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Tag der mündlichen Prüfung: 6. Februar 2007

Uniform Resource Name (URN): urn:nbn:de:gbv:830-tubdok-5769



Danksagung

Diese Arbeit ist an der Technischen Universität Hamburg-Harburg während meiner

Tätigkeit als wissenschaftlicher Mitarbeiter in der Arbeitsgruppe
”
Optische Kommu-

nikationstechnik“ entstanden. Ganz herzlich danken möchte ich zunächst dem Leiter
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1. Introduction

Raman amplifiers and lasers in fiber-optic communications

Optical amplifiers are key elements of any fiber-optic communication system. Even

though modern optical fibers have losses below 0.2 dB/km, a repeated amplification

of the transmitted signal to its original strength becomes necessary at long enough

distances. One solution for signal regeneration is the conversion of the optical signal into

the electrical domain and subsequent re-conversion into a fresh optical signal. However,

purely optical amplifiers are usually preferred. They simply amplify the electromagnetic

field of the signal via stimulated emission or stimulated-scattering processes in a certain

optical frequency range. The amplification process is essentially independent of the

details of the spectral channel layout, modulation format or data rate of the transmission

span, thus permitting the system operator to later re-configure these parameters without

having to upgrade the amplifiers.

For a distributed Raman fiber amplifier (RFA), power is provided by optical pumping

of the transmission fiber; the pump wavelength is shorter than the wavelength to be

amplified by an amount that corresponds to an optical frequency difference of about

13.2 THz. The signal then experiences gain due to Stimulated Raman Scattering (SRS),

a nonlinear optical process in which a pump photon is absorbed and immediately re-

emitted in the form of a phonon and a signal photon, thus amplifying the signal. Fig. 1.1

Figure 1.1.: Schematic of a Raman fiber amplifier. The pump power at wavelength λp, often
provided by Raman fiber lasers, may be co- or counter-propagating (or both) with the signal
to be amplified at λs.
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1. Introduction

shows a schematic view of a Raman-amplifed transmission link [1, 2].

RFAs had been investigated already in the 1980s, but the relatively large required

pump powers were not conveniently available at that time, so that RFAs were deemed

impractical. During the 1990s, the erbium-doped fiber amplifier (EDFA) was the favored

and well-established practical alternative. With the advent of high-power semiconduc-

tor lasers, however, the RFA could finally be considered for employment in practical

transmission systems. This was desirable because RFAs have several advantages over

EDFAs, such as better noise performance and increased spectral flexibility—in fact,

Raman amplification is possible throughout the entire transparency range of fibers (pro-

vided suitable 13.2-THz-shifted pump sources are available), while EDFAs are limited

by the emission spectrum of the erbium ions. By 2000, communications equipment

incorporating Raman technology was commercially available.

Soon after that, in 2003, Jalali’s group at the University of California in Los Angeles

could demonstrate a Raman amplifier in a silicon waveguide. While in optical fibers

lengths of several hundreds of meters are required to achieve significant Raman gain,

in silicon a waveguide of several centimeters is sufficient because of the much larger

Raman-gain coefficient of silicon. This being the first time that an optical amplifier

could be demonstrated in silicon, the result marked a milestone in the development of

the field of silicon-based photonics, which has recently seen significant progress in other

areas as well. Today, silicon photonics can provide most of the functionality required for

integrated optics [3, 4].

Silicon-based optical-communications components are so widely researched because

they have the potential of being mass-produced at low cost, by making use of the existing

infrastructure of the electronics industry. A high demand for such components may arise

in environments where low cost is more important than ultimate performance, such as

in the context of emerging optical access networks. On-chip Raman amplifiers could

compensate for silicon-waveguide losses and make possible the realization of complex

passive photonic circuitry in a compact form [4].

Finally, the pump sources for RFAs are often Raman fiber lasers (RFLs), which make

use of the stimulated Raman effect just like the amplifier itself. RFLs, too, have been

researched since the 1980s [1, 2]. In silicon, on the other hand, the first continuous-wave

Raman laser was demonstrated only very recently, in 2005, by Paniccia’s research group

at Intel Corporation, thus setting yet another silicon-photonics milestone.

Thus, with Raman fiber amplifiers and lasers already well-established in state-of-the-

art long-haul transmission links, Raman-based silicon components may one day be a key

element of low-cost fiber-optic communications equipment, too.
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1. Introduction

Overview of this thesis

The aim of this thesis was to develop, model and optimize novel concepts for Raman

amplifiers and lasers both in fibers and silicon waveguides that have the potential of

improving the performance of fiber-optic communication systems.

The starting chapter 2 derives the equations required for the modeling of Raman am-

plifers and lasers in optical waveguides, especially in fibers. The following two chapters

present new designs for Raman fiber lasers: while chapter 3 concentrates on their power

efficiency and spectral flexibility, chapter 4 investigates stability properties of RFLs.

Chapter 5 prepares for the second part of the thesis by summarizing the material

properties of silicon and extending the RFL model to include the nonlinear absorption

effects significant in silicon waveguides. In chapter 6, fundamental properties of silicon

Raman amplifiers are derived and several new designs of amplifiers with improved char-

acteristics are proposed. The last chapter 7 analyzes the basic behavior of silicon Raman

lasers and finally proposes new designs with increased efficiency. Chapter 8 concludes

the thesis.

Details about the mode-solving software that was written for the simulations in chap-

ters 6 and 7 are given in the appendix, followed by a list of the author’s publications

and the references.

References

[1] M. N. Islam, editor. Raman Amplifiers for Telecommunications 1 & 2. Springer-

Verlag, 2004.

[2] C. Headley and G. P. Agrawal, editors. Raman Amplification in Fiber Optical

Communication Systems. Elsevier, 2005.

[3] L. Pavesi and G. Guillot, editors. Optical Interconnects – The Silicon Approach.

Springer-Verlag, 2006.

[4] B. Jalali, M. Paniccia and G. Reed. Silicon Photonics. IEEE Microwave Magazine,

7(3):58–68, June 2006.
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2. Stimulated Raman scattering in

optical waveguides

This introductory chapter forms the foundation for the remainder of this thesis. Section

2.1 gives an introduction to the Raman effect, which all of the devices analyzed in this

thesis are based on. Section 2.2 derives the nonlinear Schrödinger equations (NLSEs)

that model the propagation of guided waves coupled by a third-order nonlinearity. Fi-

nally, section 2.3 specializes the model to the case of Raman amplification in optical

fibers, thus preparing for chapters 3 and 4.

2.1. The Raman effect

Spontaneous Raman scattering is a nonlinear optical process in which a photon, called

the “pump” photon, is absorbed by a material while simultaneously a photon of a dif-

ferent energy is emitted. The difference in photon energy is compensated by a change

of the vibrational state of the material [Sto04].

Figure 2.1.: Illustration of spontaneous Stokes and anti-Stokes Raman scattering.

Fig. 2.1 illustrates the two basic types of spontaneous Raman scattering. In so-called

Stokes scattering (Fig. 2.1a), a pump photon of energy hνp is absorbed, and a Stokes

photon of energy hνs < hνp is emitted, while the material undergoes a transition to a

higher vibrational energy state. On the other hand, Anti-Stokes scattering can occur

when the material already is in an excited vibrational state. Then, a pump photon of

energy hνp is absorbed, and a quantum of vibrational energy is added to that energy to

4



2. Stimulated Raman scattering in optical waveguides

yield an anti-Stokes photon of higher energy hνas > hνp, see Fig. 2.1b. The anti-Stokes

process is much weaker than the Stokes process, so it is usually neglected in the modeling

of Raman amplifiers and lasers [Agr01,HA05].

Stimulated Raman scattering (SRS) occurs when photons at the Stokes wavelength

are already present in addition to the pump photons, e. g., when deliberately injecting

both a pump and a Stokes beam into the material. Then the rate of the Stokes processes

illustrated in Fig. 2.1a is increased: the more Stokes photons are already present, the

faster additional Stokes photons are added. In other words, the Stokes beam is amplified

[Sto04]. The evolution of the Stokes intensity Is along the propagation direction z due

to SRS can be written in the form
dIs
dz

= gRIpIs, (2.1)

where Ip is the pump intensity—the Raman gain per unit length experienced by the

Stokes wave is proportional to the pump intensity and to the Raman-gain constant gR,

which is a property of the nonlinear material. In many cases of practical interest, the

Stokes powers are large enough such that SRS dominates and the small effect of spon-

taneous Raman scattering can be neglected as in Eq. (2.1). SRS can then be described

mathematically as a third-order nonlinear effect in terms of a nonlinear susceptibility

χ(3), see section 2.2.

Finally, the Raman-gain constant depends on the optical frequency difference between

the pump and Stokes beams. As Fig. 2.1 shows, significant Stokes scattering and thus

SRS gain is only obtained when the pump-Stokes frequency difference corresponds to

the energy of a vibrational excitation of the material. On the one hand, in crystalline

materials such as silicon the vibrational energies are very well defined; the Raman-gain

maximum in silicon occurs at a frequency which is 15.6 THz below that of the pump

beam, and the gain linewidth is about 100 GHz, see section 5.2.1. On the other hand,

in optical fibers based on fused silica the vibrational energy levels are spread over a

broad range of frequencies due to the amorphous structure of the material. Here, the

gain maximum occurs at a frequency shift of 13.2 THz, but the gain is significant over

a range of 6 THz, see Fig. 2.3 on page 20. The effective width of the gain spectrum can

even be increased further by pumping Raman fiber amplifiers with several closely spaced

pump wavelengths [HA05].

2.2. Mathematical model of nonlinear wave coupling

The models describing amplifiers and lasers in this thesis are based on the formalism

of coupled nonlinear Schrödinger equations (NLSEs), which are differential equations

5



2. Stimulated Raman scattering in optical waveguides

describing the evolution of spatially and temporally varying field envelopes of optical

beams propagating inside the waveguide, which are coupled through the waveguide non-

linearity. The absolute square of these field envelopes gives the instantaneous powers

of the various beams, which are the quantities of primary interest in the discussions in

later chapters.

In this section, the derivation of the NLSEs from Maxwell’s equations will be sketched.

For clarity, we restrict ourselves to the special case of a waveguide inside which forward-

and backward-propagating beams at only two center wavelengths are propagating. Many

types of Raman amplifiers and lasers can be successfully described by such a model,

where the two wavelengths correspond to the pump and Stokes wavelengths. Eqs. (2.38)

and (2.39) will be the main results of this section.

The derivation of the coupled NLSEs sketched in sections 2.2.1–2.2.4 basically follows

that of [SdSE02], although we treat the nonlinear polarization in the frequency domain

as in [PV86] and we consider the specific case of both co- and counterpropagating beams

at two center frequencies.

An extension of this model to the case of more than two wavelengths is straightforward,

however, and will be briefly summarized at the appropriate points in later chapters.

Also, we will not deal with the effect of Free-Carrier Absorption here—for this we need

to take into account the optical generation of charge carriers and their influence on the

light propagating inside the waveguide; this effect will be incorporated in the model in

Sect. 5.4.

2.2.1. Overview

Figure 2.2.: Coordinate system used
throughout this thesis. The waveguide is
oriented along the z axis.

We consider a longitudinally invariant wave-

guide, such as an optical fiber (for chapters 3

and 4) or a silicon waveguide (for chapters 6

and 7). Light is coupled into the waveguide the

intensity of which is so strong that there will be

a significant nonlinear material response influ-

encing the light propagation. The evolution of

the electromagnetic field is described by Max-

well’s equations,

∇× Ẽ = −µ0
∂H̃

∂t
, ∇× H̃ =

∂

∂t
(ε0n

2Ẽ + P̃) + J̃, (2.2)

∇ · (ε0n2Ẽ + P̃) = ρ̃, ∇ · H̃ = 0 (2.3)

6



2. Stimulated Raman scattering in optical waveguides

for the electric and magnetic fields Ẽ(r, t) and H̃(r, t), where r = (x, y, z) is a vector,

and the tilde denotes a time-domain function. Fig. 2.2 shows the coordinate system used

here. The fields are prescribed over certain surfaces, e. g., at one end of the waveguide,

where optical power is coupled in, and we want to know how the fields evolve inside the

waveguide.

In this chapter, we assume that there are no free carriers in the waveguide, such that

the charge and current densities are zero, ρ̃ = 0 and J̃ = 0. Later in chapter 5, the

effect of Free-Carrier Absorption will be included, which will be treated only for the CW

case and in the ambipolar approximation, i. e., the excess hole and electron densities are

equal at each point such that again ρ̃ = 0, and there is no net electric current (J̃ = 0),

see section 5.4.1. We will therefore assume ρ̃ = 0 and J̃ = 0 throughout this thesis.

The refractive-index profile n(x, y) of the waveguide does not vary along the wave-

guide axis z. The polarization P̃(r, t) represents the nonlinear response of the material.

The materials considered here (amorphous fused silica or crystalline silicon) have no

significant second-order nonlinearity due to their centrosymmetry [Agr01, Boy03]. We

therefore consider third-order nonlinearities of the form [Boy03,Mil98]

P̃ i(r, t) = ε0

∫∫∫ ∞
0

χ̃
(3)
ijkl(τ1, τ2, τ3)Ẽj(r, t−τ1)Ẽk(r, t−τ2)Ẽl(r, t−τ3) dτ1 dτ2 dτ3, (2.4)

where the superscripts i, j, k, l = x, y, z denote cartesian field components, and we have

used the Einstein notation for writing the products involving the fields and the nonlinear

susceptibility tensor χ̃
(3)
ijkl, i. e., a summation over j, k, l = x, y, z is implicit on the right-

hand side. The third-order nonlinear polarization at a time t given by Eq. (2.4) depends

on the electric field at all earlier times and along all cartesian directions according to the

response function χ̃
(3)
ijkl(τ1, τ2, τ3), which is zero for negative time lags τ1,2,3 due to causal-

ity. Expression (2.4) is sufficiently general that it can describe effects such as stimulated

Raman scattering (SRS), two-photon absorption (TPA), self-phase modulation (SPM),

cross-phase modulation (XPM), and four-wave mixing (FWM).

The coupled NLSEs, which will be derived during the rest of this chapter, are an ap-

proximate reformulation of Eqs. (2.2)–(2.4) which is easier to handle. The basic assump-

tion is that the electromagnetic field in the waveguide can be thought of as consisting of

one or only a few beams centered spectrally around specific center frequencies and prop-

agating in specific waveguide modes. These beams will interact inside the waveguide

through its nonlinearity, which can in principle result in the generation of light at any

optical frequency and in any waveguide mode. However, often these new components

can build up significantly only if certain phase-matching conditions are fulfilled, which

is generally not the case unless the waveguide is specifically designed for that purpose.

7



2. Stimulated Raman scattering in optical waveguides

Using the NLSE approach requires one to make a reasonable assumption about what

optical frequencies and waveguide modes are significant in the problem at hand.

In the rest of this chapter we will assume that light propagates only in the vicinity

of two frequencies, ωp (pump) and ωs (Stokes) in our waveguide. Taking into account

the two propagation directions, we have four beams in total (forward- and backward-

propagating waves at ωp and ωs, respectively). We will derive four coupled NLSEs that

describe the evolution of these waves along the waveguide, see Eqs. (2.38)–(2.39). They

form the basis for the description of all Raman amplifiers and laser in later chapters.

2.2.2. Modal description of light propagation

Fourier-transform conventions

Throughout this thesis, the Fourier transform of any function of time Ψ̃(t), such as any

cartesian component of the electric and magnetic fields Ẽ(r, t) and H̃(r, t), is defined

according to the convention in [Fli91],

Ψ(ω) =

∫ +∞

−∞
Ψ̃(t)e−jωt dt, (2.5)

such that the inverse Fourier transform is given by

Ψ̃(t) =
1

2π

∫ +∞

−∞
Ψ(ω)ejωt dω. (2.6)

As we are only dealing with real time signals, we have Ψ(−ω) = Ψ∗(ω).

Fourier transformation and modal decomposition of Maxwell’s equations

The first step to an approximate solution of Eqs. (2.2)–(2.3) with ρ̃ = 0 and J̃ = 0 is a

Fourier transformation, leading to Maxwell’s equations in the frequency domain,

∇× E = −jωµ0H, ∇×H = jω(ε0n
2E + P), (2.7)

∇ · (ε0n2E + P) = 0, ∇ ·H = 0, (2.8)

The transverse fields (the x and y components) of the solution of Eqs. (2.7)–(2.8) (for

any nonlinear polarization P) can be expanded in the complete set of forward- (+) and

backward-propagating (−) normal modes of the linear (P = 0) waveguide [SL83],

Et(r, ω) =
∑
m

[
A+
m(z, ω)e−jβm(ω)z + A−m(z, ω)ejβm(ω)z

]
e+,t
m (x, y, ω), (2.9)

Ht(r, ω) =
∑
m

[
A+
m(z, ω)e−jβm(ω)z − A−m(z, ω)ejβm(ω)z

]
h+,t
m (x, y, ω), (2.10)

8



2. Stimulated Raman scattering in optical waveguides

where the fields e+
m and h+

m are the forward-propagating modes of the linear waveguide

with propagation constants βm. The superscript t denotes the transverse part of the

corresponding vector, and we are using the convention that the forward- and backward-

propagating mode fields are related as

e+
m = e+,t

m + e+,z
m ẑ, h+

m = +h+,t
m + h+,z

m ẑ, (2.11)

e−m = e+,t
m − e+,z

m ẑ, h−m = −h+,t
m + h+,z

m ẑ, (2.12)

and the transverse electric fields e±,tm are chosen real [SL83]. The summations over m in

Eqs. (2.9)–(2.10) are understood to represent the summation over the finite number of

guided modes and the integration over all propagating and evanescent radiation modes.

Using the conjugated reciprocity theorem [SL83, SF03], one can show that the ex-

pansion coefficients A±m(z, ω) occuring in Eqs. (2.9)–(2.10) are related to the perturbing

polarization P(r, ω) through the coupled-mode equations1

∂A±m(z, ω)

∂z
= ∓j ω

4Nk(ω)
e±jβm(ω)z

∫
e±∗m (x, y, ω) ·P(x, y, z, ω) dA, (2.13)

with the mode normalization

Nk(ω) =
1

2

∫ [
e+
k (x, y, ω)× h+∗

k (x, y, ω)
]
· ẑ dA. (2.14)

The frequency-domain polarization P(r, ω) occuring in Eq. (2.13) is obtained upon

Fourier-transforming Eq. (2.4) as

P i(r, ω) =
ε0

4π2

∫∫ +∞

−∞
χ

(3)
ijkl(ω1, ω2, ω − ω1 − ω2)

· Ej(r, ω1)Ek(r, ω2)El(r, ω − ω1 − ω2) dω1 dω2, (2.15)

where the frequency-dependent χ
(3)
ijkl tensor is the Fourier-transformed response function,

χ
(3)
ijkl(ω1, ω2, ω3) =

∫∫∫ +∞

−∞
χ̃

(3)
ijkl(τ1, τ2, τ3)e−j(ω1τ1+ω2τ2+ω3τ3) dτ1 dτ2 dτ3. (2.16)

The expression for the polarization, Eq. (2.15), explicitly shows that the nonlinearity

can couple different frequency components of the field — on the other hand, in a linear

waveguide all frequency components would propagate independently.

1Strictly speaking, Eq. (2.13) is only valid for modes with a real propagation constant βm; the mod-
ification necessary for evanescent modes is not given here, as their contribution to our effects is so
weak that we may neglect them.
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2. Stimulated Raman scattering in optical waveguides

Longitudinal electric-field component

Eq. (2.9) only gives the transverse electric field in the waveguide. In order to calculate

the induced nonlinear polarization from Eq. (2.15), we also need the longitudinal electric-

field component Ez(r, ω). It is obtained from the z-component equation of the right-hand

one of Eqs. (2.7) as

Ez(r, ω) =
(∇×H)z − jωP z(r, ω)

jωε0n2
. (2.17)

Inserting the transverse magnetic field (2.10) into Eq. (2.17) and making use of the fact

that (∇× h+,t
m )z = jωε0n

2e+,z
m , we obtain [SdSE02]

Ez(r, ω) =
∑
m

[
A+
m(z, ω)e−jβm(ω)z − A−m(z, ω)ejβm(ω)z

]
e+,z
m (x, y, ω)− P z(r, ω)

ε0n2
. (2.18)

Eqs. (2.9), (2.12) and (2.18) can be combined to give the full electric field in the wave-

guide in the short form

E(r, ω) = Ē(r, ω)− P z(r, ω)

ε0n2
ẑ, (2.19)

where ẑ is the unit vector in z direction, and we have defined

Ē(r, ω) =
∑
m

[
A+
m(z, ω)e−jβm(ω)ze+

m(x, y, ω) + A−m(z, ω)ejβm(ω)ze−m(x, y, ω)
]
. (2.20)

Explicit nonlinear polarization

The next step in the derivation of the NLSEs is obtaining an explicit expression for the

nonlinear polarization induced by the electric field in the waveguide. The polarization is

given by Eq. (2.15) as a function of the electric field, but the electric field itself depends

on the polarization through Eq. (2.19).

An approximate explicit expression for the polarization P(r, ω) can be obtained from

a perturbation expansion [Nay73] of the polarization (2.15) and the electric field (2.19),

keeping only the first-order term. The resulting expression for the polarization is

P i(r, ω) =
ε0

4π2

∫∫ +∞

−∞
χ

(3)
ijkl(ω1, ω2, ω − ω1 − ω2)

· Ēj(r, ω1)Ēk(r, ω2)Ēl(r, ω − ω1 − ω2) dω1 dω2, (2.21)

with Ē defined in Eq. (2.20). Eqs. (2.21) and (2.20) now explicitly give the nonlinear

polarization in terms of the spectral envelope functions A±m(z, ω). The second-order term

in the perturbation expansion, which we neglect here, would be quintic in the spectral

envelopes. For consistency, this effective quintic nonlinearity must be taken into account

10



2. Stimulated Raman scattering in optical waveguides

as soon as one includes the physical quintic χ(5) response of the material in the nonlinear

polarization Eq. (2.4) [SdSE02].

Finally, for the cases of interest in this thesis, the frequencies of the light propagating

in the structure span at most one octave. The expression for the nonlinear polariza-

tion, Eq. (2.21), can then be simplified so as to include only integrations over positive

frequencies:

P i(r, ω) = P i∗(r,−ω) =
3ε0
4π2

∫∫ ∞
0

χ
(3)
ijkl(ω1, ω2, ω − ω1 − ω2)

· Ēj(r, ω1)Ēk(r, ω2)Ēl∗(r, ω1 + ω2 − ω) dω1 dω2 (for ω > 0), (2.22)

where we have made use of the intrinsic permutation symmetry of the nonlinear suscep-

tibility tensor χ
(3)
ijkl [Boy03] and the reality of the time signals. Physically, this simplifi-

cation means neglecting the possibility of sum-frequency generation which is usually not

phase matched [Agr01,Boy03].

2.2.3. Nonlinear coupling of spectral envelopes

Single-mode approximation

As discussed at the end of Sect. 2.2.1, we will assume that light is propagating in the

waveguide only in the vicinity of the frequencies ωp and ωs. Furthermore, we assume that

the field in the waveguide is well represented by a single waveguide mode of the linear

waveguide, i. e., we assume that the waveguide nonlinearity changes only the amplitude

and the phase of the mode during propagation but does not significantly excite other

normal modes. Following Eq. (2.20), the electric field contributing to the nonlinear

polarization in Eq. (2.22) is thus given by two contributions,

Ē(r, ω) = Ep(r, ω) + Es(r, ω), (2.23)

where the pump and Stokes fields Ep and Es, respectively, are significantly non-zero

only around the center frequencies ωp and ωs, respectively, and do not overlap spectrally.

They are defined as

Ep(r, ω) = A+
p (z, ω)e−jβp(ω)zep(x, y, ω) + A−p (z, ω)ejβp(ω)ze∗p(x, y, ω), (2.24)

Es(r, ω) = A+
s (z, ω)e−jβs(ω)zes(x, y, ω) + A−s (z, ω)ejβs(ω)ze∗s(x, y, ω), (2.25)

where we have made use of the relation e+
m = em = (e−m)∗ valid for propagating modes.

The pump and Stokes modes with propagation constants βp(ω) and βs(ω) may be

the same or entirely different modes of the structure, with mode fields ep(x, y, ω) and

es(x, y, ω), respectively. Finally, A±p,s(z, ω) are the spectral envelopes of the forward- and

backward-propagating pump and Stokes waves.

11



2. Stimulated Raman scattering in optical waveguides

Contributions to nonlinear coupling

The evolution of the spectral envelopes A±p,s(z, ω) occuring in Eqs. (2.24)–(2.25) is de-

termined by the nonlinear polarization as shown in Eq. (2.13). We thus have to evaluate

the nonlinear polarization, Eq. (2.22), near the center frequencies of the two beams, ωp

and ωs. Inserting Eq. (2.23) into Eq. (2.22), the polarization at frequencies near ωs is

seen to consist of three contributions,

P i(ω ≈ ωs) =
3ε0
4π2

∫∫ ∞
0

χ
(3)
ijkl(ω1, ω2, ω − ω1 − ω2)

[
Ej
s(ω1)Ek

s (ω2)El∗
s (ω1 + ω2 − ω)

+ Ej
s(ω1)Ek

p (ω2)El∗
p (ω1 + ω2 − ω) + Ej

p(ω1)Ek
s (ω2)El∗

p (ω1 + ω2 − ω)

]
dω1 dω2, (2.26)

where we have simplified the notation by suppressing the explicit dependence on r.

The first term represents the action of the Stokes light on itself. The last two terms

represent the action of the pump light on the Stokes light, and they are identical due to

the intrinsic permutation symmetry of χ(3). We can thus shorten Eq. (2.26) slightly and

write

P i(ω ≈ ωs) =
3ε0
4π2

∫∫ ∞
0

χ
(3)
ijkl(ω1, ω2, ω − ω1 − ω2)

·
[
Ej
s(ω1)Ek

s (ω2)El∗
s (ω1 + ω2 − ω) + 2Ej

s(ω1)Ek
p (ω2)El∗

p (ω1 + ω2 − ω)

]
dω1 dω2. (2.27)

Inserting Eqs. (2.24)–(2.25) into Eq. (2.27) results, upon multiplying out the terms cubic

in E, in a rather lengthy expression with 16 terms of the form

P i
aσa,bσb,cσc

(ω) =
3ε0
4π2

∫∫ ∞
0

χ
(3)
ijkl(ω1, ω2, ω − ω1 − ω2) · Aσa

a (ω1)e−jσaβa(ω1)zeσa,j
a (ω1)

· Aσb
b (ω2)e−jσbβb(ω2)zeσb,k

b (ω2) · [Aσc
c (ω1 + ω2 − ω)]∗e+jσcβc(ω1+ω2−ω)ze−σc,l

c (ω1 + ω2 − ω),

(2.28)

where a, b, c = p, s denote center frequencies, and σa, σb, σc = ±1 indicate propagation

directions. The contributions shown in Eq. (2.28) oscillate rapidly along z at a rate

determined by the exponential functions in the integral. After inserting these contribu-

tions into Eq. (2.13) to finally obtain the spatial rate of change of the spectral envelopes

A±s (z, ω), we make the slowly-varying-amplitude approximation [Boy03]. That is, we

only keep the synchronous terms (those without an explicit oscillatory z dependence)

and assume that the remaining terms oscillate sufficiently rapidly along z such that their

contribution effectively averages to zero over sufficiently short distances and can be left

out from the equations.
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2. Stimulated Raman scattering in optical waveguides

For example, the rate of change of the forward-propagating Stokes amplitudes has

four phase-synchronous contributions:

∂A+
s (z, ω)

∂z
= −j ω

4Ns(ω)
ejβs(ω)z

∫
ei∗s (ω)

[
P i
s+,s+,s+(ω) + 2P i

s+,s−,s−(ω)

+ 2P i
s+,p+,p+(ω) + 2P i

s+,p−,p−(ω)
]

dA, (2.29)

where the factor of 2 in front of the contribution P i
s+,s−,s− arises from the fact that

P i
s−,s+,s− is also a phase-synchronous contribution, which, however, is equal to P i

s+,s−,s−

due to intrinsic permutation symmetry. Equations similar to Eq. (2.29) for the backward-

propagating Stokes wave and for the two pump waves are obtained analogously.

2.2.4. Nonlinear Schrödinger Equation for temporal envelopes

The model for nonlinear wave coupling derived so far, see Eq. (2.29), is in terms of the

spectral envelopes of the forward- and backward-propagating pump and Stokes waves.

For the cases considered in this thesis, a time-domain formulation is more desirable,

which we will derive now.

