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Vorwort 

Die Querkrafttragfähigkeit sowie die Querkraftbemessung von Stahlbetonbauteilen ohne 

Bügelbewehrung sind trotz langjährigen Forschungsaktivitäten und mehr als 2000 Versu-

chen weltweit bislang noch nicht zufriedenstellend geklärt. Da derzeit noch kein mechani-

sches, allgemein anerkanntes Modell existiert, basieren fast alle Bemessungsverfahren auf 

empirischen Ansätzen. Dies hat zu zahlreichen Modellen geführt, welche sich erheblich so-

wohl was die relevanten Einflussfaktoren als auch die Ergebnisse betrifft unterscheiden. Die-

ser Zustand ist auch für die Baupraxis nicht zufriedenstellend. Bei gevouteten Stahlbetonträ-

gern, kommt noch der Einfluss eines geneigten Druckgurtes hinzu, welcher bislang weder 

experimentell noch mechanisch geklärt ist.  

Herr Nghiep untersucht in seiner Forschungsarbeit die Querkrafttragfähigkeit von Stahlbe-

tonbalken ohne Bügelbewehrung. Schwerpunktmäßig widmet er sich gevouteten Trägern. 

Nach einer eingehenden Literaturrecherche führt er Versuche an 2×9 Stahlbetonbalken mit 

Voutenneigungen von 0o bis 10o und Schubschlankheiten von a/d = 3 und 5 durch. Hierbei 

zeigte sich, dass die Einfeldbalken mit konstanter Höhe im Allgemeinen im Bereich der 

Feldmitte versagten, während sich der kritische Schubriss bei gevouteten Trägern in der Nä-

he des Auflagers, d.h. im Bereich minimaler Querschnittshöhe, bildete. Letzteres steht im 

Gegensatz zu der derzeitigen Bemessungspraxis. 

In Versuchen lassen sich nur wenige Parameter studieren und nur punktuell Werte messen. 

Daher studiert Herr Nghiep das Tragverhalten der Versuchsbalken mittels stofflich nichtli-

nearer Finite-Elemente-Berechnungen. Die FE-Simulationen liefern sehr gute Ergebnisse, 

sowohl was das Last-Verformungsverhalten als auch die Ausbreitung und den Verlauf der 

Biege- und Schubrisse betreffen. Aus den rechnerisch ermittelten Spannungsverläufen im 

gerissen Zustand folgert Herr Nghiep, dass signifikante Schubspannungen sowohl in der 

Druck- als auch in der ungerissenen Zugzone auftreten. Weiterhin ergeben die Berechnun-

gen, dass die Schubspannung in der gerissenen Betonzugzone über die Trägerhöhe keines-

wegs konstant ist, wie von manchen Rechenansätzen angenommen. Die Rissreibung sowie 

die Dübelwirkung der Längsbewehrung haben nach seinen numerischen Untersuchungen 

einen vernachlässigbar kleinen Anteil am Querkraftabtrag.  

Aufbauend auf den experimentellen Untersuchungen und den FE-Berechnungen entwickelt 

Herr Nghiep zwei einfache Rechenmodelle zur Bestimmung der Querkrafttragfähigkeit VRd,ct 

von Stahlbetonbalken mit konstantem und veränderlichem Querschnitt. Statistische Untersu-

chungen seines Modelles anhand von ca. 900 Versuchswerten zeigen, dass es trotz seiner 

Einfachheit sehr gute Ergebnisse liefert.  



 

iv 

Zusammenfassend lässt sich festhalten, dass die durchgeführten Versuche sowie die kom-

plexen numerischen Untersuchungen von Herrn Nghiep wichtige neue Erkenntnisse zum 

Tragverhalten von Stahlbetonbalken ohne Querkraftbewehrung mit konstantem oder verän-

derlichem Querschnitt ergeben haben. Es sind jedoch noch weitere Untersuchungen notwen-

dig, um das Tragverhalten von Stahlbetonbalken besser zu verstehen und ein mechanisch 

begründetes Rechenmodell zu entwickeln.  

 

Hamburg, 2010  Prof. Dr.-Ing. G. A. Rombach 
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Abstract 

In spite of very long research activities with the first tests conducted by Mörsch in the 

1920th, the design for shear of concrete members without transverse reinforcement is still 

not cleared. This may be demonstrated in the fact that most shear design procedures are not 

based on mechanical models but on empirical equations which show very big uncertainties. 

Thus very high safety factors have to be used. The problem of shear design exists primarily 

for slabs. In Germany numerous old concrete bridges show a lack of safety in transverse di-

rection since the year 2001, when a new DIN-code was introduced. Furthermore the shear 

design principle of haunched concrete structures, as for example, cantilever slab of bridges, 

is hardly cleared, up to now. 

This research work aims to improve the understanding of the shear behaviour, to identify the 

significant shear resistance mechanisms and finally to develop new shear design models for 

practical use which is valid for straight and haunched concrete beams without stirrups. 

The essential, partially very different approaches known from the literature are analysed first 

and their accuracies are checked by a comparison with the test values from a shear database. 

Considerable differences appear between the arithmetic results and the test values.  

To study the behaviour of concrete members under high shear loads an extensive test pro-

gram with 18 reinforced concrete beams without web reinforcement of different shear slen-

derness and inclination of compression chord was conducted. These experiments focused on 

haunched beams. It appears that the existing approaches describe the influence of an inclined 

compression chord on the shear capacity only in an insufficient manner. In some cases the 

design according to the DIN- or EC-Code results in unsafe values.  

To get a better understanding of the load-bearing mechanisms all tests are simulated by 

means of non-linear Finite Elements analysis with the programme ABAQUS. Very good 

agreement appears between the test results and those of FE-analysis including the load-

deflection curves, the load bearing capacity and the crack patterns. Thus the developed nu-

merical model can simulate the behaviour of reinforced concrete beams up to the ultimate 

limit state. The FE-analysis demonstrates that the shear forces are transferred in uncracked 

compression zone mainly. Therefore crack friction and dowel action plays no significant role 

on shear bearing capacity at the ultimate limit state. As a result of the FE-analysis and the 

test program, a shear resistance action of uncracked concrete part in the tension zone is 

firstly introduced to be one of the two main shear bearing actions of concrete structures 

without stirrups. 

Based on the theoretical and experimental investigations an easy analytic model is developed 

for the estimation of the shear capacity of straight and haunched reinforced concrete beams 

without stirrups. It shows more accurate results than the known approaches. 
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Kurzfassung 

Trotz langjähriger Forschungsaktivitäten, die ersten Versuche führte Mörsch 1920 durch, ist 

die Querkraftbemessung von Stahlbetonbalken ohne Querkraftbewehrung bislang unzurei-

chend geklärt. Dies zeigt sich unter anderem darin, dass die meisten Bemessungsverfahren 

nicht auf einem mechanischen Modell sondern auf empirisch entwickelten Gleichungen ba-

sieren, welche sehr große Streuungen und damit sehr hohe Sicherheitsfaktoren aufweisen. 

Das Problem der Querkraftbemessung besteht vor allem bei Platten. So weisen zahlreiche 

Massivbrücken in Deutschland nach der seit dem Jahre 2001 gültigen Norm rechnerisch eine 

zu geringe Tragfähigkeit in Querrichtung auf. Weiterhin ist die Querkraftbemessung von 

gevouteten Trägern, wie Sie beispielsweise bei Fahrbahnplatten von Brücken auftreten, bis-

lang kaum geklärt.  

Diese Forschungsarbeit soll zu einem besseren Verständnis des Querkrafttragverhaltens von 

Stahlbetonbalken ohne Bügelbewehrung beitragen. Hierzu werden zunächst die wesentlichen 

aus der Literatur bekannten, teilweise sehr unterschiedlichen Rechenmodelle analysiert und 

deren Genauigkeit durch einen Vergleich mit den Versuchswerten aus einer Schubdatenbank 

bestimmt. Es zeigen sich erhebliche Streuungen zwischen den Rechen- und den Versuchs-

ergebnissen.  

Zum Studium des Tragverhaltens wurden umfangreiche Versuche mit insgesamt 18 Stahlbe-

tonbalken ohne Bügelbewehrung unterschiedlicher Schubschlankheit durchgeführt. Hierbei 

lag der Schwerpunkt bei gevouteten Trägern. Es zeigt sich, dass die bestehenden Ansätze 

den Einfluss eines geneigten Druckgurtes auf die Querkrafttragfähigkeit nur unzureichend 

beschreiben. Teilweise ergeben sich auf der unsicheren Seite liegende Rechenwerte.  

Zu einem genaueren Studium der Beanspruchungen und der Tragmechanismen werden die 

Versuche mittels stofflich nichtlinearer Finite Elemente Berechnungen mit dem Programm 

ABAQUS simuliert. Es zeigen sich sehr gute Übereinstimmungen zwischen Versuch und 

FE-Analyse. Dies trifft sowohl bei den Kraft-Weg-Verläufen, bei den Traglasten als auch bei 

den Rissbildern zu. Das entwickelte numerische Modell gibt somit das Verhalten von Stahl-

betonbalken im Gebrauchs- und Grenzzustand zutreffend wieder. Die FE-Berechnungen 

zeigen, dass die Querkräfte im Wesentlichen in der ungerissen Druckzone übertragen werden 

und somit die Rissreibung im Grenzzustand der Tragfähigkeit keine wesentliche Rolle spielt. 

Die numerischen und experimentellen Untersuchungen haben weiterhin ergeben, dass die 

ungerissene Betonzugzone einen wesentlichen Anteil der Querkraft aufnimmt.  

Basierend auf den theoretischen und experimentellen Untersuchungen wird ein einfaches 

analytisches Modell zur Berechnung der Querkrafttragfähigkeit von geraden und gevouteten 

Stahlbetonbalken ohne Bügelbewehrung entwickelt, was erheblich genauere Werte als die 

bekannten Ansätze liefert. 



Table of Contents 

 

Vii 

Table of Contents 

Abstract 

Kurzfassung 

Table of Contents 

1- Introduction  ......................................................................................................................... 1 

1.1- Problem Statement  ............................................................................................................. 1 

1.2- Objectives of the Thesis  ..................................................................................................... 2 

1.3- Structure of the Thesis  ....................................................................................................... 3 

2- State of the Art  .................................................................................................................... 5 

2.1- Introduction  ........................................................................................................................ 5 

2.2- Shear Behaviours of Concrete Members without Stirrups  ................................................. 5 

2.2.1- Shear Transfer Mechanisms  ................................................................................ 8 

2.2.2- Significant Factors for Shear Capacity  .............................................................. 10 

2.3- Mechanical Models  .......................................................................................................... 13 

2.4- Empirical Models  ............................................................................................................. 26 

2.5- Code Provisions  ............................................................................................................... 31 

2.5.1- German Code DIN 1045-1 (2001) ...................................................................... 31 

2.5.2- ACI Code 318-05 (2005)  ................................................................................... 32 

2.5.3- CSA A23.3 (2004)  ............................................................................................. 32  

2.5.4- Swiss Code SN 262 (2003)  ............................................................................... 33 

2.6- Shear Strength of Haunched Beams  ................................................................................. 33 

2.7- Conclusions  ...................................................................................................................... 37 

3- Experimental Program  ..................................................................................................... 39 

3.1- Objectives  ......................................................................................................................... 39 

3.2- Test Specimens  ................................................................................................................. 39 

3.2.1- Material Properties  ............................................................................................ 42 

3.2.2- Fabrication of the Test Specimens  .................................................................... 44 

3.2.3- Data Acquisition System  ................................................................................... 44 

3.3- Testing Procedure  ............................................................................................................. 45 

3.3.1- Experimental Set−up  ......................................................................................... 45 

3.3.2- Loading Procedure  ............................................................................................ 45  



Table of Contents 

 

iiiv   

3.4- Experimental Results  ....................................................................................................... 46 

3.4.1- Behaviour of Test Beams until Failure  ............................................................. 46 

3.4.2- Results of Measurements  .................................................................................. 49 

3.4.3- Crack Propagation  ............................................................................................. 51 

3.4.4- Shear Strength in Relation with Main Significant Factors  ............................... 55 

3.4.5- Test Results in Comparison with Shear Design Models of Codes  ................... 56 

3.4.6- Test Results in Comparison with Shear Strength of 13 Models  ....................... 59 

3.5- Discussions and Conclusions  ........................................................................................... 62 

4- Nonlinear FEM Analysis  .................................................................................................. 65 

4.1- Introduction  ...................................................................................................................... 65 

4.2- Material Behaviour  .......................................................................................................... 65 

4.2.1- Concrete Behaviour  ........................................................................................... 67 

4.2.2- Steel Behaviour  ................................................................................................. 69 

4.2.3- Interaction Behaviour between Reinforcing Steel and Concrete  ...................... 70 

4.3- Non FEM Analysis with ABAQUS  ................................................................................. 72 

4.3.1- Damaged Plasticity Model for Concrete  ........................................................... 72 

4.3.2- Model for Steel  .................................................................................................. 74 

4.3.3- Explicit Dynamic Analysis  ............................................................................... 75 

4.4- Test Verification  .............................................................................................................. 76 

4.4.1- FEM Model  ....................................................................................................... 76 

4.4.2- Results of the FEM-Analysis  ............................................................................ 79 

4.5- Discussions and Conclusions  ........................................................................................... 92 

5- New Model Proposals  ..................................................................................................... 102 

5.1- Introduction  .................................................................................................................... 102 

5.2- Model Proposals ............................................................................................................. 102  

5.2.1- Shear Resistance Mechanisms Based on Stress Distribution 

           at Critical Sections ........................................................................................... 102 

5.2.2- Shear Strength Model for Straight Depth Concrete Beams  ............................ 104 

5.2.3- Shear Strength Model for Haunched Concrete Beams  ................................... 108 

5.2.4- Shear Database  ................................................................................................ 112 

5.3- Verification  .................................................................................................................... 115 

5.3.1- Comparison with other Shear Strength Models  .............................................. 117 



     Table of Contents 

 

  ix 

    5.3.2- Comparison with Practical Codes  ............................................................... 123 

    5.4- Discussions and Conclusions  ..................................................................................... 127 

    6- Conclusions and Recommendations  .......................................................................... 134 

 

    Appendix A- Concrete Properties of Test Beams  ......................................................... 137 

    Appendix B- Test Results  ............................................................................................... 141 

    Appendix C- Test Results versus Design Shear Strength of Codes  ............................ 196 

    Appendix D- Test Results versus Shear Strength of 13 Models  .................................. 209 

    Appendix E- Crack Propagation of 18 Test Beams from NFEM Analysis  ................ 214 

    Appendix F- Shear Database of 14 Test Beams  ............................................................ 237 

 

    References ......................................................................................................................... 239 

    Notation ............................................................................................................................. 257 

    Curriculum Vitae 



Table of Contents 

 

x 

 

 



1. Introduction 

1 

1 Introduction 

1.1 Problem Statement 

Intense research had been conducted in the last decades regarding the shear design of rein-

forced or prestressed concrete members. Nevertheless a generally accepted shear design 

model is still not available particularly for reinforced concrete (RC) members without trans-

verse reinforcements (or stirrups) which can often be found in practice, like retaining walls, 

tunnels or bridge slabs. Different codes, such as German code DIN 1045-01 (2001), Swiss 

code SN 262 (2003), ACI 318-05 (2005) or Canadian Standard CSA (2004) introduce differ-

ent shear design formulae. Even if these shear strength equations have been derived from 

either empirical approach or theoretical backgrounds, they show a big scatter of safety level 

as presented in figure 1.1. 

                  (a) German Code DIN 1045-01                        (b) Canadian Standard CSA 2003 
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Figure 1.1− Safety level of DIN 1045-01 versus longitudinal reinforcement ratio ρl (left)  

and safety level of Canadian standard CSA 2003 versus concrete strength f’c (right) 

The shear design concept for concrete structures without transverse reinforcements proposed 

in the Eurocode [EC2 (2003), 6.2.2] and the German Code [DIN 1045-01 (2001), 10.3.3] 

reduces considerably the shear bearing capacity of these members with regard to the older 

codes [Rombach et al. (2005)]. As a result, most concrete bridge decks in Germany require 

shear reinforcements while that was not the case in the last 50 years. This raises the question 

whether all of formerly designed concrete bridge decks have safety deficits or whether the 

shear design model in the new Eurocode and DIN 1045-01 is too conservative. For concrete 
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bridge decks, the arrangement of shear reinforcements or increasing the depth of slab as an 

alternative cause construction difficulties and increase time-consumption and cost. 

The shear design model for concrete members without transverse reinforcement in 

DIN 1045-01 adopted an empirical expression from the CEB-FIP Model Code 90 with a 

little adjustment of the safety factor 0,10 instead of 0,15 [Reineck (1996), Hegger et al. 

(1999)]. The value of 0,1 was suggested for safety reason after evaluation of 282 reliable 

tests out of 604 shear tests on reinforced concrete members without axial force. Now a new 

shear database of 1849 test results of RC beams with and without stirrups has been published 

[Collins et al. (2008)]. Thus it is necessary to evaluate the shear strength formula with up-

dated shear database in order to have more sufficient assessments on its efficiency and safe-

ness. Besides, the empirical approach should be also substituted by a more rational mechani-

cal model. Usually, an empirical approach will require a relatively large number of tests in 

order to cover adequately all relevant cases in practical construction. For concrete structures, 

even just for members without stirrups, it seems to be impossible to consider all relevant 

parameters due to a wide variety of geometrical features as well as material proportions and 

especially diverse testing circumstances. In fact, there are many unreliable test results out of 

the new shear database [Collins et al. (2008)]. For that reason, a shear design model should 

be derived from a theoretically mechanical background and the shear database should play a 

role as a means of verification. 

The varied−depth (or haunched) concrete structures without stirrups are very popular in 

practice for example in bridge deck slabs. It is surprised to know that there is not any practi-

cal code except the German code DIN 1045-01 (10.3.2) to give detailed instructions for the 

design of these structures [DIN 1045-01(2001)]. However, the shear resistance principle 

which combines an empirical expression and constituents of other forces is questionable. 

The existence of Vcc, a so-called vertical shear resistance component due to inclination of the 

concrete compression chord is not confirmed. In most cases Vcc reduces the design shear 

force VEd or increases the shear resistance VRd in other words. For that reason, it is implied 

that the shear bearing capacity of haunched structures is usually larger than that of straight 

depth ones even though the haunched structures apparently have less amount of composed 

materials. This remarkable fact encourages me to study more about the basis of this ap-

proach. It is also surprising that there have been very little researches conducted on this topic 

which cannot give reasonable explanations for the existence of Vcc. 

1.2 Objectives of the Thesis 

The main goals of this research are:   

1) to clarify the shear resistance mechanisms of concrete beams without stirrups  
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2)  to find out differences of shear behaviour between straight depth beams and haunched 

reinforced concrete beams without stirrups,   

3)  to propose rational and simple models to calculate shear capacity of straight and 

haunched concrete members and finally,   

4)  to evaluate the safety level of the German code DIN 1045-01 and other practical codes 

in comparison with the proposed models.  

The objectives will be processed by mechanical analysis and by experiments. 

1.3 Structure of the Thesis 

The thesis consists of six chapters and six appendices. 

Chapter 1- Introduction- gives an overview of the research, the objectives and the structure 

of the thesis. 

Chapter 2- State of the Art- summarizes some results of existing researches on the shear be-

haviour of concrete members without stirrups. Some typical shear design models and practi-

cal shear design provisions including DIN 1045-01, ACI 318-02, CSA 2003, SN 262… will 

be presented and discussed as well. Some guidelines for shear design of variable-depth RC 

structures are also introduced in details in this Chapter. 

Based on the above intense study, an experimental program had been planned and accom-

plished. Chapter 3- Experimental Program- describes in detail the experimental investiga-

tions of 18 test beams including geometrical features, material properties, used instrumenta-

tions, testing procedure and test results. 

In Chapter 4- Nonlinear FEM Analysis- all the test beams will be modelled and analyzed 

with the Finite Element software ABAQUS. The outcomes of the Nonlinear FEM analysis 

include the ultimate load bearing capacity, load deflection curves, maximum deformation, 

formation and propagation of cracks as well as redistribution of stresses during loading of 

test beams… 

Based on the achieved results of the test program and Non-FEM analysis, significant shear 

resistance mechanisms of straight and haunched concrete beams without stirrups will be 

identified. The differences of the two types of beams under loading in test program and Non-

FEM analysis will be examined and described as well. Based on these load bearing mecha-

nisms, two shear strength models for straight depth concrete member and varied depth con-

crete member will be developed. The two shear strength models and their design formations 

will be verified with the updated shear database as well as be compared with other shear 
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strength models and design equations in some practical codes. All of these will be presented 

in the Chapter 5- New Model Proposals- of the thesis. 

Finally, Chapter 6- Conclusions and Recommendations – summarizes the main results of the 

conducted research work and gives recommendations for further research.    
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2 State of the Art 

2.1  Introduction 

This section presents a brief background of shear behaviours and approaches for shear de-

sign of concrete members without stirrups. The study of shear behaviour has recognized 

some dominant shear resistance mechanisms in concrete and some main factors such as con-

crete strength, reinforcement ratio ρl …which influence most on shear bearing capacity of 

concrete members. These understandings play a key role in developing most of the shear 

design models later. 

There have been many shear design models proposed from many different theories or meth-

ods. In the following, some typical shear design models will be presented and classified into 

two main approaches, mechanical models which are based mainly on conceptual back-

grounds and empirical models which are based mainly on shear databases. The description 

of these models is quite complex and wordy. Therefore only main concepts, shear resistance 

mechanisms and major influencing factors of the presented models will be highlighted. 

The shear design models provided in practical codes including German Code DIN 1045-1, 

ACI Code 318−05, Canadian Standard A23.3 and Swiss Code SN262 are mentioned in the 

following. Besides, some rare researches and design instructions of two codes ACI 318-05 

and DIN 1045-01 for concrete haunched beams are also summarized. This will demonstrate 

the need of further researches in this field to get a better understanding on shear behaviours 

and more accurate design models of these common concrete structures. 

Finally, the conclusions will summarize some general outcomes of the existing researches on 

shear of concrete members without transverse reinforcements. From these backgrounds, the 

purposes of further research will be proposed accompanied with the research methodology 

suggested for solving the existing design problems. 

2.2 Shear Behaviours of Concrete Members without Stirrups 

Studying of shear behaviour of concrete members is to find out shear transfer mechanisms 

and shear bearing capacity up to failure of concrete structures. For common structures, the 

behaviours are dominated not only by shear forces alone but also by shear forces in conjunc-

tion with bending moments and axial forces. If any point in a member is considered, accord-

ing to theory of elasticity, its plane stress state can be described either by three stress com-
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ponents σx, σy, τxy or by two principal stresses including principal tensile stress σ2 and prin-

cipal compressive stress σ1. If shear stresses τxy exist, the direction of the principal tensile 

stress is inclined to the neutral axis of the structure (Figure 2.1). 

(a) Stresses at one point   (b) Stress Mohr’ circle 

 
 

Figure 2.1− Plane stress state of one point and stress Mohr’ circle [Timoshenko et al. (1951)] 

When the principal tensile stress at any point reaches the tensile strength of concrete, a crack 

will occur and open normal to the direction of the principal tensile stress or parallel with the 

direction of the principal compressive stress. Therefore, concrete members subjected to shear 

forces at ultimate load always have inclined cracks named diagonal cracks or shear cracks. 

Inclined cracks can be initiated in the web of beams where is proved to be the highest shear 

stress region and named web shear cracks. Inclined cracks developed from former flexural 

cracks are called flexure−shear cracks (Figure 2.2). 

 

Figure 2.2− Types of inclined cracks [NCHRP Report 549 (2005)] 

The type of failure caused by these cracks, usually in a very brittle and abrupt way, is called 

diagonal failure or shear failure. Normally, there are five different modes of failure caused 

by diagonal cracks depending on the dimensions, geometries, type of loading, amount of 

longitudinal reinforcement and structural properties of concrete members (Fig. 2.3) as fol-

lows: (1) Diagonal tension failure (2) Shear compression failure (3) Shear tension failure (4) 

Web crushing failure and (5) Arch rib failure [Pillai et al. (2003)]. 
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Figure 2.3− Modes of shear failure of concrete beams [Pillai et al. (2003)]. 

Diagonal tension failure usually occurs in concrete members with low amount of stirrups and 

longitudinal reinforcement. Diagonal cracks may initiate from former flexural cracks and 

propagate rapidly over the whole cross section of the member until collapse (Fig. 2.3.a). For 

concrete members with low amount of web reinforcement but adequate longitudinal rein-

forcement ratio to form a compression zone, shear cracks may easily initiate from former 

flexural cracks but do not pass through the compression zone. The failure of structure is 

caused by the crushing of the concrete in compression zone above the tip of the shear crack 

and named shear compression failure (Fig. 2.3.b). In cases that the longitudinal reinforce-

ment loses the bond with concrete due to inadequate anchorage of the longitudinal bars or 

concrete cover, cracks tend to develop along the main bars until they combine with a flexural 

shear crack to cause shear tension failure as in the figure 2.3.c. Web crushing failure seems 

to be only identified in I-beams due to slender web thickness while arch rib failure usually 

occurs in deep beams or short span beams in which the direct force transfer from the loading 

location to the bearings is dominant (Fig. 2.3.d and 2.3.e). In fact, some normal modes of 

failure can totally be as a combination of two or more above modes of failure, for example, 

shear tension failure and shear compression failure. 
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2.2.1 Shear Transfer Mechanisms 

How shear is transferred and which parts of concrete structures carry shear still seem to be a 

challenge to the research community due to the complicated physical mechanisms that do 

not follow to any conventional mechanical theory. Though some basic actions of shear resis-

tance in concrete structures are recognized including: (1) shear resistance of the uncracked 

compression concrete zone, (2) friction of contact surfaces between cracks (or aggregate 

interlock), (3) dowel action of longitudinal reinforcements, (4) crack−bridging tension forces 

existing in closed cracks (residual tensile stress in concrete) and (5) arch action [ASCE-ACI 

Committee 445 (1998), p.1395] as presented in figure 2.4. Nevertheless, the level of impor-

tance of each corresponding action of shear resistance is still a controversy. 

 
Figure 2.4− Mechanism of shear resistance [NCHRP Report 549 (2005)] 

The uncracked concrete compression zone: As showed in the figure 2.3(a) and the figure 

2.3(b), the concrete compression zone plays an important role in guiding and limiting the 

development of inclined cracks. It is apparent that shear cracks are responsible for the failure 

of concrete members in shear and the failure occurs only if the critical shear crack passes 

through the compression zone or the compressive strength of concrete is exceeded. There-

fore, the depth of the compression zone will determine the load bearing capacity of a mem-

ber. The larger the depth of the compression zone, the higher the shear carrying capacity. 

However, the level of significance of concrete compression zone in carrying shear is still a 

controversy. Many authors, for example Bresler et al. (1958), Zwoyer et al. (1954), stated 

that it is the uncracked zone, an effective area in resisting normal stresses, to carry the whole 

of shear in concrete members while others, for example Reineck (1991), believed that the 

concrete compression zone can carry not more than 30% of the total shear force. Recently, 

many authors, such as Zararis et al. (2001), Zink (2000), Tureyen et al. (2003), Park et al. 

(2006), Choi et al. (2007), only considered the failure mechanisms of compression zone to 

estimate the shear strength of concrete members. 
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Friction between contact surfaces of cracks: The roughness of the crack surfaces acts as in-

terlocks to prevent the slip between contact surfaces. Some called the mechanism “aggregate 

interlock” depending on the width of cracks and the aggregate size. The shear resistance in-

creases as the width of cracks decreases and the aggregate size increases. According to 

Reineck (1991), the shear force is mainly transferred by this mechanism (accompanied with 

dowel action). In contrast, Zararis et al. (2001) stated that because the uncracked concrete 

zone exists above the tip of the critical inclined crack, it acts as a buffer to prevent any slip 

along crack interfaces and hence, there are no contribution of aggregate interlock and dowel 

action at all. 

Dowel action of longitudinal reinforcements: When the critical shear crack develops and 

gradually increase the width of the former flexural cracks, main longitudinal bars will act as 

dowels to resist shear. The shear resistance depends closely on vertical displacements of the 

critical shear crack and most on effective width of concrete beams as well as concrete tensile 

strength. Watstein et al. (1958) conducted tests with 9 rectangular beams without stirrups 

and concluded that the shear carried by longitudinal reinforcement is in range of 0,38 to 0,74 

of the total shear at loads ranging from 0,42 to 0,46 of the maximum. After that the dowel 

action would decrease as the width of the shear crack increases and would reach zero at fail-

ure. Acharya et al. (1965) concluded on the results of 20 tests with rectangular beams with-

out stirrups that dowel action not only carries shear but also plays a key role in deciding 

which type of failure, flexure failure or shear failure, will happen. 

