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We explore the elastic and plastic Poisson’s ratios, vg and vp, of nanoporous gold, using digital image
correlation during compression experiments including load/unload segments. The two coefficients differ
significantly, with v¢ independent of the ligament size, L, and with a trend for vp « L at not too large
L. Disorder in the network of ligaments may explain why v is smaller than predicted by lattice-based
models. Finite element simulations, based on the Deshpande-Fleck constitutive law, validate the data
analysis. The constitutive law captures work-hardening and transverse flow of nanoporous gold in good
agreement with the experiment.

© 2015 Acta Materialia Inc. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Nanoporous gold (NPG) made by dealloying takes the form of
macroscopic bodies that exhibit a uniform, bicontinuous network
of nanoscale pores and solid “ligaments”. The high degree of
structural definition, the small lower limit of the structure size
and the fact that annealing allows this size to be controlled
between few and several hundred nanometers makes the material
an attractive model system for studies of small-scale plasticity
[1-4]. Experiments on fracture [5,6], indentation [7-9], compres-
sion [10-13] and tension [14-16] behavior exemplify the current
interest in NPG. In this context it is noteworthy that models for
the mechanical behavior of porous solids [17,18] and specifically
NPG [19-21] differ in respect to their prediction for the transverse
mechanical coupling during the elastic and plastic deformation, or
even explicitly link the transverse strains to structural characteris-
tics of the metal network [19,20]. Empirical studies of the trans-
verse coupling may therefore provide a test for models of NPG.

Experimental studies of the elastic Poisson ratio, vg, are emerg-
ing, yet the distinction to the plastic transverse reaction is not
always acknowledged and precise experimental studies of the plas-
tic Poisson ratio, vp, are missing. Several studies assume the plastic
transverse coupling in NPG to be analogous to that of macroporous
metallic foams [17], suggesting vp near zero [2,7,8,22]. Studies
using molecular dynamics and finite elements simulation support
this assumption by presenting near zero or even negative values
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for vp under compressive loading [19-21]. Transverse strains mea-
sured ex situ after plastic deformation[11,13] indicate nonzero but
small net plastic Poisson’s ratio. Yet, the limited accuracy of these
experiments does not afford a validation of models, nor is a possi-
ble variation of vp in response to the significant structure changes
during the compression of the network resolved. As for v,
compression experiments find a value of 0.17 at 0.3% engineering
strain [15], while reported values for tension loading are 0.15
[15] and 0.18 [6]. Again, the studies do not resolve a possible vari-
ation of the transverse response when the network geometry
changes during plastic deformation.

Here, we present a study of the compressive deformation of npg
to large plastic strain, using digital image correlation (DIC) and
load/unload protocols to extract separately vg and vp at the various
stages of plastic compression. We match the experiments through
modeling the effective, macroscopic deformation behavior in the
experimental geometry by finite-element-model (FEM) simulation.
Besides removing possible artifacts from non-uniaxial loading, our
FEM simulation also for the first time explores a constitutive model
for the flow behavior of NPG. We find that the Deshpande-Fleck
model [23], which is known to reproduce the mechanical behavior
of classic metal foams with macroscopic cells, provides an
excellent fit to the DIC data of NPG.

2. Experimental procedures

Cylindrical Au,sAg,; master alloy samples, 0.9 + 0.05 mm in
diameter and 1.8 & 0.05 mm in length, were prepared according
to Ref. [24]. Dealloying in 1M HClO4 used a potential of 0.75V
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vs. Ag/AgCl reference electrodes in the same solution (1.265 V vs.
the standard hydrogen electrode). Residual silver was subse-
quently removed by polarization at 0.85 V in fresh electrolyte, fol-
lowed by 20 potential cycles ranging from —0.4 to 1.1V at a scan
rate of 5 mV/s. Both, the polarization and the cyclic voltammetry
steps were repeated once, ending at a final potential of 0.3V to
remove superficial oxygen [25]. The residual silver content, deter-
mined by energy-dispersive X-ray spectroscopy analysis, was
found to be below 1 at.%. All samples exhibited an aspect ratio of
1.9+0.1.

