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Abstract� We sketch an algorithmic framework to integrate �iterative� solvers of
subsystems of a large nonlinear system into a joint iterative solution process�

� Introduction

Complex technical systems are often assembled from already existing compo�
nents� The idea suggests itself to similarly synthesize numerical simulators of
compound systems from available simulators of subsystems� This facilitates
utilising knowledge about the subsystems and it spares the designer expensive
revalidations of the subsystems simulators�

Chemical Engineering seems to be the �rst scienti�c �eld where this in�
tegrational idea has been translated into action� There are quite some �ow
sheeting programms which couple numerical models of unit operations to sim�
ulate whole production plants� ASPEN�� SPEEDUP� gPROMS and PRO	II
are just four of the better known systems�

Block�oriented simulators 
such as ASPEN� and PRO	II� reduce the
interactions of the unit operations to relatively few input	output variables�
This is accomplished either by simplifying the relations between the coupling
variables or by implementing more complicated ones through the solution of
internal subproblems� In the �rst case an overall middling modeling quality
may result� in the second case the hidden subsystems may lead to large
runtimes�

Equation oriented simulators 
like SPEEDUP and gPROMS� avoid these
problems by collecting all involved equations and applying subtle Newton
type iterations to the joint system� If applicable this approach will certainly
exhibit near optimal computing expenses� However� the equations of a simu�
lator may well not be accessible� or it may not be desirable to collect them�

In this paper we discuss how to solve the system using only the existing
subsystem simulators� We assume that these are iterative in their inner vari�
ables� the results of single iteration steps are available and the subsystems
are complemented by a set of coupling equations� Newton�s iteration for the
full system serves as the guiding principle�
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� Limitations of Jacobi and Gauss�Seidel couplings

Even in medium size problems it is common to investigate substructures
individually �rst with the required data from the other parts assumed known�
As a small case study we consider the numerical computation of the stationary
distributions of mass 
y� and heat 
�� inside a porous catalyst particle� The
time depending 
D modeling equations as taken from ��� read
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Discretization with �nite di�erences on a uniform grid of step size h 
we
always chose h � 
��� in our examples� of the stationary equations yields

Ah�h � �F 
yh� �h�� 
�a�

Ahyh � �G
yh� �h�� 
�b�

where the matrix Ah is a discrete second derivative operator and F and G are
discretizations of the right hand sides of 

� including the boundary values

��� 
See �
� e�g�� for a thorough explanation of the discretization process��

A popular way to attack 
�a� 
with yh assumed given� is Picard�s iteration

�n��h �� �A��h F 
yh� �
n
h� �� U �yh� ��
�

n�� 
��

For small � and y this converges to a positive solution �
�� yh�� For equation

�b� one could of course use Picard�s iteration� too�

yn��h �� �A��h G
ynh � �h� �� V ��h� ��
y
n�� 
��

But since equation 
�b� is linear with respect to y a direct solution might
appear more appropriate�

To solve both equations simultaneously� engineers tend to favour a non�
linear Jacobi� or Gauss�Seidel approach�

�n��h � U �ynh � ��
��
�nh�� 
�a�

yn��h � V ��
n����
h � ����
ynh� 
�b�


We use 	� � 	� � 
 in our examples�� It is an even more common habit to
solve the equations exactly in turns�

solve Ah�
n��
h � �F 
ynh � �

n��
h � for �n��h � 
�a�

solve Ahy
n��
h � �G
yn��h � �n��h � for yn��h � 
�b�
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Of course it is also possible to mix both variants by combining 
�a� with 
�b�
or 
�b� with 
�a��

Many users believe that these hybrid methods will always converge� at
least if the steps are suitably damped� However� this belief is erroneous� Figure

 shows the contraction rates of the optimally damped iterations 
�a��b��

�a��b� and 
�a��b� as functions of the parameter ��
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Fig� �� Contractions for damped a ���a��b�� b ���a��b�� c ���a��b�

The �gure clearly shows that both 
�a��b� and 
�a��b� fail to converge
for large values of �� Ironically� the cheapest of the methods� 
�a��b�� remains
convergent in this situation� which proves that perfecting the individual so�
lution steps can even have a damaging e�ect on the performance of a hybrid
method�

We might add that the breakdown of convergence just observed is not
even triggered by dynamical instabilities of the underlying time dependent
equations 

a�
b���� There is a connection as long as time stepping methods
for this system are used� This� however� will not be desirable due to the poor
performance of these methods�

� Newton type coupling

��� Problem speci�cation

We assume that k � IN subsystems are given by k iterative solvers xn��i ��

i
xi� y� in their internal variables xi � IRki and a common set y � IRm

of �coupling variables�� These systems are accompanied by an additional
coupling equation g
x�� � � � � xk� y� � �� with g � IRK � IRm � IRm� K ��Pk

i�� ki� such that the total system of equations to be solved�

� � fi
xi� y� �� xi � 
i
xi� y�� i � 
� � � � � k� 
��

� � g
x�� � � � � xk� y�� 
��
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is square� We assume that the system is su�ciently smooth� Normally� con�
tinuous derivatives up to order two will do�

The appearence of several fi and 
i models system inherent parallelism�
Since parallelism is not our central subject here 
cf� ���� however� we merge the
iterations into a joint iteration xn�� �� 

xn� y� with x � 
x�� � � � � xk� and 
 �


�� � � � � 
k��With f
x� y� �� x�

x� y� we shall henceforth consider the sys�
tem

f
x� y� � ��
g
x� y� � ��



��

Note that a direct solver for the i�th system xi �� 
i
y� is nothing but a very
fast iterative solver� Hence direct solvers can be incorporated in the setting�
too�

��� The tangential block Newton Iteration TBN

The algorithmic structure to be described now is in principle known and
has been discovered and rediscovered several times 
cf� ��� for references��
Our starting point is the desire to have some Newton��avoured iteration for
the blocked system 

��� An obvious idea would be to use the Gauss�Seidel�
Newton iteration 
����� see �gure �� It is clear from this �gure 
think of the
linear case� that convergence will depend very much on the geometry of the
solution manifolds of f and g�

Under natural smoothness and regularity assumptions Block�Gauss�Seidel�
Newton does converge if fy
x

�� y�� � �� This condition means that the so�
lution manifold of f
x� y� � � near 
x�� y�� is parallel to the direction of
the second partial iteration step� This geometrical view leads to an extension
of the method to the general case� We restrict g to the tangential space of
the solution manifold of f
x� y� � f
x�� yn� at 
x�� yn�� see �g� �� Through
implicit di�erentiation of f
x
y�� y�� � f
x�� yn� with respect to y one �nds

that this space is spanned by T �

�
�f��x fy
Im

�
��

�
�C

Im

�
� IR�K�m�m�� We

can thus compute �y from the Newton step ansatz

� � g
x� �C�y� yn ��y� � g
x�� yn� � 
�gxC � gy�� �z �
��S

�y�

Thus we end up with the
Tangential�Block�Newton Iteration�

�A� x� �� xn � f��x f
xn� yn��
�B�� C �� f��x fy�
�B�� S �� gy � gxC�
�B�� S�y � �g
x

�� yn��

�E�

�
xn��

yn��

�
�

�
xn

yn

�
�

�
�C

Im

�
�y�
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Fig� �� Simple Gauss�Seidel Block�Newton Iteration

By interpreting TBN as a perturbation of the usual Newton step� one
can prove ��� that under standard assumptions TBN is locally quadratically

convergent�

��� Fixed point realization of TBN

The obvious problem in applying TBN to our setting is the need to access the
matrices f��x � C� and S� An idea for appropriate substitutes is rather simple
in principle� however�

First observe that the purpose of f��x in step 
A� of TBN is to help
approximate the solution of f
x� yn� � � starting from 
xn� yn�� This task
can of course be taken over by the available �xed point iteration�

One would hence replace the step 
A� by the iterative variant x� ��

��
xn� yn�� Here� 	� � 
 is a local iteration count that can be used to
control the quality of the approximation� To come up with an approximation
for C� multiply d � f��x q by fx � I � 
x giving the �xed point equation
d � 
x
x

n� yn�d � q� Approximate 
x
x
n� yn�d with a suitable di�erencing

step size h by


x
x
n� yn�d � h�� 


xn � hd� yn�� 

xn� yn�� �

Finally use this to replace 
x in the �xed point equation�

d � h�� 


xn � hd� yn�� 

xn� yn�� � q� 


�
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Fig� �� Tangential Block�Newton Iteration

With the iterative approach we are now in the position to approximate
�components� of C� i�e� vectors Cp� Thus the whole TBN�Iteration can be
performed approximately by using only the given f solver�

The template of �gure � gives an algorithmic framework into which all
the variants to be dealt with will �t�

Approximate TBN Template�

�A�� x� �� xn � ����� �xn� yn�� xn�
�B�� Determine an approximate �y

from an approximate treatment of
C �� f��x fy�

S �� gy � gxC�

S�y � �g�x�� yn��

�C��� y
n�� �� yn � ��y�

�C��� Adapt x� by approximate execution of
xn�� �� x� � �C�y�

�L� Adjust damping parameters �� � adequately�

Fig� �� Approximate Tangential Block Newton� Template
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��� Subprocedures of ATBN

The following procedures can be useful in turning the ATBN template into
a �eshed�out algorithm�

Directional di	erencing for C Use the iteration formula 


� from the
previous section to compute matrix�vector products involving C�

Explicit calculation of C If the problem is not too large one might wish to
assemble matrix C explicitly� This can be achieved by computing the columns
of C as Cei via directional di�erencing�

Directional di	erencing for S Note that matrix�vector products Sp can
be interpreted as directional derivatives of g into the direction 
�
Cp�T � pT �T �
Thus Sp can be computed according to

Sp � �Sp �� h��
�
g
x� h �Cp� y � hp�� g
x� y�

�
� 

��

where �Cp may already be an approximation of Cp in itself�

Explicit calculation of S If m 
and not necessarily K� is small� one might
wish to assemble matrix S� This can be achieved by computing the columns
of S as Sei via directional di�erencing�

Quasi
Newton approach to�y
computation The idea of using a Quasi�
Newton approach for the computation of �y has already been persued in ���
and proven to work quite well if the starting approximations are su�ciently
good� The combination y step 	 S update reads 
for the undamped case�

S�y � �g
x�� yn��

yn�� �� yn ��y�

xn�� �� x� � �C�y�

S� �� S �
g
xn��� yn���
�y�T


�y�T�a
�

Here �C stands for an exact or approximate application of the C operation�

Matrix
free solution of Schur complement equation If m is large� it
may be a good idea to compute�y by solving S�y � �g� via a transpose free
generalized conjugate gradients iteration for nonsymmetric problems� such as
Bi�CGStab or GMRES 
cf� ��� for a short overview of suitable methods�� The
only access to S will then be through matrix vector products Sq which can
be computed through directional di�erencing�
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x�
adaption to C�y
update of y After having updated yn � yn���y
one has to adapt x� to give xn�� � x� � �C�y� There are again several
possibilities to perform 
an approximation to� this task� two of them being
directional di�erencing and explicit multiplication by the matrix C�

� A short example

The iterations 
�� and 
�� are adapted to the framework of Section ��
 by let�
ting x �� �h� y �� yh� 

x� y� �� U �yh� ��
�h� and g
x� y� �� yh � V ��h� ��
yh��
Clearly� the iterative potential of 
�� is not brought to bear� At the price of
doubling the problems size this can be enabled through

x� �� �h� x� �� yh� y�� y� � auxiliary variables�

�
x�� x�� y�� y�� �� U �y�� ��
x��� 
�
x�� x�� y�� y�� �� V �y�� ��
x���
g�
x�� x�� y�� y�� �� y� � x�� g�
x�� x�� y�� y�� �� y� � x��

Numerical results can be found in ����

� Final remarks

A practical implementation of ATBN�iteration involves further ingredients�
Breakdown of contractions of the 
i�iterations can be cured by a stabiliza�
tion as described in ���� Global convergence is obtained by subspace search
methods ���� Good local convergence is accomplished by the methods of ����
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