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Purpose: A picking system is presented ensuring order fulfilment and enabling trans-

formation from manual to automated picking using a continuous learning process. 

It is based on Machine Learning for object detection and realized by a human-robot 

collaboration to meet requirements for flexibility and adaptability. A demonstrator 

is implemented to show cooperation and to evaluate the learning process. 

Methodology: The collaborative process, system architecture, and an approach for 

evaluation and workload balancing for order fulfilment and learning of robots during 

picking have already been introduced. However, a practical application is still miss-

ing. A demonstrator is implemented using an agent-based architecture (JADEX) and 

a physical robot (UR5e) with a camera for object detection and first empirical data 

are evaluated. 

Findings: Single components of the demonstrator are already developed, but a 

pending task is to implement their interaction to analyze overall system perfor-

mance. This work focuses on human-robot-interaction (Emergency Call), automated 

generation of images extended by feedback information, and training of algorithms 

for object detection. Requirements of human-machine interface, technical evalua-

tion of image recording, and effort of algorithm training are discussed. 

Originality: Many approaches for automated picking assume a static range of ob-

jects. However, this approach considers a changing range as well as a concept for 

transformation of manual to automated picking enabled by human-robot coopera-

tion and automated image recording while enabling reliable order fulfilment. 
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1 Introduction 

Picking as a major logistic task is the customer order specific composition 

of a subset from a total assortment of goods (VDI, 1994). This composition 

often must be executed by exact number and therefore is often carried out 

by humans due to the impractical level of standardization of processes and 

the resulting needed flexibility (Müller, et al., 2019). This flexibility is based 

on the ability of humans to observe and understand their environment and 

to recognize and grip objects.  

Order picking must often face steadily changing environments imposing 

high requirements on automated systems' flexibility. Recent developments 

in the field of Artificial Intelligence have reached a level of maturity to ena-

ble flexibility and adaptivity allowing the automation of processes only hu-

mans are able to execute so far (Gerke, 2015). But even considering further 

technical and conceptual progress in automated picking, robots will de-

pend on humans in order picking systems. Therefore, an efficient setup of 

an operational human-robot picking system needs a reliable human-ma-

chine interaction (Azadeh, Koster and Roy, 2017). This kind of interaction 

must be integrated into planning and control of order picking systems fun-

damentally. A nearby approach is a cooperative picking environment to 

help robots to fulfil order picking and to support their ability of adaption. 

By developing sensor technologies to ensure the safety of humans the con-

ditions for cooperative industrial applications have been created (Müller, et 

al., 2019). The cooperation of humans and robots is also of major im-

portance in the context of the emergence of Cyber-Physical Systems in In-

dustry 4.0 (Kamarul Bahrin, et al., 2016).  
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The picking environment must be implemented by an architecture ena-

bling the realization of an adaptive robot system as well as the fulfilment of 

picking orders. Agent technology has proven to be a reliable approach by 

transforming heterogenous technical systems into Cyber-Physical Systems 

to realize integrated connectivity. These systems can also be equipped with 

local mechanisms for problem solving (Verbeet and Baumgärtel, 2020). 

(Verbeet, Rieder and Kies, 2019) introduce such an approach. 

Contributions of this paper are the following: (1) definition and creation of 

a data set for training and testing of Convolutional Neural Networks (CNN) 

for object detection during automated picking, (2) training, evaluation and 

selection of CNN, (3) realization of a demonstrator consisting of the training 

environment described by Verbeet et al. (2019) and a virtual picking envi-

ronment, which is implemented as multiagent-system, as well as (4) an 

analysis of a picking system by the demonstrator using selected CNN to 

evaluate the by Verbeet et al. (2019) proposed concept of a feedback loop 

(Emergency Call) in a cooperative human-robot picking system. 

The remainder of this work is organized as follows. The second chapter de-

scribes related work about approaches and technical applications of auto-

mated picking. In chapter three the concept for a cooperative picking envi-

ronment is described, which is used to design the demonstrator presented 

in chapter four to evaluate the resilience of this concept according to order 

fulfilment and improvement of object detection. Chapter five presents first 

empirical results describing the data set, training of CNN for object detec-

tion as well as first experiments. This paper concludes with a critical discus-

sion and a prospect to future research.  
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2 Related Work 

Many approaches exist to encounter challenges in order picking by auto-

mation of processes. In established applications and concepts robots often 

either transport or grasp goods, but rarely carry out the complete picking 

task (EHI Retail Institute, 2019). 

