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a b s t r a c t 

A new approach to the determination of equivalent inhomogeneity for spherical particles 

and the spring layer model of their interphases with the matrix material is developed. To 

validate this approach the effective properties of random composites containing spherical 

inhomogeneities surrounded by an interphase material of constant thickness are evaluated. 

The properties of equivalent inhomogeneity, incorporating only properties of the original 

inhomogeneity and its interphase, are determined employing a new approach based on 

the exact Lurie’s solution for spheres. This constitutes the central aspect of the proposed 

approach being in contrast with some existing definitions of equivalent inhomogeneity 

whose properties dependent also on the properties of the matrix. With the equivalent 

inhomogeneity specified as proposed here, the effective properties of the material with 

interphases can be found using any method applicable to analysis of the materials with 

perfect interfaces (i.e., without interphases) and any properties of the matrix. In this work, 

the method of conditional moments is employed to this end. The choice of that method is 

motivated by the method’s solid formal foundations, its potential applicability to inhomo- 

geneities other than spheres and to anisotropic materials. The resulting effective proper- 

ties of materials with randomly distributed spherical particles are presented in the closed- 

form and are in excellent agreement with values reported in technical literature, which are 

based on both formally exact and approximate methods. 

© 2016 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ). 

 

 

 

 

 

 

 

 

1. Introduction 

Connection between dissimilar materials is always ac-

companied by the presence of a layer, called interphase,

whose properties are different than those of the adjacent
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bulk materials. Some problems involving such a layer (or

many of them), e.g., single spherical inhomogeneity sur-

rounded by layers of a different material, can be solved

analytically using a formally exact approach ( Lurie, 2005 ).

However, most problems of that kind are too difficult

(or too demanding) to lend themselves to exact analyt-

ical treatment. Consequently, over the past 40 years or

so ( Benveniste 1985; Hashin 1961, 1990, 1991; Lipton and

Vernescu 1995; Luo and Weng 1987; Mal and Bose 1974;

Walpole 1978; Zhong et al. 1997 ) various approaches have
article under the CC BY-NC-ND license 
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been proposed to approximately capture the influence of 

interphase layers on the quantities of interest, such as lo- 

cal stress and strain fields or effective properties of multi- 

constituent materials (composites). 

The interphases are where some of the most important, 

complicated, and interesting phenomena in composite ma- 

terials often occur. In composites with a high interphase- 

to-volume ratio, this may strongly affect the overall be- 

havior of the material and requires appropriate models to 

capture such behavior analytically. In some situations, the 

interphase is well described by a mathematical surface, 

called interface . If both the displacements and tractions 

(stress vectors) can be assumed to be continuous across 

the interface, it is commonly called a “perfect interface ”. 

There exist situations, however, when it is more appro- 

priate to use an “imperfect interface ” model, i.e., an inter- 

face across which displacements, or tractions, or both, suf- 

fer suitably defined jumps (cf. Gurtin and Murdoch 1975; 

Gurtin et al. 1998; Benveniste and Miloh 2001; Hashin 

1991, 2002a; Gu and He 2011; Gu et al. 2014 ). 

In general, the interphase can be modeled by an in- 

terface (either perfect or imperfect) if the ratio of the in- 

terphase’s thickness to a characteristic dimension of the 

composite (typically the size of the embedded inhomo- 

geneities) is “sufficiently” small ( Benveniste and Miloh 

20 01 ; Hashin 1991, 20 02a; Gu and He 2011; Dong et al. 

2014 ). The word “sufficiently” is typically understood in 

the asymptotic sense meaning that, treating this ratio as 

the only small parameter in the composite, the interphase 

can be adequately described by the leading term of the 

asymptotic expansion of the relevant equations. Depending 

on how other data of the problem are related to that ratio 

various interface conditions can be derived ( Benveniste and 

Miloh 2001 ; see also Hashin 2002a; Rubin and Benveniste 

2004; Dong et al. 2014 ). 

Presence of interphases, or imperfect interfaces, sig- 

nificantly complicates evaluation of those properties, and 

the literature in that area is overwhelmingly numerical 

( Andrianov et al. 2007; Achenbach and Zhu 1989; Sangani 

and Mo 1997; Garboczi and Berryman 2001; McBride et 

al. 2012 , among others). Even approaches based on simpli- 

fied methods, such as self-consistent schemes, often do not 

lead to closed-form solutions and require numerical calcu- 

lations, ( Hashin 1991, 2002a ). Treatment of perfect inter- 

faces, although complex too, is more advanced, as can be 

gleaned from several good books ( Christensen 1991; Mura 

1987; Nemat-Nasser and Hori, 1999 ; Torquato 2002 among 

others). Effective (or homogenized) properties of compos- 

ites with perfect interfaces are often given by closed-form 

formulas, which is a very attractive feature. Due to the 

complexity of the problem, those formulas are typically ap- 

proximate; only for composites with regular arrangement 

of particles or fibers formally exact (typically numerical) 

results have been obtained ( Andrianov et al. 2007; Sangani 

and Mo 1997; Garboczi and Berryman 2001 , among oth- 

ers). 

An interface model that has long been used in analysis 

of composites is the so called spring layer model . In that 

model tractions are continuous while displacements are 

allowed to experience a jump across the interface ( Duan 

et al. 2007a ,b; Hashin 1990, 1991; Sangani and Mo 1997 ). 
Thus, the continuum interphase is replaced by a layer of 

normal and tangential springs. This is an adequate approx- 

imation of reality if the interphase is thin and if it is suf- 

ficiently compliant in comparison with the stiffness of the 

surrounding materials. A slightly modified version of that 

model is also employed in this work, but it is used in the 

context of an entirely new approach to evaluate effective 

properties of composites with spherical inhomogeneities. 

A difficulty that is associated with all interphase mod- 

els, including the spring layer model, is determination 

of the parameters needed to describe them. Analyses of 

Hashin (2002a) and Benveniste and Miloh (2001) provide a 

rationale behind how the parameters describing various in- 

terface models should be related to properties of the inter- 

phase treated as elastic continuum. While theoretically in- 

sightful, this rationale is of limited practical utility as direct 

experimental determination of any interphase parameters, 

whether related to its continuum description or otherwise, 

is impossible. That can only be done via an inverse analy- 

sis, Lin et al. (2005); Wang et al. (2008) , as done by Hashin

and Monteiro (2002b) . The results of that work will sub- 

sequently be used for validation of the methodology pro- 

posed herein. 

A rare, quite complicated but “formally exact” three- 

dimensional numerical solution (employing series expan- 

sion in terms of spherical harmonics) for effective proper- 

ties of a composite material containing spherical particles 

with spring layer interfaces was obtained by Sangani and 

Mo (1997) . They tabulated the results for various volume 

fractions and various properties of the particles, as well as 

for various properties of the spring layer. These results are 

invaluable for comparisons and will be used for that pur- 

pose here. 

In case of composites with interphases or imperfect 

interfaces and inhomogeneities in the form of particles 

or fibers, one viable and attractive way of evaluating 

their effective properties is to replace the inhomogeneity- 

interphase system by an “equivalent inhomogeneity” with 

suitably adjusted properties that represents both the origi- 

nal inhomogeneity and the interphase or imperfect inter- 

face. In that way, the problem of the material with im- 

perfect interfaces is replaced by the problem with per- 

fect interface, but with changed properties of the inhomo- 

geneities. Consequently, using equivalent inhomogeneity, 

all the existing closed-form results for two-phase materi- 

als can be utilized to obtain the properties of the compos- 

ites with imperfect interfaces or interphases. This approach 

has been pursued in several prior publications ( Duan et 

al., 20 07a; Hashin 20 02a; Shen and Li 20 05; Sevostianov 

and Kachanov 2007; Nazarenko et al. 2015 a,b) (described 

in the sequel) and a new version of it is presented herein. 

The new version is an alternative to the energy-equivalent 

inhomogeneity, originally presented by Nazarenko et al., 

(2015) in the context of the Gurtin-Murdoch (1975) in- 

terphase model. In this work the “spring-layer” interphase 

model is considered instead (cf. Hashin 1990, 1991; Achen- 

bach and Zhu 1989; Sangani and Mo 1997; Duan et al 

20 07a ,b; Hashin 20 02a; Gu et al. 2014 among others). The 

resulting properties of the equivalent inhomogeneity are 

used in conjunction with some previously obtained re- 

sults for two-phase composites with perfect interfaces to 



L. Nazarenko et al. / Mechanics of Materials 96 (2016) 39–52 41 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

determine the effective properties of random composites

with spring-layer interfaces. 

