNchannel() implements equation (66) for this type of transistor. Note how
the lambda() operator is used as described in section 10.1.2 with an integer argument. As
Roychowdhury and Melville [152] first ramp A2 and then \;, their homotopy is implemented
using A9 =lambda(1l) and A\; =lambda(2). The leakage circuitry can be implemented using
model instances of the class listed in section 10.2.1 and is not repeated here.

Roychowdhury and Melville [152, 151] report that local gradient-based algorithms are two to
three times faster than the ATANSH homotopy on average if they converge. They additionally
provide data to show however that the ATANSH homotopy took “considerably less time to
obtain the DC operating point of the circuit than conventional methods took to give up” on
their test cases. This illustrates that the extra wall time is an acceptable price to pay for robust
convergence on large-scale problems.

10.2.5 Example using Metal-Oxide-Semiconductor Field-Effect Transistors

The ATANSH method is applied on the inverter chain test case listed in table 7 of chapter 7.
See figure 72 for results on using probability-one homotopy methods* and figure 53 on using
local gradient-based algorithms in comparison.

10.3 Applications in thermo-fluid dynamics

In this section, a basic but robust probability-one homotopy for thermo-fluid dynamic applica-
tions with unidirectional flow is introduced and applied to the Air Distribution test case (see
table 4 in chapter 7). This is a thermo-hydraulic example with pipes transporting gases un-
der wall friction and heat transfer, heat loads in cabin volumes, fans and so on. A graphical
overview is given in figure 73.

4The ATANSH homotopy map cannot be compared to the variable gain or variable stimulus homotopy maps.
The reason is that they are specific to a type of transistor, either the MOSFET or the BJT.
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Figure 72: Robustness profiles for Inverter Chain, problem-specific homotopy map (60 samples
per bin)

The notion of a nodal approach for probability-one homotopy is adopted. Therefore, the
mass and energy balances are addressed in this context®. Pressure is a potential variable and
thus the established approach of leakage circuitry used in sections 10.2.1, 10.2.2, and 10.2.4 can
be applied trivially. Therefore, the components implementing the mass balance in the homotopy
map are written in nodal form as follows.

Phyd (Thyds Tth, A) = (1 = A) Grya (anyd — Thya) + fhya (Thyds Tin, A) (67)

The subscript in py,,q (Thyd, Ten, A) Tefers to the mass balance as hydraulic part. Conse-
quently, 3,4 = p, i.e., the vector of unknowns of this part of the homotopy map is the vector
of unknown pressures. G,q is the hydraulic leakage, ayq is the vector of pressure values in-
troducing the random element required by probability-one homotopy. The vector of residual
equations fj,,q (hyd, Ten, A) for the hydraulic part are the mass balances, that is the sums of
the connection set mass flow rates. Of course these residual equations also depend on x4, the
vector of thermal unknowns. These can be either temperatures or specific enthalpies. As it
does only matter to the model of thermodynamic properties which one is used and all equations
can be transformed accordingly, it is assumed without loss of generality that they correspond
to temperature, i.e., x;p = T.

For the thermal part the situation is more involved. As the temperatures or specific en-
thalpies zy, are not potentials (note that their values are not equal over all connectors in a
connection set in the general case), a mechanistic application of the concept to the energy bal-
ance will fail. Using such a simplistic approach to the components implementing the energy
balance in the homotopy map would look like this.

Pin1 (Thyds Tins A) = (L= X) G (agn — 2n) + fen1 (Thyds Tens A) (68)

The subscript in py, 1 (Thyd, Ten, A) refers to a first alternative of the energy balance as
thermal part. Gy, would be the thermal “leakage”, namely a conductance. a;, would be a
vector of temperature values introducing a random element. The vector of residuals equations
fin1 (Thydas Ten, A) for the thermal part are the plain energy balances, that is the sums of the
connection set enthalpy flow rates.

As discussed in section 5.1.2, the energy balance cannot be used to uniquely determine a
temperature or specific enthalpy in case of zero mass flow rate. As long as A < 1 this problem
can be handled conceptually by the conductance but as A approaches 1 the homotopy map
becomes increasingly ill-conditioned and finally singular at A = 1.

®Note that in this section the node flow rates are opposites to the ones in classic nodal analysis. They are
equal to the flow rates in a node model class.
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Figure 73: Air Distribution test case

Additionally, this homotopy map component does not balance the leakage enthalpy flow re-
sulting from equation (67), i.e., carried by the mass flow rate (1 — \) Ghyq (€hya — @nya). There-
fore, if for any component of xj,4 the pressure is low and therefore all enthalpy flow rates are
positive then the energy balance requires that the conductive heat flow rate and thus the node
temperature be unnecessarily high.

To address these problems, two alternative homotopy map components for the energy bal-
ance are considered. Both build on information implied by unidirectional flow, that is a classi-
fication of the connectors into inlets and outlets®.

Pen2 (Thyds Tens A) = (1= X) G (aen — en) + fin2 (Thyds Tens Gens A) (69)

Here, a set of residual equations f,, 5 is used that also provides the random element. There-
fore, the homotopy map can be used also without conductance, i.e., Gy, = 0.

fin2 (Thyds Tn, agn, A) =(1 = A) Z (" - hypr (anyd, awn))

inlets

A (- k) (70)

inlets

thyr (@hyas 2m) | (1= ) Ghya (@hya — anga) + > 1ty

outlets

The first line prescribes an assumed enthalpy flow entering the connection set via the inlets at
a specific enthalpy based on the random parameters apyq and ay,. The function hyr(p, T') returns

SNote that still the general case is considered in that the vector ayq is random over some interval. Therefore,
the mass flow rates do change sign during initialization. But the energy balance is written based on assumed
signs. The presented homotopy can be extended to bidirectional flow. Note that for this the Stream connector
semantics do not have to be changed to a C? regularization of the inStream() operator, as the node models have
one-to-one connections only. This extension to bidirectional flow is beyond the scope of this manuscript.
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specific enthalpy based on pressure and temperature. As A increases, a convex combination of
this enthalpy flow rate and the one prescribed by the second line is used. This second line is
the actual enthalpy flow rate based on the model topology. The last line in turn implements
the enthalpy flow rate of fluid leaving the connection set. Here, the thermal node value xy, is
used in the specific enthalpy computation. The mass flow rate leaving the connection set is the
sum of the mass flow rates over the outlet connectors plus the mass flow rate due to leakage in
equation (67). The superscripts + on the mass flow rates indicate that they have been limited
to a positive or negative epsilon flow using a C? regularization.

The third alternative homotopy map component for the energy balance is written in the
dimension of a specific enthalpy. It can equally be used with and without conduction. Note
that the physical dimension of Gy, is changed in comparison to equations (68) and (69).

Pth,3 (l"hyd, Teny A) = (1= N) Gy (agn — 2e) + fth,3 (l‘hyd, Ty Gthy A) (71)

The residual equations involving A are as follows.

>l b
fin3 (Thyd, Tens azny A) = (1 = A) hpr (anya, awn) + )‘% = by (Thyd; Ten) (72)
inlets ‘

The homotopy map has been established in terms of the connection set equations. Option-
ally, one may create embeddings in the device models. For wall friction correlations, a convex
combination of a secant approximation through some operating point and the actual wall fric-
tion correlation was successfully tested. Heat transfer may be established equally based on
secant approximations or even zero heat transfer at A = 0.

A note is in order on the second form of the thermal component of the homotopy map
according to equation (69). If a random vector apyq over some interval is used, then the mass
flow directions will in general not follow the prescribed flow direction assumed for unidirectional
flow. For this case this form of the homotopy map is not as robust as form 3, equation (71). If a
random vector aj,q is established in a way that respects the required total pressure gradient to
arrive at the assumed flow directions then this robustness issue does not arise. What however
happens with the homotopy map of form 2, equation (69), in the former case and how can it
be modified to improve robustness? Consider the simple case of a node model between higher
upstream and downstream pressures according to apyq (for A = 0). All 7i;" for the inlets will be
finite and all 7i; for the outlets will be small epsilon flows. Then, however, the sum of mj for the
inlets, all 72, for the outlets and the leakage flow will not sum up to zero. This imbalance will
adversely affect the specific enthalpies in equations (69) and (70) and deteriorate robustness. A
means to improve robustness of these corresponding homotopy maps is immediately obvious. If
the energy balance is reformulated such that the mass flow rates used in it are always balanced,
then it will be more robust. Obviously, this is the case if a modified total outlet flow is assumed.

<(1 —A) Ghya (whyd — Qpyd) + Z m;) = — Z m:_ (73)

outlets inlets

Then, however, it immediately becomes obvious that this modified form 2 is equivalent to form
3.

In order to substantiate that the thermo-fluid homotopy is globally convergent, theorem 1
(Watson’s Theorem) is applied. The arguments are as follows.

e The homotopy map based on components (67) and (69) or (71) is twice continuously
differentiable if and only if the device models used to assemble the residual equations in
nodal form f(z) are sufficiently smooth. It is assumed that this is fulfilled.

e The homotopy map p is transversal to zero as dp/0a with a = [apyq; asp] in (42) contains
a diagonal matrix with entries — (1 — \) -G with G = [Gp,yq; Gyp,] if a conductance is used.
If the conductance is not used, i.e., Gy, = 0, then Jp/da contains — (1 — A) - Gjyq for the
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hydraulic part. For the thermal part, dp/da contains (1 —\) > m. - ¢, in case of form

inlets
2 in equation (69) or (1 — A) ¢, in case of form 3 in equation (71). In any case dp/Ja and

the Jacobian (42) have full rank for A < 1.

The homotopy map p,(0,z) has a unique non-singular solution, because for A = 0 the
circuit consists of adiabatic linear pressure loss models and boundary conditions only.
Such a problem has a unique non-singular solution.

p.(1,2) = f(z) because the balance equations are restored completely at A\ = 1 and each
device model exposes the actual behavior.

For the hydraulic part, the zero set p, (0) is bounded due to the no-gain property of the
pressure loss correlations. See theorem 4 in section 9.2.3.2. Note that fans prescribe a
bounded pressure difference Ap and can thus be considered as boundary conditions for
the hydraulic part. The exact value of Ap obviously depends on the specific operating
conditions and need not be known explicitly. It only matters that it is finite. For the
thermal part, the zero set is bounded due to the Second Law of Thermodynamics.

For the remainder of this section, form 3 and no conductance are used. The homotopy map

was implemented using the proposed homotopy operator. The code for a model class to be
instantiated in each connection set is as follows.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

model ThermoFluidDynamicsNode

replaceable package Medium = PartialPureSubstanceMedium;

// Connectors

parameter Integer nInlets = O "Number of inlets"
annotation(Evaluate=true, Dialog(connectorSizing=true));

parameter Integer nOutlets = O "Number of outlets"
annotation(Evaluate=true, Dialog(connectorSizing=true));

Modelica.Fluid.Interfaces.FluidPort_a inlet[nInlets](
redeclare package Medium = Medium);

Modelica.Fluid.Interfaces.FluidPort_b outlet[nOutlets](
redeclare package Medium = Medium);

// Parameters

parameter Medium.AbsolutePressure a_hyd "Random pressure";

parameter Medium.Temperature a_th "Random temperature";

parameter Real G_hyd "Leakage in hydraulic part"

// Variables

Medium.AbsolutePressure p "Pressure in node'";

SI.MassFlowRate m_flow plus[nInlets] "Limited inlet flow";

equation

// Hydraulic part

for i in 1:nInlets loop
inlet[i].p = p;

end for;

for i in 1:nOutlets loop
outlet[i].p = p;

end for;

0 = homotopy((1-lambda())*G_hyd*(a_-hyd - p) +

sum(inlet[:].m_flow) + sum(outlet[:].m flow));
// Thermal part, form 3, no conductance
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34  for i in 1:nInlets loop

35 // Hypothetical case
36 inlet[i].h_outflow = Medium.h default;
37  end for;

38 for i in 1:nOutlets loop

39 // Actual case

40 outlet[i].h_outflow = Medium.h pT(p, T);

41 end for;

42 0 = homotopy((1-lambda())*Medium.h pT(a_hyd, a_th) +

43 lambda() * sum({

44 m_flow_plus[i]*

45 inStream(inlet[i].h_outflow) for i in 1:nInlets}
46 )/sum({m_flow plus[i] for i in 1:nInlets}) -

47 Medium.h_pT(p, T));

48  m_flow plus[:] = f(inlet[:].m flow, ...);
49 end ThermoFluidDynamicsNode;

Listing 37: Thermo-fluid dynamics node class

This node model implements the homotopy map on the thermodynamic balance equations
of mass and energy. In particular, equation (67) in lines 30 and 31 and equation (71) in lines
42 to 47. The implementation of the device models is straight-forward. In the following listing,
the steady-state part of a simple dynamic pipe model is presented (the transient equations do
not matter for initialization and are thus omitted for readability).

model Pipe
replaceable package Medium = PartialPureSubstanceMedium;

1
2
3
4 // Connectors

5 Modelica.Fluid.Interfaces.FluidPort_a port_a[nInlets](
6 redeclare package Medium = Medium);

7  Modelica.Fluid.Interfaces.FluidPort_b port_b[nOutlets](
8 redeclare package Medium = Medium);

9

10 // Parameters

11 parameter SI.Length diameter "Pipe inside diameter";
12 parameter SI.Length length "Pipe length";

13 parameter SI.Length Delta "Surface roughness';

14 final parameter SI.Area heatTransferArea —

15 Modelica.Constants.pi*diameter*length;

16  parameter SI.Temperature T_amb "Ambient temperature';
17 parameter SI.Pressure dp_nominal "Nominal dp";

18

19  // Variables

20  SI.SpecificEnthalpy dh "Change of h over device"

21 SI.CoefficientOfHeatTransfer kc;

22 Real effectiveness "NTU effectiveness";

23 SI.Density rho "Upstream density";

24 SI.DynamicViscosity eta "Upstream dynamic viscosity";
25 SI.SpecificHeatCapacity cp "At constant pressure';
26 ~ SI.ThermalConductivity lambda "Thermal conductivity";
27

28 equation

29  // Static mass balance

30 port_a.m_flow + port_b.m_flow = O;
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31

32 // Static energy balance

33  port_b.h outflow = inStream(port_a.h outflow) + dh;
34  port_a.h outflow = Medium.h default;

35

36  // Static momentum balance

37  m-flow = homotopy(

38 lambda()*wallFriction mflow dp(dp, ...) +
39 (1-lambda())*dp/dp-nominal*

40 wallFriction mflow_dp(dp-nominal, ...));
41

42 // Heat transfer

43  kc = heatTransfer kc mflow(m flow, ...);

44 effectiveness = l-exp(-(kc*heatTransferArea/(cp*m_flow)));
45  dh = homotopy(lambda()*effectiveness*cp*(T_amb - state.T));
46

a7 // Auziliary equations for thermodynamic,

48  // transport properties

49  // ...