(Wang, Chen and Wang, 2019) propose a heuristic for local routing of dis-

tributed units in a collaborative human-robot picking system. Many ap-

proaches focus on partwise automation by automating transportation 

within intralogistics (Zou, Zhang and Qi, 2019) (Valle and Beasley, 2019) be-

cause the tasks of recognizing and gripping objects during picking are too 

complex to be fulfilled by machines (Jansen, et al., 2018). Kugler and Geh-

lich (2013) propose a goods-to-person picking system by an agent-based 

conveyor system supplying human pickers. Salah et al. (2018) describe a 

human-robot system for apple harvest, in which robots transport apples as 

autonomous bins. 

In contrary to transportation where some degree of standardization can be 

established by loading devices, gripping an object requires high flexibility 

(Müller, et al., 2019), because each object or at least each object class must 

be gripped in its own way (Liu, Huang and Huang, 2019). A common ap-

proach is the creation of a known and controlled picking environment. Mar-

tinez et al. (2015) propose a system for bin picking and Wahrman et al. 

(2019) for shelf picking. An industrial application for bin picking is provided 

by Photoneo (2020). 

Only a few solutions exist to fulfill the whole picking task considering move-

ment to shelves, picking objects and delivery to a transfer place. An appli-

cation in a laboratory environment is provided by Bormann et al. (2019). 
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Magazino realizes an industrial picking robot capable of travelling to 

shelves, picking specific objects (cubic objects) and delivering them to a 

transfer station (Mester and Wahl, 2019). Such systems only provide a lim-

ited ability to adapt to changes of the picking environments or the range 

and look of stored objects concerning reliability of automated object detec-

tion (Wahrmann, et al., 2019). Bormann et al. (2019) and Thiel et al. (2018) 

confirm the need for an adequate amount of training samples in logistics 

environments to enable a reliable object detection. 

One approach to face these dynamics in picking is a human-machine coop-

eration where robots support human activities and humans may compen-

sate a robot's lack of adaptivity (Lee, Chang and Choe, 2018). Werner et al. 

(2017) describe the collaboration of humans and robots in a static assembly 

cell. Rieder and Verbeet (2019) present a process model to realize a cooper-

ative picking system defining an Application-Phase and a Learning-Phase 

to ensure order fulfillment and continuous improvement of robots' ability 

for object detection. This model is extended by Verbeet et al. (2019) by an 

Adjustment-Phase and a Cooperation-Phase as well as by a conceptual 

picking system. Rieder and Verbeet (2020) show how this picking system 

can be evaluated using a capacity evaluation. They define an equilibrium 

between the requirements of order processing, the picking performance of 

humans and robots and the effort for improving object detection. By linear 

programming it can be used for strategic evaluation of the automated pick-

ing performance of robots, for tactical resource planning, and for opera-

tional workload balancing.  
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3 Cooperative Picking System 

The model for a cooperative picking system proposed by Verbeet et al. 

(2019) contains two basics phases for learning and application. Within a 

Learning-Phase an algorithm for object detection is created and improved 

using image data recorded in a controlled environment as well as data from 

operational picking processes. This phase is decoupled from operational 

order picking within an Application-Phase where humans and robots work 

in parallel within a picking environment. A picking robot is supposed to suc-

cessfully grip and withdraw from a storage location after a successful object 

detection, e.g. by a combination of images and depth information as dis-

cussed by Shao and Hu (2019). In case of an unsuccessful object detection 

a robot tries to find a solution on its own by predefined options during an 

Adjustment-Phase, e.g. by moving its camera to a different position. If this 

is not successful, a Cooperation-Phase is triggered calling a human picker 

to support the robot (Emergency Call). 

As an extension to the original concept this support is organized in three 

levels. At first the human picker tries to modify the environment to enable 

the robot to detect the object, e.g. if it is covered or has fallen (Support 

Level 1). When the robot is still unable to detect the object, the human pick-

er marks the object with a bounding box in an image recorded from current 

storage location using an interface provided by the robot. This bounding 

box is used for calculation of a gripping point and the recorded image is 

saved for retraining (Support Level 2). In case of a not successful calculation 

the human picker picks the object to fulfill the robot's picking order (Sup-

port Level 3). However, due to the assumption picking robots can success-
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fully grip every object they can detect, this last support level is not consid-

ered in this paper. The complete process of an Emergency Call is shown in 

Figure 1. 