To the authors’ best knowledge the possibility of using

the equivalent properties of the inhomogeneity-interphase

(or imperfect interface) system is first mentioned by

Hashin, (1991) . The author discusses an extension of this

technique to problems involving multiple layers of differ-

ent interphases Hashin (2002a) . However, Hashin’s discus-

sion was restricted to the effective bulk modulus, as only

for that case he was able to develop closed-form expres-

sion; a numerical approach was necessary for evaluating

the effective shear modulus. 

Prediction of effective moduli of multiphase compos-

ites based on the notion of equivalent inhomogeneity com-

bined with the generalized self-consistent scheme was also

presented in the two-part paper of Duan et al. (2007a ,b)

and Gu et al. (2014) . Spherical particles or cylindrical fibers

with various interface effects or interphases were consid-

ered, including the spring layer interface model dealt with

herein. In both of the above contributions the unknown

stiffness tensor of the equivalent inhomogeneity was deter-

mined using the Eshelby’s formula for the change of elastic

energy caused by insertion of an inhomogeneity in an infi-

nite matrix ( Eshelby, 1957 ). They assume that such change

due to embedding the equivalent inhomogeneity is equal

to the change caused by embedding the original inhomo-

geneity together with its interface. This approach yields

properties of the equivalent particles/fibers dependent on

the properties of the matrix material which is non-physical

and it is in sharp contrast with the approach advocated

by Hashin (2002a) and with the approach proposed in the

present work. This is the main reason behind the new for-

mulation of the problem presented in this work. Details of

the procedure proposed here by which the original inho-

mogeneity and its interphase is replaced by an equivalent

inhomogeneity, as well as comparison with the pertinent

results obtained in the past, are presented in the second

and third sections of the present article. 

In summary, it is noted that the existing solutions ex-

plicitly accounting for presence of the spring layer model

of interphase were obtained in the true closed-form only

for the effective bulk modulus ( Hashin 1990, 1991, 2002a;

Duan et al. 2007a, Gu et al. 2014 ). Other effective proper-

ties (shear moduli) were given by a sequence of compli-

cated formulas that still had to be evaluated numerically

( Hashin 1990, 1991, 20 02a; Duan et al. 20 07a, Gu et al.

2014 ) or were obtained by numerical methods ( Andrianov

et al. 2007; Achenbach and Zhu 1989; Garboczi and Berry-

man 2001; Sangani and Mo 1997 ). The definition of equiv-

alent inhomogeneity proposed here is significantly sim-

pler and should enhance predictive capabilities of all ap-

proximate methods, irrespective of the material property

of interest (bulk and shear). It is more direct than all

of the several existing definitions, such as that based on

the Mori–Tanaka method ( Shen and Li 2005 ), Hashin–

Shtrikman bounds ( Sevostianov and Kachanov 2007 ) or

Eshelby (1957) formula of the energy change ( Duan et al.

2007a; Gu et al. 2014 ). Use of some of those approaches is

likely to introduce a significant error already at the level of

determining the properties of the equivalent inhomogene-

ity. If such an equivalent inhomogeneity is subsequently
used to determine the effective properties of the composite

using additional approximate schemes, an essential error

can result for composites with high contrast in the compo-

nent properties and for high volume fraction of particles. 

The equivalent properties of the inhomogeneity-

interphase system in this work are determined based on

the Lurie’s solution ( Lurie 2005 ) for spheres. In contrast

with that of Duan et al. (2007a ) and Gu et al. (2014) ,

they depend only on the properties of the original in-

homogeneity and of the spring layer parameters (not

on the properties of the matrix). Other than being non-

physical, dependence of μeq developed by Duan et al.

(2007a ) and Gu et al. (2014) on the properties of the

matrix seems to make it applicable only in combination

with self-consistent method (which is employed in these

papers). In contrast, μeq presented in our work, which is

independent of the properties of the matrix, may be used

in conjunction with any method (old or new) developed

to evaluate the effective properties of composites without

interphases, and with any matrix material. One small

feature of the method discussed herein is that, as opposed

to the previous spring layer models whose thickness was

vanishingly small, a finite thickness of the spring layer

is still retained. That feature is the reason for which the

term “spring layer interphase” is used throughout this

work. Finite interphase thickness has been included in

other models, such as Cosserat model of Rubin and Ben-

veniste (2004) and Dong et al. (2014) , but to the authors

knowledge, not in the spring layer models. Still, the main

focus of this article is on the new definition of equivalent

inhomogeneity and its validation through comparison of

the effective properties based on that definition and the

best analytical and experimental results available in the

literature. 

The basic assumptions and formulas behind the def-

inition of the equivalent homogeneous representation of

the inhomogeneity-interphase system are presented in

Section 2 . In Section 3 the probability-based technique,

called the method of conditional moments, is briefly out-

lined and – in tandem with the results obtained in Section

2 – applied to evaluate effective properties of random

composites with spring layer interphases. To validate the

proposed approach some representative results are pre-

sented and compared to selected existing developments.

Section 4 contains an overall discussion of the approach,

presents some conclusions and evaluates potential for fu-

ture extensions and applications of the approach. The pa-

per also includes an appendix to which several details per-

tinent to the development included in Section 2 are rele-

gated. 

2. The properties of the equivalent inhomogeneity 

2.1. A general view of the approach 

The equivalent inhomogeneity is devised to represent

the system consisting of the original inhomogeneity and

surrounding interphase of thickness h . The interphase and

the inhomogeneity are assumed elastic and have their own

distinct properties. In the subsequent developments, it is

assumed that the interphase is adequately represented by
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Fig. 1. Schematic illustration of inhomogeneity with interphase. 
normal and tangentially oriented linear springs (spring 

layer). 

The concept of the energy-equivalent inhomogeneity 

is essentially equivalent to a two-stage homogenization. 

In the first stage, using energy equivalence, the individ- 

ual inhomogeneity and its interphase (spring layer) is 

replaced by an effective (“homogenized”) inhomogeneity 

which combines the properties of both. In the second 

stage, the effective inhomogeneity is perfectly interfaced 

with the matrix (no interfacial jumps of any kind) and ef- 

fective properties of the composite material evaluated. Any 

homogenization approach (numerical or analytical) can be 

used in the second stage. 

The first stage of the process is simply a low-level ho- 

mogenization step (or sub-homogenization), and like any 

homogenization procedure used in determining the effec- 

tive properties of a system, requires the displacements on 

the boundary of the system (consisting of matrix and in- 

terphase, in this case) to be consistent with an average 

strain tensor of equivalent inhomogeneity ɛ eq . At equi- 

librium these displacements cause attendant strain fields 

within the original inhomogeneity and displacement jumps 

across the interphase, both of which depend on the equiv- 

alent strains ɛ eq . To solve for those quantities it is assumed 

that the original inhomogeneity undergoes a deformation 

described by a strain tensor ɛ associated with the Lurie 

solution for spheres ( Lurie 2005 ). As a result, some stress 

components (tractions) at the boundary between the inter- 

phase and the matrix can be evaluated as a function of the 

properties of inhomogeneity, the properties of the inter- 

phase and the strain ɛ eq . They can be used to evaluate the 

average stresses in the inhomogeneity-interphase system 

which leads to relations for effective properties of equiv- 

alent inhomogeneity C eq . It is emphasized, however, that 

if the overall (equivalent) properties of the composite ma- 

terial are sought, displacements at the matrix/interphase 

boundary are not necessarily constant – they depend on 

the homogenization technique used for this purpose. 

2.2. Spring-layer model of the interphase 

The spring-layer model of the interface has widely been 

used to describe the so called “soft interphase” ( Hashin 

1990, 1991; Achenbach and Zhu 1989; Sangani and Mo 

1997; Duan et al. 2007a ,b). In this model interface trac- 

tions remain continuous across the interface while dis- 

placements suffer a jump. With respect to a curvilinear 

orthogonal coordinate system on the sphere’s surface the 

mathematical description of those properties is 

� σdS � S · n = [ σ2 dS 2 − σ1 dS 1 ] · n = 0 , K · � u � S = σ1 · n . 

(2.1) 

The vector n is unit and normal to the interface be- 

tween inhomogeneity and matrix. It is assumed that the 

normal n points away from the inhomogeneity. The double 

square brackets indicate the jump of field quantities across 

the interface, and the superscripts 1 and 2 indicate that the 

appropriate quantities are evaluated on the inhomogene- 

ity or matrix side of the spring layer. K = K n n ⊗ n + K s s ⊗
s + K t t ⊗ t is a second-order tensor. K n , K s and K t are the 

spring layer stiffness parameters in normal and tangential 
directions, respectively, and s and t represent two orthog- 

onal unit vectors in the plane tangent to the interface. 

