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Abstract: Wireless surface acoustic wave (SAW) sensors have some unique features that make them
promising for industrial metrology. Their decisive advantage lies in their purely passive operation
and the wireless readout capability allowing the installation also at particularly inaccessible locations.
Furthermore, they are small, low-cost and rugged components on highly stable substrate materials
and thus particularly suited for harsh environments. Nevertheless, a sensor itself does not carry
out any measurement but always requires a suitable excitation and interrogation circuit: a reader.
A variety of different architectures have been presented and investigated up to now. This review
paper gives a comprehensive survey of the present state of reader architectures such as time domain
sampling (TDS), frequency domain sampling (FDS) and hybrid concepts for both SAW resonators and
reflective SAW delay line sensors. Furthermore, critical performance parameters such as measurement
accuracy, dynamic range, update rate, and hardware costs of the state of the art in science and industry
are presented, compared and discussed.

Keywords: surface acoustic waves; transceiver architecture; temperature sensor; pressure sensor;
torque sensor; wireless sensor; frequency measurement

1. Introduction

The first ideas of using surface acoustic wave (SAW) devices as sensors have already been
developed around 40 years ago [1–4] with a continuous development since then for a wide range of
application fields. SAW sensors are proven to work in harsh environments [5] and are used for sensing
of temperature, pressure, torque, acceleration, humidity and more [6–20].

Compared to today’s booming and high-volume SAW and bulk acoustic wave (BAW) filters
with an estimated more than 40 billion radio frequency (RF) acoustic filter functions implemented
in mobile phones in 2015 [21], SAW-based wireless sensing is still a low-volume professional niche
application. However, this might change in the future: pushed by the fourth industrial revolution,
sensor technology for professional metrology applications plays an increasingly important role.
In particular, the interest in wireless solutions is growing, as a fixed wired connection cannot be
established in most use-cases. The use of slip rings and brushes is usually also undesirable because
they cause mechanical and electrical problems or, in the case of RF signal transmission, they are
difficult to impossible to implement. For this purpose, radio sensors with wireless interrogation must
be used. SAW sensors have some unique features that make them promising for such application
scenarios: their decisive advantage lies in their purely passive operation and the wireless readout
capability allowing the installation at particularly inaccessible locations. Furthermore, they are small,
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low-cost and rugged components on highly stable substrate materials and thus particularly suited
for harsh environments. Nevertheless, a sensor itself does not carry out any measurement but always
requires a suitable excitation and interrogation circuit: a reader. Despite the wide range of possible
applications in industrial and automotive sensing, the reader is still a bottleneck today, especially in
terms of cost, which prevents wireless SAW sensors from being employed on a larger scale.

This review paper provides a comprehensive overview of the current state of the art of wireless
SAW readers and discusses the advantages and disadvantages of currently used architectures. Section 2
will give an introduction to the fundamental concept of wireless SAW sensing with the two sensor
principles: reflective delay lines and resonant SAWs. Section 3 will categorize the SAW readers
architectures according to their sensor type and readout concept (time domain sampling, frequency
domain sampling and hybrid approaches). The individual architectures are then introduced and
discussed in detail in Sections 4 and 5. Finally, Section 6 is dedicated to an overall comparison and
discussion of all reader architectures and Section 7 concludes this paper.

2. Fundamental Concept of Passive SAW Sensors

The fundamental concept of passive SAW sensors is based on one or two interdigital transducers
(IDTs) [22] arranged on the surface of a piezoelectric substrate. With the IDT being connected to
an antenna, it transforms the received electromagnetic signal into a surface acoustic wave and vice
versa [13]. There are two different principles of SAW structures used for sensing: the first type is based
on SAW resonators, whose resonance frequency is influenced by the external measurand. One-port
resonators are directly affected by, e.g., temperature, torque while two-port devices are typically
electrically loaded by a conventional sensor [23,24]. It should be noted, however, that these impedance
loaded sensors only produce minimal effects that are difficult for the reader to detect. Furthermore,
the passive load is probed in the RF range instead of with direct current (DC) and so the characteristic
of the SAW sensor can be significantly different from the expected DC characteristic. The second type
are delay line structures where the measurand either affects the velocity vsaw of the surface wave or the
geometrical length L of the propagation path both yielding to a different round trip delay τx = L/vsaw

of the readout signals. Due to the (relatively) low propagation velocity of the SAW with, depending on
the used substrate up to 105 times smaller than electromagnetic waves (in air), relatively long delays
can be realized at compact size [14]. Reflective delay SAWs can also be impedance loaded with external
sensors with the same challenges as the SAW resonators. Figure 1 shows the schematic layout of SAW
one-port and two-port resonators as well as reflective delay line sensors.
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Figure 1. Schematic layout of passive surface acoustic wave (SAW) devices for sensor applications.

SAW reflective delay lines were originally proposed in 1972 [25] for wireless identification systems
(“ID-Tags”) and are still used today in applications where CMOS-based radio frequency identification
(RFID) systems reach their limits [26,27]. It took a while until reflective delay line SAWs were first used
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as wireless temperature sensors in 1987 [28]. An important advantage is that they can combine both
identification and wireless sensing [29]. Modern systems even provide multiple access capabilities
by using time division multiple access (TDMA) [30], code division multiple access (CDMA) [31–33]
or orthogonal frequency coding (OFC) [34]. One-port reflective delay line sensors use a single IDT
together with several partial reflectors, which leads to several delayed responses of the interrogation
signal. Two-port or three-port reflective delay lines use multiple IDTs of which one or two are
impedance-loaded by an external sensor [35,36]. A relative evaluation of these response signals with
respect to each other results in the sensor value.

Resonant SAW sensors work slightly differently because the sensor value is represented as a
frequency. A one-port resonant SAW sensor has a single IDT in the center between two reflector
gratings that are forming a resonant cavity for the surface wave with a resonance frequency f0 [7].
Hence, the pitch between the fingers of the reflecting grating define the resonance frequency of the SAW.
When an external influence (like force and/or temperature) affects the sensor, its resonance frequency
changes. A two-port resonator typically connects one IDT to the antenna, for RF signal reception
and transmission, and the second IDT to an external sensor that loads the resonator, depending on
the external measurand. SAW resonators have the advantage that they possess a lower insertion
loss compared to reflective delay lines [37]. Furthermore, their high quality factor (QSAW) potentially
ensures a higher resolution [38,39]. However, resonant sensors can only employ frequency division
multiple access (FDMA) and not TDMA, CDMA or OFC like reflective delay lines.

In almost all of today’s systems, not only is a single SAW used, but several in a certain
configuration to increase the robustness as well as the sensitivity of the system. The idea to use
two resonators with a differential evaluation was first introduced in [40] and further discussed in [41].
This has the significant advantage that disturbing influences that affect both SAWs to the same extent,
e.g., impedance changes in the radio channel, are canceled out. For highly accurate strain, torque
and/or pressure measurements, typically even three or more resonators are used: two for a differential
sensing of the measurand and a third one, mechanically unloaded, for temperature compensation [42].

3. SAW Reader Architecture Classification

As general partitioning, all architectures are currently divided into two categories: time domain
sampling (TDS), also known as wideband or full band sampling, and frequency domain sampling
(FDS), also known as narrowband or partial band sampling as proposed by Pohl in 2000 [23].
Herewith, we suggest a further subdivision into FDS/TDS hybrid concepts to consider recent
developments such as switched frequency stepped continuous wave (S-FSCW) and pulsed frequency
modulation (FM)/amplitude modulation (AM) tracking loops. As will be shown in detail later on,
both architectures have influences from TDS as well as FDS with partly mixed approaches in the
concept, front end and signal processing. Figure 2 provides an overview of the different sensor types,
reader architectures and the proposed classification in different reader categories. Both SAW sensor
types (reflective delay line and resonant SAWs) can be interrogated either way (TDS/FDS), but not
necessarily with each reader architecture. As each sensor type and reader architecture has its distinctive
advantages and disadvantages, it is important to select the right concept depending on the application.