Verbeet et al. (2019) propose the agent-based system architecture shown 

in Figure 2 to realize the process model. A Warehouse Management System 

(WMS) is responsible for administration of inventory data and initializing 

the allocation of picking orders. Human pickers and picking robots cooper-

atively process assigned orders. Furthermore, a Picture Recording Machine 

(PRM) is used for image recording in a controlled environment (Rieder and 

Verbeet, 2019). These images are stored on a data server and are used for 

training of algorithms for object detection by a computation cluster. Inter-

action patterns define the sequence of messages between components and 

embed it into picking processes. Assignment of orders to human pickers 

and picking robots is of major importance because it enables workload bal-

ancing. It is realized by a one-stage auction process arranged according to 

Contract Net Protocol (FIPA, 2019). The same mechanism is used for the as-

signment of an Emergency Call. 

Figure 1: Support Level 1-3 during the process of an Emergency Call 
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A picking robot can detect each object with a probability dependent on a 

trained algorithm for object detection. Rieder and Verbeet (2020) propose 

an evaluation of the picking system considering system parameters like 

working time (WT), picking capacity of humans (CH) and robots (CR) and a 

demand forecast (DF) to define an equilibrium for system performance: 

CH ∙ WT −
LEC,H,SR

WT
+ CR ∙ WT −

LEC,R,SR

WT
≥ DF     (1) 

LEC,H,SR and LEC,R,SR describe a time effort due to Emergency Calls for hu-

mans and robots considering a probability for object detection (POD) 

weighted with a demand for each object. 

  

Figure 2: Agent-based architecture of a picking system realizing the pro-

cess model according to (Verbeet, Rieder and Kies, 2019) 
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4 Demonstrator 

An approach for a cooperative picking system has been developed and a 

concept how this system can be realized. An architecture has been pro-

posed, its interactions are designed to realize the concept, and its perfor-

mance in terms of picking and learning can be measured. A next step is the 

analysis of empirical data to show the resilience of the concept and to im-

prove the mechanisms and processes. 

Therefore, a demonstrator is created to illustrate the general functionality 

of the approach. It is implemented in two stages, which initially are sup-

posed to work independently of one another: training environment and 

picking system. The training environment enables the recording of images 

and the training of a neural network for object detection. The picking sys-

tem is an agent-based demonstrator in which the trained algorithms are 

used to evaluate the performance of object recognition and the effect of 

Emergency Calls. 
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4.1 Training Environment 

The system architecture to realize the interaction patterns "Picture Trans-

fer", "Model Training" und "Data Update" is shown in Figure 3. For program-

ming agents, the framework JADEX (Braubach, Pokahr and Lamersdorf, 

2011) is used realizing agents following BDI concept (Bratman, 1987) basing 

on the FIPA compliant (FIPA, 2019) framework JADE (Braubach, Lamersdorf 

and Pokahr, 2003).  

Image recording is done by PRM (Rieder and Verbeet, 2019). Its motors are 

controlled by a Hardware Agent implemented on a Raspberry Pi using GPIO 

to trigger motor drivers. Connection to an agent on a desktop PC is estab-

lished by a Mosca MQTT broker (Noren and Müller, 2020). This allows con-

trol of PRM by the services "moveRocker" and "moveTurntable" using FIPA 

conform XML messages. Paho is used as MQTT client (Eclipse, 2020). The 

Photoneo 3D Scanner is connected to the desktop PC via LAN. Image re-

cording of objects is coordinated by a Picture Recording Machine Agent us-

ing Photoneo software PhoXi Control and controlling object positioning by 

Figure 3: System architecture of the training environment 
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services of PRM. A graphical user interface is provided to interact with this 

agent to control image recording. Recorded images are saved locally and 

referred to in a MySQL database managed by a Data Server Agent offering 

necessary services to select or change data.  

The images must be annotated before used for training. The software Yolo 

Mark (Bochkovskiy, 2020b) is used for annotation displaying images and 

object classes. A user marks the objects with a bounding box after choosing 

the appropriate object class. Selected class as well as coordinates of the 

bounding box are saved to a text file. 

