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Abstract

In the dynamic analysis of structures condensation methods are often used to
reduce the number of degrees of freedom to manageable size. Substructuring
and choosing the master variables as the degrees of freedom on the interfaces
of the substructures yields data structures which are well suited to be imple-
mented on parallel computers. This paper discusses a parallel condensation
method in the presence of generalized global masters which are obtained in
reanalysis or from prolongation of coarse grid approximations, e.g.

Keywords: generalized eigenvalue problem, condensation, parallel method,
global masters

AMS-classification: 65F15

1 Introduction

In the analysis of the dynamic response of structures using finite element methods
very often prohibitively many degrees of freedom are needed to model the behaviour
of the system sufficiently accurate. Static condensation is frequently employed to
economize the computation of a selected group of eigenvalues and eigenvectors.
These methods choose from the degrees of freedom a small number of master vari-
ables which appear to be representative for the dynamic behaviour of the structure.
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Neglecting inertia terms the remaining variables (termed slaves) are eliminated leav-
ing a much smaller problem for the master variables only.

The condensation process requires the factorization of the restriction of the stiffness
matrix to the slave degrees of freedom. This can be done efficiently by choosing
the master variables appropriately. Partitioning the structure under consideration
into substructures and choosing the degrees of freedom on the interfaces of the
substructures as masters and the interior knots of the substructures as slaves the
matrix which has to be factorized becomes block diagonal. At the same time one
obtains data structures and formulae which are well suited to be implemented on
parallel computers. Taking advantage of these properties Rothe and the third author
obtained a fully parallel condensation method for generalized eigenvalue problems
(cf. [8]).

It has frequently been noted in the literature that the quality of the eigenvalue and
eigenvector approximations produced by static condensation is satisfactory only for
a very small part of the lower end of the spectrum. Several attempts have been made
to improve the approximation properties, most of them being very time consuming
since every wanted eigenvalue has to be corrected individually by an iterative process
(cf. [3], [4], [5],[10], e.g.). In [7] Mackens and the third author introduced general
masters which allow to implement a priori information of the eigenmodes (such as
eigenmodes of similar structures considered in reanalysis or prolongations of eigen-
vector approximations obtained on a coarser grid) into the condensation process,
thus enhancing the approximation properties without an iterative process.

In [6] it was shown that the parallelization concept of [8] can be generalized to the
case of general masters with local support (i.e. the support of each general master
is contained in a single substructure). Approximate eigenvectors in general will
not have this property but its support usually will be the entire structure. This
type of masters is called global. One way of applying the parallelization concept
from [6] in the presence of global masters is to split it onto the substructures under
consideration as was done in [6]. The disadvantage of this approach is that for
each approximate eigenvector the number of additional masters is increased by the
number of substructures. In this paper we present a parallel condensation method
without splitting generalized masters which have a global support.

Our paper is organized as follows. In Section 2 we briefly sketch nodal condensation
and substructuring, Section 3 introduces condensation with general masters, and
Section 4 contains the derivation of the parallelization concept of condensation in the
presence of global masters. In Section 5 we summarize our parallelization approach,
and Section 6 demonstrates the favourable properties of the method by a numerical
example. We consider the finite element model of a container ship with 35262 degrees
of freedom where we take into account hydrodynamic masses. As general masters
we use a few dry eigenmodes of the container ship, i.e. eigenmodes of the FE model
without hydrodynamic masses.



2 Nodal Condensation and Substructuring

We consider the general eigenvalue problem
Kx =AMz (1)

where K € R™™ and M € R™" are symmetric and positive definite matrices
which are usually the stiffness and mass matrix of a finite element model of a struc-
ture, respectively. The dimension n is supposed to be very large.

To solve this problem it is necessary to reduce the system to manageable size. In
this section we consider the reduction of the dimension by nodal condensation. To
this end we assume that (1) is decomposed and ordered into the block form

Kmm Kms J“m _ Mmm Mms J“m
(Ksm Kss><xs>_A<Msm M><x> 2)
where z,, € IR™ and z; € IR’ indicate the master part and the slave part, respec-

tively, with m < s < n.

Neglecting inertia terms in the second equation, solving for x,, and substituting z,
into the first equation one obtains the statically condensed problem

Ko = AMoZ, (3)
where
KO = Kmm - KmsK;glema (4)
MO = Mmm - KmsnglMsm - MmsK;glem + KmsK;glMssK;glem

which was introduced by Guyan [1] and Irons [2].