The surface element dS introduced in Eq. (2.1) 1 is re- 

lated to the fact that the finite thickness of the spring layer 

is retained in the present development. Given an infinites- 

imal area on the inhomogeneity side of the layer, bounded 

by a contour Г, the area on the matrix side is outlined by 

the curve formed by intersections of the lines normal to 

the inhomogeneity along Г with the matrix. Such modifi- 

cation of Eq. (2.1) guarantees that the equilibrium of the 

spring layer of finite thickness is maintained. 

By Hashin (2002a) , it was shown that thin and com- 

pliant interphase can accurately be modeled by a spring 

layer. The same conclusion was also drawn by Benveniste 

and Miloh (2001) , and in both cases it was established that 

K n = 

λi + 2 μi 

h 

, K t = K s = 

μi 

h 

, (2.2) 

where λi and μi are Lame constants of the interphase. This 

idea is adopted in the present manuscript and properties 

of inhomogeneity/interphase system shown in Fig. 1 are 

determined using interface model described by Eq. (2.1) . 

In this case, the displacement jump is considered as 

the difference between the displacement on the inter- 

phase/matrix surface u 2 and the one on the inhomogene- 

ity/interface surface u 1 

� u � = �u = u 2 − u 1 , (2.3a) 

where 

u 2 = ε eq · [ r 1 + h n ] . (2.3b) 

r 1 is the radius of the inhomogeneity, and h is the thick- 

ness of the interphase. The displacement vector u 1 will 

be specified on the basis of Lurie solution for spheres 

in Sections 2.3 and 2.4. In view of the fact that the in- 

homogeneity is isotropic and the spring layer properties 

are constant (with K t = K s ), the properties of the equiv- 

alent inhomogeneity will also be isotropic. Consequently, 

the bulk modulus and the shear modulus can be evaluated 

separately, which makes the analysis simpler and more 

efficient. 
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2.3. Moduli for the equivalent inhomogeneity 

2.3.1. Bulk modulus 

In order to evaluate the effective bulk modulus we con-

sider hydrostatic average deformation for the inhomogene-

ity/spring layer system 

ε eq = 

[ 

β
0 

0 

0 

β
0 

0 

0 

β

] 

, (2.4)

with corresponding displacements on the inter-

phase/matrix surface. In the spherical coordinate system

( r, θ , ϕ), and for a spherical inhomogeneity of radius r 1 = R ,

this implies that 

u 2 = ε eq · r | r= R + h ⇒ u 2[ r] = β[ R + h ] , 

u 2[ θ ] = u 2[ ϕ] = 0 . (2.5)

Due to complete rotational symmetry of the problem,

the deformation within the original inhomogeneity is u r =
u r (r) , u 

θ
= 0 and u ϕ = 0 . Consequently, the displacement

field vanishing at its center can be written as 

u r = F 
r 

R 

, u θ = 0 , u ϕ = 0 . (2.6)

The constant F will be determined considering Eqs (2.1) ,

( 2.2 ), (2.3), ( 2.5 ) and noting that 

u 1[ r] | r= R = F . (2.7)

This, together with Eq. (2.5) permits to determine the

displacement jumps in Eq. (2.1) 

�u r = u 2[ r] − u 1[ r] = β [ R + h ] − F , �u θ = �u ϕ = 0 . 

(2.8)

In order to determine stresses within the original inho-

mogeneity, also entering this equation, it is noted that 

ε rr = 

∂ u r 

∂r 
= 

F 

R 

, ε θθ = 

1 

r 

∂ u θ

∂θ
+ 

u r 

r 
= 

F 

R 

, 

ε ϕϕ = 

u θ

r 
cot θ + 

u r 

r 
= 

F 

R 

, (2.9)

and all remaining strain components vanish. Thus, as ex-

pected, the strain state within the inhomogeneity is purely

volumetric, and the resulting stress state purely hydro-

static. 

In particular, the radial stress within the inhomogeneity

is 

σrr = 2 μ1 ε rr + λ1 trε = 2 μ1 
F 

R 

+ 3 λ1 
F 

R 

= 3 K 1 
F 

R 

, (2.10)

where λ1 , μ1 and K 1 are Lame constants and bulk modulus

of the inhomogeneity. 

The obtained results for displacement jumps and

stresses are quite naturally used to determine the constant

F and the effective bulk modulus. To this end, the inter-

phase conditions of Eqs. (2.1) and ( 2.2 ) are now written in

the following form 

σrr | r= R = K n �u r . (2.11)

Accounting for ( 2.8 ) and ( 2.10 ) the above condition is 

3 K 1 
F = K n [ β( R + h ) − F ] . (2.12)

R 
Introducing the dimensionless parameter δ = 

h 
R and

normalized spring stiffness in normal direction k n , where

k n = R K n , we determine the constant F from Eq. (2.12) 

F = 

k n βR [ 1 + δ] 

3 K 1 + k n 
. (2.13)

The surface element dS 1 in Eq. (2.1) 1 is proportional to

R 2 whereas d S 2 is proportional to [ R + h ] 2 . Thus, combining

Eqs. (2.1) 1 , ( 2.10 ) and ( 2.13 ), one obtains 

σ2 = 

1 

[ 1 + δ] 
2 
σrr | r= R = 

3 K 1 k n β

[ 1 + δ] [ 3 K 1 + k n ] 
, (2.14)

Consequently, the bulk modulus of equivalent inhomo-

geneity reads 

K eq ≡ σ2 

3 β
= 

K 1 k n 

[ 1 + δ] [ 3 K 1 + k n ] 
. (2.15)

Remark. In the limiting case, if the thickness of the inter-

phase h is assumed to be negligibly small in comparison to

the particle radius r (i.e., if δ → 0), the bulk modulus K eq

obtained here is identical with that of Hashin (1991 ), de-

termined by composite assembly approach and with that

of Duan et al., (2007a) computed on the basis of Eshelby

solution. 

2.3.2. Shear modulus 

In order to evaluate effective shear modulus we con-

sider a homogeneous deviatoric average deformation for

the inhomogeneity/spring layer system. One possibility is

to assume 

ε eq = 

[ −β 0 0 

0 −β 0 

0 0 2 β

] 

. (2.16)

In this case, the displacements on the interphase/matrix

surface read 

u 2 = ε eq · r | r= R + h = 

[ −β x 2 
−β y 2 
2 β z 2 

] 

= 

[ 

u 2[ x ] 

u 2[ y ] 

u 2[ z] 

] 

, (2.17)

with radial and tangential components 

u 2[ r] = [ u 2[ x ] sin θ + u 2[ z] cos θ ] 

= β r [ 2 cos 2 θ − sin 

2 θ ] | r= R + h 
= β [ R + h ] [ 3 cos 2 θ − 1 ] , 

u 2[ θ ] = [ u 2[ x ] cos θ − u 2[ z] sin θ ] 

= −3 β r cos θ sin θ | r= R + h = −3 β [ R + h ] cos θ sin θ, 

u 2[ ϕ] = −[ u 2[ x ] sin ϕ + u 2[ z] cos ϕ ] 

= β r[ cos ϕ sin ϕ − cos ϕ sin ϕ ] | r= R + h = 0 . (2.18)

Displacements on the inhomogeneity’s surface for a ho-

mogeneous deviatoric deformation (accounting that the

displacement at the particle center is zero) can be deter-

mined from Lurie’s solution ( Lurie 2005 ). For spherical in-

homogeneity with radius R 

u r = 

[
12 ν1 A 

r 2 

R 

2 
+ 2 B 

]
r 

[ 
3 

2 

cos 2 θ − 1 

2 

] 
, 

u θ = −
[
( 7 − 4 ν1 ) A 

r 2 

R 

2 
+ B 

]
3 r cos θ sin θ, u ϕ = 0 . (2.19)
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, 
On the surface of inhomogeneity ( r = R ) displacements 

are 

u 1[ r] | r= R = [ 12 ν1 A + 2 B ] R 

[ 
3 

2 

cos 2 θ − 1 

2 

] 
, 

u 1[ θ ] | r= R = −[ ( 7 − 4 ν1 ) A + 2 B ] 3 R cos θ sin θ, (2.20) 

and they result in the following jumps across the inter- 

phase 

�u r = u 2[ r] − u 1[ r] = [ 2 β( R + h ) − ( 12 ν1 A + 2 B ) R ] 

×
[ 

3 

2 

cos 2 θ − 1 

2 

] 
, 

�u θ = u 2[ θ ] − u 1[ θ ] = 3[ −β( R + h ) 