A Convolutional Neuronal Network (CNN) is used for object detection 

within the demonstrator. It is being trained with recorded and annotated 

images by the framework Darknet (Redmon, 2016). This training bases on a 

neural network that was pretrained using MS COCO data set (Lin, et al., 

2014) to reduce training duration (He, Girshick and Dollár, 2018). This net-

work is trained using Darknet and CUDA support (NVIDIA Corporation, 2020) 

by a special adaption of YOLO algorithm version 3 (Redmon and Farhadi, 

2018) for Windows (Bochkovskiy, 2020a). Windows 10 (64-Bit) is used as op-

erating system running on a commercial desktop PC equipped with 32GB 

RAM and NVIDIA GeForce GTX 745. The trained CNN is saved locally and is 

referenced in the database. 

Complete automation is not realized yet, i.e. recording, annotation and 

training must be controlled manually. Automated placement of an object 

on PRM is not possible and reliable automation of image annotation within 

such a well controllable recording environment must be evaluated. Anno-

tation must be done highly accurate to ensure training success in follow up 

processes. 
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4.2 Picking System 

The structure of a warehouse's picking zone and the agent types creating 

the multiagent-system to realize the interaction patterns "Picking Order" 

und "Emergency Call" are shown in Figure 4. Again, agents are imple-

mented by JADEX. Their communication is realized by a framework specific 

service-oriented architecture (SoA) based on service interfaces. Physical 

processes are simulated by an idle function within the agents. 

Human and Robot Picker Agents do not have a physical representation yet, 

i.e. it is a completely virtual realization of the picking system. However, the 

agents can be understood as digital twins of the components with their ca-

pabilities and can be extended by hardware interaction in a subsequent 

step. Using a SoA makes the interaction pattern "Client Registry" not nec-

essary, appropriate mechanisms for registry, discovery and invocation are 

provided by the JADEX framework. Furthermore, there is no need for "Re-

mote Control" as there is no hardware. To simplify data evaluation an ad-

ditional Monitor Agent is implemented. The interaction pattern "Learning 

Order" is not realized at this stage of work. 
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Figure 4: Warehouse structure and agent types of the virtual  

demonstrator 

Figure 5: Auction for assignment of a picking order 
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Picking orders are generated by an order generator within a Warehouse 

Agent and are distributed to human pickers and picking robots using the 

auctioning process shown in Figure 5. For simplicity, picking orders consist 

of one order line containing a single object with quantity one. During this 

one stage auction a call for proposal is sent to all human pickers and pick-

ing robots requesting their current workload as well as their estimation to 

execute the transmitted picking order. The Warehouse Agent selects the 

picker with the lowest response value and assigns the order (Verbeet, 

Rieder and Kies, 2019). 

Prerecorded images are used to simulate operational object detection 

within the demonstrator. These images are not included in the data set the 

CNN is trained with and are not used for follow up retraining. For each ob-

ject detection an image is randomly chosen and is handed over to the CNN. 

Each agent contains a list of assigned picking orders which are processed 

one after another in sequence of assignment. To fulfill a picking order, an 

agent moves through the picking zone on shortest path to the waypoint as-

signed to the storage location of a corresponding object. After reaching this 

storage location Human Picker Agents start gripping instantly while a Ro-

bot Picker Agent starts an object detection using Darknet. A successful ob-

ject detection is followed by gripping the object and completing the order. 

If the prediction accuracy is below the certain threshold of 95% a Robot 

Picker Agent tries to achieve sufficient accuracy by recording and testing a 

new image of the current shelf with a maximum of two attempts (Adjust-

ment-Phase).  
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In case of still failing, an Emergency Call is triggered calling a nearby Human 

Picker Agent. This agent interrupts its current activity and moves to the Ro-

bot Picker Agent's position (waypoint) which enables interaction by a GUI. 

Therefore, an Emergency Call is handled by the user modelling the support 

levels "Modify Environment" and "Mark Object" proposed in chapter three. 

The modification of the environment is simulated by loading another image 

followed by an object detection. If the predicted accuracy is below the 

threshold Yolo Mark is started enabling the user to mark the searched ob-

ject. After finishing marking the robot can be released to grip the object and 

complete the picking order. Figure 6 shows a Robot Picker Agent's status 

updates during order processing (left) and the GUI for an Emergency Call 

(right). 

  

Figure 6: Monitor Agent showing processing of a picking order by a Robot 

Picker Agent (left) and the GUI of an Emergency Call (right) 
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5 Empirical Data 

This chapter introduces the data set of images used for training of the neu-

ral network, the network itself and empirical results of object detection. 

Furthermore, neural networks in different training stages are evaluated by 

the demonstrator to estimate their impact on the overall picking system. 