50 end Pipe;
Listing 38: Pipe model using UTP

The following table 9 lists the simplifying assumptions for the device models employed
for A = 0 in this test case. The implementation of the ramped heat transfer and the secant
approximation to the wall friction correlation for the pipe with heat transfer is described in
listing 38.

Device Simplifications
Pipe with heat transfer | Ramp of heat transfer, secant approximation of wall
friction correlation

Orifice Secant approximation of wall friction correlation
Cabin Ramp of heat loads
Fan Ramp of heat dissipated to fluid

Table 9: Implemented device models with simplifications for A = 0 problem

Figure 74 shows a robustness profile for the resulting unidirectional thermo-fluid dynamics
probability-one homotopy. The results illustrate that the proposed homotopy map and the
probability-one homotopy method provide robust convergence, even in light of large variations
of the start iterate and random vector (temperatures range from 200K to 400K and pressures
from 0.5bar to 2bar).

Figures 75 and 76 finally present homotopy traces that illustrate the global convergence
properties. Even if the start iterates and random vector a move further away from the solution
(see ranges mentioned in the last paragraph) the algorithm converges robustly. Note that the
pressure range is smaller than the given range of start iterates and random values due to leakage
flow. As the gradients of the traces are concentrated toward \ values near unity, scaling factors
can be used to spread out these gradients (see figure 57 for an illustration). The “dents” in
the temperature traces at higher A values each stem from a flow reversal in one of the device
models (these dents are particularly visible in the lower plot of figure 75 near A = 1).

10.4 Conclusions

The probability-one homotopy method works well in practice. The proposed integration of the
method into the framework of equation-based, object-oriented modeling languages works well
as the results and the concise code listings illustrate.



10.4. CONCLUSIONS 125

) 1 Y Y 14

5
a

g 08p 1
b=

O

2o

o 0.6 8
=

Q

()

B 04 N
i

2 02} |
e

o —— UTP
g | | | |

0 1 2 3 4 5

Figure 74: Robustness profiles for Air Distribution, problem-specific homotopy map (60 samples
per bin)

Additionally to the suggested operators, which are the minimum tools required for use of
this method, some language elements, annotations and tool support are considered helpful in
order to facilitate the use by model developers.

e An annotation for connector definitions, which leads to an automatic instantiation of a
node model such as the one presented in section 10.2.1 in connection sets.

e An enumeration to select iteration variables (e.g., IterateSelect similar to StateSelect)
to demand specific unknowns as iteration variables of nonlinear algebraic equation systems,
for which boundedness arguments hold.

e Proper support by tools via a “results browser” that allows to investigate results not only
over simulation time but also over \ for development and debugging.

If the method was adopted by the community, then such enhancements should be considered.
This concludes the contributions to the start of the art in steady-state initialization using
equation-based, object-oriented modeling and simulation.
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CHAPTER 11

MODELING AND SIMULATION OF ENVIRONMENTAL CONTROL
SYSTEMS

The objective of this chapter is first to describe the ECS to some extend and second to present
how to address the requirements of design methods for physics-based plant models at this
example. Particular attention is paid to the aspects mentioned in section 1.3.3 such as variable
causality and off-design performance simulation as well as to a general requirement for flexibility.

11.1 The Environmental Control System

A conventional ECS consists of the following subsystems (see figure 77): Air conditioning system
(ACS), temperature control system (TCS), ventilation control system (VCS), air distribution
system, and cabin pressure control system (CPCS). Additionally, optional systems such as com-
bined ozone / VOC converters (VOZC), humidification systems (HUM), or dry air generation
systems (DAGS) can be installed on an ECS.

The primary function of the ECS is to establish an environment that addresses the physio-
logical needs and comfort requests of the passengers and crew. These tasks require the following
functions: Control temperature and humidity and regulate cabin pressurization. Ensure suffi-
cient ventilation and fresh air, and remove pollutants.
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Figure 77: Conventional ECS architecture [24]

11.1.1 Overview

The central component of the ECS is the air generation unit (also called pack), which is the
device used to condition the air flow. Usually, two air generation units are installed in an
aircraft. Traditionally, they use engine bleed air as power source. At the start of the jet engine
age, thrust was created by high exit velocity. The total mass flow passed through the core of
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the engine and the engine cycle itself was not very efficient. Consequently, the cost of bleeding
air for use in systems such as the ECS was small. The compressor stage, at which bleed air
is extracted, is selected based upon the maximum pressure requirement of the ECS and the
wing ice protection system (WIPS). Due to the disparate segments of the aircraft mission,
the pressure at the different stages varies remarkably and a single bleed port design would be
inefficient. Therefore, two bleed ports are typically installed in the engine compressor (high
and intermediate pressure). The system implementing the bleed air off take is called the engine
bleed air system (EBAS). It provides bleed air primarily to the ECS and pneumatic WIPS.

The pack provides conditioned air to the flight deck, cabin, and cargo compartment. In the
different classes of the cabin, in the flight deck, and in the cargo compartments, the number of
passengers and the amount of payload vary more and more as the commercial aircraft become
larger and more sophisticated. In order to provide conditioned air to all of those compartments,
the conditioned air flows from the packs are mixed in a dedicated volume. This is called the
mixing unit. From there, supply ducts carry the conditioned air to the compartments. Herein,
the design principle is to maintain a constant volumetric flow rate. Therefore, every supply
duct is calibrated with a fixed orifice. Large commercial aircraft divide the cabin in up to
eight zones per deck. The packs are controlled such that the mixing unit temperature fulfills
the most demanding cooling requirement of the cabin zones. To meet the exact temperature
requirements of all zones, hot trim air is mixed to the supply air in tappings. The system that
implements and controls this process is the TCS.

The CPCS maintains the cabin pressurization at a value, which depends on altitude and
mission phase. It controls the outflow in the under-floor by means of dedicated outflow valves
(OFVs). Here, a certain time derivative of pressure may not be exceeded in order to avoid
irritation of the human ear.

Another important consumer of pneumatic power is the WIPS mentioned earlier. Currently,
hot bleed air is used to heat the wing leading edge which prevents ice build-up. Starting at the
end of the 1960s, turbojet engines were superseded by turbofan engines. That is, the paradigm
to create thrust by high exit velocities was surpassed by the concept to move larger mass
flows using a bypass to the engine core. Engines drawing on this concept provided considerably
improved propulsion efficiency but increased the cost of extracting bleed air from the engine core.
In an effort to reduce these drawbacks, recirculation systems were designed. The approach is to
use highly efficient filters to reduce the bleed air off take from the engine without compromising
the cabin air quality. As a result, the fresh air and not the ventilation requirements drive the
amount of pack air flow in modern ECS designs. Nowadays, a general trend toward even higher
bypass ratio engines is ongoing. This development, together with the well-established inherent
inefficiencies of bleeding air from the compressor stages (throttling of pressure and reducing the
temperature below the auto-ignition temperature of fuel in the pressure regulating valve and
the pre-cooler respectively) provides the main argument in favor of electric ECS and reduced
usage of pneumatic power on energy efficient aircraft in general.

To implement an electric ECS, two different approaches can be employed or combined. One
option is to use ambient air instead of bleed air in air cycles and drive the associated turbo
machinery electrically. This involves so called motorized compressors and motorized turbine
compressors. The natural competitor to the air cycle is the well-established vapor compression
cycle, as it almost generally has a higher efficiency (coefficient of performance, COP). Tradi-
tionally, vapor cycle systems are however associated with larger weights. In addition, condenser
inlet air temperature variation results in reduced COPs. Therefore, vapor cycle systems are
currently not used extensively in commercial aviation.

11.1.2 Air cycles

As mentioned above, the air generation unit is the core component of the ECS. This section
provides information on different conventional approaches (thermodynamic cycles) to implement
an air cycle in such a device.

All air cycles are inspired by the reverse Joule cycle (also called reverse Brayton cycle) for
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Figure 78: Typical air cycles used to condition air aboard commercial aircraft [103]

open systems. They employ air compression (at least in the engine compressor), heat rejection
at high temperature, and air expansion to cool below the ambient temperature. Figure 78
illustrates four classic air cycles. They are or were all used in conventional ECS consuming
bleed air and represent different levels of sophistication. To the left, the simple air cycle is
shown. It features a heat exchanger (HX), in which bleed air is cooled by ram air (this is
generally reasonable for subsonic commercial aircraft). Then, the bleed air flow is expanded
in a turbine (T) to meet the temperature requirements imposed on the pack. The mechanical
power obtained in the expansion process is used to drive a fan (F), which propels the ram air
flow across the heat exchanger, which is vital for ground operation. The simple air cycle requires
high bleed pressure. At the same time the turbine is not well loaded, unless the fan is made
inefficient. From today’s point of view, the simple air cycle is inefficient. This approach is used
for the ECS aboard the Fokker 100, for example.

Next, the bootstrap cycle is shown. Before cooling the bleed air flow using ram air as heat
sink, the hot engine air is compressed (C). Due to the higher temperature on the hot side of
the heat exchanger (HX), the cycle becomes quite efficient. After cooling the bleed air, it is
expanded in the turbine (T) and cooled below the ambient temperature. On ground, a fan is
used to drive the ram air over the heat exchanger. It is usually driven electrically (e.g., Boeing
727) or pneumatically (e.g., Boeing 737 Classic).

Before continuing the discussion of the air cycles shown in figure 78, the fundamental effects
of water content in ambient air shall be addressed. As the ECS is concerned with conditioning
air, which, in many cases, involves cooling, the temperature can sink below the saturation
point. This results in condensation and free water in the moist air flow, which can theoretically
happen in any ECS component (e.g., ice build up) or the cabin (e.g., fogging). Consequently,
the function to control the humidity level mentioned at the beginning of this section 11.1 is
vital for the reliable operation of the aircraft.

In determining candidate locations for the extraction of water, the question for the location
of condensation comes up. It cannot be answered generally, as it depends on the specific
cycle and exact operating conditions. One prediction can be made, however. As the lowest
temperature is encountered downstream of the turbine, free water can certainly be found there.
The placement of a water extractor at this location led to so called low pressure water separation
designs. Usually, in the case of condensation, ice build up cannot be prevented by other means
than limiting the turbine discharge temperature to 0°C. The cooling capacity of such pack
designs is therefore restricted. The apparent alternative is to install a water extractor upstream
of the turbine. These designs are called high pressure water separation loops. The cooling
capacity of a pack is not limited by ice build up and the higher pressure level supports the
condensation of sufficient free water in the air flow. A drawback of this layout is that a pair
of additional heat exchangers is required to ensure high pack performance (the reheater and
condenser).

An important technique to recover performance lost in the separation of water is to spray
the extracted water in front of the heat exchangers into the ram air channel. The latent heat to
evaporate the liquid water is extracted from the surrounding material, lowers the temperature
of the ram air and thus increases pack performance.
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This takes the discussion back to the air cycles shown in figure 78. The three wheel bootstrap
cycle combines the simple air cycle and the bootstrap cycle in that it features three wheels, the
compressor (C), turbine (T), and ram air fan (F) on a single shaft. Even though the efficiency of
this arrangement is slightly lower than that of the bootstrap cycle, this design has the advantage
of being self-contained and not dependent on any other power source. The three wheel bootstrap
cycle was first used on the Boeing 747 with low pressure water separation and is, using high
pressure water separation, probably the most common pack configuration today (it is in use on
the Airbus A320 and A330 / A340 families, the Boeing 757, 737NG, and on later versions of
the Boeing 747 and early versions of the 767).

The four wheel bootstrap cycle (also called condensing cycle) shown to the right of figure 78
is probably the most sophisticated conventional design to date. The general arrangement of
components is similar to that of a three wheel bootstrap cycle. The main difference stems from
conflicting requirements on the turbine of a three wheel bootstrap cycle. The high altitude
cruise conditions mandate a different turbine design than the ground cases, in which the water
separation is pivotal. In a four wheel bootstrap cycle, these two requirements can be emphasized
in one turbine each. The first turbine is laid out such that it expands the air flow to a temper-
ature a little above the freezing point (minimizing the required de and anti-icing provisions).
In the condenser heat exchanger, the latent heat of vaporisation required to condense water
content on the hot side is injected to the cold air flow. The energy not recovered in the first
turbine plus the latent heat of vaporisation is then retrieved in the second turbine. Additionally,
the reheater heat exchanger is not required anymore. The four wheel bootstrap cycle provides
different bypass paths to adapt the cycle to different ambient and operating conditions. Most
prominently, at high altitudes, low pressure and humidity, an altitude valve can be opened to
bypass both the high pressure water separator and the first turbine. This operates the cycle as a
three wheel bootstrap cycle with an increased turbine nozzle area and decreases the restriction
of the flow in the air cycle machine (ACM).