For TDS, the read-out signal spans the whole system bandwidth B at once. Therefore, a fast
sampling has to be performed in the reader but also high measurement update rates can be achieved.
Reflective delay line SAW sensors can be interrogated based on the pulse radar principle (Section 5.1).
For resonant SAW sensors, there are two current architectures that directly determine the SAW’s
resonance frequency from the response signal after a previous “charging”: digital frequency estimation
and instantaneous frequency measurement, which will be presented in Sections 5.2.1 and 5.2.2,
respectively. The hybrid concept of FM/AM tracking loops (Section 5.2.3) also uses a pulsed excitation
but requires, depending on the tracking strategy, at least two excitations at different and well-known
frequencies per sensor value. Since the signal processing is clearly different from FDS, it is therefore
classified as a TDS hybrid.
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Figure 2. Sensor and current reader architectures with their classification for wireless SAW instrumentation.

With FDS, the sensor’s frequency band is sampled in several steps. Thus, the baseband bandwidth
can be rather low, resulting in a simpler and cheaper hardware design but also significantly longer
interrogation times than with TDS. Using a frequency stepped continuous wave (FSCW) interrogation
signal, the FDS technique is comparable to a one-port S11 (monostatic) or two-port S21 (bistatic)
measurement on a vector network analyzer. When a linear frequency modulated continuous wave
(FMCW) interrogation signal is used, the measurement is similar to common FMCW radar systems.
Both excitation signals can be used for resonant as well as reflective delay line SAWs (Section 4.1).
The hybrid concept S-FSCW will be shown in Section 4.2. It is a special form of FSCW and uses a
pulsed interrogation with time-gating of the received signal. Since the signal processing is exactly the
same as with FDS, it is classified as FDS hybrid.

4. Frequency Domain Sampling and FDS Hybrid Concepts

With FDS, the sensor’s frequency band is sampled in several steps and the sensor value is
determined from the amplitude and phase/frequency differences between the transmitted and received
signals. In contrast to pulse-based readout methods, this has the advantage of a relatively simple
front-end structure, lower peak transmission power and reduced demands on the sampling rate.
However, the maximum achievable sampling rate and, for most architectures, also the achievable
dynamic range is considerably limited. The FDS technique can be used for both reflective delay lines
as well as resonant SAW sensors; however, different signal processing steps are required depending
on the sensor type. Furthermore, there are two possible interrogation signals: frequency modulated
continuous wave (FMCW) where a linear frequency-modulated transmit signal is used and FSCW
where discrete frequencies are measured one after the other [43]. Both excitation signals, the underlying
signal model and the sensor-specific signal processing steps will be presented and compared in
Section 4.1. S-FSCW is a special form of FSCW for reflective delay lines only, where a time-gating of
both the transmit (TX) and receive (RX) signals is used (Section 4.2).

4.1. Frequency Domain Sampling with FSCW/FSCW Interrogation

4.1.1. Basic Operation Priciple

Frequency domain sampling with FMCW or FSCW interrogation is ultimately a distance
measurement with a radar system that evaluates a single target (resonant SAW) or multi-target
(reflective delay line SAW) scenario. The basic hardware structure, shown in Figure 3, looks accordingly
similar to a continuous wave (CW) radar front end.
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Figure 3. Block diagram of a monostatic reader concept for frequency domain sampling with frequency
modulated continuous wave (FMCW) or frequency stepped continuous wave (FSCW) interrogation.

An RF frequency synthesizer generates the readout signal sT(t). For FMCW, this is a sinusoidal
chirp, starting at fst, with a linear increasing frequency:

f (t) = fst + kt. (1)

The chirp rate k = B/T of the frequency sweep is defined by the effective bandwidth B and the
sweep duration T. The transmitted signal then takes the form of [43]:

sT(t) = At cos
(

2π

(
fst +

k
2

t
)

t + ϕ0

)
(2)

with an amplitude At and an arbitrary initial phase ϕ0. FSCW interrogation also uses a frequency
ramp but with discrete increased steps f [n] with (n = 0, 1, ..., N-1) rather than continuously:

f [n] = fst +
B
N

n. (3)

This way the transmitted signal takes the form [44]:

sT(t, n) = At cos(2π f [n]t + ϕ0). (4)

The step duration Tstep of each step n must be long enough to ensure that both amplitude and
phase of the signal reflected from the SAW are fully settled (also in the acoustic). Accordingly, the round
trip delay time (RTDT) τ = 2d/c must be significantly shorter than Tstep.

Depending on the applications specific requirements, e.g., accuracy, measurement speed and
cost, frequency synthesis can be achieved by a simple voltage-controlled oscillator (VCO), a stabilized
phase locked loop (PLL), a direct digital synthesis (DDS) or a combination of those. Since the linearity
of the (continuous or stepped) frequency ramp is of crucial importance for the later measurement
accuracy [45], a lot of research has been carried out to generate highly linear ramps [44,46–48].

The transmit signal is typically amplified by an optional power amplifier (PA) before it is fed to
the antenna via a 90◦ hybrid coupler and bandpass (BP) filter. Instead of the 90◦ hybrid, other concepts
to separate the TX and RX signals, such as a directional coupler, circulator or bi-static approach, can be
used too [49]. The RF signal is received by the antenna at the SAW, converted into an acoustic surface
wave by the IDT and reflected back in accordance with the characteristics of the SAW. The acoustic wave
at the IDT is then converted again into an electromagnetic wave and scattered back to the reader. There,
it is received, amplified with an (optional) low noise amplifier (LNA) and finally down-converted with
an IQ mixer that gets a part of the transmit signal as local oscillator (LO) signal. The baseband-signal is
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then low-pass filtered (LPF), amplified and finally digitized, typically with a micro-controller or digital
signal processor (DSP). From the measured amplitudes and phase/frequency differences, it is then
possible to calculate the properties of the sensors.

4.1.2. Signal Model

It has been shown that it is possible to derive a valid signal model that describes the digitized
baseband signal x[n], for both excitation signals as well as sensor types, by [43]:

x[n] =
p

∑
i=1

Ai cos(2πψin + ϕi + ϕre f ,i) + v[n] (5)

with
ψi = kTsτi =

B
N

τi, (6)

where Ai ψi and ϕi represent the amplitude, normalized intermediate frequency (IF) and phase offset
corresponding to the ith target. ϕre f ,i refers to an additional phase offset depending on the targets
reflection properties and v[n] models additive white Gaussian noise, with zero mean and variance
σ2 [43]. The symbol n is the sample index with N total samples acquired by the analog-to-digital
converter (ADC). For reflective delay lines, p equals the number of reflectors in the SAW sensors,
whereas, for resonators, p = 1. For frequency evaluation, the FSCW and FSCW signal models are
equivalent, just for the phase evaluation, there is a minor difference [50]. For an FMCW interrogation,
the phase offset ϕi is calculated with:

ϕi,FMCW = 2π fstτi − πkτ2
i , (7)

whereas, for FSCW, it is:
ϕi,FSCW = 2π fstτi. (8)

In addition, if, according to the signal model, the received signals contain the same information for
FSCW and FMCW excitation, the representation is somewhat different: in the case of FSCW excitation,
the received signal can be illustrated as discrete samples (I[ f ], Q[ f ]) in the spectrum. With FMCW
excitation, on the other hand, there is a time-sampled signal (I[t], Q[t]): the transmitted frequency
chirp, folded with the impulse response of the sensor, and mixed down with itself.