Introduction of temporal envelopes

We define the complex temporal envelope functions aσd
d (z, t) of the forward- (σd = +1)

and backward-propagating (σd = −1) pump (d = p) and Stokes (d = s) waves as

aσd
d (z, t) =

1

π

√
N̂d

∫ ∞
0

Aσd
d (z, ω)e−jσd[βd(ω)−β̂d]zej(ω−ωd)t dω, (2.30)

where we have defined the mode-field normalizations and propagation constants at the

center frequency as N̂d = Nd(ωd) and β̂d = βd(ωd). In the following we assume that the

beams are spectrally so narrow that the mode fields at the pump and Stokes wavelengths

do not vary significantly in the corresponding wavelength range, and we simply use the

mode fields at the center wavelengths, i. e., {e,h}d(x, y, ω) = {e,h}d(x, y, ωd) =: {e,h}d.
Under these assumptions, the absolute square of the temporal envelope gives the

instantaneous, longitudinally and temporally varying total power P σd
d (z, t) of the corre-

sponding wave on a time scale long compared to 2π/|ωp − ωs|,

P σd
d (z, t) = |aσd

d (z, t)|2. (2.31)
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2. Stimulated Raman scattering in optical waveguides

Dispersive and nonlinear contributions to the NLSE

The nonlinear Schrödinger equation is now obtained by differentiating the temporal

envelope, Eq. (2.30), with respect to z, yielding upon application of the chain rule

∂aσd
d (z, t)

∂z
=

1

π

√
N̂d

{
− jσd

∫ ∞
0

[βd(ω)− β̂d]Aσd
d (z, ω)e−jσd[βd(ω)−β̂d]zej(ω−ωd)t dω,

+

∫ ∞
0

∂Aσd
d (z, ω)

∂z
e−jσd[βd(ω)−β̂d]zej(ω−ωd)t dω

}
. (2.32)

The first term on the right-hand side of Eq. (2.32) describes group velocity and its

dispersion: by replacing the first occurrence of βd(ω) with its Taylor expansion, βd(ω) =

β̂d + β′d(ω−ωd) + β′′d (ω−ωd)2/2 + · · · , the entire dispersive contribution can be written

∂aσd
d (z, t)

∂z

∣∣∣∣
dispersion

= −σd
[
β′d
∂aσd

d (z, t)

∂t
+ j

β′′d
2

∂2aσd
d (z, t)

∂t2
+ · · ·

]
(2.33)

to any desired order. The second integral of Eq. (2.32) consists, after inserting the

differential equation (2.29) for the spectral envelopes, of contributions of the form

Qdσd,aσa,bσb,cσc = − σd

4π
√
N̂d

ej[σdβ̂dz−ωdt]

∫ ∞
0

jωejωt
∫
e−σd,i
d (ω)P i

aσa,bσb,cσc
(ω) dA dω,

(2.34)

where e
σj ,i
j denotes the i-th cartesian component of the electric field of the forward-

(σj = +1) or backward-propagating (σj = −1) mode j = p, s. Now the expression for

P i
aσa,bσb,cσc

(ω), Eq. (2.28), is inserted into Eq. (2.34). The nonlinear susceptibility tensor

χ
(3)
ijkl occuring in Eq. (2.28) is approximated by its value at the center wavelengths of

the respective beams, which is appropriate assuming that the spectra of the pump and

Stokes beams are much narrower than the Raman-gain spectrum of the material.2 Then,

Eq. (2.34) can be written

Qdσd,aσa,bσb,cσc =
−3σdε0Γdσd,aσa,bσb,cσc

16π3
√
N̂d

ej[σdβ̂dz−ωdt]

∫∫∫ ∞
0

jωejωtAσa
a (ω1)e−jσaβa(ω1)z

· Aσb
b (ω2)e−jσbβb(ω2)z[Aσc

c (ω1 + ω2 − ω)]∗e+jσcβc(ω1+ω2−ω)z dω1 dω2 dω, (2.35)

where Γdσd,aσa,bσb,cσc is an overlap integral defined as

Γdσd,aσa,bσb,cσc =

∫
χ

(3)
ijkl(ωa, ωb,−ωc)e

−σd,i
d eσa,j

a eσb,k
b e−σc,l

c dA, (2.36)

2This requirement can be relaxed and then leads to the occurrence of convolutional integrals containing
a Raman response function in Eq. (2.37).
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where the nonlinear susceptibility tensor χ(3) may be a function of the transverse co-

ordinates. For example, in the case of silicon waveguides where only the silicon core is

significantly nonlinear, the integration in Eq. (2.36) will extend only over the core of

the waveguide. Finally, we use the definition of the temporal envelopes, Eq. (2.30), to

express Eq. (2.35) in its final form in terms of the temporal envelopes,3

Qdσd,aσa,bσb,cσc =
−j3σdε0ωdΓdσd,aσa,bσb,cσc

16
√
N̂aN̂bN̂cN̂d

(
1− j

ωd

∂

∂t

)
[aσa
a · a

σb
b · (a

σc
c )∗] . (2.37)

As we are dealing with beams whose spectra are much narrower than their center wave-

lengths, we can neglect the second term involving the time derivative in Eq. (2.37).

Coupled NLSEs for pump and Stokes beams

The final coupled NLSEs for the forward- and backward-propagating pump and Stokes

envelopes a±p,s(z, t) are [SdSE02]

±
∂a±p
∂z

+
1

vp

∂a±p
∂t

=
(
Γp±p±|a±p |2 + 2Γp±p∓|a∓p |2 + 2Γp±s+|a+

s |2 + 2Γp±s−|a−s |2
)
a±p , (2.38)

±∂a
±
s

∂z
+

1

vs

∂a±s
∂t

=
(
Γs±s±|a±s |2 + 2Γs±s∓|a∓s |2 + 2Γs±p+|a+

p |2 + 2Γs±p−|a−p |2
)
a±s , (2.39)

where we have included only the phase-synchronous contributions and neglected group-

velocity dispersion (see discussion in the next subsection). The Γaσabσb
occurring in

Eqs. (2.38)–(2.39),

Γaσabσb
= −j 3ε0ωa

16N̂aN̂b

Γaσa,aσa,bσb,bσb
, (2.40)

are overlap integrals of the mode fields with the nonlinear susceptibility tensor of the

waveguide material defined in Eq. (2.36), and vp = 1/β′p(ωp) and vs = 1/β′s(ωs) are the

group velocities of the pump and Stokes modes, respectively.

The nonlinear susceptibility tensor χ(3) in the materials considered in this thesis is

the sum of two contributions: one describing the electronic contribution that leads to

FWM, SPM, XPM and two-photon absorption; and another one describing the nuclear

contribution responsible for Raman scattering [SB65, Hel77]. As Eq. (2.40) is linear

in the χ(3), we can treat these two contributions to the various terms in the NLSEs

(2.38)–(2.39) separately.

3For phase-mismatched contributions (those not occurring in Eq. (2.29)), an additional phase factor
exp[j(σdβ̂d−σaβ̂a−σbβ̂b+σcβ̂c)z] (which is unity for the phase-synchronous contributions considered
here) must be added to Eq. (2.37).
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Longitudinal evolution of pump and Stokes powers

In writing the NLSEs, Eqs. (2.38)–(2.39), we have not included any terms describing

group-velocity dispersion (GVD). This approximation permits us to describe the wave

propagation simply in terms of the instaneous powers P±p,s(z, t) defined in Eq. (2.31)

instead of the complex temporal envelopes a±p,s(z, t). From Eqs. (2.31) and (2.38)–(2.39),

the pump and Stokes power P±p,s(z, t) obey

±
∂P±p
∂z

+
1

vp

∂P±p
∂t

= 2P±p Re
(
Γp±p±P

±
p + 2Γp±p∓P

∓
p + 2Γp±s+P

+
s + 2Γp±s−P

−
s

)
, (2.41)

±∂P
±
s

∂z
+

1

vs

∂P±s
∂t

= 2P±s Re
(
Γs±s±P

±
s + 2Γs±s∓P

∓
s + 2Γs±p+P

+
p + 2Γs±p−P

−
p

)
, (2.42)

where the various Γ’s, defined in Eq. (2.40), are overlap integrals of the mode fields with

the nonlinear susceptibility tensors χ
(3)
ijkl.

2.2.5. Bulk nonlinear coefficients and effective areas

Eqs. (2.41)–(2.42) describe the evolution of the powers of the forward- and backward-

propagating pump and Stokes waves along the waveguide. We now rewrite the contri-

butions to these equations in a form that is more useful for optimizing waveguides with

regards to nonlinearities.

Consider, for example, the contribution Γs+p+ to Eq. (2.42), which describes how the

forward-propagating pump wave influences the forward-propagating Stokes wave. In the

CW case, where ∂P±p,s/∂t = 0, this contribution can be written

dP+
s

dz
= (4 Re Γs+p+) · P+

p P
+
s , (2.43)

where, using Eqs. (2.40) and (2.36),

4 Re Γs+p+ =
3ε0ωs

4N̂sN̂p

Im

∫
χ

(3)
ijkl(ωs, ωp,−ωp)e

i∗
s e

j
se
k
pe
l∗
p dA. (2.44)

We can call (4 Re Γs+p+) the modal gain coefficient. Eq. (2.44) shows that it depends

both on the waveguide structure (through the Stokes and pump mode fields es and ep)

and on the material properties (through the tensor χ
(3)
ijkl).

4

4In the following we assume that only one of the materials constituting the waveguide is nonlinear
(such as the silicon core in an SOI waveguide), or the nonlinear properties are independent of the
transverse coordinate (such as in silica fibers). The χ(3)

ijkl tensor appearing in Eq. (2.44) can then be
assumed to be spatially non-varying, while the integration is possibly restricted to a certain region.
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2. Stimulated Raman scattering in optical waveguides

It is often desirable to separate the waveguide and material influences by writing the

modal gain coefficient as

4 Re Γs+p+ =
g

Aeff

, (2.45)

where the bulk gain coefficient g (to be defined below) is a material constant, and

the effective area Aeff describes the influence of the waveguide geometry in terms of

a compact formula (to be derived) involving only the mode fields and the waveguide

shape. Such a formulation has the advantage that once the material parameter g is

known, we can calculate the actual modal gain for any waveguide by simply inserting

its mode fields in the effective-area formula, which encapsulates all the information on

the tensorial structure of the nonlinearity. A waveguide can then be optimized with

regards to nonlinear effects by optimizing the value of the effective area, without having

to consider any tensors.

Bulk gain coefficient

In order to derive expressions for the effective areas, we first need to find the relation be-

tween the bulk gain constant g and the nonlinear-susceptibility tensor χ
(3)
ijkl(ωs, ωp,−ωp).

The bulk gain coefficient g is defined in terms of the intensities Ip and Is of homogeneous

plane pump and Stokes waves, respectively, that propagate through the bulk nonlinear

medium without any waveguide structure, such that the intensity of the Stokes wave

obeys
dIs
dz

= g(ŝ, p̂)IpIs, (2.46)

where ŝ and p̂ are the polarization directions for the Stokes and pump waves. An

expression for g can be found from the results of the coupled-mode formalism developed

so far by inserting the electromagnetic fields of plane waves instead of waveguide modes

in the overlap integrals defined in Eq. (2.36). As the coupled-mode formalism was

developed for “modes” with a real transverse electric field, we can here only derive a

result for the case where the pump and Stokes plane waves are linearly polarized, which

however will be sufficient for our purposes.

We first assume that the plane waves extend over an arbitrary cross-sectional area A,

such that their total power is P+
p,s = AIp,s. Inserting the latter relation into Eq. (2.43)

gives
dIs
dz

= (4 Re Γs+p+)AIpIs. (2.47)

A comparison of Eqs. (2.46) and (2.47) shows that the bulk gain constant g is the product

of A and the modal gain coefficient (4 Re Γs+p+). The latter is obtained from Eq. (2.44),

where due to the homogeneity of the waves, the integration over the transverse area can
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2. Stimulated Raman scattering in optical waveguides

now be replaced by a simple multiplication with A. The pump and Stokes fields can

be written ep = |ep|p̂ and es = |es|ŝ, respectively, where p̂ and ŝ are real transverse

unit vectors along the polarization directions of the Stokes and pump beams. The N̂ ’s

appearing in Eq. (2.44) can be evaluated using Eq. (2.14) and the plane-wave relation

hp,s = ẑ × ep,s · (np,s/Z0), where Z0 is the free-space impedance, and ns and np are the

(linear) refractive indices of the nonlinear material at the Stokes and pump wavelengths,

respectively. The arbitrarily chosen A cancels out, giving the final result that the bulk

gain g is related to the nonlinear susceptibility tensor χ
(3)
ijkl through

g(ŝ, p̂) =
3ωsµ0

nsnp
Im
[
χ

(3)
ijkl(ωs, ωp,−ωp)ŝ

i∗ŝj p̂kp̂l∗
]
. (2.48)

Effective area

Now that the bulk gain constant is known, see Eq. (2.48), we can derive an expression for

the effective area, which quantifies the influence of the waveguide geometry on the modal

gain. By Eq. (2.45), the effective area is defined as the ratio of the bulk gain constant

(typically reported in measurements) to the modal gain constant given in Eq. (2.44).

There remains the question which bulk constant to use — as Eq. (2.48) shows, the

bulk constant in general depends on the polarization states. A suitable reference bulk

constant for the media in this thesis is that where the pump and Stokes fields are co-

linearly polarized along the y axis, so we will prepare the expression for the effective

area assuming this case. The general expression for the effective area is then the ratio

of Eq. (2.48) for ŝ = p̂ = ŷ and Eq. (2.44),

Aeff =
g(ŷ, ŷ)

4 Re Γs+p+
=

4Z2
0N̂sN̂p

nsnp

Imχ
(3)
yyyy(ωs, ωp,−ωp)

Im
∫
χ

(3)
ijkl(ωs, ωp,−ωp)ei∗s e

j
sekpe

l∗
p dA

. (2.49)

For a specific nonlinearity, what remains to be done now is to make use of the structure of

the corresponding χ
(3)
ijkl tensor to convert Eq. (2.49) into the final effective-area formula.

This will be done for SRS in fibers in section 2.3, and in chapter 5 for the various

nonlinear effects occurring in silicon.

We have in this entire section concentrated on the contribution Γs+p+ in Eq. (2.42).

The other contributions can be similarly decomposed into a bulk coefficient and an

effective area. One obtains results very similar to Eq. (2.48) and Eq. (2.49), where

the only differences are the frequency arguments for the nonlinear susceptibility tensor,

the conjugation of some of the electric fields when backward-propagating waves are

involved, and occasionally a factor of two in the denominator of the expression for the

bulk coefficient. However, several of the potentially 16 different bulk constants and
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2. Stimulated Raman scattering in optical waveguides

effective areas will turn out to be identical due to the high symmetry of the materials

considered in this thesis — see, e. g., Eqs. (5.11), (5.12), (5.22) and (5.32).

2.3. Raman amplification in optical fibers

In this section, we will apply the theory developed so far to write down the final set of

equations that is going to be used in chapters 3 and 4 to model Raman amplifiers and

lasers in optical fibers.

Eqs. (2.41)–(2.42) describe the evolution of the powers of the forward- and backward-

propagating pump and Stokes waves in a general waveguide. One simplification that

can be made for fibers is that the only nonlinear contribution to the right-hand sides

of those equations is due to Stimulated Raman Scattering (SRS), such that only the

contributions Γp±s± and Γs±p± remain. The otherwise significant nonlinear effects of

SPM and XPM, described by the real part of the χ(3), do not appear in Eqs. (2.41)–

(2.42) as we are concerned with powers only, and two-photon absorption in silica fibers

is negligible [Agr01].

2.3.1. Raman amplification in polarization-maintaining fibers

We start by treating the simple case of a single-mode fiber in which the pump and Stokes

fields are linearly polarized along the same direction over the entire length of the fiber.

This can be practically realized by using a polarization-maintaining fiber and injecting

the pump and Stokes light such that they are polarized along a symmetry axis of the

fiber. Then the field inside the fiber is well described by a single pump mode and a

single Stokes mode, and the theory of section 2 can be applied.

Bulk Raman-gain constant

The bulk Raman-gain constant, Eq. (2.48), in general depends on the polarization of the

pump and Stokes beams. In silica glass, only the relative orientation of the polarizations

is relevant due to isotropicity. In isotropic materials, any component of a third-order

nonlinear-susceptibility tensor can be expressed in terms of three independent compo-

nents as

χ
(3)
ijkl = χ(3)

xxyyδijδkl + χ(3)
xyxyδikδjl + χ(3)

xyyxδilδjk. (2.50)

Inserting Eq. (2.50) into Eq. (2.48) and choosing an arbitrary real transverse unit vector

ŝ = p̂ (corresponding to identical linear polarizations for the pump and Stokes beams),
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Figure 2.3.: Raman-gain spectrum of fused silica glass for a pump wavelength of λp = 1450 nm
(after [Sto04]), where the pump and Stokes waves are polarized identically (solid curve) or
orthogonally (dashed curve).

one always obtains the same co-polarized gain,

g(ωs, ωp)‖ =
3ωsµ0

nsnp
Imχ(3),SRS

yyyy (ωs, ωp,−ωp), (2.51)

independent of the actual polarization direction. In Eq. (2.51) we have defined

χ(3),SRS
yyyy = χ(3),SRS

xxyy + χ(3),SRS
xyxy + χ(3),SRS

xyyx . (2.52)

The solid curve in Fig. 2.3 shows the measured co-polarized Raman-gain spectrum

g(ωs, ωp)‖ of bulk silica glass for a pump wavelength of 1450 nm [Sto04]. The max-

imum Raman gain of about g = 0.65 × 10−2 cm/GW occurs at a frequency shift of

13.2 THz, i. e., at a Stokes wavelength of 1550 nm. The FWHM of the gain curve is as

broad as 6 THz.

Effective areas

We have already derived the form of the effective area for the contribution Γs+p+ to

Eq. (2.42), which represents stimulated Raman scattering from the forward-propagating

pump mode to the forward-propagating Stokes mode, see Eq. (2.49). For the case

of optical fibers considered here, however, it can be simplified further. As fibers are

weakly guiding waveguides, light propagation can be well described by modes which

are uniformly polarized throughout the entire fiber cross section and whose longitudinal

components can be neglected [SL83]. Assuming that the pump and Stokes modes are

both linearly polarized along the same direction (due to the isotropicity of silica, we can
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arbitrarily chose this to be the y direction), the effective area (2.49) reads

Aeff|s+p+ =
g‖

4 Re Γs+p+
=

∫
|ep|2 dA

∫
|es|2 dA∫

|ep|2|es|2 dA
, (2.53)

where g‖ is the co-polarized gain given by Eq. (2.51), and in evaluating the mode-field

normalizations N̂p,s we have made use of the plane-wave relation hp,s = ẑ×ep,s/Z, which

is valid for the mode fields of weakly guiding fibers [SL83].

Eq. (2.53) is the well-known expression for the effective core area of optical fibers

[Agr01]. It can be directly used to optimize fibers for their Raman-gain properties. One

simply needs to find a waveguide structure that minimizes the effective area given by

Eq. (2.53). Then, the modal Raman-gain constant (“Stokes gain per unit length per

unit pump power”) given in Eq. (2.45) is maximized.

It is easily seen that the effective areas describing the contributions Γs−p+ and Γs±p−

are equal to the effective area just derived, i. e.,

Aeff|s−p+ =
g‖

4 Re Γs−p+
= Aeff|s±p− =

g‖
4 Re Γs±p−

= Aeff|s+p+ =: Aeff, (2.54)

such that the longitudinal evolution of the Stokes powers is given by

± ∂P±s
∂z

+
1

vs

∂P±s
∂t

=
g‖
Aeff

(P+
p + P−p )P±s . (2.55)

Finally, the longitudinal evolution of the pump powers can be written

±
∂P±p
∂z

+
1

vp

∂P±p
∂t

= −
g‖
Aeff

λs
λp

(P+
s + P−s )P±p , (2.56)

where we have made use of the symmetry relation [SB65]

χ
(3),SRS
ijkl (ωp, ωs,−ωs) =

[
χ

(3),SRS
ijkl (ωs, ωp,−ωp)

]∗
. (2.57)

The factor λs/λp > 1 occurring in Eq. (2.56) expresses photon-number conservation: by

SRS, one photon is lost from the pump wave and added to the Stokes wave. As the

pump photon has a higher energy than the Stokes photon, the corresponding pump-

power loss is larger by a factor of hνp/hνs = λs/λp compared to the Stokes-power gain,

see Eqs. (2.55)–(2.56).

2.3.2. Raman amplification in standard single-mode fibers

In section 2.3.1 we have considered polarization-maintaining fibers in which the pump

and Stokes fields are co-linearly polarized. In contrast, when the pump and Stokes
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waves are orthogonally polarized, one obtains from Eqs. (2.48) and (2.50) a different

bulk Raman gain constant,

g(ωs, ωp)⊥ =
3ωsµ0

nsnp
Imχ(3),SRS

xxyy (ωs, ωp,−ωp). (2.58)

This gain is plotted as the dashed curve in Fig. 2.3. In the interesting region near

the Raman-gain peak at 13.2 THz, the cross-polarized gain is less than 10% of the co-

polarized gain.

The fact that cross- and co-polarized gains in silica differ by a factor of more than ten is

significant for Raman amplification in optical fibers, because the relative polarizations of

pump and Stokes waves change randomly during propagation as a result of birefringence

fluctuations that lead to polarization-mode dispersion (PMD). Effectively, the Raman

gain experienced by the Stokes wave will lie somewhere between the cross- and co-

polarized gain. It will depend on the relative polarizations of the pump and Stokes

waves that are launched into the fiber, a phenomenon called polarization-dependent gain

(PDG). To make things even worse, the PDG can also fluctuate over time. Therefore, the

polarization of the pump is often deliberately scrambled in practical Raman amplifiers.5

It has been shown both experimentally [EMN00,KFH02] and theoretically [LA03] that

this effectively suppresses PDG. The Raman gain seen by the Stokes wave is then simply

the average of the cross- and co-polarized gains.

2.3.3. Summary of the model

Finally, by phenomenologically introducing the linear fiber losses αp and αs at the pump

and Stokes wavelength, respectively, and taking into account the discussion in section

2.3.2, the power-evolution equations of section 2.3.1 can be written in the following

compact form [Agr01,HA05],

±
∂P±p
∂z

+
1

vp

∂P±p
∂t

=

[
−αp − g̃

λs
λp

(P+
s + P−s )

]
P±p , (2.59)

±∂P
±
s

∂z
+

1

vs

∂P±s
∂t

=
[
−αs + g̃(P+

p + P−p )
]
P±s , (2.60)

where the Raman-gain coefficient g̃ of the fiber is defined as

g̃ =


g‖
Aeff

for HiBi fibers with co-linear pump and Stokes polarizations,
g‖+g⊥
2Aeff

for non-polarization-maintaining single-mode fibers.
(2.61)

5Many pump lasers, such as some fiber lasers, already emit unpolarized light such that often there is
no need for deliberately depolarizing them.
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Typical values for the g̃ of non-polarization-maintaining fibers are between 0.3 /Wkm for

standard single-mode fibers and 2.2 /Wkm for special high-Raman-gain fibers. Recent

research highlights the possibilities of using holey fibers [TPT05] or heavily germania-

doped fibers [D+05] for achieving even higher gain coefficients.

2.4. Chapter summary

In this chapter, we have derived the nonlinear Schrödinger equations (NLSEs) that

describe the longitudinal and temporal evolution of the pump and Stokes powers inside

a general waveguide under the influence of third-order nonlinear effects. The NLSEs

have been formulated such that they are particularly useful for the later chapter 5,

where they will be adapted to the case of silicon waveguides. In section 2.3 we have

specialized the equations such that they describe stimulated Raman scattering in silica

fibers, which forms the basis for the following two chapters.
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3. Designs for efficient and tunable

Raman fiber lasers

In this chapter and and in the following one, new designs for Raman fiber lasers (RFLs)

for the use as pump sources in Raman fiber amplifiers (RFAs) are proposed and discussed.

The basic characteristics and the modeling of RFLs will be explained in the introductory

section 3.1. Section 3.2 then introduces the double-cavity RFL which offers more design

freedom than a simple RFL. Finally, section 3.3 introduces a design for widely tunable

RFLs.

The results of this chapter have been published in [CKRB03,KCRB03,KR05b].

3.1. Basics of Raman fiber lasers

3.1.1. History and applications

The first continuous-wave Raman laser based on an optical fiber has been demonstrated

in 1976 by Hill et al. [HKJ76]. Extended designs that were tunable and also incorpo-

rated several cascaded Stokes resonators were developed in the following years [Sto80a].

However, all of these lasers incorporated bulk optics for realizing the cavity reflectors

and tunable elements. In 1988, the first Raman fiber laser based on fiber Bragg grat-

ings (FBGs) has been demonstrated [KSS+88]. Since then, RFLs have been widely

investigated as efficient all-fiber wavelength converters for use in optical communication

systems. For example, they are now often used as pump lasers for Raman fiber amplifiers

(RFAs), see Fig. 1.1 [CHB04].

The Stokes generation process in RFLs can be cascaded—in 1994, the first all-fiber

cascaded Raman laser was shown [GEM+94], in which a pump laser at 1060 nm is con-

verted to 1240 nm via two auxiliary resonators with an efficiency of 50%. In 2000, a multi-

wavelength RFL was developed which emitted two closely spaced wavelengths [CLJ+00].

Using such RFLs, the gain profile of RFAs can be widened considerably. More recent

designs even emit six wavelengths simultaneously [LBL+02]. An RFL which emitted two
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wavelengths spaced by an entire Raman shift of 13.2 THz in a controlled manner was

successfully used in 2002 as a dual-order RFA pump [BBR+02].

3.1.2. Geometry and working principle

Fig. 3.1 shows the schematic of a basic Raman fiber laser. The resonator is formed by an

optical fiber of length L and two fiber Bragg gratings reflecting at the Stokes wavelength

λs, with reflectivities Rl and Rr at the left-hand and right-hand fiber ends, respectively.

The laser is pumped optically at the left-hand side at the wavelength λp. An optional

pump-wavelength reflector Rp at the right-hand end of the fiber can reflect unused pump

power back into the cavity, thus further increasing the efficiency of the device. In this

chapter, we also call the arrangement shown in Fig. 3.1 a single-cavity RFL (SC-RFL),

in order to avoid confusion with the double-cavity RFL (DC-RFL) to be introduced in

Sect. 3.2.

The operation principle of the laser is simple: when the pump laser is switched on,

spontaneous Raman scattering will generate light at new wavelengths (see Fig. 2.3), the

most intense peak being generated at the Stokes wavelength corresponding to an optical

frequency downshifted by about 13.2 THz from the pump frequency (for example, if

the pump laser is an Ytterbium fiber laser emitting at 1060 nm as in the experiments

performed at TUHH [Cie05], the Stokes wavelength will be 1112 nm). Furthermore,

the spontaneously generated Stokes light in the cavity will be amplified through the

effect of stimulated Raman scattering — it will experience Raman gain proportional

to the amount of pump power. When reaching the ends of the waveguide, part of the

Stokes light leaves the waveguide (forming the output beam), and part of it is reflected

back into the waveguide. When the pump power is high enough, this feedback plus the

amplification through stimulated Raman scattering leads to an increasing buildup of

optical power at the Stokes wavelength. Eventually, a steady state is reached in which

the laser continuously converts the pump radiation at λp to Stokes radiation at λs.

In the case of Rp = 0, i. e., an RFL with single-pass pumping (SPP), the pump power

launched at the left-hand side of the RFL passes the fiber only once, and the unused

pump power leaves the fiber at the right-hand side. On the other hand, in the case of

double-pass pumping (DPP), i. e., Rp > 0, the pump power reaching the right-hand fiber

end is reflected back and passes the fiber a second time. The use of DPP as opposed to

SPP thus increases the effective length of Raman interaction between pump and Stokes

light. As a consequence, DPP setups typically employ shorter fibers than SPP setups,

even though they can have similar conversion efficiencies (see the results in Sect. 3.2.3).

25



3. Designs for efficient and tunable Raman fiber lasers

Pump @lp Right Out @ls

L z0

Left Out @ls

Rr

@ls

Rp

@lp

R
l

@ls

l

Figure 3.1.: Schematic of a basic single-cavity Raman fiber laser (SC-RFL).

3.1.3. Modeling, simulation, and typical characteristics

Following Sect. 2.3, we model the continuous-wave operation of a single-cavity, non-

cascaded RFL (as shown in Fig. 3.1) by the differential equations for the forward- (+) and

backward-propagating (−) pump (“p”) and Stokes (“s”) waves P±p and P±s , respectively,

± 1

P±p

dP±p
dz

= −αp − g
λs
λp

(P+
s + P−s ), (3.1)

± 1

P±s

dP±s
dz

= −αs + g(P+
p + P−p ). (3.2)

The reflections at the FBGs and the pump-power injection are taken into account by

the boundary conditions

P+
s (0) = RlP

−
s (0), P−s (L) = RrP

+
s (L), (3.3)

P+
p (0) = P0, P−p (L) = RpP

+
p (L). (3.4)

Here, z denotes the position along the fiber, L is the fiber length, and Rl,r,p are the

power reflectivities of the three FBGs shown in Fig. 3.1. Finally, P0 is the input pump

power at z = 0 — for simplicity of the description, the pump power is coupled in from

the left-hand side for each RFL configuration throughout this section. The reflectors

Rl and Rr are assumed to be lossless, and the left-hand and right-hand Stokes output

powers of this RFL are then given as

Pl = P−s (0)(1−Rl), Pr = P+
s (L)(1−Rr). (3.5)

The present model was first used by AuYeung and Yariv to discuss the characteristics

of RFLs in 1979 [AY79]. It was later extended to a model for cascaded and multi-

wavelength RFLs [RCD00,JM01,CRB03].

All RFLs analyzed in this section are pumped at the wavelength λp = 1060 nm and

have FBGs at the Stokes wavelength λs = 1112 nm, corresponding to the frequency

difference of 13.2 THz where the Raman gain is maximal, see Fig. 2.3. We assume a
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fiber with Raman gain constant g = 1.2 (W · km)−1 and fiber loss coefficients of αp =

0.8 dB/km and αs = 0.66 dB/km for the pump and Stokes wavelengths, respectively. The

results obtained here for this specific fiber can easily be rescaled to other fibers [RCK03].

Numerical solution

An explicit analytic solution of the boundary-value problem (BVP) given by Eqs. (3.2)–

(3.4) is not known. However, a solution can be readily obtained numerically using

a collocation method [AMR88] for two-point BVPs which is available as the function

bvp4c in Matlab.

An example of the result of such a numerical simulation is shown in Fig. 3.2, where

the steady-state longitudinal distribution of the pump and Stokes powers inside an RFL

is plotted. It has left-hand and right-hand Stokes reflectivities of Rl = 99% and Rr =

51.2%, respectively, no pump backreflector (Rp = 0), and the result is shown for a pump

power of P0 = 4 W. The pump power injected at the left-hand side (at z = 0) decreases

towards larger z, because it loses power to the forward- and backward-propagating Stokes

waves through SRS; also, it experiences linear losses. The forward-propagating Stokes

wave grows towards larger z as it experiences Raman gain. When it reaches the right-

hand end of the fiber, 51.2% of it is reflected by the FBG, forming the backward-

propagating Stokes wave (the part of the Stokes power not reflected at the right-hand

FBG forms the output power). Upon propagating back to the left-hand end of the

fiber, the backward-propagating Stokes wave, too, is amplified by SRS. Finally, 99% of

the backward-propagating Stokes power are reflected to form the forward-propagating

Stokes wave, which finishes the round-trip.

The thick solid line in Fig. 3.6 shows the characteristics of this RFL. When the pump

power exceeds the threshold power of 1.17 W, the output power grows monotonously.

Lasing threshold

Even though a general analytic solution of Eqs. (3.2)–(3.4) is not known, the threshold

power Pth can be given in closed form [AY79].

By integrating the differential equations (3.2) describing the longitudinal evolution of

the Stokes powers over the entire fiber, one obtains the two relations

P+
s (L) = GP+

s (0), P−s (0) = GP−s (L), (3.6)

where

G = exp

{∫ L

0

−αs + g[P+
p (z) + P−p (z)] dz

}
(3.7)
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Figure 3.2.: Longitudinal pump- and Stokes-power distribution inside a Raman fiber laser.

is the single-pass gain experienced by both the forward- and backward-propagating

Stokes waves. By then making use of the boundary conditions (3.3), one obtains the

statement

P+
s (0) · (1−RlRrG

2) = 0, (3.8)

which must always be fulfilled by any solution of our model, no matter how large the

pump power. If the laser is beyond threshold, P+
s (0) > 0 and Eq. (3.8) shows that then

the round-trip condition

RlRrG
2 = 1 (3.9)

must be fulfilled. At the lasing threshold, the depletion of the pump power by the

Stokes waves can be neglected, and the longitudinal pump-power distribution is a simple

exponential decay due to the linear losses, see Eq. (3.1). Thus, G can be evaluated

explicitly. Inserting this into the round-trip condition (3.9) and rearranging for the

pump power, one obtains the threshold pump power for arbitrary pump backreflectors

Rp,

Pth =
αp
g
·

αsL− 1
2

ln(RlRr)

(1− e−αpL)(1 +Rpe−αpL)
. (3.10)

For Rp = 0, this formula reduces to that derived in Ref. [AY79].