Even though the four wheel bootstrap cycle can be more efficient under certain conditions,
it seems to be a matter of philosophy whether to use a four or three wheel bootstrap cycle. The
advantages of one cycle have to be traded off against the ones of the other on a case to case
basis. This cycle is used today on the Airbus A380, the Boeing 777 and later 767 versions, and
the Embraer EMB 170 / 190 family.

11.1.3 Three wheel bootstrap Air Generation Unit

The general concepts of different air cycles have been introduced. To illustrate the components
of an actual air generation unit, figure 79 shows an exemplary three wheel bootstrap pack with
high pressure water separation.
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Figure 79: Typical three wheel bootstrap air generation unit with high pressure water separation
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A flow control valve (FCV) controls the amount of bleed air going to the packs and the
temperature control system (not shown in figure 79). In the primary heat exchanger (PHX),
the bleed air flow is cooled by ram air. In the compressor (CMP) it is then compressed. The
primary heat exchanger keeps the compressor outlet temperature within the material constraints
of aluminum alloys. After compression the air flow enters the main heat exchanger (MHX) where
it is cooled further by ram air. The air flow then enters the high pressure water separation loop,
which consists of the reheater and condenser heat exchangers (REH and CON) and the water
extractor (WE). In both heat exchangers the air flow is cooled down such that the water in
the moisture laden air condensates before entering the water extractor. In order to lower the
adverse effect on ACM performance of cooling the air flow with the turbine outlet air flow, the
reheater is used to recover energy. The air flow is expanded in the turbine (TRB) and passes
the cold side of the condenser. Through the pack check valve (PCKV) the conditioned air flow
is discharged toward the mixing unit. The pack discharge temperature is controlled via the
temperature control valve (TCV).

11.2 Modeling and simulation

When designing systems, it is not always instrumental to strictly simulate the performance
of this system. The reason is, for example, that this may be easier to assume that system
requirements are fulfilled or that certain system components will be devised such that they
behave in a specific way. An example is the design of the air distribution system of commercial
aircraft. Here, the pressure drop due to wall friction through the air distribution ducts shall
be minimized. However, it is not practical to use excessively large duct cross-section areas,
which is why such distribution systems are usually designed in order to arrive at a well-defined
compromise pressure drop. It is incurred via the duct to the cabin zone, which is farthest away
from the mixer. All other ducts are then calibrated using orifices to carry a well-defined amount
of air to their cabin zones.

When simulating strictly the performance only, all precise orifice parameters had to be
established. Such detailed data may not be available during early phases of system design and
is even not required. After all, the pressure drop to the cabin zone farthest away from the mixer
could be calculated normally and the correct mass flow rates could be prescribed for each duct.
At a later stage in system design, it is more interesting to model the performance of a fixed
system however, which is why the causality is then inverted.

The described approach of idealized and inverse models, which is used in several areas of
the present tool, implies challenges for the steady-state initialization of such models. This is
the case especially if they are used on systems, whose thermodynamic cycle involves a loop.
This may be the case for the cycle itself (e.g., vapor compression cycle) or due to the system
design (e.g., the reverse Joule cycle, which is an open thermodynamic cycle but includes a loop
via the rigid inertia-free shaft of the air cycle machine in case of steady-state initialization).
Then, steady-state initialization may be challenging using local gradient-based algorithms such
as damped Newton Methods. Alternative solution methods have been presented in the previous
chapters.

In the present simulation tool, models are classically split into plant and control, which
is not always possible when using inverse models with ideal control logic (algebraic control
laws). If this separation can be made, then the resulting models are easier to understand for
practitioners, as they more closely resemble the systems implemented in reality. Additionally,
the component equations become simpler themselves. This is the case, because a plain, say,
integral control is usually simpler than a complex ideal algebraic control law. An example of the
latter can be given for the mixer temperature demanded by trim air valve logic. In this case,
non trivial equations have to be used in order to, e.g., compensate the demanded temperature
with respect to condensation of moist air associated with the pressure drop in ducts. Such
equations are not required when using conventional control and the resulting models are easier
to understand for practitioners.

The modeling and simulation tool roughly spans three core domains. These are Ezxtended
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Cabin, Air Conditioning, and Ram Air Channel. On top of them, miscellaneous component
models of the Engine Bleed Air System, Cabin Air Compressors and the like are provided.

The models cover off-design performance. The author believes that this is useful, because
design is intrinsically linked to trade-offs and without properly covering off-design performance
such considerations cannot be captured appropriately.

All components can be modeled using roughly three different hypotheses. Either, a model
uses characteristic maps. They are typically created using high-fidelity codes and may be
scaled using appropriate scaling factors. Alternatively, geometry-based performance estimators
or constant efficiencies can be used. Geometry-based performance estimators are often based
on handbook methods or established correlation schemes and use geometric data to establish
component performance.

The Extended Cabin domain covers the cabin itself (control volumes for cabin and flight
deck; under floor; heat loads via convection, radiation, and conduction; loads dissipating mois-
ture), air distribution (ducts, fans, pressure regulating valves), mixing (mixer of fresh and
recirculating air), and temperature control. The Air Conditioning package covers components
of conventional air cycles such as air-to-air heat exchangers, turbo machinery, and water ex-
tractors on one hand. On the other, it also includes components to model vapor compression
cycle systems (refrigerant-to-air heat exchangers, compressors, expansion valves). Like this un-
conventional and hybrid systems can be assembled. Finally, the Ram Air Channel provides
component models of devices used to capture ambient ram air at the aircraft skin (ram air
inlets and outlets in different geometrical shapes). This is typically required to reject excess
heat to the ambient or to capture fresh air to be provided to the cabin.
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Figure 80: Model of a conventional ECS Architecture
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CHAPTER 12

DISCRETIZATION SCHEMES FOR HIGH-SPEED COMPRESSIBLE
FLOW

Many of the modeling and simulation problems outlined in section 11.2 of the previous chapter
involve low-speed compressible flow as defined in section 1.4. For them, state of the art methods
are applied. A detailed presentation of the implementation details is academically not of highest
interest and thus omitted.

However, the modeling and simulation applications also include a class of problems, for
which no state of the art methods in equation-based, object-oriented modeling languages can
be applied. It involves high-speed compressible flow. A typical example is the pneumatic air
supply including the bleed air regulation and flow control valve (FCV) shown in figure 77. The
bleed air regulation typically controls the pressure level in the pneumatic air supply, which
should ideally be held constant. A flow control valve controls the mass flow rate, which is fed
into an air conditioning pack. Obviously, the bleed air regulators and the flow control valves
influence each other. Therefore, dynamic momentum and high-speed compressible flow are
relevant phenomena for the design of the complete system and the associated control laws. A
similar problem in this area involves the APU check valve (also shown in figure 77). When the
engine bleed air supply becomes available, then the APU check valve closes. Such processes
may, if designed improperly, be abrasive and even involve shocks, which may excessively stress
both the check valve and the ducts. Proper understanding of high-speed compressible flow is
thus required.

For this reason, the objective of this chapter is to review relevant concepts of the theory in
numerical solution methods for high-speed compressible flow. Furthermore, a goal is to trans-
late them from the algorithmic perspective taken in literature to the non-causal concepts of
equation-based, object-oriented modeling languages. Finally, the elements of generic discretiza-
tion schemes shall be decomposed in an object-oriented fashion and implemented in a generic
library.

12.1 The governing equations in compact flux form

To address high-speed compressible flow, the formulation of the governing equations in primitive
variables as introduced in section 2.1 is discarded. Instead, a compact flux formulation as
described by Toro [174] is considered. It is posed using conserved variables u and flux f.

u(z, t) + f (u(z,t)), = s (u(z,t)) (74)
p pv
wwn = oo |, Fluen)=| w0+ (75)
PUQ v (puo + p)

If the cross-sectional area A is supposed to vary smoothly with time and position, then the
following source term including heat transfer and viscous wall friction can be used [174].

0 p
1dA
s(u(z,t)) = | App | — Adr pv (76)
P4, pug + p

12.2 Conservative methods

An alternative approach to discretize the governing equations of thermo-fluid dynamics is now
introduced based on Toro [174]. It is formulated in conserved variables and therefore called a
conservative method. Such methods are particularly suited for high-speed compressible flow.
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The use of conservative methods is motivated by the presence of discontinuities such as
shock waves in the solution of certain problems such as gas dynamics. Hou and LeFloch [84]
have shown that formulations based on variables other than the conserved ones fail to correctly
predict the solution at shock waves. They result in wrong jump conditions and thus wrong
shock strength, speed, and location. The theorem of Lax and Wendroff [101] in turn states that
conservative methods, if convergent, do converge to the weak solution of the conservation law.

Consequently, conservative methods are an obvious choice if shock waves are potentially con-
tained in the solution. Alternative approaches are the somewhat outfashioned shock-fitting [128]
and adaptive primitive-conservative schemes [174].

In this section, the compact formulation of the conservation laws introduced in equation (74)
is used. The vector of conserved quantities is denoted by u (x,t) = (p, pv, pug). The conserved
quantities are used in place of the primitive variables considered before.

The governing equations introduced in section 2.1 were derived from the integral relations
on control volumes and their boundaries. The differential forms of these equations such as
equations (1) to (3) or equation (74) in turn are based on the assumption of smoothness of the
flow variables, which is not fulfilled for the applications considered in this section. In order to
include weak solutions of (74), an integral form of the equations is used, a finite volume method.
Therefore, equation (74) is integrated over the interval I; to obtain

W = s (U (i) — Alzci (f (u (@it1j2,t)) = f (u (2im1/2,1))) (77)

Herein, a cell average is used

1 Tit1/2
n(ent) =g [ wl6 0

Ti-1/2

As before, equation (77) is approximated by a semi-discretized conservative scheme, which
results in a differential algebraic equation,

du;t(t) = s (u; (1)) — Alxl (fi+1/2 - f171/2) (78)

Herein, ; (t) is a numerical approximation of the exact cell average  (z;,?), and f;11/5 is a
numerical flux, an approximation of the physical flux f (u (xiil /2 t))

The remainder of this section is concerned with the construction of numerical fluxes. All
these fluxes consist of a monotone flux and a reconstruction. Practically, a monotone flux is
a flux free of spurious oscillations. Due to Godunov’s Theorem such linear fluxes are how-
ever first-order accurate only. Therefore, these monotone fluxes are often used together with
reconstructions in order to build higher-order schemes. The reconstruction provides an ap-
proximation of the vector of conserved variables u (or any other variable of interest) based on
the cell averages. Its higher-order accuracy yields, together with a first-order monotone flux,
higher-order numerical flux.

12.2.1 Monotone flux and first-order schemes

A monotone numerical flux is defined using a function g,

_ - +
fivi2=9 (Ui+1/27“¢+1/2> (79)
Here, u,_, /2 is in general an approximation of the vector of conserved variables at ;15 in
the left limit, and .~ , , in the right limit. If g satisfies the following conditions then (79) is a

i+1/2
monotone flux [162].

1. g(a,b) is Lipschitz continuous in both arguments

2. g(a,b) is a non-decreasing function in @ and a non-increasing function in b.
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3. g(a,b) is consistent with the physical flux f, i.e., g(a,a) = f(a).

i+1/2

and u;fH /2 X Uit The results are first-order schemes. Alternatively, any more sophisticated

Y

In the following presentation of monotone fluxes, ¢, will refer to the right limit ¢

Each monotone flux can be used without reconstruction with the approximation u ~ U;

approach may be used to reconstruct u

:r+1/2 of a
quantity ¢g. Similarly, Uity /2 is abbreviated as ¢;.

Monotone fluxes are classified as either upwind methods or central methods. Upwind meth-
ods discretize equations on a mesh according to the direction of propagation of information
on that mesh. Central methods do not make a distinction based on the direction of informa-
tion propagation. Within the upwind methods, both Godunov-type methods and flux vector

splitting methods are presented based on [174].

12.2.1.1 Godunov-type Upwind Methods

These methods are also called flux difference splitting methods or Riemann approach methods.
In the general case, (O /2 =+ u;rl /20 Le., at position z;,1/o a discontinuity is present. The
original Godunov monotone flux therefore interpreted this as Riemann problem and provided
the conserved variables at z; 1/, u;;1/2. This is the state that will be present instantly at this
position and will remain constant over a time step. Then, the flux can be evaluated at this
position, f (Uz‘+1/2)~ The result is the Godunov monotone flux.

As the Godunov monotone flux uses the exact solution to the Riemann problem, the resulting
method is computationally relatively expensive and is rarely used for practical computations.
Godunov-type monotone fluxes follow the approach of the Godunov monotone flux but employ
an approximate Riemann solver. This reduces the computational expense significantly and
results in rather accurate monotone fluxes.

Roe’s Monotone Flux: This Godunov-type flux uses one of the most well-known approximate
Riemann solvers. The approximate Riemann solver is due to Roe [149] and works as follows.
The original Riemann problem is replaced by an approximate Riemann problem, which is solved
exactly. The approximate problem is based on linearized conservation laws, u; + Aj.u; = 0.

