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VARIANTS OF IDR WITH PARTIAL ORTHONORMALIZATION*

JENS-PETER M. ZEMKEf

Abstract. We present four variants of IDR(s) that generate vectors such that consecutive blocks
of s + 1 vectors are orthonormal. IDR methods are based on tuning parameters: an initially chosen,
so-called shadow space, and the so-called seed values. We collect possible choices for the seed values.
We prove that under certain conditions all four variants are mathematically equivalent and discuss
possible breakdowns. We give an error analysis of all four variants and a numerical comparison in the
context of the solution of linear systems and eigenvalue problems.
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1. Introduction. We present four computationally different IDR(s) variants
that are based on orthonormalization of every s+ 1 vectors computed in the recurrence.
IDR(s) [15] is a recent Krylov subspace method for the solution of linear systems
[15, 18, 17] or eigenvalue problems [5, 9]. IDR is an acronym for induced dimension
reduction; a quite recent! technique in the setting of Krylov subspace methods. There
exist several different implementations of IDR(s), but the implementation in [17]
is the only published one that computes vectors such that every s 4+ 1 consecutive
in the same space are orthonormalized. We call IDR methods with this property
“IDR, with partial orthonormalization” and present three other IDR variants with
partial orthonormalization. We prove that in the generic case the four variants are
mathematically equivalent, with the exception of possible additional breakdowns of
the variant in [17]. We classify breakdowns of all four variants and give a simple a
posteriori error analysis, i.e., the recurrence error is bounded in terms of the computed
quantities. IDR is related to the two-sided Lanczos process and suffers from the same
possible breakdowns, making an a priori error analysis more or less impossible.

1.1. Motivation. In the IDR variant in [15] several vectors in the same space
are computed that are differences of residual vectors corresponding to a linear system
of equations to be solved. This minimizes the amount of vectors that have to be
stored at the price of additional instabilities. In [18] linear combinations of these
vectors are used that simplify the algorithm and speed up the solution process of
small linear systems that arise in IDR(s). It is hard to predict whether this local basis
transformation makes the method more stable than the original one. As a remedy we
used in [17] orthonormalization of the computed vectors in the same space. Numerical
experiments suggest that the latter variant is the most stable of these three variants.
At the same time we experimented in [9] with different ways of generating the new
vectors in the spaces, combined with the orthonormalization used in [17]. In this note
we introduce the four most interesting variants we tested, prove the mathematical
equivalence in the generic case, give a common rough error analysis of all four variants,
and showcase with two toy examples the typical behavior of the four variants in the
context of linear systems and eigenvalue problems.

1.2. Notation. We use standard notation. Matrices are denoted by capital bold
letters A € C™*", its columns by small bold letters a;, 1 < j < n, and its elements
by small letters a; ;, 1 < 4,j < n. The identity matrix is denoted by I,, € C**", its
columns by e;, 1 < j < n, its elements by Kronecker delta d; ;, 1 < 4,7 < n. O denotes
a zero matrix, o a zero vector. A is the (elementwise) complex conjugate of A. A
lower bar appended to a matrix or vector like H,, € C(m*U*™ or e, € C™*! indicates
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one extra row appended at the bottom of H,, € C™*™, e; € C™, with the exception
of z,, € C™, x,, € C", and r,, € C", which are quantities related to H,, € C™*™
and e; € C™. The inverse, Moore-Penrose pseudo-inverse, transpose, and complex
conjugate transpose are denoted by appending ', f, T, and M, respectively. Spaces are
denoted by capital calligraphic letters, vectors from this spaces are usually denoted
by the same small bold letter. For x € R, |z] € Z is the largest integer with [z| < z.
Similarly, [z] € Z is the largest integer with x < [«]. Inclusion of sets is denoted by
C, strict inclusion is denoted by C.

1.3. Outline. In section 2 we gather basic definitions and present the IDR
theorem, the core of all IDR methods. Section 3 contains a generic IDR algorithm and
the four IDR algorithms with partial orthonormalization. We introduce the concept
of the so-called generalized Hessenberg decomposition that describes the computed
quantities in theory, and give a brief sketch how to apply IDR in the context of
linear systems and eigenvalue problems. Section 4 is devoted to the choice of the
so-called seed values. In section 5 the mathematical equivalence of the four algorithms
is analyzed and different types of breakdown are classified. Section 6 is devoted to an
error analysis of all four IDR algorithms with partial orthonormalization. In section 7
we present two numerical examples, one for a linear system and one for an eigenvalue
problem. We conclude in section 8 with how to select the appropriate variant.

2. Basics. IDR methods comprise a class of Sonneveld methods; Sonneveld
methods comprise a class of Krylov subspace methods. Our definition of Krylov
subspaces is tailored to define a class of Sonneveld methods that includes the prototype
IDR(s) of [15]:

DEFINITION 2.1 (Krylov subspaces). Let A € C"*™ and q € C™. We define the
right Krylov subspaces

K;:=K;(A q):=span{q,Aq,..., A 'q} = {p(A)q | deg(p) < j} j>1,

Ko i= Ko(A,a) i= {0}, K i= K(A,q) i= Kn(A, q). 2

Let additionally Q = (al, ... ,as) € C™*s with full rank s, typically s < n. We define
the left block Krylov subspaces

IE() = IC()(AHa Q) = {o},

R N j—1 - s (2.2)
K= 1A%, Q) = {3 (A" Qei e e €} = YK (A% @), > 1.
1=0 i=1

Just like Krylov subspace methods are based on Krylov subspaces, Sonneveld
methods are based on Sonneveld spaces [13, Definition 2.2, p. 2690]:

DEFINITION 2.2 (Sonneveld/IDR spaces; seed polynomials/values). Let p € C[z],
AeCr qeC", and Q € C"** with full rank s. We define the Sonneveld space

P(p. A, Q) = p(A)(K(A, ) N Kaeg(p) (A", Q)1). (2.3)
In this paper we focus on the IDR spaces
G, :=P(M;,A,q,Q), j>0, (2.4)
where the seed polynomials M;, j > 0, are defined recursively by

Mo(z):=1, M;(z):=(z—p;)M;_1(z), j=>1. (2.5)

The roots jj, j > 1, are called seed values.
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The following theorem states some well-known properties of IDR spaces. In
particular, they are nested and can be represented recursively without referring to A:

THEOREM 2.3 (IDR Theorem). Let S := {v € C" | Qv = o} = ICl(AH,Q)J-.
Then

gO = IC = K(A7q)7

2.6
Gi=(A—-w;I)V,_1, where V;_1:=G;.1NS, j=1 (2:6)

In particular, it holds that G; C Gj_1, j = 1.

Suppose that Gy and S do not share a nontrivial invariant subspace of A, and that
p; & spec(A), j > 1.

Then there exists a uniquely defined joo € No, joo < m, such that the first joo
inclusions are strict,

G, C G, 1<) <jw: and G;_ = {o}. (2.7)

Proof. See [15], [11, Theorem 11, p. 1104, Note 2, p. 1105]. O
By (2.7) and (2.6) of Theorem 2.3 it follows that

0 <dim(Gj_1) —dim(G;) < codim(S) =35, 1< j < joo- (2.8)

In [15, p. 1043] it is stated without proof that if S is a random space, then, with
probability one, dim(G;_1) —dim(G;) = s, 1 < j < [n/s| = joo — 1. This is referred to
as the generic case in [15].

Sonneveld methods and IDR methods are methods that compute approximations
(e.g., to eigenvectors or to the solution of a linear system) that are linear combinations
of vectors in a Sonneveld space and in an IDR space, respectively. IDR methods are
Sonneveld methods, but not vice versa.

The approximations computed by a Sonneveld method take the form G,c,, for
cn € C" and G, = (gl,...,gm) with columns gi1,892,...,8m € K, m > 1. In
contrast to Krylov subspace methods like the Arnoldi method [1] and the Lanczos
method [7, 8], we do not enforce rank(G,,) = m in a Sonneveld method. In an IDR
method, typically m — |m/(s+1)] < rank(G,;,) < m, compare with the structure of
Gongr in (2.11).