The condensation can be performed completely in parallel if the slave variables can
be chosen such that the matrices K5 and Mg, are block diagonal (cf. [8]). Suppose
that r substructures are considered and that they connect to each other through
the master variables on the interfaces only. If the slave variables are numbered
appropriately, then the stiffness matrix is given by

Kmm Kmsl Kms2 s Kmsr
K. K 0 0

K= Kst 0 Kss2 e 0 ,
Ky 0 0 oo K,

and the mass matrix M has the same block form.

It is easily seen that in this case

KO = Kmm - Z Kmmj = Kmm - Z Kmsts_s}Ksmj

j=1 j=1



and .
My = Myym — Z Mmmj;
=1

where

Mmmj = KmstilMsmj + Mmstil'Ksmj - Kmstil'Msstil'Ksmj-

8§87 587 887 5§57

Hence, taking advantage of the blockstructure of K and M the reduced matrices Ky
and M, can be calculated substructurewise, and therefore, completely in parallel.

3 Condensation with General Masters

The nodal condensation has the disadvantage that it produces accurate results only
for a small part of the lower end of the spectrum. In [7] general masters were
considered in order to introduce preinformation about the modes of the structure
into the condensation process.

In the previous section we split a vector x into a master part z,, and a slave part x,
by the equation x = (Zm) This idea can be generalized by splitting x into a master
and a slave part belonging to orthogonal subspaces.

Let a basis 21, . . ., 2, of the space of master vectors be given, and complement it by
n — m linearly independent vectors 4,11, ..., Y, which are orthogonal to z1, ..., 2.
We define Z := (z1,...,2,) € R™™ and Y := (Ymy1,---,¥n) € R™" ™. Then
x € IR" has the unique representation

T =24T,+ Y,

If we insert this into the original problem (1) and premultiply it by (Z,Y)T we
obtain the following eigenvalue problem

Ky, Ky rs ) My, My, Ls

L., =2"LZ, L, :=Z2"LY = L', L, =Y'LY, L€ {K M} (6)

yz

where

Equation (5) is of the same structure as equation (2). Hence, in principle it could
be employed to reduce the eigenvalue problem (1) using {z1,..., z,} as master de-
grees of freedom in a similar way as in nodal condensation yielding the reduced
problem (3), (4). However, since in practice only the small set of masters is avail-
able, but the large set of slave vectors {¥m+1,...,Yn} is definitely not the matrices

K.,, Ky, M,,, M,, are usually not at hand (Note that in our numerical example in



Section 6 we consider a finite element model of a container ship with n = 35262 de-
grees of freedom. This model is reduced to m = 2097 master unknowns. In this case
we would have to determine s = 33165 slave vectors in IR*?%? by a Gram-Schmidt
process if we wanted to apply Guyan reduction to problem (5) directly).

Hence, the straightforward transfer of Guyan’s method to perform the reduction in
the presence of general masters does not apply. In [7] two methods were given to
generate the condensed problem corresponding to the decomposition (5) with the

basis zi, ..., 2, only, but not the complementary vectors y,,.1,- .., Yn.
Theorem 1 Let Z = (2, ..., 2,) € R™™ have mazimal rank. Then the condensed
etgenproblem with general masters zy, ..., 2y, s given by

PT'KPz,, = \P"MPz,, (7)

with the projection matriz

P=Kk"'z(2"k"'2)" 7"z (8)

Since (ZTK_lZ)_1 777 € R™™ is a nonsingular matrix the condensed problem
is equivalent to the projection of problem (1) to the space spanned by the columns
of K~'Z. Hence, equation (8) demonstrates that condensation is nothing else but
one step of simultaneous inverse iteration with initial space X = M~1Z € R™™),
In particular, nodal condensation corresponds to inverse iteration with initial guess
Z = 1I,,. We can expect improved approximation properties of condensation if we
include general masters z; := Mxz; where z; are approximate eigenvectors of problem
(1) corresponding to the desired eigenvalues.

The reduced problem (7), (8) is equivalent to the projected eigenproblem with pro-
jection matrix P := K~'Z, and it seems that the latter one is less costly to obtain.
However, it can be shown that if we choose the interface degrees of freedom of the
substructures as nodal masters and if we add a general master z; which has its sup-
port in a single substructure then the corresponding column p; of P has its support
in the same substructure. This was the basis of the parallelization concept in [6]
for condensation in the presence general local masters. To generalize this concept
to condensation with global masters (without splitting them to the substructures)
we make use of the following characterization of the projection matrix P and the
reduced stiffness Matrix P7 K P contained in Theorem 2 which was also proved and
discussed in [7].