The Jacobian of the approximate problem A;, has to fulfill the following conditions [149, 174].

1. Consistency with exact Jacobian: A (u,u) = A(u) with the Jacobian A(u) of the non-
linear problem (74), A (u) = df (u) /Ou

2. Hyperbolicity of the system: Aj;. can be diagonalized.
3. Conservation across discontinuities: f (u;jrl /2> —f (u;rl /2) = A, (u;jrl 2~ (O /2)

The linearized problem has to be established for each combination of governing equations
(e.g., Euler equations) and thermodynamic property model (e.g., ideal gas).

Roe [149] established a methodology using averaged values such that A;,. (uj‘H i Uy /2> =

Ay, (w) fulfills the given conditions. The vector @ is the vector of Roe average values. For the
one-dimensional Euler equations and ideal gas, the Roe average values are as follows.

Pr + Pl
VPr TP

VPrUr + /P01
NEaN

hf . vV PrhO,r + v plhO,l
0=
v/ Pr + VPl

Z=(k-1) <ho—;v2>

By

v

and
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Due to the above mentioned properties, the linearized system can be transformed into a
system of independent transport equations. The data difference Au = u,, — u; is projected onto
the right eigenvectors of A;.. This establishes the wave strengths «;. Proper integral relations
allow to establish the numerical flux as

3
1 1
9 Roe (ulaur) = 9 (fl + fr) D) Zai |)"L| K;
i=1
with eigenvalues \; and right eigenvectors K.
For the problem of interest, the wave strengths are

1 1
gy = _%—21 [Ap (v° — h) — vAm + Aé]

a3 =Ap—ay — g

Here, the data difference Am for example refers to the difference in momentum. This
approximate Riemann solver calculates an expansion shock, which is obviously unphysical.
Fixes for this and other weak points of this monotone flux are discussed in [174].

HLLE Monotone Flur: The Harten, Lax and van Leer [81] monotone flux simplifies the
approximate Riemann problem even further. It neglects the contact surfaces and consequently
assumes that between the shock and the expansion fan only a single homogeneous state is
present. For hyperbolic systems of two equations this is correct, but for the FEuler equations
addressed herein this is a rough approximation. Even if the resolution of contact surfaces is
poor, this monotone flux is still a robust and efficient one, whose accuracy is, on global level,
often sufficient.

An advantage of this flux is that it can be applied easily to different thermodynamic property
models. The approximate Riemann solver of Roe for example is not straight-forward to apply to
several problems such as ones involving real gas equations. It is therefore a relevant candidate for
equation-based, object-oriented modeling languages applications, as the specific thermodynamic
property models are often factored out of the component models, in which the discretized Euler
equations are implemented.

The scheme is implemented via an a-priori estimation for the fastest signal speeds and its
monotone flux is defined as

cf f(w) — e f(ur) cfer
grrre (w,ur) = = T L= 4 — L (uy — )
C7' - Cl C'r - Cl
Here, the signal speeds are ¢;” = max (0,v, + ¢,,U+¢) and ¢; = min (0,v; — ¢;,7 — €) respec-

tively. In these equations the Roe average velocity v and the Roe average speed of sound ¢ have
been used.

12.2.1.2  Flux Vector Splitting Upwind Methods

In chapter 2.2, the simple first-order upwind scheme in primitive variables was introduced.
Based of the sign of a characteristic quantity (usually, this is a velocity normal to the cell
boundary), any variable on the boundary was established to have either the value from the left
or the right side. In the context of the present approach to conservative methods and high-
speed compressible flow, there is no simple scheme of this type. This becomes obvious from the
hyperbolicity of the Jacobian 0f/0u and its eigenvalues.

In general, the real part of the eigenvalues can have any sign and a simple one-sided differ-
encing scheme will be appropriate only if the real parts of all eigenvalues have the same sign.
The general system will however have some eigenvalues with a positive real part, and one side
will be upwind for them, while the others have a negative sign on the real part and consequently
the upwind side will be opposite for them. A typical way to resolve this problem is to split
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such a system into one with a positive real part of the eigenvalues and one with a negative real
part and to treat them separately. These are the flux vector splitting methods discussed in this
section.

The flux vector splitting approach is also called Boltzmann approach and works as fol-
lows [174]. As before, the Jacobian of the system of nonlinear hyperbolic conservation laws (74)
is of interest.

of (u)
A =
(W) =5,
Due to hyperbolicity, it may be expressed as
A=KAK™! (80)

Here, A is the diagonal matrix of eigenvalues \; of A. The matrix K is the matrix of right
column eigenvectors K;. The flux vector splitting methods aim at splitting the flux f(u) into
components 7 (u) and f~(u) based on the following equality.

Flu) =7 (u) + f~(u)

Following the introduction of this section, the split fluxes are established such that the eigen-
values )\f, A; of the Jacobian

A Of(u)
A= ou
= Of (u)
4 = ou

fulfil Re (A7) = 0 and Re (A7) <0,

The Steger- Warming Monotone Flux: In order to establish such a splitting, the homogeneity
property of (74) may be exploited. If the system of hyperbolic conservation laws fulfills this
property, then

fu)=A(u)u (81)
like in the linear constant coefficient case. The unsteady Euler equations fulfill this property
and consequently the splitting may utilize the structure exposed in (80), that is, the splitting
may be applied to the diagonal matrix A. Steger and Warming [166] proposed a splitting of the

eigenvalues \;,
A=A+ (82)

Here, /\j >0 and A\, < 0. Consequently, A is split as
A=AT+ A" (83)

AT are the diagonal matrices of the split eigenvalues )\f. This leads directly to the splitting of
A.

A=A+ A" (84)
where A* = KATK L. If the property (81) is fulfilled, one arrives at an expression for the flux
splitting.

flu) = [ (u) + [~ (u) (85)
Here, f*(u) = A%u.
The crucial question is how to choose A¥ in (82). Steger and Warming [166] suggested to
use to following equations.

1

/\;‘ =3 (A; + |Ai]) = max (N, 0) (86)
1

A= 3 (A — [\i]) = min (A, 0) (87)

When exercising this approach, the following Steger-Warming monotone flux is established.

gsw (u) = [T (u) + [ (u)
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with N N N
AT +2(k—1) A5 + A3
fi(u):2£ (=) AE+2(k—1) oA + (v+0) \F
Pl (h—ve) A+ (k= 1) 02A] + (h+ve) AF

The eigenvalues are given by (86) and (87). The remaining variables have to be evaluated
according to the definition of the flux, i.e., for f(u) the values from the left such as p;, u; and
for f7(u) the values from the right such as p,, u,.

Note that for this specific splitting AT # AT and )\;7F #* )\j. There are however more
advanced splittings, which avoid this pathology. See [174] for more information on this subject.

12.2.1.8 Centered Methods

Schemes, whose support does not depend on the sign of the characteristic speeds, are called
centered schemes.

The Rusanov Monotone Fluz, a local Lax-Friedrichs Fluz: The Lax-Friedrichs flux is one of
the simplest and most approximate methods considered herein. It was originally developed in
the context of finite-difference methods and later applied to the finite-volume context.

Similarly to the HLLE method, only an expansion and a compression wave are considered.
In the original Lax-Friedrichs flux, the speed of each wave was assumed to be such that it
reached the cell boundaries exactly within a time step At. For uniform grids, each wave of the
global problem therefore had the same speed, which is an even more approximate solution than
in the HLLE method. As, in the present context, no fully explicit scheme is employed but the
method of lines, no time step At is defined. For this reason and to slightly improve accuracy, a
local form of the Lax-Friedrichs monotone flux, the Rusanov monotone flux [153], is considered.
In the Lax-Friedrichs flux,

1Az

9ur () = 3 (F (ur) + F (u2)) = 5 2 (e — )

the signal speed Az/At is replaced by Apee = max ((Jv| +¢);, (|v| +¢),). Then, the Rusanov
monotone flux is defined as follows.

G (1,10) = 3 (F (1) () = S A (e — ) (58)

First-Order Centered Monotone Fluz: The First-Order Centered Monotone flux (FORCE
scheme) [173] is obtained when replacing the random sampling of Riemann problems in Random
Choice Methods with deterministic integral averages.

According to Toro [174], for fully explicit schemes, the result is the arithmetic mean of the
Lax-Friedrichs and Richtmyer [148] fluxes. The Richtmyer flux is a second-order scheme with
constant coefficients and is thus, according to Godunov’s classic theorem [71], not monotone
and results in spurious oscillations.

For the fully explicit version of the Richtmyer flux, an intermediate state is first defined,

1 At

UR; = % (ug + up) + AL (f (w) + f (ur))

and then the flux is evaluated at it.

gri (w,ur) = f (uri)
Then, the FORCE flux is the arithmetic mean of the Lax-Friedrichs and Richtmyer fluxes [174]

1

9Force (uhu?”) = 5 (gLF (ulvuT) + Gri (ulvuT‘))

Again, the local version of the Lax-Friedrichs flux (the Rusanov flux presented in previous
section) and a local version of the Richtmyer flux are used, is again obtained by replacing Ax /At
with Amaz-

After introducing some monotone numerical fluxes, methods to obtain higher-order approx-
imations of the solution to (74) are considered.
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12.2.2 Total Variation Diminishing schemes

Godunov’s theorem [71] was mentioned already. It provides the theoretical foundation to the
observation that linear second-order schemes are more accurate in smooth regions of a problem
solution to (74) than first-order schemes. Near strong gradients and shocks, these methods
produce spurious oscillations however. Monotone methods however do not exhibit such spurious
oscillations. In case of linear schemes, their limited first-order accuracy is disadvantageous
however.

One option to eliminate or reduce spurious oscillations for higher-order methods is to intro-
duce artificial viscosity. This can be tuned such that it is large enough to suppress oscillations in
the neighborhood of discontinuities and small elsewhere to maintain accuracy. A disadvantage
of this approach is however, that the quantity of artificial viscosity is problem dependent and
therefore requires fine-tuning by the user. This approach is not followed here and instead a less
empirical approach to introduce viscosity is adopted.

Therefore, in order to circumvent the limitations formulated by Godunov’s theorem, schemes
with variable coefficients, i.e., nonlinear schemes, are considered. Such schemes can adapt
themselves to the local nature of the solution.

Harten [79] defined High-Resolution Methods as numerical methods with the following prop-
erties.

1. Second or higher-order of accuracy in smooth parts of the solution
2. The solution is free of spurious oscillations.

3. The resolution of discontinuities in the solution is high, i.e., the number of cells containing
the numerical reproduction of the discontinuity is smaller in comparison with that of first-
order monotone schemes.

A class of methods fulfilling these properties is that of Total Variation Diminishing meth-
ods [79]. See this reference for a definition of the total variation. For brevity, only the case of
a smooth function u(t), for which the total variation is

[e.9]
TV (u) = / |/ (x)’ dx
—00
and the case of a mesh function v = {u'} are mentioned. For the latter, the total variation is
defined as

oo
TV (u") = Z |uf’+1 — uf‘
1=—00
Fundamental properties of the exact solution of the conservation law (74) such as no creation
of new local extrema lead to the conclusion that the total variation TV (u(t)) is a decreasing
function of time [79]. Consequently, Total Variation Diminishing methods mimic a property of
the exact solution.

For a general scalar conservation law, Harten [79] provided a theorem on a sufficient con-
dition for a particular class of nonlinear schemes with two coefficients to be Total Variation
Diminishing (TVD). These conditions are essentially four inequalities on these two coefficients.
As the coeflicients may in general be data dependent, Harten’s theorem provides a tool for the
construction of nonlinear schemes that circumvent Godunov’s theorem stated above.

The classic TVD approach to adaptively switch between the characteristics of a monotone
first-order numerical flux ¢“© and those of a higher-order constant coefficient flux ¢’ is to
make the following assumption [168].

TVD _ gLO + o [QHI LO]

g -9
Here, ¢ is a flux limiter function that implements the adaptive algorithm. Analysis of Harten’s
theorem led to the identification of the Sweby TVD region [168]. In this region, various flux

limiters have been defined such as the well-known limiters Superbee, Minbee, and Ultrabee.
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In the following sections, this approach is not followed directly. Instead of flux limiters,
slope limiters are used, which are analogous to the flux limiters.

For the reasons described in section 12.2.1.3, both an upwind TVD and a central TVD
method are considered. Before the details of these methods are described, it is highlighted that
most of the theory of the TVD methods was developed for case of a scalar conservation law.
In many cases, the extension to systems of hyperbolic conservation laws is empirical, but has
been found to work robustly and efficiently.

12.2.2.1 A MUSCL Upstream TVD Scheme

Van Leer [183, 184, 185] introduced a higher-order method along the concept of reconstruction
mentioned in the introduction of this chapter. MUSCL stands for Monotone Upstream-Centered
Scheme for Conservation Laws.

The first-order schemes discussed so far use monotone fluxes directly by assuming piecewise
constant data over the cells I, i.e., u;+1/2 ~ u; and u;jrl/z ~ u;+1. In the simplest MUSCL
scheme, piecewise linear local reconstructions are used. The reconstruction has to maintain the
integral average, which is trivially fulfilled for piecewise linear local reconstructions.

First, slope vectors A4/, are defined as follows.

Aj_y2 =ui —ui—1 (89)

Ajy1/2 = Uip1 — U (90)

Strictly speaking, these slopes are not slopes but differences of the vector of conserved quantities
in adjacent cells. The terminology used in literature is adopted however and therefore A;1;
are called slope vectors. In order to implement a TVD scheme, the approach of limited slopes
described by Quirk [145] is used.

