Coupling Iterative Subsystem Solvers

Wolfgang Mackens, Jiirgen Menck, and Heinrich Voss

Technische Universitdt Hamburg, Arbeitsbereich Mathematik, Kasernenstrafie 12,
D-21073 Hamburg,{mackens, menck, voss}@tu-harburg.de,
http://www.tu-harburg.de/mat/

Abstract. We sketch an algorithmic framework to integrate (iterative) solvers of
subsystems of a large nonlinear system into a joint iterative solution process.

1 Introduction

Complex technical systems are often assembled from already existing compo-
nents. The idea suggests itself to similarly synthesize numerical simulators of
compound systems from available simulators of subsystems. This facilitates
utilising knowledge about the subsystems and it spares the designer expensive
revalidations of the subsystems simulators.

Chemical Engineering seems to be the first scientific field where this in-
tegrational idea has been translated into action. There are quite some flow
sheeting programms which couple numerical models of unit operations to sim-
ulate whole production plants: ASPEN+, SPEEDUP, gPROMS and PRO/IIL
are just four of the better known systems.

Block-oriented simulators (such as ASPEN+ and PRO/II) reduce the
interactions of the unit operations to relatively few input/output variables.
This is accomplished either by simplifying the relations between the coupling
variables or by implementing more complicated ones through the solution of
internal subproblems. In the first case an overall middling modeling quality
may result, in the second case the hidden subsystems may lead to large
runtimes.

Equation oriented simulators (like SPEEDUP and gPROMS) avoid these
problems by collecting all involved equations and applying subtle Newton
type iterations to the joint system. If applicable this approach will certainly
exhibit near optimal computing expenses. However, the equations of a simu-
lator may well not be accessible, or it may not be desirable to collect them.

In this paper we discuss how to solve the system using only the existing
subsystem simulators. We assume that these are iterative in their inner vari-
ables, the results of single iteration steps are available and the subsystems
are complemented by a set of coupling equations. Newton’s iteration for the
full system serves as the guiding principle.

2 Wolfgang Mackens et al.

2 Limitations of Jacobi and Gauss-Seidel couplings

Even in medium size problems it is common to investigate substructures
individually first with the required data from the other parts assumed known.
As asmall case study we consider the numerical computation of the stationary
distributions of mass (y) and heat (6) inside a porous catalyst particle. The
time depending 1D modeling equations as taken from [8] read

00 0% 0
5t~ o = e (157 (12)
oy 0%y 6 6
Lot~ 822 = wyexp(1+am>’ (1b)
(Lw =5.5,7=20,8=0.2,6 € (0,2)) with boundary conditions
y(-1)=y1)=1, 6(-1)=6(1) =0. (2)

Discretization with finite differences on a uniform grid of step size h (we
always chose h = 1/20 in our examples) of the stationary equations yields

Aht‘)h = 5F(yh, Oh), (3&)
Anyn = 0G(yn,0hn), (3b)
where the matrix Ay, is a discrete second derivative operator and F' and G are
discretizations of the right hand sides of (1) including the boundary values

(2). (See [1] e.g., for a thorough explanation of the discretization process).
A popular way to attack (3a) (with y, assumed given) is Picard’s iteration

O = 6A, Fyn, 0) = Ulyn, 8](6"). (4)

For small § and y this converges to a positive solution (9, ys). For equation
(3b) one could of course use Picard’s iteration, too:

yptt = 04 G(yR, 0n) = VIOn, O (y"). (5)

But since equation (3b) is linear with respect to y a direct solution might
appear more appropriate.

To solve both equations simultaneously, engineers tend to favour a non-
linear Jacobi- or Gauss-Seidel approach:

ot = Ulyp, 6] (67), (6a)
yptt = Ve 8] (yp) (6b)

(We use k1 = k2 = 1 in our examples). It is an even more common habit to
solve the equations exactly in turns:

solve ARt = §F(y;r, 07+") for 7+ (7a)
solve Apypt! = 06G(ypt", 00t for yt. (7b)

Coupling Iterative Subsystem Solvers 3

Of course it is also possible to mix both variants by combining (6a) with (7b)
or (6b) with (7a).

Many users believe that these hybrid methods will always converge, at
least if the steps are suitably damped. However, this belief is erroneous: Figure
1 shows the contraction rates of the optimally damped iterations (6a,6b),
(7a,7b) and (6a,7b) as functions of the parameter 4.

1~

no convergence:
091

0.8

0.7 b

0.6

0.5

0.4

0.3F

021

0.1p

o

I I I I I I I I I |
o 0.5 1 15 2 2.5 3 3.5 a 4.5 5

Fig. 1. Contractions for damped a =(6a,6b), b =(7a,7b), ¢ =(6a,7b)

The figure clearly shows that both (7a,7b) and (6a,7b) fail to converge
for large values of §. Ironically, the cheapest of the methods, (6a,6b), remains
convergent in this situation, which proves that perfecting the individual so-
lution steps can even have a damaging effect on the performance of a hybrid
method.

