
Single Machine Batch Scheduling to

Minimize the Weighted Number of Tardy Jobs

Danny Hermelin∗ Matthias Mnich† Simon Omlor‡

Abstract

The 1|B, rj |
ř

wjUj scheduling problem takes as input a batch setup time ∆ and a set
of n jobs, each having a processing time, a release date, a weight, and a due date; the
task is to find a sequence of batches that minimizes the weighted number of tardy jobs.
This problem was introduced by Hochbaum and Landy in 1994; as a wide generalization of
Knapsack, it is NP-hard.

In this work we provide a multivariate complexity analysis of the 1|B, rj |
ř

wjUj prob-
lem with respect to several natural parameters. That is, we establish a thorough classifica-
tion into fixed-parameter tractable and Wr1s-hard problems, for parameter combinations of
(i) #p = distinct number of processing times, (ii) #w = number of distinct weights, (iii)
#d = number of distinct due dates, (iv) #r = number of distinct release dates, and (v)
b = batch sizes. Thereby, we significantly extend the work of Hermelin et al. (2018) who
analyzed the parameterized complexity of the non-batch variant of this problem without
release dates.

As one of our key results, we prove that 1|B, rj |
ř

wjUj is Wr1s-hard parameterized
by the number of distinct processing times and distinct due dates. To the best of our
knowledge, these are the first parameterized intractability results for scheduling problems
with few distinct processing times. Further, we show that 1|B, rj |

ř

wjUj is fixed-parameter
tractable with respect to parameter #p`#d`#r and with respect to parameter #w`#d
if there is just a single release date. Both results hold even if the number of jobs per batch
is limited by some integer b.

Keywords. Scheduling, single machine scheduling, batch scheduling, weighted number of
tardy jobs, fixed-parameter tractability, W[1]-hardness.

1 Introduction

This paper is concerned with the problem of minimizing the total weight of tardy (late) jobs in
a single machine batch scheduling environment. Before describing our results, we first briefly
overview the classical non-batch variant of this problem, denoted as 1||

ř

wjUj in Graham’s
classical three-field notation [6]. Following this, we describe the extension of 1||

ř

wjUj to the
batch scheduling environment, and discuss how our results fit into the known state of the art.

1.1 Total weight of tardy jobs on a single machine

One of the most fundamental and prominent scheduling criteria on a single machine is that of
minimizing the total weight of tardy jobs in a schedule. Let J be a set of jobs, where each job
j P J has a processing time pj P N, a weight wj P N, and a due date dj P N. We are given a

∗Ben-Gurion University of the Negev, Beer-Sheva, Israel. hermelin@bgu.ac.il
†TU Hamburg, Institute for Algorithms and Complexity, Hamburg, Germany. matthias.mnich@tuhh.de
‡TU Hamburg, Institute for Algorithms and Complexity, Hamburg, Germany. simon.omlor@tuhh.de

1

ar
X

iv
:1

91
1.

12
35

0v
1

 [
cs

.D
S]

 2
7

N
ov

 2
01

9

single machine on which to process all the jobs in J . A schedule for this machine corresponds
to assigning a starting time Sj to each job j P J , so that Si R rSj , Sj ` pjq for any job i ‰ j.
The term Sj ` pj , also denoted Cj , is called the completion time of job j. A job j P J is tardy
if its completion time exceeds its deadline, i.e., if Cj ą dj ; otherwise, it is early. The goal is
to find a schedule which minimizes the total weight of all tardy jobs; or

ř

jPJ wjUj where Uj
is a binary indicator variable which takes value 1 if and only if job j is tardy. This problem is
denoted as the 1||

ř

wjUj problem.
Karp [9] proved that this problem is (weakly) NP-hard even when all jobs have a common

due date (i.e., the 1|dj “ d|
ř

wjUj problem), and in fact this variant is equivalent to the 0/1
Knapsack problem. The variant where in addition to a single due date, the weight of each job
is equal to its processing time (the 1|dj “ d, pj “ wj |

ř

wjUj problem) is known to be equivalent
to the Partition problem.

Lawler and Moore [10] provided a pseudo-polynomial time algorithm for 1||
ř

wjUj , whereas
Sahni [15] showed that the problem admits an FPTAS. The variant where all jobs have unit
weight (and a single release date), known as the 1||

ř

Uj problem, is solvable in Opn log nq time
due to an algorithm by Moore [13]. There is also a classical variant where each job j P J also
has a release time rj P N, and Sj ě rj is required of any schedule. This variant is known to be
NP-hard even if jobs have unit weight and there are only two distinct due dates and only two
distinct release times.

Most relevant to this paper is a recent result by Hermelin et al. [7] who studied the 1||
ř

wjUj
problem from the perspective of parameterized complexity [4]. There, the following three pa-
rameters are considered for the problem:

• #d: number of distinct due dates,

• #p: number of distinct processing times,

• #w: number of distinct weights.

Their main results are given in the theorem below:

Proposition 1 ([7]). Problem 1||
ř

wjUj can be solved in

• time fp#d`#pq ¨ nOp1q, time fp#d`#wq ¨ nOp1q, and in time fp#p`#wq ¨ nOp1q.

• time nOp#pq, and in time nOp#wq.

A special case of this result was already obtained by Etscheid et al. [5] who presented an
fp#pq ¨ nOp1q-time algorithm for the single due date 1|dj “ d|

ř

wjUj problem.

1.2 Batch scheduling

Batch scheduling has recently received a considerable amount of attention in the scheduling
community. The motivation for this line of research stems from the fact that in manufacturing
systems items flow between facilities in boxes, pallets, or carts. A set of items assigned to the
same container is considered as a batch. It is often the case that items in the same batch leave
the facility together, and thus have equal completion time. We refer to Potts and Kovalyov [14]
and Webster and Baker [16] for further reading on the topic.

Hochbaum and Landy [8] studied the generalization of the 1||
ř

wjUj problem to the batch
setting. In this problem, denoted 1|B|

ř

wjUj , a schedule consists of a partition of the job
set J into batches, and a starting time SB for each batch B such that SB1 R rSB, CB “

SB`∆`
ř

jPB pjq for any batch B1 ‰ B, where ∆ is a given setup time associated with starting

2

any batch. The completion time of any job j P B is Cj “ CB, meaning that all the jobs together
in a batch are completed at the same time. The goal is again to minimize the total weight of
tardy jobs

ř

wjUj . Note that the order of the jobs within each batch is irrelevant, and that
when ∆ “ 0 this problem becomes the classical 1||

ř

wjUj problem.
Hochbaum and Landy observed that this problem is weakly NP-hard (being a direct general-

ization of 1||
ř

wjUj), and provided pseudopolynomial-time algorithms for the problem that are
linear in the total sum of job processing-times (plus n ¨∆) or the maximum due-date. Brucker
and Kovalyov provided an analogous algorithm which is linear the total sum of job weights [2].
Nevertheless, in this paper we are interested in the case where job weights, processing times, or
due dates can be arbitrarily large, but the number of different values of each of these parameters
(namely, #w, #p, or #d) is relatively small. In this context, the following result of Hochbaum
and Landy is very relevant.