In the generic case, dim(G;-1/G;) = s, 1 < j < joo. The known IDR algorithms
compute s + 1 linearly independent vectors g(;_1)(s4+1)+1,- - ->8j(s+1) that lie in the
set Gj—1\ Gj, 1 < J < joo; the first s vectors comprise the representatives of a basis of
the quotient space G,;_1/G;, the last vector is an auxiliary vector to guarantee that
the intersection span (g(j—1)(s+1)+1,- - - 8j(s+1)) NS contains a non-trivial vector. To
ease the presentation of the algorithms in the next section, we define the local IDR
matrices

ng—l) = (g(jfl)(s+1)+17 . agj(s+1)71)7

. , j=1, (2.9)
(G-1) ._ -1
G/l = (GY Y, gjern),
and the local IDR vectors
g/ =gy 1<h<s 41, 5> (2.10)

The matrix Ggﬂ_]l) contains all s + 1 vectors in G;_; \gj, the matrix G‘(gjfl) only the
representatives of the basis of G;_1/G;. The global matrix G,,1 is given in terms of
local matrices and vectors by

0 ) - ) )
Gm-‘rl = (Ggﬁl’G.(sﬁzlv : ~>ng+1 )agy)v s 7g1(€j)
o m+1
Tl s+1

(2.11)

),
J, ki=(m+1)—j(s+1), m=0



3. Algorithms. In this section we describe algorithms that compute unique
vectors

k—1
s+1

gr € Kp\ Kr—1, gr €0y, j—{ J 1<k<m+1, (3.1)

based on the assumption that the vectors constructed in two consecutive G; spaces
are linearly independent except possibly the last, and that no linear combinations of
the first s vectors constructed in each G; are in the kernel of QH,

(3.2a)

1
rank(ng-l-ll ag() ,g(J)):25+1’ 1<.7< \‘m—"_ J

s+1
m+1
s+1

rank(Ggﬂ;D?ggj), . ,gfi) jsin) =5+ 1+ m—j(s+1), j= { J ; (3.2b)

m+1
s+ 1

rank(QHng)) =s, 0<j< L (3.2¢)
this we term the generic case. First we present a generic IDR algorithm to compute
the vectors gi,...,8m+1 under this assumption. We derive four computationally
different variants of it, these are named srIDR, fmIDR, mnIDR, and ovIDR. Afterwards
we specialize the generic IDR algorithm to an IDR algorithm that has the property
that all ng+)1 are orthonormal,

N \H G .
(GIN"GY), =1, j>0. (3.3)
We term this algorithm IDR with partial orthonormalization.

3.1. Generic IDR. In this section we derive our generic IDR algorithm that
includes all known IDR algorithms as special cases.

Let the function [h1,0,H,,, Gmy1] < Krylov(A,q,m) denote a generic Krylov
subspace method that computes a matrix G, +1, im(Gp41) = Knt1(A, q), a scalar
hi o such that G,,+1e,h1,0 = q, and an extended Hessenberg matrix H, ,, such that
the Hessenberg decomposition

=m)

is satisfied. Algorithm 1 with a rule for the computation of the scalars h; ; € C results
in any Krylov subspace method; these scalars might be given, e.g., the power method
is obtained for h; ; = ;1 k, or they might be computed in Algorithm 1, an example
is Arnoldi’s process given here in pseudocode as Algorithm 3.

Algorithm 1 Krylov (generic variant)

INPUT: A € C"*"; qe C"; m e N.

OUTPUT: h1 o€ C; H,, € Clm+lxm, G | e Crx(m+1),
1: g1 < q/h1o;
2: for k=1:mdo

3 gry1 < (Agy — Y gihik) /Pt 3
4: end for

To highlight the dependency on the basis used to define the shadow space we write
ker(QH) in place of S in the IDR algorithms. The generic IDR, algorithm is given as
Algorithm 2.

In Algorithm 2, there is a lot of freedom: the choice of the starting Krylov subspace
method (line 1), the computation of the seed values (line 5), the solution of the s

consecutive underdetermined systems (line 9), and the choice of the scalars hgjlz (line 7,
line 12).



Algorithm 2 IDR (generic variant)
INPUT: A € C"™*"; q € C"; Q € C™; m € N.

OUTPUT: Gppyq € CPXmAD. % see (2.11)

1: [hg?%,ﬂgo),(}ig_)l] + Krylov(A, q, s); % im(Ggl) =Ks11 C Go

2. for j=1...do ,

5o — (QUGYT) @) % see (32)

# vy gl - eV Ve % vy €im(GYLY) Nker(QM) € v,
5. choose p; % discussed in section 4

6 r e AV — v % e (A - DV, 1 =G;

r e ) Lel ed,

8¢ fork=1:sdo . _ _ N

9 solve QH(GSJ:I ),ggj)7 s g,(j_)l)cl(g) = QHgI(CJ); h see (3.8)
o v gl — (@l gl e v eV
11: r,(cﬂ)_l — AV](CJ) — V,(f)uj; % rg_zl €g;

, / . N , oo

2 gl o (- S e R % el €05
13:  end for

14: end for

The choice of the scalars in the starting Krylov method and in line 7, line 12 will be
used to derive our IDR algorithm with partial orthonormalization; the solution of the
underdetermined systems in line 9 defines our four variants srIDR, fmIDR, mnIDR, and
ovIDR. Mathematically speaking, the selection of the seed values is not very important,
from a numerical point of view it is; the selection of appropriate seed values will be
discussed in section 4.

We assume that (3.2) is satisfied and show that for any fixed choice of the free
parameters, provided the algorithm does not break down, it generates vectors g
that satisfy (3.1): In line 1 a matrix Ggr)l is computed with im(Gg(ﬂl) = Ks+1 C Go.

We recall that Ggr_ll) satisfies assumption (3.2) and that im(GgJ:ll)) C Gj_1. By
assumption (3.2¢), the Sonneveld coefficients céj) can be computed in line 3, and

determine a vector v(()j ) in the intersection Vi—1 =G;—1NS in line 4. By a dimensional

argument this vector is unique up to scaling if dim(im(ngil) + 8) = n, since

dim(im(GY V) N S) = rank(GY M) + dim(S) — dim(im(GYSV) +8) > 1. (3.5)

s+1 n—s <n

It is easy to prove that (3.2c) implies dim(im(Gg]:ll)) + S) = n. To ensure a nonzero
component in the direction of the latest ggzl, we scale v(()j ) such that this component
is one, which results in the linear system in line 3. We are free to choose a new
seed value in line 5, which uniquely determines the next IDR space G;. Possible
selection schemes are discussed in section 4. In line 6 a first vector r(lj ) € G is
computed. As no more information about G; is available at this step, the only possible
transformation is a scaling, e.g., normalization. This is done in line 7 and results in the
first ggj) € G;. To repeat the whole procedure on the next level, we need s additional
vectors 31221 € G, 1 <k < s. Here we make use of the fact that G; C G;_;, which

implies that im(Ggi_ll),ggj), e ,g,ij)) C Gj_1. By assumption (3.2a) and (3.2b),

rank(Ggi_ll),ggj),...,g,g)) =s+k+1, (3.6)
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so we can use a dimensional argument like in (3.5):

dlm(lm((G(ﬂrll),gy), e g(J))) nsS)
= rank(GY Y, g .. g) 4 dim(S)
——
s+k+1 n—s
- dlm(lm((G(ﬂrll),ggﬂ, e ,g,(cj))) +S)>k+1. (3.7)