A — { max [0, min (82;_1/2, Aiy1/2) ,min (A;_1/2, 8A:41)2) ] Aif12>0
’ min [0, max (8A;_1/2, Aiy1/2) s max (A;_1/2, B 1172)]  Dip1e <0

The value 8 = 1 does, in the scalar case, reproduce the Minbee flux limiter, and 5 = 2 the
Superbee flux limiter.
Based on the piecewise linear local reconstruction,

Xr — X4~
A

% atzilt 7
i ) =7 (1) +

The values at the extreme points of the cell I; are established.

14
u;;l/2 = U; — iAZ (91)

Uy = T+ A (92)

In order to finally obtain the second-order accurate upstream flux, some first-order monotone
upstream flux is employed with the reconstructed values u

+
i+1/20 Yiy1/2:

TVDu __  mu — +
Jit1/2 = Ji+1/2 (“¢+1/2’“i+1/2)

+

Note that u, from a reconstruction
i+1/2

i+1/2 is obtained from a reconstruction in cell I;, and u
in cell I;41.
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12.2.2.2 A MUSCL Centered TVD Scheme

As mentioned before, also a second-order TVD centered scheme is introduced. It also follows
the concept of the MUSCL scheme but uses a first-order monotone centered flux.
This approach is base on a slope limiter ¢;, for which the following equation holds.

Ay = &N
Here, the slope vector of the cells, 4A;, is used.

1
Ai: <1+W)Al_1/2+§(1—{.U)AZ+1/2

N |

This is a weighted average of the side slope vectors A,y /2, see (89) and (90). The weighting
parameter has to fulfill w € [—1,1]. In computations conducted for this thesis, the value of
w = 0 was used. Additionally, the ratio r; of the cell side slope vectors is introduced.

A,
e 1/2

Ait1/2

Then, a slope limiter analogous to the Superbee flux limiter is [174]

0 r<0
2r 0<r<i
_ STx 3
gsb (r> - 1 % < r g 1
min(r.6, (r),2)  r>1
A van Leer-type slope limiter is [174]
0 r<0
@10 = min (Z.60) >0
A Minbee-type slope limiter is [174]
r<0
s (1) = , 0<r<1
min (L&, (1) 7> 1

Above, £,.(r), a TVD region limit that is defined as follows, was used.

2
Cl-—wH+(1+w)r

& (1)

As before, the conservative variable vector is approximated via the limited slope A, and
equations (91) and (92). Then, the second-order accurate centered flux is obtained via a first-

order monotone centered flux with the reconstructed values Uy /2 u;rH /2 For this purpose,
the FORCE flux can be used.

TV Dc _ _Force — +
Giv1/2 = Jit+1/2 <“i+1/2’“i+1/2)

Note again that Uiti)o
struction in cell I;41.

+

i+1/2 from a recon-

is obtained from a reconstruction in cell I;, and u

12.2.3 Weighted Essentially Non-Oscillatory schemes

One disadvantage of TVD schemes is that the accuracy near discontinuities is reduced. In the
schemes presented above, this was directly visible in the slope for example. Also, the accuracy
necessarily is reduced to first-order near smooth extrema.
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In this section, both Essentially Non-Oscillatory and Weighted Essentially Non-Oscillatory
schemes are presented, which are self-similar (i.e., there is no mesh size dependent parameter),
uniformly high-order accurate, yet essentially non-oscillatory for piecewise smooth functions
(i.e., the magnitude of the oscillations decays with order of accuracy of the scheme). Piecewise
smooth functions are smooth except at finitely many isolated points. At these points, the
function and its derivatives are assumed to have finite left and right limits.

The key element of these schemes is the reconstruction. This is a specific interpolation
technique, which was developed for piecewise smooth functions. It works by automatically
choosing the locally smoothest stencil, and by that avoiding crossing discontinuities in the
interpolation procedure as much as possible.

The Essentially Non-Oscillatory reconstruction algorithm starts with a stencil containing
one or two cells only. It then adds either the cell to the right or the one to the left of the stencil,
depending on which results in the less oscillatory interpolant.

Instead of choosing one of the candidate stencils and discarding the others, Weighted Es-
sentially Non-Oscillatory reconstruction uses a convex combination of the interpolant through
all candidate stencils.

First, the given two reconstructions are presented and then it is described how to establish
a numerical flux from the corresponding reconstructions. This section is based on Shu [162].

12.2.3.1 FEssentially Non-Oscillatory Reconstruction

Before describing the Essentially Non-Oscillatory (ENO) reconstruction, an important detail
of interpolation methods used for reconstruction has to be addressed. In section 12.2.2 it
was mentioned that linear interpolation in the MUSCL scheme was uncritical with respect to
maintaining the proper cell average of the interpolant. In the context of the present methods,
higher-order interpolation is considered and therefore the interpolant must be established in a
way that maintains the cell average.

Assume that some function, say, velocity, is considered. The cell averages v; of that function
v(z) are given on a grid. One is interested in a polynomial p;(z) of degree k — 1 for each cell
I;. This then forms a k-th order approximation to v(z) in the cell I;. The polynomial shall be
constructed such that its cell average shall agree with that of the original function v;.

Assume that, additionally to the cell I; and the order of accuracy k, one is given a stencil
S(i) of k consecutive cells. The stencil is given via the left shift r, i.e., the stencil includes r
cells to the left and s cells to the right of I;, with r + s+ 1 = k.

S (@) = {Iiry ..., Tivs) (93)

In order to preserve the cell average, the interpolant over the stencil is established via the
primitive function of v(z).

Then, the interpolant can be established. In computational implementations, this interpolation
step is usually accelerated via the computation of so-called reconstruction coefficients. This is
possible, because one is usually not interested in the complete interpolant but only in values of
it at specific stations such as x;; /5. Due to the linearity of the mapping from the cell averages
v; to the interpolated values, these reconstruction coefficients depend on the left shift of the
stencil r, the order k, and the mesh spacing Ax;, but not on the function v itself.

The actual ENO approximation is addressed next. Here, an adaptive stencil is used. This
means that the left shift r is not constant. A left shift » that is constant over the cells I;
would lead to a fixed stencil approximation (e.g., a central stencil) for which it was shown that
it leads to spurious oscillations if of order two or higher with constant coefficients. In ENO
approximation, the left shift is thus established for each cell I; in a way that avoids including
a cell with a discontinuous change in the stencil.

Harten et al. [80] showed that a robust criterion to identify the stencil with the “smoother”
interpolant is to choose the one with the smaller absolute value of the Newton divided difference.
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Recall the definition of the Newton divided differences. For the primitive function V' (x) the
0-th degree divided difference is

V[zic1yp] =V (2i1y2)
and the general j-th degree divided difference with j > 1 is defined as

14 [$i+1/2, e 7-Ti+j—1/2] -V [1‘1‘—1/27 < ,xi+j—3/2}

v [xi_l/Q’“"x”j_l/z] - Tipj-1/2 — Ti—1/2
i+j— i—

Similarly, the divided differences of the cell averages are

Uz;] =5
and in general
U |x; e Tiaa| — U, T
E[$i,...,$i+]’]: [ i+1, ) ’L;r_.]j»._i.la y Litg 1] (94)
i+7 %

Note that the zeroth degree divided difference of 7; is identical to the first degree divided
difference of V' (z) due to the definition of the primitive function.
V (wis1/2) =V (wio12)

V [@is1/2, Tig1)2) = Tirjz— Teisa =7 (95)

This equality allows to express the divided differences of V' (z) of degree j > 1 by those of 7;
of degree 7 > 0. Taking the derivative of the k-th degree interpolation polynomial P(z) to
approximate V(x), one finds that only divided difference of 7; of degree j > 1 are required to
express p(x).

The ENO approximation thus identifies the “smoothest” stencil in 7; via a stencil of V(z),
which is labeled S(i). Notice that from the latter the corresponding stencil in 7; can be identified
via (95). First, the divided differences of the primitive function V' (z) are computed using (95)
and, for degrees j > 2, using (94). Then, the algorithm starts with a two point stencil in V' (z),

Sa (i) = {@i_12. Tij1)2}

This stencil is then consecutively enlarged for I = 2, ..., k. From the preceding step the following
stencil is known

S (i) = {@it1/2: - Tjp—1/2)

and one of the neighboring points x;_; /5 and x; ;.12 is added to the stencil. If
\V {2j—1y20 - Tjaerye) | < |V (24120 Tjagaya) |

then z;_; /5 is added to 5’;(@) to obtain S’Hl(i). If the inequality is not fulfilled, then ;41 /9
is added to the stencil.

As soon as the stencil is completely established, Lagrange or Newton interpolation can be
used to find the interpolants. In computational implementations the reconstruction coefficients
mentioned at the beginning of this section are usually used instead. By the choice of the
stencil the left shift r is established. Then, the proper reconstruction coefficients can be used
to instantly establish the interpolated values at the interface locations.

Figure 81 illustrates the interpolants chosen by Essentially Non-Oscillatory schemes. For
the example 7 = {10, 10.4,10.25, 10,3,2.5,2.25,2} and = = {1,2,3,4,5,6,7,8} were assumed.
First, consider the resulting interpolant for cell 3. The scheme described above starts the stencil
with this cell and extends it twice (i.e., order — 1 times) to the left or right. As described, the
schemes includes either neighbor point that results in a smoother interpolant according to the
criterion of divided differences. For cell 3, the scheme once selects a cell to the left and once
a cell to the right for inclusion in the stencil. For cell 4 in turn, including the right cell (cell
5) would lead to rather large gradients in the interpolant each time. Therefore, the stencil is
extended twice to the left. The interpolant for cell 4 is therefore identical to that of cell 3. For
cells 5 and 6, the stencil is only extended to points to the right for similar reasons.

The left limit of v /o is established based on the interpolant of cell 4, i.e., v, = 0.84.

441/2
The right limit is v, , = 3.33.
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Figure 81: Third-order ENO reconstruction

12.2.3.2  Weighted Essentially Non-Oscillatory Reconstruction

ENO schemes are uniformly high-order accurate right up to the discontinuity, which is achieved
by adaptively switching the stencil used for interpolation. However, certain properties leave
room for improvements [162]:

e The stencil may change near zeros of the solution even by a round-off error perturbation.

e As the left shift of the stencil may change at neighboring points, the resulting numerical
flux is not smooth.

e To the reconstruction scheme, 2k — 1 cells are available. In the end, only k cells are used.
This results in k-th order accuracy when 2k — 1-th order accuracy is theoretically possible
in smooth regions of the solution.

The idea of Weighted Essentially Non-Oscillatory (WENQO) reconstruction is to use a convex
combination of the interpolants through several stencils. If, however, a candidate stencil contains
a discontinuity, its weight shall be close to zero to mimic the successful properties of ENO
schemes.

For each cell I; k candidate stencils are consequently available.

Sy (Z) = {xi—ra cee 7xi77‘+k71}
with » = 0,...,k — 1. Using the reconstruction coefficients, each stencil produces a different
reconstruction of v; /9, which is labeled vgi)l o+ A convex combination of these values is used
to define the reconstruction using the WENO method.
k—1

v; = Zw (")
i+1/2 = TYir1/2
r=0
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k=1

For stability and consistency, w, > 0 and »_ w, = 1 need to be imposed. In smooth regions,
r=0

these weights should approximate optimal high-order weights to &k — 1-th order, which would

imply (2k — 1)-th order of the complete reconstruction scheme. The question is now what these
optimal weights are. In the general case, this leads to an overdetermined system of equations,
which can be solved, e.g., by using a least-squares algorithm. In the case of a uniform mesh, the
equation system becomes square and an explicit solution can be computed. Jiang and Shu [91]
gave optimal weights d, for uniform grids and 1 < k < 3. Herein, &k = 3 is considered. For this
value of k, the following optimal weights have been established.

3 3 1
b =15 h =g 10

Furthermore, Jiang and Shu [91] suggested the following form of the weights

“r=0
> as
s=0
for r =0,...,k — 1. Coefficients «, in turn are defined as follows
d,
Oy = ————
(e+8,)°

Here, ¢ > 0 is introduced to avoid division by zero. Following Jiang and Shu [91], e = 107°
was used in computations. 3, are called smooth indicators in the given reference and have been

defined as follows b1 9
— Tit1/2 8lp (:L‘)
:j : A 20-1 ¥ Pr \%) d
/BT =1 Ai_l/Q v axl '

This is the sum of the squares of the scaled L? norms for all derivatives of the interpolation
polynomial p,(z) over the interval (mi,1/2,xl-+1/2). For k = 3, the result is a 2k — 1 = 5-th
order accurate reconstruction.

Figure 82 illustrates Weighted Essentially Non-Oscillatory reconstruction on the same ex-
ample as figure 81. The reconstruction of the left limit of v, /o is considered, i.e., O /o For
this, the scheme uses three stencils S,(4) with increasing left-shift 7. The interpolants based on
these stencils are illustrated in the figure. Note the strong gradients in the interpolants using
So(4) and S1(4). This is also an illustration that the stencil selection of the ENO scheme shown
in figure 81 for cell 4 was reasonable.

The WENO scheme proceeds with the different reconstruction values vﬂl /2 to vﬁzl /20 which
are each marked with a filled circle in figure 82. For this particular example, the scheme results
in weights wg = 1.3-107%, w; = 15.6- 1075, wy = 0.999983. This means, that the interpolant
with left-shift 7 = 2 dominates and v, P 04(12421 /2

12.2.3.83 ENO and WENO numerical fluzes

So far, two different algorithms for the reconstruction of piecewise smooth functions were intro-
duced. The question is now how to construct corresponding higher-order numerical fluxes for
the system of hyperbolic conservation laws (74) from these reconstructions.