Crack−bridging tension forces existing in closed cracks: Experimental investigations by 

Gopalaratnam et al. (1985) came to a conclusion that cracked concrete does resist tension. 

Hence, small pieces of concrete crossing cracks can carry shear as long as the crack width 

does not exceed a certain limit value. The larger the crack width, the less significant the 

shear capacity of cracked pieces of concrete. Nevertheless, Bažant (1997) theoretically veri-

fied that the crack−bridge tensile stresses are insignificant and should be neglected as their 

magnitude is much lower than the shear capacity of the compression zone of concrete. 

Arch Action: Theoretically the shear resistance of concrete members can be divided into two 

separate modes: beam action and arch action. The critical state before shear failure shows a 

change of depth of uncracked concrete compression zone from the position of load applica-

tion to support or a change of inner lever arm in other words. That means arch action may 

play a more important role that beam action does at the critical state. Strut-and-tie models 

suggested by Ritter (1899), Mörsch (1920), Drucker (1961), Nielsen (1978), Marti (1985), 

Schlaich et al. (1987) are used in case of arch action. Kim et al. (1999) introduced a shear 

strength equation that combines beam action and arch action based on analytical models and 

experimental data. 
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2.2.2 Significant Factors for Shear Bearing Capacity 

Analytical and experimental studies have revealed that the shear bearing capacity of concrete 

members is controlled by following dominant parameters: (1) concrete strength f′c (or fck), 

(2) size effect d, (3) longitudinal reinforcement ratio ρl, (4) shear span to depth ratio a/d and 

(5) axial force [ASCE-ACI Committee 445 (1998)]. However, the significance of each pa-

rameter to the shear bearing capacity of concrete members is still under debate. The impor-

tance of these factors and some opinions of their contribution to shear strength of concrete 

members can be summarized as follows: 

Concrete strength: Normally, concrete members with higher concrete strength will have 

higher load bearing capacity or more shear strength in other words. Because the concrete 

strength is represented by concrete compressive strength and concrete tensile strength, the 

use of each type of strength will imply the failure mechanism of structure. As it is assumed 

that cracks in concrete are caused by principal tensile stresses, the concrete tensile strength 

will have more decisive influence on shear carrying capacity of concrete structures. This 

hypothesis has been widely agreed by many researchers and especially has governed almost 

all design codes. In these codes, concrete tensile strength is usually described as a term of 

concrete compressive strength to the power of a third or a half for convenience such as fck
1/3 

in DIN 1045-01 or f′c1/2 in ACI 318-05. 

However, as presented in the figure 2.3, the modes of shear failure are quite different and 

complex. As a result, the influence of concrete tensile strength on the shear strength of a 

structure may not be the same for different failure modes. The inconsistent test results from 

different authors also partly confirmed the conclusion. Ferguson et al. (1953) conducted tests 

on 24 T−beams without stirrups and reported that the diagonal tensile strength increases very 

slowly as f′c  increases. Moody et al. (1955) carried out tests with 136 rectangular beams 

(101 beams without stirrups) and concluded that the nominal shear stress increases as con-

crete strength increases and becomes independent if the concrete strength exceeds 34,5 MPa 

(5000psi). Kani (1966), based on the test results of 132 beams without shear reinforcements, 

stated “that the shear strength of rectangular, reinforced concrete beams does not depend on 

concrete strength within the entire range of f′c = 17,2−34,5MPa (2500 to 5000psi) and 

ρl = 0,50 to 2,80 % “. 

Size effect: Kani (1967), by four series of test beams without stirrups having different depths 

of 152, 305, 610, 1219cm (6, 12, 24, 48 in), identical ratio of longitudinal reinforcement and 

concrete strength, confirmed that the shear strength will decrease as the depth of beam in-

creases. The tests conducted by Shioya et al. (1989) with beams having depths ranging from 

10 to 305 cm (4 to 120 in) also gave the same conclusion. To explain this phenomenon, 

Reineck (1991) and Collins et al. (1986) supposed that the crack width at failure is propor-
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tional to the depth of beam. Since a wide crack width will reduce the shear transfer capabil-

ity due to friction and aggregate interlock, the higher the beam depth the lower the shear 

stress transfer capacity. Bažant (1997) also suggested a theory of fracture energy release to 

explain the size effect in terms of energy from the fracture mechanics viewpoints. 

Longitudinal reinforcement: Kani (1966), by 133 rectangular test beams without stirrups, 

concluded that the influence of longitudinal reinforcement ratio on shear strength is consid-

erable as shown in figure 2.5. It was already proved that the percentage of longitudinal rein-

forcement ρl governs the height of the compression zone and tensile strain of concrete (or 

crack width). The increase of ρl will enlarge the height of compression zone as well as lessen 

the width of cracks and, as a result, raises the shear strength of structures. This has been 

widely accepted by research the community and that’s why the longitudinal reinforcement 

ratio appears in shear strength formulae of most all of practical design codes. 

 

Figure 2.5− Relative beam strength Multimate /Mflexure, versus a/d and ρl [Kani (1966)] 

Shear span to depth ratio a/d: The influence of a/d on shear strength was early recognized 

by Talbot, Turneaure and Maurer [Ferguson et al. (1953), p.673]. Clark and later Ferguson 

et al. (1953) showed that for the same beam, the shear stress at failure changes by 225 % if 

the value of a/d varies from 2,35 to 1,17 [Kani (1964)]. Kani (1966) conducted 11 series of 

133 test beams without stirrups and with the a/d range of 1,0 to 6,5. By considering Mu, the 

maximum bending moment at failure as an indicator of diagonal failure, Kani presented 

graphs of Mu/Mfl versus a/d and introduced the term “valley of diagonal failure” as shown in 

the figure 2.5. These graphs showed a trend that the beam strength Mu reached the full flex-

ural strength Mfl at a/d = 1 and reduced to 51% of Mfl as the value of a/d increased to 2,5. As 

a/d continued to increase, the beam strength Mu, nevertheless, increased astonishingly to 
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reach the full flexural strength Mfl at a/d = 6,5. The flexural failure occurred in the vicinity of 

a/d = 1,0 and a/d = 6,5 while the diagonal failure was found at the remaining values of a/d. 

To explain the influence of the slenderness ratio, some authors considered a/d in relation 

with moment as a/d = M/V⋅d and hence, implied the role of moment on shear bearing capac-

ity of concrete members. In agreement with this approach, many authors such as Collins et 

al. (1996), Muttoni et al. (2008)…included this factor in their strength models. The a/d ratio 

can be seen in most codes for example ACI 318-05 (eq. 2), CSA 2003, SN 262 while it is 

neglected in CEP−FIB Model Code, DIN 1045−01 and Eurocode 2. 

Axial force: It is widely accepted that axial tension force reduces the shear strength of con-

crete members and that axial compression force due to applied normal loads or prestressing 

increases the shear strength of concrete members. Since axial tension force reduces the 

height of the concrete compression zone as well as widens the crack width, it reduces the 

shear resistance of compression zone and the shear interface transfer. By contrast, axial 

compression force increases the height of concrete compression zone as well as narrows the 

crack width and so, it raises the shear resistance of the two above mechanisms and the shear 

bearing capacity of concrete structures in general. 

Other factors: Kim et al. (1991) considered other effects such as the confined horizontal 

cracking, preformed cracks, released horizontal cracking and unbonded reinforcement. How-

ever, these factors have been proved to have insignificant roles on shear bearing capacity of 

concrete members. 

In conclusion, theoretical analysis and experimental investigations have identified generally 

accepted shear transfer mechanisms as follows: (1) shear resistance of the uncracked con-

crete compression zone, (2) friction of contact surfaces between cracks (aggregate interlock), 

(3) dowel action of longitudinal reinforcements, (4) crack-bridging tension forces existing in 

closed cracks (residual tensile stress in concrete) and (5) arch action. Based on one or more 

of the above mentioned mechanisms, many shear models to estimate the shear strength of 

reinforced concrete members had been suggested. These models originated from this ap-

proach can be called as mechanical models. 

Another approach, based mainly on significant factors such as material properties of con-

crete (Ec, f′c  or fck, fct) and steel (Es, fs) combined with structural dimensions (b, d, a/d) as 

well as boundary conditions (load type, axial force…) to formulate and later calibrated with 

test database, has introduced many shear strength formulae as well. The models originated 

from this approach can be called as semi-empirical or purely empirical models. Almost all of 

shear design models of practical codes surprisingly are in this later group. Typical shear 

strength models of the two approaches and practical codes will be presented in the next sec-

tions. 



2. State of the Art 

13 

2.3 Mechanical Models 

It is interesting to know that some mechanical models for shear design (for example truss 

model, variable-angle truss model, compression field theory) did not acknowledge the shear 

resistance of concrete beams without stirrups though some tests totally did confirm the con-

tradistinction. One rational model to explain failures which are not of flexural type was early 

developed by Kani (1964) (Fig. 2.6). He used the term “diagonal failure” to name these fail-

ures and also suggested two internal shear carrying mechanisms of concrete beams: (a) a 

comb-like structure and (b) a tied arch. Kani introduced analytical expressions for both 

mechanisms. From these models and tests, Kani strongly confirmed the influence of a/d ratio 

on shear resistance and diagonal failure mechanism of concrete beams. For small a/d ratios, 

the concrete beams tend to form a tied arch to resist shear while comb-like structure will 

prefer to occur for larger a/d ratios. In the comb-like model or tooth model, the concrete 

teeth were assumed to be cantilevers fixed in the compression zone and loaded by forces 

transferred from longitudinal reinforcements. The shear bearing capacity of beams was ex-

pressed in term of bending capacity of these teeth. 

    (a) Comb-like structure          (b) Tied arch 

 

Figure 2.6− Kani’ models [Kani (1964)] 

Some other authors, such as Fenwick et al. (1968) or Taylor (1972, 1974) [Reineck (1996)], 

later showed that the teeths of comb-like model could not bend freely due to the influences 

of the friction between crack surfaces and the dowel action of longitudinal reinforcement. To 

consider these mechanisms, tooth model were further developed by Fenwick and Paulay, 

Taylor, Hamadi and later by Reineck [NCHRP Report 549 (2005)]. Generally, these ap-

proaches were characterized by modelling of discrete cracks with different assumptions for 

inclination and spacing of the cracks. In the “truss model with crack friction” suggested by 

Reineck (1990), the cracks were assumed to be inclined at βcr = 60° with a spacing of 70 % 

of the flexural crack height (Fig. 2.7). In addition, Reineck also assumed that the depth of the 

compression zone is almost constant along shear span and that shear failure would occur 

somewhere at the middle of shear span of a beam (Fig. 2.7). The distribution of the friction 

stresses along the cracked surfaces was also simplified to define the states of stresses in the 

web of a member (Fig. 2.8). Finally, an explicit formula for the ultimate shear strength of 

concrete beams was proposed as follows:   



2. State of the Art 

14 

0,4

1 0,16 1

eff ct d
Rm

ct

c

b d f V
V

f a

f d
λ

⋅ ⋅ +
=

⎛ ⎞+ ⋅ ⋅ −⎜ ⎟
⎝ ⎠

             (2.1) 

Where:  

c

s l

f d

E w
λ

ρ
= ⋅

⋅
  fc in MPa; d in m and w = 0, 9 mm 

2/30, 246ct cf f=       axial tensile strength in MPa 

fc = 0,95 f′c                     uniaxial compressive strength of concrete for short-time loading in MPa 

1/3

6
d eff s ct

c

V b d f
f

= ⋅ ⋅ ⋅     Vd in MN; ds and beff in m; fc and fct in MPa  (dowel effect) 

eff sb b d= −∑    effective width of section 

ds   diameter of main longitudinal bar. 

V

N

(d-c)

tan cr

�lcr

C C

cV

(C+ T)�

cV

T)

sA cr =60
o

dV
T

T

T+ T�

caV

fV
�T

fV

dV

cr

cz
d

c

D-region with load application

z

F

a) end support region b) tooth c)

caV caVcaV

crs

crs crs

 

Figure 2.7− Reinforced concrete member with tooth-element and its forces in B-regions [Reineck (1991)] 
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Figure 2.8− Stress distribution of Reineck’s model in the compression zone and in the  
cracked region [Reineck (1991)] 

In Reineck’s model, shear forces are mainly transferred in the tension zone by the friction 
along the cracked surfaces (or aggregate interlock) and the dowel action of the longitudinal 
reinforcements while the compression zone only carries at most a maximum of about 30% of 
the total shear force [Reineck (1991)]. In contrast, many authors believe that it is the com-
pression zone which carries most shear force and not the cracked tension zone. Furthermore, 
the assumption that the height of the compression zone is almost constant in the shear span 
will be appropriate only for beams with relatively large ratio a/d. In addition, the assumption 
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that shear failure occurs somewhere at the middle of shear span of a beam is also not realistic 
because the stress fields in a beam usually tends to focus on the load position and the support 
which play a role as two inclined poles. As a result, the inclined shear failure crack will 
mostly propagate either to the load position or to the support or to both of them as showed in 
many tests. It will be verified by the test program in the next chapter that the “truss model 
with crack friction” suggested by Reineck do not predict well the shear capacity of the short 
test beams (a/d ≈ 3). This model also shows bad correlation to test data which will be pre-
sented in the Chapter 5- New Model Proposals. 

Zararis et al. (2001) proposed a totally different shear failure mechanism in reinforced con-
crete slender beams without web reinforcements. These authors stated that it is the type of 
splitting of concrete responsible for the diagonal shear failure of beams under concentrated 
load. They showed that the critical diagonal shear crack (leading to collapse) typically in-
volves two crack branches which are formed at different time and are due to different causes 
(Fig. 2.9).  

 

Figure 2.9− Mechanical model of Zararis et al. (2001) under the equilibrium condition of forces  
[Zararis et al. (2001)] 

The failure is caused by the formation of the second branch of the critical crack, which initi-
ates from the tip of the first branch and propagates, abruptly or gradually, toward the posi-
tion of load application crossing the compression zone (Fig. 2.10a). Based on the theories of 
elasticity, plasticity and force equilibrium conditions (Fig. 2.10b), the shear strength equa-
tion at failure of slender beams without stirrups was proposed as follows: 
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Figure 2.10− Distribution of normal stresses along the second branch of critical crack 

 and splitting of concrete in circular disk [Zararis et al. (2001)] 

It is noted from the above formula that the shear strength of beams at failure, as the product 
of the neutral axis depth c to the effective depth d ratio times the splitting tensile strength of 
concrete fct , is purely carried only by the uncracked concrete compression zone under the 
arch action and there is no dowel action and aggregate interlock (or friction between cracks) 
since the compression zone essentially acts as a buffer preventing any meaningful contribu-
tion of shear slip along the crack interface as other authors explained. The purely mechanical 
model is found to predict very well the ultimate shear forces of extensive test series of slen-
der beams with various strengths of concrete, steel ratios, shear span to depth (a/d) ratios, 
and geometrical features which will be presented in the chapter 5-New Model Proposals. 

Also considering the main role of the uncracked compression zone in resisting shear, Zink 
(2000) suggested another model to predict the shear strength of beams without stirrups. Bas-
ing on the Hillerborg’s fracture mechanics model, the author showed a different distribution 
of shear stress at a cracked cross section in which the shear stress, after reaching the maxi-
mum value at the tip of the critical diagonal crack, will gradually reduce to zero along a cer-
tain length on the crack (Fig. 2.11).    

The shear strength of concrete beams without stirrups includes the principal shear resistance 
force V0 of the compression zone multiplied with the factors k(a/d) and k(lch/d) to consider 
the influences of slenderness and size effect of beams as follows: 
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Figure 2.11−Stress distribution at cracked section [Zink (2000)] 

These two factors were later determined by experimental data. The final shear capacity for-
mula of concrete beams without stirrups was proposed by Zink (2000) as follows: 
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Having the same opinion about the key role of the uncracked concrete compression zone, 
Tureyen et al. (2003) believed that it is the stress state in this region that initiates the shear 
failure of concrete beams (Fig. 2.12). The distributions of normal stress and shear stress at 
crack position and between cracks are assumed as shown in figure 2.13. 
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Figure 2.12− Simplified model before shear failure [Tureyen et al. (2003)] 

        a) Stress distribution at crack     (b) Stress distribution between cracks 

 
Figure 2.13− Stress distribution at crack and between cracks [Tureyen et al. (2003)] 

With the assumption that failure occurs when the principal tensile stress reaches the tensile 
strength of the concrete fct, the shear strength equation was proposed as follows: 

( )22
6 6

3 2Rm c cV b c f f
σ′ ′= ⋅ ⋅ + ⋅        (2.5) 

Where:  The concrete tensile strength fct was assumed and σ is the flexural stress at the extreme compression 

fibre. 

After consideration of large experimental data, Tureyen proposed the following simple con-

servative shear strength equation::  

0,4152Rm cV f b c′= ⋅ ⋅         (2.6) 

Where: ( )2
2 l E l E l Ec dρ α ρ α ρ α⎡ ⎤= ⋅ + ⋅ − ⋅ ⋅⎢ ⎥⎣ ⎦

   depth of uncracked concrete compression zone. 

The proposed model was found to predict well the shear strength of 370 test specimens from 

25 different investigations. It was also suggested to use for concrete beams with fiber-

reinforced polymer (FRP) bars. 

Park et al. (2006) proposed a strain-based shear strength model for slender beams without 

web reinforcements based on the same assumption that the shear resistance of a slender 

beam is provided mainly by the uncracked compression zone of concrete. The distribution 

and interaction between the stress components was considered to evaluate the shear strengths 

of beams (Fig. 2.14). Based on the material failure criteria of concrete, failure controlled by 
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compression and failure controlled by tension (Fig. 2.15), the shear capacity was defined as a 

function of the flexural deflection (or strain) as presented in eq. (2.7): 

    (a) Strain of a beam at different load stages                       (b) Stress and strain at cross-section 

 

Figure 2.14− Strain of a beam at different load stages and stress and strain at cross-section [Park et al. (2006)] 

 (a) Failure controlled by compression       (b) Failure controlled by tension 

 

Figure 2.15− Condition for failure controlled by compression and by tension [Park et al. (2006)] 
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Where: z  is the length of moment arm at the loading point is defined as follows: 
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ca  is the height of the compression zone at the loading point  

αa  is the compressive normal strain factor at extreme compression fiber of the cross section at the  

 loading point.  

To avoid an iterative calculation, the above formula later was simplified conservatively as 

follows:  
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εo and αa can be assumed in calculation. 

Although this model requires a complicated calculation procedure, it predicts the shear 

strength in very good agreement with many existing experimental results. This proves that 

the models based on the failure mechanism of the compression zone are a very good ap-

proach to predict the shear strength of reinforced concrete beams without stirrups. 

Derived from the lower bound theorem of plasticity, some simple strut-and-tie models were 

suggested by Drucker (1961), Nielsen (1978) and Marti (1985) [ASCE-ACI Committee 445 

(1998)] to determine the shear capacity of deep concrete beams without stirrups. This ap-

proach was developed from the assumption that significant shear is transferred directly to the 

support by arch action, and so, less redistribution of internal stresses is involved after crack-

ing. In these models, the concrete tensile strength is neglected and loads are carried by a sin-

gle inclined strut. If the longitudinal reinforcement is anchored well behind the support, two 

failure mechanisms can occur: (1) failure of concrete in biaxial compression over the support 

or under the load; or (2) yielding of the longitudinal reinforcement. 

Marti (1985) introduced other basic tools including nodes, fans, arches, and bands for more 

complex patterns of the flow of forces (Fig. 2.16). However, the simple strut-and-tie ap-

proach has been considered to result in an unsafe solution and should be used with caution 

for slender beams without stirrups [ASCE-ACI Committee 445 (1998)].  
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               (a) Strut and tie model          (b) Continuous arch 

 
Figure 2.16− Arch action in strut and tie model and continuous arch [Marti (1985)] 

In an attempt to generalize the strut-and-tie model to shear failure of slender beams, some 

authors suggested truss models with concrete ties to care for the role of tensile stresses in 

such members. Marti (1980) extended the plasticity approach by using a Mohr-Coulomb 

yield criterion for concrete that includes tensile stresses [ASCE-ACI Committee 445 (1998)]. 

Schlaich et al. (1987) also suggested a refined strut-and-tie model which includes concrete 

tension ties [ASCE-ACI Committee 445 (1998)]. Al-Nahlawi et al. (1992) proposed another 

truss model with concrete compression struts inclined at either 45° or 35° and concrete ten-

sion ties perpendicular to the struts (Fig. 2.17).  

 

Figure 2.17− Refined strut-and-tie models [Al Nahlawi et al. (1992)] 

The accuracy of the truss models with concrete ties and strut-and-tie models in general de-

pends on the material strength properties (concrete, steel) and the assumed inclinations of 

struts and ties which were believed to be different for concrete beams with different concrete 

strengths and various shear span to depth ratios a/d. As a result, these approaches cannot 

capture the shear failure of slender members without stirrups which showed different shear 

failure mechanisms from those assumed in the truss models. 

Vecchio and Collins (1986) introduced the Modified Compression Field Theory (MCFT) as 

a further development of the Compression Field Theory formerly suggested by Collins and 

Mitchell (1974) [ASCE-ACI Committee 445 (1998)]. Different from the Compression Field 

Theory, the Modified Compression Field Theory cares for influences of tensile stresses in 

post-cracked concrete; and as a result, this model can be implemented to determine the shear 

capacity of concrete beams without stirrups.  
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(a) Average stresses                                            (b) Stresses at cracks 

 
Figure 2.18−Equilibrium conditions of MCFT [ASCE-ACI Committee 445 (1998)] 

 

Figure 2.19−Compatibility conditions of MCFT [ASCE-ACI Committee 445 (1998)] 

                  (a) Stress relations                                             (b) Strain relations 

 

Figure 2.20− Stress and strain relations of MCFT [ASCE-ACI Committee 445 (1998)] 

The MCFT, essentially a fully rotating, smeared crack model, describes the behaviours of 

cracked reinforced concrete under equilibrium conditions, compatibility conditions, and 

stress-strain relationships which were formulated in terms of average stresses and average 

strains (Figs 2.18, 2.19 and 2.20). In the MCFT formulation, cracked reinforced concrete 

was treated as an orthotropic material noticeably different from plain uncracked concrete 

with new constitutive relations of compression softening and tension stiffening derived from 

a comprehensive series of panel element tests. The MCFT may be the most conceptual and 
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sophisticated model among others for shear design of concrete structures. However, it was 

also recognized by tests that the MCFT underestimates shear strength and stiffness of panels 

containing heavy amounts of reinforcement in both directions (Fig. 2.21.a) but overestimates 

shear strength and stiffness of uniaxially reinforced panels or panels containing very light 

reinforcement in the transverse direction (Fig. 2.21.b) [Vecchio (2000)].   

 

Figure 2.21−Shear stress-strain diagram of panel test PV 23 and panel test PB20 [Vecchio (2000)] 

Tests also showed that the original simplifying assumption of MCFT which states the direc-

tions of the average principal strain remained coincident with the directions of the average 

principal stresses in the concrete was strictly not the case. Additionally, the crack shear 

check is a quite difficult procedure in the implementation of the MCFT. To overcome the 

above disadvantages, Vecchio (2000) suggested a Disturbed Stress Field Model which is a 

hybrid formulation between a fully rotating crack model and a fixed crack model. This new 

model fundamentally was established on the concepts of the Modified Compression Field 

Theory with two advancements including a new approach to the reorientation of concrete 

stress and strain fields and an improved treatment of shear stresses on crack surfaces. These 

two advancements theoretically were believed to help the Disturbed Stress Field Model pro-

duces a better result with a simpler calculating procedure than the MCFT does. However, 

this model was only introduced at the fundamentally theoretical level, and so it requires to be 

further developed for practical applications. 

Other models to estimate the shear strength of concrete members without stirrups are based 

on fracture mechanics. From the typical shear failure of concrete beams, mostly caused by 

the propagation of a single critical diagonal crack, fracture mechanics approaches assumed 

that there was a peak tensile stress at the tip of this diagonal crack and a reduced tensile 

stress (softening) in the cracked zone. Some models of this approach explained the existence 

of size effect and suggested various size-effect laws for shear failure of concrete beams. Us-

ing the cohesive crack concept, Gustafsson et al. (1988) introduced the fictitious crack model 

and proposed a size effect law with the form k/d1/4 (k is a constant of proportionality) after 

studying the influence of the size, the steel ratio, and the shear span-to-depth ratio 

(Fig. 2.22).  
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Jenq et al. (1989) proposed a two-parameter nonlinear fracture mechanics model. The ulti-

mate shear capacity is assumed to be an algebraic summation of the contributions from con-

crete and reinforcement [So et al. (1993)]. The concrete contribution is formulated from the 

fracture mechanics model while the steel contribution is calculated by considering the aver-

age ultimate bond stress (Fig. 2.23). So et al. (1993) improved the Jenq et al’s model by tak-

ing into account the bond–slip relationship, the dowel action, the aggregate interlock, and 

shear span to effective depth ratio a/d. This So et al.’s model predicts the shear capacity of 

slender beams quite accurately comparing with test results; but it adopted a lot of empirical 

formulae in the other hand. 

                    
 Figure 2.22−  Fictitious crack model Figure 2.23− The model of Jenq et al.  

                    [Gustafsson et al. (1988)]      [Jenq et al. (1989)]   

Bažant et al. developed a set of phenomenological equations from the combination of the 

arch action and beam action with various size effect’s law in terms of fracture mechanics. 

Since all constant parameters of the final shear strength equations were calibrated with test 

database, these models should be classified as semi–empirical models and will be presented 

later in the next section. 

The assumptions that flexural-shear failure is triggered by the propagation of a splitting 

crack at the level of the longitudinal reinforcement and that the ultimate shear load is 

reached when the splitting crack starts to propagate, Gastebled et al. (2001) proposed another 

analytical model to estimate the shear failure loads of the concrete beams without stirrups 

(Fig. 2.24). Derived from the fracture energy approach with a principle that the unit extra 

work produced by the extra moment to the unit rotation at the tip of diagonal shear crack is 

equal to the fracture energy necessary to extend the unit unbonded length of longitudinal 

reinforcement, the shear strength equation, resulted from this model, considered the size ef-

fect, shear span to effective depth ratio, longitudinal reinforcement ratio, elastic modulus of 

steel and concrete strength as follows: 

( ) ( )
1/3

2/3 0,351/61,109
1Rm l l c s

h
V f E b h

ah
ρ ρ⎛ ⎞ ′= ⋅ ⋅ − ⋅ ⋅ ⋅ ⋅ ⋅⎜ ⎟

⎝ ⎠      (2.9) 

This model adopted a semi-empirical formula proposed by Kim et al. (1991) from only 14 

experimental results to predict the position of diagonal crack and the empirical Mode I frac-

ture energy equation in the CEB-FIP Model Code 1990. However, the above shear strength 
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formula was found to have a good agreement with the purely empirical equation for shear 

design of CEB-FIP Model Code 1990. This outcome encouraged Reinhardt et al. in pursuing 

the fracture mechanics approach to improve the Gastebled et al.’s model. Basing on Mode II 

fracture tests, Xu et al. (2005) proposed a modified Gastebled et al.’s formula in which the 

Mode II fracture energy was used to replace the former empirical Mode I fracture energy as 

follows: 

( )
1/3

2/3
1/61,09

1Rm l l IIc

m

h
V K b h

ah
ρ ρ

γ
⎛ ⎞= ⋅ ⋅ − ⋅ ⋅ ⋅ ⋅⎜ ⎟⋅ ⎝ ⎠     (N, mm, N/mm3/2 units)           (2.10) 

Where: γm = 1,35 is the safety factor and KIIc is the Mode II fracture toughness.  

                                (a) Equilibrium conditions               (b) Assumptions on deformation and geometry relation 

 

Figure 2.24− Equilibrium conditions and assumptions on deformation and geometry relation of crack 
of the model by Gastebled et al. (2001) [Gastebled et al. (2001)]. 

This model actually implies the shear problem of concrete beams without stirrups in terms of 

another problem of fracture mechanics because it was found to be difficult to determine the 

Mode II fracture toughness or the Mode II fracture energy by both theoretical analyses and 

experimental investigations. 