Theorem 2 Let Z'Z = I, for Z € R™™. Then the projection matriz P of the
condensed problem with generalized masters zq, ..., 2, can be calculated from

(2 on )(5)=(%) )

Moreover, the condensed stiffness matriz is given by

PTKP = 8. (10)



4  General Masters and Substructuring

In this section we combine the technique of general masters and its good approxima-
tion quality with the method of substructuring and its time efficient implementation.

We consider free vibrations of a structure divided into r substructures. The master
vectors are split into two groups: All degrees of freedom on the interfaces of the
substructures are chosen as nodal masters to guarantee that the substructures have
no direct connection. Furthermore we allow general masters to exploit a priori infor-
mation about eigenmodes. We do not assume that each of the general masters has
its support in exactly one substructure since for this case a parallelization concept
has already been developed in [6] and has been applied in [11] and [9]. We consider
the more general case of general masters having global support.

We assume that the m + g masters are split into m interface masters and g general
masters. Furthermore, we assume that all the masters are orthonormal. Then, the
matrix of masters has the form

Im Om,g
Im Om,g O Zl . T
Z_<Onm,m Z>_ S| i 27z =1,
0O Z

where the right column of Z denotes the matrix of general masters and Z; denotes
that part of the general masters corresponding to the j-th substructure.

Next, we partition the projection matrix P and the matrix S of equation (9) in the
following way:

POO POI
p = -P‘IO f).ll ’ S::<SOU 5[)1)7
. . SIO 5’11
PT‘O Prl

with Py € R™™ Py € RM™D) Py, € RE™ Py € REHD Sy € RM™™ Sy, €
R™9 S, € RO™ S, € R99, j =1,...,r, where s; denotes the number of
nodal coordinates of the j-th substructure.

Then system (9) obtains the following form:

Kpm Kons ... Kpeg -1, O Py Py O O
Ko Keq ... O o -7 Py P @] @]
: ' : : _ : (11)
K., O .. K, O —Z, P, P, O O
-1, o ... O @] @] Soo Sor -1, O
@] -zr —Z,T @] @] S0 St o -1



From the penultimate equation one gets Py = I, and Py; = Oy, 4. Furthermore
Soo and Sp; depend on the first row only. Therefore, system (11) could be solved by
skipping the penultimate row and column of (11) to solve the subsystem

K1 ... O =24 Py Pn —Ksgm O
O B Kssr _Zr PrO Prl _Ksmr
-z ... =ZI' O S0 Su Ogm =1y
and afterwards solving the first equation of (11)
Soo = Kyum + Z Kpsi Pio. (13)

=1

The corresponding equation for Sy; has not to be solved since S is symmetric, and
therefore Sy = S, is already available after Sj; has been derived from equation
(12).

Observe that only those columns of Kj,,; are different from the null vector which
correspond to the master degrees of freedom on the boundary of substructure j.
Therefore, only those columns have to be considered in the computation.

We first restrict our attention to the first column of system (12) only. It can be
written in the form

Kssjf)jO_ZjSIO = _Ksmja ] = ]_,...,7" (14)
~>.Z{Pjo = Ogpm. (15)
7j=1

From equation (14) we get

PjO = K_I'stlg - K_I'Ksmj- (16)

587 587

Inserting this into (15) yields
YN ZTKZiS0 =Y Z] K i Km;. (17)
=1 =1

Notice, that the matrices T; := Z]-TK’I-Z]- and W; := ZJ-TK’I-Ksmj can be calculated
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in parallel. Thus, only the summation needs communication between the processes
corresponding to the substructures.

Once we computed Syig from (17) we can compute Pjy by equation (16).

In the same way we derive similar formulae for the second column of (12) and get
Siand P, j=1,...,r, from
58]

ZTan =14, P = K_I'stu-
j=1

7



Therefore, we completely solved system (12) and Spy results from equation (13).

After having calculated the matrices P and S one can compute the reduced mass
matrix My := PTMP by

Mmm Mmsl R Mmsr [m @
M. — (Im Plj(; Pr%) Msml Mssl 0 PIO Pll
' O Py ... P} S P
Msmr 0 s Mssr PT‘O Prl
1,1 LS
_ Mé | J§1 (Mmsj + PJ%MS”) Pj (18)
2 Pji (Mymj + Mysj Pio) 2 PjiMasiPir
J= J=

with r
M(gl’l) = Mmm + Z (PJI(;MSWJ + PJT[;MSS]PJO T Mms]P]O) ‘
j=1

On account of Theorem 2 the condensed stiffness matrix simply is
Soo So1
Ky = . 19
° ( S Su (19)

5 Parallel Condensation

In this section we collect the results from Section 4 and present the parallel conden-
sation method in the presence of global masters.