We might add that the breakdown of convergence just observed is not
even triggered by dynamical instabilities of the underlying time dependent
equations (la,1b,2). There is a connection as long as time stepping methods
for this system are used. This, however, will not be desirable due to the poor
performance of these methods.

3 Newton type coupling

3.1 Problem specification

We assume that & € IN subsystems are given by k iterative solvers x?“ =
®;(z;,y) in their internal variables z; € IRFi and a common set y € R™
of “coupling variables”. These systems are accompanied by an additional
coupling equation g(z1,...,zx,y) = 0, with g : RF x R™ — R™, K :=
Ele k;, such that the total system of equations to be solved,

0:fl(a:“y) = mi_¢i(xi7y)> i:]-:"'ak) (8)
Ozg(mla--'axkay)ﬂ (9)

4 Wolfgang Mackens et al.

is square. We assume that the system is sufficiently smooth. Normally, con-
tinuous derivatives up to order two will do.

The appearence of several f; and @; models system inherent parallelism.
Since parallelism is not our central subject here (cf. [2], however) we merge the
iterations into a joint iteration "t := &(z™,y) with z = (z1,...,z;) and & =
(b1,...,Pr). With f(z,y) := x—P(x, y) we shall henceforth consider the sys-
tem £) =0

"If, y =)
g9(z,y) = 0. (10)

Note that a direct solver for the i-th system x; := @;(y) is nothing but a very
fast iterative solver. Hence direct solvers can be incorporated in the setting,
too.

3.2 The tangential block Newton Iteration TBN

The algorithmic structure to be described now is in principle known and
has been discovered and rediscovered several times (cf. [4] for references).
Our starting point is the desire to have some Newton-flavoured iteration for
the blocked system (10). An obvious idea would be to use the Gauss-Seidel-
Newton iteration ([6]), see figure 2. It is clear from this figure (think of the
linear case) that convergence will depend very much on the geometry of the
solution manifolds of f and g.

Under natural smoothness and regularity assumptions Block-Gauss-Seidel-
Newton does converge if f,(z*,y*) = 0. This condition means that the so-
lution manifold of f(z,y) = 0 near (z*,y*) is parallel to the direction of
the second partial iteration step. This geometrical view leads to an extension
of the method to the general case: We restrict g to the tangential space of
the solution manifold of f(z,y) = f(at,y") at (z+,y"), see fig. 3. Through
implicit differentiation of f(z(y),y)) = f(z™,y™) with respect to y one finds

-1
that this space is spanned by T' = <_f; fy) =: <;C> € RE+mm) We

m m
can thus compute Ay from the Newton step ansatz

0=yg(=t - CAy,y" + Ay) = g(z",y") + (—9.C + g,) Ay.
N——_—— ——

=:S

Thus we end up with the
Tangential-Block-Newton Iteration:

(A) zt=a"— f ' f(z",y"),
(B1) C:= f, fy,

(BZ) S = 9y — 9.C,

(B3) SAy = —g(zt,y"),

o ()G ()

Coupling Iterative Subsystem Solvers 5

reduces f Block-Newton:

but et om . oo
increases g an = mn - fflf(xnhy)7;
Yy =yt — gy g(@" Ty,

o g(z,y) =

reduces g
but
increases f
again

/ v

Fig. 2. Simple Gauss-Seidel Block-Newton Iteration

By interpreting TBN as a perturbation of the usual Newton step, one
can prove [4] that under standard assumptions TBN is locally quadratically
convergent.

3.3 Fixed point realization of TBN

The obvious problem in applying TBN to our setting is the need to access the
matrices f, *,C, and S. An idea for appropriate substitutes is rather simple
in principle, however.

First observe that the purpose of f-! in step (A) of TBN is to help
approximate the solution of f(x,y,) = 0 starting from (z,,y,). This task
can of course be taken over by the available fixed point iteration.

One would hence replace the step (A) by the iterative variant = :=
&"1(x,,yn). Here, k1 > 1 is a local iteration count that can be used to
control the quality of the approximation. To come up with an approximation
for C, multiply d = f;'q by f, = I — &, giving the fixed point equation
d = &,(2",y™)d + q. Approximate &, (z",y™)d with a suitable differencing
step size h by

G, (z",y")d ~ b~ (B(" + hd,y") — B(z",y")).
Finally use this to replace @, in the fixed point equation:

d=h7"($(z" + hd,y™) — B(z™,y™)) + ¢. (11)

6 Wolfgang Mackens et al.

reduces f “y-step” parallel
but to solution set
increases g *, of f(x,y) = const.
Y
o 9(m,y) =

reduces g,
only
small increase

for f

/ \ v

Fig. 3. Tangential Block-Newton Iteration

With the iterative approach we are now in the position to approximate
“components” of C, i.e. vectors Cp. Thus the whole TBN-Iteration can be
performed approximately by using only the given f solver.

The template of figure 4 gives an algorithmic framework into which all
the variants to be dealt with will fit.