4.1.3. Signal Processing for Reflective Delay Line Sensors

In the case of reflective delay line sensors, the digitized baseband signal x[n] consists of a
superimposition of the response signals of each individual reflector. The aim of the signal is now to
determine the underlying impulse response of the sensor and thus the temporal distance between the
individual reflectors. A flow chart of the typical signal processing steps is depicted in Figure 4.
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Figure 4. Signal processing flow chart for frequency domain sampling with reflective delay line SAW sensors.
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After a suitable windowing and zero-padding the baseband data I[ f ], Q[ f ] measured with FSCW
is transformed into the time domain by inverse fast Fourier transformation (IFFT). With FMCW
excitation, the sampled baseband signal I[t], Q[t] is firstly mapped with ∆t -> ∆f using the chirp rate k
and the ADC sampling rate and then further processing runs in the same way. At first glance, this
may look different from the usual FMCW radar signal processing but is effectively the same: the fast
Fourier transform (FFT) could also be calculated first and then a mapping from ∆ f to ∆t could be
performed since the FFT and IFFT are mathematically identical except for a normalization and the sign.
In the time-domain, the coarse pulse delay time is then calculated via a parabolic approximation of the
amplitude response [51]. In coherent systems, the time difference can then be further determined with
much higher accuracy using a subsequent phase evaluation [23]:

ϕ[t] = arctan
(

Q[t])
I[t])

)
. (9)

With today’s systems, this yields accuracies of up to 1500 times higher than only amplitude
evaluation [52]. However, ambiguities occur when the phase shift exceeds 360◦ [53]. This is typically
circumvented by placing multiple reflectors at known points and by evaluating all their phase
differences to resolve the ambiguities [54]. The shown approach (Figure 4) is the simplest way
to extract RTDT information from the measured data. Much more detailed work has been done,
e.g., on optimizing window functions [55], taking material properties into account [56] or using
model-based evaluation [57,58] to increase the accuracy.

4.1.4. Signal Processing for Resonant SAW Sensors

The aim of signal processing for resonant SAW sensors is to determine its resonance frequency f0.
A flow chart of two possible approaches is depicted in Figure 5.
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Figure 5. Signal processing flow chart for frequency domain sampling with resonant SAW sensors.
(a) direct calculation of the resonance frequency from the sampled frequency points; (b) calculation
of the resonance frequency using additional software time-gating to mask static reflections of the
environment as well as mismatches and crosstalk within the front end.

In the simplest case, the resonant frequency can be directly obtained from the magnitude of
sampled frequency points, if necessary with a parabolic approximation to increase the resolution,
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as shown in Figure 5a. The algorithm searches for the lowest received amplitude, as the SAW has the
best matching there and reflects the least of the excitation signal. This works well as long as the SAW is
close enough to the reader and as long as there are only few static reflections in the environment and low
mismatches and crosstalk in the front end. If the path attenuation or non-idealities increase, it becomes
more and more difficult to detect the SAW in the received signal. An identified DC offset could be
subtracted from all measured values, but this is not ideal since it is actually frequency-dependent,
which is not taken into account in this algorithm. The second approach, shown in Figure 5b, uses a
software time-gating to suppress the frequency-dependent but time static parasitic influences of the
environment and frontend and can thus increase the sensitivity. To do so, the signal is transferred
to the time domain via IFFT after an appropriate zero-padding to increase the resolution. There,
all static influences are cut out by a time-gating. Since the SAW has a long response time due to its
high quality factor, its signal is only minimally reduced in amplitude by this [59]. Then, the signal is
transferred back into the frequency domain by calculating the FFT. The highest value in magnitude
now corresponds to the resonance frequency of the SAW.

4.2. Frequency Domain Sampling with S-FSCW Interrogation

A major disadvantage of the FSCW/FMCW architectures presented so far is that they transmit
and receive simultaneously and are thus considerably limited in the dynamic range. To avoid this,
an Austrian research group presented a hybrid S-FSCW reader concept for reflective delay line SAW,
firstly in 2004 [60]. The technique is a special form of FSCW interrogation but uses at least two additional
high-speed RF switches (SW1, SW2) with high isolation to realize a hardware time-gating on both TX
and RX signals. This way interfering reflections of the environment and mismatch in the front end
can be suppressed so that a further amplification of the received signal, that would have previously
saturated the LNA, is now possible [60]. This can be done because the response of a reflective delay line
SAW has usually a delay of several 100 ns due to the slow propagation velocity of the surface wave on
the piezoelectric substrate. A block diagram of the reader architecture is shown in Figure 6.
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Figure 6. Block diagram of a monostatic reader concept using switched frequency stepped continuous
wave interrogation for reflective delay line SAWs.

During the excitation phase (1. TX), SW1 is closed and SW2 is in TX position. The receiver
is thus isolated from the high-power transmission signal. After the system and the acoustics have
been completely settled, the TX signal is switched off first (SW1 open). Then, a short wait time is
introduced (2. twait) in which the strong reflections of the immediate environment decay before, in the
third step (3. RX), SW2 is switched to RX to receive the sensor response. In a further enhancement,
the coupler is also replaced by an RF switch, toggling between the mixer LO port and the reader
transmit path in order to fully use the synthesizer’s source power (so-called “double-switched FSCW”
architecture [61]). The concept increases the signal to noise ratio (SNR) of the received signal due to
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the higher amplification of the RF signal and better utilization of the ADCs dynamic range. However,
the maximum measurement time is then limited to tm = 2τR1 − twait, with τR1 being the RTDT of the
first reflector inside the SAW and thus an accordingly high enough base bandwidth must be used.
The reader concept was also presented with four parallel receivers as multiple input multiple output
(MIMO) system [62,63]. With the digital beamforming, it is then possible to realize an angle estimation
and to separate several sensors at the same distance but with different angles.

S-FSCW can also be used for resonant SAW sensors. Instead of the IQ-mixer, a simple power
detector is used for the received signal or alternatively it is mixed down with itself to determine
the magnitude of received power. The excitation is then pulsed as with TDS systems (Section 5.2),
but the signal processing is identical to an FSCW interrogation. Since the static reflections are already
eliminated due to the hardware time-gating of the received signal, the resonant frequency can be
determined directly as shown in Figure 5a.

4.3. State of the Art and Discussion for Frequency Domain Sampling and FDS Hybrids

Although all three architectures are based on the same concept of frequency domain sampling,
each has its specific advantages and disadvantages in terms of dynamic range, update rate,
measurement accuracy, and system costs. FMCW and FSCW are somewhat limited in their dynamic
range as they have to transmit and receive simultaneously. S-FSCW can mitigate this disadvantage,
by using a front end architecture similar to TDS, but at the expense of a mandatory higher baseband
bandwidth. With FSCW and FMCW, the baseband bandwidth could be theoretically chosen as
arbitrarily narrow to increase the measurement precision. In practice, however, this is not feasible
because a single measurement would then take an extremely long time and no sufficiently high
update rates could be achieved. Generally, (S-)FSCW readers are slower than FMCW readers because
many individual frequency points have to be measured one after the other before a sensor value
can be calculated. With FMCW, one frequency chip is sufficient to determine the sensor value.
To do this, however, a frequency synthesizer is required that generates linear continuous frequency
ramps. The reader costs then depend strongly on the ramp duration and required ramp linearity.
Relatively cheap synthesizers can be used, which consequently only provide a limited update rate
and measurement accuracy, or extremely fast chirps can be generated, e.g., via DDS and with a digital
pre-distortion for maximum linearity [64]. This, however, requires significantly higher hardware effort.
The stepped frequency ramp at FSCW is slower but has the advantage that it can be generated more
cost-efficiently. The S-FSCW architecture is a little more costly due to the additional switches and
higher baseband bandwidth but is still less complex than a typical FMCW implementation.