Probably, the easiest way to do this is to apply the reconstruction to each component of the
vector of conserved variables u separately and thus reconstruct the left and right limit ul:.il 9
at the location z;,1/5. Then, a monotone first-order flux can be used to establish an essential{y
non-oscillating higher-order numerical flux.

Shu [162] remarks that only low-order schemes are highly sensitive to the choice of first-
order monotone flux. This sensitivity decreases with increasing order of accuracy and therefore
a simple Lax-Friedrichs monotone flux is used in the given reference to construct higher-order

WENO numerical fluxes.
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Figure 82: Fifth-order WENO reconstruction

The given component-wise approach to construct a numerical flux based on ENO and WENO
reconstructions is simple to implement. Also, the resulting schemes work reasonably well for
many applications, in particular if the order of the scheme is not high. Shu [162] mentions
“second or sometimes third-order”.

If the order of the scheme is high or a more demanding test problem shall be solved, the
following characteristic decomposition is much more robust and should be implemented instead.

Recall the diagonal decomposition of the Jacobian of the flux in section 12.2.1.2 on flux
vector splitting, (80). A change of variables v = K ~'u leads to a decoupling of the system of
conservation laws (74). Then, the component-wise application of the ENO or WENO recon-
struction is fundamentally justified. The reconstructed values Uz‘i+1 /o are then transformed back
into the physical space of conserved variables,

“iln = K”il/z

A remaining question is the choice of K, which depends on u, K = K(u). For this pur-

pose, the Roe averages introduced in section 12.2.1.1 were used, as this leads to advantageous
properties such as the satisfaction of the mean value theorem.

Based on the reconstructed left and right limit uirl /2 at the location z;; /9, a monotone

first-order flux is used again to establish an essentially non-oscillating higher-order numerical

flux.

12.3 Object-oriented conservative methods

Two libraries for object-oriented modeling and simulation of gas dynamics were developed
within this thesis. Both were written in the equation-based, object-oriented modeling language
Modelica. The first one is a library specific to ideal gases, which allows several simplifications
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and results in little computational overhead. The second one is a gas dynamics library for generic
thermodynamic property models. These thermodynamic property models are implemented
according to the object-oriented interface MODELICA.MEDIA [58]. This interface had to be
extended with two additional methods to be suitable for applications in gas dynamics. These
and other implementation aspects are discussed in this section.

12.3.1 Ideal gas and generic thermodynamic property models

A large fraction of the literature on discretization methods using conservative methods considers
ideal gas equations of state only. Discretizations using real gas' equations of state in turn
consider non-ideal media, too. Several articles make assumptions on the structure of the real
gas equations of state however (e.g,. Liou et al. [104] assume a “general pressure function” but
require that is be explicit in density, specific internal energy, and mass fractions, and Gallouét
et al. [66] explicitly assume Tammann and van der Waals equations of state).

In equation-based, object-oriented modeling and simulation, one aims to encapsulate the
equations of state in separate classes and implement discretization methods independently us-
ing a generic interface. As the given real gas schemes require structural assumptions on the
equations of state, too, a generic interface had to be extended with several methods specific to
these structural assumptions. A clean separation between discretization scheme and equation
of state appears to be difficult in this case.

A large fraction of the methods described in the previous section 12.2 are specific to ideal
gases with constant specific heat capacity c,. Specialized Riemann solvers can be constructed
easily for some of these methods (such as the HLLE method described in section 12.2.1.1). In
the context of equation-based, object-oriented modeling languages, such approximate Riemann
solvers had to be exchanged concurrently with the equations of state. A more practical solution
is the use of centered schemes. These schemes are independent of any Riemann solver and can
thus be used with any thermodynamic property model. As described in section 12.2.1.3, the
support of these schemes does not depend on the sign of the characteristic speeds. While the
upwind schemes as discussed in sections 12.2.1.1 and 12.2.1.2 are more accurate in several cases
than their centered counterparts, they are usually more complex and computationally expen-
sive [174]. Therefore, in the libraries described herein, monotone and TVD centered schemes as
well as schemes using higher-order reconstruction with a centered scheme are implemented for
general thermodynamic property models and upwind methods are restricted to ideal gases.

12.3.2 Generic interface to thermodynamic property computations

As described above, the object-oriented interface of MODELICA.MEDIA [58] is used for thermo-
dynamic property computations. In order to be applicable to gas dynamics, this interface has
to be extended with two additional methods.

The first extension is required for the conversion of conserved variables to primitive variables.
In the gas dynamics library for generic equations of state the primitive variables are velocity
v and the thermodynamic state record of the medium?. For the conversion of the vector u
as defined in equation (75) to the primitive variables an additional setState function is thus
required. From wu, density and specific internal energy can be established. Therefore, a function
setState_duX is used.

The second extension is required for the conversion of the classic primitive variables {p, v, p}
to the ones used in the object-oriented implementation for generic thermodynamic property
computations, the thermodynamic state record and velocity. This is necessary in case of a
characteristic decomposition such as the one discussed in section 12.2.3.3. For this purpose, a
function setState_pdX is required. Note that this is only required if a gas dynamics library for
generic thermodynamic property models shall also be used with ideal gases.

'In this thesis, a real gas is one that is not both thermally and calorically ideal.
2In place of the velocity the mass flow rate could have been used, too. This selection is ambiguous and was
eventually made for similarity with conventional implementations of gas dynamics.
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12.3.3 Conservative and non-conservative formulations

In order to obtain valid simulation results, the conserved quantities in the governing equations
and the conservation statements they imply have to make physical sense [174]. Formulations
that are conservative purely in a mathematical sense (i.e., formally, they can be expressed as
(74), but there is no corresponding conservation law in physics) will, in case of shock waves,
result in wrong shock speeds and therefore wrong solutions [174].

In the context of equation-based, object-oriented modeling languages, a simple solution is
to explicitly select the conserved variables themselves as state variables, i.e., u(xz,t). This is
done in the gas dynamics library specific to ideal gases. For ideal gases that are both thermally
and calorically ideal (in particular, ¢, is not a function of temperature), all intensive quantities
can be established in closed form based on any two thermodynamic potentials. Therefore, no
distinction between independent and dependent variables is required for such media.

For generic thermodynamic property models this is different. In general, such models are
explicit in a number of thermodynamic potentials only (e.g., pressure and specific enthalpy).
As long as the physical flux is not changed, it is then possible to use the independent variables
of a thermodynamic property model as state variables instead. This is the approach followed
in the gas dynamics library for generic thermodynamic property models.

12.3.4 Inhomogeneous problems

In several references on computational methods for gas dynamics, fully explicit conservative
methods are considered in contrast to (78). In the context of equation-based, object-oriented
modeling, it is natural however to use a semi-discretized formulation. Furthermore, this has
advantages for inhomogeneous problems. No source term splitting schemes [167] are required
for the present approach. With the semi-discretization (also called method of lines) both the
numeric fluxes and the source term are algebraic expressions and no further complications arise
for inhomogeneous problems.

12.3.5 Library design

In this section, the design of the two gas dynamics libraries is sketched. The one considering
generic thermodynamic property models is emphasized and some remarks are made on the
one specific to ideal gases. For readability, the code illustrates single-substance media only.
Mass fractions of multiple-substance media can be covered analogously to the other primitive
variables, because they are similarly dominated by convection.

The connector has to implement the stencil defined in equation (12). Its length depends on
the stencil length required by the discretization scheme. If the stencil for a flux computation
has to include n cells, then at least n/2 of these cells are inside the domain modeled by the
respective component and need not be accessed via the connector. This implies that at most
n/2 cells of the stencil have to be provided by the connector. Therefore, the following connector
definition is used?.

connector Stencil._a
"Interface for quasi one-dimensional high-speed flow"

replaceable package Medium =

1
2
3
4
5 Modelica.Media.Interfaces.PartialMedium "Medium model";

30bviously, the stream prefix introduced in chapter 5 could be used for the present stencil definition. However,
high-speed compressible flow applications would use a part of the functionality of stream connectors only (a type
of “flip” functionality to meet requirement 10 introduced in section 3.4). The equations for mixing in non one-to-
one connections are not meaningful for the present application. Therefore, a connector definition with input and
output prefixes was used instead. A possible alternative for Modelica language design was the introduction of a
flip()-operator for the functionality of interest in cases like the present one. Then, the additional functionality
provided by the inStream()-operator could be placed in explicit junction models leading to a leaner language
definition.
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6

7  replaceable package Discretization =

8 GasDynamics.Discretizations.Partial.PartialDiscretization
9 "Discretization";

10

11 output Medium.ThermodynamicState

12 state_a[Discretization.halfStencilLength]

13 "Thermodynamic state stencil";

14 output SI.Velocity v_a[Discretization.halfStencilLength]

15 "Velocity stencil';

16 output SI.Length x_side_a[Discretization.halfStencilLength)]
17 "Cell side coordinate";

18

19  input Medium.ThermodynamicState

20 state b[Discretization.halfStencilLength]

21 "Thermodynamic state stencil";

22 input SI.Velocity v_b[Discretization.halfStencillength]
23 "Velocity stencil';

24 input SI.Length x side b[Discretization.halfStencilLength]
25 "Cell side coordinate";
26 end Stencil_a;

Listing 39: Connector for high-speed compressible flow

Note the replaceable discretization package (“Discretization”) in the connector defini-
tion in addition to the replaceable package containing the thermodynamic property model
(“Medium”). A vector of thermodynamic states and one of velocities of the given length are
defined twice. Different causal prefixes are used to handle how one component “prescribes” and
“reads” which variables®. The library considering ideal gases only uses density and pressure
vectors in place of the thermodynamic state.

Additionally, information about the computational mesh has to be included in the connector.
In the proposed connector definition, the coordinates of the sides of the cells are used. They are
defined in a local coordinate system, whose origin is set to the side shared by two components
connected together. The coordinate of this shared side can thus be omitted and the same
number of side coordinates and cell center variables on the thermodynamic state and velocity is
included. The side coordinates for Stencil_a are defined strictly positive; those for Stencil b
strictly negative.

Analogous to the Stencil_a connector definition in listing 39, a connector Stencil b is
defined. It differs only in inverted causality prefixes (input instead of output and vice versa).

The discretization package contains structural parameters including the stencil length, con-
version functions, an exchangeable thermodynamic properties model, and flux functions. Its
interface is defined as follows.

partial package PartialDiscretization
"Interface for discretization in compact flux form"

1
2
3
4 // Description

5 constant String discretizationName =
6 "unusablePartialDiscretization"

7 "Name of the discretization'";

8

9

// Type of discretization
10  constant Boolean idealGasOnly = false

4The causal prefixes are used in the acausal modeling language just to define a nominal causality, not an
actual one.
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11 " = true, if contains specifics of ideal gases';
12 constant Integer order(min=1) =1

13 "Order of discretization method";

14

15 // Stencil definition
16  constant Integer halfStencillLength =1

17 "Half of length of stencil for flux f_(i+1/2)";

18  final constant Integer stencillength = 2*halfStencillLength
19 "Length of stencil for flux f_(i+1/2)";

20

21 /) ...

22

23 end PartialDiscretization;
Listing 40: Discretization interface, structural parameters

The structural parameters of a Discretization are its name, whether it uses equations appli-
cable to ideal gases, its order of accuracy, and the stencil length.

1 partial package PartialDiscretization

2 "Interface for discretization in compact flux form"

3

5

6  function primitiveToConserved

7 "Convert primitive variables to conserved variables"
8 input Medium.ThermodynamicState state "Thermodynamic state";
9 input SI.Velocity v "Velocity";

10 output Real u[3] "Vector of conserved variables";

11 algorithm

12 u := {Medium.density(state), Medium.density(state)*v,
13 Medium.density(state)®

14 (Medium.specificInternalEnergy(state) + 1/2*v*v)};
15  end primitiveToConserved;

16

17 function conservedToPrimitive

18 "Convert conserved variables to primitive variables"
19 input Real u[3] "Vector of conserved variables";

20 output Medium.ThermodynamicState state "Thermodynamic state";
21 output SI.Velocity v "Velocity";

22  algorithm

23 v = uf[2]/u[1];

24 state := Medium.setState_duX(u[1], u[3]/u[1]-1/2%*v*v,

25 Medium.X_default);

26 end conservedToPrimitive;

27

28 // ..

29

30 end PartialDiscretization;
Listing 41: Discretization interface, conversion functions

The conversion functions of a Discretization convert the set of primitive variables (thermody-
namic state record and velocity) to the vector of conserved variables as defined in equation (75)
and vice versa. Note that these functions need not be replaceable, because the implementa-
tions are generally valid. Note that in the second conversion function in listing 41 one of the
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additional functions mentioned in section 12.3.2 is used (setState_duX()).