To each substructure we assign a (slave-) process named ’S;’, and we attach to the
master information one further process called ’Ma’.

We assume that the matrices K, M, and the substructuring are known to
the master process and that for every 5 = 1,...,r the j-th slave process owns the
matrices Kssj; Mssj; Ksmj; Msmja and Zj.

1. For every j = 1,...,r process 'S;” does:
factorize Ky =: L;LT
solve L;Y;=27; forY;
solve L;U; = K,;  for U

T, =Y,
W]’ = )/jTU]'
isend 7 and W; to 'Ma’ (nonblocking communication)

solve LT Q; = U for Q;
solve LJTRJ- =Yj for R,



2. Masterprocess 'Ma’ does:
compute T":= 3% T; and W =37 W;
solve TS p=W for S
solve TSy, =1 forS;;
broadcast Sigp and Sy to all 'S’ j=1,...,r

3. For every j =1,...,r process 'S;’ does:
PjO = RjSlg - Qj
P;; = R;S1
Aj = PJZ(;MSSJ'
Bj := (Mms; + A;) Pjy
Cj = A;Pjo
Dj = MmsijO
Ej = P],-Z;Mssjpjl
Iy = KmsjPjo
Gj = C]—FD]—FD]T

4. Determine
M§"Y = My + Y5, G,
M+ = j=1 B;
M = -1 Ej

SOU = Kmm + 25:1 F_]
by a fan in process such that at the end 'Ma’ owns the matrices

(11) (1,2)
MU::<(M° My > and KO::<S°° SOI)

Mél,Z))T Mém) ST Sn
5. Determine desired eigenvalues Aj,...,\r and corresponding eigenvectors
Uy, ..., ur of the reduced eigenvalue problem
K()’LL = )\MO’LL,
and broadcast Ai,..., A\ and uq, ..., u; to all S}’
6. For every j =1,...,r process 'S;’ does:
For i = 1,...,k restrict u; to the vector u; of interface degrees of freedom

solve (Kssj — )\iMssj)’LNLji = (Ksmj — /,LZMsm])’LNLZ for ’LNLji

At the end A, ..., A\, are eigenvalue approximations of problem (1) and
(al,al,, ... al)T are approximations of the corresponding eigenvectors.

The reduced eigenproblem in step 5 can be solved sequentially or in parallel depend-
ing on its dimension and on the machine in use. Notice that in the first step the
communication is overlapped by the computation of ); and R;.



Figure 1: Container ship
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Figure 2: Substructuring of container ship

\FFFFFRAZZTN
\=zzza e SN,

In this section we discuss details of our implementation of the algorithm in the
preceding section and of one numerical example.

We implemented the algorithm in FORTRAN 90 using LAPACK 3 and BLAS rou-
tines for the linear algebra and MPI 1.05 for message passing. Depending on the
dimension of the reduced problem in step 5 we solved it with the LAPACK rou-
tine dspgvx or the SCALAPACK routine pdsygvx. In both routines the generalized
eigenproblem is transformed to a standard eigenvalue problem, the matrix is reduced

to tridiagonal form, and the desired eigenvalues are determined by bisection.

6 A Numerical Example

10
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Table 1: Relative errors

# | rel. dist. | nodal cond. | gen. masters
1| 3.06e-01 4.83e-05 1.38e-07
2 | 1.51e-01 6.01e-05 8.78e-07
3| 2.71le-01 2.35e-05 1.59e-06
4| 7.48e-01 1.15e-04 2.72e-07
5 | 1.04e+00 3.93e-04 2.32e-07
6 | 8.88e-01 4.55e-04 1.40e-07
7| 6.00e-01 6.43e-03 5.65e-07
8 | 6.66e-01 1.89e-02 9.99e-06
9| 3.39e-01 2.08e-02 1.86e-05
10 | 4.42e-01 8.92e-02 1.66e-04
11 | 4.68e-01 1.01e-01 4.24e-03
12 | 7.53e-01 1.09e-01 1.24e-02

Our numerical example was a finite element model of a container ship with 35262
degrees of freedom given in Figure 1. The bandwidth of the stiffness matrix is 1072.
We subdivided the problem into 10 substructures which yielded a reduced problem
of dimension m = 2097 and slave subproblems of dimensions s; between 1134 and
4792 (cf. Figure 2). This model which does not consider hydrodynamic forces is
called the dry model of the ship, and the eigenmodes are called dry modes. In order
to take into account forces of the surrounding water we added hydrodynamic masses
which yielded the so called wet model of the ship.