3.1.4. Conversion efficiency versus threshold

In this section, we show that the threshold power and the conversion efficiency at large

pump powers can not be designed independently in SC-RFLs as shown in Fig. 3.1. Later

in Sect. 3.2, the concept of DC-RFLs is introduced, which does not have such a restric-

tion. For the sake of simplicity, we concentrate on RFLs with single-pass pumping only
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Figure 3.3.: The right-hand output power Pr of a single-cavity Raman fiber laser as a function of
the right-mirror reflectivity Rr and the fiber length L. The left-mirror reflectivity is Rl = 99%,
and the pump power is P0 = 4 W.

(Rp = 0). Qualitatively, however, RFLs behave the same for Rp > 0 (see Sect. 3.2.3).

We start by calculating the output power of various SC-RFLs for a fixed input pump

power of P0 = 4 W, launched from the left-hand fiber end. As usually done in practi-

cally realized RFLs [HBM+02], we choose a mirror for the Stokes wavelength with high

reflectivity (HR), Rl = 99%, at the same end of the fiber, so that light is coupled out

essentially only at the right-hand side of the RFL (Fig. 3.1). In order to find a con-

figuration that is optimal in the sense that it emits maximum output power, we vary

the two remaining free parameters, namely the right-hand reflectivity Rr and the fiber

length L.

Fig. 3.3 shows the calculated right-hand output power Pr as a function of Rr and L.

At Rr = 51.2% and L = 280 m, Pr has its maximum value of 3.18 W. However, this

maximum is not very pronounced and its exact location can not be made out clearly in

the graph. In fact, there is a relatively large range of parameters Rr and L that yield an

RFL with almost maximal conversion efficiency [KST+01]. However, we will show next

that all these near-optimal lasers have a similar threshold pump power, i. e., it is not

possible to find an RFL that has near-maximal conversion efficiency and at the same

time a considerably lower threshold pump power.

To this aim, we pose the (arbitrary) requirement that the RFL to be designed have an

output power not below 99% of the maximum obtainable output power 3.18 W. We thus

restrict ourselves to a certain allowed range for the parameters Rr and L. This range

is shown in Fig. 3.4 by the longish grey area in the Rr–L plane, where the black dot

indicates the maximum-output-power configuration. Also included in Fig. 3.4 are the
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Figure 3.4.: Lines of constant threshold power Pth for a single-cavity, single-pass-pumped
Raman fiber laser separated by steps of 0.2 W, in the plane of the right-mirror reflectivity Rr
and the fiber length L. At P0 = 4 W, the right-hand output power of the configurations inside
the grey area is greater than 99% of the maximum output power of 3.18 W, which is obtained
for Rr = 51.2% and L = 280 m (black dot).

lines of constant threshold power, calculated from (3.10) with Rp = 0. As can be seen,

the allowed parameter range is oriented just along the lines of constant threshold power,

with the result that the threshold power of the maximum-output-power RFL (which

is Pth = 1.17 W) can be lowered at most by 0.2 W by choosing another configuration

from the right upper edge of the grey area. The threshold power can be lowered further

only at the expense of considerably reduced conversion efficiency at P0 = 4 W. This

demonstrates the collision of the two optimization criteria “large output power” and

“low threshold power”.

In order to further illustrate the collision of the two requirements “large output power”

and “low threshold power” in SC-RFL designs, we now consider a variety of RFLs with

a much lower, fixed threshold power of P ′th = 0.2 W (in contrast, the maximum-output-

power RFL found at the beginning of this section had a threshold power of Pth = 1.17 W)

and look at their output powers when pumped with P0 = 4 W. Suitable parameters Rr

and L for the desired low-threshold RFLs can be found directly from Eq. (3.10) and

correspond to the dashed line labeled “0.2 W” in Fig. 3.4. Note that each of the low-

threshold RFLs can be uniquely identified by its fiber length L. In Fig. 3.5, the output

power at P0 = 4 W is plotted versus the length L of the considered low-threshold RFLs.

The maximum output power achievable with the low-threshold RFLs at P0 = 4 W is

about 1.1 W, while that of the maximum-output-power RFL is 3.18 W, for which we

posed no restrictions on the threshold power.
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The results of this section show clearly that one has to find a trade-off between the

threshold power and the conversion efficiency when designing an SC-RFL. The same

situation arises in many conventional lasers. The reason is that a low threshold requires

low cavity round-trip losses, i. e., cavity mirrors with a high reflectivity, see Eq. (3.10).

However, a high reflectivity implies low transmission, so that for mirror reflectivities

approaching 100% (which would result in the lowest possible threshold), the Stokes

power actually coupled out of the cavity is becoming ever lower and vanishes for the

case where the threshold pump power is lowest.
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Figure 3.5.: Output power for a pump power P0 = 4 W of single-cavity Raman fiber lasers
with the same threshold power of 0.2 W versus the fiber length L.

3.1.5. Comparison of left-hand- and right-hand-output RFLs

It is important for the double-cavity designs discussed later that we compare the single-

cavity RFLs considered so far with their “reversed” counterparts, i. e., we exchange

the left-hand (highly reflective in Sect. 3.1.4) and right-hand (moderately reflective in

Sect. 3.1.4) mirrors. Now, the laser light is coupled out at the same fiber end at which

the pump power is coupled in. We will see that such an output reversal only weakly

influences the input-output characteristics of the RFL.

The input-output characteristic of the RFL marked with a black dot in Fig. 3.4 is

plotted as a thick solid line in Fig. 3.6. The corresponding reversed (left-hand output)

RFL has been obtained by exchanging Rr and Rl in the optimized design and considering

the left-hand side of the RFL as the output now. The resulting characteristic is plotted

as a thick dashed curve. The difference between the two curves is very small and hardly

noticable. The respective threshold powers are even exactly the same, as predicted by

Eq. (3.10).

For further illustration of the smallness of the effect of interchanging the reflectivities,

the characteristics of two other (non-optimized) setups with arbitrarily chosen Rr and
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Figure 3.6.: Input-output characteristics of single-cavity Raman fiber lasers. The thick
solid and dashed curves (almost indistinguishable) correspond to the SC-RFL optimized in
Sect. 3.1.4 and the one obtained by interchanging the mirror reflectivities Rl and Rr, respec-
tively. The remaining two pairs of curves represent additional arbitrary setups, illustrating the
small effect of interchanging the reflectivities.

L and their reversed counterparts have been plotted. The two curves with a threshold

of 3.1 W correspond to a setup with Rr = 35% and L = 150 m, and the two curves with

a threshold of 0.5 W correspond to a setup with Rr = 60% and L = 700 m. Again, the

behavior of the reversed setups is very close to that of the original, non-reversed ones.

These examples show that left-hand-output configurations are practically equivalent

to right-hand-output configurations. This will be illustrated again by the results of

Sect. 3.2.3.

3.2. Double-cavity Raman fiber lasers

In this section, we introduce the concept of double-cavity Raman fiber lasers. We demon-

strate that the threshold and the conversion efficiency can be optimized independently

in these devices. The results of this section have been published in [KR05b].

Motivation

When an RFL is designed for use as an amplifier pump source, it is usually optimized

for maximum conversion efficiency, i. e., such that it provides as much output power as

possible at the maximum available input pump power. On many occasions, however,

other criteria may be more important for the design of an RFL. For example, applications

that require switching between several power levels, such as a measurement test source

or a dynamically configurable optical amplifier [CKRB04,BGL04], could profit from an
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Figure 3.7.: Schematic of a double-cavity Raman fiber laser (DC-RFL).

RFL that has both a low threshold pump power and a high conversion efficiency at large

pump powers.

In a conventional single-cavity RFL (SC-RFL), the output wavelength (Stokes) cavity

is formed by two FBGs at the ends of an optical fiber, see Sect. 3.1. In such devices,

the two optimization criteria “high conversion efficiency” (at large pump powers) and

“low threshold pump power” collide with each other, as shown in Sect. 3.1.4. A high

conversion efficiency can usually only be achieved at the cost of a high threshold, so that

a trade-off has to be found in the design of the device if both of these properties are

desirable.

On the other hand, we show here that the introduction of a third FBG into the Stokes

cavity, resulting in a double-cavity RFL (DC-RFL), can lead to a significantly different

behavior of the input-output characteristics compared to a conventional single-cavity

RFL. In particular, the threshold pump power of an RFL and its conversion efficiency

at large pump powers can be optimized independently. A totally different application

of DC-RFLs—the reduction of pump-to-Stokes transfer of relative intensity noise—will

be discussed in Sect. 4.3.

3.2.1. Geometry and model

We consider the setup shown in Fig. 3.7. It represents a double-cavity RFL (DC-RFL)

which differs from usual single-cavity RFLs only in that the cavity contains one more

Stokes reflector Rm in the middle of the cavity in addition to the left-hand and right-

hand Stokes reflectors Rl and Rr and the pump reflector Rp. Thus, two concatenated

cavities (Rl ↔ Rm and Rm ↔ Rr) are formed for the Stokes laser line instead of only

one as in conventional single-cavity RFLs. For the moment, we set Rp = 0.

The DC-RFL shown in Fig. 3.7 can be numerically simulated in a manner very similar

to SC-RFLs, the model of which was described in Sect. 3.1.3. One merely has to take

into account that in a DC-RFL, the values of the forward- and backward-propagating

Stokes waves before and behind the new intra-cavity FBG are coupled through the two
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new boundary conditions

P+
s (z+

m) = TmP
+
s (z−m) +RmP

−
s (z+

m), (3.11)

P−s (z−m) = TmP
−
s (z+

m) +RmP
+
s (z−m), (3.12)

where z−m and z+
m indicate longitudinal positions directly at the left-hand and right-hand

sides of the intra-cavity reflector with reflectivity Rm and transmittivity Tm, respectively.

When using the bvp4c function in Matlab, the new boundary conditions (3.11) and

(3.12) are easily incorporated in an existing program for the simulation of SC-RFLs. In

the following examples, this reflector is assumed to be lossless (Tm = 1−Rm), which is

a reasonable assumption for FBGs inscribed directly into the Raman fiber.

The boundary conditions (3.11) and (3.12) are based on the assumption of incoherent

superposition of the reflected and transmitted powers. Thus, this formalism is only

applicable as long as the spatial separation of the Stokes reflectors is larger than the

coherence length of the Stokes light; otherwise interference effects would have to be

taken into account [RCK03]. The typical spectral width of the RFL output is typically

in the order of a nanometer [KSS+88, PKU00, KCDP00, BDB+00, APT+01, MHB+01],

corresponding to a coherence length in the order of millimeters, which is well below the

usual spatial separation of the Stokes reflectors of tens to thousands of meters.

3.2.2. Input-output characteristics

As a first example, we choose a DC-RFL with the same fiber as in Sect. 3.1 and the

new parameters Rl = 74%, Rm = 99%, Rr = 99%, Rp = 0, zm = 150 m and L = 270 m,

where zm andRm are the position and the reflectivity of the newly introduced intra-cavity

Stokes reflector in between Rl and Rr, respectively. Note that for now, we restrict the

discussion to the case when only Rl is moderately reflective, and the remaining reflectors

Rm and Rr are highly reflective. Other combinations will be discussed in Sect. 3.2.3.

Fig. 3.8 shows the numerically calculated left-hand and right-hand output character-

istics of our DC-RFL as the thick solid and dotted curves, respectively. A threshold

power of 0.203 W is found,1 above which the left-hand output power increases with a

relatively small slope. This slope is initially increasing, but at pump powers above 2 W

it decreases again. The right-hand output power also exhibits an unusual behavior, as

it is not monotonically increasing everywhere. It increases until it reaches its maximum

at a pump power of P0 = 1.02 W, above which it decreases again. These results should

be contrasted to the fact that the input-output characteristics of SC-RFLs are always

1An analytic relation for the threshold pump power of double-cavity RFLs can be found in [KR05b].
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Figure 3.8.: Input-output characteristics of a double-cavity Raman fiber laser. The thick solid
and dotted curves represent left-hand and right-hand output power, respectively. The thin
dashed and dashed-dotted curves represent the left-hand outputs of SC-RFLs corresponding
to the individual right-hand and left-hand cavities, respectively.

numerically observed to be both monotonically increasing and concave, i. e., the slopes

of the curves are monotonically decreasing with increasing P0 (see the curves in Fig. 3.6).

The most notable feature of these characteristics is, however, the high conversion

efficiency observed for large pump powers at the left-hand output, in spite of a low

threshold power. The presented configuration has an output power of Pl = 3.16 W at

P0 = 4 W and a threshold power of 0.2 W. Such characteristics have been shown above

to be impossible to be achieved with an SC-RFL: in Sect. 3.1.4 we showed that no

right-hand output SC-RFL with a threshold power of 0.2 W based on the same fiber can

give more than 1.1 W of output power when pumped with 4 W (see Fig. 3.5). (From

the results in Sect. 3.1.5, we conclude a similar limitation for left-hand output SC-

RFLs.) By introducing the concept of the double-cavity RFL, we have thus eliminated

the incompatibility of the two optimization criteria “low threshold power” and “high

conversion efficiency”.

Asymptotic input-output characteristics

In order to see the reason for the particular behavior of the input-output characteristics

of DC-RFLs, we consider separately the two cavities that constitute the DC-RFL. It

follows from Eq. (3.10) with Rp = 0 that an SC-RFL made up of the right-hand cavity

(Rm ↔ Rr) alone would have a lower threshold than an SC-RFL consisting of the left-

hand cavity (Rl ↔ Rm). This is due to the larger feedback of the HR mirrors Rm and

Rr. In fact, the exact threshold powers can be calculated from Eq. (3.10); they are

1.00 W and 0.199 W for SC-RFLs constituted by the left-hand and right-hand cavities,
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Figure 3.9.: Longitudinal pump
and Stokes power distributions for
a DC-RFL just above threshold
(P0 = 0.3 W).
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respectively.

A simplifying description is now given for the operating principle of the DC-RFL and

the reason for its particular characteristics (Fig. 3.8). If we consider the DC-RFL at a

pump power of P0 = 0.3 W, this pump power is not sufficient to put the left-hand cavity

alone into the lasing state, because the latter has a threshold power of 1.00 W. Because of

this, the pump beam passes the left-hand, non-lasing cavity, while being depleted slightly

only by linear fiber losses. It then reaches the right-hand cavity, for which the threshold

power of 0.199 W is clearly exceeded. This cavity is thus lasing. Part of the backward

Stokes power leaves the fiber at the left-hand side through the reflectors Rm and Rl,

giving the observed non-zero left-hand output power of the DC-RFL. Fig. 3.9 shows the

pump and Stokes power distributions along the fiber of the DC-RFL at P0 = 0.3 W. The

position zm of the intra-cavity mirror can be easily identified, because the two cavities

differ considerably in the powers circulating inside them.

As explained in the previous paragraph and shown in Fig. 3.9, the operation of the

present DC-RFL in the low-power regime is dominated by the right-hand low-loss cavity,

with some minor feedback from the left-hand cavity. Consequently, the characteristic of

the DC-RFL should be expected to remain essentially unchanged for low pump powers

when we recalculate it with Rl = 0, i. e., ignoring the influence of the left-hand reflector.

This characteristic is plotted as the dashed curve in Fig. 3.8. We see that there is in

fact a close agreement with the characteristic of the full DC-RFL around threshold.

We now consider the behavior of the DC-RFL for large pump powers. Fig. 3.10

shows the longitudinal pump and Stokes power distributions for an input pump power

of P0 = 4 W. The pump is depleted almost completely within the left-hand cavity.

Because of that, the right-hand cavity plays virtually no role and the left-hand output

characteristic of the DC-RFL is expected to reduce to that of the SC-RFL constituted

by the left-hand cavity (Rl ↔ Rm) alone. The dashed-dotted curve in Fig. 3.8 shows
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Figure 3.10.: Longitudinal pump
and Stokes power distributions for
a DC-RFL at a large pump power
of P0 = 4 W.

Rll

0

2

4

6

8

10

12

14

0 50 100 150 200 250

P
o
w

e
r 

[W
]

z [m]

R
m

R
r

Pump
Stokes forw.
Stokes backw.

the characteristic of the left-hand-cavity SC-RFL, i. e., the DC-RFL with Rr = 0, which

shows the expected agreement with the characteristic of the full DC-RFL for large pump

powers.

In summary, two operating regimes can be identified for the DC-RFL in dependence

on the pump power P0. At low pump powers, the behavior of the left-hand output

characteristic is determined by the right-hand cavity, because it has the lower round-

trip losses. In particular, the threshold power is mainly determined by this cavity. At

large pump powers, the right-hand cavity practically stops contributing and the input-

output characteristic is governed almost fully by the left-hand cavity.

Threshold reduction for SC-RFLs using an additional reflector

The considerations of Sect. 3.2.2 lead to the following procedure for lowering the thresh-

old of any given SC-RFL. Suppose we have an SC-RFL design that has been optimized

for maximum conversion efficiency or some other criterion other than the threshold

power, and we want to lower its threshold power by using the double-cavity concept.

For a successful application of the double-cavity concept, the RFL has to use the

left-hand side as the Stokes output, i. e., the pump side. So, if the original design uses

the right-hand side as the output, we first need to exchange the left and right reflectors.

As we showed in Sect. 3.1.5, this step scarcely modifies the input-output characteristic.

The resulting RFL with an HR FBG at the right-hand end of the fiber is now further

optimized by adding another piece of fiber to the right-hand end of the existing cavity

and terminating it by a second HR FBG. This step determines the threshold of the new

DC-RFL, but does not modify significantly the behavior of the original SC-RFL at large

pump powers. Referring to a diagram like Fig. 3.4 or directly to Eq. (3.10), one can

easily identify the parameters for the HR cavity that lead to the desired low threshold,

chosen independently from the behavior at large pump powers.
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Setup Lopt Rout,opt Pout,4W Pth

SC, SPP, Out R 280 m 51.2% 3.18 W 1.17 W

SC, SPP, Out L 289 m 51.2% 3.18 W 1.14 W

SC, DPP, Out R 165 m 50.2% 3.40 W 0.980 W

SC, DPP, Out L 168 m 50.1% 3.40 W 0.967 W

DC, SPP, Out R no right-hand cavity 0.677 W 0.199 W

DC, SPP, Out L 349 m 56.9% 3.20 W 0.207 W

DC, DPP, Out R no right-hand cavity 1.27 W 0.192 W

DC, DPP, Out L 305 m 47.6% 3.29 W 0.201 W

Table 3.1.: Optimization results for eight possible non-cascaded Raman fiber laser schemes.
“Out R” and “Out L” mean laser output at the right-hand or left-hand fiber ends, respectively.
The optimization result for the double-cavity right-hand-output configurations (DC, Out R)
is that they give maximum output power when there is no right-hand cavity at all.

3.2.3. Comparison of optimized DC-RFLs and SC-RFLs

So far, we have discussed three basic setup options for non-cascaded RFLs. The first

option is whether the Stokes output shall be at the left-hand side (where pump power is

coupled in) or at the right-hand side, where it is usually located. Second, one can choose

whether to use single-pass or double-pass pumping. Third, one can decide on a single-

cavity or a double-cavity design. The resulting eight setup schemes will be compared

with regard to optimizability in this section, so that the characteristic features of each

become apparent.

All RFLs considered in this section are optimized to yield maximum Stokes output

power at a pump power of P0 = 4 W. For the DC-RFLs, the threshold power can be

chosen nearly freely, because the configuration of the HR cavity is an additional degree

of freedom compared to SC-RFLs. We choose a low threshold of 0.2 W for the DC-

RFLs considered in this section. When designing such a DC-RFL, one could vary the

reflectivities and positions of the Stokes reflectors until both the threshold power and

the conversion efficiency exactly reach their desired values. In the following, however,

we simply choose the length of the HR cavity such that this cavity on its own has a

threshold of exactly 0.2 W. The threshold of the overall DC-RFL is then close to that

desired value, and a tedious iterative design process is avoided. Finally, in all of the

RFLs, each reflector except the output reflector has a reflectivity of 99%. The results of

the numerical optimizations are summarized in Table 3.1.
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Figure 3.11.: Input-output characteristics of four optimized single-cavity Raman fiber lasers
from Table 3.1. The curves for the left-hand- and right-hand-output double-pass pumped
(DPP) setups coincide (upper curves), as the curves for the left-hand- and right-hand-output
single-pass pumped (SPP) setups (lower curves) do.

Optimized single-cavity RFLs

Fig. 3.11 shows the input-output characteristics of the four SC-RFLs. The curves can

be separated into two groups, one group for the configurations with SPP and one group

with DPP. The two curves within each group correspond respectively to the left-hand-

and right-hand-output configurations, optimized separately (i. e., not obtained by a sim-

ple reversal as described in Sect. 3.1.5). These curves are hardly distinguishable, which

demonstrates again the practical equivalence of left-hand- and right-hand-output cou-

pling for SC-RFLs.

We also see that the optimized RFLs with DPP provide more Stokes output power than

the optimized RFLs with SPP for all pump powers. As expected from the discussion in

Sect. 6.2.1, the optimized DPP setups have shorter fibers than the SPP setups (compare

the Lopt column in Table 3.1). Thus, the effect of fiber losses is lower in the DPP setups,

which consequently can provide more output power.

A practical complication for a left-hand-output design can be that the outgoing Stokes

power has to be separated from the incoming pump power by means of a wavelength-

selective element, as in [BDB+00,CKRB03], otherwise it would be guided into the pump

laser. A right-hand-output design, on the other hand, yields an RFL whose output can

be spliced directly to other components of a fiber system, thus avoiding potential losses.

Optimized double-cavity RFLs

The DC-RFLs listed in Table 3.1 were designed by first choosing the length of the highly

reflective cavity so that it has the desired low threshold pump power of about 0.2 W. For
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Figure 3.12.: Input-output characteristics of two optimized double-cavity Raman fiber lasers
with left-hand output from Table 3.1.

DC-RFLs with SPP, the required length of the HR cavity was found from Eq. (3.10) to

be 120 m, for DC-RFLs with DPP 33 m. Then, the overall fiber length of the DC-RFL

and the reflectivity of the output reflector were optimized such that the device delivers

maximum output power at P0 = 4 W. The pump backreflector Rp is always kept at the

right-hand fiber end, regardless of the location of the Stokes output mirror.

We first discuss the right-hand-output DC-RFLs. In these setups, the HR cavity is

located at the left-hand side, where the pump is also coupled in. This cavity determines

the threshold power of the DC-RFL, because at low pump powers, only this cavity

can lase (the right-hand cavity is still below threshold). For large pump powers, the

pump power is depleted within the first cavity, so that again only the HR cavity is

lasing. In summary, the HR cavity determines the characteristics of right-hand-output

DC-RFLs for both low and large pump powers, so that it can not be expected that the

threshold power and the conversion efficiency at large pump powers can be optimized

independently. In fact, Table 3.1 shows that the optimized right-hand-output RFLs yield

maximum output power at the right-hand side if there is no right-hand cavity at all.

Thus, the DC-RFL concept, as discussed here with Rl and Rm being highly reflective to

constitute a low-loss left-hand cavity, is not interesting for right-hand-output RFLs.

We now turn to the optimized left-hand-output DC-RFLs. Fig. 3.12 shows the input-

output characteristics corresponding to the SPP (solid line) and DPP (dashed line)

setups. As in the case of single-cavity RFLs (Sect. 3.2.3), the DPP setup can deliver

slightly more power than the SPP setup. This can again be ascribed to the shorter

length of the fiber in the former case (see the Lopt column in Table 3.1).

A comparison of Figures 3.11 and 3.12 shows that the concept of double-cavity RFLs

makes it possible to lower the threshold of RFLs considerably while still retaining the op-
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timizability for high conversion efficiency at large pump powers. We have demonstrated

this property of DC-RFLs only in the case of a few arbitrarily selected configurations.

However, the results can be scaled to an infinite number of different fibers [RCK03].

Alternative double-cavity setups

So far we have only considered double-cavity RFLs where two of the three Stokes reflec-

tors are highly reflective. In this section we finally discuss some more general DC-RFL

schemes.

We divide the choice of the reflectivities Rl, Rm and Rr into the two categories “low

or moderate reflectivity” (L) and “high reflectivity” (H). This results in eight ways to

configure a DC-RFL. Of these, we have mainly analyzed the LHH configuration in this

paper, i. e., the one with Rl moderately reflective, and Rm and Rr highly reflective. This

is the configuration that enables independent optimization of the threshold power and

the conversion efficiency at large pump powers. We have also briefly considered the HHL

configuration (right-hand-output DC-RFL) in Sect. 3.2.3 and found no advantages over

conventional SC-RFLs.

Besides the HHL and LHH configurations, six other schemes are possible. We com-

ment on the HLL and LLH configurations next. These are modifications of the config-

urations already considered, where the middle reflector Rm is now moderately instead

of highly reflecting. We numerically examined several HLL configurations, and found

no advantage over ordinary SC-RFLs in their input-output characteristics. For LLH

configurations, a lowering of the threshold pump power could be achieved in comparison

to SC-RFLs. However, the effect was not as pronounced as in the case when choosing a

high-reflectivity mirror Rm (an LHH configuration). Furthermore, it turns out that it is

no longer possible to estimate the threshold power of such configurations with sufficient

accuracy by considering only a single cavity. All the reflectors contribute in a significant

manner to the threshold of the DC-RFL, which makes the design process more difficult.

The HLH and HHH configurations are not very promising, because their conversion

efficiencies are rather small. Due to the high reflectivity of both of their output reflec-

tors, not much power is coupled out. Finally, the LHL and LLL configurations can be

used to realize double-cavity RFLs with characteristics that allow the suppression of

relative-intensity-noise transfer from the pump laser to the Stokes. These devices will

be discussed in Sect. 4.3.
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3.3. Widely tunable cascaded Raman fiber lasers

In this section, we show how a tunable Raman fiber laser (RFL) can be designed such

that a wide continuous spectral tuning range spanning several Stokes orders is achieved

and the lasing of undesired parasitic resonators is suppressed. The results of this section

have been published in [KCRB03].

3.3.1. Motivation

Widely tunable RFLs are potentially useful as measurement test sources or as flexible

pump sources for use in Raman fiber amplifiers. For example, it has been suggested

to pump a Raman fiber amplifier in a counter-propagating configuration (see Fig. 1.1),

where the pump wavelength is periodically swept across a certain wavelength range.

This can effectively increase the amplification bandwidth [WSZ02]. Another application

of a tunable RFL is the possibility to dynamically reconfigure the RFA pump wavelength

which may be required when the channel load in an RFA changes as WDM channels are

added to or removed from the system.

A tunable RFL with a continuous tuning range of 113 nm (25 THz) has been exper-

imentally demonstrated by the Optical Communications Technology group at TUHH

in 2003 [CKRB03]. Except for the tunable element, the concept exclusively employs

all-fiber components, which makes it more efficient than all-bulk-optical setups such

as [JLSA77], and the achieved tunable frequency range was more than three times wider

than that of the most recently reported tunable all-fiber RFL [RHT01] at that time. In

this section, we report details on the design of the widely tunable RFL from [CKRB03]

and present a new design for an RFL which is continuously tunable from 1300 to 1650 nm.

The principal design problem is the occurrence of spectral gaps in the tunable range,

where laser operation of the tunable resonator is interrupted. These gaps are due to

undesired parasitic resonators formed by the fiber Bragg gratings (FBGs) of the auxiliary

resonators, by fiber-end reflections, and by Rayleigh backscattering. We will show in the

following how tunable RFLs can be designed such that a wide continuous tuning range

without spectral gaps is achieved.

3.3.2. Geometry and design considerations

A schematic of the considered tunable RFL design is shown in Fig. 3.13. First of all,

an all-fiber cascade of fixed-wavelength auxiliary resonators (ARs) formed by high-

reflectivity FBGs at wavelengths λAR,i is formed. This is the principle of cascaded
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Setup A

Setup B
tunable
reflector

FBGs for
auxiliary resonators at lAR, i

{ {

Figure 3.13.: Two possible designs for tunable Raman fiber lasers with a bulk-optical tuning
element. A: broadband reflector on one side. B: wavelength-selective reflectors on both sides.

resonators introduced for non-tunable RFLs in [GEM+94]. It is illustrated in Fig. 3.14.

The Stokes light generated by the pump laser in the first cavity (labeled “auxiliary res-

onator 1” in Fig. 3.14) acts itself as the pump for the next cavity, labeled “auxiliary

resonator 2”. This process is repeated until the desired output wavelength is reached.

Optical conversion efficiencies (from the pump wavelength to the output wavelength)

greater than 50% can be achieved in such lasers [GEM+94]. Cascaded RFLs are also

commercially available. (In Sect. 7.4, we will show that this concept can also be useful

for silicon Raman lasers.)

Pump
laser

Auxiliary
Resonator 1

Auxiliary
Resonator 2

Output
Resonator

wavelength

Raman gain spectrum

Figure 3.14.: Illustration of the principle of cascaded Raman lasers. In this example, successive
resonators are always placed in the Raman-gain maximum of the previous stage, which is
actually not optimal if the cascade serves as the foundation for a tunable RFL, see discussion
in the main text.

The cascade of auxiliary resonators (ARs) shown in Fig. 3.14 makes Raman gain

available at all wavelengths in the range of interest, without introducing high losses. In

our tunable RFL (see Fig. 3.13), an additional tunable resonator is formed by a bulk-

optical tunable reflection grating on one side, while on the other side we can either place

a broadband mirror (setup A) or another reflection grating (setup B). Setup A, inspired

by [JLSA77], has the advantage of lower overall losses and easier alignment, but the

problem of parasitic resonators is more critical (see below). Setup B was used in the
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experiment published in [CKRB03], where actually the output beams of both fiber ends

have been directed to the same reflection grating.

Parasitic resonators

The primary design goal is to avoid spectral gaps in the tunable range caused by com-

petition of the tunable resonator (TR) with parasitic resonators (PRs). PRs are un-

wanted resonators formed by reflecting elements such as fiber-end faces, FBGs of long-

wavelength auxiliary resonators not needed for short tuned wavelengths, the broadband

mirror in case of setup A, and Rayleigh backscattering. A PR is fatal if it starts to lase

at a sufficiently high power level while depleting the TR, possibly stopping the TR to

lase at all, and thus causing zero tuned output power. Whether a PR is critical depends

not only on the setup, but also on the shape of the cascaded Raman gain spectrum and

thus on the pump power. The behaviour described in this section was observed both

experimentally [CKRB03] and in numerical simulations.

The most obvious PRs are ARs at wavelengths longer than the tuned wavelength.

These ARs are not required, because they do not provide Raman gain to the tuned

wavelength. If the TR is spectrally close to one of the undesired ARs, the low-loss AR

might start to lase at the expense of the relatively high-loss TR. Therefore, depending

on the tuned wavelength, some of the long-wavelength ARs must be switched off. An

AR can be switched off by detuning one of its FBGs by about one width of its reflectivity

spectrum. In case of setup A, though, the broadband mirror on the left-hand side in

Fig. 3.13 can still form a low-loss PR with the right-side FBG of the “switched-off” AR.

It turned out that, in addition, a reduction of the reflectivity of the FBG itself may be

necessary in this case (which is not required for setup B).