 
Figure 2.25− Three different cracking modes include Mode I – opening mode; Mode II  

– shearing mode and Mode III – tearing mode [Xu et al. (2005)] 

In recent years a significant progress in modelling of concrete and reinforced concrete mate-

rials has been achieved and adopted in some commercial finite element method (FEM) soft-

ware packages. The FEM-based approach, as a result, has rapidly been considered as a 

promising method to detect the real shear failure mechanisms of concrete beams without 

stirrups that seem still a challenge for theoretical and empirical analyses. Due to its specific 

characteristics, this approach will be discussed into details in the Chapter 4 (Nonlinear Finite 

Element Analysis). 
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2.4 Empirical Models 

Empirical approach to formulate a strength model for shear design of concrete members 

without stirrups was early adopted by many authors, for example Moody et al. (1954, 1955), 

Morrow et al. (1957), Bresler et al. (1963), Mathey et al. (1963), Krefeld et al. (1966). Zsutty 

(1968), by using regression analysis of the shear data of 86 reinforced concrete slender 

beams without stirrups, introduced an empirical expression for the ultimate shear strength of 

simple, rectangular, slender (a/d > 2,5) beams without stirrups under concentrated load as in 

the following equations : 

1/3

2, 21Rm c l

d
V f b d

a
ρ⎛ ⎞′= ⋅ ⋅ ⋅ ⋅⎜ ⎟

⎝ ⎠
       (2.11) 

1/3

2,5 2,2Rm c l

d d
V f b d

a a
ρ⎛ ⎞ ⎛ ⎞′= ⋅ ⋅ ⋅ ⋅ ⋅⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 for a/d ≤ 2,5    (2.12) 

It can be concluded from the formulae that the shear strength of slender beams depends on 

three parameters named as compressive concrete strength f’c, longitudinal reinforcement 

ratio ρl and shear span to depth ratio a/d. However, it is quite interesting to note that these 

three main parameters have the same influence on the shear strength of beams. In addition, 

the formulae neglect the size effect that has a strong influence on shear strength as verified 

later.  

Okamura et al. (1980) and Niwa et al. (1986, 1988), by using the weakest link assumption 

according to Weibull’s statistical theory, proposed a different formula for shear strength of 

beams as follows [Gastebled et al. (2001)]: 

( ) ( )
1/3

1/3

1/4

100 1,4
200 0,75l

Rm c

d
V f b d

d a

ρ ⎛ ⎞′= ⋅ ⋅ + ⋅ ⋅⎜ ⎟
⎝ ⎠

 (VRm in kN, fc in MPa, b, d in m)    (2.13) 

The above formula has an identically exponential form of compressive concrete strength f′c 
and percentage ratio of longitudinal reinforcement ρl as in Zsutty’s function; but the shear 

span to depth ratio a/d is different and a new term d 0,25 is appended to consider size effect. 

This formula was later slightly modified and adopted in the Japanese code for shear design 

of concrete structures without stirrups. 

Developed empirically from a large shear database, the formula in the CEB-FIP Model Code 

1990 also owns the same dimensional form in relation of shear strength to compressive con-

crete strength f′c  and to longitudinal reinforcement ratio ρl as suggested by Zsutty (1968). 

The influence of shear span to depth ratio a/d and size effect d were judged in other forms 

different from those of Okamura et al.’s formula as follows: 
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( ) ( )
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(VRm in kN, fc in MPa, b, d in m)    (2.14) 

This formula later was slightly modified and adopted in Eurocode 2 and German code DIN 

1045-01 for shear design of concrete structures without stirrups. 

The ACI-ASCE Shear Committee (1962), after studying the large amount of available ex-

perimental results, introduced an empirical expression for the ultimate shear strength. That 

expression first appeared in the ACI 318 Code (1963) and is still present in ACI 318-05 

(2005) as follows (VRm in kN, fc in MPa, b, d in m):  

30,16 17 10 290Rd c l c

V d
V f b d f b d

M
ρ ⋅⎛ ⎞′ ′= + ⋅ ⋅ ⋅ ≤ ⋅ ⋅⎜ ⎟

⎝ ⎠   and Vu⋅d/Mu ≤ 1  (2.15) 

Accompanied with the above expression is another more simplified but more popular ex-

pression as follows: 

170Rd cV f b d′= ⋅ ⋅   (VRm in kN, fc in MPa, b, d in m)   (2.16) 

It is noted from the two expressions in ACI 318 Code that compressive concrete strength f′c 
and longitudinal reinforcement ratio ρl do not have the same influence on the shear strength 

as in other codes. In addition, the later expression in ACI 318 Code implies that shear will be 

mainly carried by concrete. It is also seen that the two expressions of ACI 318 Code noticea-

bly did not take into account the size effect of concrete structures. That makes it become 

unsafe for design of relative large structures as many authors have mentioned [Angelakos et 

al. (2001)]. 

Muttoni (2003) assumed that the arch action is the unique mechanism responsible for shear 

resistance of concrete beams as a result of the development of diagonal critical shear crack. 

The shear strength of members without stirrups was proposed to be correlated to the square 

root of the concrete compressive strength. Some parameters governing the arching action 

such as the critical shear crack width w and the maximum aggregate size ag were considered 

as in the following equation: 

( ),Rm c gV f f w a b d′= ⋅ ⋅ ⋅         (2.17) 

To determine the value of the critical shear crack width w, the author assumed two hypothe-

ses that (1.) the shear strength is checked at the critical section depending on the load con-

figuration with a control depth 0,6d from the extreme compression fiber (Fig. 2.26) and (2.) 

the critical crack width w is proportional to the product of the longitudinal strain in the con-

trol depth ε times the effective depth of beam d. 
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                      (a) Critical sections                                                           (b) longitudinal strain in control depth 

 

Figure 2.26− Critical section for point loading and distributed loading and determination of longitudinal strain 

in control depth using internal forces N and M of the critical shear crack model [Muttoni (2003)]. 

Based on the systematic evaluation of 253 shear tests, the semi-empirical equation for shear 

strength of members without stirrups was expressed by the following formula: 
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includes the influence of the maximum aggregate size ag [mm]. 

The above formula predicts quite well the critical shear strength of many tests. It is adopted 
in the Swiss Code SIA 262 (SIA 2003b) under a more simplified expression. 

Basing on the model suggested by Muttoni (2003), Latte (2009) proposed another similar 
model for shear strength of concrete structures without stirrups as follows: 
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Where: 
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includes the influence of the maximum aggregate size ag [mm]. 

d   effective depth of section [m]  

Bentz (2005) proposed a fractional equation with two independent parameters A2 and B2 

and later calculated them to fit best with experimental data of 124 tests. The normalized 

shear stress at failure is expressed as follows: 
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and a more simplified form proposed for practice: 
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     (2.21) 

According to the above formulae, longitudinal reinforcement ratio ρl does not have the same 

influence on the shear strength as large as compressive concrete strength f′c does. The shear 

strength of concrete structures depends not only on the size effect but also aggregate size ag 

in concrete mixture. In addition, it is also interesting to recognize the similar form of the 

above formulae with those suggested by Muttoni (2003). 

In another attempt to achieve a more reasonable equation that captures the shear failure 

mechanism of beams, some authors firstly based on phenomenological study approach to set 

up mechanical models and later calibrated them with available experimental data to produce 

so-called semi-empirical formulae for shear strength of concrete beams without stirrups. One 

of such models is that based on the fundamental relationship between shear and the rate of 

change of bending moment along a beam. As a result, a shear strength equation that com-

bines beam action and arch action is developed with some unknown parameters. Bažant et al. 

(1984) followed such procedure and introduced a nominal shear stress expression at failure 

with 5 unknown coefficients. The shear stress formula later was multiplied with a function, 
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proposed by Bažant from nonlinear fracture mechanics, to consider the size effect. These 6 

unknown parameters of the final equation were later calibrated by statistical analysis of 296 

test results. The mean ultimate nominal shear strength formula was suggested as follows: 

1/3
50,833 207 / ( / )

1 / (25 )
l

Rm c l
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V f a d b d
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ρ ρ⎡ ⎤′= + ⋅ ⋅
⎣ ⎦+

    (2.22) 

Bažant et al. (2005, 2007) lately introduced another formula for shear strength of concrete 

members without stirrups by least-square optimum fitting of the ACI-445F shear database 

consisting of 398 data points. The key variation of this formula compared with others of 

Bažant et al. was that the general approximated mathematical form of the size effect’s law 

was purely calibrated by experimental data [Bažant et al. (2005)]. 
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Where:  
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0 0,9201 k cd f
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754 gk a=
 

μ =13,3 for best fit and μ =10 for design 

Bažant has been considered to be one of the first authors who treated size effect in view of 

nonlinear fracture mechanics and suggested some various size effect’s laws. However, these 

size effect’s laws, partly or purely empirical, have still not yet come to any convincing con-

clusion of size effect on shear strength of concrete structures because they have been derived 

from a quite limited database. 

Similarly Kim et al. (1999) also developed another shear strength equation that combines 

beam action and arch action but with only two unknown parameters. After calibration with 

experimental data of 551 tests in the range of a/d = 0,98÷9,74, f′c = 6,1÷109 MPa, and 

ρl = 0,001÷0,066, an ultimate shear strength equation was proposed as follows: 
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        (2.24) 

with ( )0,6 0,1/ 1lr d a ρ −= ⋅ ≤
 

Although the above equation was based on a rational analysis, it is considered to be quite 
complicated while it still does not take into account the size effect of concrete structures yet. 
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Kim et al. (1996) assumed that shear force in a cracked section was resisted by three main 
shear resistance mechanisms: the compression zone, interlocking action of aggregates and 
dowel action. Later they combined their model with a modified Bažant's size effect’s law to 
develop a shear capacity equation with 6 unknown parameters. After determining these un-
known parameters by experimental data, an equation was proposed for the mean nominal 
shear strength of reinforced concrete beams as follows: 

( ) ( ) ( )1/3 3/83,5 0,4 /Rm c lV f d a d b dρ λ′= ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅      (2.25) 
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Another simplified equation was also suggested for practical design: 

( ) ( ) ( )1/3 3/8 0,515,5 0, 4 / 0,07Rm c lV f d a d b dρ −′= ⋅ ⋅ ⋅ + ⋅ + ⋅ ⋅
 
for d ≥ 250 mm   (2.26) 

2.5 Code Provisions 

This section gives a short overview about shear design provisions for concrete members 
without stirrups in codes of practice including German Code DIN 1045-01 (2001), ACI 318-
05 (2005), Canadian Standard A23.3 (2004) and Swiss Code SN 262 (2003). Actually these 
proposals just are modified and simplified forms of the before-mentioned mechanical or em-
pirical models.  

2.5.1 German Code DIN 1045-1 (2001) 

Published in 2001, the German code DIN 1045-01 (2001) uses the empirical formula of the 
CEB-FIP Model Code 1990 for shear design after neglecting the influence of shear span to 
depth ratio (3d/a)1/3 and using a new safety factor 0,1 instead of 0,15. The design value for 
the shear resistance VRd of members without stirrups is given by: 

1/3
10,10 (100 ) 0,12Rd l ck cd wV k f b dη ρ σ⎡ ⎤= ⋅ ⋅ ⋅ − ⋅ ⋅⎣ ⎦      (2.27) 

Where :   

η1 = 1 for normal concrete 
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k  factor for size effect with d in mm 
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b d
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⋅
  longitudinal reinforcement ratio 

fck   characteristic cylinder concrete strength (fck ≤ 100 MPa) 



2. State of the Art 

32 

σcd = NEd/(bw⋅ d)    axial stress  

NEd  design value of the axial force in the cross-section due to loading or prestressing  
(NEd < 0 for compression) 

2.5.2 ACI Code 318-05  

The ACI Code 318-05 published in 2005 still uses the expressions proposed by the ACI-
ASCE Shear Committee (1962) as follows:  
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and its simplified form: 

170Rd cV f b d′= ⋅ ⋅          (2.29) 

2.5.3 CSA A23.3 (2004) 

The Canadian Standards CSA A23.3 published in 2004 adopted the Modified Compression 
Field Theory. The angle of the diagonal compression field θ is taken to θ = 30°. The nomi-

nal strength for members without stirrups is defined by:  
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(2.30) 

The longitudinal strain for members without prestressing, εx, is computed at mid-depth of the 

cross section by: 
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If εx is negative, it is taken as either zero or recalculated by changing the denominator of the 

above formula such that the equation becomes: 
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However εx shall not be taken as less than 0,2×10−3. The equivalent crack spacing parameter, 

sxe , is calculated as: 
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2.5.4 Swiss Code SN 262 

The Swiss Concrete Structures Code SIA 262 published in 2003 utilized the semi-empirical 

formula suggested by Muttoni with little changes of constant factors and using the character-

istic value of the concrete compressive strength fck. The shear strength of members without 

shear reinforcements is expressed as follows: 
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Where:  

0,3
0, 2cd ck ck

c

f fτ
γ

= =
  

design value of shear strength

 

0,6
0,41 0,41 sd Ed

s s
s Rd

f md c

d c E m
ε ε ε−= ⋅ ≈ = ⋅

−  

/1,15sd sf f=
    

design strength of steel at yielding
 

48 / (a  + 16)dg gk =
 

mEd  : the acting design moment 

mRd : the yielding moment. 

γc =1,5 : design safety factor 

2.6 Shear Strength of Haunched Beams 

The reinforced concrete haunched structures or varied-depth concrete members are often 

used in concrete bridges, such as bridge piers, frames in buildings or bridge slabs. These 

structures are supposed not only to be more economic but also to have a better load bearing 

capacity than that of similar straight depth ones. Despite of the popularity of these members, 

there have just been a small number of investigations about their behaviours under shear. 

Most codes do not offer any instruction for design of these structures at all except the Ger-

man DIN code and the ACI code. 

In section 11.1.1.2 of ACI 318−05, the term “effects of inclined flexural compression” is 

used to explain the different stress distribution of haunched beams compared with that of 

straight-depth beams. This stress distribution results in a shear resistance force as a vertical 

component of the inclined flexural stresses. These statements are found to be too cursory to 

apply simply in design of varied-depth concrete members. 
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In the other hand, the German code DIN 1045-01 explains the shear resistance mechanism of 

haunched beams and provides detailed design guides in the clause 10.3.2 (4). The shear de-

sign formula for haunched beams is introduced as follows: 

0Ed Ed ccd td pd RdV V V V V Vα= − − − ≤
       

(2.33)
 

Where: 
VEd0 :  Shear force due to dead loads and live loads,  

Vccd :  Design shear resistance due to inclination of compression chord of beam, 

Vtd :  Design shear resistance component of inclined longitudinal tension reinforcements, 

Vpd :  Design shear resistance component of prestressed force, 

RdVα

  

 :  Design value of shear bearing capacity of haunched beams at design section.
 

 

Figure 2.27−Shear resistance components of the varied-depth concrete members [DIN 1045-01(2001)] 

In members without prestressing and horizontal longitudinal tension reinforcement, where 

the values of Vpd and Vtd  are equal zero, the shear design formula becomes: 

0Ed Ed ccd RdV V V Vα= − ≤  

or in other form: 

0Ed Rd ccdV V Vα≤ +  

The value of Vccd is defined as follows: 

tan tan
0,9

Ed Ed
ccd

M M
V

z d
α α= ⋅ ≈ ⋅

       
(2.34)

 

For other codes which do not mention the shear design of varied-depth concrete members, 
these structures are usually divided into many intervals with average depths to preserve the 
similar stiffness of the original structures. This technique may be acceptable for flexural de-
sign but it is found to be not accurate for shear design because the shear failure is typically 
caused by a diagonal crack which has been proved to be influenced by the geometrical fea-
tures of structures. 
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The first author who conducted tests with haunched concrete beams was Mörsch in the year 
1922 [Mörsch (1922)]. The design of test beams is presented in figure 2.28.  
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Figure 2.28− Tests beams used by Mörsch [Mörsch (1922)] 

The test results showed that the load-carrying capacity of the haunched beam No. 1034 
(α = 18,4o) without stirrups was 20 % less than that of the beam No. 1027 with constant 
depth. The beam No. 1037 with stirrups in the support area shows a considerably bigger load 
bearing capacity than the beam No. 1034 without stirrups (Fig. 2.28) does. It is noted that 
plain rebars were placed to reinforce the test beams instead of ribbed ones used today. How-
ever, the outcomes of these tests are very remarkable for later investigations. 

Debaiky et al. (1982) continued to study the behaviours and strength of reinforced concrete 
haunched beams in shear. After conducting 33 tests with reinforced concrete beams with 
different inclinations (Fig. 2.29), the authors concluded that (1) there was no appreciable 
change in the value of the load at which initial crack appeared and (2) the critical shear crack 
initiated at different positions for beams of different haunch inclinations. These authors also 
supposed that the nominal shear contribution of concrete was influenced by the haunch’s 
inclination and can be estimated by the following expression: 

( )0,1661 1 1,7 tanRm cV f b dα α′= ⋅ + ⋅ ⋅       (2.35) 
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Figure 2.29−Test beams conducted by Debaiky et al. [Debaiky et al. (1982)]. 

Since the above formula was formulated with the same form of ACI’s equation, it can be 
concluded that the haunch’s inclination increased the shear bearing capacity by the expres-
sion (1+1,7tanα). It is also noted that all these 33 test beams had stirrups and were set−up in 
order that the haunched side of beam was under tension while the straight side was under 
compression. This set−up is found quite unusual because most haunched structures have 
been designed in the way that the haunched side will be the compression zone in practice. 

MacLeod et al. (1994) proposed a formula for estimating the shear strength of reinforced 
concrete haunched beams without shear reinforcement. Basically, this method was based on 
the equation proposed in the German Code DIN 1045-01 with a new assumption on the sec-
tion at which shear strength should be calculated. As a result, a factor F’ was included to 
offer a new equation for shear strength of reinforced concrete haunched beams without stir-
rups as follows:  

' tanEd
Rm pc

cr

M
V V F

d
α α= + ⋅ ⋅         (2.36) 

Where:  Vpc :  concrete shear strength of parallel−side beam with effective depth d0 according to clause 
  3.4.5.3 of the BS 8110 as followed: 

pc c crV b dν= ⋅ ⋅  

0,33 0,250,33
1000, 79 400

1, 25 25
cu s

c
cr cr

f A

b d d
ν

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⋅⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 

fcu  is the cubic compressive strength of concrete 

MEd  is the bending moment at the critical section of depth dcr 

Ed c cr hM b d Cν= ⋅ ⋅ ⋅  

( )10
' 0, 27 1 tanF α= +  

The critical section was defined as in the Fig. 2.30 

The effective depth at the critical section: ( )0 tancr hd d C S α= + − ⋅  

( )0
0 0

1 tan tan
2, 7

0, 68 tanh

d S
C d d

α α
α

⋅ + − ⋅
= + ≈

−
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Six tests with haunched beams which have slope angles in the range of 5o to 10 o were also 
conducted by these authors to verify the proposed formula (Fig. 2.30). Though the proposed 
formula actually did not produce a good agreement with the test results, it is recognized that 
the set-up of these tests depicted the working circumstances of reinforced concrete haunched 
structures in practice as the haunched side is under compression. 

      (a) The critical shear section                         (b) Test beams 

 

Figure 2.30− Critical shear section and test beams acc. to MacLeod et al. [MacLeod et al. (1994)]  

2.7 Conclusions 

This part gave a brief background of shear behaviours of concrete structures without stirrups. 
Five actions including (1) shear resistance of the uncracked compression concrete zone, (2) 
friction of contact surfaces between cracks (aggregate interlock), (3) dowel action of longi-
tudinal reinforcements, (4) crack−bridging tension forces existing in closed cracks (residual 
tensile stress in concrete) and (5) arch action have been widely accepted as main shear resis-
tance mechanisms in concrete structures without stirrups. In addition, some main factors 
such as concrete strength f′c (or fck), percentage of longitudinal reinforcement ρl, a/d ratio, 
size effect d…have also believed to be significant factors influencing most on shear strength 
of these concrete members. 

This part also presented about 13 typical shear strength models, which could be classified 
into mechanical approach and empirical approach, proposed by different authors. The shear 
design models of some main practical codes accompanied with some researches and tests 
about haunched concrete structures without stirrups were introduced as well. 

The following conclusions can be taken: 
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There has been a general agreement on some main shear transfer mechanisms but the ques-
tion of which mechanisms will contribute most to the shear resistance of concrete members 
without stirrups does not have a unique answer. As a result, there is still not a widely ac-
cepted shear strength model even though many mechanical models have been proposed up to 
now. 

Similarly, different semi-empirical or purely empirical expressions show different influences 
of significant factors on the shear resistance strength of concrete members. Though some 
empirical formulae confirm a relatively good agreement with shear database, an unlimited 
number of testing is impossible to cover all structural cases in practice due to widely differ-
ent geometries and material proportions as well as diverse testing conditions. Therefore, test-
ing should be treated as a verifying means for a particular rational model. 

Most of shear design models in practical codes are based on empirical approach. As a result, 
these models usually need to be checked and adjusted regularly for a while as well as to 
adopt relatively conservative factors for safety reasons. 

There has been very little research on varied-depth concrete members and a lack of design 
instructions in practical codes in spite of their popularity. An adequate attention should be 
given to these structures in order to improve understandings of their behaviours as well as to 
offer more effective design instructions. 

The above conclusions lead to a thought for this research that there may be a short under-
standing of shear transfer mechanisms in concrete. The widely accepted shear transfer 
mechanisms should be re-evaluated evidently and in quantities. Besides, there are also 
doubts about a certain unknown shear transfer mechanism. In order to detect load carrying 
mechanisms, nonlinear Finite Element Analysis (NFEM) is adopted to investigate the behav-
iours of concrete members under different loadings. An experimental program will be de-
signed to survey structural behaviours under loading and to verify NFEM’s outcomes.  

Based on these new shear resistance mechanisms, it is expected to introduce a new approach 
for shear strength models of the concrete members without stirrups. This model will be veri-
fied by updated shear database as well as compared with other models. This research focuses 
on both straight and varied-depth concrete beams without transverse reinforcements. 
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3 Experimental Program 

The experimental program will be briefly presented in this section. Further details can be 
referred to Appendices A, B, C and D or research reports [Rombach et al. (2009), (2011)]. 

3.1 Objectives 

The experimental program was carried out 
(1)  to find out shear behaviours up to failure of concrete beams without stirrups with differ-

ent inclinations of compression chord,  
(2)  to verify influences of the inclined angle of haunch to the shear resistance of concrete 

beams,  
(3)  to confirm effects of some main factors such as a/d ratio or longitudinal reinforcement 

ratio ρl on the shear resistance of test beams and finally  
(4)  to check the efficiency and safety level of 13 suggested shear strength models and shear 

design equations in practical codes for predicting the shear strength of straight and 
haunched concrete beams without stirrups. 

3.2 Test Specimens 

Test beams were designed to have similar geometries of most bridge deck’s slab in practice 
and other shear tests which had been conducted before. In such structures, the relevant ec-
centric wheel load normally acts at a distance of about 1,5 m or more from the web and the 
effective depth is about at least 0,3 m at the critical flexural section. Therefore, the shear 
span to effective depth ratio of such concrete members correspond to a/d = 5. The minimum 
effective depths of beams at supports were chosen as d = 0,3 m, 0,2 m and 0,15 m. Conse-
quently, inclined angles of such beams are approximately equal to 0°, 4° and 6° correspond-
ingly (test beams 1L, 2L and 3L of figure 3.1). 

In order to investigate effects of a/d ratio on shear bearing capacity of variable depth beams, 
another group of test beams with ratio a/d = 3 is designed. The “cantilever” length of these 
beams is equal to 0,9m. Therefore, inclined angles of beams will be α = 0°, 6,7° and 10° 
corresponding to effective depths of the beams at the supports of d = 0,3 m, 0,20 m and 
0,15 m (beams 1K, 3K and 4K of figure 3.1). Another beam with an inclination of 4° is also 
added in this group to compare with the beam 2L that has the same inclined angle as well. 
The effective depth of this beam is 0,24 m at supports (beams 2K of Fig. 3.1). In order to 
evaluate the influence of moment on shear resistance of haunched beams, two test beams 4L 
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and 5L are designed with the identical features as 3K and 4K with the shear span to effective 
depth ratio a/d = 5 instead of a/d = 3. The region between the support and the end of the 
beam is reinforced by stirrups to increase the shear resistance strength of this region (beams 
4L and 5L of Fig. 3.1). Accordingly, the experimental program will include 9 test beams 
with inclined angles varying from 0° to 10° in which 5 test beams have a/d = 5 and the oth-
ers have a/d = 3 (Fig. 3.1). In order to improve the reliability of the test results and to avoid 
some risks while casting and testing, the test beams are fabricated in double and thus the 
final total number of test beams is 18. The shop drawing of test beams is shown in figure 3.1. 
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Figure 3.1− Geometrical dimensions of 18 (2x9) test beams 
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The design for bending of test samples complied with the German code DIN 1045−01. The 
ordered materials include reinforcement type BSt 500S (design strength fyd = 500 MPa) and 
ready mixed concrete grade C30/37 (characteristic compressive strength fck = 30 MPa) with a 
maximum aggregate size of ag = 16 mm. The longitudinal reinforcement bars were calcu-
lated by considering 2 following conditions: (1) to ensure shear failure to occur in all test 
beams and (2) to limit the percentage ratio of longitudinal reinforcement within normal ra-
tios of concrete slab structures in practical design. Finally, three longitudinal reinforcement 
bars φ 20 mm were chosen to place in a beam width of 0,2 m. Thus, the percentage ratio of 
longitudinal reinforcement for effective depths of d = 0,3 m, 0,2 m and 0,15 m are 
ρl = 1,5 %, 2,3 % and 3,1 % respectively. Subsequently the test beams were checked by sec-
tional design method to get some preliminary data about load bearing capacities, displace-
ments and critical sections. The predicted values of the analysis are plotted in figure 3.2 and 
listed in table 3.1. 

 

Figure 3.2− Preliminary estimated shear and moment bearing capacity of test beam 2L 

Beam 

Shear bearing capacity Moment bearing capacity 
Expected 

failure 
 

FwithoutVccd 
[KN] 

FwithVccd 
[KN] 

Critical 
section 

FM 
[KN] 

Displacement 
(mm) 

Critical 
section 

1L 153 153 Support 181 10,25 Mid-span Shear 

2L 123 140 Support 181 12,75 Mid-span Shear 

3L 93 119 Support 181 14,75 Mid-span Shear 

4L 123 210 Support 181 15,25 Mid-span Shear 

5L 95 237 Support 181 22,00 Mid-span Shear 

1K 153 153 Support 301 3,60 Mid-span Shear 

2K 140 155 Support 301 4,10 Mid-span Shear 

3K 123 152 Support 301 4,40 Mid-span Shear 

4K 94 139 Support 301 4,50 Mid-span Shear 

Table 3.1− Preliminary estimated load bearing capacity of test beams 



3. Experimental Program 

 

42 

3.2.1 Material Properties 

(a) Concrete 

It was planned to use the concrete class C30/37 according to DIN 1045−01. The composition 
of used concrete mix is given in table 3.2 

Properties Specification 

Cement content 370 kg/m3 

Water content 182 kg/m3 

Water/cement ratio 0,49 

Aggregate content: 
            0 mm −  2 mm 
            2 mm −  8 mm 
            8 mm − 16 mm 

 
748 kg/m3 
368 kg/m3 
700 kg/m3 

Concrete additive (1BV N9) 2,96 kg/m3 

Density of fresh concrete 2.371 kg/m3 

Table 3.2− Used concrete mix 

The actual concrete strengths are determined by tests after 28 days, 52 days and 101 days. 
Since the test samples were tested at different times, characteristic compressive strengths fck 
of test beams were estimated according to CEB-FIP MC90 (3.1) and given in table 3.3. 

0,5
28

1

, ,28 4
s

t

ck t cmf f e MPa

⎡ ⎤⎛ ⎞−⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦= ⋅ −

       (3.1) 

Where: 

fck,t  : Characteristic compressive strength of concrete at time of t (day of test), 

fcm,28  : Mean compressive strength of concrete at 28 days after concreting, 

s : Coefficient which depends on the type of cement. 

Details of concrete specimens, compressive testing, tensile testing, testing of modulus of 
elasticity…can be referred to Appendix A or to test reports [Rombach et al. (2009), (2011)]. 