A direct comparison of the “real world performance” of different readers is difficult for various
reasons: first of all, the quality of the measurement results does not only depend on the reader itself
but is also strongly affected by the sensor properties (such as quality factor, matching, insertion loss,
parasitic modes, hysteresis, sensitivity as well as cross-sensitives and others). Furthermore, depending
on the measurement application, assembly and connection technology is still decisive. Last but not
least, influences from the environment, such as multiple reflections, or the interface, when using, e.g.,
a rotational coupler, make a fair comparison even more difficult. Nevertheless, the realized FDS SAW
reader systems presented so far [49,61–70] show exactly the previously discussed architecture-specific
advantages and limitations.

A detailed comparison of a FSCW, S-FSCW and FMCW reader in the same environment and
with the same reflective delay line SAW sensors in the 2.4 GHz industrial, scientific and medical
(ISM) frequency band is given in [64]. The FSCW reader generated a stepped frequency ramp with
a PLL-based frequency synthesizer and measures about 600 individual frequency points in the ISM
frequency band. This requires a total of 125 ms, allowing a maximum of only eight measurements
per second. The S-FSCW approach is a little faster here, since the measurement time per frequency
point is limited by the architecture. A total of 75 ms is required to cover the ISM band so that thirteen
measurements per second are possible. The FMCW reader is equipped with a fast DDS frequency
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synthesis that generates a chirp, covering the whole 2.4 GHz frequency band, in only 100 µs. This allows
very high measurement rates to be achieved, but at significantly higher hardware costs: in addition to
the DDS-based frequency synthesis, a 10 MSa/s ADC with 16-bit resolution is used for data acquisition
and a fast DSP (TI TMS320C6713) is required to process them [67]. In a single shot measurement,
the precision of the phase measurement was almost equal for the FSCW and S-FSCW reader and
approximately five times higher for the FMCW reader [64]. However, if equal measurement times
are considered, so that each reader can use different numbers of averaging, the results changed: the
precision of the S-FSCW architecture was reported slightly lower than with FSCW and also the FMCW
reader could improve with the standard deviation of the precision being only twice as high compared
to the S-FSCW [64] reader.

5. Time Domain Sampling and TDS Hybrid Concepts

With TDS, the sensor’s whole bandwidth is covered at once. Therefore, compared to FDS, a faster
sampling has to be performed in the reader but also higher measurement update rates can be achieved.
Furthermore, due to the time multiplexing between TX and RX, it is possible to realize systems with a
high dynamic range.

5.1. Time Domain Sampling for Reflective Delay Line Sensors: Pulse Radar Interrogation

The first reader generation for reflective delay line SAWs was based on the pulse radar principle.
A schematic drawing of the readout process is shown in Figure 7. The concept is quite simple, but the
challenge lies in the implementation of the required broadband receiver.

reflective 
delay line

SAW

pulse radar based 
reflective delay line 

SAW reader

1. interrogation 
pulse

2. response:
delayed pulse train

Figure 7. Schematic drawing of a reflective delay line SAW interrogation with a pulse radar based
SAW reader.

A fixed frequency transmitter with fast RF switches generates a short RF burst, usually only a
few tens of nanoseconds [23,29], which is transmitted to the sensor. There, it is (partially) reflected
by the individual reflectors and leads to a train of delayed non-overlapping pulses as response
signal. These are down-converted to zero-IF, either with a simple power detector that can only
evaluate the magnitude, or with an IQ mixer for additional phase evaluation. The latter is more
complex, since a coherent receiver is required, but it allows significant higher measurement resolution.
The major advantage of this architecture is that highly dynamic measurements are possible due
to the short interrogation times [71]. However, the mandatory high bandwidth is also its huge
disadvantage: the architecture is too costly and complex due to the necessary fast sampling and
switching circuitry [72] and the required broadband excitation is not always compatible with the
strict ISM band limits, especially not in the limited 868 MHz frequency band. Some prototypes have
been built and evaluated [26,29,59,73–76]; however, this principle is only used in absolute exceptions
when the very highest sampling rates are required for reflective delay line SAWs. A measurement
update rate up to 250 kSa/s, which was only limited by the acoustic sensor design but not by the
detection bandwidth, could be demonstrated in [76], but with a high hardware effort using 40 ns
transmit pulses and a real-time field-programmable gate array (FPGA) signal processing. Almost all of
today’s readers for reflective delay line sensors use one of the FDS or hybrid architectures, shown in
Section 4, which are easier and more economical to implement. However, this could change in the
future when the progressive integration of RF chips, software-defined radio solutions and fast ADCs
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offer more economical implementation options. A further interesting approach to reduce the currently
high demands on the ADC is stroboscopic sampling [77,78], where the impulse response of the SAW
is scanned by several excitations. This results in a higher measurement time per SAW and increased
SNR because only a part of the received energy is used per measurement. However, due to the shifted
sampling over several response signals, a considerably cheaper ADC can be used.

5.2. Time Domain Sampling for Resonant SAW Sensors

Compared to reflective delay line SAWs, resonators have a lower insertion loss, higher quality
factor and correspondingly a longer response time and require a lower bandwidth for a pulsed
interrogation [38]. Therefore, time domain sampling is much more interesting for this type of sensor,
especially for applications such as torque measurements on rotating shafts [79] which, in contrast
to temperature measurements, require highly dynamic readers. A schematic drawing of a TDS
interrogation process of a resonant SAW is shown in Figure 8.

2. SAW
response

at f0

1. reader
excitation

close to f0

resonant
SAW

TDS 
resonant 

SAW reader

Figure 8. Block diagram of the reader concept for time domain sampling with digital frequency estimation.

In the first step, the resonator is “charged” by the reader with a CW excitation signal, mostly,
but not always, as close as possible to the resonance frequency f0 of the resonator. The excitation signal
is received by the antenna of the SAW and the IDT connected to it converts part of the electromagnetic
energy into mechanical vibration energy in the form of standing surface acoustic waves. Due to the
time-gated excitation signal, a sine multiplied by a rectangle in the time domain results in a sinc in
the frequency domain, an excitation close to the main resonance also has spectral components at f0.
After the excitation signal is quickly switched off, the IDT converts part of the mechanical energy back
into an electromagnetic signal. Since the SAW is a purely passive linear device, the returned signal
spectrum is the product of the emitted pulse spectrum and the SAW transfer function resulting in the
maximum spectral component at f0. This signal, which decays exponentially in amplitude, is then
transmitted by the antenna, received by the reader and processed. The time required for charging
(or discharging) depends on the quality factor of the loaded resonator QSAW and its frequency f0,
which determine the time constant τSAW :

τSAW =
QSAW
π · f0

. (10)

When the excitation signal is switched off at t = 0, the amplitude of the response signal of the
SAW can then be calculated:

A(t) = Amax · e−t/τSAW , (11)

where Amax is the maximum amplitude of the response signal, depending on the absorbed energy
during the previous excitation step. The absorbed energy is further dependent on the received power,
excitation time as well as mismatches and internal losses of the SAW. Commonly used excitation times
for TDS sampling SAW readers are between 3τSAW to 5τSAW to enable charging of the SAW between
95% to 99.3% of its asymptotic value. For resonators produced with current processes, this means an
excitation time of between just a few µs (resonator at 2.4 GHz with QSAW = 2300) up to 50 µs (resonator
at 433 MHz with a qualify factor of 13.300). The measurement time of the reader then depends on the
dynamic range of the receiver and is usually of a similar duration.
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Several different reader architectures for TDS of resonant SAW sensors have been developed
up to now to evaluate the SAW’s response signal. Pohl et al. showed a relatively cheap reader
design based on the use of a gated PLL in the transceiver in 1998 [80]. The sensor was interrogated
with a pulsed excitation to stabilize the PLL regularly with its time-gated response signal. Thus,
a frequency counter with a long integration time could still be used to determine the resonance
frequency. However, the concept has one serious disadvantage: it requires one PLL for each sensor to be
read. Modern force/torque measurement systems typically use at least three resonators [42], sometimes
even five [81], so the hardware effort would increase significantly with this architecture. Today,
three TDS architectures for resonant SAW sensors are still active in development. Digital frequency
estimation (DFE), which will be presented in Section 5.2.1, instantaneous frequency measurement
(IFM) (Section 5.2.2) and the TDS hybrid with pulsed FM/AM tracking loops (Section 5.2.3).

5.2.1. Digital Frequency Estimation (DFE)

The DFE reader architecture is based on the idea of algorithmically determining the frequency of
the sensor’s down-converted and digitized response signal. A block diagram of the reader concept is
depicted in Figure 9.

RF frequency 
synthesizer TX

optional 
PA

BP
filter

 DSP /
FPGA

A
D
C

BPF 

I       Q

optional 
LNA

IQ
mixer

RX / TX 
Switch

high speed
 sampling

S
A
W2. SAW

response

1. reader
excitation

resonant
RF frequency 

synthesizer RX

Figure 9. Block diagram of the reader concept for time domain sampling with digital frequency estimation.

The TX RF frequency synthesizer, which can be implemented as a simple PLL, generates the
readout signal: a CW excitation pulse that should be as close as possible to the resonance frequency
f0 of the sensor to be measured in order to transfer as much energy as possible. Depending on the
application, the excitation signal can be amplified via an optional PA and is then transmitted via the
antenna after passing an RX/TX switch. When the resonator has settled or a sufficiently long time
(several τSAW), the reader switches quickly from transmitting to receiving. The exponentially decaying
received signal is amplified via an LNA and then down-converted to an IF with the RX synthesizer
as LO. First, DFE designs used a two-stage heterodyne receiver [37], but, with today’s high quality
integrated IQ mixers, a single stage is sufficient. In principle, the received signal could also be mixed
down to (quasi) zero-IF with a part of the transmitted signal. This would eliminate the required second
synthesizer; however, utilizing the whole dynamic range of the ADCs would be more difficult and DC
offsets could limit the sensitivity of the receiver. For these reasons, IF frequencies between 700 kHz
and 6 MHz are used in previous demonstrators [39,82–84].

The baseband signal is further amplified, band-pass or low-pass filtered and finally digitized by
an ADC. Since the response signal is only a few microseconds long, depending on the frequency and
quality factor of the interrogated SAW, a fast ADC is required to acquire sufficient samples for the later
frequency estimation. For free space applications, a time-gating is usually applied to suppress echoes
from the environment [59]. In general, the resonance frequency of the sensor can be determined from a
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single response signal. However, if no (such) high measurement update rate is required, a coherent
averaging of several received signals is often carried out at this point to enhance the measurement
precision [85]. When the measurement signal is superimposed with additive white Gaussian noise,
the SNR of the result can be improved by

√
Na when Na signals are coherently accumulated. Then,

the frequency of the digitized signal is evaluated, either by discrete Fourier transform and with
zero-padding and/or parabolic interpolation [84,86] or by other frequency estimation algorithms that
have recently received increased interest from the research community [87–91]. From this result and
with knowledge of the excitation frequency, the resonant frequency f0 of the SAW can be derived.

The architecture has the great advantage that a single excitation is in general sufficient to obtain a
sensor value and thus the measuring time is theoretically limited only by the sensor itself. In practical
implementations, however, the computational intensive digital frequency calculation is usually the
bottleneck and fast DSPs or FPGAs must be used if high measurement update rates are to be achieved.
Furthermore, if not a single but several sensors are read out, the lock time of the synthesizer plays a
role, since it must jump to the resonance of the individual SAWs every time. The receiver phase noise
is a further parameter as it affects the measurement precision. Especially in free space applications,
with sensor distances equal or less 1 m, it plays the dominant role [85].

When really fast measurement update rates are required and the algorithms used for frequency
calculation have a sufficient frequency resolution, several sensors can in principle also be excited and
read simultaneously, as shown by Kalinin et al. in 2012 [92]. However, care must be taken to reduce
the mutual influence of the SAWs and to design the baseband properly to avoid errors due to aliasing
and intermodulation products that could occur due to simultaneous excitation.

5.2.2. Instantaneous Frequency Measurement (IFM)

Recently, a further reader concept for resonant SAW sensors was proposed: it is based on
time domain sampling with an (analog) instantaneous frequency measurement of the sensor’s
response signal using a six-port microwave interferometer and a delay line [93–95]. The most
notable advantage to other TDS architectures is that it measures the resonance frequency directly
from a single interrogation but without the need to calculate the arithmetic-intensive FFT or other
frequency estimation algorithms. The IFM technique was already developed in the 1950s for military
applications like radio reconnaissance and has continuously emerged for radar warning purposes
and as electronic warfare receivers [96–98]. It is still used today in defense applications for real-time
frequency identification of unknown signals over a very wide bandwidth but typically in a fully digital
implementation [99]. However, especially the analogue approach, combined with digital compensation
of non-idealities, is very promising for industrial sensor technology, such as wireless SAW readers,
as it provides high measurement update rates at comparably low hardware costs [95]. Although the
IFM concept has been used in military receivers since the 1950s, it was the work of Engen and Hoer
in the 1970s [100,101] that made the six-port well-known for other civil applications. Today, six-port
and multi-port structures are used in a wide variety of metrology and communication applications
ranging from vector network analysis, distance, vibration and angle of arrival measurements to direct
conversion receivers with gigabit data rates [102–107]. Figure 10 shows a block diagram of the IFM
reader concept for resonant SAW sensors.
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Figure 10. Block diagram of the reader concept for time domain sampling with instantaneous
frequency measurement.

An RF frequency synthesizer generates the narrow-band excitation pulse, as close as possible to
the resonant frequency of the SAW. This signal is amplified by an optional PA and passes a switch
and BP filter before it is radiated by the antenna to the SAW. After a sufficiently long excitation time,
the switch is changed from transmit to receive mode and the decaying response signal of the SAW
is received. This signal is divided into two parts. One part is fed directly to the first input port of
the six-port structure, optionally through a variable attenuator (AT) to adjust the power. The second
part passes a delay line with the time delay τdl before being fed to the second input port P2 of the
six-port structure. This leads to a frequency-dependent relative phase shift ∆ϕ between the two signals
(I1, I2) of:

∆ϕ = 2π f τdl . (12)

The time τdl depends on both the geometrical length dg of the delay line as well as on the effective
relative permittivity εr,e f f of the used material and conductor structure and can be calculated by

τdl =
dg · √εr,e f f

c0
, (13)

with c0 denoting the speed of light in vacuum. The resulting phase difference is then evaluated by
the six-port interferometer, which can be realized as a passive structure formed by a Wilkinson power
divider, three 90° hybrid couplers and a matched termination, as shown in Figure 11 [104].