+ ( ( 7 − 4 ν1 ) A + B ) R ] cos θ sin θ . (2.21) 

Those jumps allow to evaluate one side of Eq. (2.1) 2 . To 

evaluate the other side, the strains in the inhomogeneity 

are first determined to be 

ε rr = 

∂ u r 

∂r 
= 

[
18 ν1 A 

r 2 

R 

2 
+ B 

] [
3 cos 2 θ − 1 

]
, (2.22) 

ε θθ = 

1 

r 

∂ u θ

∂θ
+ 

u r 

r 
= −3 

[
2 ( 7 − 7 ν1 ) A 

r 2 

R 

2 
+ B 

]
cos 2 θ

+ 

[
3 ( 7 − 6 ν1 ) A 

r 2 

R 

2 
+ 2 B 

]
, (2.22) 

ε ϕϕ = 

u θ

r 
cot θ + 

u r 

r 
= 

[
−3 ( 7 − 10 ν1 ) A 

r 2 

R 

2 

]
cos 2 θ

−
[

6 ν1 A 

r 2 

R 

2 
+ B 

]
, (2.22) 

2 ε rθ = γrθ = 

1 

r 

∂ u r 

∂θ
+ 

∂ u θ

∂r 
− u θ

r 

= −6 

[
( 7 + 2 ν1 ) A 

r 2 

R 

2 
+ B 

]
cos θ sin θ . (2.22) 

All remaining strain components vanish. The trace of 

the strain tensor is 

trε = ε rr + ε θθ + ε ϕϕ = A 

r 2 

R 

2 
[ 1 − 2 ν1 ] 

[
1 − 3 cos 2 θ

]
, 

(2.23) 

which gives 

σrr = 2 μ1 ε rr + λ1 trε = 2 μ1 

[
18 ν1 A 

r 2 

R 

2 
+ B 

] [
3 cos 2 θ−1 

]
− 21 λ1 A 

r 2 

R 

2 
[ 1 − 2 ν1 ] 

[
3 cos 2 θ − 1 

]
, 

σrθ = 2 μ1 ε rθ = −6 μ1 

[
( 7 + 2 ν1 ) A 

r 2 

R 

2 
+ B 

]
cos θ sin θ . 

(2.24) 

These are the only stress components that enter Eq. 

(2.1) 2 . The constants A and B are computed in terms of β
from the interface conditions ( 2.1 ) and ( 2.2 ) (see details in 
Eqs. (A .8)–(A .10)) ⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

A = 

( 1 + δ) β

M 

[ ( 2 μ1 + k t ) k n − [ 2 μ1 + k n ] k t ] 

B = 

( 1 + δ) β

M 

[6 ν1 [ k n − μ1 ] k t 

− [ 7 ( 2 μ1 + k t ) + 4 ν1 ( μ1 − k t ) ] k n ] 

(2.25) 

and 

M = −[4 μ1 
2 [ 7 + 5 ν1 ] + 2 μ1 [ ( 7 − 4 ν1 ) k n + ( 7 − ν1 ) k t ] 

+ [ 7 − 10 ν1 ] k n k t ] , (2.26) 

where k t = R K t . With the constants A and B defined, the 

average stresses within the inhomogeneity/interphase sys- 

tem can be evaluated and μeq can be determined from any 

of the following equations 

2 μeq ≡ − S̄ xx 

β
= − S̄ yy 

β
= 

S̄ zz 

2 β
, (2.27) 

where S̄ xx , S̄ yy and S̄ zz are the average deviatoric stresses. 

Considering that S̄ xx = S̄ yy = −2 ̄S zz only S̄ xx will be evalu- 

ated: 

S̄ xx = σ̄xx − 1 

3 

trσ = 

1 

3 

[ ̄σxx − σ̄zz ] . (2.28) 

The appropriate average stress formula for the inhomo- 

geneity/interphase system is ( Benveniste and Miloh 2001 ) 

σ̄i j = 

1 

V 

∫ 
∂ V 2 

t i x j dS , (2.29) 

where t i is the traction and the integration is over the in- 

terphase/matrix boundary ∂V 2 . The position vectors on the 

interphase/inhomogeneity and interphase/matrix surfaces 

have the following components respectively: 

x 1 = R sin θ cos ϕ , y 1 = R sin θ sin ϕ , z 1 = R cos θ, 

x 2 = [ R + h ] sin θ cos ϕ , y 2 = [ R + h ] sin θ sin ϕ, 

z 2 = [ R + h ] cos θ . (2.30) 

Considering Eqs. (2.1) 1 and ( 2.29 ), the components σ̄xx 

and σ̄zz needed in Eq. (2.28) are determined by 

σ̄xx = 

1 

V 2 

∫ 
∂ V 2 

R 

2 

[ R + h ] 
2 

t x x 2 [ R + h ] 
2 

sin θ dθ dϕ 

= 

1 

V 2 

∫ 
∂ V 2 

R 

2 t x x 2 sin θ dθ dϕ , (2.31a) 

σ̄zz = 

1 

V 2 

∫ 
∂ V 2 

R 

2 t z z 2 sin θ dθ dϕ . (2.31b) 

Taking into account that for r = R 

σrr = t r , σrθ = t θ , (2.32) 

t x and t z have the following form 

t x = [ σrr sin θ + σrθ cos θ ] cos ϕ, 

t z = [ σrr cos θ − σrθ sin θ ] . 
(2.33) 

Furthermore, from Eq. (2.24) σrr and σ
rθ

evaluated at r 

= R read 
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σrr = 2 μ1 [ 18 ν1 A + B ] 
[
3 cos 2 θ − 1 

]
+ 21 · 2 μ1 ν1 A 

[
3 cos 2 θ − 1 

]
= 2 μ1 [ −3 ν1 A + B ] 

[
3 cos 2 θ − 1 

]
, (2.34a)

σrθ = −6 μ1 [ ( 7 + 2 ν1 ) A + B ] cos θ sin θ . (2.34b)

Substituting Eq. (2.34) into Eq. (2.33) the tractions on

the inhomogeneity’s surface become 

 x = [ −6 μ1 A ( 7 + 5 ν1 ) cos 2 θ sin θ

+ μ( 6 ν1 A − 2 B ) sin θ ] cos ϕ, (2.35a)

 z = 2 μ1 [ −3 ν1 A + B ] 
[
3 cos 2 θ − 1 

]
cos θ

+ 6 μ1 [ ( 7 + 2 ν1 ) A + B ] cos θsin 

2 θ . (2.35b)

Eqs. (2.35) and ( 2.30 ) substituted into Eq. (2.31) yield 

σ̄xx = 

−2 μ1 

5 [ 1 + δ] 
2 

[ 21 A + 5 B ] , (2.36a)

σ̄zz = 

4 μ1 

5 [ 1 + δ] 
2 

[ 21 A + 5 B ] . (2.36b)

Given that μeq resulting from Eqs. (2.27) and ( 2.28 ) is 

2 μeq = − σ̄xx − σ̄zz 

3 β
= 

21 μ1 

5 β[ 1 + δ] 
2 

[ 21 A + 5 B ] 

= 

2 μ1 

5 β[ 1 + δ] 
2 

[ 21 A + 5 B ] , (2.37)

one gets 

2 μeq = 2 μ1 

5 [ 1 + δ] 

× 4 μ1 [ 7 + 5 ν1 ] [ 2 k n + 3 k t ] + 5 [ 7 − 10 ν1 ] k n k t [
4 μ1 

2 ( 7 + 5 ν1 ) + 2 μ1 ( ( 7 − 4 ν1 ) k n + ( 7 − ν1 ) k t ) + ( 7 − 10 ν1 ) k n k t 
]

(2.38

It is noted that in the limit, if δ → 0, an equivalent in-

homogeneity with imperfect interface is obtained. Further-

more, 

a) if k n → ∞ and k t → ∞ 

2 μeq = 

2 μ1 

[ 1 + δ] 
, (2.39)

which reduces to 2 μeq = 2 μ1 , if δ = 0 . This represents the

perfect interface condition. 

b) if k n = k t = 0 2 μeq = 0 , and the inhomogeneity behaves

like a cavity, 

c) if k n → ∞ but k t is finite (if k t = 0 , it is called “free

sliding”, Hashin (2002a); Duan et al. (2007b) ) 

2 μeq = 

2 μ1 

5 [ 1 + δ] 

8 μ1 [ 7 + 5 ν1 ] + 5 [ 7 − 10 ν1 ] k t 

[ 2 μ1 ( 7 − 4 ν1 ) + ( 7 − 10 ν1 ) k t ] 
. 