(b) Reinforcement 

It was planned to use the reinforcement class BSt500s according to DIN 1045-01. Three 
samples of used reinforcement φ20 mm were tested. The stress-strain curves are given in 
figure 3.3. From this figure, it is reasonable to use the value of effective yield strength fsd of 
550 MPa for later calculations. Details of geometrical dimensions and material properties of 
test beams are summarized as in the table 3.3. 
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Figure 3.3− Stress−strain graph of main bars φ20 mm 

No Beam d (mm) b (mm) a/d fck [MPa] fsd [MPa] 

1 1L-1 300−300 200 5 48,11 550 

2 1L-2 300−300 200 5 49,24 550 

3 2L-1 200−300 200 5 49,45 550 

4 2L-2 200−300 200 5 49,99 550 

5 3L-1 150−300 200 5 50,21 550 

6 3L-2 150−300 200 5 50,98 550 

7 4L-1 200−300 200 5 52,21 550 

8 4L-2 200−300 200 5 52,44 550 

9 5L-1 150−300 200 5 53,13 550 

10 5L-2 150−300 200 5 53,25 550 

11 1K-1 300−300 200 3 53,86 550 

12 1K-2 300−300 200 3 53,95 550 

13 2K-1 240−300 200 3 54,18 550 

14 2K-2 240−300 200 3 54,22 550 

15 3K-1 200−300 200 3 54,26 550 

16 3K-2 200−300 200 3 54,31 550 

17 4K-1 150−300 200 3 54,78 550 

18 4K-2 150−300 200 3 54,82 550 

Table 3.3− Main parameters of 18 test beams 
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3.2.2 Fabrication of the Test Specimens 

The fabrication of the test beams was done at the Laboratory of the Institute of Concrete 
Structures, Hamburg University (TUHH). All used materials and the producing procedure 
including casing, reinforcement, concrete, curing complied with the construction regulations 
for concrete structures in practice. 

                    

(a) Casing                                                             (b) Reinforcing 

           

(c) Concrete specimen                                    (d) Curing 

Figure 3.4− Fabrication of the test specimens 

3.2.3 Data Acquisition System 

To monitor behaviours of the test beams such as strains at the top surface and at the neutral 
axis of beams, displacements or width opening of critical flexural crack, the used data acqui-
sition devices include: 

+ 6 strain gauges (εl 1-3, εr 1-3) located at top surface of beam (3 each left and right side), 
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+ 2 manual strain meters to measure strain at points 4-12 of both left and right side  
(εl 4-12,   εr 4-12), (see fig. 3.5b) 

+ 3 displacement detectors (wl, wm, wr) located at middle, left and right positions of beam, 

+ 1 displacement transducer (rm) measuring the width opening of critical flexural crack at 

mid-span of beam, 

+ 2 cameras and 2 video recorders. 

The detailed arrangement of these measuring devices of test beam 2L, for example, is shown 
in the following figure: 

               (a) Automatic measurement instruments              (b) Manual strain meter points 

 

Figure 3.5− Data acquisition system for test beam 2L 

3.3 Testing Procedure 

3.3.1 Experimental Set−up 

A hydraulic jack of 500 KN (max.) attached at a testing steel frame was used to load the test 
beams at the mid-span through two thick steel plates adhered to the test beams (Fig. 3.6). 
The contact area between the steel pad and concrete beams is 100 mm × 200 mm. The test 
beam was supported by two steel-box bearings 100 mm × 200 mm located on steel pins. 
These two steel-box bearings were later adjusted to be fixed or moveable during the test to 
ensure the boundary conditions of the system. 

3.3.2 Loading Procedure 

Loading was gradually increased from 0 kN up to failure with each 10 kN load step. It was 
decided to stop about 8 minutes after each load step for observation and strain measurement 
(Fig. 3.7). When the first flexural crack appears, normally at mid-span, a displacement trans-
ducer (rm) was installed to measure the width opening of the critical flexural crack at the 
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reinforcement layer. All cracks were detected and marked with numerical order and loading 
value.  

    

(a) Test Set-Up                               (b) Test Set-Up of beam 1L1 

                                             

(c) Moveable support     (d) Fixed support       (e) Hydraulic jack 

Figure 3.6− Test Set-up 

3.4 Experimental Results  

3.4.1 Behaviours of Test Beams until Failure 

(a) Failure modes: Among the 18 test specimens, 14 beams failed in shear and 4 ones failed 
in flexure. The test beams failed in shear were pairs of beams 1L, 2L, 3L, 1K, 2K, 3K and 
4K whereas the ones failed in flexure were pairs of beams 4L and 5L. 
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Figure 3.7− Loading procedure of test 1L−2 

(b) Phenomena of flexure failure: For beams failed in flexure, ductile failure took place 
gradually with the widening of the critical flexural crack at the mid-span of beam. The 
beams still have capability to resist load as long as the longitudinal reinforcements has not 
exceed the yield strength yet or the compressive strength of concrete is not reached. The de-
formation of beams failed in flexure is much larger than that of beams failed in shear. 

(c) Phenomena of shear failure: For beams failed in shear, in the other hand, brittle failure 
happened abruptly right after the formation of a critical diagonal shear crack and the beams 
could not resist any load more. The load at which the test beams collapse is termed as the 
ultimate load Fu or the load bearing capacity of test beams. The general shear failure process 
can be divided into three phases as follows: 

Phase 1− Pure flexure behaviour with loading F ≈ 0 ÷ 0,5Fu: the first flexural crack rapidly 
occurs at the mid−span and then other flexural cracks emerge when loading increases. The 
direction of these cracks is almost vertical and perpendicular to the bottom of the beams. 
When the loading achieves ≈0,5Fu, the flexural crack at the mid−span reaches or even al-
ready exceeds the neutral axis of beam.  

Phase 2− Flexure−shear behaviour with loading F ≈ 0,5 ÷ 0,9Fu: the flexural crack at the 
mid−span almost stay the same while other formerly flexural cracks and new cracks continue 
to grow up. The direction of these cracks tends to be inclined with the neutral axis of beam. 
The higher the crack raises, the flatter the direction becomes. These cracks are termed as 
flexure−shear cracks since they are originated by bending moment and later influenced by 
both flexure and shear while propagating. At the end of this stage, some of the inclined 
cracks reach or even exceed the neutral axis of the beam. 
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Phase 3− Shear failure with loading F = 0,9 − 1,0Fu: in this phase, the flexure−shear cracks 
seem not to grow up any more. However, there appear cracks with inclined angle of about 
45° at the tips of the flexure−shear cracks or there appear pure shear cracks in the web of 
beam. When the loading reaches the ultimate value Fu, a critical diagonal shear crack forms 
suddenly to penetrate into the concrete compression zone of beam and go down the position 
of longitudinal reinforcement. It can be seen at the same time the splitting between longitu-
dinal reinforcements and concrete cover. It is also recognized that the upper end of the criti-
cal diagonal shear crack always tends to last to the position of load while the lower end ex-
tends to the support. 

The further details of the formation and propagation of cracks of all tests can be referred to 
Appendix B or test reports [Rombach et al. (2009), (2011)]. 

 (d) Test results: The critical failure loads of tests are presented in table 3.4. More details of 
testing can be referred to Appendix B or test reports [Rombach et al. (2009), (2011)]. 

Beam 

 

d 

(mm) 

b 

(mm) 

a/d 

 

α 

(°) 

ρl 

(%) 

fck 

(MPa) 

FTest 

(kN) 

Failure 

 

1L-1 300 - 300 200 5 0 1,57 – 1,57 48,11 151 Shear 

1L-2 300 - 300 200 5 0 1,57 – 1,57 49,24 158 Shear 

2L-1 200 - 300 200 5 3,95 2,36 – 1,57 49,45 150 Shear 

2L-2 200 - 300 200 5 3,95 2,36 – 1,57 49,99 149 Shear 

3L-1 150 - 300 200 5 5,91 3,14 – 1,57 50,21 133 Shear 

3L-2 150 - 300 200 5 5,91 3,14 – 1,57 50,98 139 Shear 

4L-1 200 - 300 200 5 6,71 2,36 – 1,57 52,21 207 Flexure 

4L-2 200 - 300 200 5 6,71 2,36 – 1,57 52,44 207 Flexure 

5L-1 150 - 300 200 5 10,01 3,14 – 1,57 53,13 206 Flexure 

5L-2 150 - 300 200 5 10,01 3,14 – 1,57 53,25 207 Flexure 

1K-1 300 - 300 200 3 0 1,57 – 1,57 53,86 151 Shear 

1K-2 300 - 300 200 3 0 1,57 – 1,57 53,95 139 Shear 

2K-1 240 - 300 200 3 3,95 1,96 – 1,57 54,18 167 Shear 

2K-2 240 - 300 200 3 3,95 1,96 – 1,57 54,22 170 Shear 

3K-1 200 - 300 200 3 6,71 2,36 – 1,57 54,26 159 Shear 

3K-2 200 - 300 200 3 6,71 2,36 – 1,57 54,31 160 Shear 

4K-1 150 - 300 200 3 10,01 3,14 – 1,57 54,78 170 Shear 

4K-2 150 - 300 200 3 10,01 3,14 – 1,57 54,82 168 Shear 

Table 3.4− Summary of test results 



3. Experimental Program 

49 

3.4.2 Results of Measurements 

Results measured by the data acquisition system as presented in the section 3.2.3 including 
loading procedure, load-deflection relations, load-strain relations and opening of critical 
flexure crack of beams were recorded continuously during testing. The figures 3.8 to 3.12 
present results of measurements of the test beam 2L-1. For other test beams refer to Appen-
dix B or test reports [Rombach et al. (2009), (2011)]. 

These results were used to analyse main behaviours of concrete beams up to failure as well 
as to find out similarities and differences of all of test beams. Figure 3.13 shows two graphs 
of load-midspan displacement of two groups of 18 test beams.   
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           Figure 3.8− Time – Load graph of beam 2L-1        Figure 3.9- Load – Deflection graph of beam 2L-1 

 

Figure 3.10− Load – concrete strains graph at top surface of beam 2L-1 
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Figure 3.11− Load –Strains graph at mid-depth of beam 2L-1 

 
Figure 3.12− Load versus crack width graph of beam 2L-1 

 
Figure 3.13− Load and displacement curves at mid-span of two groups of 18 test beams 
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3.4.3 Crack Propagation 

Figure 3.14 shows the crack propagation of test beam 2L-1 after each load step until failure. 
Other tests refer to Appendix B or test reports [Rombach et al. (2009), (2011)]. The crack 
pattern at failure of all test beams is shown in the figure 3.15. 
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Figure 3.14− Crack propagation of test beam 2L-1 
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Figure 3.15− Crack pattern at failure of all test beams 
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Figure 3.15− Crack pattern at failure of all test beams (cont.) 
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Figure 3.15− Crack pattern at failure of all test beams (cont.) 
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3.4.4 Shear Strength in Relation with Main Significant Factors 

Figure 3.16 shows the relations of the ultimate shear strength of test beams with main sig-
nificant factors including inclined angle α, effective depth d, a/d ratio, percentage of longi-
tudinal reinforcement ρl.  

 
             (a) Failure load versus inclined angle α             (b) Failure load versus effective depth d 

 
               (c) Failure load versus a/d ratio            (d) Failure load versus steel ratio ρl 

Figure 3.16− Relations of failure load to main parameters of test beams 
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3.4.5 Test Results in Comparison with Shear Design Strength of Codes 

Among five codes presented in the Chapter 2, four codes including the German Code (DIN 
1045−01), the Swiss Code (SN 262−2003), the ACI Code (ACI 318−05) and the Canadian 
Standards (CSA A23.3−2004) are chosen to compare the shear strength predicted by these 
formulae with the test results. The mean values of concrete strength will be used for the 
evaluation of mean values of shear strength according to these codes. The calculations in-
clude (1) evaluating shear strength of test beams by sectional design model, (2) for haunch 
beams, shear strengths according to DIN 1045−01 and ACI 318−05 will be computed for 
two cases with and without Vcc, (3) presenting the critical sections according to codes and 
cracks at failure of test beams and (4) estimating the safety limitations of codes from test 
results. 

All formulae of the four codes are referred to the sections 2.5 and 2.6. The critical design 
sections are referred to figure 3.17. DIN 1045−01 and the ACI 318−05 assumed it at 1,0d 
apart from the support while the CSA A23.3−2004 and the SN 262−2003 assumed it at the 
positions 0,9d and 0,5d respectively from the position of load application. 

 

Figure 3.17− The critical sections according to various codes (ACI and DIN 1045-01: 1,0d from support; 

CSA: 0,9d from load application; SN 262-2003: 0,5d from load application) 

Since the tests named 4L and 5L failed in flexure, they will not be considered in the follow-
ing. The calculated results for test beams 2L-1 are presented in the figures 3.18 and 3.19. 
The test results and shear strengths according to practical codes are presented in table 3.5 
and table 3.6. Further details refer to Appendix C or test reports [Rombach et al. (2009), 

(2011)]. 
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Figure 3.18− Shear strength of test 1L-1 and test 1L-2 according to practical codes compared to test results 

       

Figure 3.19− Safety level of test 1L-1 and test 1L-2 according to practical codes 
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Beam 
Test DIN 1045-01 ACI 318-05 

Failed region 
VTest 
[kN] 

Critical 
section 

V0DIN 
[kN] 

V1DIN 

[kN] SF0DIN SF1DIN 
Critical 
section 

VACI 
[kN] SFACI 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 

1L-1 Load position 75,44 1,0d-S 44,0 44,0 1,7 1,7 1,0d-S 51,0 1,5 

1L-2 Load position 79,21 1,0d-S 45,0 45,0 1,8 1,8 1,0d-S 52,0 1,5 

2L-1 Support 75,18 1,0d-S 38,0 42,0 2,0 1,8 1,0d-S 38,0 2,0 

2L-2 Support 74,60 1,0d-S 38,0 42,0 2,0 1,8 1,0d-S 38,0 2,0 

3L-1 Support 66,47 1,0d-S 31,0 36,0 2,1 1,9 1,0d-S 30,0 2,2 

3L-2 Support 69,30 1,0d-S 31,0 37,0 2,2 1,9 1,0d-S 30,0 2,3 

1K-1 Load position 75,63 1,0d-S 47,0 47,0 1,6 1,6 1,0d-S 55,0 1,4 

1K-2 Load position 69,31 1,0d-S 47,0 47,0 1,5 1,5 1,0d-S 55,0 1,3 

2K-1 Support 83,53 1,0d-S 44,0 49,0 1,9 1,7 1,0d-S 48,0 1,7 

2K-2 Support 85,00 1,0d-S 44,0 49,0 1,9 1,7 1,0d-S 48,0 1,8 

3K-1 Support 79,34 1,0d-S 42,0 50,0 1,9 1,6 1,0d-S 43,0 1,9 

3K-2 Support 79,93 1,0d-S 42,0 50,0 1,9 1,6 1,0d-S 43,0 1,9 

4K-1 Support 84,74 1,0d-S 36,0 49,0 2,4 1,7 1,0d-S 35,0 2,4 

4K-2 Support 83,88 1,0d-S 36,0 49,0 2,3 1,7 1,0d-S 35,0 2,4 

Table 3.5− Test results compared with shear design models in DIN 1045-01 and ACI 318-05 

Beam 
Test CSA-03 SN-262 

Failed region 
VTest 
[kN] 

Critical 
section 

VCSA 
[kN] SFCSA 

Critical 
section 

VSN 
[kN] SFSN 

(1) (2) (3) (12) (13) (14) (15) (16) (17) 

1L-1 Load position 75,44 0,9d-F 65 1,2 0,5d-F 52 1,5 

1L-2 Load position 79,21 0,9d-F 65 1,2 0,5d-F 52 1,5 

2L-1 Support 75,18 0,9d-F 62 1,2 0,5d-F 51 1,5 

2L-2 Support 74,60 0,9d-F 62 1,2 0,5d-F 51 1,5 

3L-1 Support 66,47 0,9d-F 61 1,1 0,5d-F 51 1,3 

3L-2 Support 69,30 0,9d-F 61 1,1 0,5d-F 51 1,4 

1K-1 Load position 75,63 0,9d-F 81 0,9 0,5d-F 64 1,2 

1K-2 Load position 69,31 0,9d-F 81 0,9 0,5d-F 64 1,1 

2K-1 Support 83,53 0,9d-F 77 1,1 0,5d-F 62 1,4 

2K-2 Support 85,00 0,9d-F 77 1,1 0,5d-F 62 1,4 

3K-1 Support 79,34 0,9d-F 75 1,1 0,5d-F 61 1,3 

3K-2 Support 79,93 0,9d-F 75 1,1 0,5d-F 61 1,3 

4K-1 Support 84,74 0,9d-F 72 1,2 0,5d-F 60 1,4 

4K-2 Support 83,88 0,9d-F 72 1,2 0,5d-F 60 1,4 

Table 3.6− Test results compared with shear design models in CSA-03 and SN-262 
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Notes for the Table 3.5 and 3.6: 

(1)  Test beam 

(2)  Failed region: region at which critical shear crack appears 

(3)  VTest [kN]: critical shear strength from tests 

(4)  Critical section: critical section at 1,0d apart from support (1,0d-S) according to DIN 1045-01 

(5)  V0DIN [kN]: calculated shear strength without Vccd according to DIN 1045-01 

(6)  V1DIN [kN]: calculated shear strength with Vccd according to DIN 1045-01 

(7)  SF0DIN: safety level of shear strength without Vccd according to DIN 1045-01 (VTest/V0DIN) 

(8)  SF1DIN: safety level of shear strength with Vccd according to DIN 1045-01 (VTest/V1DIN) 

(9)  Critical section: critical section at 1,0d apart from support (1,0d-S) according to ACI 318-05 

(10)  VACI [kN]: calculated shear strength according to ACI 318-05 

(11)  SFACI: safeness level of shear strength according to ACI 318-05 (VTest/VACI) 

(12)  Critical section: critical section at 0,9d apart from load application (0,9d-F) according to CSA-03 

(13)  VCSA [kN]: calculated shear strength according to CSA-03 

(14)  SFCSA: safeness level of shear strength according to CSA-03 (VTest/VCSA) 

(15)  Critical section: critical section at 0,5d apart from load application (0,5d-F) according to SN-262 

(16)  VSN [kN]: calculated shear strength according to SN-262 

(17)  SFSN: safeness level of shear strength according to SN-262 (VTest/VSN) 

3.4.6 Test Results in Comparison with Shear Strength of 13 Models 

13 different shear strength models among which as presented in the Chapter 2 are selected to 
evaluate the shear bearing capacity of test beams. The analysis includes evaluating shear 
strength of test beams by sectional design method according to different shear resistance 
models. The models adopted in codes such as those of the Modified Compression Field The-
ory (in Canadian Standard and ASSHTO), CEB-FIP model code 1990 (in German code DIN 
and Eurocode), ACI-ASCE shear committee (in ACI code) and the critical shear crack the-
ory (in Swiss code) are not considered anymore since they were already discussed in the 
previous section 3.4.5. 

In the model group based on the failure mechanism approach, the tooth model with crack 
friction suggested by Reineck (1990) and those of Zararis et al. (2001), Zink (2000), Tureyen 
et al. (2003), Park et al. (2006) are selected. The models based on the lower bound theorem 
of plasticity such as strut−and−tie models or truss models are not used further because they 
were considered to be inappropriate for slender members without stirrups as discussed in the 
Chapter 2. The disturbed stress field model by Vecchio (2000) is not employed as well since 
the shear strength formula is not published yet. It is found among models based on the frac-
ture mechanics approach that the model of Gastebled et al. (2001) seems to be the most ap-
preciable one and therefore this model will be chosen for comparison. Among many empiri-
cal models presented in the Chapter 2, it is preferred to calculate the shear strength of latest 
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ones since 1996 including Bentz (2005), Bažant and Yu (2005), Kim D et al. (1999), Kim JK 
et al. (1996) and Latte S (2009). The shear strength of haunched beams proposed by Debaiky 
et al. (1982) as well as that offered by MacLeod I.A et al. (1994) is also included in the 
analysis. The 13 used shear strength models are presented in the table 3.7. 

Because all the above models are for members without shear reinforcements, only the results 
in regions without stirrups are presented. For test beams owning the same geometrical fea-
tures such as 1L1 and 1L2 …, shear resistance strength is computed just once with the aver-
age value of concrete compressive strengths. All formulae are referred from sections 2.3, 2.4 
and 2.6. It is noted that the critical section is assumed at the position 0,5dm from load loca-
tion for model suggested by Latte (2009) and at the position of beam depth of dr for model 
proposed by MacLeod et al. (1994) as shown in figure 3.20. 

 

Figure 3.20− Critical section 0,5d proposed by Latte (2009) and MacLeod et al. (1994) 

No Author(s) / (Time) Abbreviation 

1 Reineck KH  / (1990) Reineck 

2 Zararis PD and Papadakis GC  / (2001) Zararis 

3 Zink M  / (2000) Zink 

4 Tureyen AK and Frosch RJ  V  / (2003) Tureyen 

5 Park HG, Choi KK and Wight JK  / (2006) Park 

6 Gastebled OJ and May IM  / (2001) Gastebled 

7 Bentz EC  / (2005) Bentz 

8 Bažant ZP and Yu Q  / (2005) Bažant 

9 Kim D, Kim W and White RN  / (1999) Kim D 

10 Kim JK and Park YD  / (1996) Kim JK 

11 Latte S /  (2009) Latte 

12 Debaiky SY and Elniema EI  / (1982) Debaiky 

13 MacLeod IA and Houmsi A  / (1994) Macleod 

Table 3.7− List of shear strength models used for comparing with test results 
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Moreover, the tests named 4L and 5L are not consisted further since they failed in flexure 
and will be analyzed in the next Chapter 4−Nonlinear FEM Analysis. The calculated results 
for test beams 1L and 2L are presented in figure 3.21.  

The test results and shear strengths according to various models are summarized in the table 
3.8. Other details can be referred to Appendix D or test reports [Rombach et al. (2009), 

(2011)]. 
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Figure 3.21− Shear strength of Test 1L and Test 2L according to suggested models compared to test results 
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Beam 
Test Reineck Zararis Zink Tureyen Park Gastebled Bentz 

V [kN] (*) [kN] [kN] [kN] [kN] [kN] [kN] [kN] 

1L 77,32 77 77 75 65 80 65 66 

2L 74,89 62-78 61-78 58-74 48-61 67-80 52-66 48-66 

3L 67,88 53-78 51-78 49-75 40-62 61-80 44-66 38-67 

1K 72,47 81 90 89 68 95 80 69 

2K 84,26 72-81 79-90 76-87 56-63 80-95 70-80 58-69 

3K 79,63 65-81 70-90 68-87 50-63 71-95 63-80 50-69 

4K 84,31 55-81 59-90 57-88 42-64 61-95 54-80 40-70 

Table 3.8− Test results compared with suggested shear models 

Beam 
Test Bažant Kim D Kim JK Latte Debaiky MacLeod 

V [kN] (*) [kN] [kN] [kN] [kN] [kN] [kN] 

1L 77,32 75 68 71 74 71 66 

2L 74,89 62-76 50-68 55-71 57-75 53-71 66 

3L 67,88 55-76 41-68 46-72 47-75 43-72 63 

1K 72,47 86 89 89 91 74 68 

2K 84,26 77-87 72-89 75-90 79-91 67-75 73 

3K 79,63 69-87 61-89 66-90 71-91 60-75 75 

4K 84,31 60-87 48-89 54-90 59-91 49-75 75 

Table 3.8− Test results compared with suggested shear models (cont.) 

Notes for the table 3.8: 
(*) V [kN]: Mean value of shear strength from test results. 

- The shear capacities of haunched beams according to various models are calculated by sectional 

   method. The values in the table 3.8 are minimum and maximum strengths. 

3.5 Discussions and Conclusions 

From the experimental program, some discussions and conclusions are given as follows: 

The test results showed typical shear failure modes of concrete beams without stirrups that 
partly described in other shear test reports such as those of Leonhardt et al. (1962), Kani 
(1966)…In general, these shear failure modes are a combination of diagonal tension failure, 
shear compression failure, shear tension failure and arch rib failure as presented in the sec-
tion 2.2. A general phenomenon of these failures is that brittle collapse occurs right after the 
formation of a critical diagonal shear crack. Then the test beams cannot resist any loading 
more. For straight test beams (1L-1, 1L-2 with a/d = 5 and 1K-1, 1K-2 with a/d = 3), the 
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critical shear crack is originated as a development of a former flexure-shear crack. Thus the 
failure region is close to the position of load application at mid-span. In contrast for 
haunched test beams, the critical shear crack is either initiated at the tip of the former flex-
ure-shear crack or newly formed in ‘web’ of the beam section and particularly locates near 
supports. This crack has been called as web-shear crack or purely shear crack. 

The crack propagation of test beams showed that pure flexure cracks would occur at bottom 
of beam up to a half of the critical loading. The influences of shear become more obvious at 
higher loads until approximate 0,9 critical loading because the direction of the former cracks 
and newly coming cracks tend to be inclined with the neutral axis of beam. These cracks are 
termed as flexure-shear cracks. At higher loading ranges, the flexure-shear cracks would 
reach a stable state and not grow up any more but there occur visible inclined cracks at tip of 
flexure-shear cracks or pure shear cracks in “web” of beam in the region close to supports. 
When the loading reaches the ultimate value, one of the inclined cracks will further spread 
on an inclined direction to form the critical shear crack. The upper end goes into the com-
pression zone while the lower end goes down to split concrete along longitudinal reinforce-
ments. For straight depth beams, the upper branch of the critical shear crack lasts to the load 
application point and the failure region is close to mid-span. For haunched beams, the lower 
branch of the critical shear crack ends at support and the failure region is close to the support 
as well. 

The test results confirmed the influences of some significant factors as mentioned in the sec-
tion 2.2.2 and especially the effect of inclined angle on the shear strength of concrete beams 
without stirrups. It is from the figure (3.16) that inclined angles induces relatively positive 
effects to increase the shear strength of short concrete beams (a/d = 3) without stirrups. 
Shear strength of beams with an inclination of 10o (test beam 4K-1) could be 18 % higher 
than that of straight depth beams (test beam 1K-2). However, effects of inclination become 
very negative for long concrete beams (a/d = 5) when the shear strength of the beam with 
inclined angle of 6o (test beam 3L-1) conversely is 16 % lower than that of straight depth 
beam (1L-2). This finding is totally in contrast to the principle of DIN 1045-01 as described 
in the equation 2.34 in the term of Vccd that shear strength increases as the inclined angle 
increases. 

The test results also show that the shear design model of DIN 1045-01 is safer and more 
conservative than that of other practical codes such as ACI 318, CSA-03 or SN-262 (Fig. 
3.18 and 3.19, table 3.5 and table 3.6). From the Table 3.5, it is interesting to learn that the 
safety factor without Vccd (SF0DIN) of DIN 1045-01 is somewhat similar to that of ACI 318 
even though both expressions are totally different. Safety factors with Vccd (SF1DIN) for 
haunched beams apparently make the conservativeness of DIN 1045-01 to become more 
reasonable (1,6 ÷ 1,9). However, it is from the table 3.6 that the two codes CSA-03 and SN-
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262, which do not consider the term Vccd, show a much better safety coefficients of 1,1 ÷ 1,2 
for CSA-03 and 1,3 ÷ 1,5 for SN 262. It is noted that the two later codes consider the effects 
of the slenderness ratio of beam a/d in terms of (M/d = V⋅a/d) while the shear strength for-
mula of DIN 1045-01 do not. Nevertheless, the shear strength formula of DIN 1045-01 for 
haunched beams takes into account this factor in terms of M⋅tanα/z ≈ V⋅a⋅tanα/0,9d. As a 
result, it leads to a conclusion that (a/d) may be a factor which adjusts the safety factor for 
haunched beams to become more realistic. The shear resistance component of the compres-
sion chord Vcc should be more deeply investigated. 

The test results in comparison with 13 suggested shear strength formulae shows that some 
models can predict well the shear capacity of straight beams such as Reineck (1991), Zararis 
(2001), Zink (2000), Latte (2009)…as in the figure 3.21 and table 3.8. These models will be 
analyzed in details with the updated shear database in Chapter 5. Among a lot of shear mod-
els for straight beams, there is only one for haunched beams suggested by MacLeod et al. 
(1994). This model predicts quite well the shear strength of haunched test beams (mean of 
90 % failure load) and gives details about the critical shear crack. However, this formula can 
be considered as a modified model of that in DIN 1045-01 in a more complicated way be-
cause there are many unnecessarily complex parameters such as F’, dcr, Ch  requiring to be 
determined for calculation as presented in the section 2.6. 