Proposition 2 ([8]). Problems 1|B, pj “ p|
ř

wjUj and 1|B|
ř

Uj are polynomial-time solvable.

One can also consider restrictions on batches that are relevant in practice. For instance,
one can require a bound on the size |B| or volume ||B|| “

ř

jPB pj of any batch B. Cheng
and Kovalyov [3] argued about the importance of the batch-size |B| ď b bound in real-life
applications. Note that for b “ n we have the unbounded 1|B|

ř

wjUj problem, whereas for
b “ 1 one obtains the classical non-batch model 1||

ř

wjUj . The following is a very relevant
result of Cheng and Kovalyov who showed that 1||B| ď b|

ř

Uj is in XP when parameterized
by either #p or #d:

Proposition 3 ([3]). Problem 1||B| ď b|
ř

Uj can be solved in time nOp#pq, and in time nOp#dq.

1.3 Our contributions

We provide a thorough multivariate complexity analysis of 1|B|
ř

wjUj and related variants:
Problem 1|B, rj |

ř

wjUj where jobs also have release dates, problem 1| |B| ď b|
ř

wjUj where
there is a bound on the batch size, and problem 1| ||B|| ď b|

ř

wjUj where there is a bound on
the batch volume.

The standard batch model: In the first part of the paper we study the 1|B|
ř

wjUj problem
without release dates or batch restrictions. We show that almost all results of Proposition 1
regarding the 1||

ř

wjUj problem extend to the batch setting.

Theorem 4. Problem 1|B|
ř

wjUj can be solved in

• time nOp#pq, and in time nOp#wq.

• time fp#d`#pq ¨ nOp1q, and in time fp#d`#wq ¨ nOp1q.

The second part of this theorem is proved by an elegant reduction to the non-batch case,
while the first part is based on dynamic programming. Note that the second item of the theorem
is a generalization of the result by Hochbaum and Landy stated in Proposition 2.

Release dates: Next, we show that adding release dates makes the problem much harder. Specif-
ically, we prove that 1|B, rj |

ř

wjUj is highly unlikely to be fixed-parameter tractable for pa-
rameter #d`#p or #p`#r.

Theorem 5. Problem 1|B, rj |
ř

wjUj is Wr1s-hard when parameterized by #d ` #p, and is
Wr1s-hard when parameterized by #p ` #r. Furthermore, the problem is solvable in time
nfp#p`#r,`#wq, and in time nfp#p`#d`#wq.

3

To the best of our knowledge, this is the first Wr1s-hardness result for any scheduling problem
parameterized by the number of distinct processing times #p. In particular, whether or not
P ||Cmax (makespan minimization on an unbounded number of parallel machines) is Wr1s-hard
for this parameter is a famous open problem (see [12]), and this question is also open for
1||

ř

wjUj [7].

Batch restrictions: In the final part of the paper we show that the fp#d`#wq ¨nOp1q algorithm
in the second part of Theorem 4 can be generalized to the setting where each batch contains at
most b jobs; this setting was proposed by Cheng and Kovalyov [3]. Further, the algorithm with
run time fp#d ` #pq ¨ nOp1q can be generalized to the setting where the batch size is limited
and the jobs may have different release dates.

Theorem 6. The following problems are fixed-parameter tractable:

• 1||B| ď b|
ř

wjUj for parameter #d`#w.

• 1||B| ď b, rj |
ř

wjUj for parameter #d`#p`#r.

In particular, this improves the result of Cheng and Kovalyov stated in Proposition 3, as
our algorithm runs in time fp#dq ¨ nOp1q for the unweighted version 1||B| ď b|

ř

Uj .
Finally, let us make a few remarks on the problem 1|||B|| ď V |

ř

wjUj , where the batch
volume is bounded. First, for this problem we show NP-hardness even for the case of unit
weights and a single due date; this rules out the existence of XP-algorithms parameterized by
#p`#w. Second, we show that for parameter #p, this problem is at least as hard as P ||Cmax

parameterized by #p. Recall that the fixed-parameter tractability of P ||Cmax parameterized
by #p is a long-standing open problem.

A summary of our results is given in Table 1.

Problem variant Parameters Result Reference

1|B|
ř

wjUj #d para-NP-hard Karp [9]
#p XP Theorem 4
#w XP Theorem 4
#d`#p FPT Theorem 4
#d`#w FPT Theorem 4
#p`#w ?

1|B, |B| ď b|
ř

wjUj #d`#w FPT Theorem 6

1|B, rj |
ř

wjUj #p`#r Wr1s-hard Theorem 5
#d`#p Wr1s-hard Theorem 5
#p`#w ?
#d`#r `#w para-NP-hard Karp [9]
#d`#p`#w XP Theorem 5
#p`#r `#w XP Theorem 5

1|B, |B| ď b, rj |
ř

Uj #d`#p`#r FPT Theorem 6

Table 1: Summary of results.

4

2 The standard batch model

In this section we present algorithms for the basic 1|B|
ř

wjUj problem, providing a complete
proof for Theorem 4. The proof is split into two parts, which are proven in three separate
lemmas below. Note that in the setting where all jobs are released at the same time and the
batch sizes are not restricted we can schedule the early jobs in order of the due dates. This is a
very helpful observation by Hochbaum and Landy [8], which will be used multiple times in this
section. We illustrate it by an example in Fig. 1.

d1 d2 d3C1, C2, C3

C4, C5

C ′
2, C

′
3 C ′

1C ′
4, C

′
5

2 1 3 4 5

2 13 4 5

∆

∆

∆

∆ ∆

Solution 1:

Solution 2:

Figure 1: An example for batch scheduling with 5 jobs. In the first solution job 1 and 5 are
tardy. In the second solution only job 1 is tardy. Tardy jobs can be moved to the end of the
schedule without increasing the weight of the tardy jobs.

Lemma 7 ([8]). Any instance of 1|B|
ř

wjUj admits an optimal solution in which all early
jobs are in earliest due date (EDD) order. That is, for any two jobs i and j scheduled in two
different batches i P B1 and j P B2 with SB1 ă SB2, we have di ă dj.

We use following notation to order the due dates: dp1q ă dp2q ¨ ¨ ¨ ă dp#dq. Further, we set dp0q

to be the smallest release date.

2.1 Fixed-Parameter Algorithms

We begin by presenting fixed-parameter algorithms for 1|B|
ř

wjUj for parameter #d ` #p,
and for #d`#w.

Lemma 8. Problem 1|B|
ř

wjUj is solvable in time fp#d`#pq¨nOp1q, and in time fp#d`#wq¨
nOp1q.