5.1 Data Set 

A data set containing the following 12 objects of different materials is gen-

erated to be used by the demonstrator: a bucket, 4 different ceramic cups, 

a glass, 2 different plastic cups, a key, a charger, a plastic bottle, and a glass 

bottle. These objects are supposed to represent an object set in a realistic 

logistics environment with partially similar shape. Images of this data set 

are grouped into the three categories "PRM-Data" (images created by PRM), 

"EC-Data" (images based on Emergency Calls), and "D-Data" (images to 

simulate object detection). These images are recorded using a Photoneo 

PhoXi 3D Scanner M and are saved as black and white PNG files with 2064 x 

1544 pixels.  
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PRM-Data − Using PRM images are recorded for each object using 18°-steps 

for object rotation (turntable) and 10°-steps for camera angle (rocker) re-

sulting in 200 images for each object. The images are taken as texture im-

ages without additional lighting. They are saved to the data base extended 

by object information (ID, name, group, …) and the recording setup (cam-

era angle, object rotation, …). Each image is annotated by YOLO Mark. PRM 

needs about 21 minutes to record a set of 200 images of one object and 

manual annotation of these images takes about 15 minutes. 

EC-Data − These images are recorded from a demonstrating rack in a logis-

tics laboratory using the same camera model mounted at PRM to simulate 

an operational shelf of a warehouse. Each object is recorded in 90°-steps 

for object rotation and with camera angles at 0°, 22.5° and 45° resulting in 

12 images of each object. The specifications for camera angle and object 

rotation are approximations and are not adjusted exactly for image record-

ing to simulate a realistic logistics environment in which objects are nor-

mally not stored to a specific view. The recording setup is shown in Figure 

7. 

Figure 7: Setup for camera and objects for image recording of EC- and D- 
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Table 1: Data set categories and recording specifications 

Data set Camera angel Object rotation No. of images 

PRM-Data Range: 0°-90° 

Step: 10° 

Range: 0°-342° 

Step: 18° 

2400 

EC-Data Range: 0°-45° 

Step: 22.5° 

Range: 0°-270° 

Step: 90° 

144 

D-Data 22.5°  Range: 0°-330° 

Step: 30° 

144 

 

D-Data − These images are recorded with the same setup as EC-Data but at 

a fix camera angle of 22.5°. This seems to be the most realistic angle of view 

considering shelfs of racks. Objects are rotated in 30°-steps leading to 12 

images of each object. Similarity to EC-Data is desired. Table 1 gives an 

overview of applied camera angles and object rotations as well as the num-

ber of resulting images of the data sets. Figure 8 shows exemplary images 

from the different data sets for one object class. 

 

https://www.dict.cc/englisch-deutsch/similarity.html
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5.2 Training and Testing of Neural Network 

This section describes training, testing, and evaluation of the neural net-

work. During testing an image is given to a CNN. It analyzes the image by 

means of the 12 trained object classes resulting in several detections each 

with a probability of object detection greater than 25%. Figure 9 shows the 

different steps of training and testing as well as used data sets and resulting 

neural networks. 

  

Figure 8: Object "ceramic cup 2" in PRM-Data with different camera angles 

and 90°-step rotation (top), EC- and D-Data recorded with cam-

era angle of 22,5° and 90°-step rotation (middle, bottom) 
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Predictions of a neural network for an image are classified into True Posi-

tives (TP) (correct prediction: correct object class and location), False Posi-

tives (FP) (false prediction: false object or incorrect located) and False Neg-

atives (no prediction but image contains searched object). A TP is a correct 

result leading to a successful pick whereas FP can provoke errors during 

operations, e.g. by damaging an object or by picking a wrong object. FN give 

a hint that a specific object is not trained in a satisfying manner and for fur-

ther data must be collected by Emergency Calls. 

5.2.1 Training with PRM Data 

The initial training of the CNN with PRM-Data (2400 images) lasts for about 

14.5 days. For this training, the data set is randomly divided into 75% train-

ing and 25% validation images. It is evaluated and steered by an average 

loss being calculated after an iteration each using a random subset of 64 

Figure 9: Training and testing of neural networks 
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images. Bochkovskiy (2020a) recommends the number of iterations to be 

calculated by 2000 times the number of object classes within the data set, 

i.e. training with PRM-Data terminates after 24000th iteration. Training with 

PRM data starts with an average loss greater than 1400, decreasing expo-

nentially, and reaching an average loss of 1 at about 500 and 0.5 at about 

1000 iterations. It gets steady at about 5000 iterations with an average loss 

of 0.05 and stops with 0.014 after 24000 iterations. 