In conclusions, the experimental program clarifies some aspects of shear behaviours of con-
crete beams without stirrups. For straight depth beams, it is recognized that their behaviours 
until failure are similar to those presented by many former authors. However, it is still im-
possible to identify which shear resistance mechanisms contribute to carry shear and how 
important they are. As a result, shear design of concrete members without stirrups is still a 
problem though many models have been suggested. For haunched beams, it is clear that the 
inclination has a strong influence on the shear behaviour as well as shear capacity of con-
crete beams without shear reinforcement. Nevertheless, a mechanical model which can ex-
plain the effects is not available. The question whether an inclined compression chord im-
proves the shear strength of concrete structures without stirrups has not been solved even 
though DIN 1045-01 or MacLeod et al. (1994) did suggest a solution. It is believed that the 
approach based on Nonlinear Finite Element Analysis may give a solution for the problem 
which will be presented in the next chapter. 
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4 Nonlinear FEM Analysis 

4.1 Introduction 

Nonlinear FEM analysis has widely been adopted as a potential numerical method to inves-
tigate shear behaviours of concrete structures because of many achieved advances in numeri-
cal techniques, material models and computer performance. Especially some various con-
crete models have been implemented in commercial FEM packages that makes modelling 
and analysis become much easier. There have been some authors got involved in shear prob-
lem of concrete structures by nonlinear FEM analysis such as Malm (2006) or Latte 
(2009)… The analysis results, for example, the ultimate load bearing capacity, the displace-
ment and crack pattern of these authors show a good and reliable agreement with the results 
of many typical shear tests by Leonhardt et al. (1962). Therefore, it is expected that nonlin-
ear FEM analysis can give more details on shear behaviours as well as on shear resistance 
mechanisms until failure of test beams in the above experimental program. The specific pur-
poses of the analysis are: (1) to verify if nonlinear FEM analysis can predict well some typi-
cal features of shear failure such as shear strength, maximum displacement, crack pattern…; 
(2) to reveal changes in stress distribution and crack propagation through each load step until 
failure of concrete members without stirrups; (3) to study differences in behaviours of 
haunched beams and straight beams until failure; and finally (4) to clarify the shear resis-
tance actions proposed by many authors as presented in the Chapter 2 and to find out main 
shear resistance mechanisms used for building up new shear strength models. 

The commercial FEM package ABAQUS 6.9 will be used for these investigations. The 
‘Concrete Damaged Plasticity Model’ based on the theory of plasticity and damage mechan-
ics will be employed for modelling of concrete. Since detailed descriptions and background 
information of this concrete model can be found in many literatures and in user’s documen-
tations of ABAQUS, it will be presented briefly in the section 4.3−Non FEM Analysis with 
ABAQUS. The analysis outcomes will be described in the section 4.4−Test Verification. 
Some discussions and conclusions are given in the final section of this chapter. 

4.2 Material Behaviour 

Reinforced concrete is a composite material consisting of concrete and reinforcement which 
have different mechanical properties. Reinforcement can be considered on a macro level as 
homogeneous while concrete, consisting of mortar and aggregates, is a heterogeneous mate-
rial. The mechanical properties of concrete, as a result, are scattering and difficult to define. 
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In practice, concrete is usually assumed to be a homogeneous material in the design of a 
structure for convenience. 

The typical behaviour of reinforced concrete structures under bending or uniaxial tension 
until damage is generalized as in the figure 4.1. The nonlinear response can be divided into 
three stages including the uncracked elastic stage, the crack propagation stage and finally the 
damaged stage.  

 

Figure 4.1− Typical load-deflection curve of reinforced concrete members [CEP-FIB 1990] 

This response is recognized to be caused by three main effects, namely, (1) cracking of con-
crete in tension, (2) yielding of the reinforcement or crushing of concrete in compression and 
(3) interaction of the constituents of the reinforced concrete. Interactions include bond−slip 
between reinforcement and contact concrete, aggregate interlock at cracks and dowel action 
of reinforcement crossing cracks. In addition, some effects such as creep and shrinkage of 
concrete, environmental conditions or concrete age at loading can also influence the nonlin-
ear response of RC structures [Chen (1982), Kwak et al. (1990)]. 

Because of the differences in behaviours of concrete and reinforcement as well as the com-
plex interaction mechanisms between them, a widely accepted way to model the responses of 
RC structures is to use separate material models for concrete and reinforcement which are 
then combined with a model of interactions between the two materials. In 1967, it was Ngo 
and Scordelis to introduce the first publication on the application of the finite element 
method (FEM) to the analysis of RC structures. In their study of simple beams, concrete and 
reinforcement were modelled by constant strain triangular elements and a special bond link 
element was used to describe the interaction between concrete and reinforcement. Many re-
searchers have later made important contributions to both proposing constitute material 
models and developing reliable algorithms in numerical analysis such as Ottosen (1977), 
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Chen (1982), Lubliner (1989) or Lee & Fenves (1998). However, modelling the behaviour of 
concrete and developing consistent analytical models for the response of RC structures are 
still difficult challenges due to the following reasons: 

• Concrete is a heterogeneous material with uncertain mechanical properties under 
loading. 

• Reinforcement and concrete interact in complex mechanisms which are difficult to 
describe and constitute in a mathematical formulation. 

The behaviour of concrete, reinforcing steel and their interactions will be presented in details 
in the following sections. 

4.2.1 Concrete Behaviour 

Concrete by itself is a composite material of aggregates and cement paste or mortar that fills 
in the spaces between aggregate particles and binds them together to form a rock-like solid. 
Hence, concrete is a non−homogeneous and anisotropic material with high compressive 
strength and low tensile strength. The two strengths are dependent on effects of creep, 
shrinkage, environmental conditions or concrete age. They also have different values under 
different stress states. 

In concrete, there are numerous micro−cracks caused by segregation, shrinkage or thermal 
expansion of the mortar. Some other micro−cracks may appear under low level of loading 
due to the difference in stiffness of aggregates and mortar. These micro−cracks mostly locate 
on the contact surface between aggregates and mortar to form an interface which has a sig-
nificantly lower tensile strength than the other parts. Aggregate size, as a result, plays a large 
role on the mechanical behaviour of concrete. 

Under a microscopic examination, mortar is a non-homogeneous and anisotropic matrix 
composed of irregularly shaped and unevenly distributed pores attributed to the evaporation 
of free water and gel pore formation in the calcium silicate hydration. The porosity greatly 
influences the strength development of the mortar which induces a complex relation between 
the microstructure and mechanical behaviour of concrete. New strength models are based on 
the water-cement ratio and the capillary porosity. 

Thus, in order to create an appropriate mathematical model it is essential to understand the 
behaviour of plain concrete under uniaxial and multi-axial stress states. Typical test results 
are illustrated in the next section and they all refer to normal weight concrete under short 
term quasi-static loading conditions. 
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4.2.1.1 Uniaxial Compressive Behaviour 

The nonlinear stress-strain behaviour under uniaxial compression of concrete is shown in 
figure 4.2 [Chen (1982)]. This behaviour can be summarized in four stages under different 
magnitudes of applied load. The first stage is about 30÷60 % of the ultimate strength (shown 
as 45 % in Fig. 4.2). In this initial stage, localized cracks are initiated but they do not propa-
gate (stationary cracks). Hence, the stress-strain behaviour is linearly elastic and 0,3f′c to 
0,4f′c is usually proposed as the limit of elasticity. In the second stage, the stress-strain curve 
begins to deviate from a straight line and go up to 70÷90 % of the ultimate strength (shown 
as 85 % in Fig. 4.2). In this stage, as the applied load increases, cracks multiply and propa-
gate to reduce the material stiffness and cause irrecoverable deformation in unloading. In the 
third stage, the stress-strain curve continues to extend up to the ultimate strength. In this 
stage, the progressive failure of concrete is primarily caused by cracks through the mortar. 
These cracks merge with former bond cracks at the surface of nearby aggregates and form 
crack zones of internal damage. A fourth stage defines the region beyond the ultimate 
strength. In this region, the cracks become unstable and self-propagating until complete dis-
ruption and failure occurs. In this stage, the major cracks form parallel to the direction of the 
applied load, causing failure of the concrete. 

All the above mentioned stages are for the uniaxial compression case. Stages I, (II and III), 
and IV could be categorized into the linear elastic, inelastic, and the localized stages respec-
tively.  
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Figure 4.2− Uniaxial compression stress-strain relation of concrete [Chen (1982)] 

4.2.1.2 Uniaxial Tensile Behaviour 

A typical uniaxial tensile behaviour curve of concrete is shown as in figure 4.3. In general, 
the limit of elastic stage is observed to be about 60 ÷ 80 % of the ultimate tensile strength. 
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Therefore the behaviour of concrete in tension is quite brittle in nature. In addition, the ag-
gregate-matrix interface has a significantly lower tensile strength than the others, which is 
the primary reason for the low tensile strength of concrete. 
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Figure 4.3− Uniaxial tensile stress-strain curve of concrete [Peterson (1981)] 

The tensile strength fct  is significantly lower than the corresponding strength in compression 
f′c, with a ratio of 0,05 ÷ 0,1. This value is difficult to measure experimentally and so, it 
normally is estimated from the corresponding value of the compression strength for example 
DIN 1045-1 uses fct = 0,3 fck

2/3. 

4.2.1.3 Biaxial Behaviour 

Behaviour of concrete under biaxial states was first represented by Kupfer et al. (1969) as in 
the figure 4.4. It was reported that the strength of concrete subjected to biaxial compression 
may be up to 27 % higher than the uniaxial strength of concrete. For equal compressive 
stresses in two principal directions the strength increase in approximately 16 % (Fig. 4.4.b). 
In the region of combined compression and tension, the compressive stress at failure de-
creases as the simultaneously acting tensile stress is increased. The strength of concrete un-
der biaxial tension is approximately equal to its uniaxial tensile strength [Kupfer et al. 

(1969)]. In the next few decades, several slightly different yield surfaces have been proposed 
by Ottosen (1977), Lubliner (1989) or Lee & Fenves (1998) which will be presented in sec-
tion 4.3.1. 

4.2.2 Steel Behaviour 

Reinforcement has different types and shapes. The most commonly used style is deformed 
circular cross-section bars. The properties of reinforcing steel are generally not dependent on 
environmental conditions or time. A typical stress-strain curve for reinforcing steel bars used 
in concrete construction is obtained from a tension test as in the figure 4.5. For all practical 
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purposes steel exhibits the same stress-strain curve in compression as in tension. The steel 
stress-strain relation exhibits an initial linear elastic portion, a yield plateau, a strain harden-
ing range in which stress again increases with strain and, finally, a range in which the stress 
drops off until fracture occurs.  
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Figure 4.4− (a) Biaxial strength of concrete from experimental investigation; (b) Stress-strain relationships of 

concrete under biaxial compression [Kupfer et al. (1969)] 

 

Figure 4.5− Stress-strain relationships of reinforcement [Figure 3.3 (Chapter 3)] 

4.2.3 Interaction Behaviour between Reinforcing Steel and Concrete 

Since plain concrete has very small tensile strength, reinforcing steel will usually be embed-
ded in concrete to create a reinforced concrete composite material which has relatively high 
strength in both compression and tension. Interaction behaviours refer to load transferring 
mechanisms as well as failure in the vicinity between reinforcing steel and concrete. The 
main stress transfer mechanisms or bond between concrete and reinforcement are repre-
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sented by (1) chemical adhesion between mortar and bar surface; (2) friction and wedging 
action of small dislodged sand particles between the bar and the surrounding concrete; and 
(3) mechanical interaction between concrete and steel. 

Bond of plain bars derives primarily from the first two mechanisms while bond of deformed 
bars is mainly transferred through lugs of bars to concrete. As a result, bond resistance and 
crack propagation pattern of reinforced concrete members with deformed bars are different 
from those of reinforced concrete members with plain bars. For reinforced concrete members 
with deformed bars laid in the tensile zone, cracks tend to be initiated at certain intervals and 
propagated normal to main bars (Fig. 4.6.a). The bond slip between reinforcement and sur-
rounding concrete will play an important role in the internal force redistribution, overall 
structural stiffness and load capacity of system (Fig. 4.6.f). It is represented as a means for 
transfer of tensile stresses from reinforcement to the concrete between two neighbouring 
cracks (Fig. 4.6.c, d, e). The capacity of the intact concrete between cracks to carry these 
tensile stresses is termed as tension stiffening effect. In general this effect is quite compli-
cated to consider thoroughly but only partly since it is influenced by many factors such as 
cracking and crushing of concrete, nonlinearity of concrete, yielding of steel, main bar’s 
spacing, concrete cover…For simplicity, some researchers assumed full bond between the 
reinforcing steel and concrete. 
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Figure 4.6− Effect of cracking in reinforced concrete beam [Kwak et al. (1990)] 

Another mechanical interaction between concrete and reinforcement named dowel action has 
been recognized to be one of shear transfer mechanisms of reinforced concrete members. It 
is explained that when cracks initiate almost normal to main bars and continue to open, main 
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bars work as a dowel to carry up to 53% of total shear [Sarkar et al. (1998)] as in Fig. 4.7. 
There have been some researches as well as suggested analysis models for this effect 
[Shoroushian et al. (1987), Takahashi et al. (2008)…]. However, the significance of the 
dowel action is still under investigation and discussion as presented in the section 2.2. 

 

Figure 4.7− Dowel action in resisting shear [Hwee et al. (1986)] 

4.3 Non FEM Analysis with ABAQUS 

4.3.1 Damaged Plasticity Model for Concrete 

The concrete damaged plasticity model is based on the models proposed by Lubliner et al. 
(1989) and by Lee and Fenves (1998). This model employs concepts of isotropic damaged 
elasticity in combination with isotropic tensile and compressive plasticity to represent the 
inelastic behaviours of concrete. It assumes that the main two failure mechanisms of con-
crete are tensile cracking and compressive crushing. The evolution of the yield (or failure) 
surface is controlled by two hardening variables pl

tε and pl
cε  as tensile and compressive 

equivalent plastic strains respectively. Since the theoretical background of the model can be 
found in many literatures [Lee and Fenves (1998), Malm (2006), Mark (2006), ABAQUS’s 

documentation…], some main characteristics of the model defined in ABAQUS will be 
briefly presented only as in the following. 

4.3.1.1 Uniaxial Tension and Compression Behaviour 

It is required to define the stress-strain behaviour of plain concrete in uniaxial compression 
and tension as in figure 4.8. If Ec is the initial (undamaged) elastic stiffness of the material, 
the stress-strain relations under uniaxial tension and compression loading are, respectively: 

(1 ) ( )

(1 ) ( )

pl
t t c t t

pl
c c c c c

d E

d E

σ ε ε
σ ε ε

= − ⋅ ⋅ −

= − ⋅ ⋅ −
        

(4.1)

(4.2)
 

Where:   dt and dc are two damage variables in tension and compression. 

The stress-strain curve under compression (Fig. 4.8.a) can be divided into 3 phases: (1) elas-
tic region σc < σco; (2) pre-failure region σco < σc <σcu; and (3) post-failure region in com-
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pression. In ABAQUS the two later relations are specified in the option ‘CONCRETE 
COMPRESSION HARDENING’. 

 (a) In compression                    (b) In tension 
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Figure 4.8− Stress-strain graphs of concrete under uniaxial loading [Abaqus, theory manual] 

The stress-strain response under uniaxial tension follows two stages: (1) a linear elastic rela-
tionship until the value of the failure stress σt0; and (2) post-failure region in tension. The 
post-failure behaviour is modelled with tension stiffening to define the strain-softening be-
haviour for cracked concrete. That means interaction effects of the reinforcement and con-
crete will be simulated in a simple manner. In ABAQUS this relation is specified in the op-
tion ‘CONCRETE TENSION STIFFENING’. 

In order to define two post-failure regions, the two uniaxial damage variable in compression 
dc and uniaxial damage variable in tension dt are determined as follows: 

0 0

0 0

( ) 1 bzw. ( ) 1
(1 ) (1 )

el el
in inc t

c c t tin el in el
c c c t t t

d d
b b

ε εε = − ε = −
ε ⋅ − + ε ε ⋅ − + ε

  (4.3) 

Where: bc and bt are damage parameters are as follows: 

bzw.pl in pl in
c c c t t tb b= ε ε = ε ε      (4.4) 

The two damage variables dc and dt are specified in the options ‘CONCRETE 
COMPRESSION DAMAGE’ and ‘CONCRETE TENSION DAMAGE’ respectively. 

4.3.1.2 Concrete Plasticity 

The plastic-damage concrete model uses a yield condition based on the yield function pro-
posed by Lubliner et al. (1989) and incorporates the modifications proposed by Lee and 
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Fenves (1998) to account for different evolution of strength under tension and compression 
as in the figure 4.9. 
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Figure 4.9− Yield surface in plane stress and yield surfaces in the deviatory plane 

In addition, the concrete damaged plasticity model assumes a non-associated potential plas-
tic flow. The flow potential G used for this model is the Drucker-Prager hyperbolic function:  

2 2
0( tan ) tantG q pε σ ψ ψ= ⋅ ⋅ + − ⋅       (4.5) 

Where: ψ  is the dilation angle,  

 0tσ  is the uniaxial tensile stress at failure, 

 ε  is a eccentricity parameter. 

For the sake of simplicity, default values as suggested by ABAQUS will be used for these 
parameters in all the following FE-analysis. 

4.3.2 Model for Steel 

Usually there have been two different idealizations for reinforcing steel in concrete struc-
tures. The first model comprises the first two stages of the stress-strain relation of steel and 
is named as elastic-perfectly plastic model since it neglects the last hardening stage as in the 
figure 4.10a. In contrast, the second model ignores a plastic phase to consider only the first 
phase and the last phase of the stress-strain relation of steel and is named as elastic-
hardening model as in the figure 4.10.b. Using of the first model may underestimate the steel 
stress at high strains and have numerical convergence problems near ultimate strength. The 
second model which accounts for the strain hardening effect may avoid these two problems 
to assess more accurately strength of member at large deformations. Another solution which 
combines the two above models and represents better experimentally obtained stress-strain 
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relations of steel as in the figure 4.10.c will be used in this research. The analysis process 
showed numerical stability and solutions in good agreement with test results. 

 (a) Elastic-perfectly plastic model          (b) Elastic-hardening model            (c) Elastic-plastic-hardening model 
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Figure 4.10− Three material models for steel 

4.3.3 Explicit Dynamic Analysis 

For numerical modelling of unstable problems such as shear tests in which failure occurs 
very abruptly, dynamic analysis procedures which consider inertia effects will be more suit-
able than static analysis procedures. The nonlinear dynamic analysis uses direct integration 
methods to solve equilibrium equations of motion. The direct integration methods can be 
either implicit direct integration which uses the implicit operator or explicit direct integration 
which uses central-difference operator. Displacements as well as velocities are calculated in 
terms of quantities that are known at the beginning of a time increment. 

The explicit direct integration is preferred to use for some following important advantages: 

• The analysis time increase only linearly with the problem size. As a result, it is suit-
able for very large FE-models. 

• It uses a consistent, large-deformation theory. Therefore models can undergo large 
rotations and large deformation. 

• It is efficient for the analysis of models with short dynamic response times and for 
the analysis of discontinuous events or processes. 
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4.4 Test Verification 

4.4.1 FEM Model 

All of 18 test beams are modelled in ABAQUS 6.9. Because of the symmetric features of the 
test beams, only a haft of the test beam is modelled to reduce the analysis time. In general, 
the models in ABAQUS simulate the real working state of test beams as shown in the figures 
4.11 and 4.12. In addition to the reinforced concrete beam, the loading plate under the hy-
draulic jack and the steel-box supports are also modelled. These two parts have the same 
element type as the concrete beam but have material properties of steel. The tied boundary 
conditions are assumed at contact surfaces between concrete beam and supports as well as 
between concrete and loading plate. A typical three dimensional model including FEM 
mesh, main bars, stirrups, boundary conditions…is presented in figure 4.12. 

 

 

 

 

 

 

 

Figure 4.11− Test set-up of the test beam 2L-1 
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Figure 4.12− Three-dimensional model of test beam 2L-1 in ABAQUS 
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Elements: The 3D truss elements with 2 nodes (T3D2) are used to model the reinforcing 
steel bars. The 3D continuum elements with 8 nodes (C3D8R) are utilized for modelling 
concrete, steel loading plate and supports. 

FEM Mesh Size: The size of FEM mesh relates to the calculating results and time consump-
tion. Although the damaged plasticity model for concrete is partly from background of frac-
ture mechanics, it can reduce influence of mesh sensitivity on numerical solution. Nonethe-
less five different mesh sizes with characteristic element length lch in the range of 12,5 mm 
to 30 mm will be modelled to select a most appropriate mesh size to lessen this effect for 
further investigations. The two tables 4.1 and 4.2 show the number of nodes and elements of 
concrete, longitudinal reinforcements and stirrups as well as total unknowns of the test 
beams corresponding to the characteristic element length lch. It can be seen from these tables 
that if lch reduces about 0,67 times (from 30 mm to 20 mm), total unknowns of the system 
will increase to 3 times. In other case if lch reduces about 0,41 times (from 30 mm to 
12,5 mm), total unknowns of system will increase up to 11 times. However, analysis time 
consumption may not be significant because all of the numerical analysis can still be per-
formed at the Computer Centre of TUHH where many jobs can be run in parallel. Therefore, 
the mesh size is chosen mainly from condition of the most reliable analysis results. 

lch 
(mm) 

Concrete Longitudinal Steel Stirrups Total 

Unknowns Element Node Element Node Element Node 

30 4.697 5.952 183 186 132 132 18.810 

25 8.288 10.125 219 222 156 156 31.509 

20 15.640 18.414 273 276 192 192 56.646 

15 36.777 41.664 363 366 258 258 126.864 

12.5 63.504 70.448 438 441 312 312 213.603 

Table 4.1. Mesh size, number of nodes, elements and total unknowns of test beam with a/d=5 (L=3,68m) 

lch 
(mm) 

Concrete Longitudinal Steel Stirrups Total 

Unknowns Element Node Element Node Element Node 

30 3.157 4.032 123 126 132 132 12.870 

25 5.600 6.885 147 150 156 156 21.573 

20 10.540 12.474 183 186 192 192 38.556 

15 24.817 28.224 243 246 258 258 86.184 

12.5 42.768 47.600 294 297 312 312 144.627 

Table 4.2. Mesh size, number of nodes, elements and total unknowns of test beam with a/d = 3 (L = 2,48m) 

The preliminary results of the FEM-analysis of all of test beams showed that models with 
coarse mesh sizes consume very short calculating time and have analysis outcomes such as 
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relations of force and displacement which are “smoother” than those of models with finer 
mesh sizes. However, there are no big differences on analysis outcomes among the models 
with different mesh sizes. It was recognized that the finer the mesh sizes the more compre-
hensible the crack propagation and stress distribution. For these reasons, the finest mesh size 
with lch = 12,5 mm is selected for all further investigations. 

Loading Procedure and Analysis Time: For the first test beam 1L1 the load control proce-
dure was applied. At each load step, loading was increased with stable velocity of 1 kN/sec 
(equivalent to 0,1423 mm/sec) until failure. For other test beams the same load control pro-
cedure was applied until the total loading value reached 60 kN. Consequently, the displace-
ment control procedure was utilized with steady velocities until failure as presented in the 
table 4.3. For simplicity, these values of loading velocities would be used for the whole 
analysis procedure. In order to make sure that models will experience failure stage, the 
analysis time needs to be longer than the time of loading in the tests which can be done sim-
ply with a certain factor. The detailed values of velocity and analysis time are presented in 
the table 4.3. 

Test 

Beam 

Velocity 

(mm/sec) 

Time of Loading 

(sec) 

Displacement 

(mm) 

Time of Analysis 

(sec) 

1L1 0,1423 151 10,74 175 

1L2 0,16 141 11,28 175 

2L1 0,18 133 11,93 146 

2L2 0,18 132 11,89 145 

3L1 0,20 111 11,13 122 

3L2 0,20 120 11,98 132 

4L1 0,20 202 20,24 223 

4L2 0,20 199 19,91 219 

5L1 0,28 197 27,60 217 

5L2 0,28 193 27,05 213 

1K1 0,05 109 2,71 119 

1K2 0,05 92 2,31 101 

2K1 0,05 124 3,09 136 

2K2 0,05 125 3,11 137 

3K1 0,05 124 3,11 137 

3K2 0,05 116 2,90 127 

4K1 0,05 134 3,35 148 

4K2 0,05 131 3,26 144 

Table 4.3. Velocity of applied loading and analysis time 
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4.4.2 Results of the FEM-Analysis 

This section plans to show main outcomes of the Nonlinear FEM analysis. In general, the 
program provides full output databases for post processing depending on user’s purposes. 
Since the generation of outputs takes much time for calculating and processing, only main 
outputs required for comparison with test results or for study of behaviours of beams will be 
selected to print out such as values of stresses and strains or forces and displacements. 

4.4.2.1 Load Bearing Capacity and Displacement 

Table 4.4 shows the load bearing capacities and the maximum displacements at mid-span of 
the test beams predicted by ABAQUS in comparison with those from the experiments. The 
load bearing capacities are determined as the highest values of applied forces during analysis 
procedure. The deflections at mid-span, which correspond to these loads, are assumed to be 
the maximum displacements of the models. 

Test Beam 
FTest 

[KN] 

FABAQUS 

[KN] 

FTest 

FABAQUS 
wTest 

[mm] 

wABAQUS 

[mm] 

wTest 

wABAQUS 

1L1 150,9 149,9 1,01 10,7 12,0 0,89 

1L2 158,.4 160,0 0,99 11,3 13,9 0,81 

2L1 150,4 144,5 1,04 11,9 13,0 0,92 

2L2 149,2 147,8 1,01 11,9 13,0 0,92 

3L1 133,0 132,9 1,00 11,1 12,1 0,92 

3L2 138,6 136,8 1,01 12,0 13,2 0,91 

4L1 206,7 204,7 1,01 20,2 22,6 0,89 

4L2 206,9 205,4 1,01 19,9 23,6 0,84 

5L1 206,4 197,5 1,05 27,6 28,8 0,96 

5L2 207,0 197,2 1,05 27,1 28,8 0,94 

1K1 151,3 158,2 0,96 2,7 2,9 0,93 

1K2 140,0 141,3 0,99 2,3 2,5 0,92 

2K1 167,1 173,7 0,96 3,1 3,3 0,94 

2K2 170,0 172,1 0,99 3,1 3,2 0,97 

3K1 158,7 158,8 1,00 3,1 3,4 0,94 

3K2 159,9 148,8 1,07 2,9 3,2 0,91 

4K1 169,5 166,2 1,02 3,4 3,7 0,92 

4K2 167,8 159,6 1,05 3,3 3,6 0,94 

Table 4.4. Load bearing capacity F and maximum displacement w of test beams from  

Nonlinear FEM Analysis in comparison with test results 

Notes for the table 4.4: 

FTest [KN]  is the critical load bearing capacity of beam from test results 

FABAQUS [KN] is the critical load bearing capacity of beam from ABAQUS 
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wTest [mm] is the maximum displacement at midspan of beam from test results. 

wABAQUS [mm] is the maximum displacement at midspan of beam from ABAQUS. 

The applied force-displacement relation of all of 18 models in comparison with test result is 
plotted in the figures 4.13 to 4.30. Again a very good agreement regarding the shape of the 
load-displacement graph can be observed.   
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      Figure 4.13− Force-displacement relation         Figure 4.14− Force-displacement relation 

 of test beam 1L1    of test beam 1L2 
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      Figure 4.15−  Force-displacement relation        Figure 4.16− Force-displacement relation 

  of test beam 2L1  of test beam 2L2 
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       Figure 4.17− Force-displacement relation            Figure 4.18− Force-displacement relation 

  of test beam 3L1       of test beam 3L2 
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      Figure 4.19− Force-displacement relation             Figure 4.20− Force-displacement relation 

 of test beam 4L1         of test beam 4L2 
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       Figure 4.21− Force-displacement relation             Figure 4.22− Force-displacement relation 

  of test beam 5L1            of test beam 5L2 
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       Figure 4.23− Force-displacement relation            Figure 4.24− Force-displacement relation 

 of test beam 1K1         of test beam 1K2 
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     Figure 4.25− Force-displacement relation Figure 4.26− Force-displacement relation 

  of test beam 2K1  of test beam 2K2 
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       Figure 4.27− Force-displacement relation Figure 4.28− Force-displacement relation 

  of test beam 3K1  of test beam 3K2 

 



4. Nonlinear FEM Analysis 

 

84 

F (kN)

w  (mm)m

Test 4K1

Abaqus

wm

F

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

40

80

120

160

200

      
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

0

40

80

120

160

200
wm

F

F (kN)

w  (mm)m

Test 4K2

Abaqus

 

        Figure 4.29− Force-displacement relation          Figure 4.30− Force-displacement relation 

  of test beam 4K1    of test beam 4K2 

4.4.2.2 Crack Propagation in Comparison with Test Results 

For a better understanding of the progressive failure process, the initiation and propagation 
of cracks in the FEM-models will also be presented. Figure 4.31 shows the crack pattern 
from the FE-analysis of test beam 1L2 at a load of F = 60 kN.  