Wilkinson
divider

90° hybrid
coupler

90° hybrid
coupler

90° hybrid
coupler

P1
P2

P3 P4

P5P6

50

Figure 11. Passive structure of a six-port interferometer formed by a Wilkinson power divider and
three 90° hybrid couplers.
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Within the six-port structure, the two input signals are superimposed under four relative phase
differences of 0, π/2, π and 3π/2 leading to four output signals (P3 ... P6). Using RF power detectors,
a direct conversion to baseband can be realized and the four Equations (14)–(17) describe then the
baseband voltages B3 ... B6 whose amplitudes are dependent on the phase difference ∆ϕ of the RF
input signals I1 and I2:

B3 = |P3|2 =
1
4

(
P1 + P2 + 2

√
P1P2 sin(∆ϕ)

)
, (14)

B4 = |P4|2 =
1
4

(
P1 + P2 − 2

√
P1P2 sin(∆ϕ)

)
, (15)

B5 = |P5|2 =
1
4

(
P1 + P2 + 2

√
P1P2 cos(∆ϕ)

)
, (16)

B6 = |P6|2 =
1
4

(
P1 + P2 − 2

√
P1P2 cos(∆ϕ)

)
. (17)

These baseband voltages are then lowpass-filtered and amplified before they are digitized by,
usually four simultaneously sampling, ADCs [108]. A single multiplexed or dual-ADC could also
be used but with higher demands on the sampling rate and additionally necessary signal processing
to compensate the phase error induced by the switching [109]. In general, a single simultaneous
sample (on all four channels) is sufficient to determine the response frequency of the SAW. Accordingly,
the requirements for the ADC sampling rate are comparable to FM/AM tracking loops and significantly
lower than with DFE. The four digitized baseband voltages can be interpreted as a complex valued
number z in differential representation:

z = (B5 − B6) + j(B3 − B4) . (18)

The argument of z is equal to the phase difference between the RF input signals I1 and I2 and can
be calculated by using, e.g., the atan2 function:

∆ϕ = arg(z) = atan2
(

B3 − B4

B5 − B6

)
. (19)

Using this value and with the knowledge of the exact length τdl of the delay line, the originally
unknown input frequency can now be calculated by transforming Equation (12) to:

f̃ =
∆ϕ

2π · τdl
. (20)

Since the concept can only measure a phase difference and not an absolute phase, this calculation
becomes ambiguous when the effective length of the delay line is longer than the wavelength of
the highest frequency to be measured [98]. However, it has been shown that this is not a practical
limitation for SAW readers as only a very small unambiguous measurement range is generally required
for resonant sensors [95]. The above formulas are all based on idealized conditions such as perfectly
matched components with no imbalances and completely linear power detectors that cannot be
achieved in reality due to manufacturing tolerances, temperature influences and aging. To compensate
for these hardware non-idealities, calibration and linearization concepts similar to those already
established with other six-port systems can be used [110–115]. The alternative concept of a complete
system linearization with one or more well-known signals of the frequency synthesizer, shortly before
the SAW response signal is measured [116,117] looks promising as it derives each measurement from
the frequency accuracy of the reference crystal in the synthesizer. This is particularly necessary in
practical applications, as the temperature drift of the delay line would otherwise cause the measuring
accuracy to degrade. When a SAW resonator at 2.4 GHz, with a maximum frequency deviation of
1 MHz, is to be determined with an accuracy of 1% of the measurand, an RF frequency accuracy of
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approximately four parts per million (ppm) is required. Differential measurement can reduce this
requirement [95], but it still remains a challenge. Possible forms of implementation for delay lines,
e.g., as SMA cable [118], PCB-based [119] or as SAW delay line [120] all have a temperature sensitivity,
typically in the two-digit ppm range. A differential measurement reduces the influence considerably,
but nevertheless even minor temperature fluctuations could degrade the measurement accuracy.
However, since temperature changes slowly, the actual length of the delay line can be determined by
(one or more) reference measurements with known frequencies directly before the measurement of a
SAW to completely compensate this influence.

5.2.3. Pulsed FM/AM Tracking Loops

The first idea of using the FM to AM conversion property of resonant SAW sensors for their
wireless interrogation originated already more than 20 years ago in a patent from Anthony and
Bryan Lonsdale [121]. In 1995–2002, Transense Technologies (Weston-on-the-Green, UK) developed
and used a short-range reader based on this idea for electric power-assisted steering systems [122].
The architecture used a continuous excitation with frequency modulated signals around the resonance
of the sensor, detected the first harmonic in the amplitude of the reflected signal and used automatic
frequency control (AFC) loops to follow any changes [122]. With a modulation frequency Fmod = 20 kHz
and a frequency deviation of 20 kHz, a time constant of the AFC loop down below 0.6 ms was reached
and correspondingly high measurement update rates could be realized. Due to the continuous
excitation and many measured frequency points, this architecture can be clearly assigned to FDS.
The original concept was later no longer pursued in favor of the DFE architecture, mainly due to
the reader costs and difficulty to apply the same method for interrogation of three or even five
resonators [39].

Nevertheless, the fundamental idea was picked up again by Friedt et. al. in 2010 [123] but with a
modified architecture as TDS hybrid system. Advances in microelectronics and the development of
fast DDS chips with small frequency increment made a pulsed readout and evaluation in FM/AM
tracking loops possible and promising. In the proposed concept, a narrowband pulsed excitation and
evaluation of the sensors response signal is used. With, depending on the tracking strategy, two, three,
or several interrogations, the resonant frequency can be estimated based on the received amplitude
differences of the individual response signals. A block diagram of the reader concept for pulsed
FM/AM tracking loops is depicted in Figure 12.
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Figure 12. Block diagram of the reader concept for time domain sampling with pulsed frequency
modulation (FM)/amplitude modulation (AM) tracking loops.

A fast DDS-based RF frequency synthesizer is required to generate the excitation signal because
it is crucial for the system concept to jump back and forth between several frequencies very quickly
and accurately. The transmit signal passes a fast single pole, single throw RF switch, which is used
for pulsing, and is amplified by an optional PA. After the resonator has settled for several τSAW ,
the RF switch opens and the reader changes from TX to RX mode to measure the free oscillation
radiated by the sensor. This gets received, amplified by an LNA and demodulated to baseband. In the
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simplest case, an RF power detector performs a direct conversion to baseband by measuring the
RF power. Alternatively, IQ demodulators can also be used to improve the resistance to unwanted
emitters [123]. The baseband signal is further amplified and band limited before it is digitized by
an ADC. A single sample per response signal is sufficient, so that no very fast ADC is required as
with the DFE method. In the first initialization phase of the reader, the sensor’s resonant frequency
must be roughly determined. This is done by probing along a frequency comb and searching for the
maximum response amplitude in the whole frequency range where the sensor could be [124]. Due to
the large number of measuring points and FDS-based signal processing, the so-called “fixed comb”
strategy [125] can then be classified as FDS hybrid with S-FSCW interrogation (Section 4.2).

In the subsequent TDS hybrid measurement phase, narrowband tracking loops follow the resonant
frequency of the SAW. Depending on the strategy, these can require several pulsed FM interrogations
around the SAW or only require two or three interrogated frequency points per sensor value with
identifying the maximum received signal amplitude.