Approximate TBN Template:

(A?) zt =" + (" (2", y") — z")
(B’) Determine an approximate Ay
from an approximate treatment of
C:=f"fy,
S =gy — 9.C,
SAy = —g(z*,y"),

(Cr) y" ' = y" + BAy,
(C2’) Adapt ™ by approximate execution of
"=zt — BC Ay.

(L) Adjust damping parameters «, 3 adequately.

Fig. 4. Approximate Tangential Block Newton: Template

Coupling Iterative Subsystem Solvers 7

3.4 Subprocedures of ATBN

The following procedures can be useful in turning the ATBN template into
a fleshed-out algorithm:

Directional differencing for C' Use the iteration formula (11) from the
previous section to compute matrix-vector products involving C'.

Explicit calculation of C' If the problem is not too large one might wish to
assemble matrix C' explicitly. This can be achieved by computing the columns
of C' as Ce' via directional differencing.

Directional differencing for S Note that matrix-vector products Sp can
be interpreted as directional derivatives of g into the direction (—(Cp)T, pT)T.
Thus Sp can be computed according to

Sp~ Sp:=h~" (g(ﬂf — hCp,y + hp) — g(z, y)) : (12)

where C'p may already be an approximation of C'p in itself.

Explicit calculation of S If m (and not necessarily K) is small, one might
wish to assemble matrix S. This can be achieved by computing the columns
of S as Se! via directional differencing.

Quasi-Newton approach to Ay-computation The idea of using a Quasi-
Newton approach for the computation of Ay has already been persued in [3]
and proven to work quite well if the starting approximations are sufficiently
good. The combination y step / S update reads (for the undamped case)

SAy = —g(z™,y");

y"h= Yt + Ay

=gt — CAy;
n+1’yn+1)(Ay)T

+ . g(z
ST =5+ (A Aa

Here C stands for an exact or approximate application of the C' operation.

Matrix-free solution of Schur complement equation If m is large, it
may be a good idea to compute Ay by solving SAy = —g* via a transpose free
generalized conjugate gradients iteration for nonsymmetric problems, such as
Bi-CGStab or GMRES (cf. [5] for a short overview of suitable methods). The
only access to S will then be through matrix vector products Sq which can
be computed through directional differencing.

8 Wolfgang Mackens et al.

xt-adaption to C Ay-update of y After having updated y™ — y™ + Ay
one has to adapt zt to give z”*' = T — BC Ay. There are again several
possibilities to perform (an approximation to) this task, two of them being
directional differencing and explicit multiplication by the matrix C.

4 A short example

The iterations (4) and (5) are adapted to the framework of Section 3.1 by let-
ting = := 01,y := yn, D(2,y) := Ulyn, 8](0r) and g(z,y) := yn — V[0, 0](yn)-
Clearly, the iterative potential of (5) is not brought to bear. At the price of
doubling the problems size this can be enabled through

1 = Oy, := yp, y1,y2 = auxiliary variables,
451(33171“27311,92) = U[y%(s](ml): @2(1'1,1'2,y1,y2) = V[ylyé](mz)a
91(331,9327311,92) =Y — T, 92(331;372,917212) =Y2 — To.

Numerical results can be found in [4].

5 Final remarks

A practical implementation of ATBN-iteration involves further ingredients:
Breakdown of contractions of the @;-iterations can be cured by a stabiliza-
tion as described in [2]. Global convergence is obtained by subspace search
methods [7]. Good local convergence is accomplished by the methods of [5].

References

1. Erich Bohl: Finite Modelle gewohnlicher Randwertaufgaben. Teubner Studi-
enbiicher Mathematik, Stuttgart 1981

2. Uwe Kleis: Parallel Solution of Diffusion Reaction problems with a stabilization
method. pp. 7?7 — 7?7 in this Volume of this Proceedings

3. Wolfgang Mackens: Quadratic convergence of the Recursive Block-Gauss-
Seidel-Newton iteration, Bericht Nr. 44 des Instituts fiir Geometrie und Prak-
tische Mathematik der RWTH Aachen, Januar 1987

4. Wolfgang Mackens, Jiirgen Menck, and Heinrich Voss: Numerical System Syn-
thesis: Concepts for Coupling Subsystem Solvers, Report ??, Section of Math-
ematics, Technical University Hamburg-Harburg, 1998

5. Jirgen Menck: Work control for Newton type coupling, pp. 777 — 777 in this
Volume of this Proceedings.

6. J. M. Ortega and W. C. Rheinboldt: Iterative Solution of Nonlinear Equations
in Several Variables, Academic Press, Boston 1970

7. Richard Rascher-Friesenhausen: Subspace search methods for large scale non-
linear optimizations. pp. 183-189 in Keil, Mackens, Vof}, Werther (eds.): Scien-
tific Computing in Chemical Engineering, Springer 1996

8. D. Roose and V. Hlavacek: Numerical Computation of Hopf bifurcation points
for parabolic diffusion-reaction differential equations, STAM J. Appl. Math. 5
(1983) 1075 - 1085