1 partial package PartialDiscretization

2 "Interface for discretization in compact flux form"

3

5

6  replaceable partial function monotoneFlux

7 "First-order flux approximation"

8 input Medium.ThermodynamicState state_l

9 "Stencil of thermodynamic states on left (i)";

10 input Medium.ThermodynamicState state._r

11 "Stencil of thermodynamic states on right (i+1)";

12 input SI.Velocity v_1 "Velocity in x-dir on left, v_(i)";
13 input SI.Velocity v.r "Velocity in x-dir on right, v_(i+1)";
14 output Real flux[3] "Fluxes f_(i+1/2)";

15  end monotoneFlux;

16

17 replaceable partial function flux "Numeric flux approximation"
18 input Medium.ThermodynamicState state[stencilLength]

19 "Thermodynamic state stencil";

20 input SI.Velocity v[stencilLength| "Velocity stencil";

21 input Real x_side[stencillength + 1]

22 "Coordinates of cell sides (i-1/2), (i+1/2) etc.";

23 output Real flux[3] "Fluxes f_(i+1/2)";

24 end flux;

25

26 // ..

27

28 end PartialDiscretization;
Listing 42: Discretization interface, flux functions

The key elements of a Discretization are the flux functions. Their interfaces are described
in listing 42. For readability, interfaces are defined for both a monotone first-order flux and
the arbitrary-order numerical flux. This allows to clearly separate the reconstruction and the
Riemann solver for instance. In models, only the arbitrary-order numerical flux is used and
therefore the use of the monotone flux function is optional. The monotone flux arguments are
the left and right thermodynamic state and the flow velocities. It returns the flux vector. The
arbitrary-order flux function has a stencil of thermodynamic states and of velocity as well as the
cell side coordinates as inputs and also returns the flux vector. The Discretization package also
contains a replaceable package implementing thermodynamic properties. This is not shown in
listings 40 to 42. Discretization packages were implemented using the Local Lax-Friedrichs flux,
Roe’s Riemann solver, the HLLE Riemann solver, the Steger-Warming flux vector splitting, the
First-Order Centered flux, the Muscl-Hancock TVD scheme with several limiters and monotone
fluxes both in upstream and in centered versions, third- to ninth-order ENO schemes and several
fifth-order WENO schemes with and without characteristic decomposition.

The implementation of a Discretization is illustrated for a second-order Muscl-Hancock
scheme with a Superbee limiter and a Local Lax-Friedrichs flux. The listing is given in two
parts for readability.

1 package MusclHancockSuperbeelF

2 "TVD: Upwind Muscl-Hancock (Superbee, Lax-Friedrichs)"
3  extends Partial.PartialDiscretization(

4 discretizationName="Upwind Muscl-Hancock (SB, LF)",
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5 order=2,

6 idealGasOnly=false,

7 halfStencillLength=2);

8 redeclare function extends monotoneFlux

9 "Local Lax Friedrichs monotone flux"

10  protected

11 Real lambda_max "Local wave speed";

12 algorithm

13 // Local wave speed

14 lambda max := max(abs(v_.1) +

15 Medium.velocityOfSound(state 1), abs(v_r) +

16 Medium.velocityOfSound(state._r));

17 // Mass fluz

18 flux[1] := 0.5*(Medium.density(state_r)*v.r +

19 Medium.density(state 1)*v_1) -

20 0.5*1lambda max*(Medium.density(state.r) -

21 Medium.density(state 1));

22 // Momentum fluz

23 flux[2] := 0.5%((Medium.density(state r)*v.r¥*v.r 4

24 Medium.pressure(state.r)) +

25 (Medium.density(state_1)*v_1*v.1 4

26 Medium.pressure(state_1))) -

27 0.5*lambda max™(Medium.density(state r)*v._r -

28 Medium.density(state 1)*v_1);

29 // Energy fluz

30 flux[3] := 0.5%(

31 v_r*(Medium.density(state_r)*

32 (Medium.specificInternalEnergy(state r) + 1/2%v.r~2) +
33 Medium.pressure(state.r)) +

34 v_1*(Medium.density(state 1)*

35 (Medium.specificInternalEnergy(state 1) + 1/2%v._172) 4
36 Medium.pressure(state_1))) - 0.5%1lambda max™(

37 Medium.density(state_r)*Medium.specificInternalEnergy(state.r) -
38 Medium.density(state_1)*Medium.specificInternalEnergy(state_1));
39  end monotoneFlux;

40

a1 J/ ..

42

43 end MusclHancockSuperbeeLlF;
Listing 43: Listing of a Muscl-Hancock discretization, part 1

First, structural parameters such at the order of approximation and the length of the stencil
are defined. The monotone flux implements equation (88).

package MusclHancockSuperbeelF
"TVD: Upwind Muscl-Hancock (Superbee, Lax-Friedrichs)"

/)

redeclare function extends flux
protected
Real u_i[3] = primitiveToConserved(state[2], v[2])
"Vector of conserved variables u_(i)";
10 Real u_ip1[3] = primitiveToConserved(state[3], v[3])

1
2
3
4
5
6
7
8
9
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11 "Vector of comnserved variables u_(i+1)";

12 Real Delta_imh[3] =

13 ui - primitiveToConserved(state[1], v[1])

14 "Delta (i-1/2)";

15 Real Delta_iph[3] =

16 uipl - ui "Delta (i+1/2)=Delta_(i+1-1/2)";

17 Real Delta_ip3h[3]=

18 primitiveToConserved(state[4], v[4]) - uipl

19 "Delta_(i+3/2)";

20

21 Real Delta_i_limited[3]={if Delta_iph[i] > O then

22 max({0,min(2*Delta_imh[i],Delta_iph[i]),

23 min(Delta imh[i], 2*Delta_iph[i])}) else

24 min({0,max(2*Delta_imh[i], Delta_iph[i]),

25 max(Delta imh[i], 2*Delta_iph[i])}) for i in 1:3}
26 "Delta_(i)_limited";

27 Real Delta ipl limited[3]={if Delta ip3h[i] > 0 then
28 max({0,min(2*Delta_iph[i],Delta_ip3h[i]),

29 min(Delta iph[i], 2*Delta_ip3h[i])}) else

30 min({0,max(2*Delta_iph[i], Delta_ip3h[i]),

31 max(Delta_iph[i], 2*Delta_ip3h[i])}) for i in 1:3}
32 "Delta_(i+1) _limited";

33 Real u.i.r[3] =u.i + 0.5%Delta_i_limited

34 "Vector of conserved variables u_ (i) _r";

35 Real u_ip1.1[3] = u.ipl - 0.5%*Delta_ipl limited

36 "Vector of conserved variables u_(i+1)_1";

37 Medium.ThermodynamicState state_ir "At u_(i)_r";
38 Medium.ThermodynamicState state_ipl 1 "At u_(i+1)_1";
39 SI.Velocity v_ir "Velocity u_-(i)_r";

40 SI.Velocity v_ipl 1 "Velocity u_(i+1)_1";

41  algorithm

42 (state_i_r, v_.i_r) := conservedToPrimitive(u-i_r);
43 (state_ip1l.1, v_ip1.1) := conservedToPrimitive(u_-ip1_1);
44 flux := monotoneFlux(state_i_r, state_ipl.1l, v_i_r, v_ipl.1);

45  end flux;
46 end MusclHancockSuperbeeLlF;

Listing 44: Listing of a Muscl-Hancock discretization, part 2

The reconstruction implements the scheme described in section 12.2.2.1 for a Superbee
limiter.

12.3.6 Applications

Results of a Sod-type problem are shown in figure 83. Here, the results of computations using the
Local Lax-Friedrichs scheme (a first-order monotone centered method) are compared to those
using a fifth-order WENO scheme (using Roe’s first-order monotone flux and a characteristic
decomposition). The figure illustrates the generally accepted result that proper higher-order
reconstructions lead to higher resolution of shock waves, expansion fans, and contact disconti-
nuities [174]. That is, such phenomena are smeared over fewer computational cells.



156

Pressure p

Velocity v

Figure 83: Comparison of Local Lax-Friedrichs and fifth-order WENO schemes on a Sod-type
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CHAPTER 13

DESIGN OF ENVIRONMENTAL CONTROL SYSTEMS

The objective of this chapter is to analyze the general aircraft systems design problem and to
propose a suitable design methodology. The design methodology shall be applied to implement a
design environment for ECS. Such a design environment has to build upon a modeling and sim-
ulation capability, which was addressed in chapter 11, and provides optimization functionality.
In order to be useful for optimization, all components in the modeling and simulation environ-
ment have to be implemented as parametric elements. Then, parameters relating component
performance and weight can be varied within an optimization platform to converge toward a set
of optimal designs. Ideally, such an optimization platform additionally provides instruments to
capture the contradicting requirements that constitute each design problem of airborne systems.
After all, when striving for both energy efficiency and weight reduction on system-level, some
trade-off has to be made. Furthermore, an optimization platform for unconventional system
architectures has to address the definition of control logic. This is necessary because a plant
model by itself is often not a well-defined (i.e., square) problem, unless control variables are de-
fined. Whenever unconventional architectures are investigated, such control logic is not known
a-priori and a sequential approach of first establishing and implementing appropriate control
logic and then optimizing the architecture is considered impractical.

The design of general aircraft systems (and ECS) is termed a local optimization problem.
It is local, because it considers a single aircraft system architecture at a time and depends on
global aircraft data reflecting aircraft constraints and dependencies (such as trade factors for
specific fuel consumption, SFC, and mission block fuel, see section 1.3.2).

The data on aircraft constraints and mission block fuel have to be provided by some global
aircraft systems architecture optimization process. For the design of distribution systems and
energy management systems like electrical or thermal management systems peak power and
power profiles from consumer systems need to be provided. Eventually, such local design plat-
forms need to be integrated in an global aircraft systems architecture design effort.

In this section, some formal characteristics of the local optimization problem and associated
challenges are discussed. Then, a local design platform is proposed and its implementation is
presented. Finally, illustrative results are provided.

13.1 Implicit sizing

A challenge in optimization of ECS architectures lies in the sizing process of the components,
which is not explicit. That is, a given set of functional requirements does not lead directly to
a sizing of the system components. In some domains, this is different. For Wing Ice Protec-
tion Systems (WIPS) for example, explicit sizing is possible via the Extend of Protection and
technology parameters. For architectural models of Electric Power Generation and Distribution
Systems, performance metrics such as power or current to be provided by a given component
lead to an explicit sizing of said components.

For ECS design such explicit sizing rules are only available for a set of conventional archi-
tectures (e.g., the one illustrated in figure 79). The methods discussed in this thesis need to
scale up to unconventional architectures however, for which such explicit sizing processes are
not established. Furthermore, an additional aspect has to be considered.

In reality, the sizing process of an airborne system involves a trade-off between sub-system
efficiencies and sub-system weights. As illustrated in figure 84, maximum subsystem efficiency
(e.g., ECS energy efficiency) does usually not correspond to maximum system efficiency (i.e.,
aircraft fuel burn). For the systems, which are sized explicitly, this trade-off can be factored out
of the design process. This may be the case, because efficiency is more a technology parameter
than a question of the size of a component. For ECS architecture, this is different. A heat
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Figure 84: System efficiency has a maximum at optimum trade-off between subsystem efficiency
and weight

exchanger becomes, independently of the particular technology employed, more efficient if the
heat transfer surface and thus its size increases.

For the applications considered here, the conclusion is obvious. The trade-off between
subsystem weight and its efficiency for maximum system efficiency cannot be found a-priori but
has to be investigated for each design separately. This leads to an implicit sizing process and
the requirement for an elaborate optimization process to design ECS architectures.

13.2 Control variables

Before providing a somewhat formal definition of the problem to be solved, the scope of the
optimization problem shall be investigated. For this purpose, it has to be noted that a simulation
problem of an ECS plant model by itself is not a well-defined (i.e., square) problem, because
control variables need to be defined (e.g., the valve position of the Temperature Control Valve of
the Three Wheel Bootstrap ECS shown in figure 79). The question arises of how to choose these
control variables during optimization of ECS architecture. It is noted that if some control logic
for a specific architecture is known, it is obviously possible to establish the control variables
based on this logic. Whenever unconventional architectures are investigated, such control logic
is not known. Then, a sequential approach of first establishing and implementing appropriate
control logic and then optimizing the architecture is considered impractical. Therefore, an
obvious choice is to do so in parallel. Consequently, the optimization problem has to cover both
the actual architecture optimization and the definition of control logic.

13.3 Optimization problem

Formally, an optimization problem is described by a set of design variables (also called tuners),
inequality or equality constraints, and objective functions. These are discussed step by step in
order to define the problem to be solved herein.

Based on the remarks made in the preceding section, the set of design variables consists of
variables describing the architecture and ones defining the operation of the system on a given
evaluation or sizing mission. Architecture design variables can be continuous variables (e.g.,
heat exchanger dimensions) or discrete (e.g., Engine Bleed Air System stages, the number of
the compressor stage at which intermediate or high pressure air is bled from the engine). The
set of potential architecture design variables is defined by the architecture itself and by the
modeling hypotheses of the components used in the simulation model.

The set of design variables defining the operation of the system on the evaluation mission
similarly depends on the architecture. For the Three Wheel Bootstrap ECS shown in figure 79,
these are the position of the Temperature Control Valve and of the Ram Air Channel (RAC)
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actuators. Additionally, the set of control variables depends on whether a direct model (cal-
culating in performance direction) or an inverse model is used. For the former, usually the
whole set of control variables has to be established, for the latter only a subset. In this thesis,
only direct and semi-inverse models were used for optimization, because they can be evaluated
for architectures, which do not fulfill all performance requirements. As the optimizer reduces
the excess performance available in a design in order to reduce weight, such infeasible designs
are routinely suggested by the optimizer. If, however, an inverse model is evaluated with, e.g.,
a pack discharge temperature below the minimum discharge temperature, the evaluation will
fail and the optimizer cannot be returned a value quantifying how infeasible the architecture
is. A direct model in turn will return the minimum discharge temperature and its deviation
from the demanded discharge temperature is an exact means of quantifying how infeasible the
architecture is.