<n

Again, assumption (3.2¢) implies dim(im((Gij_Hl), gg ), o ,g ))+8) = n. The vectors
vgj), ... ,V](CJ) in the intersection |m(G(J+11),g§J), . 7g ) NSCGi_1NS=V;_; are
not uniquely defined. We are looking for a linear combination of the vectors in G;_1
that are known at this step, which lies in §. To ensure that the right Krylov subspace
is expanded, K ~» Kgy1, we scale the component of the current vector g(J) to one,
which results in the underdetermined linear systems in line 9. By assumption (3.2¢),

the s X (s + k) matrix in line 9 has full rank s for 1 < k < s,

> rank(QH(G! g Mg ,g,(f)l)) > rank(QGU—1) = s, (3.8)

thus the underdetermined systems are all solvable. We present four variants that

(J)

result in uniquely defined vectors vy, ... ,V](cj ), Typically the four variants compute

different v(j), . (])

e srIDR: We set the k first components of ck ) ¢4 zero; this results in the shortest

recurrence possible, as we no longer need the vectors g(] 1) . 7g(7 D This
might not always be possible, as the rank of the matrix

1) j—1 j SX S
M<Jk) QH (g](ngrl a"'vggj-t,-l )7g5j)7"'agk 1) (C X (39)
might be less than s. The Sonneveld coefficients of srIDR are given by
RO Ok )
: s —1Aan () ) - 3.10
% ((Mgﬁ"”) Qg (3.10)

This variant is used in [15, 16, 18, 17].
e fmIDR: We set the k last components of cl(f ) to zero; this results by assump-
tion (3.2¢) in a non-singular matrix

M) =M = QHGYY e coxe (3.11)

that is used for s + 1 consecutive steps; we use the factored matriz more than
once. The Sonneveld coefficients of fmIDR are given by

) (1))~ GH )
e = ((Mfm> Qg ) (3.12)

Of,
This variant is used in [13].
e mnIDR: We compute the minimum-norm solution of the underdetermined
system and use the full-rank matrix
MG = QUGEY e, gl ) € C i, (3.13)
The Sonneveld coefficients of mnIDR are given by
7),mn i A ]
c]&’)' = (M) QHg,(CJ). (3.14)

This variant has been described first in [9], it is used in numerical examples
in [22].
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e ovIDR: We use the k degrees of freedom to orthogonalize against the computed
(J) (4

vectors vy ~,..., v, ,, which have to be stored, thereby increasing the storage.
We deﬁne
V,E;j) = (v(()j) v,(fj)l) € Ccxk (3.15)
and
MG = (Q VMG gl g))) € ClrhxtHh (316

The Sonneveld coefficients of ovIDR are given by
N o g~ A A
o= (MEP) (@, Vi) el (3.17)

This variant has not been published before.

Regardless of the variant used, in line 10 unique vectors v,(cj ) e V;_1 in the intersection

are computed. These are mapped to vectors r,(jll € G; in line 11. As in step k of the

inner loop already k previously computed vectors g(] ) exist, we can compute linear
combinations with these without leaving G;, and we can scale the result. This is done

in line 12, where g,gj}_l € G, is computed. In this manner the algorithm computes s + 1

vectors ggj), e ,gg_H € G; and we can move to the next level.

The srIDR variant in [15] is based on scalars h; , that sum column-wise to zero,
Zf;rll hi =0, the srIDR variant in [18] uses these scalars to enforce eTQHgk+1 =0,
1 < i<k < s, the fmIDR variant in [13] uses them to orthonormalize the vectors

(j ). (j ). A natural idea, first mentioned in [9] and first published for srIDR in [17],

is to orthonormahze the resulting vectors g(] ). , g§]+)17 the more general algorithm is

described in the next subsection.

3.2. IDR with partial orthonormalization. In this subsection we special-
ize Algorithm 2 to an IDR algorithm with partial orthonormalization. We re-
place the generic Krylov method given in Algorithm 1 by Arnoldi’s process [1],
[h1,0,H,,, Gmt1] < Arnoldi(A,q,m), see Algorithm 3. This ensures that G(+1 is
orthonormal, see (3.3).

Algorithm 3 Arnoldi
INPUT: A € C"*"; qe C*; m € N.
OUTPUT: hyo € C; H,, € Cimtxm, G .\ e Crx(mtl),
L hio < alf;
2: g1 ¢ q/h1o;
3: for k=1:mdo
4 Ty < Agy;
5 fori=1:kdo
6: ik < 85 Try1;
7. end for
8
9

Pe+1 < g1 — Zi’c=1 gihi ks
o gk < |[Pralls
10: @ry1 & Prrt/ Py ks
11: end for

We add the orthonormalization scheme to Algorithm 2 to ensure (3.3), and replace
the solution of the underdetermined systems in line 9 of Algorithm 2 by one of the
variants srIDR, fmIDR, mnIDR, or ovIDR to obtain Algorithm 4, IDR with partial
orthonormalization.

3.3. The generalized Hessenberg decomposition. In this subsection we
collect the relations between the vectors constructed and the scalars used into matrix
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Algorithm 4 IDR (partial orthonormalization)
INPUT: A € C"™*"; q € C"; Q € C™; m € N.

OUTPUT: Gppyq € CPXmAD. % see (2.11)
1 [p, H?, GY)\] + Amoldi(A, q, 5); % im(GO))) = Ke1 € Go
2: forj:l...do ,
5 e« (QUGYT) QMg Y); % see (3.2)
1 <>eg§+ Yoay e % v € im(GYLY) Nker(QY) € V-
5. choose p; % dlscussed in section 4
6: (]) — AV(]) _ V(()J),U,j; % rg]) c (A _ ,uij)Vj—l — gj
7 h(J) - ”I.(J)”
8 g( 1l /hlo, v g eg;
9: for k = 1 s do
10: if srIDR then
11: off) « [ok; (Q”(g,ﬁﬂll),-~-,g§ill)7g§ e )) Q”g,(f)];
12: else if fmIDB then L~ ‘
13: W) {(QHGgJ—l))* QHgng);ok};
14: else if mnIDR then
) e (QUGY e )
16: else if ovIDR then .
) N : ) ) N ) )
7 o e (@QVIGE e, g) (@ VE)e);
18: else
19: solve QH( {Fll),ggj), .. 7g,(f)1)c§f) QHg(J) % see (3.8)
20: end if N '
21: ( ) gk (ng_‘_l ,ggj),...,g(]zl) @, % V’(“.]) €V
22: ,(3_3_1 — Av(]) v,(c])uj, % r;cj_i)rl €g;
23: fori=1: k do
21 hip < ()M
25: end for i ‘
o Bl nll, T g
o Wl e ||p§3+>1||
28: gl(cj+1 « pk+1/hk+1 K h gk+1 €g;
29: end for
30: end for

equations that will be useful later on. We define the local matrices

RY) = (o), x) € Lo @19

collecting vectors computed in line 6 and line 11 of Algorithm 2, and use v si1 88
defined by (3.15). In the call to Krylov in Algorithm 2 in line 1 and in line 12 of

Algorithm 2 GR decompositions? of (q, AGgO)) and R(Ql, < j, are computed,
respectively:

0 .
(a.AG") =G, (e,n) H®), RY, =G (en?) BY).  (319)
In Algorithm 3 and Algorithm 4 these are QR decompositions.
We define the global matriz 'V, in terms of local vectors and matrices by

0 1 1
V., = (g§)7...,gg),V§+)1,.. Vgﬂrl)7vé),.. v,(j)l) (3.20)

2A GR decomposition is a decomposition of the form “general matrix” times “upper triangular
matrix”, see [19].
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In line 4 and in line 10 of Algorithm 2 the vectors v(()j ), . ,vgj ) ¢ V;_1 are computed

as linear combinations

—céj) ¢
vin=(el e) | = (e el Ul e
Osy1 01
The local matrices jo+)1 are given by
RY) = AVY), - V) diag(u, ..., ). (3.22)

Combining equations (3.19), (3.21) and (3.22), we obtain the coupling between two

local blocks Gi]_fll) and Gij_gl, ji=1,

i—1 j )
a(cls) 6i,)ul,

- : Os+1 Os+1,s i .
= (Ggﬂﬂl) Gg{g ) <<elhgj()) HO) > +ng+)1 diag(p;, . .. ,,uj)> . (3.23)
Gluing these relations together and topping them with the first equation in (3.19), we
obtain the generalized Hessenberg decomposition

AG, U, =G, H*? H°*.—H +U,D,) (3.24)

——m

of IDR that captures the recurrences of the vectors gx, 1 < m+1, in both Algorithm 2
and Algorithm 4; the structure of the resulting matrices is described below.