Proof. Let J denote the job set of our 1|B|
ř

wjUj instance. We first observe that there is an
optimal schedule in which at most one batch completes within each interval pdpi´1q, dpiqs, for
each i P t1, . . . ,#du; if there are two or more batches ending in pdpi´1q, dpiqs, then these batches
can be combined into a single batch without creating new tardy jobs. The second observation is
that if there is no batch ending in pdpi´1q, dpiqs then all jobs with due date dpiq that are completed
early must be in batches ending at dpi´1q or earlier. We next use these observations to reduce
our 1|B|

ř

wjUj instance J into 2Op#dq instances of the non-batch 1||
ř

wjUj problem, each
with the same number of processing times, weights, and due dates as in J . Combined with the
fixed-parameter algorithms for 1||

ř

wjUj given by Hermelin et al. [7], this will provide a proof
for the theorem.

For each i P t1, . . . ,#du, we guess whether there is a batch ending in pdpi´1q, dpiqs in an
optimal solution. Let I Ď t1, . . . ,#du be the set of indexes i such that there is a batch ending
in pdpi´1q, dpiqs with respect to our guess. For an index ` P t1, . . . ,#du, let Iď` “ ti P I | i ď `u

5

denote the set of indices in I smaller or equally to ` and let ip`q “ maxti P I | i ď `u be
the largest index in I that is less or equal than `. We construct an instance JI of 1||

ř

wjUj
corresponding to I by replacing the due date dj “ dp`q of each job j P J with an alternative due
date d1j “ dpip`qq ´ |Iď`| ¨∆; all other job parameters remain the same in JI .

Consider some set of indices I Ď t1, . . . ,#du, and let JI be the corresponding 1||
ř

wjUj
instance. We can convert a schedule of JI as follows: We note that

ÿ

j is early and d1j ď d

pj ď d

for all due dates d. We construct |I| ` 1 batches. The first |I| batches are denoted by Bi for
i P I and are processed in increasing order, i.e. if i ă i1 then Bi is processed before Bi1 . Let j
be an early job (i.e. j1 is early) with dj “ dp`q for some `. Then we assign j to batch Bip`q. We
conclude that j will be early as the completion time of Bip`q is equal to

CBip`q “ |Iď`|∆`
ÿ

j1 is early and dj1 ď dj

pj1 ď |Iď`|∆` d1j “ dip`q ď dj .

Conversely, consider any schedule for J that schedules at most one batch ending in each interval
of consecutive due dates, and let I Ď t1, . . . ,#du be the corresponding set of indices. Then any
early job j P J with dj “ dplq has Cj ď dip`q, and so its completion time in the non-batch setting
under the same ordering of early jobs is at most Cj ´ |Ipď `q|∆ ď dip`q ´ |Ipď `q|∆ “ d1j .

It follows that an optimal schedule for our original 1|B|
ř

wjUj instance corresponds to the
schedule with the minimum weight of tardy jobs among all optimal schedules for instances JI ,
I Ď t1, . . . ,#du. The lemma then follows since there are 2#d instances JI , and each instance
can be solved in fp#d`#pq ¨nOp1q or fp#d`#wq ¨nOp1q time using the algorithm by Hermelin
et al. [7].

2.2 XP algorithms

Assume that our input job set t1, . . . , nu is ordered such that d1 ď ¨ ¨ ¨ ď dn (i.e. ordered
according to EDD). Due to Lemma 7, there is an optimal schedule where any job j P J is either
late, or it is scheduled after the early jobs in t1, . . . , j ´ 1u. Thus, an optimal schedule for jobs
t1, . . . , ju can be found by appending j to some schedule of jobs t1, . . . , j ´ 1u. As observed
by Hochbaum and Landy [8, add cite], when appending j to such a schedule, there are three
possibilities:

a. Job j is included in the last batch of early jobs.

b. Job j is included a new batch by itself, scheduled right after the previous last batch.

c. Job j is tardy.

Below we devise two dynamic programming algorithms that utilize this fact.

Lemma 9. Problem 1|B|
ř

wjUj is solvable in time nOp#pq.

Proof. Let J “ t1, . . . , nu denote our job set ordered according to EDD, and let pp1q ă ¨ ¨ ¨ ă
pp#pq denote the different processing times of all jobs in J . For increasing values of j P t1, . . . , nu,
we compute a table Wj which has nOp#pq entries and corresponds to jobs in t1, . . . , ju.

The table Wj will be indexed by a #p-dimensional vector I P t1, . . . , nu#p, and integer
b P t1, . . . , nu, and a due date d P t0, d1, . . . , dnu. The invariant that our algorithm will maintain
is that WjrI, b, ds will equal the minimum total weight of tardy jobs in a schedule for jobs
t1, . . . , ju with the following properties:

6

1. The early jobs are scheduled in EDD fashion as in Lemma 7.

2. There are exactly b batches containing exactly Iris early jobs, i P t1, . . . ,#pu, with pro-
cessing time ppiq, scheduled consecutively starting from time 0.

3. The earliest due date among all jobs in the last batch is at least d.

Note that there exists vector I and integers b and d such that the optimal schedule for J
satisfies all properties of required from a schedule corresponding to entry WnrI, b, ds and all jobs
in the first b batches are early.

In the beginning, we set WjrI, b, ds “
řj
i“1wi if I “ H, and WjrI, b, ds “ 8 otherwise. Fix

j P t1, . . . , nu, and consider an entry WjrI, b, ds of Wj . Let pp`q “ pj be the processing time of j
for ` P t1, . . . ,#pu. Let I` be the vector which coincides with I on every coordinate, except for
the `th coordinate for which it is equal to Ir`s ´ 1. If the `th coordinate of I is 0, then we set
WjrI, b, ds “Wj´1rI, b, ds ` wj .

Now we consider the expression
ř#p
i“1 Iris ¨ p

piq ` b∆. If
ř#p
i“1 Iris ¨ p

piq ` b∆ ą d, then job j
will be late if it is among the jobs scheduled in the first b batches. Since all of the first j jobs
with processing time pj have a due date less or equal to dj , there cannot be a schedule that
schedules exactly Iris early jobs with processing time ppiq if we consider only the first j jobs.
Thus, we set WjrI, b, ds “ 8.

Else, if
ř#p
i“1 Iris ¨ p

piq ` b∆ ď d, we can schedule job j early. There are two possibilities to
do so.

The first possibility is to schedule job j in an already existing batch. Then the total weight
of tardy jobs is Wj´1rI`, b, ds.

The second possibility is to open a new batch for job j. Then we look at the entries
Wj´1rI`, b´ 1, d1s for d1 ď d.

There is also the possibility to schedule j tardy. In this case, the weight is given by
Wj´1rI, b, ds ` wj . Then the recursion for WjrI, b, ds is given by

WjrI, b, ds “ min

"

Wj´1rI`, b, ds, min
d1ďd

tWj´1rI`, b´ 1, d1su, Wj´1rI, b, ds ` wj

*

.

Correctness of our dynamic programming algorithm is immediate following the discus-
sion above. The optimal schedule corresponds to the minimum entry WnrI, b, ds over all
I P t1, . . . , nu#p, b P t1, . . . , nu, and d P t0, d1, . . . , dnu. Note that since table Wj has nOp#pq

entries, and each entry requires Op1q time, computing the entire table can be done in nOp#pq.
Thus, the algorithm for computing all tables Wj has the same running time, and the lemma
follows.