The above procedure yields mean ligament sizes, as identified
by scanning electron microscopy, around 50 nm. By annealing a
fraction of the samples in air at 300 °C the ligament size was
increased to approximately 120nm (10min) and 180 nm
(20 min). The mass density, as determined from the sample’s mass
and external dimensions, was 4.910.1, 5.4+0.1 and 5.5 + 0.1g/cm 3
for samples with ligament sizes of L = 50, 120 and 180 nm, respec-
tively. The corresponding solid fractions emerged as 0.25%0.01,
0.2740.01, 0.28+0.01, respectively.

Single loading and load/unload compression tests were per-
formed using a universal testing machine (Zwick 1474) equipped
with a DIC system (DaVis 8.2.0, LaVision), see Fig. 1. All tests were

performed at a constant engineering strain rate of 107*/s, with a
pre-load of 1 N at the beginning of the measurement. The elastic
properties were determined during unloading at different defor-
mation stages. Virtual strain gauges were placed on the sample
surface to measure the strain in the axial direction, &,, and normal
to it. For comparison with the FEM simulation, the transverse
strain was measured in the sample center (&f) and close to the
contact surfaces (&).

The DIC output is engineering strain, which was converted to
true strain where appropriate. Specifically, all Poisson’s ratios in
each state of plastic deformation were computed from true strain
increments é¢ according to

ot

V= (1)
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3. Simulation

As the constitutive equation for the effective macroscopic
mechanical behavior of NPG, our modeling uses Deshpande and
Fleck’s self similar model [23], originally proposed for multiaxial
closed cell metallic foams. It expresses the yield function ® as
the function of the (rotated Kirchhoff) stress T and the equivalent
plastic strain €p by!

®(t, €) := () ~ Y(er) <O, 2)

where 72(1) := [, + 0273]/[1 + [0t/3]°] and with 72, := 3/2dev(t)
:dev(t), Ty := tr(t)/3. The parameter o defines the yield surface
ellipticity. The plastic isotropic hardening is controlled by Y(ep)
with

Y(€p) := Kép + Too — [Too — To] €Xp(—m[€p]"), (3)

! The following notations will be used. Assuming a, b, and ¢ as three second order
tensors, together with Einstein’s summation convention on repeated indices,c=a-b
represents the single contraction product with ¢y = ajby. d = a : b = a;b;; represents
the double contraction product, where d is a scalar. dev(a) =a—1/3tr(a)l and
tr(a) = a; stand for the deviatoric part of and the trace of a, respectively, with 1
denoting the identity tensor. sym(a) and skw(a) denote the symmetric and the skew-
symmetric parts of a. a” and a~! respectively represent the transpose and the inverse
of a whereas det(a) and log(a) denote the determinant and the natural logarithm,
respectively. a gives the material time derivative of a.

where K, T.,To,m and n are corresponding material parameters.
This model allows direct control of the plastic Poisson’s ratio
through o. In a uniaxial compression test vp as a function of « reads

e 1/2- (/3

Vp = =
' dess 1+ [o/3]°

4)
Here, dp1; and dp3; refer to the components of the plastic rate of
deformation tensor dp in loading direction and transverse direction,
respectively. Since 0 < o? < 4.5, for o« = 0 incompressible von Mises
plasticity is recovered whereas for o = v/4.5 zero plastic Poisson’s
ratio is due.