The matrix U,, € C"+1)*™ has I as leading s x s block, followed by all Qgﬁl,
7 = 1, aligned such that all ones are on the diagonal, the last block column may have
less than s + 1 columns. The matrix U,, results from U,, by stripping of the last
(zero) row; U,, is unit upper triangular, banded with upper bandwith 2s and has a
staircase-like structure, see the example (3.25) taken from [22], where U,, and H,,

are depicted for s =2 and m =9 = 3(s + 1),

o0
o eee
ceee oe
cee cee
ceeee®
_ _ oce
Uy = cese |, H, = 3 . (3.25)
%% cee
1 oe
b o
o

Circles in Ug depict the unit diagonal elements; bullets in Ug depict the Sonneveld
coefficients —cgj ) defined by the IDR variant, e.g., srIDR (line 3 & line 11 of Al-
gorithm 4), fmIDR (line 3 & line 13 of Algorithm 4), mnIDR (line 3 & line 15 of
Algorithm 4), or ovIDR (line 3 & line 17 of Algorithm 4). The matrices U, and U™
have additional known zero elements, e.g., the upper bandwidth of U3, drops from 2s
to s; the structure is depicted here for s =2 and m =9 = 3(s + 1),

o e o eee
cee ceee
cee ]
cee o eeo
sr fm
= cee = ceee
9 cee ’ U o . (326)
cee [oNN J
oe oce
o o

The matrix H, € CmTDxm has H® as leading (s 4 1) x s block, followed by all
upper triangular basis transformation matrices

<§1h(1{3) ﬂgj)> € ClEHDX(+D) 5 (3.27)

aligned such that the nonzero scaling elements hg_i)rl . are on the first subdiagonal,
the last block column may have less than s + 1 columns. The band matrix H,, is



10

an unreduced extended upper Hessenberg matrix with upper bandwidth s — 1. The
example (3.25) reveals the structure of Hy for s = 2. Circles in Hy depict the nonzero

scaling elements h;fll o 0 <k <s,j >0, omitting hg?()); bullets depict the other
elements hgjg, 1<i<k<s,j>0,that are used in Algorithm 2 and Algorithm 4.

The diagonal matrix D,,, € C™*™ is obtained by taking an s x s zero matrix and
diagonally gluing together all diagonal matrices p;I 41 from (3.23), i.e.,

. . m
Dm:dlag((),...,0,,ul,...,ul,,uQ,...,uz,...,uj,...,uj), ]{ J, (328)
S—— —— Y—— N—— s+1

s times s+ 1 times s+ 1 times k times

where k =m+1—j(s+1).

The generalized Hessenberg decomposition (3.24) is the basis for different al-
gorithms to approximate solutions of linear systems and eigenvectors. These are
introduced rather briefly in the next subsections.

3.3.1. Linear systems. In this subsection we use boldface r to denote residual
vectors. We want to approximate the solution x of a given linear system Ax = b. Let
X be an initial approximation and define the residual rg := b — Axg. Suppose that
Algorithm 4 is invoked with q = ry. Then by (3.24)

AGmUm - GerlHEZ,tal = GmH}q?Ltal + gm+1hm+1,me;;

(0)

(3.29)
Gri1eh’) = Grerh() = ro.

In the OR approach [9, p. 1048], we define the mth OR solution z,, € C™ and
the mth OR iterate x,, € C" by

Z = (HE®) ernl), % i= X0 + VinZn. (3.30)

The mth OR solution need not exist. By (3.29), the mth OR residual r,,, € C" is
given by

r, =b—Ax,, = _gm+1hm+1,me;Zm; ||rm|| = |hm+1,me;rnzm|a (331)

thus, the mth residual is parallel to the next vector g,,+1. The computation of x,, is
possible without the need to store all vectors g1, ..., &m.-

In the MR approach [9, p. 1048], we define the mth MR solution z,, € C™ and
the mth MR iterate x,, € C" by

m

z,, = (H2) e,n%, x,, =x0+ Vynz,,. (3.32)

The mth MR solution always exists. The mth MR residual x,, € C" is defined by and
can be bounded using (3.29) by

r,=b—Ax,. |l <[Gusi||HS 'z, — e, i) (3.33)

_m =m

By [9, Lemma 4, p. 1058], [Gysr]| < /T(m + 1)/(s + 1)] in case of Algorithm 4,
An implementation of the MR approach for the srIDR variant of IDR with partial
orthonormalization is given in [17].

3.3.2. Eigenvalue problems. The seed values are eigenvalues of the Sonneveld
pencil (H%?! U,,), see [22]. The other eigenvalues 6; can be used as approximations
to eigenvalues of A, corresponding approximate eigenvectors y; are given by

H:fltaISj =0;Upsj, vy, := Vs, (3.34)

It is possible to define other pencils based on the seed values, Sonneveld coefficients
and orthonormalization coefficients to compute eigenvalues, see [22], or to extend this
Ritz approach to the so-called harmonic Ritz approach [9, p. 1047].
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4. Seed values. From a mathematical point of view the selection of the the seed
values is not that important; the induced dimension reduction occurs independently of
their selection, as long as no seed value is an eigenvalue of A. A natural idea is to use
a fixed seed value, u; =, 7 2 1, e.g., p = 0. The latter choice results in a singular
H%@ = H,, for all m > s and the OR approach (3.30) fails for all m > s; the MR
approach (3.32) stagnates for all m > s [9, Lemma 3, p. 1057].

A constant p results in a Jordan block at u in the Sonneveld pencil, as Htt! —
wU,, = H,,+U,,(D,,—pul,,) has the same nonzero structure as H,,; i.e., H®%' —;,U,,
has the eigenvalue 0 with algebraic multiplicity at least [m/(s 4+ 1)] and geometric
multiplicity 1, compare with the example (3.25). This might cause problems with
numerical eigenvalue computations if A has eigenvalues close to u.

Numerically, IDR and other Sonneveld methods deviate from their exact coun-
terparts and ghost eigenvalues close to the seed values are computed. Numerical
experiments indicate that the best constant seed value is the mean p = trace(A)/n of
the eigenvalues of A.

More interesting are seed value selection schemes that take local information into
account when computing p;, mostly the vectors v(()] ) and Av((f ). We present a few
general schemes, divided into those designed for linear systems and those designed for
eigenvalue problems. A new scheme is presented that combines the ideas underlying
both approaches.

4.1. Seed values for linear systems. OR methods construct residuals parallel
to the vectors gi41. The residuals in a Krylov subspace method can always be written
as v, = ri(A)rg, where the residual polynomial 7y, satisfies r(0) = 1. To minimize the

residual, we think in terms of residual polynomials and replace z — p; by the differently

scaled 1 — zw;, where w; = ,u;l, and minimize the scaled rgj) with respect to w,

o , Av Py 0)
min [[vi” — AviPwl| = wj=—5—7%%r4%57 (4.1)
w; €C (Avy’) Avg
i.e., we define p1; by
SH ,
e 1 (AVSJ)) AV(()J) (4 2)
M= T T AV ) '
(Av0 ) v§

This results in a harmonic Rayleigh quotient, i.e., the resulting p; are inverses of
elements of the field of values of the inverse of A [10], since
_ viv h Vo= A (4)
,u] = m, wnere VvV i=— VO . (43)
In [12] the resulting linear polynomials 1 — zw; are termed MR(1)-polynomials. This
approach is used in [20, 15, 18] and results in seed values that are not too close to
zero. It turns out that it is unstable for A such that the field of values includes zero,
since then the seed values may become very large.