(2.40)

Remark. It should be noted that the concept of equivalent

inhomogeneity presented here is quite different from the

idea employed by Duan et al. (2007a ) and Gu et al. (2014) .
In those papers the equivalent shear modulus μeq was de-

termined on the basis of Eshelby solution by comparing

the change in energy if the equivalent inhomogeneity is

inserted in the infinite medium under far-field load and

the change due to similar insertion of the original inho-

mogeneity together with the interface, ( Eshelby 1957 ). As a

result, μeq depends on the properties of that medium (ma-

trix material). This is nonphysical, and in sharp contrast to

the equivalent inhomogeneity approach advocated by, e.g.,

Hashin (2002a) , and is explicitly excluded in the approach

presented here. 

The equivalent inhomogeneities described above may

be used in conjunction with any method employed in eval-

uation of the effective properties of composites without in-

terphases. The method of choice in this work is the Method

of Conditional Moments (MCM) – a rigorous formal ap-

proach to analysis of random composites. The MCM is

based on statistical analysis where the random structure

of the material is entirely described by conditional prob-

abilities, which – in comparison with the data specifying

deterministic structures – is the only additional data. The

main features of the MCM and some basic results associ-

ated with standard composites (without interphases) will

be briefly outlined in the subsequent section. 

3. Effective properties of random composites 

3.1. The fundamentals of the method of conditional moments 

We examine a representative macro-volume V of a lin-

ear elastic composite consisting of a matrix with randomly

distributed particles. It is assumed that at each point of

macro-volume x the Hooke’s law is valid 

σ( x ) = C ( x ) : ε ( x ) , (3.1)

where σ( x ) and ɛ ( x ) are the stress and strain tensors, and

C ( x ) is the material stiffness tensor. Here it is assumed that

C ( x ) is statistically uniform random function of coordinates

with a finite scale of correlation, whose one-point density

distribution has the following form: 

f ( C ( x ) ) = 

2 ∑ 

k =1 

c k δ( C ( x ) − C k ) , (3.2)

where δ( •) denotes the Dirac delta function, c 1 , c 2 and C 1 ,

C 2 are volume fractions and stiffness tensors of the matrix

and of the particles, respectively. 

If the representative volume is under a uniform load,

the resulting stresses and strains form statistically uniform

random fields satisfying the property of ergodicity. This al-

lows us to replace the averaging over representative vol-

ume by averaging over an ensemble of realizations (e.g.,

Gray 2009 ; Gnedenko 1962 ). In this case, the following

relationship exists between macroscopic fields of stress σ̄
and strain ε̄ : 

σ̄ = C 

∗ : ε̄ , (3.3)

where C ∗ is the effective stiffness tensor, and the overbar

•̄ denotes statistical averaging. 
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Having averaged Eq. (3.1) we obtain 

σ̄ = 

2 ∑ 

k =1 

c k C k : ε̄ k , ε̄ = 

2 ∑ 

k =1 

c k ̄ε k , (3.4) 

where ε̄ k = 〈 ε ( x ) | ( x ) 
k 

〉 is the expectation value of the strain 

tensor at point x , provided that this point belong to the 

k th component. 

It is evident by comparison of Eqs. (3.3) and (3.4) that 

in order to determine the effective stiffness tensor C ∗ it is 

sufficient to find the relationship between the mean strain 

in the component ε̄ k (e.g., in the particles ε̄ 1 ) and the 

mean strain in the macroscopic volume ε̄ . In fact, if this 

relationship has the form: 

ε̄ 1 = A : ε̄ , (3.5) 

then, considering that ε̄ = c 1 ̄ε 1 + c 2 ̄ε 2 and using Eqs. (3.5) 

and (3.4) , the relationship for the effective stiffness tensor 

reads 

C 

∗ = C̄ + c 1 C 3 : 

[
A − 4 

I 

]
. (3.6) 

4 

I is the fourth-order unit tensor, C̄ is the expectation 

value of the stiffness tensor 

C̄ = 

2 ∑ 

k =1 

c k C k , C 3 = C 1 − C 2 . (3.7) 

To derive the formula for the rank four tensor A of 

Eq. (3.5) , associated with a random material the following 

process is used in the MCM. First, the equilibrium equa- 

tions for elastic medium and Eq. (3.1) lead to the follow- 

ing stochastic differential equation for the fluctuations u 

0 of 

the random field of displacements ( Khoroshun et al., 1993; 

Nazarenko et al. 2009 ): 

d i v 
(
C c : sym 

(∇ u 

0 ( x ) 
))

+ d i v 
(
C 

0 ( x ) : ε ( x ) 
)

= 0 , 

u 

0 ( x ) | ∞ 

= 0 , (3.8) 

where C 

0 ( x ) = C ( x ) − C c , u 

0 ( x ) = u ( x ) − ε̄ · x . Although 

the above equation is valid for any constant tensor C c , the 

accuracy of the MCM is enhanced if it is selected as follows 

( Khoroshun et al., 1993; Nazarenko et al. 2015 ): 

C c = 

{
C̄ , if C 1 ≤ C 2 (
C 

−1 
)−1 

, if C 1 ≥ C 2 

. (3.9) 

Using the Green tensor, the solution of Eq. (3.9) is writ- 

ten in form of an integral over the infinite region V (see 

Nazarenko et al. 2009, 2014 ) 

u 

0 ( x ) = 

∫ 
V y 

G ( x − y ) · di v 
(
C 

0 ( y ) : ε ( y ) −β
)

d V y , (3.10) 

where the Green tensor is the solution of the following 

system of differential equations: 

di v ( C c : ∇G ( x ) ) + δ( x ) 
2 

I = 0 , G ( x ) | ∞ 

= 0 . (3.11) 

Integration of Eq. (3.10) by parts and use of linear kine- 

matic relations, leads to a stochastic integral equation for 

the random strain field 

ε ( x ) = ε̄ + K ( x − y ) ∗
[
C 

0 ( y ) : ε ( y ) 
]
. (3.12) 
The above operator notation for K ( x − y ) has the fol- 

lowing interpretation 

K ( x − y ) ∗ ψ ( y ) 

= 

∫ 
V 

sym ( ∇ x ( ∇ x G ( x − y ) ) ) : 
(
ψ ( y ) −ψ̄ 

)
d V y , (3.13) 

where ε̄ and ψ̄ are mean (expectation) values of ɛ ( x ) and 

ψ( y ). 

Applying the technique of conditional averaging (see 

Khoroshun et al., 1993; Nazarenko et al. 2009 ) with re- 

spect to the multipoint conditional densities and limiting 

the process to a two-point approximation – which is tan- 

tamount to assuming identical strain distributions in all in- 

homogeneities the following linear algebraic equation, in- 

volving conditional one-point moments of the strain fields 

ε̄ ν , is obtained: 

ε̄ ν = ε̄ + 

2 ∑ 

k =1 

K 

νk : C 

0 
k : ε̄ k , k, ν ∈ { 1 , 2 } , (3.14) 

where 

K 

νk = K ( x − y ) ∗ p νk ( x − y ) . (3.15) 

The function p νk ( x − y ) denotes the probability that 

point x belongs to the k th component, provided point y 

belongs to the νth component. 

Clearly, Eq. (3.14) along with the previously used rela- 

tionship ε̄ = c 1 ̄ε 1 + c 2 ̄ε 2 , constitutes a system of two (ten- 

sorial) equations allowing to determine both ε̄ 1 and ε̄ 2 in 

terms of ε̄ . This defines tensor A of Eq. (3.5) and allows to 

evaluate the effective properties according to Eq. (3.6) . 

3.2. Closed-form formulas for effective properties of random 

composites with spherical particles and perfect interfaces 

In order to specify Eq. (3.14) one must determine 

the two-point conditional probabilities p νk ( x − y ) which 

characterize shape and arrangement of the inhomo- 

geneities. This allows evaluating the convolution K ( x − y ) ∗
p νk ( x − y ) of Eq. (3.15) following the general formula 

shown in Eq. (3.13) . 

Details of the evaluation of the effective stiffness tensor 

for composites with randomly distributed spherical parti- 

cles are presented by Khoroshun et al., 1993; Nazarenko 

et al., 2014, 2015 . Following the methodology described in 

those papers, the following expression for tensor A of Eq. 