We have observed that other broadband-reflecting elements such as fiber-end faces

and even Rayleigh backscattering can also form PRs at wavelengths corresponding to

the Raman gain maxima of other resonators lasing at shorter wavelengths. Using setup

A, we observed this even when the right-side fiber end was immersed in an index-matched

liquid, from which we conclude that Rayleigh backscattering can indeed be significant

for the formation of PRs.

In setup B, even though there is no broadband mirror, the FBGs of switched-off ARs

and the fiber-end faces can form PRs at the AR wavelengths λAR,i. The problem of these

fiber-end PRs is weakened when an AR does not spectrally coincide with the Raman

gain maximum of its short-wavelength neighbour (this latter, non-optimal case is shown

in Fig. 3.14). Instead, the ARs should be spaced closer together on the wavelength axis.

In any case, it is advisable to have tilted fiber-end faces so as to reduce their reflectivities.
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Successive ARs must be placed spectrally closer to each other also in order to prevent

the occurrence of tuned-wavelength intervals with too low cascaded Raman gain for the

tunable resonator (due to the roughly triangular shape of the Raman gain curve, see

Fig. 2.3).

In summary, the design of tunable RFLs according to our concept consists in choos-

ing the optimum wavelengths λAR,i of the ARs (while minimising the total number of

required ARs), determining at which wavelength the ARs must be switched on when

sweeping through the tuning range, and deciding whether the AR FBGs need to be

adjusted in their reflectivities (as opposed to be merely detuned).

3.3.3. Modeling

The model describing Raman amplification in optical fibers summarized in section 2.3

takes into account beams only at two wavelengths, namely the pump and the Stokes

wavelength. However, the model can be easily extended to take into account an arbi-

trary number of laser lines, resulting in a widely used model for cascaded and multi-

wavelength Raman fiber lasers [JM01,CRB03]. We thus model the tunable RFLs using

the differential equations

± dP±i
dz

=

[
−αi +

N∑
j=1

gj,i(P
+
j + P−j )

]
P±i + SαiP

∓
i , (3.13)

where the P±i (z) (i = 1 . . . N) are the powers of the forward (+) and backward (−)

propagating laser lines2, αi are the constants of attenuation due to Rayleigh scattering,

S is the Rayleigh backscattering capture fraction, and the gj,i describe the stimulated

Raman interaction. At the left-hand and right-hand fiber ends z− and z+, respectively,

the Stokes lines (i ≥ 2) fulfil the boundary conditions P±i (z∓) = Ri(z
∓)P∓i (z∓), where

Ri are the reflectivities of the reflecting elements. For the pump line, P+
1 (z−) = P0,

where P0 is the pump power (we consider single-pass-pumped RFLs here). The right-

hand output power of line i is Pout,i = P+
i (z+) − P−i (z+). Only those wavelengths are

included in the simulation at which we can expect lasing operation of ARs, PRs and

the TR from the discussion above. In our simulation, we allow for one pump line, a

number nAR of ARs, nAR + 1 fiber-end PRs in the gain maxima of both the pump and

the ARs, and the TR. In setups where an AR is switched off by detuning one of its

FBGs, it is necessary to include two laser lines for a switched-off AR in the simulation,

2The detailed spectral line shapes of the resonator emissions are not resolved in this model, we consider
only the total power contained in each laser line, see the discussion in Sect. 4.4.1.
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corresponding to resonators at the center wavelengths of the two detuned FBGs of the

switched-off AR.

Numerical solution

As explained in section 3.1.3, we solve the boundary-value problem (BVP) describing

the RFL using the collocation method bvp4c available in Matlab. In the simulation of

tunable RFLs, where the model includes a large number of laser lines at different wave-

lengths (as opposed to only two wavelengths in section 3.1.3), it becomes increasingly

difficult to find an approximate initial solution of the BVP. Such a solution is required

by the collocation method—the closer this initial solution guess is to the exact solution

of the boundary-value problem, the faster the method converges. If the initial solution

guess is too different from the desired exact solution, the method may converge to an

entirely different, mathematically possible but non-physical solution (such as one with

negative powers).

We avoid this problem by first solving the model for a pump power of P0 = 0. Guessing

the solution for this case is easy—all the powers are identical to zero over the entire

length of the fiber. We then successively solve the BVP for slowly increasing pump

powers, each time using the existing solution as the solution guess for the next iteration,

where the pump power is slightly increased, until the solution for the desired pump

power is reached. Finally, to avoid the non-physical, “trivial” solutions of the BVP

where the Stokes lines are exactly zero even though the laser is above threshold, we

include additional auxiliary terms in the equations for each line that could be interpreted

as representing an increase of the line’s power due to spontaneous Raman scattering

[KCR03]. However, these terms are included only as a tool for finding the desired

solution of the BVP; it is checked that they do not perceptibly influence that solution.

Alternative algorithms for solving the BVP have been developed in [Cie05], where

suitable initial guesses for the collocation solver are obtained through approximate an-

alytical solutions of the BVP, which have been recently discovered also by other au-

thors [BGL05,MTS+05].

3.3.4. Design results

The solid curve in Fig. 3.15 shows the simulated output power versus the tuned wave-

length for a tunable RFL according to setup B. It has a continuous tuning range of

350 nm without spectral gaps. The RFL is pumped at a wavelength of 1250 nm, and

ARs are introduced at longer wavelengths in intervals of 9.7 THz (in contrast, the Ra-
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Figure 3.15.: Simulated tuned output power versus tuned wavelength of an RFL according to
setup B. Fiber-end reflectivities are 0.2% for the solid curve, and 4% for the dashed curve.

man gain maximum is at 13.2 THz) by FBGs with reflectivities of 95% on both sides.

An AR is only switched on when the tuned wavelength exceeds the wavelength λAR,i

of the AR by an amount corresponding to 5.5 THz. The pump power is held constant

at 3 W. The reflectivity of the tunable grating is 30%, and the reflectivities of both

tilted fiber ends are 0.2%. The design is for 600 m of FiberLogix High Raman Gain

fiber with a specified peak Raman gain constant of g = 2.3 (Wkm)−1 at 1550 nm, and

α(1550 nm) = 0.4 dB/km. For other pump wavelengths, the peak gain is assumed to

scale as 1/λs [Sto80b]. The Raman gain spectrum used in the simulations is shown as

the solid curve in Fig. 2.3. The fiber attenuation has been assumed to scale as 1/λ4

(corresponding to a fiber with only Rayleigh scattering), and the capture fraction is

S = 2 × 10−3. In spite of a rather conservative choice of parameters, this design has

been found to be robust against parameter changes. For example, fiber length variations

of ±100 m are tolerated, without introducing gaps in the tunable range.

The dashed curve in Fig. 3.15 shows the results for the same setup with the fiber-end

faces non-tilted (4% reflectivity). This change is sufficient for some of the switched-

off ARs to start lasing for certain tuned wavelengths, resulting in spectral gaps in the

tunable range. The output power breaks down around 1347, 1408, 1475, 1545 and

1613 nm. This shows that is essential to suppress fiber-end reflections in our tunable

RFL.

Finally, we note that it is, in principle, possible to achieve the same wide continuous

tuning range even with setup A. If we assume that the reflectivity of the bulk-optical

broadband mirror is 60%, we obtain a tunable range without gaps provided that ARs are
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switched off by reducing the corresponding FBG reflectivities from 95% to less than 5%

(merely detuning their center wavelengths is not sufficient). However, it is questionable

whether the FBG reflectivity can be reduced non-destructively to such low values.

Further setups for tunable RFLs have been explored experimentally and theoretically

in [Cie05], where the bulk-optical tuning element still present in the design shown in

Fig. 3.13 could be replaced by widely tunable FBGs.

3.4. Chapter summary

After an introduction to single-cavity, non-cascaded Raman fiber lasers and their in-

herent limitations with respect to optimizability, we have introduced in this chapter

the double-cavity RFL, which can be designed such that it simultaneously has a low

threshold pump power and a high conversion efficiency at large pump powers. On the

other hand, we have proposed a scheme for widely tunable RFLs and explained how

spectral gaps in the tunable range due to the presence of parasitic resonators can be

avoided, concluding with a practical design that is continuously tunable over 350 nm,

thus spanning the full optical-communications wavelength range.
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4. Stability of Raman fiber lasers

This chapter is concerned with the stability of Raman fiber lasers. Section 4.1 gives

details on the modeling of pump-to-Stokes transfer of relative intensity noise (RIN).

Sections 4.2 and 4.3 show two methods how RFLs can be optimized for low-RIN op-

eration, thus increasing their potential for use in co-pumped Raman fiber amplifiers,

and section 4.4 shows how the power-dependent line broadening in RFLs can stabilize

multi-wavelength RFLs.

Parts of the results of this chapter have been published in [KCR03, KCRB04, KR04,

KSC+05,KCRB06].

4.1. Pump-to-Stokes RIN transfer in RFLs

In this section, we present measurements of the RIN spectra of an RFL and its pump

laser. A model for the transfer of RIN from the pump laser to the RFL output is then

developed, which can qualitatively explain the experimental results [KCRB04,KCRB06].

4.1.1. Significance of relative intensity noise in RFLs

A particularly attractive application of Raman fiber lasers (RFLs) is as pump sources for

distributed Raman fiber amplifiers (RFAs). On the one hand, RFLs can easily provide

the required optical powers at almost arbitrary wavelengths, which may not be available

from semiconductor laser diodes [Hea05]. Furthermore, multiple output wavelengths

necessary for a flat broad-band RFA gain can be generated within a single compact

device [Hea05].

In order to obtain the best possible tradeoff between signal-to-noise ratio and signal

nonlinear distortions in a distributed RFA, it is preferable to inject pump power into

both sides of a transmission span, such that part of the pump power is co-propagating

with the signal [BBT+03]. Also, the tilt of the optical signal-to-noise ratio across the

WDM signal bandwidth in an RFA pumped by multiple wavelengths can be reduced

by co-pumping the shorter wavelengths [KEN+01]. However, any undesired temporal
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variations in the pump power are transferred to the amplified signal due to the short

response time of the stimulated Raman effect.

This pump-to-signal transfer of relative intensity noise (RIN) is relatively insignificant

in counter-pumped RFAs, where the pump and the signal are propagating in opposite

directions, because the pump-power fluctuations “seen” by the signal are strongly aver-

aged out along the fiber even at very low frequencies. In co-pumped RFAs, the pump

and the signal light propagate in the same direction, and the only pump-noise averag-

ing is due to the dispersion-induced walk-off between pump and signal, which becomes

significant only at relatively high frequencies [FHM01,MHB02, MBH03]. Thus, sources

for co-propagating pump light must have especially low RIN [SWR05].

While there have been several successful attempts at reducing the RIN of RFLs by

using novel setups [MLB+04, LMB+05, BFC+06], results on the actual origins of the

RIN of ordinary RFLs are scarce in the literature. In [CHB04] it was noted from ex-

perimental RIN spectra that the pump-laser RIN is transferred to the output of an

RFL. A mathematical model for this pump-to-Stokes RIN transfer was first presented

in [KCRB04], on which the results in this Chapter are based. Further work on the

RIN of cascaded RFLs has been done by a group at the Russian Academy of Sci-

ences [BCK05a,BCK+05b,BCF+05,FBC+05].

4.1.2. Experimental RIN spectra

Fig. 4.1 shows our experimental setup. The Raman fiber laser consists of a spool of

single-mode fiber of length L = 5 km. It is composed of two fiber Bragg gratings at the

Stokes wavelength of λs = 1110 nm, one highly reflecting and one with a peak reflectivity

of about 40%. The RFL is pumped by an Ytterbium fiber laser emitting at a wavelength

of λp = 1060 nm. In order to measure the RIN spectrum, the output power of the RFL

at the Stokes wavelength is detected by a photodetector, the signal of which is led to

an oscilloscope and to a spectrum analyzer. The RIN spectrum is obtained from the

measured data as RIN(f) = Sel(f)/P̄el, where Sel(f) and P̄el are the power spectral

density and average power of the electrical signal, respectively. The electrical spectrum

analyzer (model Advantest R9211A) has an upper frequency limit of 100 kHz, which

prevented measurements of RIN at higher frequencies.

The measured RIN spectrum of our RFL is shown in Fig. 4.2a. We observe resonances

at integer multiples of the inverse cavity round-trip time, f = vg/2L = 20 kHz, where

vg = 2 × 108 m/s is the group velocity of light in the fiber. Furthermore, the average

value of the RIN spectrum as well as its contrast are clearly decreasing with increasing