 

Figure 4.31− Crack pattern of test beam 1L2 at loading of F = 60 kN (FEM-analysis) 

For better observation, the crack patterns should be printed in contour mode without FEM 
mesh. Figure 4.32.b shows the initiation and development of cracks in the FEM-model of 
test beam 1L2 after each two load steps in comparison with the crack pattern from tests in 
figure 4.32a as a representative of a straight depth beam. Figure 4.33 shows the same crack 
propagation for the haunched beam 4K1. For other test beams can be referred to Appendix 
E. The crack patterns at failure of FEM-models and from testing of all test beams are shown 
in the figures 4.34 to 4.49. 

It can be seen from these figures that there is a good agreement on crack patterns, crack 
spacing’s, location and inclination of relevant shear cracks between the numerical analysis 
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and the experimental results. These results confirm that the developed nonlinear finite ele-
ment model can simulate the behaviours of the test beams with reliable accuracy. 

             (a) Crack propagation from test                                   (b) Crack propagation from FEM 
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Figure 4.32− Crack propagation of test beam 1L2 from test results and Non-FEM analysis  
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                               (a) Crack propagation from test                            (b) Crack propagation from FEM 
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Figure 4.33− Crack propagation of test beam 4K1 from test results and Non-FEM analysis  
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F=149,9kN F=150,9kN

 

Figure 4.34− Crack propagation at failure of test beam 1L1 from Non-FEM and test 

F=144,5kN F=150,4kN

 

Figure 4.35− Crack propagation at failure of test beam 2L1 from Non-FEM and test 

F=149,2kNF=147,8kN

 

Figure 4.36− Crack propagation at failure of test beam 2L2 from Non-FEM and test 

F=133,0kNF=132,9kN

 

Figure 4.37− Crack propagation at failure of test beam 3L1 from Non-FEM and test 

F=138,6kNF=136,8kN

 

Figure 4.38− Crack propagation at failure of test beam 3L2 from Non-FEM and test 

F=206,7kNF=205,8kN

 

Figure 4.39− Crack propagation at failure of test beam 4L1 from Non-FEM and test 
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F=206,6kN F=206,9kN

 

Figure 4.40− Crack propagation at failure of test beam 4L2 from Non-FEM and test 

F=206,4kNF=200,7kN

 

Figure 4.41− Crack propagation at failure of test beam 5L1 from Non-FEM and test 

F=207,0kNF=201,1kN

 

Figure 4.42− Crack propagation at failure of test beam 5L2 from Non-FEM and test 

F=158,2kN F=151,3kN

 

Figure 4.43− Crack propagation at failure of test beam 1K1 from Non-FEM and test 

F=141,3kN F=140,0kN

 

Figure 4.44− Crack propagation at failure of test beam 1K2 from Non-FEM and test 

F=173,7kN F=167,1kN

 

Figure 4.45− Crack propagation at failure of test beam 2K1 from Non-FEM and test 
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F=170,0kNF=172,1kN

 

Figure 4.46− Crack propagation at failure of test beam 2K2 from Non-FEM and test 

F=158,8kN F=158,7kN

 

Figure 4.47− Crack propagation at failure of test beam 3K1 from Non-FEM and test 

F=148,8kN F=159,9kN

 

Figure 4.48− Crack propagation at failure of test beam 3K2 from Non-FEM and test 

F=159,6kN F=167,8kN

 

Figure 4.49− Crack propagation at failure of test beam 4K2 from Non-FEM and test 

4.4.2.3 Stress Distribution in Models 

The stress distribution in stirrups, main bars and concrete is investigated to explain the initia-
tion and propagation of cracks as well as redistribution of stresses when cracks occur up to 
failure of the beams. For stirrups and longitudinal reinforcements, there exists only normal 
stress distributed along central axis of element as shown in figure 4.50 for test beam 4L1. 
Normal stresses and shear stress in the concrete are distributed as in figure 4.51 for straight 
depth beam 1L2 and in figure 4.52 for haunched beam 4K1.  

 

Figure 4.50− Normal stress in stirrups and longitudinal reinforcements of test beam 4L1 (Non-FEM analysis) 
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(a) Normal stress distribution                                     (b) Shear stress distribution 

 

 

Figure 4.51− Distribution of normal stress and shear stress 

in FE-model of test beam 1L2 up to failure 
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     (a) Normal stress distribution                       (b) Shear stress distribution 
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Figure 4.52− Distribution of normal stresses and shear stresses 

in FE-model of test beam 4K1 up to failure 
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4.5 Discussions and Conclusions 

Some discussions and conclusions of the chapter 4-Nonlinear Finite Element Analysis are 
given in the following: 

The concrete damaged plasticity model adopted in ABAQUS is a good suggestion for mod-
elling of concrete structures. The results of the numerical analysis of 18 test beams show that 
some main failure behaviours of concrete members without stirrups such as shear strength, 
relation of load and displacement or crack propagation predicted by Nonlinear FEM are in 
very good agreement with test results. These can be briefly described as follows: 

Load Bearing Capacity: the table 4.4 and figure 4.53 show that Non-FEM predicted quite 
exactly the load bearing capacity of all 18 test beams. The largest difference between ex-
periment and numerical analysis is for test beam 3K2 with a tolerance of 6,9 % while the 
mean value of tolerance of all 18 tests is about 1,3 % only. It is noted in the test program that 
there are two types of test beams with different a/d ratios (a/d = 3 and a/d = 5) and two types 
of failure including flexure failure (test beams 4L and 5L) and shear failure (other test 
beams). Therefore, it can be said that Non-FEM models can be used reliably to predict the 
load bearing capacity of the test beams or concrete beams in general. 
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   Figure 4.53− Comparison of load bearing capacity                 Figure 4.54− Comparison of mid-span deflection 

                      between test and Non-FEM                     between test and Non-FEM 

Load/Displacement Curve: Table 4.4 and figure 4.54 show that the maximum mid-span de-
flections from Non-FEM models always have higher values than those of tests (average of 
about 9,2 %). For models of test beams failed in shear, the initial inclined angles of the load-
displacement curves (or stiffness) from Non-FEM is larger than those of the real tests. When 
cracks increase in number and in height, the load-displacement curves become flatter and 
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flatter than those of the tests (Fig. 4.55). That means the preliminary stiffness of Non-FEM 
model is higher than that of the actual system, but it will rapidly reduce as cracks occur and 
propagate. Finally, at the critical failure load the stiffness of the Non-FEM model is smaller 
than that of the actual system. That’s why displacements of Non-FEM models will be rela-
tively higher than those of tests. However, there is a very good agreement on the relation of 
load-deflection between Non-FEM analysis and the test program in general. 
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Figure 4.55− Load-deflection curves and crack patterns from FEM of beam 1L2 

For models of test beams failed in flexure (4L and 5L), the load-deflection curves are nearly 
identical with those of test results up to failure (Figs 4.19 to 4.22). This extremely good 
agreement can be explained that the mechanisms of flexure failure are well-defined in mate-
rial models where steel undergoes yielding range and failure of concrete is in either tension 
crack or compressive crushing. 

It is also noted from the load-displacement curves of the nonlinear Finite Element models 
that there exists converge problems during analysis, especially at loadings close to the criti-
cal load. However, the program overcame this problem and continued the computation until 
end of the analysis time. Since it was intended for using ABAQUS to model the test beams 
as a normal user, this problem is accepted as a matter of course and it is not aimed to solve in 
this research. 

Failure Type and Crack Propagation: The Non-FEM analysis predicts exactly the failure 
types of all test beams. For shear failure, the load bearing capacity of the model abruptly 
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drops obviously after reaching critical value which can be recognized from the load-
displacement curves. The critical cracks are inclined to the neutral axis of the beams as seen 
in many shear tests. For flexural failure, the longitudinal reinforcements yield as shown in 
the figures 4.19 to 4.22 and critical cracks are almost perpendicular to the neutral axis of the 
beams as shown in the figures 4.39 to 4.42. 

Due to the assumptions and simplifications of the used Finite Element approach, it seems 
impossible to get crack patterns as exactly as in the test. This may be due to differences of 
the numerical model (half of actual beam…) from testing conditions…But the main reason is 
due to heterogeneous natures of concrete material. This can be verified from the test program 
that the load bearing capacity and crack patterns of the two identical test beams are different 
even though they own the same features of materials, testing conditions…However, it can be 
seen from the figure 4.32 and figure 4.49 that the Non-FEM models can predict well the ini-
tiation and propagation of cracks, the failure region where critical crack occurs, some main 
characteristics of critical crack such as direction, inclination and crack pattern…which are 
relatively identical with those from the tests. The figures 4.56 to 4.60 show patterns of criti-
cal cracks and failure region predicted by Non-FEM models in comparison with test results 
of beam 1L2 as a representative of a long straight beam failed in shear and test beam 3L2 as 
a representative of a long haunched beam failed in shear, test beam 5L1 as a representative 
of a long beam failed in flexure, test beam 1K2 as a representative of a short straight beam 
failed in shear and test beam 4K1 as a representative of a short haunched beam failed in 
shear. For beam failed in shear, it is very interesting to learn from these figures that both 
Non-FEM models and test results predicted quite accurately that the failure region of straight 
depth beams is about close to position of load application (Fig. 4.56 and Fig. 4.59 ) while the 
failure region of haunched beams is near the support (Fig. 4.57 and Fig. 4.60). 

Critical cracks Critical cracks

Failure region Failure region
 

Figure 4.56− Critical crack pattern and failure region of test beam 1L2 from FEM and test results 

Critical cracks

Failure region Failure region

Critical cracks

 

Figure 4.57− Critical crack pattern and failure region of test beam 3L2 from FEM and test results 
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Figure 4.58− Critical crack pattern and failure region of test beam 5L1 from FEM and test results 

 

Figure 4.59− Critical crack pattern and failure region of test beam 1K2 from FEM and test results 

 

Figure 4.60− Critical crack pattern and failure region of test beam 4K1 from FEM and test results 

To get a better understanding of the cracking behaviours of these models, it is required to 
find out correlations between initiation and propagation of cracks with distribution of 
stresses in the beams which will be presented in the following. 

Stress Distribution: It can be seen from the figure 4.50 that there exists only normal stress in 
stirrups and longitudinal reinforcements. In contrast, two stress components including nor-
mal stresses (in tension and in compression) and shear stress are found distributed on vertical 
cross-sections in the concrete part of the models as can be seen in figure 4.61 and figure 
4.62. For two types of straight and haunched beams, the distribution of normal stresses is 
absolutely the same at different load stages. At the elastic phase (F = 20 kN for test beam 
1L2 and F = 30 kN for test beam 4K1), there exist both compressive normal stress and ten-
sile normal stress in triangle shapes at different side of the neutral axis which locates in the 
middle of the cross-section (Figure 4.61.a). When cracks occur and increase in number and 
in height, the region of normal tensile stress becomes smaller and smaller until this type of 
stress only exists at some local positions such as at the tips of the cracks or at the vicinity of 
the longitudinal reinforcements. In contrast, compressive normal stress exists at any region 
where concrete is not cracked yet and the maximum value is still at the top fibre of cross-
sections (Fig. 4.61.b and 4.61.c). The shape of the normal compressive stress block is differ-
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ent at different cross-sections. However, at sections in mid-span this stress block roughly has 
the shape of a half-parabola which is assumed in most of the flexure design models (Fig. 
4.61.c). The moment diagrams obtained by integration of compressive normal forces multi-
plied with the inner lever arm to the position of the main reinforcing bars are presented in 
figure 4.61.d for both test beams 1L2 and 4K1. It can be seen that the shapes and values of 
these diagrams are in very good agreement with those from common mechanical theory. 
Except for some sections close to position of load application influenced by the spreading of 
the force, the average tolerance of moment values between Non-FEM and theory is about 
smaller 0,5 % for test beam 1L2 and about smaller 1,1 % for test beam 4K1. These results 
again confirm well the reliability of the Non-FEM in analysis of concrete structures without 
stirrups. 
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Figure 4.61− Normal stress distribution and moment diagram integrated from 

Non-FEM models and from theory of test beam 1L2 and 4K1 
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The distribution of shear stresses of straight depth beams, in the other hand, is totally differ-
ent from that of haunched beams as presented in the figures 4.51.b, 4.52.b and 4.62. In the 
elastic stage, the shear stress distribution of straight depth beams has a parabola form with 
maximum value of the stress in the middle of the cross-sections. This distribution totally 
complies with classical mechanical theory. In the other hand, the shear stress distribution of 
haunched beams is diverse at different regions of beam as shown in figure 4.62. At regions 
close to the position of the load application, this distribution has the form of a half-parabola 
with maximum value of stress on the top surface of the beam while that close to the support 
approximately has a parabola form with maximum value of stress in the middle of cross-
sections. When cracks occur and increase in number and in height, the distribution of shear 
stress becomes more complicated as shown in the figures 4.51.b, 4.52.b, 4.62.b and 4.62.c. 
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Figure 4.62− Shear stress distribution and shear force diagram integrated from 

Non-FEM models and from theory of test beam 1L2 and 4K1 
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However, some features of distribution of shear stresses can be found based on correlations 
between shear stress redistribution and cracking behaviours in straight depth beams and 
haunched beams as follows: 

(i) There exists very small or no value of shear stress on vertical cracks and inclined 
cracks. 

(ii) There exists mainly shear stress on uncracked concrete parts in both compression 
zone and tension zone. 

(iii) In regions close to the support, large value of shear stress locates on inclined curve 
(direct strut) going down to the support for both straight depth beams and haunched 
beams. In region near the position of load application, large value of shear stress 
normally occurs either at the middle of concrete compression zone or at the middle of 
uncracked concrete parts in tension zone of straight depth beam. In the other hand, 
large value of shear stress generally exists on top of concrete compression zone of 
haunched beams or at the middle of uncracked concrete parts in tension zone (Figure. 
4.62). 

It is obvious for the first above statement that there is no shear at both surfaces of cracks 
which have relatively large opening. There perhaps exists shear stress on surfaces of tiny 
cracks or surfaces next to crack tips due to so-called aggregate interlock. However, it is be-
lieved that the shear stress in this region will exist for a short time during crack formation 
only. When cracks reach a stable state at a certain loading step, the value of shear stress at 
these cracks becomes smaller or even negligible. 

It can be seen from the figure 4.51.b, 4.52.b and figure 4.62 that it is the uncracked concrete 
parts in both compression zone and tension zone which carry most of the shear force at any 
vertical cross-section. The shear force integrated from FEM has a similar shape and average 
value of about 96,9 % of theoretical result for test beam 1L2 and 98,5 % of theoretical result 
for test beam 4K1 (Fig. 4.62.d). The shear value of FEM V = 73,69 kN (about 92 % of theo-
retical value V = 80 kN) at section of 1,45m apart from the end of the beam of test beam 1L2 
can be considered as an occasional circumstance (Fig. 4.62.d). The remaining small value of 
shear force can be assumed to be carried by other shear resistance mechanisms such as 
dowel action, aggregate interlock… 

It can be seen from the figures 4.61.b and 4.61.c that there exists mainly compressive stress 
on any cross-section of the beam at critical state. As a result, it is totally possible to illustrate 
qualitatively the redistribution of this compressive stress field in a general case for both 
straight depth beam and haunched beam as in the figure 4.63.a. From this distribution of 
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stress field, the value of shear stress of any point in the beam can be determined by follow-
ing formula as in the theory of elasticity: 

( )1
tan 2

2xy x yτ α σ σ= ⋅ −         (4.6) 

Where:  

τxy  is the shear stress at one point (Fig. 4.63.b) 

σx  is the normal stress (compression) in horizontal direction at one point (Fig. 4.63.b) 

σy is the normal stress (tension) in vertical direction at one point (Fig. 4.63.b) 

α  is the inclined angle of principal compressive stress to horizontal direction (Fig. 4.63.b) 

From the above equation, the value of shear stress at some main points in the beams, for ex-

ample A1, B1 on the top fibre of the beam; A2, B2 at the middle of the compression zone; 

A3, B3 at the middle of the uncracked concrete parts in the tension zone and A4, B4 in the 

vicinity of the support, can be estimated as in the figure 4.63. 

a) Compressive stress fields in straight depth beam and haunched beam at critical state 

 

b) Value of shear stress at some main points in straight depth beam and haunched beam 

 

Figure 4.63− Compressive stress fields and value of shear stress in 

straight depth beams and haunched beams  
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The above results obviously showed that large values of shear stress in straight depth beam 

exist at the middle of the compression zone (point A2), middle of the uncracked concrete 

parts in the tension zone (Point A3) and on an inclined curve near the support (A4) while 

those of haunched beams locate at the top of the compression zone (point B1), the middle of 

the compression zone (point B2), the middle of the uncracked concrete parts in the tension 

zone (Point B3) and on an inclined curve near the support (B4). These findings are com-

pletely suitable with results from Non-FEM analysis as presented in the figures 4.51, 4.52 

and 4.62. 

If we assume that shear failure would go through regions or points where values of shear 

stress are large, two types of critical shear crack can be predicted to arise at ultimate loading 

state. The first type of critical shear crack goes through the concrete compression zone (point 

A2 or B2) and tends to the support (point A4 or B4) while the second type passes through 

the concrete compression zone (point A2 or B2), uncracked concrete parts in tension zone 

(point A3 or B3) and tends to the position of the longitudinal reinforcements as in the figure 

4.64. The experimental program showed that straight depth concrete beams were mostly 

failed by the second critical shear crack while haunched concrete beams were likely dam-

aged by the first critical shear crack. The gradual failure mechanisms of both types of beams 

were presented in the Chapter 3 (Experimental Program). 

 

Figure 4.64− Two types of critical shear cracks in straight depth beams and haunched concrete beams. 

In summary, some main findings of this chapter can be shortly summarized as follows: 

Non-FEM analysis can be used not only to find out failure behaviours of concrete members 

without stirrups such as shear ultimate strength, load and displacement curve or crack propa-

gation…but also to give rational explanations for shear failure mechanisms by means of 

stress redistribution and crack propagation. 

It is verified that there are many differences in loading behaviours between haunched beams 

and straight depth beams which can summarized as follows: 
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(1)  Stiffness: System stiffness of haunched beams is smaller than that of straight depth 

beams. As a result, its displacement is larger than that of straight depth beams. This 

conclusion totally complies with test results as presented in the figure 3.13 of Chap-

ter 3. 

(2)  Shear stress distribution: the shear stress distribution of haunched beams is totally 

different from that of straight beam as presented above. Shear stress in haunched 

beams concentrates mainly in the compression zone with largest value on top of sec-

tion while that of straight depth beam has maximum value at the middle of the com-

pression zone. 

(3)  Failure zone: haunched beams tend to fail at region close to support (min d) by the 

first type of critical shear crack while straight depth beams fail at region in the mid-

span close to position of load application (max M) by the second type of critical 

shear crack. Therefore, the shear strength of haunched beams should be checked in 

the region next to support (min d) while that of straight depth beams should be cal-

culated in the vicinity close to mid-span. 

It is the uncracked concrete parts in the tension zone accompanied with compression zone 

which carry most of shear forces in concrete beam without stirrups (at least 90% of total 

shear force). It is noted that there has never had any statement about the role of uncracked 

concrete parts in tension zone in carrying shear so far. The other shear resistance mecha-

nisms such as dowel action, aggregate interlock…are not important and can be ignored. 

It is possible to find out rational shear strength models of concrete beams without stirrups 

based on the initiation and propagation of cracks and the redistribution of stress fields in 

uncracked concrete parts of tension and compression zone at critical state. These proposals 

will be presented in details in the next Chapter. 
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5 New Model Proposals 

5.1 Introduction 

This chapter aims to provide new shear strength models proposed by the author for both 

straight depth concrete beams and haunched concrete beams without stirrups. The theoretical 

background of these models is based on the results from the experimental program and the 

Non-FEM analysis of 18 test beams. The outcomes from the two above mentioned investiga-

tions showed that the uncracked concrete parts in the compression zone and in the tension 

zone carry almost all of the shear force on any vertical cross-section of a concrete beam. In 

addition, it is also verified that the critical shear crack tends to occur only at a certain region 

in concrete beams. Therefore, shear resistance mechanisms on the uncracked concrete parts 

at critical section will be investigated to develop suitable shear strength models for both 

straight depth and haunched concrete beams without stirrups. Beside the shear behavior me-

chanisms, the proposed models are also intended to consider some significant factors which 

control shear strength as formerly presented in the Chapter 2 (State of the Art). 

Shear resistance mechanisms on any cross section will be dealt with in the next section in 

order to provide a general shear resistance formula for concrete beams. The two failure types 

of straight depth beams and haunched beams will be studied further to find out appropriate 

shear strength equations for each case. In this research, the term “allowable shear stress” is 

suggested to use as a characteristic value of shear resistance strength of concrete which will 

be calibrated from the shear database. This shear database includes almost all of shear test 

results in the past 60 years and 18 tests in the Chapter 3 (Experimental Program). 

The new proposed shear strength formulae will be compared with other typical shear 

strength models in the Chapter 2 (State of the Art). The design form of the new models will 

also be suggested and compared with the shear design equations in some practical codes in-

cluding DIN 1045-01, Swiss code SN 262, ACI 318-05 and Canadian Standard CSA. 

5.2 Model Proposals 

5.2.1 Shear Resistance Mechanisms Based on Stress Distribution at Critical Sec-
tions 

The Chapter 4 (Non-FEM Analysis) showed that most of the shear force (minimum of 90%) 

is carried by concrete part at any cross-section of concrete beam. Therefore, the total shear 
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force can be calculated approximately by integration of all of shear stresses on the concrete 

part as the Equation (5.1). 

0

h

Rm xyV b dyτ≈ ⋅ ⋅∫
           

(5.1) 

Where: xyτ is shear stress on concrete part of beam.  

             Figure 5.1− Shear stress block on concrete part  

As also presented in the Chapter 4 (Non-FEM Analysis), the distribution of shear stress in 

concrete will change in figure and become very complicated when cracks initiate and propa-

gate. These cracks separate concrete into two parts including an uncracked concrete region 

above tips of cracks and the other part below tips of cracks which is simply named cracked 

concrete zone (Fig. 5.2). 

       

Concrete compression zone

Cracked concrete zone

Shear stress

 
Figure 5.2− Concrete compression region and cracked concrete zone in a beam 

Therefore, the equation of shear force can also be a summation of shear resistance compo-

nents in these two zones as the following form: 

1 2

0 0

h x h

Rm xy t c xy xy

x

V b dy V V b dy b dyτ τ τ≈ ⋅ ⋅ = + = ⋅ ⋅ + ⋅ ⋅∫ ∫ ∫
    

(5.2)
 

Where: 

1

0

x

t xyV b dyτ= ⋅ ⋅∫   is shear resistance component in cracked concrete zone. 

2

h

c xy

x

V b dyτ= ⋅ ⋅∫  is shear resistance component in concrete compression zone 

1xyτ , 2xyτ
 

are shear stresses in cracked concrete zone and in concrete compression zone. 

From the above Eq. (5.2), we can also find out the shear bearing capacity of a concrete beam 

if we determine exactly the contributing percentage of shear resistance either in the concrete 

compression zone or in the cracked concrete zone. As presented in the figure 4.51 and 4.62, 

the distribution of shear stress in the cracked concrete zone is quite complex while that in the 

Vy

x

z

τxyb

h
x

c
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concrete compression zone is relatively simple. For that reason, it is proposed to find out 

indirectly the shear bearing capacity of a concrete beam without stirrups by means of the 

shear capacity of the concrete compression zone. 

The experimental program and the Non-FEM analysis also found the rules of failure region 

and type of critical shear crack for both straight depth beams and haunched beams. Hence, 

the values of shear stress components in the Eq. (5.2) must be obtained at the most critical 

section in these failure regions. However, it seems impossible to determine exactly this criti-

cal section since the shear failure usually occurs very abruptly and unpredictably. For that 

reason, the relevant section will be selected in the failure region which satisfies the two fol-

lowing conditions: (1) the shear stress distribution at this section should be simple for calcu-

lation and (2) the position of this section should be easy to determine. Because the stress 

distribution, failure region and the type of the critical shear crack of straight depth beam are 

different from those of haunched beam, shear design models for these beams are also differ-

ent and will be separately considered in the next sections. 

5.2.2 Shear Strength Model for Straight Depth Concrete Beams 

The experimental program and Non-FEM analysis proved that the failure region of straight 

depth beams is close to position of load application (max M, d) (Fig. 5.3). At failure, the 

lower end of the critical shear crack goes through the uncracked concrete parts in the tension 

zone downward to the position of the longitudinal reinforcements while the other end passes 

through the concrete compression zone upward to the position of load application. 

d d

1L-2 1K-2

1,0d1,0d
Critical section Critical

section

 
Figure 5.3− Assumed critical section and cracks of straight test beams 

It is also noted that the collapse of a beam occurs right after the critical shear crack pene-

trates the concrete compression zone near loading position and the compression zone fails. 

Therefore, it is reasonable to assume a critical state at which the critical shear crack has al-

ready initiated but it does not break through the compression zone yet. The critical section at 

distance of 1,0d apart from loading position will be selected to be the relevant design sec-

tion. As can be seen from the figure 5.3, this critical section is relatively suitable to represent 

both failure regions and the critical shear crack for 4 straight test beams in the experimental 

program. In addition, this selection avoids the disturbed stress region caused by the spread-
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ing of the single force. The depth of the compression zone can be approximately determined 

to be equal to the value at mid-span for a single span under centric point loading. 

The FEM analysis showed that the distribution of shear stress in the compression zone at this 

section has a nearly unchanged parabolic shape after load steps until failure as shown in fig-

ure 4.51 for test beam 1L2. The shear stress distribution in the compression zone at failure 

load for all straight depth beams in the experimental program is presented in the figure 5.4. 

c c c

x x x x

Beam 1K2Beam 1K1Beam 1L2Beam 1L1

c

 

Figure 5.4− Shear stress distribution in the compression zone x on relevant section 

 at failure load of test beams from FEM analysis  

The shear resistance percentage of the compression zone at the relevant section of all straight 

test beams after each load step is shown in the figures 5.5 and 5.6. The results revealed that 

at failure stage the shear resistance component of the concrete compression zone is about 

55 % ÷ 70 % of the total shear force at the relevant section (or the shear force V is about 

1,8 ÷ 1,4 times Vc in other words as in the figures 5.5 and 5.6).  

 

Figure 5.5− Shear resistance component in the concrete compression zone Vc and shear force V 

from FEM analysis for test beam 1L1 and 1L2 
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Figure 5.6− Shear resistance component in the concrete compression zone Vc and shear force V 

from FEM analysis for test beam 1K1 and 1K2 

For simplicity, it is assumed that the compression zone in the critical state can carry in aver-

age about 60 % the total shear force (or shear force V is about 1,6 times Vc). The remaining 

40 % of shear force will be carried by the cracked concrete zone. Therefore, the equation of 

shear force (5.2) can be written in other form: 

0,6 0,4 1,6Rm c t Rm Rm cV V V V V V≈ + = + =       (5.3)
 

The shear stress block in the compression zone has a parabolic shape (Fig. 5.7) and the shear 
resistance component Vc can be calculated approximately as follows: 

2 1 2 max

2

3

h

c xy

x

V b dy k k c bτ τ= ⋅ ⋅ ≈ ⋅ ⋅ ⋅ ⋅∫     (5.4) 
 

where: 

τmax is the maximum value of shear stress in the compression zone. As presented in 

Chapter 4 (Non-FEM Analysis), the shear stress is a function of the normal stresses 

and the inclined angle α of the principal normal stress. However, at critical state, 

there exists mainly compressive normal stress and the inclined angle α of the normal 

principal compressive stress is nearly unchanged at the relevant section (1,0d). 

Hence, the maximum shear stress in the compression zone can be determined as 

follows: 

( ) ( )ckx fff ≈= αστ ,max   with α ≈ constant, σy ≈ 0

 
c is the depth of the compression zone which can be determined as follows: 

2

2s s s
l l l

c c c

E E E
c d

E E E
ρ ρ ρ

⎡ ⎤⎛ ⎞⎢ ⎥= ⋅ + ⋅ − ⋅ ⋅⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦     
(5.5.a)     or another approximation:  
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1/3

0, 78 s
l
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E
c d
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ρ

⎛ ⎞
= ⋅ ⋅⎜ ⎟

⎝ ⎠      
(Zink 2000)   (5.5.b)  

sl
l

A

b d
ρ =

⋅
    is the ratio of longitudinal reinforcements in tension zone to  

   area of cross section. 