4

A modification known as “vanilla” technique has been developed and motivated
for BICGSTAB and related methods in [12, Theorem 3.1, p. 210; Eqn. (28), p. 213]:

compute the minimizer (4.1) and the cosine ¢ of the Hermitean angle between Avéj )
and véj ),
(H\VH AH )
\Y A"v
c:= ‘(0)—.0‘. (4.4)

AV [[Iv§]
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If ¢ < K, i.e., if this angle is too large®, then w; is scaled and the new value

on o (Av?) A (A v
RCA L e e O ) N N ) RTINS ORI )
(Avg”) vy AV [[lve” |l

j (G)\H (4)
B .\l . <(V0j )" Avy )

Iv§l (vi)'v§

(4.5)

is used. This modification ensures that all computed seed values are only moderately
outside the field of values of A and not too close to zero.

4.2. Seed values for eigenvalue problems. A natural idea in eigenvalue

computations is to minimize r(J )

with véj ), as a consequence, r(lj ) is perpendicular to v

with respect to u;; this gives the Rayleigh quotient
(J)

(G)\H ()

v Av , .

i [AV — vl = pyem SOLAN 00 4
ni€C (Vo ) Vo

This technique ensures that all computed seed values are in the field of values of A. If
the field of values encloses zero, a zero or small seed value may occur; this leads to
problems in the OR and MR approaches.

We could use other Rayleigh quotients. We can ensure that the last diagonal
element in Ht;fl' is same as in Arnoldi’s process, if we set
1
. g§+1Ags+1 . ] . (ggj-u )) Ag£+1 :
= —g——, we,weset ;= G-D G- 1).
Bs118s+1 (g4 ) Ag/

(4.7)

In [10] [m/(s + 1)] extra multiplications by A are invested to compute Ritz values
using Arnoldi’s method, which are used as seed values.

4.3. A balanced approach to seed values. The approaches (4.2) and (4.6)

minimize the norm of a multiple of rg subject to a scaling of the vector Av(() ),

see (4.2) and (4.1), or subject to a scaling of the vector v(()]), see (4.6).

To treat both ingredients equally, we normalize both Av(()] )

scaling issues with large or small A, solve

Ay ()
—a- S0g st H(_g)H1 (4.8)
AV vl

and set p; = /- ||Av(()j)||/||v(()j)||. This is a mixture of an eigenvalue based and a
linear system solver based approach, we expect the seed values to be away from zero
for non-singular A and not too large.

and véj ) to get rid of

« ﬁE(C

The solution of (4.8) is given by the left singular vector of the smallest singular
value of the matrix

Av(()j) v(()j)
- 5) Gy /- (4.9)
AVl ([vgl
We compute this singular vector as the eigenvector to the smallest eigenvalue of
7 (D\H A @)
B"'B = (1 b) b= (VO)—VO) (4.10)
b1 ENCRl

3In [12] the value x = 0.7 is used as upper bound, which corresponds to a rounded value of the
obvious choice v/2/2 = cos(w/4).
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The eigenvector to the smallest eigenvalue 1 — |b| is given by

GO =) a-m, i

which leads to a “simplified vanilla scheme” that we call “cinnamon” technique,

AV b JAVY (V) AV
IU]' = T T = # . Slgn T H (o . (412)
VO v (v vy

This scheme is a mixture between an eigenvalue based and an SVD based approach:
we take the direction given by the Rayleigh quotient, but the length given by the
amplification of v(()J ) by A. These values will be on the annulus defined by {z € C |
on(A) < |z| € 61(A)} and in direction of the field of values of A. This approach
might cause problems: if Av(()j )1 véj ), both singular values coincide and the sign
in (4.12) is not defined.

4.4. Additional orthogonality. Additional orthogonality between the last

ggfll) and the new ggj ) can be enforced by setting

(4) \H ()
g ) "Av . . A A -
Wy = (+1)70 then ggj) I rgj) = Av(()J) — v(()j)uj 1 ggﬂrll). (4.13)

(%)

Unfortunately, numerical experiments* indicate that this approach is very unstable;
many of the resulting values of y; lie far outside the field of values of A.

5. Mathematical equivalence and classification of breakdowns. The fol-
lowing theorem states that the four variants of IDR with partial orthonormalization
are all equivalent as long as assumption (3.2) holds true, except that the srIDR variant
may break down.

THEOREM 5.1. Suppose that Q is chosen such that assumption (3.2) holds true,
and that one of the following seed value selection schemes

o preselected seed values, e.g., constant or a list of given seed values,
o a local seed value selection scheme, i.e., (4.2), (4.5), (4.6), (4.7), (4.12), (4.13)

s used.

Then the variants fmIDR, mnIDR, and ovIDR of IDR with partial orthonormaliza-
tion are mathematically equivalent, e.g., given the same input data, they compute the
same vectors g, k > 1.

There exist cases where assumption (3.2) holds true and the srIDR variant of IDR
with partial orthonormalization breaks down, which we term a pivot breakdown. When
no pwot breakdown in the srIDR variant occurs, it constructs the same vectors g,
k > 1, as the other three variants.

Proof. All four variants of IDR with partial orthonormalization are completely
deterministic. We first suppose that no variant breaks down and prove that the
spaces G; and the vectors ggj), ey ggj_gl € Gj, j 2 0, are the same in all four variants,
regardless of the choice of the seed value selection scheme listed in the theorem.

The IDR spaces G;, j = 1, are uniquely defined by the seed values pt;, 7 = 1, which

in turn are either fixed or computed based on the vector v(()j ) and, possibly, the vector

ggjfll). The vector v(()j ) is the same vector in all four variants, if the s+ 1 orthonormal
vectors ggj_l), e ,ggﬂr_ll) € G;_1 are the same in all four variants, which implies that

when additionally all Gy, £ < j, are the same, then in this case the next G; is the same
in all four variants.

4This observation was also made by Martin van Gijzen, who first came up with this idea and
experimented with this kind of additional orthogonality.
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The initial vectors gﬁo),...,ggl € Gp are uniquely determined by Arnoldi’s
process and the positive signs of the nonzero scaling elements. We prove that if the

previous vectors g§j71)7 e ,gg;l) € G;_1 are uniquely determined, then the next s+ 1

orthonormal vectors ggj ), ceey gi{gl € G; are uniquely determined. The next vectors are

the columns of the Q factors of the QR decompositions (3.19) of (A — ujI)Vgﬂz’lXXIDR,

(3),xxIDR
k

where xxIDR denotes the variant used. The vectors v mostly differ, yet the

spaces span (v(()])’XXIDR, e ,v,(cj)’XXIDR) are uniquely defined and coincide for all four
variants, since we assume (3.2), see (3.7). The restriction g € K \ Kr—1 fixes the
new vectors up to sign, the positive sign of the diagonal elements of the R factors of
the QR decompositions (3.19) and the scaling of the component of g,(cj ) to one fixes

the sign to be the same in all four variants.

It remains to give an example of a pivot breakdown of srIDR. Let n = 10, q = ey,
5227M3217J>17

0 0 0 0 -1 1 -1 =3 —2 0
1 0 -1 1 1 -2 1 5 4 0
o 1 2 -1 0 1 0 -2 -2 1
0 0 1 0 -1 2 -1 -5 —4 0
A |0 0 0 1 2 2 1 5 a4

o 0o o o 1 o 1 3 2 1]
O 0 0 0 0 1 0 -2 —1 —1 (5.1)
o 0 0 0 0 0 1 2 0 1
o 0 0 0 0 0 0 1 2 0
O 0 0 0 0 0 0 0 1 0

QH_(O 1 -1 1 0 -1 0 2 2 0)
1 1 1 -1 1 0o 1 1 o 1)

A computation shows that the partial orthonormal g, 1 < k < 14 = 5(s 4+ 1) = m,
5 = |n/s| of the three variants other than srIDR are given by g = ex, 1 <k < n =10,

gnz%(l -1 1100000 0),

g12:\/%(—1 1 -1 3 -2 =210 -1 0), g
813:\/%(5 55 -3 44 -7 6 -1 —6), 52
g = 21723 (<11 11 —11 —41 15 15 0 -9 12 2)',

and g5 = 0. Assumptions (3.2a) and (3.2b) are satisfied, and all matrices QHng),
0<j<4,ie.,

3 —50
G D ¢ ¢ (3 2E) oo
N V238 /2723
are regular, thus also assumption (3.2¢) is satisfied. Naively implemented, the srIDR
variant breaks down at step 4, since by definition (3.9), the matrix

~ 0 -1 -1
M = QM (g, 80)) = ( ) 1) (5.4)
is singular. Yet the system

~ -1 -1\ . 1 ~
e - (7)) )e= () @t (5.5)
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contained in (3.10) has a consistent right-hand side, e.g., ¢; = (7.5, 7.5)T is a solution.