The finite strain kinematics is resolved using multiplicative
decomposition of the deformation gradient into elastic and plastic
parts with F = Fg - Fp. The rotated Kirchhoff? stress is defined as
7 = Ktr(Eg)1 + 2Gdev(Eg) relative to the intermediate configuration
where K is the bulk modulus and G is the shear modulus. The elastic
logarithmic strain is defined as Ex = 1/2 log(F; - Fe). Plastic flow
relative to the intermediate configuration is formulated as
dp = sym(Fp - F;') where wp = skw(Fp - F;') = 0 is assumed. Here, a
normality rule is used with dp = ép 0®/97. Finally, Cauchy stress at
the current configuration is defined as ¢ = 1/ det(F)R; - T - Rj where
R is computed using the polar decomposition Fz = Rg - Ug. The
experiments reveal barreling, which is naturally understood as a
consequence of friction at the load surfaces.® This is maximum for
120 nm samples and minimum for 50 nm samples. As a conse-
quence, the irreducibility of the stress state to the uniaxial state
forces one to use a numerical solution scheme with domain dis-
cretization in evaluation of the material constants. Inevitably, the
friction coefficient becomes an additional process parameter which
has to be identified. Thus, finite element models reproducing the
individual compression tests were set up and run. A surface-to-
surface contact method with finite sliding formulation models the
load surface, using a Coulomb friction model with penalty-
enforced constraints. For each model, an inverse constrained param-
eter optimization study was realized, minimizing the error
(deviation-square) defined based on the normalized values of
experimentally monitored central and surface extractions as well
as force demand histories during upsetting. Equal weighting factors
were applied to each constituent. Strain-rate dependence was not
considered.

The optimization aimed at identifying the four hardening
parameters K, 7, m and n, the parameter o which controls the lat-
eral extension and the friction coefficient y,. The modulus of elas-
ticity was taken as fixed for each ligament size. For 50 nm sample
1300 MPa was used whereas for 150 nm and 180 nm samples
750 MPa was used. These values were obtained from experiments
by measuring the unloading modulus at around 15% engineering
strain. The effect of the variation of the density on the change of
the macro elasticity modulus was not accounted for.

4. Results

Preliminary to the discussion of representative experimental
results we note that reproducibility was verified through the

2 Since the material model accounts for high compressibility, overall formulation is
made with respect to the intermediate configuration and using the (rotated) Kirchhoff
stress tensor rather than Cauchy stress tensor similar to, e.g., [26]. This causes relative
density dependence in Cauchy stress response throughout an applied loading path.
Hence a compression-tension asymmetry in plastic response is inherently accounted
for.

3 Irrecoverable material deformation in lateral direction is con- trolled by both
friction and plastic Poisson’s ratio. For zero plastic Poisson’s ratio, a nonzero friction
does not cause bulging. On the other hand for zero friction in addition to nonzero
plastic Poisson’s ratio, lateral deformation occurs but uniformly throughout the
specimen axis.
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Fig. 1. Deformation experiments. (a) Test set up. Steel punches and camera with microscope are depicted. (b) Transverse displacement map for the example of npg with a

ligament size of 180 nm at 35% engineering strain.

investigation of overall 18 samples, and that the trends for v and
vp as well as the numerical values presented are consistent
between all experiments.

The bold lines in Fig. 2 show experimental results for the
dependence of stress (Fig. 2a) and of transverse strains (Fig. 2b
and c) at different positions on the axial engineering strain. The
stress-strain behavior is well compatible with previous reports
[11,13,21,24], specifically in respect to the high deformability,
the pronounced strain hardening, and the trend for more strength
at smaller values of the ligament size, L. Also, in each case the
transverse strain in the sample center (b) exceeds the value of
the transverse strain at the contact area (c). This effect is signifi-
cantly more pronounced for samples with larger ligament sizes.
It testifies to a finite plastic Poisson’s ratio along with friction at
the contact area and manifests itself visually in the form of
barreling.

In Fig. 3, symbols represent the evolution of the two Poisson’s
ratios as determined from the experiment via Eq. (1). Part (a) of
the figure shows Vg, based on the load/unload tests. We find vg
essentially independent of L, starting out at vg = 0.20 & 0.02 for
the undeformed material and increasing weakly as the sample is
densified during plastic compression.

The symbols in Part (b) of Fig. 3 show our experimental results
for vp. Nonzero values are found, and the sample with L = 50 nm
exhibits a significantly lesser initial vp (~ 0.08) compared to the
samples larger L (~ 0.18).