Although the eigenfrequencies of these two models differ quite a bit (column 2 of
Table 1 displays the relative differences of the smallest 12 eigenvalues of the dry
and the wet ship) the approximation properties of the condensation method are
enhanced considerably if we add a small number of dry modes as general masters
(which we assume to be known from previous calculations) to the interface masters
when solving the wet model. Columns 3 and 4 of Table 1 contain the relative errors
of the approximations to the 12 smallest eigenvalues obtained with interface masters
only and considering 12 additional dry modes as general masters, respectively.

We tested the program on a heterogeneous workstation cluster consisting of one HP
C3000, one HP J2240, and five HP 9000, 712/100 connected by fast ethernet. In
this situation communication is much more expensive than algebraic operations. We
therefore chose a very coarse grained parallelization concept the communication of
which consists only of one fan in, two broadcasts and one nonblocking communica-
tion, which is overlapped by useful computations.

The usual performance measurements in parallel computing such as speed up or load
balancing do not make sense in this situation. The main reason to solve large models
on workstation clusters is that usually computing resources are available on the
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various workstations of a group and the individual workstations do not have enough
storage to solve the entire problem. Moreover, the substructuring (and therefore the
dimensions of the slave subproblems) is dictated by the whole structure. Modifying
the substructuring to enhance the load balancing usually will increase the number
of master unknowns and thus the computing time to solve the reduced problem in
step 5.

Moreover we tested our algorithm on an HP N-class parallel computer with 8 HP-PA
8500/440 Mhz processors organized as a tightly coupled shared memory node. Again
on this machine performance measurements as mentioned above are of doubtful use
since the computer is run in a multi-user environment, and the user is not able to
distribute the processes to the processors of the cluster but the local scheduling is
organized by the operating system.

Acknowledgements: Thanks are due to Christian Cabos, Germanischer Lloyd,
who provided us with the finite element models of the container ship.

References

[1] R.J. Guyan. Reduction of stiffness and mass matrices. ATAA Journal, 3:380,
1965.

[2] B.M. Irons. Structural eigenvalue problems: elimination of unwanted variables.
ATAA Journal, 3:961-962, 1965.

[3] C.P. Johnson, R.R Craig Jr., A. Yargicoglu, and R. Rabatabhothi. Quadratic
reduction for the eigenproblem. Internat. J. Numer. Meth. Engrg., 15:911 —
923, 1980.

[4] Y.-T. Leung. An accurate method of dynamic condensation in structural anal-
ysis. Internat. J. Numer. Meth. Engrg, 12:1705 — 1715, 1978.

[5] Y.-T. Leung. An accurate method of dynamic substructuring with simplified
computation. Internat. J. Numer. Meth. Engrg, 14:1241 — 1256, 1979.

[6] W. Mackens and H. Voss. General masters in parallel condensation of eigenvalue
problems. Parallel Computing, 25, 1999.

[7] W. Mackens and H. Voss. Nonnodal condensation of eigenvalue problems.
ZAMM, 79:243 — 255, 1999.

[8] K. Rothe and H. Voss. A fully parallel condensation method for generalized
eigenvalue problems on distributed memory computers. Parallel Computing,
21:907 — 921, 1995.

12



[9] K. Rothe and H. Voss. Modal and interior nodal masters in parallel condensa-

[10]

[11]

tion methods for generalized eigenvalue problems. In A. Sydow, editor, Proceed-
ings of 15th IMACS World Congress on Scientific Computing, Modelling, and

Applied Mathematics, volume 1, pages 571 — 576, Berlin, 1997. Wissenschaft &
Technik.

L.E. Suarez and M.P. Singh. Dynamic condensation method for structural
eigenvalue analysis. ATAA Journal, 30:1046 — 1054, 1992.

H. Voss. Interior and modal masters in condensation methods for eigenvalue
problems. In H. Power and J.J. Casares Long, editors, Applications of High Per-
formance Computing in Engineering, volume V, pages 23 — 32, Southampton,
1997. Computational Mechanics Publications.

13