Lemma 10. Problem 1|B|
ř

wjUj is solvable in time nOp#wq.

Proof. Let J “ t1, . . . , nu denote our job set ordered according to EDD, and let wp1q ă ¨ ¨ ¨ ă
wp#wq denote the different weights of all jobs in J . The algorithm is very similar to the algo-
rithm in the proof of Lemma 9, except here we compute tables Pj that store minimum total
processing time of early jobs, as opposed to minimum total weight of tardy jobs. Namely, for
I P t1, . . . , nu#p, b P t1, . . . , nu, and d P t0, d1, . . . , dnu, entry PjrI, b, ds will equal the minimum
total processing time of the early jobs in a schedule for jobs t1, . . . , ju that satisfies the all
properties required in the proof of Lemma 9, except that the second condition is rephrased to
require exactly Iris early jobs, i P t1, . . . ,#wu, with weight wpiq.

Fix j P t1, . . . , nu, and let ` P t1, . . . , nu denote the index such that wj “ wp`q. The base
cases for computing PjrI, b, ds are very similar to those described in the proof of Lemma 9:

7

If Pj´1rI`, b, ds ` pj ą d and mind1ďdtPj´1rI`, b ´ 1, d1s ` pj `∆u ą d or if d ą dj then we
cannot schedule exactly Iris jobs with weight wpiq early including job j if we consider only the
first j jobs. Thus, we set PjrI, b, ds “ Pj´1rI, b, ds.

Otherwise, the main recursive formula is given by

PjrI, b, ds “ min

"

Pj´1rI`, b, ds ` pj , min
d1ďd

tPj´1rI`, b´ 1, d1s ` pj `∆u, Pj´1rI, b, ds

*

.

3 Release dates

In this section we show that the problem of minimizing the weighted number of tardy jobs on a
single batch machine when release dates are present is Wr1s-hard for parameters #p`#r and
#p`#d. That is, we prove Theorem 5. Thereafter, we give XP-algorithms for 1|B, rj |

ř

wjUj
parameterized by #p`#w `#r, and parameterized by #p`#w `#d.

We begin with parameter #p`#r; the hardness for parameter #p`#d will follow almost
immediately afterwards. To prove that 1|B, rj |

ř

wjUj is Wr1s-hard with respect to #p`#r,
we present a reduction from the k-Sum problem. In this problem, we are given a set tx1, . . . , xnu
of n positive integers, and a target integer t. The task is to decide if there exist k (not nec-
essarily distinct) integers xπp1q, . . . , xπpkq P tx1, . . . , xnu that sum up to t. Abboud, Lewi, and
Williams [1] showed that k-Sum is Wr1s-hard parameterized by k, even if all integers are in the
range t1, 2, . . . , ncku for some constant c.

3.1 The construction

Let px1, . . . , xn; tq be an instance of k-Sum, with xi P t1, 2, . . . , n
cku for each i. Observe that

due to their small range, each input integer xi can be written in the form xi “
řck
j“0 αi,j ¨ n

j

for integers αi,0, . . . , αc,k P t0, . . . , n ´ 1u, i.e., the base n representation of xi. We will heavily
exploit this property in our construction.

Write X “
ř

i xi. Furthermore, we will assume throughout that k ´ 1 times the largest
integer in tx1, . . . , xnu is less than t. If this is not the case, one can slightly modify the input
by adding knck to each integer, and setting the target to t ` k2nck. We construct an instance
of 1|B, rj |

ř

wjUj with Opkq distinct processing times and release times, such that there exists
a feasible schedule with

ř

j wjUj ď kX ´ t ` pn ´ 1qk to if and only if there exist k integers
xπp1q, . . . , xπpkq P tx1, . . . , xnu that sum up to t:

• We create pk ´ 1qt identical jobs, referred to as leftover jobs, each with the following
parameters:

– Processing time 1 and weight kpX ` nq.

– Release time 0 and due date 3kt.

• For each ` P t1, . . . , ku, and each input integer xi “
řck
j“0 αi,j ¨ n

j , we create a set Ji,` of
normal jobs that corresponds to xi. This set consists of αi,j jobs, for each j P t0, . . . , cku,
with the following parameters:

– Processing time nj and weight nj ` nj{xi.

– Release time r` “ p`´ 1q3t and due date p`´ 1q3t` t` xi.

• The batch setup time is set to ∆ “ t.

• The bound on the total weight of tardy jobs is set to kX ´ t` pn´ 1qk.

8

Observe that the total processing time of all jobs in the set Ji,` is precisely xi, and their
total weight is xi ` 1. This will be crucial later on. Also note that whereas the weights above
are fractional, one can make them integral by multiplying with

ś

xi.

3.2 Correctness

Lemma 11. Suppose there exist xπp1q, . . . , xπpkq P tx1, . . . , xnu such that
ř

i xπpiq “ t. Then
there exists a schedule with

ř

j wjUj ď kX ´ t` pn´ 1qk.

Proof. We create a schedule with 2k` 1 batches B1, . . . , B2k`1. For ` P t1, . . . , ku, we schedule

all jobs in the set J
p`q
πp`q in batch B2`´1, and t´xπp`q leftover jobs in batch B2`. We schedule the

starting time of batch B2`´1 at time 3tp`´ 1q, and batch B2` at time 3tp`´ 1q ` t` xπp`q. The
remaining jobs are all scheduled in batch B2k`1 which starts at time 3kt. Note that in this way
all jobs are scheduled after their release times, and only jobs in the last batch B2k`1 are tardy.
An easy calculation shows that the total weight of jobs in this last batch is

ÿ

jPB2k`1

wj “ kX ` kn´
k
ÿ

i“1

pxπpiq ` 1q “ kX ´K ` pn´ 1qk .

We illustrate Lemma 11 by an example in Fig. 2.

.∆ ∆∆xπ(i)

xπ(i+1)

leftover jobs
of gadget i− 1

gadget i
batch with normal
jobs of gadget i + 1

pj = 1 pj = n pj = n2

xπ(i) = n2 + 2n + 3

Figure 2: An illustration of what the schedule given in Lemma 11 looks like.

The converse of Lemma 11 requires more technical detail. We therefore introduce some
further notation that will be used throughout the remainder of the section. Assume our con-
structed instance of 1|B, rj |

ř

wjUj admits a solution schedule, i.e., a schedule where the total
weight of tardy jobs is at most kX`pn´1qk´t. Let B1, . . . , Bb, Bb`1 denote the batches of this
schedule, with respective starting times S1 ă ¨ ¨ ¨ ă Sb`1 and completion times C1 ă ¨ ¨ ¨ ă Cb`1.
Below we modify this schedule, without increasing the total weight of tardy jobs, in order to
make our arguments easier.

Lemma 12. Suppose that the constructed instance of 1|B, rj |
ř

wjUj has a solution schedule.
Then it has a solution schedule with batches B1, . . . , Bb, Bb`1, scheduled in that order, where:

• All tardy jobs are in Bb`1, and include no leftover jobs.