pump power. In contrast, the RIN spectrum of the Ytterbium pump laser, shown in

50



4. Stability of Raman fiber lasers

Yb fiber
pump laser

lp = 1060nm

~~~
ls

Spectrum
analyzer

Oscilloscope

ls = 1110nm

SMF (L = 5km)

R
l

Rr

z

Figure 4.1.: Schematic of the setup to measure the RIN of a Raman fiber laser.

Fig. 4.2b, is fundamentally different. The spectrum is essentially flat, apart from a slight

tilt towards higher frequencies, and it is practically independent of output power.

In the next section we will show that the RIN spectrum of the RFL, shown in Fig. 4.2a,

can be explained as simply being due to the transfer of RIN from the Ytterbium pump

laser to the output of the RFL.

4.1.3. Modeling of pump-to-Stokes RIN transfer

Mathematical model

The RIN spectrum of the Raman fiber laser (see Fig. 4.2a) can be explained in the

framework of the usual model of Raman fiber lasers summarized in Sect. 2.3. The

partial differential equations

± ∂P±i
∂z

+
1

vi

∂P±i
∂t

=

[
−αi +

∑
j

gj,i(P
+
j + P−j )

]
P±i (4.1)

describe the temporal evolution of the functions P±p,s(z, t), which denote the forward

(+) and backward (−) propagating optical powers at the pump (p) and Stokes (s)

wavelengths. The coefficients gj,i describe the transfer of power from wave j to wave i

due to stimulated Raman scattering, the αi are the fiber attenuation constants, and vi

is the group velocity at wavelength λi. The two FBGs for the Stokes wavelength are

located at z = 0 and z = L and have reflectivities Rl and Rr, respectively, and are

described by the two boundary conditions

P−s (L, t) = RrP
+
s (L, t), (4.2)

P+
s (0, t) = RlP

−
s (0, t). (4.3)

As there is no pump backreflector at z = L in our setup, P−(z, t) = 0. The boundary

condition for the pump wave is simply

P+
p (0, t) = P0(t), (4.4)
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Figure 4.2.: (a) measured out-
put RIN of the Raman fiber laser
(1110 nm) from Fig. 4.1 for vari-
ous pump powers Pp, (b) measured
RIN of the Ytterbium (1060 nm)
laser used to pump the RFL, for
various output powers Pout (the
three curves have been displaced
vertically so they can be clearly dis-
tinguished).
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where P0(t) is the prescribed time-varying pump power. The output power of the RFL

is given by

Pout(t) = P+
s (L, t) · (1−Rr) = P+

s (L, t)− P−s (L, t), (4.5)

where we have assumed that the reflectors Rl and Rr are lossless. The boundary-value

problem (BVP) consisting of Eqs. (4.1)–(4.4) can be solved numerically to yield the

temporal evolution of the output power Pout(t), given the pump-power P0(t) [JM01,

CKRB04,CKRB05,BGL04].

In our case, the pump power varies only slightly around its steady-state value P̄0,

P0(t) = P̄0 + p0(t), (4.6)

where p0(t) characterizes the noise of the pump laser, and |p0(t)| � P̄0. Thus, we are

only interested in small deviations from the steady state of the RFL. In particular, the

output power is expected to vary around its steady-state value P̄out as

Pout(t) = P̄out + pout(t), (4.7)

where |pout(t)| � P̄out. The solution process can thus be sped up considerably by

linearizing the BVP around its steady-state solution. We thus make the small-signal
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ansatz for all powers at all positions z,

P±i (z, t) = P̄i
±

(z) + p±i (z, t), (4.8)

where the small-signal powers p±i (z, t) represent the deviation from the steady-state solu-

tion P̄i
±

(z). The latter satisfies the time-independent BVP corresponding to Eqs. (4.1)–

(4.4),

±dP̄±i
dz

=

[
−αi +

∑
j

gj,i(P̄
+
j + P̄−j )

]
P̄±i , (4.9)

P̄−s (L) = RrP̄
+
s (L), (4.10)

P̄+
s (0) = RlP̄

−
s (0), (4.11)

P̄+
p (0) = P̄0. (4.12)

Inserting Eq. (4.8) into Eq. (4.1), using Eqs. (4.9)–(4.12), and neglecting products of

small-signal powers leads to the linear partial differential equations

± ∂p±i
∂z

+
1

vi

∂p±i
∂t

=

[
−αi +

∑
j

gj,i(P̄
+
j + P̄−j )

]
p±i +

[∑
j

gj,i(p
+
j + p−j )

]
P̄±i , (4.13)

where the steady-state solution P̄i
±

(z) appears as coefficients on the right-hand side.

Inserting Eq. (4.8) into the boundary conditions (4.2)–(4.4), we obtain the boundary

conditions for the small-signal powers,

p−s (L, t) = Rrp
+
s (L, t), (4.14)

p+
s (0, t) = Rlp

−
s (0, t), (4.15)

p+
p (0, t) = p0(t). (4.16)

As the BVP (4.13)–(4.16) is linear in p±i , we can perform a Fourier transform,

p̃±i (z, ω) =

∫ +∞

−∞
p±i (z, t) exp(−jωt) dt, (4.17)

to eliminate the temporal derivatives. This finally leads to the ordinary differential

equations

± dp̃±i
dz

=

[
−α̃i +

∑
j

gj,i(P̄
+
j + P̄−j )

]
p̃±i +

[∑
j

gj,i(p̃
+
j + p̃−j )

]
P̄±i , (4.18)

where α̃i = αi + jω/vi, and the boundary conditions are

p̃−s (L, ω) = Rrp̃
+
s (L, ω), (4.19)

p̃+
s (0, ω) = Rlp̃

−
s (0, ω), (4.20)

p̃+
p (0, ω) = p̃0(ω). (4.21)
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Figure 4.3.: (a) calculated pump-
to-Stokes RIN transfer function for
a Raman fiber laser with param-
eters corresponding to the experi-
mental RFL from Fig. 4.1 for var-
ious pump powers Pp, (b) mea-
sured ratio of Stokes RIN to pump
RIN (difference between Figs. 4.2a
and 4.2b), for various pump pow-
ers Pp. The resonance peaks and
the decrease of average RIN and
RIN contrast with increasing pump
power are in good agreement.
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As can be seen from Eq. (4.18), the steady-solution has to be calculated only once for a

given RFL from Eqs. (4.9)–(4.12), as it does not depend on the modulation frequency

ω. The response of the RFL to a sinusoidal modulation of the frequency ω can then be

easily obtained by solving the linear BVP (4.18)–(4.21) for p̃out(ω) = p̃+
s (L, ω)−p̃−s (L, ω).

This immediately gives the modulation transfer function (MTF),

H(ω) =
p̃out(ω)

p̃0(ω)
=
p̃+
s (L, ω)− p̃−s (L, ω)

p̃0(ω)
, (4.22)

or, equivalently, the desired RIN transfer function,

HRIN(ω) =

[
|p̃out(ω)|/P̄out

|p̃0(ω)|/P̄0

]2

=

[
P̄0

P̄out

|H(ω)|
]2

. (4.23)

Comparison with experimental results

Fig. 4.3a shows the calculated RIN transfer function 10 logHRIN(ω) for an RFL with

parameters corresponding to the experimental RFL from Fig. 4.1. We have used a

Raman gain constant of g = gp,s = −(λp/λs)gs,p = 0.8 (Wkm)−1, attenuation constants

αp = 1.8 dB/km and αs = 1.5 dB/km, FBG reflectivities Rl = 90% and Rr = 40%, and

equal group velocities for both pump and Stokes waves, vp = vs = 2×108 m/s (dispersion

has a negligible effect, as discussed at the end of this subsection).
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Figure 4.4.: Longitudinal distribution of the pump and Stokes powers inside a Raman fiber laser
under sinusoidal modulation Pp(t) = [3.5 + cos(2πft)/2] W with f = 10.5 FSR (off-resonance
modulation). The figure shows a snapshot at a time where the pump power is maximal.

A comparison of the theoretical RIN transfer function, Fig. 4.3a, with the measured

ratio of the Stokes and pump RIN, Fig. 4.3b, shows that the qualitative features are

in good agreement. In particular, the resonance frequencies agree excellently, and the

decrease of average RIN and of the RIN contrast with increasing pump power is clearly

observed both experimentally and numerically. We conclude from this that pump-to-

Stokes RIN transfer has a significant effect on the output RIN of the RFL.

In the calculation above, and in all results presented in the remainder of this chapter,

we have assumed equal group velocities for the pump and Stokes waves, vp = vs. After

that, we have repeated all calculations assuming a typical value for the group-velocity

dispersion of D = −20 ps/(nm · km) at λ = 1100 nm. Taking vs = 1/[(λs−λp)D+ 1/vp]

and vp = 2× 10−8 m/s, we found no significant effect of dispersion on the results.

Illustration of RIN transfer

To conclude this section, we briefly illustrate the occurrence of the resonance peaks in

the RIN spectrum or in the MTF. The two numerical examples shown in Figs. 4.4 and

4.5 correspond to a different RFL than above, because the effect is more clearly visible

here. Its length is L = 1000 m, such that the inverse cavity round-trip time or free

spectral range (FSR) is vg/2L = 100 kHz. The results in this section have been obtained

from the small-signal BVP (4.18)–(4.21).

Fig. 4.4 shows the longitudinal distribution of the pump and Stokes powers inside the

RFL under sinusoidal modulation with a frequency of 10.5 times the FSR. The pump

power oscillates between 3 and 4 W, and the figure shows a snapshot at a time when the

pump power is maximal, i. e., 4 W. There is a weak modulation of the Stokes wave, which

is most pronounced in the forward-propagating Stokes wave at the right-hand side of the
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Figure 4.5.: Longitudinal distribution of the pump and Stokes powers inside a Raman fiber
laser under sinusoidal modulation Pp(t) = [3.5+cos(2πft)/2] W with f = 10 FSR (on-resonance
modulation). The figure shows a snapshot at a time where the pump power is maximal.

cavity. However, at the left-hand side of the cavity, where the pump is coupled in, the

Stokes-wave modulation is out of phase by 180 degrees with respect to the pump-power

modulation. This corresponds to the case of off-resonance modulation.

In contrast, Fig. 4.5 shows the resonant case. The modulation frequency is now exactly

10.0 times the FSR. Now, the Stokes modulation wavelength can be seen to fit inside

the round-trip length 2L exactly ten times. Both the Stokes modulation and the pump

modulation are seen to have a peak at the same time at the left-hand side of the cavity.

The modulation is in phase and thus the system in resonance, and there is an efficient

transfer of modulation from the pump wave to the Stokes wave.

It is clear that by sweeping the modulation frequency, one alternately passes through

non-resonant and resonant states, the latter corresponding to the modulation frequencies

where the corresponding modulation wavelength fits into twice the cavity length (2L)

an integer number of times.

4.2. Optimization of RFLs for low-noise co-pumped

Raman amplifiers

We now turn to the problem of designing an RFL as a pump source for a co-pumped

Raman amplifier such that the performance degradation of the transmission span due

to RIN transfer in the amplifier is minimized. The results presented here form part

of [KCRB06]. It will be assumed in the following that the RIN of the considered RFLs

stems exclusively from pump-to-Stokes RIN transfer, see section 4.1.
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4.2.1. Overview of the optimization task

Assuming that the noise on the RFA’s pump laser (the RFL to be designed) can be

treated as Gaussian and neglecting the noise on “0” bits in the signal stream, the penalty

dBQ in the signal-quality factor Q can be estimated as [FHM01]

dBQ = 10 log

√
1 +Q2

S

∫ ∞
0

rS(f) df

= 10 log

√
1 +Q2

S

∫ ∞
0

rRFL(f)HA(f) df,

(4.24)

where rS(f) is the RIN of the signal at the receiver due to RIN transfer in the amplifier,

and equals the product of the RIN spectrum rRFL(f) of the pumping RFL and the RIN

transfer function HA(f) of the amplifier. The latter is modelled as a low-pass filter,

HA(f) =
HA(0)

1 + f 2/f 2
c

, (4.25)

and we assume a cut-off frequency of fc = 5 MHz and a DC RIN transfer ofHA(0) = 5 dB,

corresponding to a Raman amplifier with an on-off gain of 7.72 dB [FHM01]. The signal

quality at the receiver without Raman-induced RIN is taken as QS = 7, corresponding

to a bit-error ratio (BER) of 1.3× 10−12.

We now assume that the RIN spectrum rRFL(f) of the RFA’s pump laser (the RFL

to be designed) is exclusively due to transfer of RIN from the RFL’s pump laser to the

output of the RFL. Thus, rRFL(f) = r0HRFL(f), where r0 is the RIN of the pump laser

of the RFL (assumed constant, r0 = −95 dB/Hz, compare Fig. 4.2b), and HRFL(f) is

the RIN transfer function of the RFL to be designed. We aim at optimizing HRFL(f)

such that dBQ is minimized.

What we do below can be summarized as follows. We pick a certain RFL configuration

and, from the BVP (4.9)–(4.12), we calculate the steady-state solution at the given

pump power. From the BVP (4.18)–(4.21), the RIN transfer function of the RFL is then

calculated at a sufficiently large number of frequencies between f = 0 and f = fmax,

where fmax is set to a sufficiently large value so that a further increase does not change

the final results (we have used fmax = 200 MHz, which is well above the cut-off frequency

of the low-pass filter of the RIN transfer function of the amplifier). The calculated RIN

transfer function is then multiplied with r0 and with HA(f) and then integrated from

f = 0 to f = fmax, yielding the integral in Eq. (4.24) and thus the Q-factor penalty

dBQ induced by the RIN of the particular RFL under consideration.

Note that the case of a counter-pumped Raman amplifier can be modeled by a low-

pass filter similar to Eq. (4.25) with a much lower cut-off frequency fc < 10 kHz [FHM01,
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Figure 4.6.: Q-factor penalty introduced by a noisy Raman fiber laser in a Raman-amplified
transmission span, as a function of the output-coupler reflectivity Rr of the RFL. The pump
power is adjusted such that the output power is constant for all RFLs.

MHB02, MBH03]. Consequently, resulting Q-factor penalties are much lower, and the

RIN requirements on a counter-pumping RFL are much less critical.

4.2.2. Dependence of Q penalty on RFL parameters

Fig. 4.6 shows the variation of Q-factor penalty dBQ with the reflectivity Rr of the

output coupler of an RFL. The remaining parameters of the RFL are a moderate Raman

gain of 1.5 (Wkm)−1, pump and Stokes wavelengths of λp = 1060 nm and λs = 1110 nm,

respectively, fiber attenuation constants of αp = 0.91 dB/km and αs = 0.76 dB/km,

fiber length L = 150 m, group velocities vp = vs = 2 × 108 m/s, and a left-hand FBG

reflectivity of Rl = 99%. The steady-state pump power P̄0 is adjusted such that the

output power of all compared RFLs is P̄out = 1.5 W.

Fig. 4.6 shows clearly that a high-reflectivity output coupler is advantageous for low-

noise operation of a co-pumped Raman-amplified transmission span. For example, the

BER of the system can be reduced by three orders of magnitude simply by using a

90% FBG instead of a 40% one. However, the required pump power for the RFL also

depends on the reflectivity of the output coupler. The reflectivity required for maximum

conversion efficiency is evidently not the same as the one required for optimal noise

performance, so there is a tradeoff between pump power and noise performance.

For the results shown in Fig. 4.7, the output-coupler reflectivity is kept fixed at Rr =

60%, and only the Raman-gain coefficient of the fiber used for the RFL is varied. The

results show clearly that a high Raman gain leads to a lower BER of the co-pumped

transmission system, and it also reduces the pump power required to obtain the desired

1.5 W of output power.

Finally, Fig. 4.8 shows the dependence of the Q-factor penalty on the length of the
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transmission span, as a function of the length L of the RFL. The pump power is adjusted such
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fiber used in the RFL, while all other parameters are kept fixed. In contrast to above,

we now use an output-coupler reflectivity of Rr = 25%, a high-Raman-gain fiber with

a gain constant of g = 4 (Wkm)−1, and the output power of the RFL is kept fixed at

P̄out = 4.5 W. The results show that there is an optimal value for the fiber length both

in terms of noise performance as well as conversion efficiency. However, the optimal

lengths are different, so again there is a tradeoff. For the sake of completeness, Fig. 4.9

shows the RIN spectrum of the RFL with the length chosen such that noise performance

in the transmission system is optimal (marked with the thick cross in Fig. 4.8).
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4.3. Suppression of low-frequency RIN transfer in

double-cavity RFLs

In this Section, we further investigate the concept of the double-cavity RFL with three

fibre Bragg gratings (FBGs) at the Stokes wavelength, introduced in Sect. 3.2. In the

discussion of the various design possibilities in Sect. 3.2.3 we have postponed a discussion

of the LxL configurations, i. e., those with a low left-hand and a low right-hand output

reflectivity. We show here by simple numerical simulations that the input-output charac-

teristics of those DC-RFLs can exhibit a pump power level at which the slope efficiency

dPout/dPpump is zero. At this operating point, the output power is independent of the

pump power and low-frequency pump power variations are not transferred to the RFL

output, thus suppressing low-frequency RIN caused by pump-to-Stokes RIN transfer.

Furthermore, the low-noise operating point is tunable by merely varying the reflectivity

of one of the FBGs [MHB+01], thus providing a continuously power-tunable low-noise

Stokes output for use as a pump source in co-pumped RFAs. The theoretical results of

this section have been published in [KR04].

4.3.1. Geometry and model

Fig. 3.7 shows the setup of a double-cavity Raman fibre laser (DC-RFL). It contains

three FBGs reflecting at the Stokes wavelength λs, at fibre positions z = 0, z = zm

and z = L, where L is the fibre length. Thus two concatenated cavities (Rl ↔ Rm and

Rm ↔ Rr) are formed for the Stokes laser line instead of only one as in conventional

single-cavity RFLs, see Sect. 3.1.
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The significantly different behaviour of such DC-RFLs as compared to single-cavity

RFLs is studied by numerical simulations based on the standard RFL model, which is

modified to take into account the incoherent superposition of reflected and transmitted

powers at the intra-cavity Stokes reflector with reflectivity Rm and transmittivity Tm,

see Sect. 3.2.1. We have assumed the lossless case Tm = 1 − Rm here. The DC-RFL

considered here is pumped at the wavelength λp = 1060 nm, and the Stokes wavelength

is λs = 1112 nm. We assume a fibre of length L = 600 m with Raman gain constant

g = 1.2 (Wkm)−1 and fibre loss coefficients of αp = 0.8 dB/km and αs = 0.66 dB/km for

the pump and Stokes lines, respectively. The reflectivities of the left-hand, intra-cavity,

and right-hand FBGs are Rl = 40%, Rm = 95% and Rr = 30%, respectively. The

intra-cavity reflector is located at zm = 100 m.

4.3.2. Theoretical characteristics

Fig. 4.10 shows the numerically calculated input-output characteristics of our DC-RFL.

While the left-hand output power is monotonically increasing with the pump power, the

right-hand output power initially increases, but reaches a maximum at Ppump = 4.3 W.

When the laser is operated at this pump power, low-frequency pump power variations

(e. g., due to RIN of the pump laser) are not transferred to the right-hand output,

leading to the desired suppression of the low-frequency RIN output spectrum due to

pump-to-Stokes RIN transfer.
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Figure 4.10.: Input-output characteristics of a DC-RFL.

The reason for the special behaviour of DC-RFLs becomes particularly clear by con-

sidering an “idealized” DC-RFL, whose intra-cavity FBG reflectivity is Rm = 100%

instead of just 95% as in Fig. 4.10. Because no Stokes power can be exchanged between

the left-hand and right-hand cavities through the intra-cavity Stokes reflector at zm,

the idealized DC-RFL simply corresponds to a longitudinal concatenation of two inde-

pendent single-cavity RFLs, the right-hand one of which (Rm ↔ Rr) is pumped by the

61



4. Stability of Raman fiber lasers

residual pump power of the left-hand RFL (Rl ↔ Rm).
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Figure 4.11.: Input-output characteristics of the DC-RFL from Fig. 4.10 with Rm = 100%.
Four operating regimes I–IV are indicated.

The characteristics of the idealized DC-RFL are plotted in Fig. 4.11. There are now

four clearly separated operating regimes. In the first regime (Ppump < 1.20 W), the pump

power is below the threshold of the left-hand cavity Pth,1 = 3.98 W, and the pump is

attenuated only by linear fibre losses. Consequently, the pump power of the right-hand

cavity is Ppump2 = Ppump exp(−αpzm) = 0.982Ppump, which is below the threshold of

the right-hand cavity Pth,2 = 1.18 W, too. As a result, the DC-RFL produces neither

left-hand nor right-hand output power.

In the second regime (1.20 W < Ppump < 3.98 W), the pump power is still below the

threshold of the left-hand cavity. However, the right-hand cavity is above threshold

now, so it starts lasing, producing the observed right-hand output power. The third

regime, (3.98 W < Ppump < 9.54 W) is characterized by the simultaneous lasing of both

cavities. Note that for an increase of the pump power, the output power of the left-hand

cavity increases, as expected for any single-cavity RFL. However, due to the resulting

depletion of the pump power in the left-hand cavity, the pump power Ppump2 available for

the right-hand cavity is reduced, leading to a decrease of the right-hand output power

of the DC-RFL.

Finally, in the fourth regime (Ppump > 9.54 W), the residual pump power at the end

of the left-hand cavity Ppump2 is below the threshold of the right-hand cavity, which

consequently does not lase.

We now switch back to the more realistic case where the intra-cavity FBG reflectivity

Rm is smaller than 100%. Comparing Fig. 4.11 (idealized DC-RFL with Rm = 100%)

with Fig. 4.10 (realistic DC-RFL with Rm = 95%) shows that reducing the value of Rm

“smoothes out” the laser characteristics. When one of the cavities of a realistic DC-RFL

is lasing, part of its power leaks through Rm to the opposite output of the DC-RFL, so

that above threshold, both output powers are always non-zero as opposed to the case of
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Figure 4.12.: Input-output character-
istics of several DC-RFLs with the
left-hand reflectivity Rl varying be-
tween 20% (upper curve) and 90% in
steps of 10%.
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the idealized DC-RFL. For the same reason, the transition between regimes II and III

is now smooth. The curvature of the right-hand output characteristics at the zero-slope

point is the higher the larger Rm is chosen.

Tunability

From the discussion above it is clear that by increasing Rl, the left-hand cavity starts

lasing for lower pump powers so that the third regime sets in earlier and the zero-slope

point moves to lower pump powers. Fig. 4.12 shows the right-hand output characteristics

of our DC-RFL with Rm = 95% for eight different left-hand FBG reflectivities Rl. It

is seen that by varying Rl, the zero-slope-efficiency point can be tuned across a broad

output-power range. This makes the DC-RFL suitable as a power-tunable low-noise RFA

pump source. Fig. 4.13 shows how low-noise operation at desired output powers down

to 0.6 W can be achieved by adjusting the pump power and the left-hand reflectivity.

4.3.3. Experimental characteristics

In our experimental DC-RFL (see Fig. 4.14) [Sta06], the right-hand cavity for the Stokes

line is formed by 600 m of Fiberlogix high-Raman-gain fiber (HRGF) and two FBGs at a

center wavelength of 1111 nm, with peak reflectivities of 96% and 31%, respectively, and

FWHMs of about 0.1 nm. The left-hand cavity is formed by 2 km of standard single-

mode fiber (SSMF), by the 96% grating just mentioned and by the broadband left-hand
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Figure 4.14.: Experimental setup of a
double-cavity Raman fiber laser incor-
porating a bulk-optically tuned left-
hand reflector.
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Figure 4.15.: (a) measured and
(b) simulated characteristics of a
double-cavity Raman fiber laser
with a tunable low-noise operat-
ing point.

reflector Rl, which is an edge filter that reflects a tunable amount of the Stokes light back

into the fiber. It also serves as a multiplexer for the injection of pump light generated

by the Yb fiber laser at 1060 nm. More details about the employed components can be

found in [Cie05, Sta06]. Fig. 4.15a shows the measured characteristics of the DC-RFL

for three settings of the left-hand reflector Rl. The FWHM of the Stokes line was about

0.5 nm. No lasing at higher Stokes orders was observed.

The characteristics shown in Fig. 4.15a are essentially those expected from theory

(compare Fig. 4.15b): the right-hand cavity has a lower threshold than the left-hand

one and thus starts lasing first when pump-laser power is increased from zero. Eventually,

the threshold of the left-hand cavity is reached. When the latter starts lasing (marked by

the dotted arrows in Fig. 4.15a), less pump power is passed on to the right-hand cavity,

the output power of which therefore saturates and decreases, leading to the desired
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local maximum in the characteristics. At such an operating point, a change in pump

power (e.g., due to RIN on the pump laser) is not transferred to the Stokes output.

Furthermore, this operating point is tunable by merely varying the reflectivity of the

left-hand reflector Rl.

For the simulations we used the following parameters: for the SSMF, αp = αs =

0.7 dB/km and g = 0.3 /Wkm. For the HRGF, αp = αs = 1.5 dB/cm (scaled from the

manufacturer’s data according to 1/λ4) and g = 3.5 /Wkm (scaled from the manufac-

turer’s data according to 1/λ). The effective FBG reflectivites are Rl = 60, 40 or 0.5%

for the three settings of the edge filter, Rm = 85% and Rr = 30%. We assume that 70%

of the pump-laser power is actually coupled into the double-cavity RFL.

4.4. Stabilizing effect of line broadening

We now show phenomenologically that power-dependent Stokes line broadening can

stabilize Raman fiber lasers (RFLs) against undesired pump power changes. The results

of this section have been published in [KCR03].

4.4.1. Overview

Pump
laser

Multiple
Stokes resonators

Gain spectrum
of pump laser

The need for Raman amplifiers that provide a flat-

tened gain over a large bandwidth [PW02, RK98] has

raised the need for light sources with configurable si-

multaneous power output at two or more closely spaced

wavelengths. Recently developed multi-wavelength Ra-

man fiber lasers (MWRFLs) meet these requirements

well [CLJ+00, LBL+02, CHB04]. In multi-wavelength

RFLs, one laser pumps several Stokes resonators si-

multaneously, as illustrated in the adjacent figure.

In conventional RFL models (such as those used so far in this thesis), the total power

of a laser line is usually treated as being concentrated at one wavelength, namely the

center wavelength of the FBG that comprises the corresponding laser-line cavity. The

finite non-zero linewidth of the laser lines in practical RFLs is neglected. This leads

to simple, spectrally discrete equations and boundary conditions determining the pump

and Stokes power distributions in an RFL, see Eqs. (3.1)–(3.4).

We show in the following that these simple RFL models (relying on power-independent

laser linewidths) predict a significant instability of the laser line powers in MWRFLs.

For example, a change of the input pump power in the order of one percent can cause one

65



4. Stability of Raman fiber lasers

or more laser lines to be suppressed. On the other hand, power-dependent line broaden-

ing has been observed in various experiments [KCDP00, PKJU00, PKC01, LWS80] and

is usually attributed to four-wave mixing [BCI+06]. We demonstrate that RFLs, in par-

ticular MWRFLs are significantly stabilized when the effective reflectivities of the fiber

Bragg gratings (FBGs) forming the Stokes resonators are permitted to decrease with

increasing incident power due to the spectral broadening of the Stokes lines.

4.4.2. Power-dependent effective reflectivities

Standard boundary conditions

In the conventional model for RFLs (see section 3.1.3), the boundary conditions for an

RFL with reflecting elements such as FBGs at the fiber ends are

P+
1 (0) = Pp (input pump power), (4.26)

P+
i (0) = P−i (0) ·RLi (i = 2 . . . n), (4.27)

P−i (L) = P+
i (L) ·RRi (i = 1 . . . n), (4.28)

where RLi and RRi denote the reflectivities of the FBGs at the left-hand and right-hand

fiber ends for line i, respectively, and line 1 corresponds to the pump power.

Usually, the FBGs at the pump side (left-hand side here) are highly reflecting, and a

few of the right-hand FBGs are moderately reflecting in order to couple out laser light.

The output power of line i is

Pout,i = P+
i (L)− P−i (L) = P+

i (L)(1−RRi). (4.29)

Due to the assumption of Stokes lines with zero spectral width, the reflectivities used

in the boundary conditions (4.27) and (4.28) are usually taken to be the maxima of the

FBG reflectivity spectra, and the detailed shapes of the latter are irrelevant for these

models. We will now relax this assumption.

Introduction of power-dependent effective reflectivities

It has been observed experimentally that the spectral linewidth of the Stokes output of

a Raman fiber laser increases with increasing output power [KCDP00,PKJU00,PKC01,

LWS80]. This behavior is usually attributed to the χ(3) nonlinear effects in the fiber,

such as self-phase modulation and four-wave mixing (see, e. g., [BCI+06]). However,

we do not need to know the exact physical mechanism of line broadening. Our results

are simply based on the reasonable generalization of well-known experimental results
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that not only the Stokes output line but also the corresponding intra-cavity Stokes

line broadens monotonically with increasing power carried by it. Making this simple

phenomenological assumption, we avoid the need for a spectrally resolved model of the

RFL.

We consider the influence of the spectral width of a Stokes line on the total power

reflected from an FBG with the reflectivity spectrum R(λ). The ratio of the total

reflected power Prefl to the total incident power Pinc represents an effective reflectivity

Reff of the FBG,

Reff =
Prefl

Pinc

, (4.30)

where the total powers

Pinc =

∫
Sinc(λ) dλ (4.31)

and

Prefl =

∫
Srefl(λ) dλ =

∫
R(λ)Sinc(λ) dλ (4.32)

are calculated as the integrals of the incident and reflected spectral power densities of

the corresponding laser lines Sinc(λ) and Srefl(λ), respectively, over the wavelength λ.

It is obvious that for most practical FBGs (for which the reflectivity R(λ) is essen-

tially monotonically decreasing for increasing detuning from the center wavelength), a

broader incident spectrum leads to a lower effective reflectivity. Since the spectrum

broadens with increasing power, it is physically reasonable to assume that the effective

reflectivity Reff of an FBG decreases with increasing incident Stokes power Pinc. This is

the phenomenological assumption on which the results of this paper are based.

The reduction of the effective reflectivity by a non-zero Stokes linewidth can simply

be illustrated by assuming the reflectivity R(λ) of the FBG and the power density

Sinc(λ) of the Stokes lines to have Gaussian spectra R(λ) = R̂ exp [−(λ− λB)2/w2
R] and

Sinc(λ) = Ŝ exp [−(λ− λB)2/w2
S], respectively, where R̂ and Ŝ are the corresponding

maximum values, and λB is the center or Bragg wavelength of the FBG. The effective

reflectivity obtained from Eq. (4.30),

Reff =
R̂√

1 + (wS/wR)2
, (4.33)

thus decreases with an increasing ratio wS/wR, where wS and wR are the spectral widths

of the Stokes line and of the grating reflectivity spectrum, respectively. If now the

Stokes line broadens (and wS increases) due to an increase of its power Pinc, the effective

reflectivity Reff must decrease.
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In the following we show that RFLs can be more stable against undesired changes of

the pump power than predicted by models assuming power-independent linewidths. The

underlying principle is simple: an increase of the Stokes power in any cavity increases

the corresponding spectral linewidth. This reduces the effective reflectivity of the FBGs

of the cavity and thus increases the total cavity loss. The latter counteracts the power

increase and thus stabilizes the RFL. We show phenomenologically by numerical sim-

ulations that the characteristics of multi-wavelength RFLs can be strongly affected by

taking this effect into account.

4.4.3. Stabilizing effect on single-wavelength RFLs

In this section we consider a simple single-wavelength RFL and illustrate how the power-

dependent line broadening decreases the sensitivity of the intra-cavity Stokes power

against changes of the pump power Pp. In Section 4.4.4 we show a dramatic effect on

the stability of multi-wavelength RFLs.

All the RFLs in this paper are based on a fiber with an attenuation α(λ) = ᾱ · λ̄4/λ4

(ᾱ = 0.4 dB/km, λ̄ = 1550 nm) caused by Rayleigh scattering. The pump wavelength is

λp = 1060 nm. There is no pump backreflector at the fiber end in our examples, but the

behavior is similar for backreflected pumps.

The specific RFL in this example has one Stokes line at λ2 = 1120 nm. The fiber has

the length L = 200 m, and the Raman gain coefficient is g = 1× 10−3/Wm [Agr01]. Let

us suppose that at a pump power of P̄p = 4 W, the Stokes spectra are such that the

effective FBG reflectivities are RL2,eff|P̄p
= 99% on the left-hand side and RR2,eff|P̄p

= 50%

on the right-hand side (such a setup can be realized practically by writing FBGs with

adequate reflection spectra into the fiber). For these parameters, the intra-cavity forward

Stokes power of the RFL at the right-hand side is P+
2 (L)|P̄p

= 4.57 W, as calculated from

the conventional model given in section 3.1.3.

We now assume, according to the discussion in section 4.4.2, that the effective reflec-

tivity RR2,eff of the right-hand (output) FBG decreases with an increase of the incident

power P+
2 (L) according to

RR2,eff|Pp
= RR2,eff|P̄p

+ R′R2,eff

∣∣
P̄p
·
{
P+

2 (L)
∣∣
Pp
− P+

2 (L)
∣∣
P̄p

}
, (4.34)

where the differential effective reflectivity R′R2,eff|P̄p
< 0 quantifies the strength of the

power dependence of the effective reflectivity and depends on the actual Stokes and

FBG spectra. In case of Gaussian reflection and power-density spectra, the differential

effective reflectivity of an FBG at a certain incident power Pinc can be calculated from
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4. Stability of Raman fiber lasers

Eq. (4.33) as

R′eff =
dReff

dPinc

= −Reff
wS

w2
S + w2

R

dwS
dPinc

. (4.35)

From the experimental results in [KCDP00] we estimate using Eq. (4.35) that the dif-

ferential effective reflectivity R′eff can be as large as −8 %/W.

We assume that the left-hand effective reflectivity RL2,eff remains constant, for example

because the reflectivity spectrum of the left-hand FBG is much broader than that of the

right-hand FBG (a non-negligible power dependence here would not yield any qualitative

changes in the results).
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Figure 4.16.: Intra-cavity Stokes power P+
2 (L) versus pump power Pp in a simple single-

wavelength Raman fiber laser. Solid curve: power-independent FBG reflectivites. Dashed and
dashed-dotted curves: effective right-hand reflectivity RR2,eff has been assumed to decrease
with incident Stokes power according to Eq. (4.34).

If R′R2,eff|P̄p
= 0, i. e., if the line spectra are power-independent, we obtain the char-

acteristic shown as the solid curve in Fig. 4.16. Assuming that the differential effective

reflectivities are R′R2,eff|P̄p
= −1 %/W or R′R2,eff|P̄p

= −2 %/W, the characteristics are

the dashed and dashed-dotted curves in Fig. 4.16, respectively. We see that the intra-

cavity characteristics of the RFLs with power-dependent effective reflectivities are less

sensitive against pump-power changes than those predicted by neglecting the power de-

pendence of the Stokes linewidth. Also, RFLs in which the Stokes line broadens faster

with increasing power have a larger value of R′R2,eff|P̄p
, and thus are less sensitive against

pump-power changes. The effect as presented up to now is relatively weak, but it is

much more pronounced in the multi-wavelength RFLs presented in the next section.

We note that while the intra-cavity characteristics are always stabilized, the output

characteristics Pout,2(Pp) can actually become less stable in some cases. This is best

illustrated by considering an extreme situation. Imagine that the effective reflectivity of

the output FBG is 99% for a specified pump power. An increase of the pump power now