(3.5) is obtained: 

A = 

4 

I + c 2 
[4 

I −L : C 

′ ]−1 
: L : C 3 , (3.16) 

Its use in Eq. (3.6) yields 

C 

∗ = C̄ + c 1 C 3 : 
[4 

I −L : C 

′ ]−1 
: [ c 2 L : C 3 ] , (3.17) 

where C̄ , C 

3 
are determined in Eq. (3.7) and 

C 

′ = c 1 C 2 + c 2 C 1 − C c . (3.18) 

Tensor L of Eq. (3.17) is an isotropic rank four tensor 

(the classical Hill tensor, see Mura 1987 ) 

L = 2 b 
4 

I + a 
2 

I ⊗
2 

I , (3.19) 



L. Nazarenko et al. / Mechanics of Materials 96 (2016) 39–52 47 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Dependence of normalized Young’s modulus E ∗/ E 2 on tangential 

and normal bond parameters q = 1 / ( R K t ) and p = 1 / ( R K n ) . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

with 

a = 

λc + μc 

15 μc [ λc + 2 μc ] 
, b = − 3 λc + 8 μc 

30 μc [ λc + 2 μc ] 
, (3.20)

and with λc , μc being the Lamé constants of the reference

medium defined according to Eq. (3.9) . 

In the spirit of the approach proposed here, the overall

properties of the composite with the spring-layer model of

interphases are obtained from Eqs. (3.17) –( 3.20 ), valid for

perfect interfaces, if the properties of the inhomogeneity

( C 1 ) are replaced with the properties of equivalent inho-

mogeneities ( C eq ) discussed in Sections 2.1 and 2.2 . The

effective bulk and shear moduli of the equivalent inhomo-

geneity are determined in Section 2.3 . This leads to the fol-

lowing result 

C 

∗ = 

˜ C̄ + c 1 ̃  C 3 : 
[4 

I −˜ L : ˜ C 

′ ]−1 
: 
[
c 2 ̃  L : ̃  C 3 

]
, (3.21)

where ˜ C̄ , ˜ C 3 , 
˜ L , and 

˜ C 

′ are determined in accordance with

Eqs (3.7) , ( 3.18 )–( 3.20 ) with C 

1 
replaced by the stiffness

tensor of the equivalent inhomogeneity C eq . As discussed

earlier, the fourth order isotropic tensor C eq is specified by

bulk K eq and shear μeq moduli of the equivalent inhomo-

geneity determined in Eqs. (2.15) and ( 2.40 ). 

The scalar expression for the effective bulk and shear

moduli of the composite can be extracted from a general

tensorial formula ( 3.21 ) (cf. Nazarenko et al. 2014, 2015 ):

K 

∗ = c 1 K eq + c 2 K 2 −
c 1 c 2 [ K eq − K 2 ] 

2 

c 1 K 2 + c 2 K eq + 4 / 3 ̃  μc 
, (3.22)

μ∗ = c 1 μeq + c 2 μ2 + 

4 c 1 c 2 ̃  b [ μeq − μ2 ] 
2 

1 − 4 ̃

 b [ c 2 μeq + c 1 μ2 − ˜ μc ] 
, (3.23)

where 

˜ b = −
3 

[
˜ K c + 2 ̃  μc 

]
10 ̃  μc [3 ̃

 K c + 4 ̃  μc ] 
, (3.24)

and 

˜ K c , ˜ μc in above equations are specified as follows: 

˜ K c = 

{ 

c 1 K eq + c 2 K 2 , if K eq ≤ K 2 [
c 1 ( K eq ) 

−1 + c 2 ( K 2 ) 
−1 

]−1 
, if K eq ≥ K 2 

, (3.25)

˜ μc = 

{ 

c 1 μeq + c 2 μ2 , if μeq ≤ μ2 [
c 1 ( μeq ) 

−1 + c 2 ( μ2 ) 
−1 

]−1 
, if μeq ≥ μ2 

. (3.25)

In the above formulas K 2 and μ2 are the bulk and shear

moduli of the matrix, whereas K eq and μeq are determined

in Eqs. (2.15) and ( 2.40 ). 

3.3. Numerical results and comparisons 

In order to illustrate the effect of imperfect interface

we consider an epoxy matrix with the properties E 2 =
3 . 45 GPa and ν2 = 0 . 35 , containing randomly distributed

glass spheres with E 1 = 72 . 4 GPa and ν1 = 0 . 2 , following

Hashin (1991 ). The volume fraction of particles is c 1 = 0 . 4 .

The value of the parameter δ = h/R was taken to be δ =
0 since the results obtained in this work are compared with

those obtained assuming that values of δ. 

As the first example the effect of degradation of inter-

face properties, from perfect interface to total disbonding,
on the effective properties of the entire composite is con-

sidered and compared with the results obtained by Hashin

(1991 ). In this example it is assumed that degradation of

the normal ( p ) and tangential ( q ) interactions between the

inclusion and the matrix is proportional ( p = q/ 5 ), which

is likely to be the most realistic scenario (although the co-

efficient of proportionality between p and q may be differ-

ent than 5). Here, p and q are bond parameters adopted

from Hashin (1991 ), where p = 1 / ( R K n ) , q = 1 / ( R K t ) and

K n and K t are previously introduced springs stiffness con-

stants in the normal and tangential directions, cf. Eqs. (2.1)

and ( 2.2 ). 

The variation of the normalized effective Young’s mod-

ulus E ∗/ E 2 with the shear bond parameter q, and propor-

tional variation of the normal parameters p = q/5, calcu-

lated by the MCM in combination with equivalent inho-

mogeneity approach – denoted by EI MCM – is shown in

Fig. 2 . In accordance to the remarks following Eq. (2.38) ,

the results for the increasingly small and large p and q cor-

respond to those calculated for particle with perfect inter-

face and for voids, respectively. For comparison, the nor-

malized Young’s modulus for the same material obtained

on the basis of the self-consistent scheme by Hashin (1991 )

is also shown in Fig. 2 . The results obtained by MCM with

equivalent inhomogeneity approach are clearly in good

agreement with numerical results by Hashin (1991 ). Dis-

crepancy is discernable for small values of the spring layer

parameters, but even then it is within just a few percent.

Moreover, in a particular case whereby the matrix is cho-

sen as a reference medium (EI MCM, C c = C 2 ), the results

obtained by MCM are virtually identical with the results

by Hashin, as shown in Fig. 2 , even though the choice

of the matrix as a reference medium is not optimal from

the point of view of MCM. However, inclusion of the re-

sults obtained for precisely that selection of the reference

medium in Figs 2 and 3 , provides an additional illustra-

tion of some connection between the MCM and the self-

consistent approach of Hashin (1991 ). 

It is remarkable that all results in Figs. 2 and 3 are

close to one another, in spite of rather fundamentals dif-

ferences between the methods involved. The MCM is more
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Fig. 3. Dependence of normalized shear modulus μ∗/ μ2 on tangential 

and normal bond parameters q = 1 / ( R K t ) and p = 1 / ( R K n ) . 
Fig. 4. Dependence of normalized bulk K ∗/ K 2 and shear μ∗/ μ2 moduli on 

tangential and normal bond parameters k t = R K t and k n = R K n if k n = k t . 
formal and mathematical, and starts with the exact model 

to be analyzed, but in the solution process limits the num- 

ber of conditional moments used in the analysis to two- 

point moments. The self-consistent method, on the other 

hand, is based on some intuitive arguments leading to an 

approximate model that needs to be analyzed. 

The tendency observed in Fig. 2 for Young’s modulus 

is also seen in Fig. 3 where variation of shear modulus 

is shown (the normal and tangential stiffness parameters 

vary proportionally and identically as in the case of Fig. 2 ). 

Good agreement between the results obtained by MCM in 

combination with equivalent inhomogeneity approach and 

the numerical results by Hashin (1991 ) is remarkable given 

the closed-form formulas derived in this work. The source 

of somewhat higher (but still surprisingly small) discrep- 

ancy for small values of those parameters is rather difficult 

to pinpoint, considering that both approaches are based on 

different set of approximations. 

As a second numerical example a matrix (with ν1 = 

0 . 45 ) containing randomly distributed rigid spherical par- 

ticles ( K 1 / K 2 = ∞ , μ1 / μ2 = ∞ ) is considered. The volume 

fraction of particles is c 1 = 0 . 45 . In this example the ef- 

fects of interface degradation is also investigated but, for 

the sake of comparison with the results reported in the 

literature, the results are presented slightly differently. This 

problem is analyzed by Sangani and Mo (1997) , who solved 

the governing differential equations of the problem using 

(truncated) series expansion. Accounting for the fact that 

the effect of weak interphase is most pronounced when 

the inhomogeneities are rigid, and considering that the ap- 

proach of Sangani and Mo is formally exact, comparison 

of the result obtained here with those of Sangani and Mo 

is more meaningful than the comparison presented in the 

previous example. 