Any such solution gives, by lucky choice of p; =1, gél)

to be solved in srIDR is

~ -1 1\ ~ 0 ~
mpoe = (71 )= (1) - Qe (5.6)

(1,2)

= g5 = e5. The next system

with a singular Mg,
down. O

and an inconsistent right-hand side. At this point srIDR breaks

REMARK 5.2. The variant srIDR of IDR with partial orthonormalization always
breaks down at step s + 2 if q = Qe1, as Arnoldi’s process computes an orthonormal
Gy withgr L q, 2 <k < s+ 1, and thus the first row of the matrix

M = Q" Gaoqs (5.7)

will be zero. This choice of Q 18 often used in applications for almost symmetric
matrices A. In contrast to srIDR, the other three variants do not necessarily break
down with this choice.

We have seen that the four variants are mathematically equivalent in case they
do not break down. To understand why srIDR breaks down more easily than the
others, and to understand what other types of breakdown are possible, we consider
the conversions between them, or, more generally, the conversion of data from any
IDR with partial orthonormalization to the four variants.

COROLLARY 5.3. Assume that assumption (3.2) holds true. Let

AG,U, =Gy (H, + U, D,,) (5.8)
be any generalized Hessenberg decomposition such that the vectors gr, 1 <k <m+1,
are partially orthonormalized and that the unit upper triangular U, = I,",'LUm,

and Dy, conform with the outcome of an IDR algorithm for some s € N.

The conversion between and to the four variants are given by left-multiplication by
unit upper triangular block-diagonal matrices; the first block is 15, all other blocks are
(s4+1) x (s+1), except possibly the last block.

We describe how to obtain the non-trivial blocks except the last:

fmIDR: the jth block of the transformation matriz is (Uj(s+1)4(0:5),j(s+1)+(0:5)) 5 the
conversion to fmIDR is always possible.

mnlIDR: the jth block of the transformation matriz is given by the inverse of the R
factor of the short QR factorization of Uj(sy1)4(—s:s),j(s+1)+(0:5), left-scaled
such that the diagonal is one; the conversion to mnlDR is always possible.

ovIDR: the jth block of the transformation matrix is given by the inverse of the R

factor of the short QR factorization of V§]+)1z left-scaled such that the diagonal
1s one; the conversion to ovIDR is always possible.

srIDR: the jth block of the transformation matriz is given by the inverse of the
transpose of the L factor of the LU factorization without permutations of

(Uj(s+1)+(_s;0)7j(3+1)+(0:3))T; the conversion to srIDR is not always possible.
The last block is obtained by truncating the above constructions.

REMARK 5.4. The variant srIDR breaks down when the LU decomposition without
permutations does not exist. For this reason we termed such type of breakdown a pivot
breakdown.

Proof. The left-multiplication by a unit upper triangular block-diagonal matrix
with blocks as described does not change the vectors g, 1 < & < m + 1, nor the
structure of U,,, U,,, H,,, and D,,. We only consider the case of the full unit upper
triangular (s + 1) x (5 + 1) blocks, the proof for the truncated last block is completely
analogous.
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The sketched transformation to fmIDR is well-defined, as the unit upper triangular
U j(s41)4(0:5),j(s+1)+(0:s) has a unit upper triangular inverse. It results in a new ufm
that has the correct structure.

The coefficients in mnIDR are defined by minimality of coefficients, e.g., by
orthogonal columns in U (s 1)4(—s:s),j(s+1)+(0:5)- Lhe columns are linearly independent
because of the upper trapezoidal structure, thus the sketched transformation is well-
defined and results in the wanted orthogonal columns with the correct scaling of the
last elements.

The variant ovIDR is defined by orthogonal vectors V,(f ), which is ensured by the

transformation sketched. The matrix Vin can be written as

. L
v, = (GSH ) G?))Uj<s+1>+<fs=s),j<s+1>+(o=s>7

see (3.21). Assumption (3.2a) ensures that the vectors ggjfl), e ggjgll), ggj), e ,ggj)
are linearly independent, U (4 1)4(—s:s),j(s+1)+(0:s) has full rank, thus also the vectors
v(()J )7 e ,vgj ) are linearly independent, which proves that the QR decomposition with
regular R factor is always possible.

The variant srIDR is defined by the banded structure of the matrix U,,, which is
obtained by the carrying out the transformation sketched. When a leading submatrix
U (s41)4(—s:k—s),j(s+1)+(0:k)s 1 < k < s, is singular, the LU factorization does not
exist, an example is given in the proof of Theorem 5.1. O

We have shown that fmIDR, mnIDR and ovIDR do not break down when we
assume (3.2), but that srIDR may suffer from a pivot breakdown. In the following we
look at what happens when (3.2) is violated and remark briefly on how the variants of
IDR with partial orthonormalization behave.

We identify two types of breakdown:

o A lucky breakdown occurs, if assumption (3.2a) or (3.2b) is violated, i.e., the

vectors ggj_l), e ,ggi_ll), ggj), e ,g,(cj) become linearly dependent. In this

case we have found an invariant subspace. Linear dependence among the

vectors g§j ), e ,gl(cj ) can be determined in case {5 is not an eigenvalue of A,

when the vectors V(()j), .. 7v,(cj)1 become linearly dependent, as im(GEﬁj)) =

im((A — DV, o
e A Lanczos breakdown occurs, if assumption (3.2c¢) is violated, i.e., if QHng_l)

is rank deficient. This corresponds to the case of having found a new vector
v € V-1 “too early”.

All variants compute the first vector as solution of a system with the matrix
QHng _1)7 thus in case of a Lanczos breakdown all four variants break down. Here
we need some form of look-ahead and/or deflation, which is not part of the paper.
Nevertheless, the condition of this matrix should be monitored in any case.

6. Error analysis. In finite precision or subject to more general perturbations,
the generalized Hessenberg decomposition (3.24) will no longer be satisfied, instead we
need to introduce an error term F,, € C™*™ that balances the equation, and obtain
the perturbed generalized Hessenberg decomposition

AGmUm + Fm - Gm-i—l(ﬂm + HmDm)a (61)

where all other quantities now denote the computed quantities. Suppose Arnoldi’s
process and the other QR decompositions (3.19) are perturbed,

(q7 AGgO)) + ng‘t_qonormalize,o _ Ggl (glhg?()) Hg0)> 7 (6 2)
R.(sjﬁl + ngt:onormalize,j _ ngjzl (glhg% ng)) .
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The computation of the Sonneveld coefficients using the four variants based on oblique
projections takes place in a perturbed variant of (3.21),

V= (U Gl ) Ul ¢ Fpe (0:3)

The choice of the seed values influences the size of the perturbation term that has to
be added to (3.22),

Rgl = AVgr)l - Vﬁjﬁl diag(py, .., pug) + FUT7. (6.4)

LEMMA 6.1. Define the global perturbations Forthonormalize intersect =g g map py,

m ’ m

orthonormalize .__ orthonormalize,0 orthonormalize,1 orthonormalize,2
Fm T (F2:s+1 7Fs+1 ,F5+1 g e -),
intersect .__ intersect, 1 intersect,2 intersect,3
F = (O, P PSS P00, (6.5)
map .__ map,1 map,2 map,3
FP = <0n,37Fs+1 SEF T F ,)
Then the perturbation F,, in (6.1) is given by

__ gporthonormalize intersect intersect map

F,, = F" 4 AFintersect _ pintersecty | gmap, (6.6)

Proof. Combining equations (6.2), (6.3) and (6.4), the coupling between two local
blocks ng_fll) and Ggﬂgl in the perturbed IDR algorithm, j > 1, looks as follows,

m m

Aely af,

i— i Os41 Os+1,s j .
= (ngﬂl) Giﬁl) <( ) 15 1€ ) + QgL diag(pty, - - - 7:“_]')) - (6.7)
ey g

4) orthonormalize,j intersect,j intersect,j map,j
) Qs-‘rl + F + AFm, - Fm 122 + F

Gluing these relations together and topping them with the first equation in (6.2),
omitting the first column, we obtain (6.1) with perturbation term (6.6). O

In a reasonable implementation this perturbation term can be bounded inde-
pendently of the computed quantities only if we assume that no breakdown or near-
breakdown occurs. We give a bound based on the computed Sonneveld coefficients
and seed values, which both can be monitored.