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leads to a decrease of this effective reflectivity to, for example, 98%. This 1% change

in reflectivity with its relatively small effect on the intra-cavity Stokes power must be

contrasted to the change of the transmittivity of the FBG, which is doubled from 1%

to 2%. Thus the RFL output power is nearly doubled. Without a change in the FBG

reflectivity, the output power would not increase that much.

4.4.4. Stabilizing effect on multi-wavelength RFLs

In this section we show that the stabilizing effect of power-dependent effective reflectiv-

ities can be particularly strong in multi-wavelength RFLs.

We first consider an MWRFL with three Stokes lines at the wavelengths λ2 = 1100 nm,

λ3 = 1110 nm and λ4 = 1120 nm, respectively. The fiber length is L = 500 m. For

the sake of a simple modeling, the gain coefficient for stimulated Raman scattering

from wavelength λp to λs is approximated by a triangular profile with a peak value of

1×10−3/Wm at the wavelength difference λs−λp = 60 nm. In the differential equations

describing the longitudinal evolution of the pump and various Stokes powers, we take

into account all possible SRS interactions between the various lines as in [CRB03]—for

example, the lowest-wavelength Stokes line (i = 2) can act as a pump for the two higher-

wavelength Stokes lines, although with a relatively low gain coefficient, see Fig. 2.3.

Suppose now that the MWRFL is pumped with P̄p = 4 W, and its Stokes and FBG

spectra are such that the effective reflectivities in this operating state are RLi,eff|P̄p
=

99% for all three Stokes lines i = 2, 3, 4, and RR2,eff|P̄p
= 80%, RR3,eff|P̄p

= 18.6% and

RR4,eff|P̄p
= 4.33%. Then, the output power Pout,i(P̄p) of each of the three lines is equal

to 0.666 W. The reflectivities have been determined by using the optimization algorithm

described in [CRB03]. We consider this design with equalized output powers for visual

clarity of the presented figures.

The input-output characteristic of the MWRFL specified above is plotted in Fig. 4.17

for the case of power-independent effective FBG reflectivities, i. e., the Stokes linewidths

do not change from their values at Pp = P̄p. It can be seen that this RFL is rather

instable: changing the pump power by only about 1% causes one of the Stokes lines to

vanish.

If the Stokes linewidths of the MWRFL are permitted to vary with the carried power,

however, the situation is quite different. As in Section 4.4.3, we consider what happens

when the right-hand effective FBG reflectivities vary with the incident Stokes powers

according to

RRi,eff|Pp
= RRi,eff|P̄p

+ R′Ri,eff

∣∣
P̄p
·
{
P+
i (L)

∣∣
Pp
− P+

i (L)
∣∣
P̄p

}
(4.36)
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Figure 4.17.: Input-output characteristic of a multi-wavelength RFL obtained from a simula-
tion with power-independent Stokes linewidths.
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Figure 4.18.: Input-output characteristic of a multi-wavelength RFL whose right-hand effective
FBG reflectivities have a differential effective reflectivity of R′Ri,eff|P̄p

= −1 %/W for i = 2, 3, 4
at Pp = P̄p = 4 W. Compared to Fig. 4.17, this MWRFL is more stable against pump-power
changes.

for i = 2, 3, 4. For the sake of simplicity we assume equal differential effective reflectiv-

ities R′Ri,eff|P̄p
for all Stokes lines (in practice, the FBG reflectivity spectra would have

to be designed accordingly). The characteristic of this MWRFL is plotted in Fig. 4.18

for R′Ri,eff|P̄p
= −1 %/W (i = 2, 3, 4). Obviously the stability of this MWRFL is consid-

erably higher than that of the MWRFL with power-independent Stokes linewidths, in

accordance with the arguments at the end of Section 4.4.2.

In order to be able to quantify the degree of stability, we define the sensitivity σ of our

MWRFL within an interval [P<, P>] around a specified pump power P̄p as the maximum

change occuring in the output powers,

σ = max
2≤i≤4

Pp∈[P<,P>]

∣∣∣∣Pout,i(Pp)− Pout,i(P̄p)

Pp − P̄p

∣∣∣∣ . (4.37)
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In the case above, P̄p = 4 W and [P<, P>] = [3.9 W, 4.1 W], and the sensitivity of our

MWRFL with R′Ri,eff|P̄p
= 0 is σ = 23.1, whereas that of the MWRFL with R′Ri,eff|P̄p

=

−1 %/W is only σ = 0.643.

Finally, we illustrate the improvement of the stability within [P<, P>] = [3.9 W, 4.1 W]

for other three-wavelength RFLs with output powers equalized for Pp = P̄p = 4 W.

Fig. 4.19 shows the sensitivity of MWRFLs without (R′Ri,eff|P̄p
= 0, solid curve) and

with line broadening (R′Ri,eff|P̄p
= −1 %/W, dashed curve) as a function of the effective

reflectivityRR2,eff|P̄p
of the right-hand FBG for line i = 2 at Pp = P̄p. The line broadening

reduces the sensitivity by more than one order of magnitude. The parameter RR2,eff|P̄p

is varied to model the MWRFL configurations. The required effective reflectivities for

Stokes lines 3 and 4 follow from the algorithm described in [CRB03] by requiring equal-

ized output powers in all three Stokes lines at the pump power Pp = P̄p. All other

parameters of the RFL besides these reflectivities are the same as in the MWRFL con-

sidered at the beginning of this section. Fig. 4.20 shows the corresponding results in

dependence of the fiber length L. These results demonstrate that the stabilizing effect

of line broadening is a quite general characteristic of such RFLs.

Figure 4.19.: Sensitivity σ of three-
wavelength RFLs as a function of the ef-
fective reflectivityRR2,eff|P̄p

of the right-
hand FBG for line i = 2 at P̄p = 4 W.
Output powers of the three Stokes lines
i = 2, 3, 4 are kept equalized for Pp =
P̄p. Solid curve: without line broaden-
ing (R′Ri,eff|P̄p

= 0). Dashed curve: with
line broadening (R′Ri,eff|P̄p

= −1 %/W).
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Figure 4.20.: Sensitivity σ of three-
wavelength RFLs as a function of the
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4.5. Chapter summary

In this chapter, we have developed a model for the pump-to-Stokes transfer of relative

intensity noise in Raman fiber lasers. The model can qualitatively explain the measured

output RIN spectra of RFLs. We have then shown how single-cavity RFLs can be opti-

mized such that the degradation of the bit-error rate of a Raman-amplified transmission

span by the RIN of the RFL is minimized. Furthermore, we have shown theoretically

and experimentally that a double-cavity RFL can be used to realize RFLs that have a lo-

cal maximum in their characteristics, at which the RFL is stable against low-frequency

pump-power fluctuations. Finally, we have shown that the effect of power-dependent

line broadening in RFLs significantly improves the stability of multi-wavelength RFLs

against pump-power fluctuations, as compared to what the usual model (without line

broadening) predicts.
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5. Raman gain and nonlinear

absorption in silicon waveguides

In Chapter 2 we derived a model describing the interaction between the pump and

Stokes powers in a general waveguide, see Eqs. (2.41)–(2.42). This chapter prepares for

the remainder of the thesis by adapting this general model to silicon waveguides.

A short overview over silicon waveguides is given in section 5.1. Sections 5.2 and 5.3

are concerned with the effects of Stimulated Raman Scattering (SRS) and Two-Photon

Absorption (TPA), respectively, while section 5.4 extends our model to include the

important effect of Free-Carrier Absorption (FCA). Section 5.5 summarizes the complete

model in a compact form for easy reference.

While at least two detailed derivations of similar models for wave propagation in

silicon have recently been published in the literature [CPO06, PL06], several aspects

of the results presented here are novel. The existing models do not allow for counter-

propagating pump and Stokes waves, but in order to describe lasers they have to be

included in the model. Furthermore, the modeling of FCA from section 5.4 makes clear

for the first time the precise relationship between the effective free-carrier lifetime τeff

“seen” by the mode and the underlying carrier-diffusion problem. This is particularly

important for the modeling of cladding-pumped Raman amplifiers in section 6.4, where

the pump and Stokes mode fields may have totally different mode shapes and overlaps

with the silicon. Finally, the models for the TPA spectrum and the tensorial structure of

Figure 5.1.: Two typical silicon-waveguide geometries. left: strip waveguide as in
[EDRMO+04], right: rib waveguide as in [RJL+05].
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the nonlinear-susceptibility tensor for TPA discussed in section 5.3 are used here for the

first time and are required for the realistic modeling of silicon Raman lasers in section

7.4.

5.1. Silicon waveguides

In silicon photonics, practical single-mode waveguides with low propagation losses can

be realized in various forms. Strip waveguides or so-called “photonic wires”, as shown

on the left-hand side of Fig. 5.1, have a silicon core with cross-sectional dimensions on

the order of a few hundred nanometers. They are surrounded everywhere by lower-

refractive-index material, namely the silica buffer layer below and air or silica above

[VM04,BDJ+05,TYF+05]. On the other hand, rib waveguides have a larger core on the

order of micrometers, as well as adjacent slabs of silicon on both sides, see the right-hand

side of Fig. 5.1. In spite of their large core dimensions, rib waveguides can be designed

such that they guide only the fundamental mode, while all higher-order modes are leaky

and radiate power through the adjacent slab waveguides [SSP91, JYY+98, CPL+05].

Finally, photonic-crystal waveguides have been demonstrated, where light is guided along

a line defect in a photonic-crystal slab [LDVS00,MMV03,BDJ+05].

Of all these waveguide types, rib waveguides pose the weakest requirements on the

processing technology due to their relatively large dimensions. Furthermore, coupling

light between rib waveguides and optical fibers is relatively easy, and rib waveguides

can be designed to have low or even zero birefringence [CPL+05,YXJ+05]. Linear wave-

guide losses as low as 0.1 dB/cm have been achieved, but due to scattering at the rough

waveguide sidewalls the losses tend to increase when the waveguide dimensions are re-

duced [JPR06].

5.2. Stimulated Raman scattering in silicon

waveguides

An accurate modeling of Stimulated Raman scattering in waveguides with a crystalline

silicon core is slightly more complex than in the case of optical fibers (see Sect. 2.3) for

two reasons: silicon is not an isotropic material, and the mode fields in silicon waveguides

can not be assumed to be uniformly polarized across the waveguide cross section, such

that the well-known formula for the effective area, Eq. (2.53), is no longer applicable.

In this section, we summarize the symmetry properties of the nonlinear susceptibility
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tensor describing SRS in silicon, give an overview over measurements for the bulk Raman-

gain constant from the literature, and finally derive an expression for the effective area

for SRS in silicon waveguides.

5.2.1. Properties of Raman gain in silicon

Consider a coordinate system x̃, ỹ, z̃ which is aligned with the crystallographic axes of

crystalline silicon. In this coordinate system, the third-order nonlinear-susceptibility

tensor χ̃
(3),SRS
ijkl (ωp,−ωp, ωs) describing stimulated Raman scattering from a pump wave

at frequency ωp to a Stokes wave at ωs in crystalline silicon is known to have the form

[SB65,DHCJ03,LRJ+06]

χ̃
(3),SRS
ijkl (ωp,−ωp, ωs) = χR(ωp − ωs)

∑
m=X,Y,Z

(Rm)ij(R
m)kl, (5.1)

where the matrices RX,Y,Z ,

RX =

0 0 0

0 0 1

0 1 0

 , RY =

0 0 1

0 0 0

1 0 0

 , RZ =

0 1 0

1 0 0

0 0 0

 , (5.2)

reflect the symmetry properties of the material and of the Raman-active phonons [Lou75,

Car82,YC05]. The function χR(Ω) occuring in Eq. (5.1) has the form

χR(Ω) =
ω0∆ω0

ω2
0 − Ω2 − i∆ω0Ω

χ̂R, (5.3)

the imaginary part of which is a Lorentzian centered around ω0 with an FWHM of ∆ω0

and a peak value of χ̂R. By expanding the sums in Eq. (5.1), it is seen that the only

non-vanishing tensor components are [JRDB06]

χ̃x̃ỹx̃ỹ = χ̃x̃ỹỹx̃ = χ̃x̃z̃x̃z̃ = χ̃x̃z̃z̃x̃ = χ̃ỹx̃x̃ỹ = χ̃ỹx̃ỹx̃ = χ̃ỹz̃ỹz̃ = χ̃ỹz̃z̃ỹ

= χ̃z̃x̃x̃z̃ = χ̃z̃x̃z̃x̃ = χ̃z̃ỹỹz̃ = χ̃z̃ỹz̃ỹ = χR, (5.4)

and they are all identical to χR defined in Eq. (5.3). Now that the tensor structure is

known, we can use Eq. (2.48) to find the bulk Raman-gain constant as a function of the

pump and Stokes polarizations p̂ and ŝ:

g(ωs, ωp, ŝ, p̂) =
3ωsµ0

nsnp
Im
[
χ̃

(3),SRS
iklj (ωp,−ωp, ωs)ŝi∗ŝj p̂kp̂l∗

]
, (5.5)

where i, j, k, l range over the crystallographic axes x̃, ỹ, z̃, and we have made use of the

intrinsic permutation symmetry of χ̃
(3)
iklj in order to account for the different order of the
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frequency arguments in Eq. (5.1) and Eq. (2.48). For example, for pump light polarized

along the x̃ axis and Stokes light polarized along ỹ, the bulk Raman gain is

gR(ωp − ωs) =
3ωsµ0

nsnp
Im χ̃

(3),SRS
ỹx̃x̃ỹ (ωp,−ωp, ωs) =

3ωsµ0

nsnp
ImχR(ωp − ωs), (5.6)

where χR was defined in Eq. (5.3). The same Raman gain is also obtained whenever the

pump and Stokes beams are polarized along any two different crystallographic axes of

the silicon crystal, as an inspection of Eq. (5.4) shows. On the other hand, for beams

co-polarized along the same crystallographic axis the gain becomes zero.

Finally, the Raman-gain spectrum is offset from the pump wavelength by ω0 =

15.6 THz and has a linewidth ∆ω0 of about 100 GHz [CDR+03].

Waveguide orientation

The strong polarization dependence of the Raman gain has implications on the layout

of the waveguides on a silicon wafer. Silicon waveguides are usually fabricated on a

(100) surface, such that the x coordinate of our waveguide coordinate system defined

in Fig. 2.2 coincides with the crystallographic x̃ axis, see Fig. 5.2. The propagation

direction can vary in the (100) plane according to the angle θ in Fig. 5.2.

Figure 5.2.: Silicon waveguides are usually fabricated along the [011] direction (θ = 45◦) on a
(100) surface.

If the waveguide were fabricated such that the propagation direction is the crystal-

lographic z̃ axis (θ = 90◦ in Fig. 5.2), the quasi-TE mode would be predominantly

polarized along ỹ, and the quasi-TM mode would be predominantly polarized along x̃.

Following the discussion of Eq. (5.6), a TE pump could amplify only the TM Stokes mode

and vice-versa. Practical waveguides, however, are often fabricated along the [011] direc-

tion [CDR+03, LRJ+06], corresponding to θ = 45◦ in Fig. 5.2. In the crystallographic-

axes coordinate system, the polarization vectors for quasi-TE and quasi-TM polariza-

tions are then êTE = (0, 1,−1)/
√

2 and êTM = (1, 0, 0), respectively. Using these vectors

for ŝ and p̂ in Eq. (5.5), one sees that a TE pump can now equally well amplify both
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the TE and TM Stokes modes, and that a TM pump can amplify a TE Stokes mode.

Only TM–TM amplification remains impossible [LRJ+06] (when we ignore the slight

hybridicity of the quasi-TM modes).

Table 5.1 gives an overview over Raman-gain constants reported in the literature for

silicon. Reported values vary between 10 and 80 cm/GW. The reason for such large

variations is not clear. One reason may be that several of the employed measurement

methods involve fitting to amplifier models in which several other parameters are not

known very well either, such as the Two-Photon Absorption constant (see Sect. 5.3).

The modeling in the remainder of this thesis will use a conservative value of 20 cm/GW.

Ref. λp (µm) g (cm/GW) Method / Notes

[CDJ02] 1.427 70 Extrapolated from spont. data [RC70]

[CDHJ02] 1.427 76 From spontaneous scattering efficiency

[CDR+03] 1.427 37 From spontaneous scattering efficiency

[CDR+03] 1.427 20 CW-amplifier gain in rib waveguide

[EDRMO+04] 1.435 29± 4 Pulsed-amplifier gain in strip waveguide

[LRP+04] 1.545 10.5 Pulsed-amplifier gain in rib waveguide

[LRJ+06] 1.548 9.5 Pulsed-amplifier gain in rib waveguide

Table 5.1.: Proposed values for the Raman-gain coefficient g of silicon in the literature.

5.2.2. Co- and counter-propagating effective areas

We now derive the effective areas for stimulated Raman scattering in silicon waveguides.

Eq. (2.42) describes the longitudinal evolution of the forward- and backward-propagating

Stokes powers in the waveguide in a general way, and we will rewrite the SRS contribution

to the four nonlinear interactions described by Γs+p+, Γs+p−, Γs−p+ and Γs−p− as the ratio

of the bulk Raman-gain constant and certain effective areas, as illustrated in Sect. 2.2.5.

We consider the case where the pump and Stokes frequency difference is such that the

Raman gain is maximal, i. e., ωp − ωs = ω0.

We consider only silicon waveguides oriented along the [011] direction on a (100)

surface, as in these the quasi-TE copolarized gain is maximal, see Sect. 5.2.1. Thus, the

nonlinear susceptibility tensor of silicon, Eq. (5.1), must first be transformed from the

crystallographic-axes coordinate system x̃, ỹ, z̃ to the waveguide coordinate system x, y, z

(the relation between the two coordinate systems is shown in Fig. 5.2, with θ = 45◦),
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yielding

χ
(3),SRS
ijkl (ωp,−ωp, ωs) = χR(ωp − ωs)

∑
m=X,Y,Z

(STRmS)ij(S
TRmS)kl, (5.7)

where

S =
1√
2


√

2 0 0

0 1 1

0 −1 1

 (5.8)

is the change-of-bases transformation matrix. With the help of the intrinsic permutation

symmetry of χ
(3),SRS
ijkl to adjust the order of the frequency arguments, Eq. (5.7) can be

inserted into Eq. (2.44) to get the modal gain coefficient for stimulated Raman scattering

from the forward-propagating pump wave to the forward-propagating Stokes wave,

4 Re Γs+p+ =
3ε0ωs

4N̂sN̂p

Im

[
iχ̂R

∫
(STRmS)ik(S

TRmS)lje
i∗
s e

j
se
k
pe
l∗
p dA

]
. (5.9)

Following the idea of Sect. 2.2.5, we want to rewrite the modal gain coefficient (5.9) as

4 Re Γs+p+ =
gR(ω0)

A
(SRS)
eff,co

, (5.10)

where gR(ω0) is the peak bulk gain coefficient, see Eq. (5.6), and A
(SRS)
eff,co is the effective

area to be derived. Solving Eq. (5.10) for the latter and inserting Eq. (5.7), one obtains

A
(SRS)
eff,co =

4Z2
0N̂pN̂s

npns

[∫
Si

(exs)
2[(eyp)

2 − (ezp)
2] + (eys)

2[(exp)
2 + (eyp)

2] + (ezs)
2[(exp)

2 − (ezp)
2]

+ 2(exse
y
se
x
pe
y
p + exse

z
se
x
pe
z
p + eyse

z
se
y
pe
z
p) dA

]−1

, (5.11)

where ep,s are the pump and Stokes mode fields with real transverse and imaginary

longitudinal components (see Eqs. (2.11)–(2.12)), and N̂p,s are the corresponding mode

normalizations defined in Eq. (2.14).

We can proceed similarly for the other SRS contributions occurring in Eq. (2.42)

and write them as the ratio of the bulk gain given by Eq. (5.6) and an effective area.

The result is that the other co-propagating SRS contribution 4 Re Γs−p−, describing the

gain exerted on the backward-propagating Stokes wave by the backward-propagating

pump wave, has the same effective area A
(SRS)
eff,co given in Eq. (5.11). The two counter-

propagating SRS contributions 4 Re Γs+p− and 4 Re Γs−p+, however, share an effective

79



5. Raman gain and nonlinear absorption in silicon waveguides

Figure 5.3.: The thick solid and dashed curves show the effective areas A(SRS)
eff,co and A

(SRS)
eff,cntr

for co- and counter-propagating SRS as a function of the pump wavelength λp. The curves
correspond to the silicon rib waveguide on the right-hand side of Fig. 5.1. All modes are
quasi-TE.

area which differs from Eq. (5.11) in two minus signs:

A
(SRS)
eff,cntr =

4Z2
0N̂pN̂s

npns

[∫
Si

(exs)
2[(eyp)

2 − (ezp)
2] + (eys)

2[(exp)
2 + (eyp)

2] + (ezs)
2[(exp)

2 − (ezp)
2]

+ 2(exse
y
se
x
pe
y
p − exsezsexpezp − eysezseypezp) dA

]−1

. (5.12)

In summary, the contribution of SRS to the longitudinal evolution of the forward- and

backward-propagating Stokes powers P±s can be written

± 1

P±s

dP±s
dz

= gR(ω0)

(
P±p

A
(SRS)
eff,co

+
P∓p

A
(SRS)
eff,cntr

)
. (5.13)

The thick solid and dashed curves in Fig. 5.3 show the effective areas for co- and

counter-propagating SRS as a function of the pump wavelength. They have been calcu-

lated using a custom-made full-vectorial mode solver (see Appendix A) for the quasi-TE

fundamental mode of the waveguide used by Intel [RJL+05], the geometry of which is

shown on the right-hand side of Fig. 5.1 (the waveguide is clad on top with silica, which

is not shown in the figure). In calculating the effective areas for the various wavelengths,

the Stokes wavelength is always offset from the pump wavelength by the Raman shift of

ω0. Fig. 5.3 shows that the difference between the forward- and backward-propagating

effective areas can be as large as 5% at λp = 3µm for this waveguide, while becoming

smaller at shorter wavelengths.

So far we have only written the SRS “seen” by the Stokes powers in terms of effective

areas, see Eq. (5.13). To complete the description, we must also find corresponding

80



5. Raman gain and nonlinear absorption in silicon waveguides

expressions for the terms that appear in the equations for the longitudinal evolution of

the forward- and backward-propagating pump powers, see Eq. (2.41). The result can be

written in the form

± 1

P±p

dP±p
dz

= −gR(ω0)
λs
λp

(
P±s

A
(SRS)
eff,co

+
P∓s

A
(SRS)
eff,cntr

)
, (5.14)

which follows from the symmetry relation

χ̃
(3),SRS
ijkl (ωp, ωs,−ωs) =

[
χ̃

(3),SRS
ijkl (ωs, ωp,−ωp)

]∗
, (5.15)

which can be obtained from the theory of [SB65] that has also led to Eq. (5.1). As

in section 2.3.1, the factor λs/λp > 1 occurring in Eq. (5.14) expresses photon-number

conservation.

Polarization dependence of the effective areas for SRS

As discussed in section 2.2.5, the effective area is defined such that it encapsulates all

the information about the tensorial structure of the nonlinearity, in this case SRS: one

simply inserts the pump and Stokes mode fields of the waveguide into the formula. As

an example, we have shown in Fig. 5.4 the effective area for co-propagating SRS as a

function of the pump wavelength.

There are four curves, each corresponding to a particular combination of pump and

Stokes polarizations. The thin solid curve in Fig. 5.4 (also shown in Fig. 5.3 as the thick

solid curve) shows the effective area when both the pump and the Stokes powers are

guided in the fundamental quasi-TE mode of the waveguide. The other two thin curves

in Fig. 5.4 represent the effective areas for the cases when one of the pump and Stokes

modes is the quasi-TE mode, and the other one is the quasi-TM mode. The three thin

curves in Fig. 5.4 almost coincide and increase slightly towards larger wavelengths due

to the decreasing mode confinement.

Finally, the thick solid curve in Fig. 5.4 represents the case where both the pump

and the Stokes powers are guided in the fundamental quasi-TM mode of the waveguide.

The effective areas are much larger than for the other polarization combinations. Thus

SRS is very inefficient, in accordance with the discussion in section 5.2.1. In contrast

to the other curves, however, the thick solid curve in Fig. 5.4 decreases towards larger

wavelengths. On the one hand, the mode confinement decreases for larger wavelengths

and this should increase the effective area. However, at the same time, the hybridicity of

the mode becomes stronger—with increasing wavelength, the y and z components of the

electric field of the quasi-TM mode become larger, and these components can contribute
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Figure 5.4.: Illustration of the strong polarization dependence of SRS in silicon waveguides:

the figure shows the effective areas A(SRS)
eff,co for co-propagating SRS as a function of the pump

wavelength. TM–TM amplification (thick solid line) is much less efficient than TE–TE, TE–
TM, or TM–TE amplification.

to the amplification of the quasi-TM Stokes mode. As a result, the effective area for

TM–TM amplification decreases with increasing wavelength.

5.3. Two-Photon Absorption

Two-Photon Absorption (TPA) is a nonlinear absorption effect that has a significant

limiting influence on the operation of Raman amplifiers and lasers based on silicon

waveguides. In a TPA process, two photons are absorbed simultaneously, while exciting

an electron from the valence band to the conduction band (see Fig. 5.5).

The two absorbed photons can have the same frequency (for example, when they

are both taken from the pump wave or both from the Stokes wave), which is the case

of degenerate TPA, see Fig. 5.5a. Alternatively, the two photons can have different

frequencies (one photon from the pump wave, and one photon from the Stokes wave),

which case is called non-degenerate TPA, see Fig. 5.5b. In either case, TPA can only

Figure 5.5.: Illustration of (a) degenerate and (b) non-degenerate Two-Photon Absorption
(TPA) in silicon.

82



5. Raman gain and nonlinear absorption in silicon waveguides

Ref. λ (µm) β (cm/GW) Method / Notes

[RM73] 1.06 1.5 pulsed laser; bulk Si (T = 100 K)

[DQG03] 1.27 0.74± 0.11 z-scan; 〈110〉 direction

[RVY04] 1.53 0.9± 0.18 pulsed laser; multi-mode strip waveguide

[TWL+02] 1.54 0.45± 0.1 pulsed laser; rib waveguide

[DQG03] 1.54 0.79± 0.11 z-scan; 〈110〉 direction

[DQG03] 1.54 0.88± 0.13 z-scan; 〈111〉 direction

[LT04] 1.547 0.67± 0.07 pulsed laser; rib waveguide

[YSC+05] 1.550 0.6 pulsed laser; single-mode strip waveguide

[CDR+03] 1.560 0.44± 0.10 pulsed laser; rib waveguide

Table 5.2.: Measurements of the degenerate TPA coefficient β(λ) of silicon in the literature.

take place when the sum of the energies of the two photons exceeds the indirect-band-gap

energy of silicon, Eig ≈ 1.12 eV.

In Sect. 5.3.1 we will summarize the known results for degenerate TPA in silicon and

derive an expression for the corresponding effective area. Sect. 5.3.2 then summarizes

the few existing results for non-degenerate TPA and the assumptions we use in the

remainder of this thesis.

5.3.1. Degenerate TPA

Just as in the case of any other bulk nonlinear coefficient (see Sect. 2.2.5), the coefficients

describing the strength of TPA in bulk silicon are defined in terms of plane waves. A

single homogeneous CW plane wave with intensity I propagating along z is damped by

degenerate TPA according to
dI

dz
= −βI2, (5.16)

where β is the bulk degenerate-TPA coefficient, which is in general polarization-depen-

dent. Table 5.2 gives an overview of measurements of β for silicon from the literature,

where often the polarization is not clearly specified. Reported values at wavelengths

around 1.5µm range from 0.4 to 0.9 cm/GW.

Wavelength dependence of the bulk TPA coefficient

For the modeling of cascaded silicon Raman lasers in Sect. 7.4, where the propagating

waves span a wide wavelength range (1.5 . . . 3.0µm), it is important to know the spectral

dependence of the TPA coefficient β(ω). The degenerate-TPA coefficient must vanish

for λ > 2.2µm, where the photon energy is less than half the indirect band gap of
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silicon. Indeed, it has been shown experimentally [RSSJ06] that the transmission of a

bulk silicon sample saturates with increasing power at a wavelength of 2.09µm due to

TPA, but not at a wavelength of 2.94µm. However, there are no known experimental

results in the literature on the precise dependence of the TPA coefficient on wavelength

between 1.5µm and 2.2µm.

A recent theoretical paper by Dinu gives the following expression for the spectral

dependence of the degenerate-TPA coefficient of silicon [Din03],

βdeg(ω) = C · (2h̄ω/Eig − 1)4

(2h̄ω/Eig)
7 (5.17)

for frequencies ω above half the band gap, ω > Eig/(2h̄), and C is a constant that de-

pends on details of the employed band-structure model of silicon [Din03]. The degenerate-

TPA coefficient given by Eq. (5.17) is plotted versus wavelength as the solid curve in

Fig. 5.6, where we have chosen C such that βdeg(1427 nm) = 0.7 cm/GW as in [CRDJ04].
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Figure 5.6.: Spectrum of the bulk degenerate-TPA coefficient of silicon according to the theory
of [Din03]. The curve is scaled such that βdeg(1427 nm) = 0.7 cm/GW.

Form of the nonlinear susceptibility tensor

Because two photons are involved in a TPA process, the two-photon absorption rate given

by Eq. (5.16) is quadratic in the optical intensities. Like stimulated Raman scattering,

TPA can thus also be described mathematically in terms of its contribution χ̃
(3),TPA
ijkl

to the third-order nonlinear susceptibility. A derivation similar to that performed in

Sect. 2.2.5 for a general bulk nonlinear constant gives the following relation between the

bulk degenerate-TPA constant occurring in Eq. (5.16) and the TPA tensor χ̃
(3),TPA
ijkl ,

β(ω, ê) =
3ωµ0

2n2
Im
[
χ̃

(3),TPA
ijkl (ω, ω,−ω)êi∗êj êkêl∗

]
, (5.18)
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where n is the (linear) refractive index of silicon at the frequency ω, ê = (êx, êy, êz) is a

unit vector along the polarization direction, and ω is the optical angular frequency. A

knowledge of the structure of the tensor χ
(3),TPA
ijkl describing TPA in silicon is important

for the accurate modeling of TPA in waveguides, in particular in small strip waveguides

or in higher-order modes of the cladding-pumped structures of Sect. 6.4, where all three

cartesian electric-field components are significant.

As silicon has a cubic crystal structure of the m3m class, a general third-order nonlin-

ear susceptibility tensor χ
(3)
ijkl(ω1, ω2, ω3) can have at most 21 non-zero elements, of which

only 4 are independent [Boy03]. For the degenerate TPA contribution χ̃
(3),TPA
ijkl (ω, ω,−ω)

considered here, the first two frequency arguments are equal, so that intrinsic permu-

tation symmetry even further reduces the number of independent elements to three

[Boy03]. The three independent elements of the TPA tensor may in principle be de-

termined experimentally by measuring the bulk TPA coefficient β for three different

polarizations [HW94]. Results on this are scarce in the literature, however. Salem et

al. [SM04] measured the TPA photocurrent in a silicon photodiode for various polariza-

tions at a wavelength of 1.55µm, although it is not clear whether the chosen polarization

directions are sufficient to fully determine the three independent TPA tensor elements,

as the orientation of the crystallographic axes is not given in [SM04]. Nevertheless, as

the authors suggest, the results are fully explained when one assumes that (a) the TPA

response of silicon at the wavelength of 1.55µm is isotropic, and (b) that the incremen-

tal TPA dichroism parameter [HW94] is δ = 1/3 as in a material satisfying Kleinman

symmetry [Boy03]. This is equivalent to assuming that there is only one independent

element in the tensor χ̃
(3),TPA
ijkl (ω, ω,−ω) [HW94]. This assumption is also consistent with

the experimental results of Dinu et al. [DQG03], also given in Table 5.2, where the bulk

TPA coefficient of silicon was measured to be identical (according to the accuracy of

measurement) for two different polarizations.

In conclusion, it is consistent with available experimental data to assume that the

degenerate TPA tensor χ̃
(3),TPA
ijkl (ω, ω,−ω) of silicon has only one independent element

χT (ω), in terms of which the full tensor can be expressed in any cartesian coordinate

system as [Boy03]

χ
(3),TPA
ijkl (ω, ω,−ω) =

1

3
χT (ω)(δijδkl + δikδjl + δilδjk), (5.19)

where δij is the Kronecker delta.
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Effective area

Eqs. (2.41) and (2.42) describe the longitudinal evolution of the pump and Stokes powers

in a general way. The frequency-degenerate TPA contributions are the first two terms on

the right-hand sides of those equations. We want to rewrite these as the ratio of a bulk

TPA coefficient and an effective area. This is done the same way as in Sects. 2.2.5 and

5.2.2, with the result that the frequency-degenerate TPA contributions to the equations

describing the longitudinal evolution of the pump and Stokes powers can be written in

the compact form

± 1

P±p

dP±p
dz

= − βpp

A
(TPA)
pp

(P±p + 2P∓p ), (5.20)

± 1

P±s

dP±s
dz

= − βss

A
(TPA)
ss

(P±s + 2P∓s ), (5.21)

where βpp and βss are the linearly-polarized bulk degenerate-TPA coefficients at the

pump and Stokes wavelengths, respectively, and the effective areas are given by

A
(TPA)
ii =

4Z2
0N̂

2
i

n2
i

[
1

3

∫
Si

2|ei|4 + |ei · ei|2 dA

]−1

, (5.22)

where ei (i = p,s) are the pump and Stokes mode fields, and we have assumed the tensor

structure of Eq. (5.19). Note that while the effective areas for SRS depend on whether the

relevant pump and Stokes waves are co- or counterpropagating, see Eqs. (5.13)–(5.14),

there is no such directional dependence for the TPA process.

The thin solid curve in Fig. 5.3 shows the effective area A
(TPA)
pp as a function of the

pump wavelength for the waveguide shown on the right-hand side of Fig. 5.1. The

effective area increases towards longer wavelengths, because the mode field becomes less

and less confined such that TPA, like all other nonlinearities, becomes less efficient.

The various effective areas for SRS and TPA shown in Fig. 5.3 for the waveguide of

Fig. 5.1b are all quite similar, differing only by a few percent at a given pump wavelength.

The difference becomes even smaller for rib waveguides with larger dimensions. In

several of the later sections discussing properties of specific silicon Raman amplifiers

and lasers we will therefore assume that all the effective areas are exactly equal and

simply write Aeff, which clarifies the discussion and does not influence qualitatively our

results. However, the full model must be used in modeling cladding-pumped silicon

Raman amplifiers in Sect. 6.4, because there the mode fields of the pump and Stokes

modes have significantly different shapes.
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5.3.2. Non-degenerate TPA

Similar to the bulk Raman-gain constant, Eq. (5.5), we can define a bulk non-degenerate-

TPA constant by

β(ωs, ωp, ŝ, p̂) =
3ωsµ0

2nsnp
Im
[
χ̃

(3),TPA
ijkl (ωs, ωp,−ωp)ŝi∗ŝj p̂kp̂l∗

]
, (5.23)

such that when we have co-propagating homogeneous pump and Stokes plane waves

with polarization directions ŝ and p̂ in bulk silicon, the Stokes wave will be attenuated

according to
dIs
dz

= −2β(ωs, ωp, ŝ, p̂)IpIs. (5.24)

The corresponding attenuation seen by the pump wave can be written

dIp
dz

= −2
λs
λp
β(ωs, ωp, ŝ, p̂)IpIs, (5.25)

where we have made use of the relation

β(ωp, ωs, p̂, ŝ)IpIs =
λs
λp
β(ωs, ωp, ŝ, p̂)IpIs, (5.26)

which follows when we assume a symmetry relation similar to Eq. (5.15),

χ̃
(3),TPA
ijkl (ωp, ωs,−ωs) =

[
χ̃

(3),TPA
ijkl (ωs, ωp,−ωp)

]∗
, (5.27)

Similar to the case of SRS, the factor λs/λp in Eq. (5.25) expresses the fact that

frequency-degenerate TPA removes photons from the participating pump and Stokes

beams in equal amounts, see the discussion following Eqs. (5.13)–(5.14).

Magnitude of the bulk non-degenerate-TPA constant

To the best of the author’s knowledge, there are no measurements of non-degenerate TPA

coefficients of silicon in the literature, at least not in the wavelength range of interest

here (λ > 1.4µm) and for large frequency separations ωp − ωs. Theoretical results,

too, are extremely scarce on non-degenerate TPA in silicon [Din03], owing to the fact

that silicon is an indirect-gap semiconductor (results on direct-gap semiconductors are

available in a large number, see references in [Din03]).

It is suggested in [Din03] to approximate the non-degenerate TPA coefficient β(ωs, ωp)

of silicon by the degenerate-TPA coefficient βdeg(ω) (see Eq. (5.17)) evaluated at the

mean frequency instead, because this approximation gives good results for direct-gap

semiconductors. In our modeling, we therefore use

β(ωs, ωp) =

√
ωs
ωp

βdeg

(
ωp + ωs

2

)
, β(ωp, ωs) =

√
ωp
ωs
βdeg

(
ωp + ωs

2

)
, (5.28)

which is consistent with Eq. (5.26).
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Form of the nonlinear susceptibility tensor

We have found in Sect. 5.3.1 that the three potentially different independent elements

of the tensor describing degenerate TPA in silicon may be assumed to be equal. On

the other hand, the tensor describing non-degenerate TPA, χ̃
(3),TPA
ijkl (ωs, ωp,−ωp), can

in principle have four different independent elements, see Sect. 5.3.1. As there are

neither experimental nor theoretical data available on the polarization dependence of