Three-Point Interrogation Strategy

The first tracking strategy is shown in Figure 13. Using three interrogated frequency points,
one must be above and one below the resonance frequency of the sensor, while the third one can be
arbitrary. The frequencies should, however, have the same distance ∆ f to each other to simplify the
subsequent signal processing.
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Figure 13. Pulsed FM/AM tracking loops with three-point interrogation strategy.

From the measured amplitude values (s1, s2, s3) at the frequency points ( f1, f2, f3), the resonant
frequency f0 of the sensor can then be calculated using a parabolic fit as an approximation of the
Butterworth–van Dyke (BvD) response of the resonator [126]. With f1, f2 and f3 equally spaced with
∆ f the calculation of f0 simplifies to [123]:

f0 = f2 +
∆ f
2
· s1 − s3

s1 + s3 − 2 · s2
. (21)

The choice of ∆ f is thereby a trade-off between maximizing the amplitude differences s3 − s2 and
s2 − s1 by choosing a large ∆ f and minimizing the error made by approximation with the 2nd order
Taylor development by keeping ∆ f small enough [123]. Numerical simulations have shown that the
error between the polynomial fit and the true resonance shape differ by less than ±1 % for [123]:

∆ f ≤ f0

3 ·Q . (22)

There are several options for the control loop that follows the SAW. Low noise and bias is observed
when trying to minimize the error between f2 and f0 [123]. For this purpose, the fast DDS signal source
is needed, which adapts the excitation frequencies from measurement to measurement.
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FM Interrogation Strategy

The FM tracking strategy uses the original idea of FM interrogation signals [122] but with a pulsed
excitation and an additional phase offset evaluation between the FM transmission signal and the
received signal [127,128]. This strategy requires several more measured frequency points per sensor
value, which leads to a lower measurement update rate, but the measurement accuracy increases in
return. The basic concept is shown in Figure 14.
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Figure 14. Pulsed FM/AM tracking loops with FM interrogation strategy and signed phase evaluation.

The resonator is excited with a pulsed FM signal with the modulation frequency ωm and then
the amplitude of the response signal is evaluated. In order for the resonator to observe a quasi-static
signal within a single measuring point, it is necessary that ωm is not too high. It was proposed in [127]
to use a modulation frequency less or equal to:

ωm ≤
1

10
· 1

2τSAW
. (23)

When the slope of the transfer function of the resonator is rising (left/green interrogation),
the emitted FM signal is received as an amplitude modulated signal with ωm. At resonance frequency
(middle/orange), the part of ωm in the response signal disappears and only 2ωm remains. When the
slope of the transfer function is negative (right/blue) again, an AM signal at ωm is received but with an
inverted phase. Since there is a smooth transition between these three states, the feedback control of the
reader can now use a linear varying parameter (phase change around the resonance frequency) instead
of trying to identify the maximum received power (as for the three-point and two-point interrogation
strategy) [125]. For this purpose, the received signal is band-pass filtered at ωm and the phase to
the FM excitation signal is evaluated. For excitation to the left of the resonant frequency, there is a
positive phase difference; for excitation exactly at the main resonance, the phase difference is zero
and for excitation to the right of the resonant frequency, the phase difference becomes positive [128].
This results in a higher accuracy at the costs of longer interrogation times.

Two-Point Interrogation Strategy

Based on the FM interrogation strategy, a further concept was investigated that requires only
two excitation frequencies per sensor measurement [124]. The concept is based on the idea that it is
sufficient to query only the two extreme values of the sinusoidal FM-sine wave while balancing the
received power of the rising slope on one side of the resonance frequency with the falling slope on the
other side. The two-point interrogation strategy is depicted in Figure 15.
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Figure 15. Pulsed FM/AM tracking loops with two-point interrogation strategy.

The SAW sensor is probed at f1 = f0 − fstep and f2 = f0 + fstep and a tracking algorithm
controls the interrogation frequencies in order to keep the amplitude of the response signal equal
(s1 = y( f0 − fstep) = s2 = y( f0 + fstep)). As in the previous concept, fstep must be selected carefully
and should be below ∆ f (Equation (22)). This is quite a restriction for this as well as the three-point
interrogation strategy. As each successive displacement of f must be less than fstep in order not to loose
the tracking [124], the maximum frequency of the measured variable fm,max is thereby limited to [92]:

fm,max =
ftr

2π fmtm
, (24)

assuming full modulation of the sensor with a frequency variation fm, at a tracking bandwidth ftr

and the measurement time tm (two or three excitations including oscillation). When several sensors
are measured consecutively, the maximum frequency is further reduced as the time interval between
measurements of a single resonator increases.

5.3. State of the Art and Discussion for Time Domain Sampling and TDS Hybrids

The TDS reader architectures DFE and IFM can both determine the resonant frequency of an SAW
resonator with only one excitation. This allows very high measurement update rates to be reached,
which is particularly interesting for industrial measurement technology, e.g., for high-dynamic torque
measurements. The main difference between the two approaches is the evaluation of the SAW response
signal. With DFE, the frequency evaluation takes place in the digital domain. This is algorithmically
most flexible and quite a lot of research is done in this area to achieve more efficient evaluation than
with a pure discrete Fourier transformation. Furthermore, it is the only TDS architecture with which
several sensors can be read simultaneously when a frequency estimation algorithm is used that can
resolve multiple frequencies. However, DFE requires a fast and comparably expensive ADC to acquire
enough samples for frequency estimation during a decay process and the still computational-intensive
algorithms require fast DSPs or even FPGAs that make the reader even more costly or limit the
effective maximum readout rate when slower devices with longer processing times are used. With IFM,
the actual frequency determination is carried out in analog domain. The advantage is that the
ADC can sample considerably slower than with DFE because generally a single sample per channel,
simultaneously over four channels, is sufficient per readout of an SAW. In addition, no computationally
complex algorithms are required since the frequency can be determined from the samples using
simple trigonometry. However, the system must be regularly linearized during runtime in order
to compensate for hardware non-idealities and temperature influences in situ. Furthermore, more
attention must be paid to interference susceptibility, as the entire frequency measurement is mapped
to a phase measurement. The hybrid concept with pulsed FM/AM tracking loops combines the
FDS advantage of the low hardware effort with a fast TDS measurement. With different tracking
strategies, either a high measurement update rate can be achieved (three- and two-point interrogation)
or the focus can be placed on slower but more accurate measurements (FM interrogation). However,
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it must be ensured that the SAW does not leave the narrow-band tracking bandwidth during two
consecutive measurements. In practical applications, this limits, despite the theoretically higher
measurement update rate, the effective bandwidth of the measurand and is a considerable limitation
for fast varying processes.

When considering the current state of the art, as with the FDS readers, it must be noted that the
performance here also depends on the ambient conditions and the SAWs used so that the results can
only be viewed in the overall context. For resonant SAWs, especially spurious modes [129] pose a
challenge, since, through them, the actual mono-frequent response signal contains further spectral
components. Depending on the position and characteristics, these can be difficult for the reader to
separate and may affect the measurement accuracy. Therefore, there are also current research projects
on optimizing SAW resonators to suppress their spurious modes directly in the sensor [130].

Several DFE-based readers have recently been published [83,89,92,131]. In [89], for example,
a 14-bit ADC with sampling rate of 9 MSa/s is used to digitize the down-converted response signal
of resonators at 428 MHz with a quality factor around 6000. The currently fastest DFE reader was
published in [92] and provides a measurement update rate of 16 kHz for a differential measurement in
the 433 MHz frequency band using a simultaneous excitation of two resonators. The measurement
accuracy has been estimated at better than 1% and the precision (standard deviation of the random
errors) was measured at 0.04%. In order to realize this, however, a high hardware effort is necessary
and the reader requires two parallel RF frequency synthesizers, two DSPs for calculating the FFTs and
an additional micro-controller to manage the whole system.