Dependence of the effective normalized bulk and shear 

moduli on tangential and normal bond parameters are 

shown in Figs. 4 – 6 . In all cases, the effects of variation 

(degradation) of the interface properties (practically all the 

way up to total disbonding) on the effective properties 

of the entire composite are analyzed and presented along 

with those obtained by Sangani and Mo (1997) . 
Based on Fig. 4 it is concluded that the results ob- 

tained by MCM with equivalent inhomogeneity approach 

are in very good agreement with the numerical results 

by Sangani and Mo (1997) , if the degradation of inter- 

phase properties in normal and tangential directions is 

proportional. Particularly good agreement is observed if 

the spring layer is either very soft or very stiff. In the lim- 

its of those two cases the effects of interphase vanish and 

the notion of equivalent inhomogeneity yields precise val- 

ues of effective properties: cavity in the first case and the 

original inhomogeneity (with perfect interface) in the sec- 

ond (see comments following Eq. (2.38) ). Thus, such an 

excellent agreement of the results in those two limiting 

situations confirms the high accuracy of the MCM used 

here (even for quite high volume fraction of rigid inhomo- 

geneities), since the possible error associated with approx- 

imate definition of equivalent inhomogeneity is eliminated. 

This observation also indicates that the approximate inclu- 

sion of the interphase effects in the definition of equiva- 

lent inhomogeneity may be responsible for the error in the 

middle range of interphase parameters K n and K t . Other 

factors, alluded to at the end of this section, may also af- 

fect the discrepancy seen in Figs. 2 and 3. 

Similarly good agreement for the effective normalized 

bulk and shear moduli is observed for variation of the 

tangential bond parameter from 10 −2 to 10 if the normal 

bond parameter is equal to zero, Fig. 5 , and for variation 

of the normal bond parameter from 10 −2 to 10 if the tan- 

gential bond parameter is equal to zero, Fig. 6 . Quite sur- 

prisingly the bulk modulus in Fig. 6 , where k t = 0 , shows 

somewhat pronounced discrepancy, given its almost per- 

fect agreement in Fig. 5 , where k n = 0 . 

Some general comments appear to be relevant re- 

garding the comparison with the formally exact results 

of Sangani and Mo (1997) . The first one relates to the 

fact that the values they report are obtained using a 

displacement-based approach. As such, the approach pro- 

vides an upper bound of the bulk and shear moduli. With 

that in mind the fact that our results are generally below 

the values reported by Sangani and Mo is a good sign. 
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Table 1 

Comparison of the effective bulk and shear moduli obtained by EI MCM with experimental data. 

Hashin Monteiro Hashin Monteiro Hashin Monteiro EI MCM Discrepancy with Hashin Monteiro EI MCM Discrepancy with 

analysis analysis experiment experiment experiment experiment 

c 1 μi / μ2 ν i K ∗exp (Gpa) K ∗
anl 

(Gpa) 
K ∗exp −K ∗

anl 

K ∗exp 
μ∗

exp (Gpa) μ∗
anl 

(Gpa) 
μ∗

exp −μ∗
anl 

μ∗
exp 

0.15 0 .467 0 .316 24 .14 22 .51 6 .7 % 13 .35 13 .54 1% 

0.27 0 .475 0 .400 26 .81 24 .18 9 .8 % 14 .87 15 .21 2% 

0.40 0 .553 0 .313 27 .69 25 .23 8 .8 % 16 .91 17 .43 3% 

0.52 0 .612 0 .311 29 .96 26 .42 11 .2 % 19 .26 19 .89 3% 

Fig. 5. Dependence of normalized bulk K ∗/ K 2 and shear μ∗/ μ2 moduli on 

tangential bond parameter k t if k n = 0 . 

Fig. 6. Dependence of normalized bulk K ∗/ K 2 and shear μ∗/ μ2 moduli on 

normal bond parameter k n if k t = 0 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The second comment relates to the practical validity of

the results obtained by varying one of the parameters k t ,

k n while the other completely vanishes. In this work, the

analysis assuming the same variation of k t , k n was also
followed for the comparison’s sake. While such a choice

is an illustration of the versatility of the approach used

to solve the problem, its practical validity may be ques-

tioned. For example, assuming k t = 0 everywhere is un-

realistic because, under hydrostatic compression or under

shear, zones of normal compression must exist within the

interphase which, due to friction, would have to result in

some tangential interactions. For the same reasons the as-

sumption of k n = 0 is not realistic. Realization of that, in

conjunction with the first comment above, makes the com-

parison presented in Fig. 4 much more important in judg-

ing the quality of the results obtained herein. One can thus

conclude that those results are very good, indeed. 

Next, the results obtained by the equivalent inhomo-

geneity approach proposed herein in combination with

the method of conditional moments (EI MCM) are com-

pared with the experimental data presented by Hashin

and Monteiro (2002b) . The material used in that work is

the cement paste matrix with K 2 = 22 . 51 GPa and μ2 =
11 . 8 GPa containing randomly distributed sand particles

with K 1 = 44 GPa and μ1 = 37 GPa . There is an interphase

layer around sand with elastic constant μi and ν i pre-

sented in Table 1 , which Hashin and Monteiro (2002b)

obtained via inverse analysis for various volume fractions

c 1 of sand particles. The averaged diameter of sand parti-

cles is 850 μm while interphase thickness was estimated

at 25 μm. 

In the inverse analysis of Hashin and Monteiro (2002b)

the interphase properties μi and v i were obtained by ad-

justing their values to match the analytically derived over-

all properties of the material with those determined exper-

imentally. The analytical part was based on the generalized

self-consistent scheme employing the exact Lurie solution

for a sphere surrounded by the interphase layer of thick-

ness h . The resulting properties of the interphase are about

half of the properties of the cement paste. Thus, the spring

layer appears to be adequate to model the cement based

material considered by Hashin and Monteiro (2002b) pro-

vided the parameters ( K n , K t ) are evaluated according to

Eq. (2.2) , as suggested by Hashin (2002a) (cf. Benveniste

and Miloh, 2001 ). So determined spring layer stiffness pa-

rameters are used herein to obtain the effective properties

of the composite as specified in Eqs (2.15) , ( 2.40 ), ( 3.22 ),

( 3.23 ). 

It is seen in Table 1 that EI MCM predictions of the

effective shear modulus are in good overall agreement

with experimental values, even for high volume fraction

of particles c 1 . While it is hard to precisely pinpoint

why the bulk modulus exhibits higher discrepancy, in

general differences between predictions of the EI MCM
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approach and experiment were to be expected. One reason 

may be the transition from the continuous interphase 

model used by Hashin and Monteiro (2002b) to the spring 

layer model adopted here. In this context the formula of 

Hashin (2002a) reproduced in Eq. (2.2) may provide K n 

and K t with somewhat different level of accuracy, which 

may differently affect the bulk than the shear modulus. 

Another likely reason is the difference between the gener- 

alized self-consistent scheme used by Hashin and Monteiro 

(2002b) to identify the properties of the interphase and 

the MCM used here to evaluate the effective properties of 

the composite. Considering those differences it is believed 

that the results presented in Table 1 constitute an accept- 

able validation of the EI MCM approach advocated in this 

work. 

4. Conclusions and discussion 

The concept of equivalent inhomogeneity formulated 

differently in the past by several other authors, including 

recent energy-based approach by these authors ( Nazarenko 

et al. 2015 ) in the context of Gurtin and Murdoch (1975) 

interface conditions, has been reformulated herein to in- 

clude the spring layer model of interphases. This model is 

particularly suitable for thin compliant interphases where 

displacement jumps are significant and traction jumps are 

small. In the presented developments, the spring layer is 

characterized by a finite thickness. Evaluation of the prop- 

erties of the equivalent inhomogeneity consisting of an 

original inhomogeneity and interphase is based on the 

Lurie solution for spheres. 

The equivalent inhomogeneity approach developed here 

aims at expanding predictive capabilities of the existing 

methods used to determine effective properties of compos- 

ites with perfect interfaces (i.e. without interphases), with 

both deterministic and random microstructures. In particu- 

lar, it significantly expands the range of applicability of the 

method of conditional moments (MCM) used herein. MCM 

is a rigorous statistical homogenization method, but with- 

out the idea of equivalent inhomogeneity it has been ap- 

plicable only to materials with perfect interfaces, just like 

other statistical methods (cf. Torquato 2002 ). The combi- 

nation of equivalent inhomogeneity and MCM accommo- 

dates interphases and leads to closed-form expressions for 

the effective bulk and shear moduli of random composites 

with spherical particles. Both of those expressions exhibit 

good engineering accuracy. Thus, this work constitutes a 

step towards expanding the range of applicability of the 

methods originally conceived to analyze problems with- 

out interphases. In this work that was demonstrated in the 

context of MCM, but the notion of the equivalent inhomo- 

geneity presented here is just as easily applicable to other 

methods (e.g., self-consistent schemes, or even numerical 

methods). 