non-degenerate TPA in silicon (see preceding subsection), we assume that, similar to

the tensor describing degenerate TPA, also the tensor describing non-degenerate TPA

has only a single independent element χT (ωs, ωp), and that we can write any tensor

element in the form

χ
(3),TPA
ijkl (ωS, ωp,−ωp) =

1

3
χT (ωs, ωp)(δijδkl + δikδjl + δilδjk), (5.29)

similar to Eq. (5.19).

Effective area

Now that the form of the nonlinear susceptibility tensor for non-degenerate TPA is

specified, see Eq. (5.29), we can proceed to evaluate the form of the effective areas

following the procedure used already in the case of SRS (Sect. 5.2.2) and degenerate

TPA (Sect. 5.3.1). The result is that the contribution of non-degenerate TPA to the

longitudinal evolution of the pump and Stokes powers can be written

± 1

P±p

dP±p
dz

= −λs
λp

βsp

A
(TPA)
sp

(2P+
s + 2P−s ), (5.30)

± 1

P±s

dP±s
dz

= − βsp

A
(TPA)
sp

(2P+
p + 2P−p ), (5.31)

where

A(TPA)
sp =

4Z2
0N̂sN̂p

nsnp

[
1

3

∫
Si

|es|2|ep|2 + |es · ep|2 + |es · e∗p|2 dA

]−1

, (5.32)

and βsp is the linearly co-polarized non-degenerate bulk TPA coefficient “seen” by the

Stokes wave.

5.4. Free-Carrier Absorption

Free-Carrier Absorption (FCA) is a consequence of the effect of Two-Photon Absorption

(TPA) which we discussed in Sect. 5.3. While TPA itself causes only a modest amount of
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attenuation (see Sect. 6.2.2), the TPA-generated electrons and holes accumulate in the

core of a silicon waveguide, increase its conductivity and thus lead to Ohmic losses for

any optical wave propagating in the waveguide. This so-called Free-Carrier Absorption

can become quite strong, and it is currently the main effect limiting the efficiency of

Raman amplifiers and lasers in silicon waveguides, see Sect. 6.2.

In this section, we will extend the wave-propagation model of Sect. 2.2 to include the

effect of FCA. As the following Chapters will be concerned only with continuous-wave

amplifiers and lasers, we restrict all derivations to the stationary case. We proceed as

follows: Sect. 5.4.1 first derives an expression for the carrier density caused by TPA

in the waveguide, and Sect. 5.4.2 then determines the attenuation of the optical waves

caused by the presence of these carriers. Eq. (5.45) is the main result of this section.

5.4.1. Steady-state charge-carrier density

In this section we derive an expression for the steady-state charge-carrier density inside

the silicon waveguide. Carriers are generated by TPA, diffuse through the silicon and

recombine both inside the silicon and at the interfaces between silicon and the surround-

ing cladding materials. The steady-state carrier density is determined by an equilibrium

between these processes.

As we are dealing only with optically generated charge carriers without any externally

applied electric fields, the diffusion process is well described in the ambipolar approx-

imation [McK66, See91], i. e., the excess electron and hole densities are equal at each

position due to the Coulomb attraction of electrons and holes, and the joint diffusion

of electrons and holes is described by an ambipolar diffusion constant. Furthermore, we

assume that the optical powers in the waveguide vary slowly enough along the propaga-

tion direction z such that the carrier-generation rate and thus the steady-state carrier

density vary with z only on a scale large compared to the carriers’ diffusion length. This

reduces the carrier-diffusion problem to a locally two-dimensional process taking place

only in the transverse cross-sectional plane (x, y) of the waveguide.

The steady-state carrier density N(x, y) obeys the diffusion equation [McK66]

D∇2N +G− N

τb
= 0, (5.33)

where D is the ambipolar diffusion constant, G(x, y) is the local TPA carrier-generation

rate, and τb is the bulk carrier lifetime. At the interfaces between silicon and the sur-

rounding waveguide materials, N fulfills the boundary conditions

D n · ∇N = −SN, (5.34)
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where n is a unit vector normal to the interface and directed outward, and S is the

recombination velocity.

In order to solve Eqs. (5.33)–(5.34) for the carrier density N(x, y), we need to know

the local carrier generation rate G(x, y). The spatial distribution and the magnitude

of the generation rate G(x, y) will depend on the mode-field shapes and powers of the

various forward- and backward-propagating waves. A simple general solution for N can

be obtained when we assume that the carrier diffusion is so fast that the steady-state

carrier density N is constant, N(x, y) = N̄ , in those regions of silicon where the mode

fields are concentrated (this approximation is often justified [DJC+05]).1 Consequently,

the solution of Eqs. (5.33)–(5.34) does not depend on where exactly the carriers are

generated in the waveguide cross section, but only how many of them are generated in

total. Mathematically,

N̄ = M ·
∫
G(x, y) dA = MGtot, (5.35)

where Gtot is the total number of carriers generated through TPA in the entire cross sec-

tion of the waveguide per unit time and per unit waveguide length, and M is a constant

of proportionality with unit s/m2 which depends only on the waveguide geometry and

the two material parameters, bulk recombination lifetime τb and interface recombination

velocity S. An approximate analytical expression for M in rib waveguides has been

derived in [DJC+05].

An expression for the total carrier generation rate Gtot(z) is obtained by rewriting the

differential equations describing TPA, Eqs. (5.20)–(5.21) and (5.30)–(5.31), in terms of

the photon fluxes

F±p,s(z) =
P±p,s(z)

hνp,s
, (5.36)

which represent the number of photons flowing through the entire waveguide cross section

at z per unit time. In terms of these, Eqs. (5.20)–(5.21) and (5.30)–(5.31) read

± 1

F±p

dF±p
dz

= − βpp

A
(TPA)
pp

(F±p + 2F∓p )hνp −
βps

A
(TPA)
ps

(2F+
s + 2F−s )hνs, (5.37)

± 1

F±s

dF±s
dz

= − βss

A
(TPA)
ss

(F±s + 2F∓s )hνs −
βsp

A
(TPA)
ps

(2F+
p + 2F−p )hνp. (5.38)

Consider now a thin slice ∆z of the waveguide. Fig. 5.7 illustrates the photon fluxes

entering and leaving this slice. By subtracting the outgoing photon flux from the photon

1Another case where a simple general solution for N can be given is when carriers are generated only
by the waves at a single wavelength. For example, in an unsatured amplifier the Stokes powers are
so small that they do not contribute significantly to carrier generation, and the total generation rate
is due only to the pump waves.
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flux going into that slice, one obtains the number of photons that are absorbed inside

that slice per unit time by TPA. For each two absorbed photons, an electron-hole pair

is generated, so that the total carrier-generation rate is given by

Gtot(z) =
1

2

(
dF−p
dz

+
dF−s
dz
−

dF+
p

dz
− dF+

s

dz

)
(5.39)

=
βpphνp

2A
(TPA)
pp

(F+2
p + F−2

p + 4F+
p F

−
p ) +

βsshνs

2A
(TPA)
ss

(F+2
s + F−2

s + 4F+
s F

−
s )

+ (F+
p + F−p )(F+

s + F−s )

(
βpshνs

A
(TPA)
ps

+
βsphνp

A
(TPA)
ps

)
(5.40)

Figure 5.7.: Illustration of the photon fluxes into and
out of a slice ∆z of the waveguide (analogous contri-
butions of F+

s and F−p are not shown).

5.4.2. Optical absorption due to free carriers

Now that the steady-state carrier density generated by Two-Photon Absorption is known,

see Eq. (5.35), we need to relate it to the loss “seen” by the optical modes.

The dependence of optical losses on the amount of excess charge carriers in silicon has

been extensively investigated by Soref et al. in the 1980’s [SB86, SB87]. Their results

are commonly formulated in a compact form as (see, e. g., p. 289 in [PL04])

∆α = 8.5× 10−18 cm2 ·∆Ne + 6.0× 10−18 cm2 ·∆Nh, (5.41)

where ∆Ne,h are the densities of excess electrons and holes in a silicon sample, and ∆α

is the optical absorption at 1.55µm. Refs. [SB86,SB87] are often cited as the source of

Eq. (5.41), even though the authors of [SB86, SB87] themselves do not explicitly state

this formula. In fact the experimental results in [SB86,SB87] deviate somewhat from the

linear relationship given in Eq. (5.41). According to the Drude theory of the absorption

due to free carriers, the absorption given in Eq. (5.41) is expected to vary with the

square of the wavelength [SB87]. Setting ∆Ne = ∆Nh = N (see Sect. 5.4.1), we can

thus write Eq. (5.41) as [CRDJ04]

∆α(λ) = ϕ̄λ2N, (5.42)
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where we have defined the FCA efficiency as

ϕ̄ = 6.0× 10−10. (5.43)

The effect of Free-Carrier Absorption can now be included in the model of Sect. 2.2

by expressing the absorption as the imaginary part of a dielectric constant [Agr01],

∆ε = i
nc

ω
∆α, (5.44)

and then using this to add the additional perturbing polarization PFCA = ε0∆εĒ to the

P in Eq. (2.7). The result is an additional contribution to the equations describing the

longitudinal evolution of the pump and Stokes powers,

± 1

P±p

dP±p
dz

= −ηpϕ̄λ2
pN̄ , ± 1

P±s

dP±s
dz

= −ηsϕ̄λ2
sN̄ . (5.45)

where N̄ is the steady-state carrier density given by Eqs. (5.35) and (5.39), and ηp,s are

confinement factors,

ηp,s =
np,s

2Z0N̂p,s

∫
Si

|ep,s|2 dA. (5.46)

5.4.3. The effective carrier lifetime τeff

In order to complete our model of silicon Raman amplifiers and lasers, we establish in

this section a relation between the parameter M defined in Eq. (5.35) and the effective

carrier lifetime τeff that is normally used in the literature to quantify the effect of FCA.

Consider the case where only the forward-propagating pump wave P+
p exists and all

other powers are zero. From Eqs. (5.20) and (5.45), the longitudinal evolution of the

power P+
p due to TPA and FCA is then described by the equations

1

Ip

dIp
dz

= −βppIp − ηpϕ̄λ2
pN̄ , N̄ =

MβppA
(TPA)
pp

2hνp
I2
p , (5.47)

where Ip = P+
p /A

(TPA)
pp is an effective intensity. By defining the effective carrier lifetime

as

τeff = ηpA
(TPA)
pp M, (5.48)

the longitudinal evolution of the effective intensity I inside the waveguide given by

Eqs. (5.47) can be rewritten in the form found in simpler models of silicon Raman

amplifiers and lasers in the literature [CRDJ04,RLN+04,LRJ+06]

1

Ip

dIp
dz

= −βppIp − ϕ̄λ2
pNeff (a), Neff =

τeffβpp
2hνp

I2
p (b). (5.49)
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Eqs. (5.49) show that the effective carrier lifetime τeff is “effective” in the sense that

a homogeneous plane wave of intensity Ip propagating in bulk silicon with the bulk

carrier recombination lifetime of τb = τeff would generate the carrier density Neff given

by Eq. (5.49b) and see the total attenuation given by Eq. (5.49a).

Table 5.3 gives an overview over the effective carrier lifetime τeff of silicon waveguides

given in the literature. Typical values are in the order of a few nanoseconds. It has

been reported that the effective carrier lifetime τeff can vary relatively strongly from one

waveguide to another waveguide even on the same wafer [LRP+04].

Ref. τeff (ns) Method / Notes

[EDRMO+04] 0.77 strip waveguide; estimated upper bound

[YSC+05] 0.8 strip waveguide; fit to pump transmission

[JRL+05] 1 rib wg + pin; fit to pump transmission & amp gain

[RLJ+05] 1.2 rib waveguide + pin diode; fit to pump transmission

[XAL05] 1.37 strip waveguide; temporal FCA decay after pump off

[LT06] 1.9 He-implanted rib waveguide

[RBJ05] 4 rib waveguide; temporal FCA decay after pump off

[RLN+04] 23 rib waveguide; fit to pump transmission

[RLJ+05] 65 rib waveguide; fit to pump transmission

[RVY04] 150 large strip waveguide

Table 5.3.: Typical values for the effective carrier lifetime τeff of silicon waveguides from the
literature.
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5.5. Summary of the model

Combining Eqs. (5.13), (5.14), (5.20), (5.21), (5.30) and (5.31), and including the linear

waveguide losses phenomenologically, we obtain the differential equations governing the

longitudinal evolution of the powers of forward- (+) and backward-propagating (−) CW

pump (“p”) and Stokes (“s”) waves:

± 1

P±p

dP±p
dz

= −αp −
λs
λp
g

(
P±s

A
(SRS)
co

+
P∓s

A
(SRS)
cntr

)

− βpp
P±p + 2P∓p

A
(TPA)
pp

− λs
λp
βsp

2P+
s + 2P−s

A
(TPA)
sp

− ηpϕ̄λ2
pN̄ , (5.50)

± 1

P±s

dP±s
dz

= −αs + g

(
P±p

A
(SRS)
co

+
P∓p

A
(SRS)
cntr

)

− βss
P±s + 2P∓s

A
(TPA)
ss

− βsp
2P+

p + 2P−p

A
(TPA)
sp

− ηsϕ̄λ2
sN̄ , (5.51)

where the five terms on the right-hand sides of Eqs. (5.50)–(5.51) represent, respectively,

linear (scattering) losses given by αp and αs, SRS, frequency-degenerate TPA, non-

degenerate TPA, and FCA. The free-carrier density N̄ occurring in Eqs. (5.50) and

(5.51) is given by

N̄ =
M

2

[
βpp

hνpA
(TPA)
pp

(P+2
p + P−2

p + 4P+
p P

−
p ) +

βss

hνsA
(TPA)
ss

(P+2
s + P−2

s + 4P+
s P

−
s )

+
4βsp

hνsA
(TPA)
sp

(P+
p + P−p )(P+

s + P−s )

]
, (5.52)

where M is related to the effective carrier lifetime through M = τeff/(ηA
(TPA)), where

τeff is the effective lifetime seen by a mode of the waveguide with confinement factor η

and TPA effective area A(TPA), see Sect. 5.4.3.

Unless noted otherwise, we will use the following parameters in all simulations in

Chapters 6 and 7. The pump and Stokes wavelengths, λp = 1427 nm and λs = 1542 nm

as in [CDR+03], respectively, are separated by the silicon Stokes shift of 15.6 THz. We

choose a conservative value for the Raman-gain constant of g = 20 cm/GW (see Table

5.1). We assume linear losses of αp = αs = 1.0 dB/cm [JPR06], and an FCA efficiency

of ϕ̄ = 6.0× 10−10, see Sect. 5.4.2. In order not to underestimate the effect of TPA, we

choose a rather high value for the pump-TPA constant of βpp = 0.7 cm/GW. Following

the model discussed in Sect. 5.3, the coefficients for pump-Stokes TPA and Stokes TPA
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are βsp = 0.57 cm/GW and βss = 0.47 cm/GW. The various effective areas and confine-

ment factors used in our simulations are based on the quasi-TE fundamental mode of

the rib-waveguide structure on the right-hand side of Fig. 5.1 and are plotted in Fig. 5.3.

Finally, we note that while many properties of silicon Raman amplifiers and lasers can

be understood with less detailed models, the full model as described above will be used

to analyze cladding-pumped silicon Raman amplifiers (section 6.4) and cascaded silicon

Raman lasers (section 7.4).

5.6. Chapter summary

The general model of nonlinearly coupled wave propagation in waveguides of chapter 2

has been adapted to the special case of silicon waveguides. By incorporating available

material data from the literature, compact formulas for the effective areas describing

SRS and TPA have been derived. These encapsulate the tensorial structure of the

nonlinearities and thus allow for the design and analysis of waveguides optimized with

regards to these effects, based on the waveguide mode fields. The effective carrier lifetime

describing the influence of FCA has been derived from a carrier-diffusion model. The

model developed in this chapter includes co- and counterpropagating waves and is thus

suitable for analyzing both Raman amplifiers and lasers in the following two chapters.
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Raman amplifiers

This chapter is concerned with the analysis and design of silicon Raman amplifiers

(SRAs). Section 6.1 gives a short historical overview of the subject. Fundamental

characteristics and limitations of the most basic form of SRAs are discussed in section

6.2. Sections 6.3 and 6.4 introduce the concept of the tapered and the cladding-pumped

SRA, respectively, which are shown to be able to deliver more gain than “conventional”

SRAs. Finally, section 6.5 analyzes the curvature loss in silicon rib waveguides, which is

important as optimal SRAs require rather long waveguide lengths which must be wound

up to fit on a silicon chip.

Parts of the results presented in this chapter have been published in [RKB05,KRB06c,

RK06,KRB+06b,KRB06a].

6.1. Historical overview

The first observation of spontaneous and stimulated Raman scattering in a silicon wave-

guide by Claps et al. in 2002 [CDHJ02] and 2003 [CDR+03], respectively, marked the

beginning of a worldwide research effort into integrated-optical amplifiers and lasers

based on stimulated Raman scattering (SRS) in silicon waveguides.

While Raman amplifiers in glass fibers are several kilometers in length, Raman ampli-

fiers in silicon waveguides can be much shorter, because the Raman gain of crystalline

silicon is 10.000 times larger than in silica glass. Furthermore, the core of silicon wave-

guides can be made much smaller than that of glass fibers — the resulting increased

spatial concentration of the optical power will further increase the obtainable gain per

unit length. Raman amplifiers based on optical fibers are already well-established in

long-haul transmission systems due to their spectral flexibility and low-noise operation.

Integrated-optical Raman amplifiers based on silicon, on the other hand, could one day

play an important role on the chip scale, where they could compensate for the on-chip

losses of an integrated-optical circuit [JPR06].
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The fundamental problem in realizing an efficient silicon Raman amplifier or laser is

the presence of nonlinear absorption effects that need to be suppressed or mitigated:

first, Two-Photon Absorption (TPA) absorbs the pump light and generates free charge

carriers. Second, these charge carriers accumulate in the silicon waveguide and lead to

substantial optical losses, called Free-Carrier Absorption (FCA).

A significant suppression of FCA has been achieved so far only by two methods:

on the one hand, FCA can become insignificant when the waveguide is pumped by

pulses only. The maximum pulsed Raman gain demonstrated so far is 20 dB [RBJ05],

and the first silicon Raman laser demonstrated in 2004 by Jalali’s group at UCLA also

operated in a pulsed mode [BJ04]. On the other hand, the TPA-generated carriers can be

extracted electrically by means of a transverse p-i-n structure. Using this concept, Intel

demonstrated in 2005 a CW silicon Raman amplifier with a net gain of 3 dB [JRL+05],

and the first continuous-wave silicon Raman laser [RJL+05]. Recently, it has been

suggested to implant helium ions in a silicon waveguide in order to reduce the lifetime

of the TPA-generated carriers [LT06].

In the remainder of this thesis, the limitations of existing designs for Raman-based sil-

icon devices will be analyzed and several new designs for more efficient Raman amplifiers

and lasers will be proposed and discussed.

6.2. Basic characteristics of silicon Raman amplifiers

In this section, we will discuss the characteristics of the most basic type of continuous-

wave silicon Raman amplifier, which has been first experimentally demonstrated in 2003

[CDR+03]. It consists of a straight, longitudinally invariant rib or strip waveguide of

length L, see Fig. 6.1. The pump power and the Stokes light to be amplified are injected

at one end (z = 0), and the amplified Stokes light is measured at the other end of the

waveguide.

Sect. 6.2.1 summarizes the model that underlies our analysis. In Sect. 6.2.2, we show

that the nonlinear absorption effects TPA and FCA lead to a roll-over in the amplifier

characteristics — the amplifier gain can not be increased indefinitely merely by increasing

the pump power. Finally, an explicit formula for the maximum possible gain and the

required amplifier length and pump power will be derived in Sect. 6.2.3.

6.2.1. Mathematical model

We assume that the amplifier is unsaturated, i. e., the Stokes light to be amplified is so

weak that we can neglect the depletion of the pump due to SRS and non-degenerate
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Figure 6.1.: Schematic of a basic silicon Raman amplifier.

TPA with the Stokes wave. This is an assumption often made in the analysis of both

fiber-based and silicon-based optical amplifiers [HA05,LRJ+06,CRDJ04], which leads to

significant insight into the operation of an amplifier while leaving out the complexities

associated with the large-signal regime. Using S � P in Eqs. (5.50)–(5.52), we can

write the equations describing the longitudinal evolution of the pump and Stokes powers

P (z) = P+
p (z) and S(z) = P+

s (z) as

1

P

dP

dz
= −αp −

βpp

A
(TPA)
pp

P − ηpϕ̄λ2
pN̄ , (6.1)

1

S

dS

dz
= −αs +

(
g

A(SRS)
− 2βsp

A
(TPA)
sp

)
P − ηsϕ̄λ2

sN̄ = γ(z), (6.2)

where γ(z) is the local Stokes gain, and the free-carrier density is given by

N̄ = M
βppP

2

2hνpA
(TPA)
pp

, M =
τeff

ηpA
(TPA)
pp

. (6.3)

In these equations, αp,s are the linear waveguide losses at the pump and Stokes wave-

lengths λp,s, βpp and βsp are the bulk TPA coefficients for degenerate pump TPA and

non-degenerate TPA between the pump and Stokes waves, respectively, g is the bulk

Raman-gain coefficient of silicon, and τeff is the effective carrier lifetime. Finally, the

pump and Stokes modes are characterized by the effective areas A
(TPA)
pp and A

(TPA)
sp for

degenerate pump TPA and non-degenerate pump-Stokes TPA, respectively, by the ef-

fective area A(SRS) for co-directional SRS, and by the two confinement factors ηp and

ηs.

The two differential equations (6.1)–(6.2) can be solved numerically, where the injected

pump power P (0) = P0 and Stokes power S(0) are specified as initial conditions at z = 0.

The total amplifier gain is obtained from the solution as

G =
S(L)

S(0)
= exp

[∫ L

0

γ(z) dz

]
(usually given as G|dB = 10 log10G), (6.4)

where L is the amplifier length.
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6.2.2. Amplifier characteristics

We base the simulations in this section on the parameters given in Sect. 5.5: linear losses

of αp = αs = 1.0 dB/cm, bulk Raman-gain and TPA coefficients of g = 20 cm/GW

and βpp = 0.7 cm/GW, respectively, pump and Stokes wavelengths of λp = 1427 nm

and λs = 1542 nm, respectively, and effective areas taken from Fig. 5.3, i. e., for the

waveguide shown in Fig. 5.1b. The amplifier has a length of L = 3 cm.

Figure 6.2.: Gain–power characteristics for silicon Raman amplifiers with various effective
lifetimes (solid curves). The dashed straight curve shows the case where TPA is absent (β = 0).

Typical shape of amplifier characteristics

The solid curves in Fig. 6.2 show the amplifier gain G versus pump power P0 for silicon

Raman amplifiers with varying effective carrier lifetimes τeff, calculated from Eqs. (6.1)–

(6.4). It can be observed that for a fixed pump power P0, the gain G decreases with

increasing effective carrier lifetime τeff. Furthermore, the characteristics for each τeff

exhibit a roll-over point, beyond which a further increase in the pump power decreases

the amplifier gain. While these maxima are only clearly visible in Fig. 6.2 for the two

curves corresponding to τeff = 2 and 6 ns, the other curves with τeff > 0 also have maxima

which lie beyond the plotting range, however. Fig. 6.2 also shows that the maximal

possible gain decreases for increasing effective lifetime τeff. The overall behavior of silicon

Raman amplifiers shown in Fig. 6.2 has been predicted theoretically in 2004 [CRDJ04]

and demonstrated experimentally in 2005 [JRL+05].

We now proceed to show why every amplifier in which FCA is present (τeff > 0) has

a maximum in its gain–power characteristics.

99



6. Analysis and design of silicon Raman amplifiers

Three regimes for the local Stokes gain

Consider first the local Stokes gain γ(z) defined in Eq. (6.2). It is an equation quadratic

in the local pump power P (z), and there are three regimes. If the local pump power is

very low, the linear losses −αs dominate. On the other hand, if the local pump power

is very high the negative quadratic term due to FCA dominates. Between these two

regimes, there exists a maximum local Stokes gain

γmax = −αs +

(
g
A

(TPA)
pp

A(SRS)
− 2βsp

A
(TPA)
pp

A
(TPA)
sp

)2
ηp
ηs

hνp
2ϕ̄λ2

sτeffβpp
(6.5)

that is obtained only at the local pump power

P |γ=γmax =

(
g
A

(TPA)
pp

A(SRS)
− 2βsp

A
(TPA)
pp

A
(TPA)
sp

)
ηp
ηs

hνp
ϕ̄λ2

sτeffβpp
A(TPA)
pp . (6.6)

Note that the maximum local Stokes gain given by Eq. (6.5) must be positive if one

wants to realize an amplifier,

γmax > 0. (6.7)

If the material parameters are such that condition (6.7) is not fulfilled, the local Stokes

gain will never exceed zero no matter how much pump power is applied, and it is

impossible to realize an amplifier with the given waveguide technology.

The solid curve in Fig. 6.3 shows schematically how the local pump power P (z) decays

along the waveguide in a silicon Raman amplifier. The longitudinal evolution of the local

pump power is governed by Eq. (6.1), where all the contributions on the right-hand side

have a negative sign, resulting in an attenuation of the pump power. The local pump

power P (z) is thus a monotonously decreasing function of z.

The dashed curve in Fig. 6.3 shows the longitudinal evolution of the corresponding

local Stokes gain γ(z), which is directly related to the local pump power by Eq. (6.2).

Figure 6.3.: Schematic distribution of the
pump power P (z) (solid) and local gain γ(z)
(dashed) along the waveguide in a silicon Ra-
man amplifier. The shape of the two curves
depends only on the material parameters.
The optimal amplifier (IV) experiences only
positive local gain and thus extends from z1

to z2.
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As the pump power P (z) is monotonously decreasing along z, the local Stokes gain

γ(z) passes sequentially through the three regimes discussed at the beginning of this

subsection — on the left-hand side of Fig. 6.3, the pump power is so large that the local

Stokes gain is negative due to the dominant quadratic FCA term in Eq. (6.2). In the

middle of Fig. 6.3, the pump power is moderate and Raman gain dominates, while on

the right-hand side, the pump power is so low that only the linear losses −αs remain.

Now that the qualitative shape of the local-Stokes-gain distribution is known, we can

discuss the behavior of the total gain G of the amplifier, which is the integral over the

local Stokes gain along the waveguide, see Eq. (6.4).

Roll-over of amplifier characteristics

To understand why any silicon Raman amplifier has a gain maximum, consider the

longitudinal distribution of the local pump power and Stokes gain in Fig. 6.3. When the

pump power of the amplifier is changed, the solid and dashed curves in Fig. 6.3 simply

shift to the left or right without changing their shapes. This is because the pump-power

evolution is described by a first-order differential equation with constant coefficients, see

Eq. (6.1), the solution of which depends only on the initial value at a given z. In other

words, any given amplifier “sees” a certain region of the dashed local-Stokes-gain curve

in Fig. 6.3, depending on its pump power and length, while the shape of the curve is

fixed and depends only on the material parameters.

For example, a given amplifier at a comparatively low pump power may see the local-

Stokes-gain region marked “I” in Fig. 6.3 — the resulting total amplifier gain is the

integral of the dashed curve over that region, which is negative due to the dominance

of linear losses. The same amplifier at a slightly higher pump power may see the region

marked “II” in Fig. 6.3, where the total gain is now positive. At even higher pump

powers, the amplifier may see the region marked “III” in Fig. 6.3, where the total gain is

now again negative due to the dominance of FCA. It is clear that for even higher pump

powers, the total gain must decrease further. Thus, every amplifier of a fixed length L

has a pump power at which the total amplifier gain is maximal, and beyond which the

gain must decrease with increasing pump power.

6.2.3. Maximum possible gain

The dashed curve in Fig. 6.3 shows schematically how the local Stokes gain γ(z) is

distributed inside a silicon Raman amplifier. As the total amplifier gain is the integral

over the dashed curve in Fig. 6.3, the maximum possible total gain is obtained when the
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Stokes light “sees” exactly the positive region of the dashed curve between the points

marked z1 and z2 in Fig. 6.3. Thus, the optimal waveguide length is Lopt = z2 − z1

and the optimal pump power is Popt = P1, where P1 is the local pump power at z1, see

Fig. 6.3. We have derived explicit expressions for the optimal length Lopt, the optimal

pump power Popt and the resulting maximum possible gain Gmax in terms of the material

parameters, see Eqs. (6.13), (6.16) and (6.20); they have been published in [RK06].

Derivation

We start by rewriting the amplifier model Eqs. (6.1)–(6.3) in the form

1

P

dP

dz
=

1

H

dH

dz
= −α−BpH − CH2, (6.8)

1

S

dS

dz
= −α +BsH − CH2 = γ(z), (6.9)

where we have defined the effective local pump intensity

H =
P

Aeff

, (6.10)

furthermore Bp = βpp, Bs = g − 2βsp, and

C =
ϕ̄λ2τeffβsp

2hν
. (6.11)

In writing Eqs. (6.8)–(6.11), we have assumed that the linear losses for the pump and

Stokes waves are equal, αs = αp = α, and we have also neglected the difference in

the pump and Stokes wavelengths and have simply set λs = λp = λ. Finally, we have

assumed that all three effective areas occuring in the full model (6.1)–(6.3) are equal

to Aeff and the confinement factors are unity, see the discussion in Sect. 5.3.1. These

approximations often have an error of a few percent only and have the advantage of

leading to particularly simple results. Explicit expressions for the general case can

be written down, too, but they are lengthy, and the principal behavior remains the

same [Ren].

We are interested in the region between z1 and z2, where the local Stokes gain is

positive, see Fig. 6.3. Solving the quadratic equation γ(H) = 0, where γ is defined

in Eq. (6.9), one finds that the local Stokes gain is positive for local pump intensities

between H1 and H2, where

H1 = H(z1) =
Bs +Ws

2C
, H2 = H(z2) =

Bs −Ws

2C
, Ws =

√
B2
s − 4αC. (6.12)

102



6. Analysis and design of silicon Raman amplifiers

If αC > B2
s/4, Ws is imaginary and the local Stokes gain is never positive, no matter

what the local pump power is. In that case, no amplifier can be realized with the given

waveguide technology. In the following we assume that αC ≤ B2
s/4.

From Eq. (6.12) we immediately get the optimal input pump power required to achieve

the maximal possible gain, namely (see Fig. 6.3)

Popt = H1Aeff =
Bs +Ws

2C
Aeff. (6.13)

The optimal length of the waveguide extends from z1 to z2, see Fig. 6.3:

Lopt = z2 − z1 =

∫ z2

z1

dz. (6.14)

The integral in Eq. (6.14) can not be solved directly, because we do not know z2, which

is the location where the pump power has decayed from its initial value H1 to the desired

value H2; the decay of the pump power is governed by Eq. (6.8), which has no simple

explicit solution. However, we can substitute H(z) for z as the integration variable in

Eq. (6.14). Then, using Eq. (6.8), one obtains

Lopt =

∫ H2

H1

1

H(−α−BpH − CH2)
dH. (6.15)

This integral can be solved in closed form as

Lopt =
1

2α
ln

[(
Bs +Ws

Bs −Ws

)(
4αC +BsBp −WsWp

4αC +BsBp +WsWp

)Bp/Wp
]
, (6.16)

where

Wp =
√
B2
p − 4αC. (6.17)

When the waveguide has the optimal length Lopt given by Eq. (6.16) and is pumped

with the optimal pump power Popt given by Eq. (6.13), we obtain the maximum possible

gain,

Gmax = exp

[∫ z2

z1

γ(z) dz

]
. (6.18)

Again, this integral can not be solved directly, because the longitudinal evolution of the

pump intensity H(z) is not known. However, substituting H(z) for z as the integration

variable in Eq. (6.18) and inserting Eqs. (6.8) and (6.9), we obtain

Gmax = exp

[∫ H2

H1

−α +BsH − CH2

H(−α−BpH − CH2)
dH

]
. (6.19)

This integral can now be evaluated explicitly, giving the maximum possible total gain

Gmax =

(
Bs −Ws

Bs +Ws

)(
4αC +BsBp +WsWp

4αC +BsBp −WsWp

)(Bs+Bp)/Wp

. (6.20)
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Figure 6.4.: (a) Maximal gain Gmax, (b) optimal length Lopt and (c) required input pump
intensity Pin,opt/Aeff for an optimal non-tapered Raman amplifier versus linear waveguide losses
α and effective carrier lifetime τeff. Remaining parameters: g = 20 cm/GW, β = 0.7 cm/GW,
λ = 1550 nm, ϕ̄ = 6× 10−10.

Discussion

The maximum possible gain of a silicon Raman amplifier, see Eq. (6.20), depends only

on Bs, Bp and the product αC, where C is proportional to the effective carrier lifetime

τeff. Both the effective carrier lifetime and the linear waveguide losses α depend strongly

on how a waveguide is manufactured (see Table 5.3), whereas the remaining parameters

contributing to Bs, Bp and C are material properties of bulk crystalline silicon, which

are less accessible to deliberate modification. It is therefore interesting to consider the

performance of silicon Raman amplifiers as a function of α and τeff.

Fig. 6.4a shows the maximum possible gain Gmax as a function of the linear losses α

and the effective carrier lifetime τeff. According to Eq. (6.20), the maximum possible gain

depends only on the product of the two, ατeff, so that the curves of constant maximum

possible gain in Fig. 6.4a are hyperbola. For ατeff ∼ αC > B2
s/4, no amplifier can be

realized, which is indicated as the shaded-gray area in Fig. 6.4a.

The fact that the maximum possible gain is determined only by the product ατeff is

relevant for deciding by which technological steps the performance of a silicon Raman

amplifier is to be improved. Our result shows that the maximum possible gain can

be increased equally well by decreasing the linear losses α (for example by waveguide-

sidewall smoothing to reduce surface scattering [SSK05]), or by decreasing the effective
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carrier lifetime τeff by the same factor (for example, by using a p-i-n structure [RJL+05],

or by Helium implantation [LT06]). On the one hand, when decreasing the linear losses

α, the maximum possible gain increases because the pump power can penetrate deeper

into the waveguide before it gets so low that the linear losses dominate the Raman gain.

The overall amplifier may thus be longer, and the total gain higher, see Fig. 6.4b. On

the other hand, when decreasing the effective lifetime τeff, higher pump powers can be

tolerated before FCA becomes significant, thus the Raman gain is more dominant which

also increases the maximum possible total gain, see Fig. 6.4c.

Finally, the effective area Aeff has no influence on the maximum possible gain or

the optimal length. It only scales the pump power necessary to achieve the maximum

possible gain, see Eq. (6.13).

6.3. Tapered Raman amplifiers

In this section we introduce the concept of the tapered silicon Raman amplifier. While

in the conventional amplifiers discussed in Sect. 6.2 the waveguide characteristics are

invariant along the propagation direction, in a tapered amplifier they are allowed to

vary, for example through a variation of the geometry of the waveguide. It will be shown

that tapered Raman amplifiers can provide significantly more gain than conventional

amplifiers.

Figure 6.5.: Schematic of a tapered silicon Raman amplifier. The waveguide width w varies
along the propagation direction z.

6.3.1. Principle

Model and geometry

Fig. 6.5 shows a schematic of a tapered silicon Raman amplifier as considered here. The

pump power P0 and the Stokes signal to be amplified are injected at the left-hand side of

the waveguide at z = 0. As in the previous sections of this chapter, we consider amplifiers

in the unsaturated regime, i. e., the Stokes powers are much smaller than pump powers,
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S � P , such that the depletion of the pump wave due to SRS and non-degenerate TPA

can be neglected. For an adiabatic taper Aeff(z), the longitudinal evolution of the pump

and Stokes powers is then governed by the equations

1

P

dP

dz
= −αp −

βpp
Aeff

P − ϕ̄λ2
pNeff, (6.21)

1

S

dS

dz
= −αs +

g − 2βsp
Aeff

P − ϕ̄λ2
sNeff =: γ(z), (6.22)

Neff(z) =
τeffβpp

2hνpA2
eff

P 2. (6.23)

In writing Eqs. (6.21)–(6.22), we have neglected the difference between the effective

areas for SRS and TPA, writing simply Aeff instead, and we have assumed that the

confinement factors ηp and ηs for the pump and Stokes modes, respectively, are equal.

This approximation is often made in the literature [CRDJ04, LRJ+06] and clarifies the

following discussion while having an error of a few percent only for many waveguides,

see, e. g., Fig. 5.3. The total amplifier gain is defined as