FEM simulation results were matched to the experimental data
of Fig. 2a-c, varying the parameters for the Deshpande-Fleck
model for best fit as explained above. The FEM results, shown
superimposed to the compression test data in Fig. 2, are in remark-
able agreement with the experiment. Table 1 lists the refined val-
ues of the parameters. The «-values suggest plastic Poisson’s ratios
via Eq. (4); this yields vp = 0.078, 0.178 and 0.164 for L =50, 120
and 180 nm, respectively. Comparing this data, see solid lines in
Fig. 3, to the direct experimental results for vp shows excellent
agreement at small strains. While the Deshpande-Fleck model’s
assumption of a fixed vp results in a failure to capture the
experimental observation of a gradual increase in transverse
coupling strength during compressive plastic densification, the
agreement between model and experiment at small strains
supports the validity of that data.

5. Discussion

To start out we inspect the dependence of the elastic
parameters of isotropic metal networks, such as NPG, on their
solid fraction ¢. Isotropic elasticity has only two independent
elastic parameters, and a specific consequence is that
vg = 1/2 —3G/[2G + 6K]. Note that, as a result of the different
scaling of the axial-versus the bending-stiffness of beams with
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Fig. 2. Single loading compression tests of nanoporous gold with varying ligament
size, experimental (bold lines and symbols) and finite element results (lines): (a)
engineering stress Geng, (b) transverse engineering strain in the sample center & and
(c) transverse engineering strain at the contact area &, all plotted vs. the
engineering strain in loading direction &e,. Stress offset at zero strain is due to
the applied pre-load.
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Fig. 3. Experimental data for the two different Poisson’s ratio’s versus the
engineering strain &eng. (a) Elastic Poisson’s ratio vy measured during unloading.
(b) Plastic Poisson’s ratio vp from direct experimental analysis (symbols) and from
fitting the parameters in the Deshpande-Fleck constitutive equation during FEM
simulation of the experiment (lines). Note the good agreement at small strains.
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Table 1

Plastic hardening parameters obtained by fitting the constitutive model to the
experiment through the intermediate of finite-element modeling. Meaning of
symbols: L - mean ligament diameter, K - linear hardening coefficient, 7> -
saturation stress, m — hardening exponent 1, n - hardening exponent 2, o - yield
surface ellipticity, y; - friction coefficient.

L(nm) K(MPa) t>(MPa) m(-) n(-=) o(-) He (=)

50 35.074 7.895 139 1307 353 0004
120 37.809 1.993 15261 0561 346  0.067
180 25.886 26.08 4495 4998 760  0.045

the beam diameter, the values of elastic constants relating to
bending-dominated deformation modes tend to scale quadratically
with ¢, whereas axial deformation gives a linear scaling [18].

In the spirit of a qualitative argument we can hypothesize that
shear tends to emphasize bending, so that G varies as G = cc@?.
Hydrostatic loading, on the other hand, tends to favor either, bend-
ing or compression, depending on the degree of order. For network
structures with a high degree of local order, the short-range order
along each node of the network resembles that of periodic lattices.
For NPG, the gyroid and diamond lattices of Refs. [18,20] may be
considered in this sense. This is significant since, for a sufficiently
symmetric lattice, isotropic compression or expansion simply
changes the lattice parameter, leaving the angles between the con-
necting beams in the unit cell invariant. This is a purely axial defor-
mation mode for each beam, implying a linear variation of K with ¢
in networks with high local symmetry. The gyroid lattice, as an
example, indeed has G «x ¢? and K ¢ [18]. On the other hand,
breaking the periodicity by introducing disorder in the lattice will
result in a more general reaction to hydrostatic load, with a mix-
ture of bending and stretching. We may therefore take K = cx¢p*
with the value of the exponent k somewhere in-between the
extremes 1 (for locally ordered structures) and 2 (for disorder).

Recalling the link between the elastic parameters of isotropic
solids, we find that

1 3C(;

VE= 3 T e Gex k-2

(5)
It follows that, within our assumptions, k = 2 of the disordered net-
work gives vg independent of ¢ and smaller than 1/2. By contrast,
k=1 in the limit of high symmetry and order results in a
density-dependent vg that approaches 1/2 in the limit of small ¢.
In other words, the elastic Poisson’s ratio of network solids with
low density diminishes with increasing disorder.