IFM is a very new architecture for which the first detailed investigations were published in [93–95].
Measurement times of 3 µs for the interrogation of a single resonator at 2.4 GHz SAW with a quality
of approximately 2300 could be demonstrated and the precision in a differential measurement was
approximately 1% [95]. However, an oscilloscope with a limited resolution was used to acquire the
baseband signals and the measurement time was also significantly shorter than with readers in the
433 MHz ISM band.

Using pulsed FM/AM tracking loops, several demonstrators have also been published featuring
the three-point interrogation [123], two-point interrogation [124] or FM interrogation [125,127,128]
strategy. Up to 5 kHz for a single SAW resonator has been shown in [124] using the two-point
interrogation strategy. Further experiments and evaluations have been made using 7 kHz sample rate
for a single SAW sensing element and 3 kHz for differential sensing [132,133]. For FM interrogation,
a significantly lower standard deviation was achieved, but the query time per sensor was then in the
range of several tens of ms.

6. Overall Comparison and Discussion

As already presented and discussed with the individual sensor and reader architectures, all have
their own advantages and disadvantages and it is important to find the right concept depending on the
application. Reflective delay lines can combine identification with sensing and have the advantage that
they can use TDMA, CDMA and OFC, compared to resonant sensors that can only employ FDMA for
multiple access. Accordingly, they are particularly suitable for applications where many sensors with
rather slow measured values, e.g., temperature, are to be read out. Additionally, with FDS, relatively
inexpensive readers can be realized exactly for this application. The simplest and at the same time
slowest architecture is FSCW, which measures several individual frequency points in the spectrum and
calculates the impulse response from these. With the FMCW principle, generally higher measurement
update rates can be achieved, but only with higher hardware effort, as fast linear frequency ramps are
necessary. S-FSCW is a hybrid concept for reflective delay line SAWs where the dynamic range can be
increased since no full duplex front end is required. The pulsed radar principle is currently not used in
practical applications due to the high hardware costs but is the theoretically fastest possible concept
when extreme update rates for reflective delay line SAWs are required.
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Resonant SAWs have the benefit of lower insertion loss and a high quality factor and are
particularly suited for TDS and TDS hybrid reader architectures that can achieve high measurement
update rates. This makes them particularly interesting for industrial process monitoring, e.g.,
for determining force and torque on fast-rotating axes. Usually, RF rotation couplers are used in
these scenarios for wireless interrogation, which have the advantage of a good signal transmission and
higher robustness against external interference compared to a free space transmission. There are several
possibilities for the realization of such couplers, e.g., based on electrically shorted transmission lines or
open coplanar strip lines [134,135]. In general, care must be taken to minimize the parasitic frequency
shift (known as “pulling effect”) caused by angle-dependent impedance variations of the coupling
elements [135]. With DFE and IFM, the fastest measurements are possible because the resonance
frequency of the sensor can be determined from a single measurement. In practical applications,
however, the subsequent computationally complex signal processing that must be carried out on an
embedded DSP and/or FPGA limits the measurement update rate at DFE. IFM and the hybrid concept
of pulsed FM/AM tracking loops are significantly less computationally complex; however, in the
first case, additional linearization steps are necessary and care must be taken that the sensor does
not leave the narrow-band tracking loops in the latter case, which considerably reduces the effective
usable bandwidth.

Since the sensors usually operate in freely available ISM bands, immunity to interference is
an important issue for all architectures. If several SAW readers are used at the same time or when
other transmitters such as WiFi or Bluetooth are active in the same frequency band, it is important
to consider interference resolution strategies to minimize mutual impact [136]. However, there are
also possibilities in the reader design to detect interferences [137], in order to reduce their influence by
frequency hopping [138] or to avoid them by listen-before talk [139].

There are currently several companies that develop and distribute commercial SAW readers, e.g.,
CTR (Villach, Austria), IntelliSAW (Andover, MA, USA), Kongsberg Maritime (Kongsberg, Norway),
Pro-micron GmbH & Co. KG (Kaufbeuren, Germany), RSSI GmbH (Geretsried, Germany), SAW
COMPONENTS Dresden GmbH (Dresden, Germany), SENSeOR SAS (Valbonne, France), Sensor
Technology Ltd (Banbury, UK), senTec-Elektronik (Ilmenau-Langewiesen, Germany), and Transense
Technologies plc (Weston-on-the-Green, UK). However, public data sheets for their readers, if available
at all, usually contain only very limited information such as the frequency range and the maximum
sampling rate [140–145]. On the one hand, this may be due to the protection of their intellectual
property. On the other hand, as already discussed, the performance also depends on the environment
and the SAWs used, which makes it difficult to make a generally valid statement. In research, software
defined radio (SDR) platforms are particularly popular because of their high flexibility and easy
customization. The SDR hardware is of course much too expensive for large-scale commercial use,
but new algorithms and interrogation strategies can be evaluated quickly and efficiently. In [146],
a PXIe-based SAW interrogator has been presented that can operate in any frequency band between
85 MHz up to 6.6 GHz. Likewise, the popular universal software radio peripheral (USRP) platform
widely used for research in wireless communication was programmed as the reader for OFC SAW
sensor interrogation [147,148]. The front end of the USRP B200 platform can process RF signals between
70 MHz–6 GHz with an instantaneous bandwidth of 56 MHz.

7. Conclusions

This review paper presented the state of the art for wireless SAW readers and provided a guide
to choose the appropriate sensor and reader architecture for each application. First, the basics
of SAW sensor technology and the two types of SAW resonators and reflective SAW delay lines
were presented. Then, the current architectures were introduced and an extended classification
according to time-domain sampling, frequency-domain sampling and hybrid TDS/FDS architectures
was suggested. Each architecture was studied in detail and discussed with regard to its specific
advantages and disadvantages.
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To sum it all up, SAW sensors are a promising technology with several unique features. Due to
the purely passive and highly robust sensors, there are particularly promising applications in
harsh industrial environments and exciting combinations of sensor technology together with radio
identification. However, despite its outstanding technical features and many research activities in the
last decades, SAW sensor technology is still a low-volume professional niche application, especially
compared to the booming multi-billion dollar business of RF SAW filters. The authors see the reasons
mainly in fabrication costs of reader devices, which are still clearly too high. This results in a classic
chicken-egg problem: since the sensors are currently only used in small quantities, the costs for the
readers are still relatively high. In addition, as long as the costs for the readers are still (too) high,
the sensors will not be used more extensively. Thus, this is a very exciting question for the future if,
when and by which technologies, a breakthrough will be achieved. On the one hand, the continuous
progress of microelectronics and Moore’s law will automatically contribute to this. On the other hand,
research on new reader architectures is also going on, as shown in this article, and is focusing more
and more on reducing the costs per device. For really high quantities and low costs, there will be no
way around monolithic integrated microwave circuits optimized for the needs of SAW sensors in the
long run. Radar sensors can be seen here as a shining example that has already successfully taken
this development. Just ten years ago, radar systems consisted of a large number of commercial of the
shelf components and were comparatively bulky, heavy and expensive, similar to SAW readers today.
However, thanks to highly integrated circuits, there are now complete microwave and mm-wave
integrated radar front ends on a only few square millimeters space at prices of just a few dollars per
unit. It will be exciting to see whether this breakthrough will also succeed with the SAW readers of a
future generation.
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