THEOREM 6.2. Suppose that we execute IDR with partial orthonormalization
i IEEE 754 arithmetic, with orthonormalization based on Householder reflections,
Givens rotations, or the iterated Gram-Schmidt process [4, CGS2, p. 89]. Suppose
further that the condition of A is not too large, no near-breakdown occurs and the
computed Sonneveld coefficients and seed values are not too large.

Then all computed Ggl, 0 < j, are orthonormal up to machine precision €y,

M
||(G§]-21) GE{L —Lipilr < Chien, (6.8)

and the perturbation term in (6.1) is bounded by

Fll < Il < Coens mas (1A + 1) UL (6.9)

where pg = 0, gﬁ?ﬁl =1, C1 =Ci(n,s) and Cy = Ca(n, s) are constants depending
on the method used and on the matriz A.
REMARK 6.3. If max;>q ||U££1||p is bounded and max;>o ;| = [|Al|, the error

bound (6.9) simplifies to the very satisfactory |F.,|| < Cq epr||A||l for some constant
Cy = Cs(n, s).
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Proof. Tt is well-known that on a computer conforming with IEEE 754

Csepvs+ ||A||

Coent|RI, lry 1<

H Fzr_:?‘nlonormalize,o ||F

HForthonormaIize,j

| (6.10)
s+1 F

NN

for small constants C5 = C3(n, s+ 1) and Cy = Cy(n, s+ 1). This follows from bounds
on the QR decomposition [6, § 3.6, p. 73 (complex arithmetic); Theorem 19.4 & p. 361
(Householder); Theorem 19.10 (Givens)] and a standard error analysis for CGS2, using
the technique for Arnoldi’s process described in [3, p. 314], see also [2, Theorem 2.3,
p. 311; Theorem 2.2, p. 310].

The result (6.8) on partial orthonormality can be found in [2, Theorem 2.1, p. 309-
310, Page 312 (note in middle of page)] (Householder, Givens) and [4, Theorem 2]
(CGS2).

Utilizing standard error analysis [21, 6] we can bound the perturbation due to
finite precision in (6.4),
R5+1 fl(fl( V(j-21) - fl(ngl diag(py, - - - Wj)))
= AV, - V) diag(uy, o y) + FIERY
P < yran (Al + TV (6.11)

where 7 denotes the maximum number of nonzeros in a row of A, and in (6.3),

(4) j—1 ) _ j—1 (7) intersect,j
v =((ef el )ulh) = (el 6¥),) Ul + Flgee,
FUT) <o | (€U @9))| U9, (612)

where the factor 2541 follows since the last row of U£Q1 is zero. In mnIDR and ovIDR

we have at most 2s + 1 nonzero elements in the columns of U,,, in strIDR and fmIDR at
most s + 1; in the latter case the term 42541 can be replaced by 7vs41. By (6.6), (6.5)
and (6.7) we can bound ||F,,||r by

m m m m

m—+1
s+1

—‘ ax ||Forthonorma||ze N + AFlntersect g Flntersect ]/1 + Fmap 7||F’ (613)

where the undefined terms Fintersect.0 and FMaP-0 are zero. We use the triangle inequality
)

on (6.13) and look at individual terms. We express the term R(+1 in the normwise
bound (6.10) using (6.11), (6.12), ||AF||r < ||A]l - |F||F, and the submultiplicativity
of the Frobenius norm,

||Forthonorma|ize ,J map 7”

i Ir < Caenr| AV, = VI, diag(y, ., py) + FI55
< Crear (A1 + 1 DIV Ie + [FT35 )

< Coear (Al +1m) | (@020 62, ) Ul + FIT=|| + P07

< Crenr (V20 +60)(IA + g DT, 1 + IFTT= | + ||F;“ia”j||p) . (6.14)

where 97 is of order of the machine precision and defined by

1
\/ Teem >||2 IO

—1.

Krylov subspace methods are mostly used for sparse matrices A. The componentwise
bound (6.11) can be rewritten using |||A[]| < /7||A|l [14, Lemma A.1] and (6.12),
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assuming that r > 1,
IFT2 2 < Yer (VI + [ DIV 1
<envr(al+ T (@8 e ) Ul + Frig=|
< a1 VrV2(L+ 8) (AL + [ AN (U, | + [FDT ). (6.15)
Using (6.12), we obtain similarly
JAFinerseet _ pintersecty o < (A 4 | ]) | Fmersetd | o
<ol +]| (85 68|, Jlu]l,
<vasir(1+ 0V +L(IA] + [ ]) [UL]| . (6.16)

where J5 is of order of the machine precision and defined by

j—1 s j—1 j
I8 13+ 5 (1le? 13 + 18E”13)

2 25+ 1 -

We assume that all perturbations are small enough that second order terms can be
incorporated into the constant. Combining the local bounds (6.14), (6.15) and (6.16)
with the global bound (6.13) proves (6.9). O

Numerical experiments indicate that the size of the perturbation term F,, in (6.1)
has a strong influence on the attainable accuracy of the OR and MR iterates as well
as of the Ritz pairs. The seed value selection schemes in section 4 offer control on the
first part of the bound (6.9), the second part of the bound (6.9) is minimized locally
by the variant mnIDR. In the next section we present two academic toy examples
where we compare the accuracy that is obtained in the four variants and show that on
average indeed mnIDR gives the smallest residuals of the four variants discussed.

7. Numerical examples. We present two numerical examples, one for linear
systems using the MR approach and one for eigenvalue computations using the Ritz
approach. In the applications, q is often chosen as initial residual q = rg = b — Axg
(solution of a linear system) or as initial eigenvector approximation or as a random
vector (eigenvalue problem). We used in both cases non-physical q chosen to depict
the expected average behavior.

All algorithms have been implemented in MATLAB. We reorthogonalize the g-
vectors once (based on CGS2) and rebiorthogonalize the v-vectors once against Q
(based on an oblique analogue of CGS2). For the solution of the small (rectangular)
systems we use known backward stable solvers; in the experiments below we used
MATLAB’s backslash for srIDR and ovIDR, MATLAB’s built-in LU decomposition and
backslash (i.e., LAPACK) for fmIDR and MATLAB’s built-in pseudoinverse (i.e., LAPACK)
for mnIDR. The perturbation of the generalized Hessenberg decomposition (6.1) induced
by finite precision behaves as predicted by the bound (6.9).