• All early jobs are in B1, . . . , Bb, and include normal jobs with total weight at least t` k.

9

Proof. Consider any solution schedule with batches B1, . . . , Bb, scheduled in that order, that
has at most kX ´ t` pn´ 1qk total weight of tardy jobs. We first observe that no leftover job
is tardy, as a single leftover job has weight kpX ` nq ą kX ´ t ` pn ´ 1qk. Moreover, as the
total weight of all normal jobs of the instance is kpX ` nq, the total weight of the early normal
jobs must be at least t` k. Finally, we can move all tardy jobs to a new batch Bb`1 that starts
right after Bb completes, deleting all empty batches resulting from this, without increasing the
total weight of tardy jobs.

Due to Lemma 12, some normal jobs must be early. For ` P t1, . . . , ku, we use E` denote
the early jobs of type ` in the schedule. Then

Ť

`E` ‰ H. We use ppE`q and wpE`q to
respectively denote the total processing time and weight of jobs in E`, i.e., ppE`q “

ř

jPE`
pj

and wpE`q “
ř

jPE`
wj .

Lemma 13. For each ` P t1, . . . , ku with E` ‰ H, there is a unique batch Bp`q P tB1, . . . , Bbu
with E` Ď B.

Proof. Choose some non-empty E`. Then each job j P E` is released at time r` and has a due
date of r`` t` x ă r`` 2t for some x P tx1, . . . , xnu (the inequality follows as all xi are smaller
than t). As batch setup requires t time, and all jobs in E` are early, there must be some batch
that contains all jobs of E`. Furthermore, this batch cannot contain jobs of some E`1 , `

1 ‰ `,
since those jobs either have deadlines prior to ri (in case `1 ă `), or release times that are later
than the due dates of jobs in E` (in case `1 ą `).

Lemma 13 implies that we can assume there is a specific batch associated with each non-
empty E`. Let d` be the earliest deadline in E`. Then d` “ p`´ 1q3t` t`xπp`q for some integer
xπp`q P tx1, . . . , xnu. Thus, there is also a specific due date and input integer associated with E`.

Lemma 14. For each ` P t1, . . . , ku with E` ‰ H we have:

• ppE`q ď xπp`q.

• wpE`q ď ppE`q ` 1, and this holds with equality if and only if E` “ Jπp`q,`.

Proof. According to Lemma 13, there is a unique batch Bp`q which includes all jobs of E`. As
the release time of all jobs in E` is r` “ p`´ 1q ¨ 3t, and the setup time of Bp`q is t, it must be
that ppE`q ď ||Bp`q|| ď xπp`q; otherwise, jobs in E` with due date d` would be late. Now, for
each job j P E`, let xpjq P tx1, . . . , xnu denote the integer for which j is associated with (i.e.,
j P J`,xpjq). Then xpjq ě xπp`q by definition of xπp`q. Since ppE`q ď xπp`q, we have

wpE`q “
ÿ

jPE`

pj ` pj{xpjq ď
ÿ

jPE`

pj ` pj{xπp`q “ ppE`q ` ppE`q{xπp`q ď ppE`q ` 1 .

Note that the first inequality is strict if and only if there is a job j P E`zJπp`q,` as xpjq ě xπp`q
and the second inequality is strict if and only if ppE`q ă xπp`q. Hence equality holds if and only
if E` “ Jπp`q,`. The statement of the lemma thus follows.

Lemma 15. E` ‰ H for each ` P t1, . . . , ku.

Proof. By Lemma 12, we have t ` k ď
ř

`wpE`q. By Lemma 13, we have ppE`q ď xπp`q and
wpE`q ď ppE`q ` 1. Thus,

t ď
k
ÿ

`“1

wpE`q ´ k ď
k
ÿ

`“1

ppE`q ď
k
ÿ

`“1

xπp`q,

10

where xπp`q “ 0 if E` “ H in the summation above. Since any k ´ 1 integers in tx1, . . . , xnu
sum up to a number which is smaller than t, it must be that xπp`q ą 0 for all ` P t1, . . . , ku, and
the statement of the lemma follows.

Lemma 16. If there is a solution schedule, then there is one with batches B1, . . . , B2k`1 sched-
uled in that order, where for each ` P t1, . . . , ku:

• B2`´1 is scheduled at time 3tp`´1q, and B2` is scheduled immediately after the completion
of B2`´1.

• B2`´1 contains only normal jobs of type of `, and B2`´1 contains only leftover jobs.

• All tardy jobs are in B2k`1, and are normal.

Proof. Let B1, . . . , Bb`1 be the batches of our schedule as in Lemma 12. We modify the batches
of this schedule so as to fit the requirements of the lemma without increasing the total weight
of tardy jobs in the schedule.

We first note that for each ` batch Bp`q is completely processed in the interval r3tp` ´ 1q,
3tp`´ 1q ` 2ts. Thus, if there is no batch between Bp`q and Bp`` 1q, we might as well add one
as the time between the completion time of Bp`q and the starting time of Bp`` 1q is at least t.
(We set Bpk ` 1q “ Bb`1.) Since there is a batch Bp`q for each ` ď k ` 1, by Lemma 15, there
are 2k batches consisting only of early jobs.

Suppose that the completion time of a batch Bi is in the interval p3tp` ´ 1q, 3tp` ´ 1q ` ts
for some `. Then Bi cannot contain type ` jobs, as it started before 3tp` ´ 1q. Hence, Bi
only contains leftover jobs. We can move some leftover jobs from Bi to Bi`1 “ Bp`q and
simultaneously reduce the starting time of Bp`q by the number of moved jobs, until the starting
time of Bi equals 3tp`´ 1q.

If no batch is completed in p3tp`´ 1q, 3tp`´ 1q` ts, then we can start Bp`q at time 3tp`´ 1q.
This can only decrease the completion times of the jobs. If there are leftover jobs in batch
Bp`q “ B2`´1, then we can move them to batch B2`. They will not be late as the completion
time of B2` is at most 3kt.

Lemma 17. Suppose that the constructed instance of 1|B, rj |
ř

wjUj admits a schedule with
ř

j wjUj ď kX´t`pn´1qk. Then there exist xπp1q, . . . , xπpkq P tx1, . . . , xnu so that
ř

i xπpiq “ t.

Proof. Let B1, . . . , B2k`1 be the batches of a schedule as promised by Lemma 16 for our
1|B, rj |

ř

wjUj instance with
ř

j wjUj ď kX ´ t ` pn ´ 1qk. Then batch B2k completes at
time C2k ď 3kt, since 3kt is the latest due date of the input jobs. Since there are 2k batches
with early jobs, and the setup time for each of these batches is t, we have

ř2k
`“1 ||B`|| ď kt.

Thus, as the total processing times of all leftover jobs is pk ´ 1qt, we have

k
ÿ

`“1

ppE`q “
k
ÿ

`“1

||B2`´1|| ´

k
ÿ

`“1

||B2`|| “

2k
ÿ

`“1

||B`|| ´ pk ´ 1qt ď t .