Turning now to experiment, Fig. 4 shows published data for the
elastic and plastic Possion’s ratios of NPG alongside the results of
the present work (in their limit of small deformation, in the inter-
est of comparability). It can be seen that the vg from the various
sources are in good agreement, and specifically the results suggest
that vg is independent of the ligament size. Combining the present
data and that from Refs. [6,15] yields vg = 0.18 + 0.03. Remarkably,
this is significantly less than what is found for conventional metal-
lic foams, for which typically vg is in the range of 0.31-0.34 [17].

In their analysis of an FEM study, Huber et al. [20] advertised
the impact of disorder on the mechanical properties of network
solids. In agreement with our reasoning, their model indeed shows
that disorder diminishes vg, reproducing the experimental
vg ~ 0.18 if the disorder parameter A, defined as the mean square
displacement of the nodes from the lattice sites of the diamond
beam structure, takes the value A = 0.3. This is similar to A = 0.4
that Huber et al. [20] find to best reproduce the stiffness of exper-
imental NPG. The results by Khaderi et al. [18] for the ordered
gyroid lattice imply vg = 0.33 £ 0.01 for the interval of solid frac-
tions, ¢ = 0.25 — 0.28, of the present experiments. In spirit of our
discussion of the role of disorder, the smaller value of the

0,30
| Ve
0,25 O Ref.[6]
A Ref.[15]
go,zo- Ve + " v,
s i%’ ‘=' * | © Ref.[11]
20,154 O Ref.[19]
N i O Ref. [21]
>
~0,10- v
S Y
0,05-
o,oofz . , . .
0 40 80 120 160 200

ligament size [nm]

Fig. 4. Elastic (black) and plastic Poisson’s ratio (red) at low elastic and plastic
strain, respectively, plotted vs. the ligament size. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version
of this article.)

experiment is consistent with the deviation from perfectly crys-
talline order in the network of NPG.

Quite contrary to the elastic Poisson’s ratio, our results for the
plastic Poisson’s ratio in Fig. 4 suggest a significant dependence
the ligament size. This trend becomes even more significant when
results from previous experimental [11,13] studies are included. In
fact, if the trend is taken at face value, then it reconciles the near
zero vp of the molecular dynamics studies [19,21], which explore
extremely small L, with the finite vp of the experiments at lager
L. This is apparent as the straight line through the origin, displayed
in Fig. 4 to emphasize the trend in the vp, is well compatible with
all findings. Thus, a strong variation of vp with L may explain why
different studies arrived at such different conclusions on the mag-
nitude of the transverse contraction.

Similar to vg, the experiments find vp to increase slightly with
proceeding densification. Reproducing this trend in the constitu-
tive framework of Deshpande and Fleck would require that « is
allowed to vary with ¢.

A remarkable finding from the FEM model is that the friction
coefficients are very low compared to what is known for the kinetic
friction coefficient of gold in contact with steel, which ranges from
0.4 to 0.5 [27]. As friction is of technological interest in many sce-
narios, the friction behavior of nanoporous metals might deserve a
closer study.

6. Conclusions

Our study of the transverse mechanical coupling of nanoporous
gold during compressive loading, combining experiment with
finite element modeling, finds the elastic Poisson’s ratio indepen-
dent of the ligament size. As the sample densifies during compres-
sion, Vg increases slightly, from initially around 0.20 to near 0.3.
We present an argument that links the low initial value of vg, as
compared to predictions from lattice-based models for network
solids, to disorder in the ligament network of nanoporous gold.
This notion confirms the suggestion by Huber et al. [20] of the
important impact of disorder on the mechanical properties of net-
work solids.

When combined with literature data from experiments and ato-
mistic modeling, our results suggest the plastic Poisson’s ratio to
scale with the ligament size, L. As the scaling implies vanishing
vp in the limit of vanishing L, the observation is, specifically, consis-
tent with the finding of near zero transverse plastic strain in com-
pression during atomistic simulation studies, which are restricted
to samples with small L.
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Our work finds the Deshpande-Fleck model in good agreement
with experimentals. This finding is remarkable since it demon-
strates for the first time that the deformation of nanoporous gold
can be modeled using a fully homogenized constitutive law.
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