200.000sE MPa≈   
is the modulus of elasticity of steel  

( ) 3/149500 +≈ ckc fE  
  is the modulus of elasticity of concrete (Ec,  fck in MPa)

 
The parameter k1 is used to consider the influence of a/d ratio on the shear strength of a con-
crete member. The simple form of this factor suggested by Zink (2000) as in the Eq. (5.6) 
will be used: 

 
4/1

1

4
⎟
⎠
⎞

⎜
⎝
⎛=

a

d
k

         
(5.6)

 

The factor k2 is used to consider the size effect on shear strength of concrete structures. The 
size effect law is proposed to have a similar form of d-1/4 as suggested by Kani (1967), Oka-
mura et al. (1980) and Niwa et al. (1986, 1988). In addition, it is believed that the size effect 
will become irrelevant at a certain depth of beam. Therefore, the simple size effect approach 
as the Eq. (5.7) is suggested to use in which k2 = 1,0 with an effective depth of d = 250 mm. 

 

4/1

2

250
⎟
⎠
⎞

⎜
⎝
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d
k

   

(d in mm)     (5.7)
 

The final shear strength equation of straight beams without stirrups becomes: 

1/31/4 1/4
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Ed
V d b

a d E
τ ρ

⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎢ ⎥= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎢ ⎥⎝ ⎠⎣ ⎦   

(5.8) 

or in simpler form: 
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3
s

Rm l
c

Ed
V d b

a d E
τ ρ

⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎢ ⎥= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎢ ⎥⎝ ⎠⎣ ⎦    

(5.9) 

In order to find out the shear capacity of a structure, the maximum value of the shear stress 
in the compression zone maxτ  is assumed to be equal to the allowable shear stress of concrete 
used in that structure. However, different from allowable tensile stress and compressive 
stress, allowable shear stress of concrete is an unknown value. In this research, it is empiri-
cally proposed to acquire the allowable shear stress of concrete from the shear database 
which will be presented in the section 5.2.4 (Shear Database). 
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5.2.3 Shear Strength Model for Haunched Concrete Beams 

The experimental program and the Non-FEM analysis showed that the failure region of 
haunched beams is close to the support (min d). At failure state, the critical shear crack 
seems to be a further development of a formerly pure shear crack in the disturbed stress re-
gion near the support. The lower end of this crack tends downward to the position of the 
longitudinal reinforcements while the other end passes through the concrete compression 
zone. The collapse of a beam occurs right after the critical crack penetrates the concrete 
compression zone. Therefore, a critical state is assumed at which the critical shear crack has 
already occurred but it does not break through the compression zone yet. 

It is noted from the FEM analysis of 10 haunched test beams that there is a region apart 
about 1,3d from support at which the shear stress distribution has a very similar shape to that 
of the relevant section of the straight depth beam as showed in the figure 5.8 for test beam 
4K1. This is because the compressive stress field in the compression zone starts to change its 
direction to concentrate on the support. 

1,3d

d

d

 
Figure 5.8− Shear stress distribution at some sections along beam length of test beam 4K1 from FEM analysis 

Therefore, the section at a distance of 1,3d apart from support will be selected as relevant 
section for haunched concrete beams without stirrups. Figures 5.9 to 5.13 show the assumed 
critical section and cracks at failure state of couple of test beam 2L, 3L, 2K, 3K and 4K. 

2K-12L-1

d

1,3d Critical section

d

d

1,3d

d

 
Figure 5.9− Assumed critical section and cracks of test beams 2L-1 and 2K-1 

2K-22L-2

d

1,3d Critical section

d

d

1,3d

d

 
                  Figure 5.10− Assumed critical section and cracks of test beams 2L-2 and 2K-2 
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3K-13L-1

d

1,3d Critical section

d

d

1,3d

d

 
                  Figure 5.11− Assumed critical section and cracks of test beams 3L-1 and 3K-1 

3K-23L-2

d

1,3d Critical section

d

d

1,3d

d

 
                  Figure 5.12− Assumed critical section and cracks of test beams 3L-2 and 3K-2 
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1,3d Critical 

d

section

d

1,3d

d

 

Figure 5.13− Assumed critical section and cracks of test beams 4K-1 and 4K-2 

It can be seen from these above figures that the assumed relevant section is relatively suita-
ble to represent both failure region and critical shear crack for haunched test beams in the 
experimental program. The results also showed that at failure stage the shear resistance com-
ponent of concrete compression zone Vc has a value of about of 80% the total shear force V 
at the calculating section (or shear force V is about 1,25 times Vc in other words as in the 
figures 5.14 to 5.16).  
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Figure 5.14− Shear resistance component in the concrete compression zone Vc and shear force V                                    

from FEM analysis for straight test beams 2L and 3L 
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Figure 5.15− Shear resistance component in the concrete compression zone Vc and shear force V                                    

from FEM analysis for straight test beams 2K and 3K 
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Figure 5.16− Shear resistance component in the concrete compression zone Vc and shear force V  
from FEM analysis for straight test beams 4K 

Therefore, the equation of shear force (5.2) can be written in other form: 

0,8 0, 2 1, 25Rm c t Rm Rm cV V V V V Vα α α≈ + ≈ + =       (5.10)
 

The shear stress block in the compression zone has a parabolic shape (Fig. 5.17) and the 
shear resistance component Vc can be calculated approximately similar to Eq. (5.4) as fol-
lows:  

* *
1 2 max

2

3

h

c xy

C

V b dy k k c bτ τ= ⋅ ⋅ ≈ ⋅ ⋅ ⋅ ⋅∫        (5.11)
 

Where: *
maxτ  is the maximum shear stress in the compression zone at the relevant section of haunched beams,  

 c*      is the depth of the compression zone at the relevant section.  
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As presented in the Chapter 4 Non-FEM analysis, because the principal 
compressive stress field in the haunched beam tends to be inclined to an an-
gle α of the compression zone, the maximum shear stress in the compression 
zone of haunched beams should be a function of the normal compressive 
stress and the inclined angle α0 as in the following equation:  

( ) ( )max , ,x ckf f fτ σ α α∗ = ≈
  

with σz ≈ 0
 

It is assumed that the depth of the compression zone at the section of 1,3d 
will be approximately 30 % larger than that of straight beam with the same height d at mid-
span. 

1/3

1,3 0,78 s
l
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E
c d

E
ρ∗ ∗⎛ ⎞

= ⋅ ⋅ ⋅⎜ ⎟
⎝ ⎠         

(5.12)         

It is noted that the height of beam d* at the section 1,3d is nearly the same as the height d at 
the section 1,0d apart from the support. For the sake of simplicity, the effective height of 
beam d at section 1,0d apart from support is used for calculation. Other parameters have the 
same meaning as in the formula for straight depth beams. 

The Eq. (5.10) becomes: 
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(5.13)

 

or in simpler form: 
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(5.14) 

The shear strength of haunched beams from the Eq. (5.14) has a similar form to that of 
straight depth beams as presented in the Eq. (5.9). However, it is noted that there are two 
differences in principle of formulating these equations as follows: 

(1) The relevant section for haunched beams is 1,3d apart from the support (min d) while 
that of straight depth beams is 1,0d apart from the position of the load application 
(max M, d) (d is the effective depth at the relevant section). 

(2) The maximum shear stress of haunched beams is larger than that of straight depth 
beams because of the influence of haunched side on inclined angle of principal com-
pressive stress to horizontal direction. 
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The maximum value of shear stress in the compression zone maxτ , ∗
maxτ  is assumed to be 

equal to allowable shear stress of concrete used in that member. The value of allowable shear 
stress of concrete will be studied and calibrated from the shear database in the next section. 

5.2.4 Shear Database 

Reineck et al. (2003) introduced a shear databank collection including 1007 test results of 
concrete structures without stirrups. All beams in this database have a rectangular cross sec-
tion and were subjected to point loads. Collins et al. (2008) provided a more adequate file of 
1849 shear tests which consists of the database of Reineck et al. (2003) and others as well. 
This new shear database includes concrete structures with rectangular or T beam sections, no 
axial load or no prestressing, no stirrups or no fibers, no limits on concrete strength, no geo-
metrical limits on member size… This shear database includes most of the shear tests from 
the past 60 years. So, this shear database, accompanied with tests in the experimental pro-
gram, will be used to find out the allowable shear stress and shear strength models of con-
crete members without stirrups. 

It is noted that the test results of the database are from variety of different researches, insti-
tutes or universities…which have, of course, different testing conditions. Therefore, it is 
quiet normal if test results of specimens owing nearly the same parameters are different from 
different authors. However, test results of specimens owing nearly the same parameters per-
formed by the same author(s) are too diverse (tolerance about more than 15%) will be consi-
dered to be suspect and will be eliminated from the shear database. For that reason, tests per-
formed by 12 authors in the table 5.1 are not considered in the next analysis. 

The left database will be filtered to meet these following requirements: 

a) Tests beams must have failed in shear. 

b) Test type: Point loads P as in the figure 5.18  

c) fck ≥ 10 MPa 

d) a/d ≥ 2,35 

Finally, 878 test results including 874 figures from shear database of Collins et al. (2008) 
and 4 test results of beams 1L1, 1L2, 4K1 and 4K2 in the experimental program carried out 
by Rombach & Vu (2009) will be a new shear database for concrete straight depth beam 
without stirrups. 

For haunched beams, the shear database includes 10 tests of couple of beams 2L, 3L, 2K, 
3K, 4K in the experimental program carried out by Rombach & Vu (2009) and 4 tests per-
formed by MacLeod et al. (1994). The test results by Rombach & Vu (2009) in the format of 
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the shear database for straight depth beam and for haunched beams are presented in the Ap-
pendix F. 

Table 5.1. Suspect test results in the shear database of Collins et al. (2008) 

In the shear database of 878 test results for straight depth beams, it is recognized from many 
test sets owning the same characteristics except concrete compressive strengths, for example 
tests conducted by Moody et al. (1954), Chang et al. (1958), Bower et al. (1960), Chana 
(1981), Mphonde et al. (1984), Muruyama et al. (1986), Walraven et al. (1994), Hallgren 
(1994), Matsui et al. (1995), Mendis (2000) and Sherwood et al. (2007), that the effect of 
concrete compressive strength on shear bearing capacity is quite controversy. There are 
many tests provide almost the same shear capacity even though their concrete strength are 
visibly different. For that reason, it is believed that the influence of concrete strength on 
shear bearing capacity of concrete beams without stirrups is not more significant than other 
main factors such as ratio of longitudinal reinforcement, a/d ratio or size effect d. 

In many literatures, concrete strength exists in shear strength formulae as a form of fck (or f′c) 
to the power of 1, 2/3, 1/2 or 1/3. In this research, the characteristic concrete strength fck to 
the power of 1/4 as suggested by Park et al. (2006) will be used to take into account effects 
of this factor. The maximum value of shear stress or allowable shear stress τmax in the com-
pression zone is subsequently calibrated from the 878 test results as in the following equa-
tion: 

( )1/4

max 1,3 ckfτ ≈
         

(5.15)

 

No. Authors Year Beam Name Amounts 

1 Laupa & Siess 1953 T-3 average 1 

2 Moody, Viest, Elstner, Hognestad 1954 B-B4 1 

3 Bower & Viest 1960 IA-2b, IA-4b, IA-5a, IA-8a 4 

4 De Cossio 1962 D29,4-9,8B 1 

5 Mphonde & Frantz 1984 AO-15-2a, AO-15-2b 2 

6 Ahmad & Lue 1987 A9, B3, B4, B9 4 

7 Thorenfeldt & Drangshold 1990 
B11-B15, B21-B25, B43-B45, 
B51-B55, B64 19 

8 Hallgren 1994 B90SB13-2-8, B90SB21-2-8 2 

9 Matsui, Y. et. al 1995 A1, A2, F1, F2, L1, L2, S1, S2 8 

10 Ghannoum 1998 All tests 25 

11 Angelakos, Bentz, Collins 2001 DB165, DB180 2 

12 Rahal & Al-Shaleh, N 2004 A65-NTR, B65-NTR 2 



5. New Model Proposal 

114 

Hence, shear strength model of straight depth beams from Eq. (5.9) is calculated as follows: 
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(5.16) 

For the sake of simplicity, (Es/Ec)
1/3 = 1,85

 

(for Es = 200.000 MPa and fck = 33 MPa) can be 
used as a mean value for other cases. The Eq. (5.16) becomes: 
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(N, MPa, mm)   (5.17a) 

or in simpler form: 
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(5.17b)

 

For haunched beams, the maximum value of shear stress or allowable shear stress ∗
maxτ

 

in the 
compression zone has the same form as for straight depth beams but it takes into account the 
influences of inclined angle α of haunched side as in the following equation:  

( ) ( )1/4

max 1,3 1 tanckfτ α∗ ≈ +
        

(5.18)

 
Thus, shear strength model of haunched beams from Eq. (5.14) is calculated as follows: 

( ) ( )
1/31/4 1/4

1/43,25 4 250
1 tan

3
s

Rm ck l
c

Ed
V f d b

a d E
α ρ α

⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎢ ⎥= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ + ⋅⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎢ ⎥⎝ ⎠⎣ ⎦   

(5.19)

 

 

For the sake of simplicity, (Es/Ec)
1/3 = 1,85

 

(for Es = 200.000 MPa and fck = 33 MPa) can be 
used as a mean value for other cases. The Eq. (5.19) becomes: 

( ) ( )
1/4 1/4

1/4 1/34 250
2 1 tanRm ck l

d
V f b d

a d
α ρ α⎛ ⎞ ⎛ ⎞= ⋅ ⋅ ⋅ ⋅ + ⋅ ⋅⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
  

  (5.20a) 

or in simpler form: 

( )
1/4

1/311,25 1 tanck
Rm l

f
V b d

a
α ρ α⎛ ⎞= ⋅ ⋅ + ⋅ ⋅⎜ ⎟

⎝ ⎠
  

    (5.20b)

  

In summary, shear strength models are determined for concrete straight depth beams as in 
the Eq. (5.17) and for haunched concrete beams as in the Eq. (5.20). It is noted that d in the 
Eq. (5.17) is the effective height of beam apart 1,0d from the position of load location (max 
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M, d) while that in the Eq. (5.20) is the effective height of beam apart 1,3d from the support 
(accuracy) or apart 1,0d from the support (min M, d)(for simplicity). The verification of the 
two models will be presented in the next section.  

5.3 Verification 

In order to evaluate the accuracy and safety level of the above proposed shear strength mod-
els, a safety factor of the measured ultimate shear capacities and calculated values is defined 
as follows: 

X = VTest / Vcal          (5.21) 

For the safety evaluation, any test which has X > 1 will belong to the safe side while any test 
which has X < 1 will be in unsafe. For the evaluation of accuracy, any test which has X = 1 
verifies that the proposed shear strength models predict exactly the real shear capacity of the 
test. Since the shear database exhibits a certain scatter, the following statistical quantities 
will be used for assessment: 

(1) Mean value of safety factor:   
_

1

1 n

i
i

X X
n =

= ⋅∑  (5.22)

 

(2) Standard deviation:   ( )
1/2

2

1

1 n

i
i

s X X
n =

⎛ ⎞= ⋅ −⎜ ⎟
⎝ ⎠

∑  (5.23)

 
(3) Coefficient of variation:  vc s X=  (5.24)

 
(4) 5% fractile of safety factor:  

_ _

5% 1,645X X s≈ −        (Gaussian distribution) (5.25) 

(5) 95% fractile of safety factor  
_ _

95% 1,645X X s≈ +       (Gaussian distribution) (5.26) 
 

Figure 5.19 shows the graph of VTest and Vcal of the shear database of straight depth beams 
including of 878 test results. It can be seen from this figure that the measured shear strength 
of 878 tests VTest varies in range of 1,9 kN up to 1.295 kN and tends to converge well to the 
45o axis (VTest = Vcal). The mean value 1,0086X =

 

and standard deviation s = 0,1379

 

show a 
good agreement between the predicted values of the proposed shear strength model (Eqs. 
5.17.a or 5.17.b) and the test results. The distribution of safety factor X is plotted in Fig. 
5.20. It follows quite well with the Gaussian distribution function. The relatively high value 
of 5% fractile 5% 0,8103X =

 

and the small value of 95 % fractile of safety factor 

95% 1, 2603X =
 

show a small deviation between calculated values and test results.

 
It is noted from the shear database of 878 tests that it comprises a diversity of test beams 

with longitudinal reinforcement ratio ρl in range of 0,14 % ÷ 6,64 %; effective depth of 
beam d from 41 mm to 2.000 mm; a/d ratio of 2,35 to 8,52; and characteristic compressive 



5. New Model Proposal 

116 

strength fck from 10,6 MPa to 122,9 MPa (see figures 5.21 to 5.24). Therefore, it can be con-
cluded that the shear strength model proposed in Eq. 5.17 predicts very well the shear 
strength of a broad variety of concrete members without stirrups. The model will be com-
pared with other shear strength models with a variety of shear database in the next sections. 
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                 Figure 5.19− Graph of VTest and Vcal                          Figure 5.20− The distribution of VTest/Vcal 
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       Figure 5.21− Graph of ρl (%) versus VTest /Vcal                Figure 5.22− Graph of fck (MPa) versus VTest /Vcal 
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         Figure 5.23− Graph of a/d (-) versus VTest /Vcal              Figure 5.24− Graph of d(cm) versus VTest /Vcal 
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The figures 5.25 to 5.28 show the dependent tendency of test results on the four main para-
meters including longitudinal reinforcement ratio ρl (%), compressive concrete strength 
fck (MPa), a/d ratio and effective depth of beam d. It also can be seen from these figures that 
the suggested functions in the proposed shear strength model (Eq. 5.17) follow quite well 
these influences. This explains why the shear strength model can predict very well the shear 
strength of large number of shear tests from the database with different geometrical characte-
ristics and material properties. 
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Figure 5.27− Graph of a/d (-) and VTest⋅(4d/a)1/4/Vcal         Figure 5.28− Graph of d (cm) and VTest⋅(250/d)1/4/Vcal 

5.3.1 Comparison with other Shear Strength Models 

The proposed shear strength models will be compared with the 13 other models presented in 
the Chapter 2 (State of the Art). Since the shear database comprise a diversity of test beams 
with different material properties and section geometries, it is necessary to build sets of sub-
database which can be considered to be representatives of some certain concrete member 
groups. These sets of sub-database are created from a selection criterion of 5 main parame-
ters as presented in table 5.2. These selection criteria are established corresponding to some 
regulations in standards and practical designs. 
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Parameters Notation 
Selection Criteria 

1 2 3 4 5 

fck (MPa) fck 10,6 25 55 70 123 

ρl (%) ρl 0,14 0,5 2 3 6,7 

a/d (-) a/d 2,35 2,5 3 5 8,6 

d (mm) d 41 150 500 600 2000 

b (mm) b 21 50 100 500 3000 

Table 5.2. Selection criteria of 5 main parameters of materials and geometries. 

Explanation for establishing of criteria in the table 5.2: 

Criterion fck1 means all tests with 10,6 MPa ≤ fck will be selected. 

 Criterion fck3 means all tests with 55 MPa ≤ fck will be selected. 

Criteria fck23+ρl24 mean all tests with 25 MPa ≤ fck ≤ 55 MPa and 0,5% ≤ ρl ≤ 3% will be selected. 

From the above selection criteria, some typical sets of database are created from the original 
shear database of 878 test results as presented in table 5.3. 

Set Criteria Tests Description 

S1 fck1 + ρl1 + a/d1 + d1 + b1 878 
All concrete members with 10MPa ≤ fck ;  
0,14% ≤ ρl ; 2,35 ≤ a/d ; 41mm ≤ d ; 21mm ≤ b. 

S2 fck2 + ρl2 + a/d2 + d2 + b2 451 
Normal concrete members with 25MPa ≤ fck ;  
0,5% ≤ ρl ; 2,5 ≤ a/d ; 150mm ≤ d ; 50mm ≤ b. 

S3 fck13 + ρl13 + a/d13 + d14 + b34 187 
Normal concrete short-beams with  
10MPa≤ fck ≤55MPa ; 0,14% ≤ ρl  ≤2% ; 2,35 ≤ a/d ≤3 ; 
41mm≤ d ≤500mm ; 100mm ≤ b ≤500mm. 

S4 fck14 + ρl14 + a/d14 + d14 + b34 490 
Normal concrete beams with           
10MPa≤ fck ≤70MPa ; 0,14% ≤ ρl  ≤3% ; 2,35≤ a/d ≤5 ; 
41mm ≤ d ≤ 600mm ; 100mm ≤ b ≤500mm. 

S5 fck24 + ρl24 + a/d24 + d24 + b24 243 
Normal concrete long-beams with       
25MPa ≤ fck ≤ 70MPa ; 0,5% ≤ ρl  ≤ 3% ; 2,5 ≤ a/d ≤ 5 ; 
150mm ≤ d ≤600mm ; 50mm ≤ b ≤ 500mm. 

S6 fck24 + ρl14 + a/d2 + d24 + b34 269 
Normal concrete members with  
25MPa ≤ fck ≤ 70MPa ; 0,14% ≤ ρl  ≤ 3% ; 2,5 ≤ a/d ; 
150mm ≤ d ≤600mm ; 100mm ≤ b ≤ 500mm. 

S7 fck24 + ρl14 + a/d1 + d24 + b4 32 
Normal concrete slabs with        
 25MPa ≤ fck ≤ 70MPa ; 0,14% ≤ ρl ≤ 3% ; 2,35 ≤ a/d ; 
150mm ≤ d ≤ 600mm ; 500mm ≤ b. 

S8 fck4 + ρ14 + a/d1 + d24 + b34 32 
High strength concrete beams with            
70MPa ≤ f ck ; 0,14% ≤ ρl ≤ 3% ; 2,35 ≤ a/d ;   
150mm ≤ d ≤ 600mm ; 100mm ≤ b ≤ 500mm.  

S9 fck1 + ρ1 + a/d1 + d1 + b1 14 Haunched beams 

Table 5.3. Some typical sets of shear database used for comparison 



5. New Model Proposals 

119 

The table 5.4 shows the calculated results of statistical quantities used for assessment of 13 
other shear strength models and proposed Eq. (5.17) for the set of database SET 1 of 878 test 
results. From the sets of database SET 2 to SET 8, only the model suggested by Zink (2000) 
and the top four models which offer best results will be selected for comparison. The analyt-
ical results of these sets of database are presented in tables 5.5 to 5.11. The set of database 
SET 9 is for haunched beams only. This set includes 4 test results carried out by MacLeod et 
al. (1994) and 10 test results performed by Rombach et al. (2009). The results will be 
checked at the two critical sections of 1,3d and 1,0d apart from support. 

SET 1: 878 fulfilled tests:  10MPa ≤ fck ; 0,14% ≤ ρl ; 2,35≤ a/d ; 41mm ≤ d ; 21mm ≤ b 

Value Reineck Zararis Zink Tureyen Park Gastebled Bentz Bazant KimD KimJK Latte Eq.5.17 

X  1,1564 1,0089 1,043 1,5081 0,9394 1,1096 1,4577 1,0226 0,9672 1,0052 1,3173 1,0086 

S 2,2578 0,1523 0,1469 0,3449 0,1489 0,2617 0,3506 0,1443 0,2262 0,1366 0,3475 0,1379 

CV 1,9525 0,1509 0,1408 0,2287 0,1585 0,2358 0,2405 0,1411 0,2339 0,1359 0,2638 0,1367 

5%X  0,7778 0,797 0,8235 1,0121 0,7148 0,7114 0,8893 0,8171 0,6333 0,7908 0,8235 0,8103 

95%X  1,9647 1,2877 1,3247 2,0988 1,2208 1,5507 2,0633 1,2878 1,3931 1,2573 1,9588 1,2603 

Table 5.4. Comparison of all of models for SET 1 

SET 2: 451 fulfilled tests    SET 3: 187 fulfilled tests 
                    25MPa≤ fck ; 0,5% ≤ ρl ; 2,5 ≤ a/d ;               10MPa ≤ fck ≤55MPa ; 0,14%≤ ρl  ≤2%; 2,35 ≤ a/d ≤3 

                    150mm ≤ d ; 50mm ≤ b                                   41mm ≤ d ≤500mm ; 100mm≤ b ≤500mm       

Value Zararis Zink Bazant KimJK Eq.5.17 Value Zararis Zink KimD KimJK Eq.5.17 

X  0,9830 1,0271 1,0053 0,9914 1,0192 X  1,0513 1,1006 0,9960 1,0193 1,0459 

S 0,1271 0,1317 0,1281 0,1308 0,1343 S 0,1600 0,1486 0,1760 0,1281 0,1258 

CV 0,1293 0,1282 0,1274 0,1320 0,1318 CV 0,1522 0,1350 0,1767 0,1257 0,1202 

5%X  0,7886 0,8204 0,8119 0,7878 0,8256 
5%X  0,8533 0,9004 0,7398 0,8377 0,8723 

95%X  1,2356 1,2645 1,2369 1,2241 1,2574 
95%X  1,3495 1,3765 1,2610 1,2521 1,3028 

            Table 5.5. Selected five models for SET 2     Table 5.6. Selected five models for SET 3 

                         SET 4: 490 fulfilled tests                   SET 5: 243 fulfilled tests 
10MPa≤ fck ≤70MPa ; 0,14%≤ ρl  ≤ 3% ; 2,35≤ a/d ≤5    25MPa ≤ fck ≤ 70MPa ; 0,5% ≤ ρl  ≤ 3% ; 2,5 ≤ a/d ≤ 5 
         41mm≤ d ≤600mm ; 100mm ≤b ≤500mm                       150mm ≤d ≤600mm ; 50mm ≤ b ≤ 500mm 

Value Zararis Zink Bazant KimJK Eq.5.17 Value Zararis Zink Bazant KimJK Eq.5.17 

X  1,0143 1,0708 1,0416 1,0198 1,0263 X  0,9879 1,0472 1,0186 1,0051 1,0330 

S 0,1480 0,1415 0,1373 0,1259 0,1305 S 0,1274 0,1304 0,1263 0,1239 0,1280 

CV 0,1459 0,1322 0,1318 0,1234 0,1272 CV 0,1289 0,1246 0,1240 0,1233 0,1239 

5%X  0,8137 0,8704 0,8459 0,8320 0,8316 
5%X  0,7967 0,8486 0,8305 0,8134 0,8483 

95%X  1,2820 1,3345 1,2883 1,2585 1,2731 
95%X  1,2372 1,2851 1,2597 1,2375 1,2662 

            Table 5.7. Selected five models for SET 4    Table 5.8. Selected five models for SET 5                 
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                         SET 6: 269 fulfilled tests                   SET 7: 32 fulfilled tests 
 25MPa ≤ fck ≤ 70MPa ; 0,14% ≤ ρl  ≤ 3% ; 2,5 ≤ a/d          25MPa ≤ fck ≤ 70MPa ; 0,14% ≤ ρl ≤ 3% ; 2,35 ≤ a/d 
      150mm ≤ d ≤600mm ;100mm ≤ b ≤ 500mm                            150mm ≤ d ≤ 600mm ; 500mm ≤ b 

Value Zararis Zink Bazant KimJK Eq.5.17 Value Zararis Zink Bazant KimJK Eq.5.17 

X  0,9914 1,0520 1,0168 1,0139 1,0329 X  0,9964 1,0581 1,0167 1,0201 1,0149 

S 0,1283 0,1328 0,1258 0,1232 0,1246 S 0,0868 0,1072 0,1141 0,1155 0,1120 

CV 0,1294 0,1262 0,1238 0,1215 0,1206 CV 0,0871 0,1013 0,1122 0,1132 0,1104 

5%X  0,8002 0,8495 0,8322 0,8279 0,8521 
5%X  0,8683 0,8922 0,8422 0,8345 0,8391 

95%X  1,2471 1,2943 1,2589 1,2482 1,2515 
95%X  1,1395 1,2222 1,1948 1,1974 1,1861 

           Table 5.9. Selected five models for SET 6     Table 5.10. Selected five models for SET 7 

                               SET 8: 32 fulfilled tests                        SET 9: 14 fulfilled tests 
               70MPa ≤ f ck ; 0,14% ≤ ρl ≤ 3% ; 2,35 ≤ a/d        haunched beam 
         150mm ≤ d ≤ 600mm ; 100mm ≤ b ≤ 500mm 

Value Zararis Zink Gastebled KimD Eq.5.17 Value Eq. (5.20) at 1.0d Eq. (5.20) at 1.3d 

X  0,9435 0,9724 0,9556 1,0231 0,9881 X  1,0274 1,0133 

S 0,1428 0,1308 0,1859 0,1760 0,1404 S 0,0643 0,0639 

CV 0,1514 0,1345 0,1945 0,1720 0,1421 CV 0,0626 0,0630 

5%X  0,7706 0,8119 0,6898 0,7873 0,8375 
5%X  0,9352 0,9224 

95%X  1,2456 1,2753 1,2755 1,4078 1,3306 
95%X  1,1281 1,1123 

            Table 5.11. Selected five models for SET 8              Table 5.12. Models for SET 9 of haunched beams 