Recall that, by Lemma 12 and Lemma 13, we also have

t ď
k
ÿ

`“1

wpE`q ´ k ď
k
ÿ

`“1

ppE`q .

It follows that
ř

ppE`q “ t, and
ř

wpE`q “
ř

ppE`q`k. The latter equality can only happen if
wpE`q “ ppE`q`1 for each ` P t1, . . . , ku, which in turn implies by Lemma 15 that ppE`q “ xπp`q
for each ` P t1, . . . , ku. Thus,

ř

xπp`q “ t, and the statement of the lemma follows.

11

3.3 Parameter #p ` #d

Lemma 11 and Lemma 17 combined prove that our construction indeed shows Wr1s-hardness
for parameter #p ` #r. We next show that this construction can be transformed to show
hardness for parameter #p`#d.

Lemma 18. For non-negative integers k, k1, any instance of 1|B, rj |
ř

wjUj with k distinct
release dates and k1 distinct due dates can be transformed into an instance of 1|B, rj |

ř

wjUj
with k1 distinct release dates and k distinct due dates, which has the same objective value.

Proof. Let J be a set of n jobs forming an instance of 1|B, rj |
ř

wjUj . We create a set J 1 of n
jobs, as follows. For each job j P J we create one job j1 P J 1 with pj1 “ pj , wj1 “ wj , rj1 “ ´dj
and dj1 “ ´rj . Observe that the problem of finding a maximum-weight set of early jobs is the
same for both J and J 1:

Let σ be a schedule for J , and let Jepσq be the set of jobs in J that are early in σ. For
j P Jepσq let Sj denote its starting time of j and Cj its completion time. Then we obtain
a schedule σ1 for J 1 by setting the start time of j1 to be Sj1 “ ´Cj for all jobs j P Jepσq
and scheduling the remaining jobs late. No two jobs will be processed at the same time, as
the intervals pSj , Cjq, pSj1 , Cj1q are pairwise disjoint for all j, j1 P Jepσq. Thus the intervals
p´Cj , Sjq, p´Cj1 , Sj1q are also pairwise disjoint for all j, j1 P J 1epσ

1q. Further, for each j P Jepσq
we have Sj ě rj and dj ě Cj and thus also rj1 “ ´dj ď ´Cj “ Sj1 and dj1 “ ´rj ě ´Sj “ Cj1 .

Similarly, given the set J 1epσ
1q of early jobs for a schedule σ1 for J 1 we obtain a schedule for J

such that all jobs j for which j1 P J 1epσ
1q are scheduled early, by setting Sj “ ´Cj1 .

This shows that the problem 1|B, rj |
ř

wjUj with parameter #d ` #p is as hard as
1|B, rj |

ř

wjUj with parameter #r `#p.

Corollary 19. Problem 1|B, rj |
ř

wjUj is Wr1s-hard for parameter #d`#p.

3.4 XP algorithms

Last in this section we give an XP-algorithm for the problem 1|B, rj |
ř

wjUj parameterized by
#p`#r`#w. We use the following notation: Similarly to the due dates, we order the release
dates as follows: rp1q ă rp2q ¨ ¨ ¨ ă rp#dq.

Lemma 20. Problem 1|B, rj |
ř

wjUj is solvable in time nfp#p,#r,#wq.

Proof. Let I be the set of job types with respect to processing time, weight and release date.
Let U “ tv P t1, . . . , nuIu and V “ tv “ pv1, . . . , v#rq P U

#r |
ř#r
`“1pv`qi ď niu denote the space

of possible solution vectors. For each element v P V we decide whether it is possible to get a
schedule that starts pv`qi early jobs of type i P I in the interval rrp`q, rp``1qq.

First, notice that if such a schedule exists then we might assume that the jobs of types i are
scheduled in order of their due date and that only the

ř#r
`“1pv`qi jobs of type i with the latest

due dates are scheduled early. Thus we know which jobs are started in each interval rrp`q, rp``1qq.
Second, notice that if we schedule the jobs that are started in rrp`q, rp``1qq in (EDD)-order

starting new batches only if it is necessary then we also get a schedule for these jobs that ends
as early as possible. Thus all we need to do in order to decide whether such a schedule exists
is to the following: First schedule all jobs that start in rrp1q, rp2qq in (EDD). Then let t1 be the
date where the last of these jobs is finished. Then we schedule all jobs that start in rrp2q, rp3qq
in (EDD) but the starting time of the first batch is mintr2, t1u. Then let t2 be the date where
the last of these jobs is finished. We then continue in the obvious way. If all jobs scheduled are
early and no job is started before its release time then there is such a schedule; otherwise, no
such schedule exists. From all schedules we obtain, we take the one that maximizes

ř

`,ipv`qiwi.

The total run time is nOp#r
2#p#wq.

12

Using Lemma 18 we also get the following result:

Corollary 21. Problem 1|B, rj |
ř

wjUj is solvable in nfp#p,#d,#wq time.

4 Batch restrictions

In this section we consider the variants of 1|B|
ř

wjUj where the batches are either restricted
in terms of their size (|B| ď bq or their volume (||B|| ď b).

In this section we will use the notion of job types: Each job j P J has a type, which is
given by the vector τpjq “ ppj , wj , dj , rjq. In some settings parts of the tuple can be omitted,
which allows us to shortcut the job type. For example, a job of type ppj , wj , dj , rjq is also of
type ppj , dj , rjq. We denote the set of all job types by T . For each type τ P T let dτ , pτ , rτ
and wτ denote the due date, processing time, release date and weight of jobs with type τ .
Note that if all jobs are released at time zero, then a schedule can be given by a function
σ : t1, . . .#du Ñ NT ; let σp`qτ indicate the number of jobs of type τ that are completed in the
time interval pdp`´1q, dp`qs.

4.1 Bounded batch sizes

First, we show that 1||B| ď b|
ř

wjUj is fixed-parameter tractable for parameter #d ` #w,
proving the first part of Theorem6.

Lemma 22. Problem 1||B| ď b|
ř

wjUj can be solved in time fp#d`#wq ¨ nOp1q.

Proof. Given an instance I of 1|B, |B| ď b|
ř

wjUj , we set up the following mixed-integer linear
program (MILP) to find an optimal schedule. The variables of the MILP are defined as follows.
Let I “ tpw, dq | pw, p, dq P T for some du be the set of job types with respect to weight and due
date. For each type i P I and each ` P t1, . . . ,#du we have one integer variable xi,`, indicating
the number of jobs of type i finishing job in the time interval pdp`´1q, dp`qs. (Note that this
means that their batches finish in the interval.) For each job type τ “ pdτ , pτ , wτ q P T , we have
one fractional variable ypτ,`q P r0, nτ s to indicate the number jobs of type τ which are processed

in time before their due date dp`q. (Recall that nτ is the number of jobs of type τ .) For each
index ` P t1, . . . ,#du we have one integer variable z` to indicate the number of batches that are
completed before or at time dp`q. Finally, we set z0 “ 0.