The principal goal in this work was development and 

validation of the notion of equivalent inhomogeneity for 

the spring layer model of interphase, that would be capa- 

ble to provide all material properties of the composite and 

lead to a closed-form solution with good engineering accu- 

racy. That has been (and could only be) achieved by com- 

parisons with the existing accurate analytic solutions and 
with the experimental data. To this end only spherical par- 

ticles are considered, since only such particles have been 

considered in the existing three-dimensional solutions (ex- 

isting two-dimensional analyses of circular fibers are anal- 

ogous to spheres in three dimensions) and in evaluation 

of the experimental data. For the same reason only three 

different com posite materials were analyzed. One of those 

materials was the epoxy matrix reinforced by spherical 

glass particles, analyzed by Hashin (1991 ) using the self- 

consistent scheme. The second material (matrix containing 

rigid particles) was the one investigated by Sangani and 

Mo (1997) , employing a “formally exact” solution of the 

governing differential equations approach via expansion of 

the unknown fields in a series of spherical harmonics. The 

third material consisted of cement paste matrix, spherical 

sand particles and an interphase; this material was evalu- 

ated experimentally and used in inverse analysis to deter- 

mine the properties of the interphase. 

The conclusion one can fairly draw from the numeri- 

cal evaluations is that, if the normal and tangential spring 

layer parameters vary proportionally, the results developed 

in this work are in remarkably good agreement with both 

those based on the self-consistent method and those based 

on formally exact solution of the governing differential 

equations. This fact validates the proposed approach and 

is particularly noteworthy considering that only the re- 

sults presented herein are given by closed-form expres- 

sions. This is very advantageous in the preliminary stage of 

analysis (or design) of composite materials and structures, 

when fast but sufficiently accurate estimates are very help- 

ful in the decision making process. 

It can also be observed that, if either normal or tan- 

gential component of the spring layer stiffness vanishes, 

the discrepancy between the estimates presented here and 

those available in the literature somewhat increases. While 

it has to be acknowledged that any set of data, including 

that with vanishing normal or tangential spring layer pa- 

rameters, can be legitimately used for evaluation of the so- 

lution method, one has to keep in mind that not all sets 

of data are justifiable on the physical ground, and some 

sets of data (particularly those approaching certain limits) 

may demand different solution methods than other sets. A 

more detailed discussion of that is presented at the end of 

Section 3 , which is shortly paraphrased here. If the nor- 

mal stiffness parameter of the spring layer vanishes, for 

example, the interaction between the matrix and the in- 

homogeneity should be modeled as a contact problem, as 

done by Achenbach and Zhu (1989) . None of the results 

presented in Fig. 5 includes contact conditions, and for 

that reason their value in analysis of materials whose in- 

terphases posses vanishing normal stiffness is not of any 

practical importance. On the other hand, the assumption 

that tangential stiffness parameter vanishes everywhere ir- 

respectively of the character of normal interaction is, for 

solids, in contradiction with the law of friction. 

One result obtained here, which is of particular value 

for the EI MCM approach advocated in this work, is ac- 

ceptable level of agreement with the experimental results 

obtained for a cement-based composite material with 

compliant interphases. Even though for this problem the 

bulk modulus obtained by the EI MCM method displays 
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somewhat higher discrepancy with the experiment than

does the shear modulus, the fact that the data used in

this work was obtained using an inverse analysis based

on quite different theoretical (and approximate) model

makes that level of discrepancy understandable and, thus,

acceptable. 

Extension of the notion of equivalent inhomogene-

ity including the spring layer interphase for other

particle shapes is conceptually possible. For example,

equivalent three-dimensional inhomogeneity for cylindri-

cal or spheroidal particles can be defined energetically, in

a manner akin to that adopted by Nazarenko et al. (2015) .

This will be undertaken in the future and it is likely to fur-

ther expand the practical utility of the equivalent inhomo-

geneity approach. 

In conclusion, even though additional evaluations and

comparisons would be definitely beneficial, the fact that

a good engineering-level agreement with the best exist-

ing results can be encapsulated in a simple closed-form

formula (not requiring hours of powerful computer time,

cf. Sangani and Mo (1997) ) is reassuring. Those existing

results used for validation of the presented approach are

numerical or experimental and, to the best knowledge of

the authors, the only ones currently available. The compar-

isons performed to validate the proposed approach indi-

cate that the combination of the equivalent inhomogeneity

introduced in this work and of the MCM used to evalu-

ate the effective properties of the investigated composites

is capable of providing simple and reliable results. It is be-

lieved, however, that the proposed definition of the equiv-

alent inhomogeneity will be equally effective when used

jointly with other methods of micromechanics. 
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Appendix A. Evaluation of constants A and B in Lurie 

solution 

The constants A and B are computed in terms of β from

the following conditions for r = R 

σrr | r= R = K n �u r , σrθ | r= R = K t �u θ . (A.1)

Considering Eqs. (2.21) and ( 2.34a ), the first of the

above conditions is 

2 μ1 [ 18 ν1 A + B ] 
[
3 cos 2 θ − 1 

]
−21 λ1 A [ 1 − 2 ν1 ] 

[
3 cos 2 θ − 1 

]
= K n [ β( R + h ) − ( 6 ν1 A + B ) R ] 

[
3 cos 2 θ − 1 

]
. (A.2)

For the above equation to be satisfied for every θ one

must have 

2 μ1 [ 18 ν1 A + B ] − 21 λ1 A [ 1 − 2 ν1 ] 

= K n [ β [ R + h ] − [ 6 ν1 A + B ] R ] . (A.3)
The second equation is obtained from Eq. (A.1) 2 (as well

as Eqs. (2.21) and ( 2.34a )) which yields 

−2 μ1 [ ( 7 + 2 ν1 ) A + B ] 

= K t [ −β [ R + h ] + [ ( 7 − 4 ν1 ) A + B ] R ] . (A.4)

The two equations for A and B are conveniently rewrit-

ten in the form 

[ 36 μ1 ν1 − 21 [ 1 − 2 ν1 ] λ1 + 6 ν1 k n ] A + [ 2 μ1 + k n ] B 

= k n [ 1 + δ] β, (A.5a)

[ 2 μ1 [ 7 + 2 ν1 ] + [ 7 − 4 ν1 ] k t ] A + [ 2 μ1 + k t ] B 

= k t [ 1 + δ] β, (A.5b)

where δ = h/R (cf. Eq. (2.13) ) and 

k n = R K n and k t = R K t . (A.6)

A more compact form of Eqs (A.5a,b) is: 

M 11 A + M 12 B = k n [ 1 + δ] β, 

M 21 A + M 22 B = k t [ 1 + δ] β, 
(A.7)

with 

M 11 = 36 μ1 ν1 − 21 · 2 μ1 ν1 + 6 ν1 k n = 6 ν1 [ k n − μ1 ] , 

M 12 = 2 μ1 + k n , 

M 21 = 2 μ1 [ 7 + 2 ν1 ] + [ 7 − 4 ν1 ] k t = 7 [ 2 μ1 + k t ] 

+ 4 ν1 [ μ1 − k t ] , 

M 22 = 2 μ1 + k t . (A.8)

Denoting 

M = det 

∣∣∣∣M 11 

M 21 

M 12 

M 22 

∣∣∣∣ = 6 ν1 [ k n − μ1 ] [ 2 μ1 + k t ] 

− [ 2 μ1 + k n ] [ 7 ( 2 μ1 + k t ) + 4 ν1 ( μ1 − k t ) k n ] 

= −[4 μ1 
2 [ 7 + 5 ν1 ] + 2 μ1 [ ( 7 − 4 ν1 ) k n + ( 7 − ν1 ) k t ] 

+ [ 7 − 10 ν1 ] k n k t ] (A.9)

the solution of Eqs. (A.7) is given by the formulas ⎧ ⎨ 

⎩ 

A = 

( 1 + δ) β

M 

[ M 22 k n − M 12 k t ] 

B = 

( 1 + δ) β

M 

[ M 11 k t − M 21 k n ] 

. (A.10)

In a somewhat expanded form this last result is repro-

duced in Eq. (2.25) . 
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