Constraints are typically present with respect to the operation of the ECS system. When
establishing the control strategy, inequality constraints have typically to be respected (e.g., on
maximum temperatures due to the usage of aluminum alloys or on maximum water content of
the pack discharge). Additionally, equality constraints may be present in optimization problems
utilizing direct models (e.g., on pack discharge temperature).

The top-level objective of the optimization problem is, for example, aircraft-level energy
efficiency expressed by mission block fuel. Additionally, ECS system weight is usually of interest.
As illustrated in figure 84, ECS system weight is not an aircraft-level optimization metric.
Nevertheless, system weight is important during system development. Therefore, the given
objectives can be understood as a trade-off between aircraft and system-level criteria.

Formally, this is a Mixed Integer Nonlinear Programming problem (MINLP). Furthermore,
it is typically a multi-objective problem, for which the entire Pareto Front [146] has to be
established. Then, in industry, management has to agree to a compromise between the top-
level objectives (i.e., a point on the Pareto Front). Finally, the problem is expected to exhibit
multi-modal behavior (i.e., be non-convex). The given three properties of the problem, together
with the high number of design variables (approximately ten to 20 architecture variables plus
two to five control variables for ten to 15 mission segments, that is, 30 to 95 design variables)
yield an optimization problem, which is prohibitively expensive to evaluate using state of the
art algorithms.

13.4 Implementation

Analysis reveals that some of the properties of the problem that make it difficult to solve are
either related to the architecture design variables or the control design variables. For example,
the set of discrete design variables contains only architecture design variables. Furthermore, the
criteria that are exclusively a function of the control variables are mostly convex (even though
local extrema were observed in some cases). Due to these distinct properties and the complexity
of the problem no direct solution of the problem was attempted. Instead, it is suggested
to re-factor the problem into two parts: First, the architecture optimization problem itself,
and second, an optimal open-loop control problem of the architecture for different operating
conditions. It is possible to do so, because the trade-off between ECS energy efficiency and
weight, which shall be balanced by the architecture optimizer for best possible aircraft energy
efficiency, is not affected by the particular choice of the operating point of the ECS in the open-
loop control problem. This is directly visible in figure 84. The architecture design variables
cover all factors sizing the components of the ECS (e.g., heat exchanger dimensions). Therefore,
as soon as a vector of design variables has been suggested by the architecture optimizer, the
value on the abscissa is already fixed (ECS weight). The open-loop control problem does not
need to know about the multi-objective nature of the optimization problem. It may simply
search for operating point with maximum aircraft-level energy efficiency (ordinate value). As
metric for aircraft-level energy efficiency in a specific mission segment the author used specific
fuel consumption (a typical aircraft-level energy efficiency objective is mission block fuel, which
is minimized when minimizing the specific fuel consumption of the mission segments).
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Figure 85: Bi-level approach to ECS optimization

The suggested procedure is as follows: The optimal open-loop control aims at finding the
lowest specific fuel consumption for each segment of a predefined flight mission by varying the
actuators of the ECS (in figure 85, this is the inner loop of the open-loop control optimizer and
the ECS model). This problem has to be solved for all segments of the mission. Afterward, the
results are used to establish the mission block fuel based on the ECS weight and the specific fuel
consumptions (in figure 85, this is the mission evaluation model on the lower right). Then, the
complete ECS architecture model (“Total ECS Model” in the figure) is run by the architecture
optimizer. This algorithm varies the architecture design variables to search for the Pareto
Front of the given objectives in general and the global minimum of block fuel consumption in
particular. This process is repeated until convergence.

The problem was implemented utilizing the Multi-Objective Parameter Synthesis tool [93]
(MOPS). The software provides several key features such as state of the art optimization algo-
rithms and transparent parallelization for High Performance Computing clusters. The open-loop
control problem is implemented as a normal multi-case model in MOPS. The mission assess-
ment and computation of mission block fuel is realized as a final model. Finally, the architecture
optimization is implemented as a normal model.

13.4.1 Optimal open-loop control problem

In order to discuss the implementation in some detail, the conventional Three Wheel Bootstrap
ECS shown in figure 79 is taken as example for the remainder of this section. The plant model
is called semi-inverse, as the pack discharge temperature is calculated as in a direct model and
the pack discharge pressure is prescribed as in an inverse model.

Following the reasoning outlined in the last section, the generic open-loop control problem
solves for minimum specific fuel consumption (SFC). It is solved for all regular mission segments.
For the Three Wheel Bootstrap ECS, the architecture parameters (e.g., the geometry, the
compressor stages of the HP and IP bleed ports) have to be known. These data are furnished by
the architecture optimization discussed below. Additionally, several parameters describing the
ambient conditions have to be provided. Furthermore, the aircraft altitude and the demanded
pack discharge pressure have to be provided (the latter for example may be established from
the models of the mix manifold, air distribution network, and cabin or be prescribed via tables
calculated separately). Therefore, the optimization problem is as follows.
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MINIMIZE Specific fuel consumption
GIVEN Architecture parameters
EBAS stages
Ambient conditions
Tdis,demanded
SUBJECT TO  Temp2 < T emp2,max
Tdis < Ldis,max
Twe 2 TwEgmin
AND T4is = Tdis,demanded
By VARYING Ram air channel actuator
Temperature Control Valve (TCV)

Here, T 4is demanded is the demanded pack discharge temperature. T'ep2 and T'emp2 maz are
the actual and the maximum compressor outlet temperatures (these constraints are due to
material properties of aluminum alloys). Similarly, z4;s and Zgismae are the actual and the
maximum water content at pack discharge. Variables Ty g and T'w g i, are the actual and
the minimum permissible temperature in the water extractor. Finally, Ty is the actual pack
discharge temperature.

During the architecture optimization of the Three Wheel Bootstrap architecture, this generic
open-loop control problem is solved for most regular cases. Alternatively, two other set-ups are
used to establish control parameters. One of them is solved for all failure cases. These are
the cases with only one engine operational. It is considered important that the ECS is able to
provide the required performance in these cases, but the specific fuel consumption is not relevant.
Consequently, in this open-loop control problem, the objective function is not the specific fuel
consumption but the deviation of the actual discharge temperature from the demanded pack
discharge temperature. The other set-up is used for top of descent to ensure minimum pressure
for cabin pressurization.

/full

g /ch

full 0

Figure 86: Exemplary topology for C35H2: Criteria on SFC, compressor outlet temperature,
water content at pack discharge, water extractor inlet temperature, pack discharge temperature

In order to accelerate convergence, and due to the mostly well-behaved topologies observed
for the open-loop control problems, a sequential quadratic programming (SQP) algorithm of [93]
is used. In order to deal with the mildly non-convex topologies, a multiple starting point
approach is used, which seems to offer a suitable compromise between computational expense
and robustness.

In figure 86, an exemplary topology is shown for the optimal open-loop control problem.
It refers to a cruise case at 35,000 ft altitude, hot ambient conditions and normal operation.
The four graphs to the left show the objective to minimize SFC, the inequality constraint on
compressor outlet temperature, water content at pack discharge, and temperature in the water
separator are shown. The graph to the right shows the equality constraint on pack discharge
temperature. In either case, the objective or, respectively, the normalized constraint value
(colored) is shown together with the reference value (gray). The constraint has to maintain a
value below of (for inequality constraints) or equal to (for equality constraints) the reference
value.
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The equality constraint on pack discharge temperature shown to the right of figure 86 effec-
tively restricts the subspace to be considered by the optimizer to a one-dimensional manifold.
The inequalities on water content at pack discharge and water separator temperature are not
relevant for flight cases due to low ambient humidity in high altitudes. However, the compres-
sor outlet temperature may not grow beyond a specific value, which renders the lower left of
the one-dimensional manifold fulfilling the equality constraint infeasible. Comparing the objec-
tive to be minimized to the latter, one can infer that the optimum for this particular optimal
open-loop control problem is at precisely this location, namely, at medium RAC mass flow and
nearly zero mass flow rate through the TCV (upon a further reduction of the TCV flow, the
compressor outlet temperature would then grow beyond the prescribed limit).

This behavior exactly mimics the established Three Wheel Bootstrap ECS control logic. In
a normal cruise case, the ram air channel doors are closed as much as possible while maintaining
the maximum allowed compressor outlet temperature.

13.4.2 Architecture problem

When solving the optimal open-loop control problem for each of the mission segments involved
and establishing mission block fuel based on the results, all top-level optimization objectives
are available for a given architecture. The outer loop shown in figure 85 contains the complete
ECS architecture model, which is driven by the architecture optimization algorithm. This is
typically a global, gradient-free algorithm suitable for MINLP optimization problems.

[ ]Baseline solution
B ¢ Minimum fuel
A Minimum weight

onnnnt

.
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Relative fuel consumption

Relative ECS weight

Figure 87: ECS architecture optimization Pareto Fronts with baseline and single-objective
optimal solutions

An exemplary result of this ECS architecture optimization is shown in figure 87. This figure
illustrates the trade-off between the aircraft-level energy efficiency metric mission block fuel and
the system-level metric ECS weight in terms of a Pareto Front. The optimizer iterates until
convergence are not shown for clarity of the illustration. Between the two extremes of minimum
block fuel consumption (cyan) and minimum ECS weight (magenta), many other compromises
are possible. However, in order to improve one metric of the ECS, one has to deteriorate the
other (Pareto Optimality).

The typical wall time on a 32 node HPC cluster at DLR Institute of Robotics and Mecha-
tronics is several weeks for a solution to a problem like the one illustrated in figure 87.

With the availability of these results, the local system optimization is complete. Optionally,
a global aircraft power system architecture optimization platform could now be used to conduct
a re-sizing of the aircraft and thus to provide updated exchange rates.
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13.5 Conclusions

Based on physical plant models of ECS, a powerful method for optimization of ECS archi-
tectures has been developed. Plant models used during performance assessment of a given
ECS architecture are used for optimization of such architecture. The resulting optimization
method provides a flexible and comprehensive way of improving ECS architectures based on
new technologies. In addition to the optimum parameter sets found by optimization and the
resulting Pareto Fronts for the multi-objective optimization problem of low fuel consumption
and weight, the tool provides a method for detailed exploration of the design space. This sup-
ports better understanding of the sensitivities of design parameters, particularly important for
new architectures.

The presented bi-level local system optimization approach includes design variables deter-
mining system operation, which ensures comparison of different ECS architectures in their re-
spective operational optimum. Furthermore this supports development of an optimal open-loop
control strategy for new systems in early development phases.
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CONCLUSIONS

Two substantial contributions were made to mature system-level simulation using equation-
based, object-oriented modeling languages further. First, robustness issues were traced to the
mathematical formulation of convective transport phenomena, which is posed via the non-causal
interface definitions for thermo-fluid dynamics. To establish a rigorous analysis, established
interface definitions were presented in a consistent manner and assessed based on formal re-
quirements. Due to deficiencies, which were identified with respect to varying requirements
in all interfaces, a more robust and user-friendly interface was proposed and tested. Though
superior according to the formal requirements, the interface uses relatively complex semantics
and built-in operators, which are specific to thermo-fluid applications.

Second, robustness issues in the initialization of large DAE systems were explained via
theoretical convergence properties of typical classes of algorithms and the robustness on selected
test cases. For the latter, a quantitative metric was proposed and applied. This metric, the
robustness profile, allowed to exhibit the robustness problem in a rigorous manner. However,
each resulting profile is always problem-specific and thus a single “snap shot” for a given test
case, not a general result of the algorithm only. The robustness deficiencies were solved on a
number of test cases using probability-one homotopy, a method from topology. While the results
with respect to robustness are convincing, they required substantial upfront investments. For
instance, application-specific coercivity proofs were required, which in turn demand a profound
understanding of the underlying physics and probability-one homotopy theory.

In addition, high-speed compressible flow problems were addressed in the framework of
equation-based, object-oriented modeling languages using state of the art numerical methods
with up to fifth order. These results are not only relevant for pneumatic aircraft energy systems,
but for a wide class of applications (including automotive internal combustion engines for in-
stance). Due to the required spatial resolution, computational meshes for complete architecture
models tend to become large. Therefore, computation may be slow. However, sparse matrix
algorithms in equation-based, object-oriented modeling language compilers allow to mitigate
some of the computational expense.

Finally, a substantial contribution to the physics-based design of aircraft energy systems
was made. The proposed design environment enables physics-based design of unconventional
system architectures and is suitable for industrial problems, both in terms of expressiveness
and computational efficiency. It can serve as a building block of a future physics-based aircraft
energy systems architecture design methodology and platform. As described in chapter 1, until
today, only simulation environments were described in literature for such applications.

The design environment and underlying methodology are generally applicable both for ex-
plicitly and implicitly sized systems. They address multi-objective problems involving not only
one optimization objective but several of them (e.g., fuel burn and weight). They are applicable
for design problems requiring the definition of both optimal system design and energy-optimal
open-loop control. And they naturally address industrial problems, in which a system has to
be optimized for a large number of different operating conditions alike.

However, the tool requires large investments into mathematical plant models, both in terms
of engineering hours and skill. It claims substantial computational resources, which limits
manageable problem complexity. Additionally, the tool does not address all aspects, which
may be relevant for general aircraft energy systems, for instance, the reliability of electric
power generation and distribution systems. Finally, aircraft-level assessment metrics are linked
manually to external code via exchange rates. For problems, which call for a closer coupling,
an automatic interface to a global aircraft optimization platform could be required.
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