The MILP is given by

min
ÿ

τPT
pnτ ´ ypτ,#dqqwτ(1)

z` ě z`´1 `
1

b

ÿ

iPI

xi,`, ` “ 1, . . . ,#d,(2)

ÿ

`0ď`

xi,`0 “
ÿ

τPT ,pτ“pi^dτ“di

ypτ,`q, i P I, ` “ 1, . . . ,#d,(3)

z`∆`
ÿ

τPT
pτypτ,`q ď dp`q ` “ 1, . . . ,#d .(4)

The MILP has #dp|I|`1q “ Op#d2 ¨#wq integer variables and |T |#d “ Op|T |2q fractional vari-
ables. It can be solved by Lenstra’s algorithm [11] for integer programming in fixed dimension
in time fp#d,#wq ¨ nOp|T |q.

It remains to show that optimal solutions of value W to the MILP correspond to optimal
schedules with weighted number of tardy jobs equal to W . A crucial observation is that, given

13

an optimal solution to the MILP, we can assume that all variables ypτ,`q take integer values.
This is due to the fact that, given a job type τ P T and an index ` P t1, . . . ,#du, we can assume
that if yτ` ă nj then yτ 1` “ 0 for all τ 1 with pτ 1 ą pτ , wτ 1 “ wτ and dτ 1 “ dτ . For if that was
not the case, then we can increase yτ` and decrease yτ 1` by the same amount, without changing
the objective value or violating constraint (3) or constraint (4). The intuition here is that we
can process the jobs of type i P I in increasing order of their processing time.

Note that (2) assures that we use r1b

ř

iPI xi`s batches ending in pdp`´1q, dp`qs which is the
minimum number of batches needed to complete all the jobs ending in that interval. Con-
straint (3) is for determining the exact types of the jobs that are processed rather than just the
type with respect to weight and due date. As mentioned we can assume that the y-variables are
integral in an optimum solution. Constraint (4) makes sure that all the early jobs are indeed
completed before their due date.

To obtain a schedule from a solution to the MILP, we first process xi,1 jobs of type i for
each i in order of their processing times with ties broken arbitrarily, and always starting a new
batch when necessary and closing the last batch at the end. Then we can continue with xi,2 jobs
of type i for each i the same way, and so on. Conversely, a schedule translates into a solution
(also fulfilling (2)) using the interpretations for the variables.

If #p`#d (rather than #w`#d) is bounded by our parameter then we get an even stronger
result. More precisely we can solve instances where jobs additionally can have different release
dates as long as the number of different release dates is also bound by our parameter.

Theorem 23. Problem 1|B, |B| ď b, rj |
ř

wjUj is fixed-parameter tractable for parameter
#d`#p`#r.

Proof. We set T “ trj | j P Ju Y tdj | j P Ju to be the set of critical time points. Further we
order T “ tt1, . . . , tku in increasing order, i.e., t1 ă t2 ă ¨ ¨ ¨ ă tk. We again design a MILP,
but this time with slightly more variables. Instead of variables z`, this time we will use integral
variables z`,`1 for any ` ă `1 to indicate the number of batches that start at or after t` but
before t``1 and finish before or at t`1 but after t`1´1. Now we set I “ tpp, r, dq | pp, w, r, dq P
T for some du be the set of job types with respect to weight and due date. Instead of xi,`,
we have integral variables xi,`,`1 to indicate the number of early jobs of a given type that are
processed in batches starting at or after t` but before t``1 and completed before or at t`1 but
after t`1´1. We note that we remove variables xi,`,`1 if di ă t`1 or ri ą t`. We use variables yτ to
indicate the number of early jobs of type τ P T .

The MILP has the following constraints:

min
ÿ

τPT
pnτ ´ yτ qwτ

ÿ

iPI

xi,r,d ď bz`,`1 for any 1 ď ` ă `1 ď k

ÿ

`,`1

xi,`,`1 “
ÿ

τPT ,wτ“wi^ri“rτ^dτ“di

yτ for each i P I

t`
ÿ

tďt`ăt`1ďt
1

˜

z`,`1∆`
ÿ

iPI

pixi,`,`1

¸

ď t1 for each t, t1 P T with t ă t1

yτ ď nτ for each τ P T

We further need two more kinds of constraints to guarantee that if there is a long batch, i.e., a
batch that starts before t` and ends at or before t`1 but after t`1´1 ě t`, then there cannot be any

14

other batch starting and ending in rtj , tj1s for any pair pj, j1q P t`, . . . , `1u2ztpt`, t``1q, pt`1´1, t`1qu.

z`1,`2 ` z`3,`4 ď 1 if `1 ď `3 ă `3 ` 2 ď `4 ď `2(5)
z`,``1
n

` z`1,`2 ď 1 if `1 ă ` and `2 ą `` 1 .(6)

Using the interpretations of the variables given a schedule, one can easily construct a feasible
solution of the MILP with same value.

We claim that in any optimal solution of the MILP, all variables of the form yτ are integral,
and yτ ď nτ implies yτ 1 “ 0 for all other types τ 1 with the same processing time, release date
and due date but higher weight. For proof, suppose, for sake of contradiction, that there is some
non-integral yτ . Let τ be of (sub)type i P I. Since

ř

τPT ,wτ“wi^ri“rτ^dτ“di yτ “
ř

`,`1 xi,`,`1 is
integral there must be another non integral variable yτ 1 such that τ 1 is also of type i. Assume,
without loss of generality, that wτ ą wτ 1 . Now since nτ is integral, we have yτ ă nτ . Thus
we can increase yτ and decrease yτ 1 by the same amount until either yτ “ nτ or yτ 1 “ 0. The
solution we get is still feasible, but its value is smaller, contradicting the optimality of the initial
solution. The same argumentation can be used to show that yτ ď nτ implies yτ 1 “ 0 for all
other types τ 1 with the same processing time, release date and due date but higher weight. This
proves the claim.

Now to create a schedule we create z`,`1 batches B`,`1 for each variable z`,`1 and fill them with
appropriate jobs, i.e., such that there xi,`,`1 jobs of type i assigned to them. We schedule the
batches in the following way: If batch B is in B`,`1 and batch B1 is in B`1,`2 then we schedule B
before B1 if ` ă `1, or ` “ `1 and `1 ă `2, breaking ties arbitrarily. Given this ordering, we
schedule batch B P B`,`1 at the completion time of the previous batch if it finishes later than t`,
or at time t` otherwise.

We need to show that indeed all
ř

`,`1 xi,`,`1 jobs of type i scheduled in these kind of batches
are early for each type i. Suppose, for sake of contradiction, that there is late job j in batch
B P B`,`1 for some ` and `1. Let t`0 be the latest time point less or equal to t` such that there is
idle time before t`0 , or—if no such time exists—we set t`0 to be the smallest release time.

We claim that

t`0 `
ÿ

`0ď`1,`2ď`1

˜

z`1,`2∆`
ÿ

iPI

pixi,`1,`2

¸

ą t`1 .