7.1. Linear systems via MR approach. The MR approach (3.32) is based
on solving small extended Hessenberg least squares problems

min EmZm —91”1'0”2”2, (71)

z,, ecm

which is done by QR decomposition with a sequence of Givens rotations,
|H,.2,, — e1lroll2]l, = [|Gmt1m - Gs.2G2,1 (H,,2,, — e]lroll2)||,- (7.2)

The Givens rotation G, ; rotates the plane spanned by eJT, e]T»Jrl to annihilate the
element in position j + 1,j. The R factor R, of the short QR decomposition,

R, =1L Goiim--G32Go H,, € C™™ (7.3)
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MR approach w/ varying random shadow space: 100 cases
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Fic. 7.1. The ultimately attainable accuracy of the four IDR(8) variants with the MR approach
on the toy example A = randn(100)+4*eye(100), b = A*ones(100,1), random Xq, for the vanilla
seed selection scheme and 100 random shadow spaces, both the GMRES and MINRES styles, resulting
in a total of 800 lines (top). Average residual convergence for the 100 cases (bottom).

is banded, has the structure of H,, moved up by one, thus can be stored in the same
place. The update of the right-hand side only changes the last two components in
every step,

¢

¢, = Gmi1m- - Gs2Go e vl €C™HY o, =100 (7.4)
The residual of the small least squares problem is given by |¢ (m + 1)|, the MR
solution by z,, = R..!¢,,. There are two main styles, compare with [14, equations (7),
(8)], that can be used to compute the MR iterate x,, = V,,2,,: like GMRES, or like

MINRES, i.e.,

The GMRES style is based on the first grouping in (7.5). After z,, = R,,'¢,, has
been computed, we need to compute x,, = V,,2,,. As we do not store the vectors
in V,,, we rerun the algorithm with known z,, and compute the linear combination
X,, = Vmz,, along with the vectors v;, 1 < j < m, roughly doubling the computing
time and increasing the storage by one n-vector.
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The MINRES style is based on the second grouping in (7.5). We define W,,, :=
V,.R, !, which can be computed by a short recurrence using W,,R,,, = V,,, and

update x,, by X,, = X,,_1 + Wm@®,,(m), see [17] for details. This roughly doubles the
storage requirements and computing time.

A matrix was generated as A = randn(100)+4*eye(100). The matrix as well
as all eigenvalues are well-conditioned; by Girko’s circular law all eigenvalues are
approximately uniformly distributed in the circle with center 4 and radius 10. This
matrix serves as an example of a “hard case” for Krylov subspace methods, as zero
is in the field of values, the matrix is non-normal and indefinite, the initial speed
of convergence will be small. As right-hand side we used b = A*ones(100,1), as
starting guess xg = randn(100,1).

In the IDR algorithm we used the MR approach for the typical value of s = 8 and
the typical choice of the vanilla technique for the seed values. We tested both styles
for all four variants. We tested the eight possible mixtures of style and variant for 100
different randomly chosen shadow spaces and computed the average behavior of the
variants and styles. To give a sketch of the ultimately attainable accuracy in each
variant /style-pair we did chose the region 180-200 steps, where all pairs did converge
to the ultimately attainable accuracy. The resulting 800 lines are given in the upper
plot of Figure 7.1.

The lower plot in Figure 7.1 depicts the average behavior of all eight variant/style-
pairs for the geometric mean. In the first 100 steps all eight pairs behave very similar, as
predicted by their mathematical equivalence. The best variant is mnIDR, as predicted
by the bound (6.9), followed by fmIDR, closely followed by the standard variant srIDR.
The worst variant by far is ovIDR. On average, the GMRES style always beats the
MINRES style in terms of accuracy, which is in accordance with the observations in
[14].

7.2. Eigenvalue approximation. For the eigenvalue computations we used a
Grcar matrix of size 100 x 100. A Grecar matrix is an upper Hessenberg Toeplitz
banded matrix with upper bandwith 3, the lower diagonal contains —1, the other four
nonzero diagonals contain 1. The eigenvalues come in complex conjugate pairs, some
of them have a condition number of order 10'®, which makes them a good candidate
for analyzing an eigenvalue solver.

Sonneveld pencil | purified pencil

srfiDR | 2.9945.10° 13 2.0659 - 10~ 13
fmIDR [ 8.2185-1014 7.4958 - 10~
mnIDR | 3.0661 - 10~ 1# 4.3102-107 14

ovIDR | 3.3671-1071'2 1.1462 - 10712
TABLE 7.1
Average backward error of the computed eigenvalues for 1000 randomly chosen shadow spaces.

We used all four variants of IDR(8) with the vanilla technique, starting vector
Axones(100,1), and 1000 randomly chosen shadow spaces. We computed the Sonn-
eveld Ritz values, i.e., the eigenvalues of the Sonneveld pencil (H!*%! U,,) that lie
close to the badly conditioned eigenvalues of the Grecar matrix. For each Sonneveld
Ritz value 6 we computed its backward error omin (A — 6I) and the geometric mean of
all backward errors for all Sonneveld Ritz values for all shadow spaces for each IDR
variant. These numbers can be found in the column entitled “Sonneveld pencil” in
Table 7.1, they are depicted along with a contour plot of a section of the pseudospectra
of the Grecar matrix in the upper plot in Figure 7.2. The contours are plotted for the
values 1077,1078,...,10716,

The Sonneveld pencil has the seed values as eigenvalues. In [22] we described how
to construct another pencil that no longer has the seed values as eigenvalues. We used

the shifted purified pencil with shift x = 7 from [22] for each variant of IDR and all
1000 shadow spaces. We computed again the geometric mean of all backward errors,
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these numbers can be found in the column entitled “purified pencil” in Table 7.1, they
are depicted along with a contour plot of a section of the pseudospectra of the Grear
matrix in the lower plot in Figure 7.2. The contours are again plotted for the values
1077,1078,...,10716,

Sonneveld pseudospectra
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1.4+
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1.2 . ! -16
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—2.2¢ srIDR i 14
fmIDR
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—2.4F oVIDR I
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0] 0 0.4 0.6 0.8 1 1.2
real part
Fic. 7.2. Pseudospectral contour plot for the etgenvalues of the Grcar matriz A =
gallery(’grecar’,100) that are badly conditioned. Red plusses depict the eigenvalues of the Grear
matriz. The 10 gray contour lines depict the pseudospectrum for 10=7,1078,...,107 6. The colored

contour lines correspond to the average geometric mean of the four IDR(8) variants for 1000 instances
using the vanilla technique for the seed values; srIDR in green, fmIDR in cyan, mnIDR in magenta,
and ovIDR in blue.

The four different IDR variants return eigenvalue approximations that lie around
the pseudospectral contour lines in Figure 7.2. To understand to what extent these
overlap, we depict in Figure 7.2 the geometric mean together with the sample standard
deviation for the 1000 instances for each variant/pencil-pair.

Again, mnIDR gives the best results with respect to minimal average backward
error, followed by fmIDR, srIDR, and ovIDR. The best choice in this example is to use
the mnIDR variant and the Sonneveld pencil.

8. Conclusion and outlook. We presented a generic IDR that we specialized
to what we call IDR with partial orthonormalization. The freedom left in the generic
algorithm was used to distinguish four different types of IDR. A common rough error
analysis and two numerical experiments suggest that the variant mnIDR is the one that
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Mean and variance of 1.000 runs of different IDR variants
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F1c. 7.3. The average and sample standard deviation of the backward error of all four IDR
variants and the Sonneveld and purified pencil.

computes the quantities with smallest backward error. From a computational point of
view, the variant srIDR used in [17] is more interesting, as we do not need to store as
many long vectors as in mnIDR for the same value of s. The experiments indicate that
on average, even though srIDR could break down when mnIDR does not, the behaviour
of srIDR is not too far from that of mnIDR. If accuracy is more important, we suggest
to use mnIDR, if computational time or storage requirements are more important, we
suggest to use srIDR.

The variants fmIDR and ovIDR may play a more vital role in case of Lanczos
breakdowns. Breakdowns of IDR when using random shadow spaces are very rare,
we do not expect that IDR variants with a look-ahead strategy are needed if we use
random shadow spaces and finite precision computations.

It is easy to refine the rough error analysis in this paper for a particular variant.
Bounds on the gap between the true residuals and the cheap estimates that can be
computed in the algorithms are based on bounds on the perturbation like (6.9). It
remains a hard task to analyze the influence of the perturbation on the recurrence.
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