 

Table 2: Detections of CNN trained with PRM-Data (1k to 24k) tested 

against EC-Data 

Cam-

era  

angle 

Num-

ber  

of tests  

Detections = 

0 

(negative) 

Detections > 

0 

(positive) 

TP FP 

0° 

22.5° 

45° 

1152 

1152 

1152 

511 

240 

289 

44.4% 

20.8% 

25.1% 

641 

912 

863 

55.6% 

79.2% 

74.9% 

320 

682 

612 

36.0% 

58.6% 

57.9% 

570 

481 

445 

64.0% 

41.4% 

42.1% 

 

A CNN is saved after each 1000th training iteration and is tested against EC-

Data. The number of detections can be greater than the actual number of 

images as there can be more than one prediction for an image. However, 

only one prediction can be correct because an image of EC-Data contains 

only one object. The results of the analysis are shown in Table 2 and reveals 

the CNN work best on images recorded from a camera position of 22.5° 

showing higher rates of TP than angles of 0° and 45°. Furthermore, the rate 

of FN is almost the same. This accompanies a camera angle of 22.5° to be 
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used in operational processes enabling an unblocked view on a stored ob-

ject in a shelf. The steeper this angle the less insight into the shelf.  

To evaluate which stage of training should be used for object detection the 

CNN after each 1000th iteration is tested against EC-Data at 22.5°. The re-

sults are shown in Figure 10. After 8000 iterations the gap between TP and 

FP implies a reliable object detection. Because the levels of TP and FP are 

also better than after 24000 iterations, in addition to the recommended 

CNN after 24000 iterations (CNN_24k) the training stage after 8.000 itera-

tion is also considered during the following evaluation (CNN_8k). 

5.2.2 Retaining with EC Data 

CNN_8k and CNN_24k are retrained with EC-Data to evaluate the impact of 

training an existing network with a few operational images initially trained 

Figure 10: Test of training stages against EC-Data at a camera angle of 

22.5° (48 images) 
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with laboratory data. Retraining starts with an average loss value smaller 

than 0.7 resulting from the initial training with PRM-Data. During retraining 

about 70 iterations are calculated per hour which is a similar performance 

as during initial training with PRM-Data. After 200 iterations the number of 

TP increases and the number of FP declines significantly.  

 

Table 3: Test of CNN 8k, 24k, 8k_RT, and 24k_RT against D-Data 

 CNN_8k CNN_8k_RT CNN_24k CNN_24k_RT 

True Positive 98 52.4% 138 92.0% 78 46.7% 137 89.5% 

False Positive 73 39.0% 10 6.7% 75 44.9% 14 9.2% 

False Negative 16 8.6% 2 1.3% 14 8.4% 2 1.3% 

∑ 187 100% 150 100% 167 100% 153 100% 

 

Figure 11: Test of CNN 8k, 24k, 8k_RT, and 24k_RT against D-Data 
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Because this trend converges at about 400 iterations only the first 1000 it-

erations are considered. The retraining for 1000 iterations lasts 14.3 hours 

for CNN_8k and 15.3 hours for CNN_24k. The resulting CNN "CNN_8k_RT" 

and "CNN_24k_RT" (RT = retrained) are each tested against D-Data. The re-

sults are shown in Figure 11. After 1000 iterations of retraining CNN_8k_RT 

and CNN_24_RT show similar behaviour. In Table 3 the results from testing 

all selected CNN against D-Data is shown. Comparing CNN_8k and CNN_24k 

reveals CNN_8k performing better by reaching a higher number of TP. 

5.2.3 Evaluation of object classes 

Further analysis evaluates single object classes. POD is computed by calcu-

lating an average probability for a true positive object detection for each 

object class. Some objects already show a POD greater than 90% after test-

ing CNN_8k and CNN_24k against D-Data, but some do not get even one 

single positive detection (0%). By using CNN_8k_RT and CNN_24k_RT a 

great improvement can be reached for all classes except ceramic cup 3. The 

results for all objects classes are shown in Table 4. 
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Table 4: 𝑃𝑂𝐷 for all object classes resulting from testing against D-data 