To see that notice, that only jobs in batches in B`1,`2 with `1 ě `0 and `2 ď `1 are scheduled
before the completion time of j. This holds true as any batch B1 P B`1,`2 with `1 ă `0 is
completed before t`0 by definition of `0, and any batch B1 P B`1,`2 with `1 ě ` and `2 ą `1 is
scheduled later than j. Further, we have z`1,`2 “ 0 if `1 ă ` and `2 ą `1 by constraint (5) and
(6) using that z`,`1 ě 1. However, our claim contradicts the feasibility of our solution thus j
cannot be late.

4.2 Bounded batch volume

In the last part of this section we show why the problem 1|B|
ř

Uj becomes hard when we add
a bound to the maximum batch volume. First, we consider parameter #d`#w, and afterwards
parameter #p.

In Partition we are given a set T “ tx1, . . . xnu of natural numbers such that
ř

xPT x “ 2K;
the task is to decide if there exists a set T 1 Ď T such that

ř

xPT 1 x “
ř

xPT zT 1 x “ K.
We now devise a reduction from Partition to show hardness of batch scheduling even in

the unweighted case and a single due date.

15

Theorem 24. Problem 1|B, ||B|| ď V |
ř

Uj is NP-hard for #d “ 1.

Proof. Let pT “ tx1, . . . xnu;Kq be an instance of Partition; we construct an instance of
1|B, ||B|| ď V |

ř

Uj as follows:

• We set ∆ “ 1 and V “ K ` 1.

• For each number xi there is one job ji with pji “ xi and dji “ 2K ` 2.

Observe that there is a schedule with zero tardy jobs if and only if there is a subset T 1 Ď T
such that

ř

xPT x “
ř

xPT 1zT x “ K. This is due to the fact that the only way to get such a
schedule is to use exactly two batches of volume V and a batch can only be of volume V if the
processing times of the jobs assigned to it add up to K.

For parameter #p we prove the following result:

Theorem 25. Any instance I of P ||Cmax with #p different processing times can be transformed
to an instance of 1|B, ||B|| ď V |

ř

Uj with #p different processing times and a single due date,
such that all jobs of I complete by time T if and only if all jobs of I 1 are early.

Proof. Consider an instance I of P ||Cmax with job set J , number m of machines, and target
makespan T . We create an instance I 1 of 1|B, ||B|| ď V |

ř

Uj consisting of a batch setup
time ∆, a batch volume V , and a job set J 1. We set ∆ “ Tm and V “ T . The set J 1 contains
one job j1 for each job j P J , where the processing time of j1 is the same as the processing time
of j and the due date of j1 is equal to dj “ mV .

In the forward direction, any schedule for I with makespan at most T can be translated to a
feasible schedule for I 1 that schedules all jobs early by creating one batch B for each machine i.
All jobs scheduled on i will be assigned to B. Then the batch volume of each batch is at most T ,
and all m batches are completed early.

In the backward direction, any schedule for I 1 has at most m batches with early jobs, as

pm` 1q∆ “ pm` 1qTm ą mpTm` T q “ mp∆` T q “ mV “ dj .

Thus, for each batch B with early jobs we can schedule all jobs assigned to B on one machine,
whose completion time is at most T . In summary, for m batches with early jobs, we obtain a
schedule for I with makespan at most T .

5 Discussion and Open Problems

We provided an extensive multivariate analysis of the single-machine batch scheduling problem
to minimize the weighted number of tardy jobs. In particular, we significantly refined and
extended the work of Hochbaum and Landy [8], as well as Hermelin et al [7].

Several open questions remain, even for the setting without batches. It appears especially
challenging to resolve the question of whether 1||wjUj is fixed-parameter tractable for #p,
or #w, or turns out to be Wr1s-hard for either of those parameterizations. This question was
already stated by Hermelin et al. [7], and is not resolved here. Naturally, we do not know the
answer to this question for the more general 1|B|

ř

Ujwj problem; however, we also do not
know the status of parameter #p ` #w for which 1||

ř

wjUj is known to be fixed-parameter
tractable [7]. Another interesting question is to see if 1||B| ď b|

ř

Uj is fixed-parameter tractable
for parameter #p or b, or even solvable in polynomial time.

16

References

[1] A. Abboud, K. Lewi, and R. Williams. Losing weight by gaining edges. In Proc. ESA 2014,
pages 1–12, 2014.

[2] P. Brucker and M. Y. Kovalyov. Single machine batch scheduling to minimize the weighted
number of late jobs. Math. Meth. Oper. Res., 43(1):1–8, 1996.

[3] T. Cheng and M. Kovalyov. Single machine batch scheduling with sequential job processing.
IIE Trans., 33(5):413–420, 2001.

[4] M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk,
and S. Saurabh. Parameterized algorithms, volume 4. Springer, 2015.

[5] M. Etscheid, S. Kratsch, M. Mnich, and H. Röglin. Polynomial kernels for weighted prob-
lems. J. Comput. Syst. Sci., 84:1–10, 2017.

[6] R. Graham, E. Lawler, J. Lenstra, and A. Kan. Optimization and approximation in deter-
ministic sequencing and scheduling: a survey. Ann. Discrete Math., 3:287–326, 1979.

[7] D. Hermelin, S. Karhi, M. Pinedo, and D. Shabtay. New algorithms for minimizing the
weighted number of tardy jobs on a single machine. Ann. Oper. Res., 2018.

[8] D. S. Hochbaum and D. Landy. Scheduling with batching: minimizing the weighted number
of tardy jobs. Oper. Res. Lett., 16(2):79–86, 1994.

[9] R. M. Karp. Reducibility among Combinatorial Problems, pages 85–103. 1972.

[10] E. Lawler and J. Moore. A functional equation and its application to resource allocation
and sequencing problems. Mgmt. Sci., 16(1):77–84, 1969.

[11] H. W. Lenstra. Integer programming with a fixed number of variables. Math. Oper. Res.,
8(4):538–548, 1983.

[12] M. Mnich and R. van Bevern. Parameterized complexity of machine scheduling: 15 open
problems. Computers Oper. Res., 100:254 – 261, 2018.

[13] J. M. Moore. An n job, one machine sequencing algorithm for minimizing the number of
late jobs. Mgmt. Sci., 15(1):102–109, 1968.

[14] C. N. Potts and M. Y. Kovalyov. Scheduling with batching: A review. European J. Oper.
Res., 120(2):228–249, 2000.

[15] S. Sahni. Algorithms for scheduling independent tasks. J. ACM, 23(1):116–127, 1976.

[16] S. Webster and K. R. Baker. Scheduling groups of jobs on a single machine. Oper. Res.,
43(4):692–703, 1995.

17

	1 Introduction
	1.1 Total weight of tardy jobs on a single machine
	1.2 Batch scheduling
	1.3 Our contributions

	2 The standard batch model
	2.1 Fixed-Parameter Algorithms
	2.2 XP algorithms

	3 Release dates
	3.1 The construction
	3.2 Correctness
	3.3 Parameter #p+#d
	3.4 XP algorithms

	4 Batch restrictions
	4.1 Bounded batch sizes
	4.2 Bounded batch volume

	5 Discussion and Open Problems