In order to study the influences of significant factors, figure 5.29 shows the relation of longi-
tudinal reinforcement ratio ρl, characteristic concrete strength fck, a/d ratio and effective 
depth of beam d with shear strength of some models suggested by Zararis et al. (2001), Zink 
(2000), Bazant et al. (2005), Kim JK et al. (1996) and proposed model as in Eq. (5.17) for 
the set of database SET 4 of 490 test results. 
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Figure 5.29.a− Graph of ρl versus VTest/Vcal of 5 shear strength models for the shear data SET 4 (490 tests, 
10,6MPa ≤ fck ≤ 70MPa; 0,14% ≤ ρl ≤ 3%; 2,35 ≤ a/d ≤ 5; 41mm ≤ d ≤ 600mm; 100mm ≤ b ≤ 500 mm) 
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Figure 5.29.b− Graph of ρl, fck versus VTest/Vcal of 5 shear strength models for the shear data SET 4 (490 tests, 

10,6MPa ≤ fck ≤ 70MPa; 0,14% ≤ ρl ≤ 3%; 2,35 ≤ a/d ≤ 5; 41mm ≤ d ≤ 600mm; 100mm ≤ b ≤ 500 mm) 
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Figure 5.29.c− Graph of a/d, d versus VTest/Vcal of 5 shear strength models for the shear data SET 4 (490 tests, 

10,6MPa ≤ fck ≤ 70MPa; 0,14% ≤ ρl ≤ 3%; 2,35 ≤ a/d ≤ 5; 41mm ≤ d ≤ 600mm; 100mm ≤ b ≤500 mm) 
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Figure 5.29.d− Graph of d versus VTest/Vcal of 5 shear strength models for the shear data SET 4 (490 tests 
10,6MPa ≤ fck ≤ 70MPa; 0,14% ≤ ρl ≤ 3%; 2,35 ≤ a/d ≤ 5; 41mm ≤ d ≤ 600mm; 100mm ≤ b ≤ 500 mm) 

5.3.2 Comparison with Practical Codes 

In order to provide practical formulas for shear design, a safety factor of γSF = 1,6 is sug-
gested to use for the Eqs (5.17) and (5.20). This value is selected to make sure that all test 
results of set of database SET 1 will belong to the safe side (VTest/Vcal > 1). As a result, de-
sign shear strength of straight depth concrete beams without stirrups will be calculated as in 
the Eq. (5.27a): 

( )
1/4 1/4

1/4 1/34 250
1,25Rd ck l

d
V f b d

a d
ρ⎛ ⎞ ⎛ ⎞= ⋅ ⋅ ⋅ ⋅ ⋅⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
     

(5.27a) 

or simpler form:

 1/4
1/37 ck
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f
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a
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⎝ ⎠
        

(5.27b) 

For haunched beams, design shear capacity will be calculated as in the formula 5.28a: 

( ) ( )
1/4 1/4

1/4 1/34 250
1,25 1 tanRd ck l

d
V f b d

a d
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(5.28a) 

or simpler form:

 

( )
1/4

1/37 1 tanck
Rd l

f
V b d

a
α ρ α⎛ ⎞= ⋅ ⋅ + ⋅ ⋅⎜ ⎟

⎝ ⎠
      

(5.28b) 

The four codes including DIN 1045-01, SN262, CSA2003 and ACI 318-05 will be selected 
to compare with the proposed design shear strength formula. Tables 5.13 to 5.18 show the 
calculated results of statistical quantities of these codes for sets of database from SET 1 to 
SET 6. The normal distribution of safety factor VTest/Vcal of these codes for sets of database 
SET 1 and SET 4 are also presented in the figures 5.30 and 5.31. 
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                         SET 1: 878 fulfilled tests                   SET 2: 451 fulfilled tests 
                 10MPa ≤ fck ; 0,14% ≤ ρl ; 2,35≤ a/d ;                               25MPa ≤ fck ; 0,5% ≤ ρl ; 2,5 ≤ a/d ; 
                             41mm ≤ d ; 21mm ≤ b                                             150mm ≤ d ; 50mm ≤ b 

Value ACI SN CSA DIN Eq.5.27 Value ACI SN CSA DIN Eq.5.27 

X  1,8530 1,6432 1,8241 1,9390 1,6210 X  1,6744 1,5727 1,7668 1,8600 1,6379 

S 0,5564 0,3028 0,2850 0,3798 0,2216 S 0,4916 0,2704 0,2439 0,3426 0,2158 

CV 0,3003 0,1843 0,1562 0,1959 0,1367 CV 0,2936 0,1720 0,1380 0,1842 0,1318 

5%X  0,9503 1,1739 1,4252 1,4498 1,3022 
5%X  0,9008 1,1435 1,4126 1,4245 1,3268 

95%X  2,8074 2,1783 2,3841 2,6704 2,0256 
95%X  2,5779 2,0300 2,2535 2,4966 2,0209 

   Table 5.13. Selected five models for SET 1       Table 5.14. Selected five models for SET 2 

                         SET 3: 187 fulfilled tests                   SET 4: 490 fulfilled tests 
    10MPa ≤ fck ≤55MPa ; 0,14% ≤ρl ≤2%; 2,35 ≤ a/d ≤3  10MPa ≤ fck ≤70MPa ; 0,14%≤ ρl  ≤3% ;2,35≤ a/d ≤5 
           41mm ≤ d ≤500mm ; 100mm≤ b ≤500mm                  41mm≤ d ≤600mm ; 100mm ≤ b ≤500mm 

Value ACI SN CSA DIN Eq.5.27 Value ACI SN CSA DIN Eq.5.27 

X  1,8821 1,6642 1,8204 2,0314 1,6809 X  1,9032 1,6601 1,8179 1,9636 1,6495 

S 0,5095 0,2917 0,2822 0,3341 0,2021 S 0,5053 0,2923 0,2646 0,3410 0,2098 

CV 0,2707 0,1753 0,1550 0,1645 0,1202 CV 0,2655 0,1761 0,1455 0,1737 0,1272 

5%X  1,2335 1,2692 1,4576 1,6358 1,4019 
5%X  1,1803 1,2316 1,4539 1,5280 1,3365 

95%X  2,8234 2,1909 2,3362 2,6545 2,0937 
95%X  2,7838 2,1791 2,3116 2,6072 2,0460 

            Table 5.15. Selected five models for SET 3               Table 5.16. Selected five models for SET 4 

                         SET 5: 243 fulfilled tests                   SET 6: 269 fulfilled tests 
25MPa ≤ fck ≤ 70MPa ; 0,5% ≤ ρl  ≤ 3% ; 2,5 ≤ a/d ≤ 5    25MPa ≤ fck ≤ 70MPa ; 0,14% ≤ ρl ≤ 3% ; 2,5 ≤ a/d 
         150mm ≤ d ≤600mm ; 50mm ≤ b ≤ 500mm                    150mm ≤ d ≤600mm ;100mm ≤ b ≤ 500mm 

Value ACI SN CSA DIN Eq.5.27 Value ACI SN CSA DIN Eq.5.27 

X  1,7511 1,5831 1,7626 1,8839 1,6601 X  1,7116 1,5670 1,7728 1,8608 1,6601 

S 0,3883 0,2411 0,2331 0,2807 0,2057 S 0,3974 0,2523 0,2300 0,2810 0,2002 

CV 0,2218 0,1523 0,1323 0,1490 0,1239 CV 0,2322 0,1610 0,1298 0,1510 0,1206 

5%X  1,1979 1,2277 1,4330 1,5093 1,3633 
5%X  1,1380 1,1705 1,4406 1,4910 1,3694 

95%X  2,5085 2,0166 2,2369 2,3767 2,0349 
95%X  2,4709 2,0128 2,2287 2,3693 2,0114 

           Table 5.17. Selected five models for SET 5               Table 5.18. Selected five models for SET 6 
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Figure 5.30− Distribution of safety factor 

VTest/Vcal according to four practical codes 

and proposed design equation (5.27) for set 

of database S 1 of 878 straight depth con-

crete beams without stirrups. 
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Figure 5.31− Distribution of safety factor 

VTest/Vcal according to four practical codes 

and proposed design equation (5.27) for set 

of database S 4 of 490 straight depth con-

crete beams without stirrups. 
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For haunched beams, the proposed design shear capacity according to formula 5.28 will be 
calculated to compare with the design shear value of DIN 1045-01 for the set of database 
SET 9 of all 14 test results as in the figure 5.32. 
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Figure 5.32− Graph of VTest and Vcal of proposed shear design model and DIN 1045-01 for the                              

shear data SET 9 of 14 test results of haunched beams without stirrups. 

5.4 Discussions and Conclusions 

This Chapter presented a new approach which combines Non-FEM analysis and test results 
to find out the shear behaviours of concrete members without stirrups. Based on the recog-
nized shear resistance mechanisms, two new shear strength models were proposed for 
straight depth concrete beams and haunched concrete beams without stirrups. The two shear 
design formulae were also suggested for practical purposes. The comparison with other shear 
strength models and with four practical codes demonstrated that the proposed formulae pre-
dict the shear capacity in very good agreement with test results. Some discussions on the 
models will be presented as follows. 

As presented in the Chapter 2 (State of the Art), the shear transferring mechanisms including 
(1) Shear resistance of the uncracked compression concrete zone,  
(2) Friction of contact surfaces between cracks (aggregate interlock), 
(3) Dowel action of longitudinal reinforcements, 
(4) Crack−bridging tension forces in closed cracks (residual tensile stress in concrete) and  
(5) Arch action 
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have been thought for a long time to be five main shear resistance actions of concrete mem-
bers without stirrups. 

However, the Non-FEM analysis of cracked concrete beams showed that it is (1) the con-
crete compression zone and (6) the uncracked concrete parts in tension zone to carry at least 
95% of the total shear force at any cross-section in concrete beams without stirrups. It is 
noted that no literature is known so far which mentions the role of uncracked concrete parts 
in the tension zone to carry shear. As we know that the value of shear stress τxy at any point 
on vertical section can be determined as a function of normal stresses σx, σy and inclined 
angle α of principal compressive stress with horizontal axis x as the Eq. (5.29):  

( )0,5 tan 2xy x yτ α σ σ= −
        

(5.29) 

At critical state, there exists mainly compressive stresses σx in the uncracked concrete parts 
in both compression zone and tension zone (Fig. 5.33). Though the value of the compressive 
stress σx in the tension zone is much smaller than that of the compressive stress in compres-
sion zone, the inclined angle α of principal compressive stresses in the tension zone are 
much larger than in compression zone. That’s why shear stresses τxy exist and has relatively 
high value in the uncracked concrete parts of the tension zone. The Non-FEM analysis 
showed that the uncracked concrete parts of tension zone can carry up to 40% of the total 
shear force at critical state. 

 

Figure 5.33− Compressive stress fields in uncracked concrete zones 

The concrete compression zone carries the remaining (about 60%) of the total shear force at 
critical state. It is noted that the shear failure only occurs if the critical shear crack complete-
ly penetrates through the compression zone. Therefore, it can be said that the concrete com-
pression zone plays the most important role in shear resistance of concrete members without 
stirrups. In other words, models developed from shear resistance mechanisms of this zone 
can be considered as an appropriate approach to find out the shear capacity of concrete 
members without stirrups. Following this principle, many authors such as Zararis et al. 
(2001), Zink (2000), Tureyen et al. (2003) or Park et al. (2006) suggested equations which 
predict quite good the shear strength of beams in the shear database (Table 5.4 to 5.11).  



5. New Model Proposals 

129 

Having the same opinion about the key role of concrete compression zone and from Non-
FEM analysis as well as from the experimental program in this research, the author proposed 
a more detailed analytical procedure to study the shear strength of concrete compression 
zone at a certain critical section. The critical section of straight depth beams is 1,0d apart 
from position of load application (max M, d) while that of haunched beams is 1,3d apart 
from support (min M, d). The Non-FEM analysis also showed that the shear stress distribu-
tion in the concrete compression zone has a parabola shape which is similar to the assump-
tion of Tureyen et al. (2003) but different from the approach of Zink (2000) and Zararis et al. 
(2001) as shown in the figure 5.34. As presented in the Chapter 4 (Non-FEM analysis), there 
exist very small or no normal stresses on cracks except in the region in front of the tip of 
crack where high tensile stresses exist (Fig. 5.34.c). As a result, value of shear stress on 
cracks is normally very small or negligible. 

c
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xσ xyτ

b) Tureyen

xσ xyτ

c) Non-FEM

h

xσ xyτ

maxτ maxτ maxτc
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Figure 5.34− Distribution of compressive stress σx and shear stress τxz in concrete 

The distribution of the shear stress in the compression zone at critical section as shown in 
figure 5.34.c makes it relatively easy to propose simple formulae for shear strength of con-
crete beams as the Eqs (5.4) and (5.11). In these formulae all significant factors which have 
important effects on the shear strength are taken into account including longitudinal rein-
forcement ratio ρl, shear span to depth ratio a/d, size effect d and concrete strength fck. The 
suggested size effect law (Eq. 5.7) shows a very good agreement with test results as pre-
sented in the Fig. 5.28. The concrete strength fck in the shear strength formulae is considered 
in terms of allowable shear stress *

maxτ which had been once proposed by Park et al. (2006). 
In this research, the value of *

maxτ is calibrated from the updated shear database of 878 tests 
of concrete members without stirrups as Eq. (5.15) for straight depth beams and Eq. (5.18) 
for haunched beams. 

Although the shear strength formulae of straight depth beams and haunched beams have a 
quite similar form, they were derived from two different failure behaviors. The differences in 
the two formulae include: 

(1) The effective depth of beam d is taken at the relevant section which is 1,0d apart 
from the position of load application (max M, d) for straight depth beams and 1,3d 
from support (min M, d) for haunched beams for single span members. It means that 
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the shear failure of straight depth beams tends to occur in the region close to position 
of load application while that of haunched beams is likely to occur in the region near 
supports (min M, d). 

(2) The shear strength formula of haunched beams additionally includes the inclined an-
gle α of the compression chord of the beam to consider the influence of α on the 
shear stress distribution of haunched beams. 

The proposed shear strength formula for straight depth beams (eq. 5.17), accompanied with 
13 models of other authors, were used to predict the critical shear strength of test beams in 
the updated shear database of 878 shear tests. This shear database covers a quite big range of 
parameters: ρl = 0,14 % ÷ 6,64 %; d = 41 mm ÷ 2000 mm; a/d = 2,35 ÷ 8,52 and 
fck = 10,6 MPa ÷ 122,9 MPa. The results showed that all 14 models can predict quiet well the 
shear capacity of concrete beams without stirrups as presented in the table 5.4. The five 
models among others which gives the most accurate results of the shear capacity are models 
suggested by Zararis et al. (2001), Zink (2000), Bazant et al. (2005), Kim JK et al. (1996) 
and the new proposed one (eq. 5.17) (Table 5.4).  

The analysis of all 8 sets of shear database which represent some typical groups of concrete 
members without stirrups as in the table 5.3 showed that the proposed model (Eq. 5.17) and 
the model suggested by Kim JK et al. (1996) are the two models which provide the best fit 
values of statistical quantities including mean value, standard deviation, coefficient of varia-
tion, 5 % fractile and 95 % fractile of safety factor as presented from the table 5.4 to table 
5.11 and figure 5.29. For example for SET 4 as a group of normal concrete beams with 
10 MPa ≤ fck ≤ 70 MPa; 0,14 % ≤ ρl ≤ 3 %; 2,35 ≤ a/d ≤ 5; 41 mm ≤ d ≤ 600 mm and 
100 mm ≤ b ≤ 500 mm, the new proposed model (Eq. 5.17) and that of Kim JK et al. (1996) 
show better results than the approaches suggested by Zararis et al. (2001), Zink (2000) and 
Bazant et al. (2005) as presented in the table 5.7. Besides, the proposed model becomes su-
perior for sets of database of concrete members with large width or high concrete strength as 
presented in table 5.10 and 5.11 for SET 7 and SET 8. The shear strength model suggested 
by Kim JK et al. (1996) is a totally empirical equation which is complicated compared with 
the proposed Eq. (5.17) as re-written in the table 5.19. 

Model of Kim JK et al. (1996) Proposed model (Eq.5.17b) 

( ) ( ) ( )1/3 3/83,5 0,4 /Rm c lV f d a d b dρ λ′= ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅
 

with      ( ) 1
0,18

1 0,008
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d
λ = +

+
  

              f ′c= fck + 1,6 MPa 

1/4
1/311, 25 ck
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f
V b d

a
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Table 5.19 Mean shear capacity of the model by Kim JK et al. (1996) and the proposed model (Eq. 5.17b) 

The proposed shear strength model for haunched beams (Eq. 5.20) also gives values in very 
good agreement with test results of 14 haunched beams performed by MacLeod et al. (1994) 
and Rombach et al. (2009) as presented in the table 5.12. The computed results at the section 
of 1,3d apart from support are better than those at the section 1,0d apart from support (Table 
5.12). However, the value of effective depth d of beam at the section 1,0d can be used for the 
sake of simplicity. 

The two shear design formulae for straight depth beams and haunched beams are also sug-
gested for practical purposes with a safety factor of γSF = 1,6 (Eqs 5.27 and 5.28). The pro-
posed shear design equations, accompanied with the shear design equations in 4 practical 
codes including German Code DIN 1045-01, Swiss Code SN262, Canadian Standard 
CSA2003 and ACI 318-05, were used to calculate the design shear capacity of test beams as 
presented in tables 5.13 to 5.18 and figures 5.30 and 5.3 for the shear database of 878 
straight depth beams and 14 haunched beams without stirrups.  

The computed results of statistical quantities for SET 1 of 878 straight depth test beams as 
presented in the table 5.13 and figure 5.30 showed that ACI 318-05 is extremely unsafe and 
also very conservative with a safety factor VTest/Vcal in range of 0,49 to 3,71. The Swiss Code 
SN 262 is also unsafe for some tests and quite conservative with safety factor VTest/Vcal from 
0,81 to 2,96 while the German Code DIN 1045-01 is safe for all tests but rather conservative 
with safety factor VTest/Vcal in range of 1,03 to 3,40. The Canadian Standard CSA2003, 
though somewhat conservative, has a very good safety factor varying from 1,25 to 2,89. The 
proposed shear design equation (Eq. 5.27) gives the best reasonable safety factor which va-
ries from 1,06 to 2,46. The analysis of the first 6 sets of shear database in the table 5.3 also 
showed that the proposed shear design equation (Eq. 5.27) provides the values of statistical 
quantities including mean value, standard deviation, coefficient of variation, 5% fractile and 
95% fractile of safety factor which are clearly superior to those of the other 4 codes (Tables 
5.13-5.18 and Figs 5.30-5.31).  

For the set of database SET 9 of 14 tests of haunched beams without stirrups, the proposed 
shear design equation (Eq. 5.28) also provides the values of statistical quantities which are 
more reasonable than those of German Code DIN 1045-01 as in the figure 5.32. It can be 
seen from this figure that the German Code DIN 1045-01 is quite conservative with a safety 
factor VTest/Vcal in the range of 1,60 to 2,32 and a relatively high mean value of safety factor 
of 1,83 while the safety factor of the proposed shear design equation (Eq. 5.28) varies from 
1,50 to 1,81 with mean value of 1,64. It has to be noted, that 14 tests of haunched beams had 
been conducted so far. Thus the database is very small.  
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The shear design formulae of the 4 codes and the proposed models (Eq. 5.27 and Eq. 5.28) 
are re-written as in the table 5.20. Except the shear design formulae of ACI 318-05 which 
have long been considered to be an unreliable equations for shear design of concrete mem-
bers without stirrups, the proposed shear design equations (Eq. 5.27) and (Eq. 5.28) are 
clearly simpler and easier to use than those of the other 3 codes.  

ACI 318-05 Proposed shear design equations  

For straight depth beams:  
0,75
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6Rd cV f b d= ⋅ ⋅
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For haunched beams (Eq. 5.28): 
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German Code DIN 1045-01 Swiss Code SN 262 

For straight depth beams:  
1/3

10,10 (100 )Rd l ckV k f b dη ρ= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
 

 

with
      

2
200

1 ≤+=
d

k
    

and 
  

02,0≤lρ
 

For haunched beams: 

tan
0,9

Ed
Rd Rd

M
V V

d
α α= +

 

For straight depth beams:  

1 2,5
cd

Rd
dg

V b d
d k

τ
ε

= ⋅ ⋅
+ ⋅ ⋅

 
0,3

0, 2cd ck ck
c

f fτ
γ

= ⋅ =  

0,6
0, 41 0,41 sd d

s s
s Rd

f md x

d x E m
ε ε ε−= ⋅ ≈ = ⋅

−
/1,15sd sf f=   and  g48 / (a  + 16)dgk =

 
 

ag : size of aggregates (mm) 

md  : the acting design moment 

mRd : the yielding moment.

 
Simlified Shear Design Procedure of Canadian Standard CSA A.23.3-04 [Collins et al. (2008)] 
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Table 5.20. Shear design equations of 4 practical codes and proposed models (Eq. 5.27 and Eq. 5.28) 
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The proposed models have simpler form because they are based on a theoretical background 
about the stresses distribution of a cracked concrete beams at critical state, they adopted 
many simplified laws of main factors such as a/d ratio, size effect d, concrete strength fck 
while the others are originated from either purely empirical approach or very complicated 
theories, which anyhow are based on several assumptions. As presented in the experimental 
program and the Non-FEM analysis, the propagation of cracks in concrete is very random 
that makes the redistribution of stresses in cracked concrete becomes very complex and un-
predictable. Therefore, a model based on mechanics with some simplifications as suggested 
is believed to be a good solution for the problem. 

In conclusion, the main results of Chapter 5 can be summarized as follows: 

+ The proposed models are developed from the shear resistance mechanisms of the concrete 
compression zone and the uncracked concrete parts in the tension zone. The compression 
zone plays a key role in shear resistance. The action of the uncracked concrete parts in ten-
sion zone is an important result of this research work, which formerly has not been men-
tioned. 

+ A logical distribution of shear stress in a cracked concrete region at critical state from 
Non-FEM analysis is introduced which totally complies with mechanical theory. 

+ The research presents two simplified models of size effect d and characteristic compres-
sive concrete strength fck in terms of allowable shear stress *

maxτ . 

+ Two simple and accurate shear strength models for straight depth beams and haunched 
beams are suggested. Compared with many other models, the new proposals were proved to 
be the most appropriate ones to predict the shear capacity of concrete beams without stirrups. 

+ Two shear design equations of straight depth beams and haunched beams are also pro-
posed for practical purposes. These design formulae were proved to be superior to other 
shear design equations in some practical codes. 

+ Finally, the approach which combines theoretical background and simplified effect laws 
should be used for shear design of concrete beams without stirrups instead of purely empiri-
cal formulae. 
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6 Conclusions and Recommendations 

This research has been aimed to improve the understandings of shear behaviours and shear 
capacity of concrete beams without stirrups. The main tasks of the research as set-up in 
Chapter 1 (Introduction) include: 

(1) Clarifying the main shear resistance mechanisms of concrete beams without stirrups. 
(2) Finding the differences of shear behaviours between straight and haunched concrete 

beams. 
(3) Proposing a rational and simple method to calculate the shear carrying capacity of 

concrete members without stirrups. 
(4) Evaluating the level of conservativeness of some practical codes. 

have been accomplished and presented in the previous chapters which can shortly summa-
rized as follows: 

Chapter 2 (State of the Art) presented a brief overview of shear resistance mechanisms of 
concrete beams without stirrups suggested by former researchers. These recognized actions 
were further investigated in the Chapter 3 (Experimental Program) and Chapter 4 (Non-FEM 
Analysis). The outcomes introduced a new more reasonable shear resistance mechanism of 
concrete regions in beams which was later used to develop shear strength models of concrete 
beams without stirrups as in the Chapter 5. 

The differences in shear behaviours between straight depth beams and haunched beams were 
clearly outlined in Chapter 3 (Experimental Program) of 18 test beams with an inclined 
compression chord in range of 0o to 10o. The Non-FEM analysis afterward provided me-
chanical explanations of the differences in the stresses distribution and the failure region 
which cause the shear strength model of this type of beams to be different from that of 
straight depth beams. 

The two new proposed shear strength models for haunched concrete beams and straight 
depth beams without stirrups were presented in the Chapter 5. The evaluation of accuracy 
and conservativeness of some practical codes was described in this part as well. 

Some main results of the research contributing to explain the shear behaviours of concrete 
beams without stirrups can be summarized as follows: 

The research introduced a shear resistance action of uncracked concrete parts in the tension 
zone in concrete members which combines with that of the uncracked compression concrete 
region to become the two main shear resistance mechanisms of concrete beams without stir-



6. Conclusions and Recommendations 

135 

rups. The analysis results also confirmed the main role in shear resistance of the uncracked 
compression zone which has been widely accepted by other authors. 

New redistributions of stresses in cracked concrete beams without stirrups were presented, 
which totally comply with mechanical theories. This helps to give reasonable explanations of 
different shear behaviours of haunched and straight depth concrete beams. The main differ-
ences of the two types of beams include system stiffness, shear stress distribution and failure 
zone which require a shear strength model for haunched beams different from that of straight 
depth beams. 

The research proposed two new simplified formulae of size effect d and allowable shear 
stress τmax in terms of characteristic compressive concrete strength fck. These suggested for-
mulae were proved to be fit well to illustrate the influences of the above mentioned factors 
on test results. 

Based on mainly mechanical background and simplified effect approaches of significant 
factors, two new simple and accurate shear strength models for straight depth beams and 
haunched beams were suggested in the Chapter 5. These shear strength equations, formu-
lated as sectional design models, have been proved to be the most appropriate ones to predict 
the shear capacity of a wide range of concrete test beams without stirrups. 

Two shear design models were also suggested for practical purposes. These design formulae 
were proved to be superior to other shear design equations in some practical codes. The re-
sults also showed a too conservative trend of empirical models such as those of ACI 318-05, 
DIN 1045-01, SN 262 and especially the severe unsafety of ACI 318-05 which has long cau-
tioned by other authors. 

Shear behaviours and shear resistance models of concrete members are a very open and 
promising topic to researchers due to a wide variety of practical concrete members and ap-
plications. Based on some above achievements, some recommendations are suggested below 
for further investigations and practical applications of this research. 

Nonlinear Finite Element analysis has been proved to be a powerful tool to study the beha-
viours of concrete members under elastic and cracked condition, but significant improve-
ments are still required nevertheless. The modeling of the propagation and the behaviour of 
cracks by means of a smeared approach causes a lot of difficulties and is insufficient. New 
models such as X-FEM may give good solutions for complex problems in concrete struc-
tures. However, material models for concrete and the interactions between concrete and rein-
forcements are suggested to be further investigated. In addition, some inherent problems of 
the FEM-analysis such as mesh sensitivity, convergence problem should be reduced or even 
eliminated. 
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Though the term shear stress has generally been used to refer to shear strength and shear 
failure of concrete members, its upper limitation at which shear failure tends to occur is not 
mentioned in practical codes. In this research, a relatively simple formula of allowable shear 
stress τmax was suggested in terms of the characteristic compressive concrete strength fck. It is 
recommended to conduct further theoretical investigations or specimen tests to determine 
more evidently values of this parameter. 

In general, the shear strength formulae have a common form of V = τ⋅b⋅d. It has normally 
been assumed that the width b of concrete members is constant. However, there exist some 
special cases in which the effective width is lessened. It is believed that the stress flow in 
this type of beams is different from those of constant width beams. Therefore, it is recom-
mended to have further investigations for this kind of members. 

More than 2000 shear tests have been conducted so far. Nevertheless, further experimental 
investigations seem to be required to get a better understanding of the shear behaviours of 
concrete beams.  

This research was performed with single span concrete beams without stirrups under concen-
trated loads. Its extended applications for concrete members under constant loading, axial 
force, prestressing or other types of loading are recommended to have more data for verify-
ing the models. 

The experimental data for haunched concrete beams is still insufficient. There have been 
only 14 reliable tests conducted at TUHH so far. In consequence, further tests on this mem-
ber should be conducted. 

In practice, concrete slabs are the most typical and popular concrete members without stir-
rups. In these members the crack is generally not perpendicular to the longitudinal rein-
forcement. Therefore, shear behaviours and shear strength of these structural elements 
should be studied more in detail. 

Since the shear failure of the roof beams in warehouses of the US Air Force in 1955, there 
have been many researches on the shear behaviours of concrete beams and many shear 
strength models for concrete members without stirrups have been suggested. In order to have 
timely adjustments for safe design principles, it is recommended to replace unreliably empir-
ical shear design formulae in practical codes with simply and effectively theoretical back-
ground ones. 

 

 