Object class CNN_8k CNN_8k_RT CNN_24k CNN_24k_RT 

bucket 23,5% 99,8% 6,1% 100,0% 

ceramic cup 1 19,3% 97,3% 0% 99,7% 

ceramic cup 2 0% 83,3% 0% 91,5% 

ceramic cup 3 90,8% 70,8% 86,9% 60,1% 

ceramic cup 4 87,2% 100,0% 89,3% 91,7% 

glass 54,4% 99,9% 22,1% 99,9% 

plastic cup 1  65,8% 99,7% 29,7% 100,0% 

plastic cup 2 30,6% 99,8% 11,8% 100,0% 

key 0% 86,4% 31,3% 93,4% 

charger 73,3% 91,2% 80,9% 91,6% 

plastic bottle 76,9% 99,4% 48,6% 99,0% 

glass bottle 92,8% 100,0% 91,0% 99,8% 

 

Analyzing FP data reveals occurring misdetections between certain objects. 

Figure 12 shows a group of objects having a very similar appearance caus-

ing 9 of 12 misdetections of CNN_8k_RT and 9 of 14 for CNN_24k_RT. The 

images are taken from D-Data with an object rotation of 60° and 180°. The 

object "ceramic cup 1" has a slightly different form and a darker surface, 

therefore it is not affected by misdetections. These images show the chal-

lenge to distinguish between these object classes. 
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5.3 System Evaluation 

All 12 objects of the data set are assigned randomly to a shelf within the 

picking zone described in section 4.2 to evaluate the efficiency of the 

trained CNN. 720 predefined picking orders are generated by the order gen-

erator containing each one order line with a single object with quantity one 

uniformly distributed over all objects as a forecast for one hour. Picking or-

ders of real systems may contain more than one order line but this config-

uration simplifies parameter setting and evaluation. However, multi order 

line orders can be interpreted as a sequence of several single order line or-

ders. Orders are fulfilled by two human pickers and two picking robots us-

ing CNN_24K for object detection. 

Figure 12: Similarity of ceramic cups with 60° and 180° (images enlarged) 
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At first this scenario is evaluated by the capacity planning according to 

Rieder and Verbeet (2020) shown in chapter three. The calculation of LEC,R 

is extended by a duration for object detection t4 during Adjustment-Phase. 

Used parameters and formulas are shown in Figure 13. The optimization 

(CPLEX OPL Studio 12.8.0.0) considers picking capacity, expected object 

detection performance by CNN_24k and the time effort caused by Emer-

gency Calls. It shows that fulfilment of all picking orders of the forecast is 

possible. Capacities are almost used completely with CH= 552 and CR= 182.  

As SubsetRobot contains only objects with a high POD dynamic order assign-

ment during simulation will not result in complete order fulfillment within 

one hour. System performance is evaluated by measuring the degree of or-

der fulfilment as well as current workload of human pickers and picking ro-

bots. 

Figure 13: Formulas and parameters for system evaluation 
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The progress of order fulfilment during simulation is shown in Figure 14. 

Confirming expectations released orders cannot be fulfilled completely 

within one hour due to 55 triggered Emergency Calls leading to an order 

backlog of 176 orders. Using CNN_24k_RT in a second run almost every or-

der can be completed successfully while only a single Emergency Call is 

triggered. The backlog of 7 orders after one hour results from the delay be-

tween order release and order processing.  

  

Figure 14: Results of simulation using CNN_24k and CNN_24_RT 
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6 Discussion 

Contributions of this paper are the definition and creation of a data set con-

taining data for training and testing CNN for object detection, the training 

and evaluation of these CNN to enable picking, and the implementation of 

an agent-based demonstrator to create empirical data to evaluate the con-

cept of a feedback loop within a cooperative human-robot picking system. 

12 objects of different material are selected to evaluate the cooperative 

picking system representing objects of a realistic picking zone with partially 

similar objects. For an initial training 2400 images are recorded, for retrain-

ing and testing each 144. Because no additional lighting is used during re-

cording it results in quite dark images showing barely recognizable objects. 

The intention is to create realistic images showing the impact of a small 

data set during initialization of an automated system. Even if the number is 

quite small and some images are bad illuminated object detection provides 

good results. Images are saved as black and white data not containing as 

much information as RGB data, but the used 3D-scanner only provides tex-

ture information in a black and white mode. Furthermore, each image con-

tains a single object to simplify image recording and evaluation. The oper-

ational images the trained CNN are tested against are recorded with a cam-

era angle of 22.5°. Nevertheless, images recorded by PRM between 0° and 

90° are also useful because the effective angle of operational object detec-

tion may match these angles due to positioning of the object, e.g. images 

from above (0°) become relevant if the object is on side. The presented re-

sults encourage to pursue the presented approach. Evaluating industrial 

applications might need to extend data set with images containing more 

objects from different classes as well as fallen or damaged objects enabling 
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development of error handling strategies for misclassification during ob-

ject detection.   

The authors of this work support the thesis images from a laboratory envi-

ronment can be used to train a CNN for object detection in real picking en-

vironments. It is shown a well performing CNN can be trained with only a 

few iterations and a small data set. However, during training each interim 

stage must be analyzed to select the best performing CNN while ensuring 

the ability to adapt to new objects by retraining, which is a necessary ability 

in logistics environments with a dynamic object range. Furthermore, only a 

few images from a close to reality setting is necessary to adapt a CNN by 

retraining with laboratory generated images to significantly improve per-

formance. This training approach seems reliable for logistics applications 

and should be evaluated by further research to confirm the promising re-

sults for object detection. The handling of false positive predictions pro-

vided by a CNN must also be considered in further developments by imple-

mentation another double check mechanism to avoid false friend picking.  

Simulation of the picking system by the virtual demonstrator using the 

trained CNN reveals weaknesses within the basic mechanisms of order re-

lease and order assignment. A predictive capacity utilization is prevented 

by the evenly distributed order release. Therefore, performance of order 

picking is limited by released orders, which means a later drop in perfor-

mance due to Emergency Calls is difficult or even impossible to make up 

for. This effect can be observed particularly during CNN_24k simulation. 

The previous calculation of a possible order distribution by optimization 

does not adequately consider system dynamics since the subsets are de-
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fined pure in sorts using objects with a high POD. With additional time con-

straints the resilience of the subsets could be increased. An evenly distribu-

tion of picking orders between pickers by the auction mechanism is pre-

vented by triggered Emergency Calls. The reason is the immediate distribu-

tion using a local order list within each agent. This leads to the effect human 

pickers are running out of picking orders while picking robots still must pro-

cess several picking orders at the end of working time during simulation. 

Therefore, agents should either be given the option to take over picking or-

ders from other agents or the local order lists must be restricted to ensure 

a balanced distribution. An alternative approach is a mechanism for a pre-

selected order assignment described by Verbeet et al. (2019) to control or-

der distribution considering critical objects with a low POD. 
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7 Conclusion 

Automation of transport, object detection and gripping within picking pro-

cesses are major challenges for robots. One approach is a cooperative hu-

man-robot picking system to ensure a fallback for order fulfillment and to 

support robots in a dynamic learning process by a feedback loop (Emer-

gency Call). An agent-based demonstrator should examine the resilience of 

this approach. The proposed system is divided into an environment for con-

trolled image recording and training of a Convolutional Neural Network 

(CNN) for object detection as well as a picking environment for order fulfill-

ment and operational image recording. Currently the picking environment 

is implemented virtually as multiagent-system, but a connection to physi-

cal components is possible and planned. A data set consisting of laboratory 

images (PRM-Data) and operative images (EC-Data) for the training of the 

CNN is created. The CNN is trained with this data set, is tested against addi-

tional operational data (D-Data), and is evaluated by a simulation using the 

virtual picking environment. The results show that even with a few images 

gathered by a feedback loop and low training effort good results can be 

achieved in automated object detection. For an industrial application, how-

ever, further development is necessary. 

The evaluation of trained CNN shows the challenge to find a best fitting con-

figuration and training stage considering all objects. This problem may in-

crease in a real setup considering thousands of objects. One possible ap-

proach is the training of many specialized CNN with a single object or a 

group of similar objects. Because the system knows which objects are 

stored at which shelf a specific CNN can be chosen for object detection. The 

results gained from these special CNN can also be marshaled and evaluated 
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by an additional mechanism to provide an even more reliable object detec-

tion. Thereby, the effort for initial training and retraining may be reduced 

while retaining the ability to adapt to a changing object range. The demon-

strator is planned to be extended by a physical picking station realized by a 

UR5E robotic manipulator embedded into the multiagent-system, i.e. a 

new agent type will be implemented as digital representation to control the 

robot. Recording of images using PRM cannot be automated, but the train-

ing environment and the demonstrator can be linked to automate retrain-

ing of CNN. Both systems are already realized as multiagent-systems. Dur-

ing writing this paper version 4 of YOLO was published (Bochkovskiy, Wang 

and Liao, 2020). Assuming this new version improves performance of object 

detection the demonstrator should be updated and tested. 
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