G =
S(L)

S(0)
= exp

[∫ L

0

γ(z) dz

]
, (6.24)

where L is the amplifier length.

The idea behind tapering

As discussed in Sect. 6.2.2, the local Stokes gain,

γ(z) = −αs +
g − 2βsp
Aeff

P − ϕ̄λ2
sτeffβpp

2hνpA2
eff

P 2, (6.25)

can not be made arbitrary large merely by increasing the pump power P . Due to

FCA (described by the third, quadratic term in Eq. (6.25)), there is an optimal local

pump power P that maximizes the local Stokes gain. In a conventional non-tapered,

longitudinally invariant waveguide, the maximum local Stokes gain is only obtained at

a single waveguide position z0, because the pump power P decays along z, see Fig. 6.3.

Before and after z0, the local Stokes gain will invariably be lower.

On the other hand, if the local Stokes gain could somehow be kept at a high level along

the entire length of the amplifier, the total amplifier gain would evidently be increased;

the right-hand side of Eq. (6.25) should be as large as possible at each position z inside

the amplifier in order to make the total Stokes gain large. It can be seen that the

FCA term in Eq. (6.25) dominates over the Raman-gain term at positions z inside the

waveguide where the local pump power P (z) is large, because the FCA term depends
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on the square of the pump power. However, the FCA term also inversely depends upon

the square of the effective area Aeff, whereas the Raman-gain term depends inversely

upon Aeff only in the first power. Consequently, by changing the value of Aeff, we can

shift the relative weighting between the Raman-gain and FCA-loss terms; if FCA is too

large because of large pump powers, we should increase Aeff. This would result in an

undesired reduction of the Raman gain according to 1/Aeff but simultaneously in a much

stronger reduction of the FCA-loss term according to 1/A2
eff.

Consequently, if we allow the effective area to vary longitudinally, we should choose

Aeff(z) such that the right-hand side of Eq. (6.25) is maximal at each waveguide position

z, according to the local pump power P (z). Of course, the local-pump-power distribu-

tion P (z) itself is also influenced by varying the effective-area distribution Aeff(z), see

Eq. (6.21). In general, the amplifier length L, the pump power P0 and the effective-area

taper Aeff(z) have to be optimized such that total gain G, obtained from the solution of

Eqs. (6.21)–(6.24), is maximal.

The effective-area taper Aeff(z) can be realized, e. g., by varying the width w(z) of the

waveguide along the propagation direction, as suggested in Fig. 6.5. Of course, varying

the waveguide width will also influence other waveguide parameters such as the linear

losses αp,s and the effective carrier lifetime τeff. In order to illustrate the basic principle

of tapering, however, we will assume in the following that only the effective area Aeff(z)

varies along z, and other parameters remain fixed.

The typical shape for a taper is a decrease of Aeff toward regions of lower pump power:

the latter is injected at the left-hand side (z = 0) and decreases towards the right-hand

side because it loses power by TPA and FCA, see Eq. (6.21). Therefore, the optimal

effective area typically will be larger at the pumped end of the waveguide and smaller at

the opposite end. Before giving the optimal effective-area taper explicitly in Sect. 6.3.2,

we will first illustrate the principle by means of a few examples.

Illustration of the effect of various tapers

The solid curve in Fig. 6.6b shows the gain as a function of the pump power for the

optimal non-tapered amplifier, where we have chosen an effective area of Aeff = 1.6µm2,

which is shown as the solid curve in Fig. 6.6a. The choice of the effective area does not

affect the maximum possible gain of a non-tapered amplifier but only scales the pump

power necessary to achieve it, see Sect. 6.2.3. In this case, the maximal gain of 6 dB is

obtained at a pump power of 2.5 W, and the entire amplifier is 4.7 cm long.

We now take the optimal non-tapered amplifier (solid curves) and arbitrarily increase

the effective area at the beginning of the waveguide to twice its previous value, and the
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Figure 6.6.: Comparison of the effect of several different tapers on the amplifier characteristics.
The left-hand figure shows four effective-area taper shapes, and the right-hand figure shows
the corresponding amplifier gain as a function of the pump power. The solid curves correspond
to the optimal non-tapered amplifier.

effective area is assumed to decay linearly to its original value at the end of the waveguide,

see the dashed curve in Fig. 6.6a. The corresponding characteristics are shown as the

dashed curve in Fig. 6.6b. The tapered amplifier can deliver more gain than the optimal

non-tapered amplifier: it achieves a slightly higher gain of 7.2 dB at a pump power of

5 W. By making the effective area larger at the beginning of the waveguide, we have

reduced FCA stronger than Raman gain, and the amplifier can tolerate more pump

power and deliver more gain than the best non-tapered amplifier.

Finally, the dashed-dotted curves in Fig. 6.6 illustrate the case of another arbitrarily

chosen taper. This time we have also increased the overall length of the amplifier. While

such a length increase can only have a detrimental effect for a non-tapered amplifier (the

optimal length of which was 4.7 cm), the tapered amplifier of length 8 cm achieves twice

as much gain as the optimal non-tapered one.

6.3.2. Optimal effective-area taper and maximum possible gain

Suppose the length L of a silicon Raman amplifier is fixed, and the effective area Aeff(z)

is allowed to vary freely along z, while all other waveguide parameters are z-invariant.

We have shown that then there is a maximum possible gain that can be achieved only

when the effective-area taper Aeff(z) has an exponential shape along z [RKB05].

To see this, we first define an effective local pump intensity,

H(z) =
P (z)

Aeff(z)
, (6.26)
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in terms of which Eqs. (6.21)–(6.23) can be written

1

Aeff

dAeff

dz
+

1

H

dH

dz
= −αp −BpH(z)− CpH2(z), (6.27)

1

S

dS

dz
= −αs +BsH(z)− CsH2(z) = γ(z), (6.28)

where Bp = βpp, Bs = g − 2βsp and Cp,s = ϕ̄λ2
p,sτeffβpp/(2hνp). The maximal gain G of

the amplifier is obtained when the local Stokes gain γ(z) attains its maximum possible

value at each position z, see Eq. (6.24). As the local Stokes gain, Eq. (6.28), depends

only on H(z) (while αs, Bs and Cs are fixed material parameters), the maximal local

Stokes gain is obtained when dγ/dH = Bs − 2CsH = 0. The optimal amplifier must

therefore be designed such that the effective local pump intensity has the value

H(z) = Hopt =
Bs

2Cs
= const (6.29)

along the entire waveguide. Then, the local Stokes gain is also constant along the

waveguide,

γ(z) = γmax = −αs +
B2
s

4Cs
= const. (6.30)

Inserting Eq. (6.29) in Eq. (6.27), we obtain a differential equation describing the optimal

shape of the effective-area taper,

1

Aeff

dAeff

dz
= −αp −BpHopt − CpH2

opt. (6.31)

Solving Eq. (6.31), we get the desired optimal effective-area taper,

Aeff(z) = Aeff(0)e−Kz, (6.32)

which has an exponential shape with the decay constant

K = αp +
BpBs

2Cs
+ Cp

(
Bs

2Cs

)2

. (6.33)

The maximum possible total gain of the optimally tapered amplifier is obtained from

Eqs. (6.24) and (6.30) as

Gmax(L) = eγmaxL = exp

{(
B2
s

4Cs
− αs

)
L

}
= exp

{[
hνp(g − 2βsp)

2

2ϕ̄λ2
sτeffβpp

− αs
]
L

}
. (6.34)

Eq. (6.34) shows that an amplifier with positive gain can only be realized as long as the

material parameters satisfy the condition

αsCs <
B2
s

4
. (6.35)
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This is the same condition that must be fulfilled for conventional non-tapered amplifiers,

see Eq (6.7). Thus, if the material parameters are such that it is impossible to realize

a non-tapered amplifier with positive gain, it is also impossible to realize a tapered

amplifier. If, however, condition (6.35) is fulfilled, then the advantage of the tapered

amplifier is that its total gain can be made arbitrarily large simply by increasing its

length L, see Eq. (6.34), whereas for non-tapered amplifiers, there is an upper limit to

the achievable gain, which is obtained only for the optimal length given by (6.16).

The pump power required to achieve the maximum gain (6.34) of the optimally tapered

amplifier is obtained from Eqs. (6.29) and (6.26) as

Popt = P (0) = H(0)Aeff(0) = HoptAeff(0). (6.36)

Depending on the amount of available pump power, the effective area at the beginning

of the waveguide should be chosen according to Eq. (6.36). On the other hand, for a

given effective area at the beginning of the waveguide, Eq. (6.36) gives the pump power

at which the amplifier delivers its maximal gain given by Eq. (6.34). The effective-area

distribution inside the amplifier is given in either case by Eq. (6.32).

The dotted curves in Figs. 6.6a and 6.6b show the longitudinal effective-area distribu-

tion and the amplifier characteristics for an optimally tapered silicon Raman amplifier.

Its length is that of the optimal non-tapered one, L = 4.7 cm, and the effective area

at the beginning of the waveguide, Aeff(0), has been chosen such that the tapered am-

plifier delivers its maximum gain at the same pump power as the optimal non-tapered

one. Fig. 6.6 shows that by using the optimal taper instead of a longitudinally invariant

effective area, the gain of the amplifier has increased from 6 dB to 14 dB.

In practice, the value down to which the effective area can be tapered is limited, such

that the optimal taper derived in this section may not always be realizable. A taper

that is optimal given the technological constraints for realizable effective areas would

then have to be found through numerical optimization, see also Sect. 7.3. Finally, we

have assumed in this section that the effective area can be changed independently from

other waveguide characteristics. If, e. g., the effective carrier lifetime and the linear losses

varied significantly with a change of the effective area, the optimal taper shape would

differ from the exponential one derived here.

6.4. Cladding-pumped Raman amplifiers

In this section, we show that the maximum achievable total gain of silicon Raman

amplifiers can be significantly increased by injecting the pump power into a surrounding

cladding instead of directly into the silicon core.
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Figure 6.7.: Waveguide cross section for a cladding-pumped Raman amplifier. Pump power is
injected into the upper cladding instead of directly into the silicon core.

The results of this section have been developed in collaboration with Jalali’s group at

the University of California in Los Angeles and have been published in [KRB+06b].

6.4.1. Geometry and principle

Fig. 6.7 shows a schematic view of the waveguide structure for a cladding-pumped silicon

Raman amplifier. The proposed structure consists of a rectangular silicon waveguide

core on top of a silica buffer layer. It is covered by a cladding whose refractive index

lies between that of silica and silicon, i. e., nSiO2 < nclad < nSi. The signal light to

be amplified at the Stokes wavelength is guided in the fundamental mode of the entire

structure, which is highly confined to the silicon core. The pump light, however, is

injected in a higher-order mode, the power of which is mainly guided in the cladding.

Fig. 6.8 shows the mode-intensity profiles for a possible choice of the pump and Stokes

modes.

The advantage of this arrangement is easily illustrated. A small part of the pump

mode that extends into the silicon core amplifies the Stokes mode through SRS. It also

generates free carriers through TPA, as in a simple core-pumped amplifier. The resulting

FCA will affect both the Stokes and the pump mode. However, the pump mode is much

less affected, because it is concentrated outside of the silicon and thus overlaps only

slightly with the free carriers. If the cladding is large enough, the pump power can

propagate without being significantly attenuated by FCA—the main effect limiting the

efficiency of core-pumped amplifiers has thus been reduced.

Modeling

We numerically model the longitudinal propagation of the pump and Stokes powers

along the waveguide shown in Fig. 6.7 using the model summarized in Sect. 5.5. We

assume an undepleted amplifier, i. e., small Stokes powers.
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Figure 6.8.: A possible choice of the pump and Stokes modes for the cladding-pumped amplifier
structure shown in Fig. 6.7. Shown is the refractive-index profile for comparison, and the mode-
intensity profiles. The pump mode has a spiky structure inside the silicon core, because the
latter is relatively large in this example (2 × 1.5µm2) and the pump mode is thus a mode of
the entire structure of very high order.

6.4.2. Results

We have analyzed different waveguides of the type shown in Fig. 6.7. For the Stokes

mode, we have used the fundamental predominantly horizontally polarized mode of the

structure. For the pump mode, we have used that mode of the structure which is

predominantly horizontally polarized in the cladding and which has the largest effective

index just below the cladding refractive index nclad, i.e., the lowest-order cladding mode.

That mode typically has a single large lobe inside the cladding and various small lobes

inside the silicon and will be easy to excite practically, see Fig. 6.8. The modes were

calculated using the full-vectorial mode solver described in the appendix.

We assume in the simulations that the linear pump and Stokes losses are αp =

0.1 dB/cm and αs = 1.0 dB/cm, respectively. We choose a cladding index of nclad = 2.0,

corresponding to, e. g., silicon oxynitride [BGO03], which can be integrated relatively

easily with the processing of the rest of the structure.

Fig. 6.9a shows the behavior of the amplifier with cladding width and height of Cw =

Ch = 9µm, a silicon core width and height of W = 2µm and H = 1.5µm, respectively,

and an effective free-carrier lifetime of τeff = 1 ns. The gain for the signal light at

15.6 THz Raman shift is plotted versus pump wavelength in the lower part of Fig. 6.9

for pump powers of 5, 10 and 15 W. The highest gain for the signal light is reached

when the pump wavelength is chosen around 1409 nm.

By modifying the waveguide geometry, the gain peak can be shifted to other wave-

lengths. For example, in Fig. 6.9b, another waveguide geometry was assumed: the

cladding width and height are Cw = 11µm and Ch = 9.3µm, respectively, and the sili-

con core width and height are W = 2µm and H = 1.55µm, respectively. The optimized

length is now 40 cm and the gain reaches even 42 dB if a pump power of 15 W is injected
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Figure 6.9.: Gain versus pump wavelength for cladding-pumped amplifiers based on the struc-
ture shown in Fig. 6.7 with an effective free-carrier lifetime of τeff = 1 ns. The maximum
possible gain in a simple core-pumped amplifier is 20 dB.

at the wavelength of 1427 nm.

For comparison, the maximum gain achievable with a simple core-pumped structure

(see section 6.2.3) with the same τeff = 1 ns is limited to only 20 dB as indicated by the

almost horizontal thin line.

Origin of spectral gain peaks

The pronounced spectral gain peaks in Fig. 6.9 occur due to a spatial re-distribution of

the guided power within the pump mode field when varying the pump wavelength.

l = 1425 nm l = 1427.5 nm l = 1430 nm

Figure 6.10.: Illustration of the spatial re-distribution of the power within the pump-mode
field with varying wavelength. Shown is the mode-intensity profile for the pump mode of the
structure of Fig. 6.9b at three different wavelengths.
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cladding-pumped (b), lp = 1427 nm

cladding-pumped (a),

= 1409 nmlp

optimal
core-pumped,

= 1409 nmlp

Figure 6.11.: Gain versus pump power for the optimal core-pumped amplifier (thin solid curve)
and the cladding-pumped amplifiers from Fig. 6.9 (a) and (b).

For example, consider the case of our second example corresponding to the dashed

curves in Fig. 6.9. At wavelengths larger than 1430 nm most of the pump power prop-

agates in the big cladding lobe of the pump mode; the pump mode at λ = 1430 nm is

plotted on the right-hand side of Fig. 6.10. The overlap with the silicon core is small and

thus no significant total gain can be achieved with the limited available pump power of

15 W.

If the wavelength decreases, the pump power confines more and more to the silicon

core: the dynamics of the intramodal power re-distribution within the pump mode is

illustrated by the strong spectral dependence of the fraction of power in the core in

the upper part of Fig. 6.9.1 Additionally, the pump mode at λ = 1425 nm is shown

on the left-hand side of Fig. 6.10. The increased pump intensity in the core at short

wavelengths causes too large FCA and the total gain of the cladding-pumped amplifier

is small again.

However, around 1427 nm the balanced distribution of the power within the pump

mode field to both the core and the cladding is optimal (see the middle of Fig. 6.10),

and the total gain can be raised up to 42 dB for an optimized length of 40 cm at a pump

power of 15 W.

Effect of amplifier length and free-carrier lifetime

The dependence of the gain of the optimized amplifiers from Fig. 6.9 on the pump power

is shown in Fig. 6.11. Despite the small overlap of the pump mode with the silicon core,

even the gain of the cladding-pumped amplifier saturates with increasing pump power

since FCA inavoidably predominates at sufficiently high pump intensities.

1For even shorter wavelengths, not shown in the figure, the mode eventually becomes entirely confined
in the silicon—the mode’s effective index surpasses the cladding index and the field inside the
cladding becomes evanescent.

114



6. Analysis and design of silicon Raman amplifiers

cladding-pumped (b) ( = 1427 nm, P = 15 W)lp pump

cladding-pumped (a)( = 1409 nm, P = 15 W)

l
p

pump

optimal core-pumped

(lp pump= 1409 nm, P = 9 W)A
m

p
lif

ie
r 

g
a
in

 [
d
B

]

Figure 6.12.: Gain versus amplifier length for the optimal core-pumped amplifier (thin solid
curve) and the cladding-pumped amplifiers from Fig. 6.9 (a) and (b).

Fig. 6.12 shows the dependence of the gain of the two cladding-pumped amplifiers

designed in Fig. 6.9 on their length. Although they reach their maximal total gain of

29 and 42 dB at 35 and 40 cm length, respectively, the maxima are relatively flat and

the choice of the length is not very critical. The simple core-pumped amplifier indicated

by the thin solid line reaches its gain maximum of only 20 dB at a length of 8 cm, and

any further increase of the length reduces the total gain. This illustrates the greater

freedom for exploiting the Raman gain along a long waveguide if the pump is guided in

a cladding without FCA.

Finally, we analyze the influence of the effective free-carrier lifetime on the amplifier

performance. The designs of the cladding-pumped and core-pumped amplifiers shown in

Fig. 6.9 have been made for an effective free-carrier lifetime of τeff = 1 ns. Fig. 6.13 now

shows the gain of these amplifiers for various other lifetimes without any re-optimization.

The cladding-pumped amplifiers perform better than the core-pumped amplifier in a

wide range of effective free-carrier lifetimes.

It should be mentioned that the large optimal waveguide length maximizing the gain of

cladding-pumped silicon Raman amplifiers can easily be realized on silicon-on-insulator

chips on a small area by exploiting the extremely small bending radii made possible by

the high index contrast, see section 6.5. Further, the shape of the gain spectrum at the

Stokes wavelength will not be modified by the present cladding-pumped structure since

the field of the fundamental mode used as the Stokes mode is already highly confined to

the silicon core and does not change significantly with wavelength.

Conclusions

We have shown that cladding-pumped silicon Raman amplifiers can provide significantly

more gain than their simple core-pumped counterparts. The underlying principle is that

the pump power is guided primarily in an optically linear cladding surrounding the silicon
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Figure 6.13.: Core-pumped and cladding-pumped amplifier gains versus free-carrier lifetime
τeff.

core and thus propagates relatively unimpaired by FCA. This permits longer amplifier

lengths and higher pump powers, which leads to a larger possible total gain.

The examples analyzed here showed maximal total gain up to 42 dB. The large number

of geometric parameters leaves much freedom for further optimization. For example, a

reduction of the effective areas by decreasing the core dimensions would permit a similar

reduction of the required pump power.

6.5. Curvature loss in silicon waveguides

The analysis of the previous sections in this chapter has shown that optimally designed

silicon Raman amplifiers can have lengths on the order of tens of centimeters, especially

if they are based on waveguides with low linear propagation losses. In order to fit on

one wafer, the amplifying waveguide will thus have to be, at least partly, curved.

We show that the curvature loss of silicon rib waveguides can vary by orders of mag-

nitude, depending on the geometry (rib width W , rib height H, etch depth D, see the

right-hand side of Fig. 5.1). We show in particular that the quasi-TM mode can experi-

ence significantly less curvature loss at the same bend radius than the quasi-TE mode.

Integrated-optic devices making use only of the TM mode and a polarization-diversity

scheme can thus profit from smaller possible bend radii and the resulting circuit-size

reduction. The main loss mechanism for the quasi-TM rib mode can be coupling to the

orthogonally polarized TE slab mode, which radiates power away from the waveguide.

This is possible due to the slight hybridicity of the quasi-TM rib mode. Neglecting this

hybridicity would lead to a significant underestimation of the curvature losses. Thus,

accurate simulation of waveguides with low quasi-TM-mode curvature loss requires full-

vectorial simulation models. The results of this section have been published in [KRB06a].
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6.5.1. Modeling

The rib waveguides we analyze here are shown schematically on the right-hand side in

Fig. 5.1. A central rib of height H and width W is surrounded by slab waveguides of

height H−D, where D is the etch depth. All calculations are performed at a wavelength

of λ = 1.55µm, where the substrate, the silicon core, and the top cladding have refractive

indices nSiO2 = 1.444, nSi = 3.477, and nAir = 1.0, respectively.

We have used the full-vectorial finite-difference mode solver described in Appendix A

in order to calculate the complex mode fields and propagation constants of guided and

leaky modes of the rib waveguides.

6.5.2. Curvature loss in silicon rib waveguides

Survey of TE- and TM-mode losses

Fig. 6.14a shows the curvature loss of the fundamental quasi-TE mode (transverse E

field predominantly along the y axis, see Fig. 5.1)) of silicon rib waveguides for a 90-

degree bend section with a bend radius of R = 48µm. The rib height has been kept

fixed at H = 1.5µm, and the rib width W and the etch depth D have been varied. None

of the analyzed waveguides exhibit losses less than 1 dB per 90-degree bend. In contrast,

the losses for the quasi-TM mode (transverse E field predominantly along the x axis)

are much lower. They are shown in Fig. 6.14b at the same bend radius of R = 48µm.

In a wide range of waveguide widths W and etch depths D, the curvature losses for the

quasi-TM mode have acceptable values below 0.1 dB/90◦.

TM-mode loss mechanism

The reason for the fact that the TM mode experiences less curvature loss than the

TE mode becomes clear when considering a simple effective-index model for the curved

waveguide.

The thick solid curve in Fig. 6.15 shows schematically the equivalent index profile

neq,TE(y) for TE modes of the rib waveguide shown on the right-hand side of Fig. 5.1,

where the tilt of the profile represents the curvature of the rib waveguide [Vas91]. The

thin solid line indicates the effective index neff,TE of the fundamental TE waveguide

mode. According to a Wentzel-Kramers-Brillouin analysis, the curvature loss of this

mode is mainly proportional to exp(−I), where

I =
2π

λ

∫ yc,TE

W/2

√
n2

eff,TE − neq,TE(y)2 dy (6.37)
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Figure 6.14.: Curvature loss for
silicon rib waveguides with height
H = 1.5µm in a 90-degree bend at
a bend radius of R = 48µm. (a)
TE mode, (b) TM mode.
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Figure 6.15.: Schematic effective-index model illustrating the three curvature-loss mechanisms.
The three triangular areas (1: hatched along SW–NE, 2: hatched along NW–SE, and 3: their
intersection marked in gray color) visualize the tunneling barriers for radiation, 1: from the
TE rib mode to the TE slab mode, 2: from the TM rib mode to the TM slab mode, and 3:
from the TM rib mode to the TE slab mode, respectively.

is an integral over the spatial region where the field is purely evanescent [Vas91]. This

region extends from the core-cladding boundary at y = W/2 to the TE caustic at y =

yc,TE. Light must tunnel through this barrier (the strength of which is characterized by

I) into the oscillation region beyond the caustic. The tunnel barrier has been visualized

as the triangular area labelled “1” in Fig. 6.15; it is enclosed by the effective-index line

neff,TE and the equivalent index profile neq,TE(y).

Analogously, the thick dotted curve in Fig. 6.15 shows the equivalent index profile

neq,TM(y) for TM modes, and the thin dotted line indicates the TM-mode effective index

neff,TM. Here, the curvature-loss tunnel barrier is the triangular area labelled “2”, which

is enclosed by the two curves between the core-cladding boundary and the TM caustic

y = yc,TM. This area is larger than the corresponding TE area for the following reason.

In the slab region (|y| > W/2), the equivalent index neq,TM(y) of TM modes is lower

than the equivalent index neq,TE(y) of TE modes. The effective indices of TE and TM

waveguide modes, however, are much closer together – in a zero-birefringence waveguide,

they would even coincide. It is then clear geometrically that the tunnel barrier is usually

both deeper and longer for TM modes, resulting in lower curvature loss for the TM mode

at the same bend radius.

However, the above discussion is not complete. We have to take into account the fact

that the modes in a rib waveguide are not perfectly uniformly polarized but slightly

hybrid. The presence of an orthogonal field component permits a coupling of the TE

waveguide mode to the TM slab mode and of the TM waveguide mode to the TE slab

mode. The latter case is particularly important. Analogous to the two cases in the

preceding paragraphs, the loss induced by radiation of the TM rib mode into the TE

slab mode is related to the triangular area marked as “3” in Fig. 6.15, which is enclosed
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Figure 6.16.: Contours in steps of
2 dB of the transverse-H-field mag-
nitude of the quasi-TM mode of the
waveguide marked with a cross in
Fig. 6.14b. Looking into the pa-
per plane, the waveguide is curved
to the left such that power is radi-
ated towards the outer, right-hand
slab waveguide. Dark and light con-
tours correspond to real and imagi-
nary parts of the field, respectively.
The insets show the real part of
the transverse-H-field vectors. (a),
bend radius is R = 80µm; (b), bend
radius is R = 30µm.
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by the effective-index line neff,TM and the equivalent index profile neq,TE(y) between the

core-cladding boundary and the caustic y = yc,TETM (this area is simply the intersection

of the other two areas “1” and “2”). It can be seen in Fig. 6.15 that this tunnel barrier

is particularly small and thus enables an efficient radiation mechanism for the TM rib

mode, even when the hybridicity of the rib mode is very small. The cross-polarization

coupling from the TE waveguide mode to the TM slab mode can be neglected, because

the corresponding tunnel barrier is much higher than that of the coupling to the TE

slab mode.

Illustration of curvature loss mechanisms

In this section we illustrate the coupling of the curved TM waveguide mode to the TE

slab mode. As an example, we pick the waveguide marked with a cross in Fig. 6.14b:

H = 1.5µm, D = 0.88µm, W = 1.2µm.

That the coupling of the TM rib mode to the TE slab mode is indeed significant

is shown in Fig. 6.16a, where the transverse H-field of the quasi-TM mode in the rib

waveguide marked with a cross in Fig. 6.14b has been plotted for a bend radius of

R = 80µm. The radiation of power into the slab waveguide can be clearly seen –
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Figure 6.17.: 90-degree curvature loss versus bend radius for the waveguide marked with a cross
in Fig. 6.14b. While TE-mode losses are described well by a semi-vectorial model, TM-mode
losses require a full-vectorial description due to cross-polarization radiation.

towards the outside, the phase of the mode field increases, such that the phase fronts of

the propagating wave lag behind those inside the core and power is radiated away. The

insets in Fig. 6.16a show the vector character of the transverse H field in the core region

and in the outer slab. Even though the core field is predominantly parallel to the y axis

(quasi-TM mode), the slab carries away power mainly in the TE mode, which means

that the main loss mechanism is coupling to the orthogonally polarized slab mode, as

discussed in Sect. 6.5.2.

For shorter bending radii, the tunneling barrier to the TM slab mode becomes increas-

ingly shorter, and eventually the TM slab mode also carries a substantial part of the

radiated power. Fig. 6.16b shows the mode field of the same waveguide as in Fig. 6.16a

for a bending radius of R = 30µm, where now the beating between the TE and TM slab

modes can be clearly seen.

6.5.3. Insufficiency of semi-vectorial modeling

As another illustration of the significance of TE-slab-mode radiation for TM rib modes,

we have plotted in Fig. 6.17 the curvature losses of the TE and TM rib modes versus

the bending radius, calculated with both full-vectorial and semi-vectorial formalisms.

For the TE mode, the difference between full-vectorial and semi-vectorial calculations

is relatively small. However, the TM rib-mode losses are significantly underestimated

by the semi-vectorial calculations. The reason for this is that the semi-vectorial TM

calculation can not, by definition, take into account the coupling to the TE slab mode.

Therefore, it does not allow for the main loss mechanism and yields much too low loss

values.
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Incidentally, this cross-polarization radiation is not the dominant loss mechanism in

the GaAs/AlGaAs rib-waveguide structures from Refs. [Aus82, DH88] which are often

used as benchmarks for curvature-loss calculations [GBM91, YK93, BG00, DH04]. The

results for the curvature losses given in Refs. [GBM91,YK93,BG00,DH04] are accurately

reproduced also by the mode solver used for the present analysis. However, there is prac-

tically no difference between semi-vectorial and full-vectorial simulations when applied

to the waveguides of Refs. [GBM91,YK93,BG00,DH04], neither for the quasi-TE modes

nor for the quasi-TM modes. In those rib waveguides, the quasi-TE rib mode radiates

primarily into the TE slab mode and the quasi-TM rib mode radiates primarily into the

TM slab mode, as opposed to the silicon-on-insulator structure analyzed in this section.

6.6. Chapter summary

We have shown in this chapter that the most basic form of silicon Raman amplifier

as first demonstrated in [CDR+03] has an upper limit on the total gain that can be

achieved with a given waveguide technology. On the other hand, we have proposed

a tapered SRA, which can deliver more gain by keeping the local pump intensity at

its optimum value throughout the waveguide. As an alternative way of achieving an

increased maximum possible gain in SRAs, we have analyzed cladding-pumped SRAs,

in which the pump power is guided in an additional cladding surrounding the silicon

core; this reduces the FCA seen by the pump and allows longer amplifiers with more

gain than possible with conventional SRAs. The required long waveguide lengths can

be realized on silicon chips by making use of tight bends made possible by the high

index contrast of silicon waveguides; however, we have shown that the accurate design

of curved silicon waveguides requires fully vectorial simulation tools.
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Raman lasers

In the final chapter of this thesis, properties of conventional and new designs for silicon

Raman lasers (SRLs) are discussed. Section 7.1 gives details on the modeling and basic

characteristics of SRLs. New and more efficient SRL designs are presented in sections

7.2 (bidirectionally pumped SRL) and 7.3 (tapered SRL). The final section 7.4 shows

that the principle of cascading known from RFLs (see Sect. 3.3) can be applied to SRLs

to create silicon lasers with output wavelengths which have a large offset from the pump

wavelength.

The results of this chapter have been published in [KRB04,KRB05a,KRB05c,KRB06c,

KDRB06].

7.1. Basic characteristics of silicon Raman lasers

In this section we discuss the basic characteristics of Raman lasers in silicon wave-

guides. We show numerically that continuous-wave Raman lasing is possible in silicon

waveguides, in spite of the detrimental presence of TPA and FCA. Shortly after the

results of the study described in this section had been published [KRB04], the first

continuous-wave silicon Raman laser could be demonstrated experimentally by Intel in

2005 [RJL+05].

7.1.1. Geometry and model

Fig. 7.1 shows the schematic of the silicon Raman laser setup we analyze in this section.

It consists of a silicon waveguide of length L, into the left-hand side of which pump-

laser light at the wavelength λp is coupled in. Inside the waveguide, Raman scattering

generates optical power at the Stokes wavelength λs. The longitudinal evolution of the

forward- (+) and backward-propagating (−) pump (“p”) and Stokes (“s”) powers P±p
and P±s is described by the model summarized in Sect. 5.5. We only need to add suitable
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Figure 7.1.: Schematic of a basic silicon Raman laser. Pump power is injected at the left-hand
side into a silicon waveguide. The Stokes (lasing-wavelength) cavity is formed by reflectivities
Rs,l and Rs,r at the ends of the waveguide, while reflectivities at the pump wavelength Rp,l

and Rp,r can be used to influence the longitudinal pump-power distribution.

boundary conditions at the left-hand (“l”) and right-hand (“r”) ends of the waveguide,

where the pump and Stokes wavelengths see power reflectivities of Rp,l, Rp,r, Rs,l and

Rs,r, respectively. The reflectors could be formed by polished waveguide end surfaces,

by thin-film coatings on the end surfaces, or by waveguide Bragg gratings.

The first two boundary conditions relate the powers of the forward- and backward-

propagating Stokes waves P±s at the waveguide end faces through the corresponding

power reflectivities,

P+
s (0) = Rs,lP

−
s (0), P−s (L) = Rs,rP

+
s (L). (7.1)

The other two boundary conditions relate the forward- and backward-propagating

pump waves P±p as well as the injected pump power P0 as

P+
p (0) = TpP0 +Rp,lP

−
p (0), P−p (L) = Rp,rP

+
p (L), (7.2)

where P0 is the pump-laser power and Tp is the coupling efficiency into the waveguide.

We assume lossless reflectors, i. e., Tp = 1−Rp,l.

The left-hand one of Eqs. (7.2) assumes an incoherent superposition of the reflected

backward-propagating pump wave and the externally injected pump power. This bound-

ary condition is thus applicable whenever the pump-laser spectrum is so broad that it

spans several free spectral ranges (FSRs) of the silicon-waveguide cavity. For example,

the pump laser used in [CDR+03] is a Raman fiber laser with a spectral width of several

tens of gigahertz, while a silicon-waveguide cavity with a length of 1 cm has an FSR of

only c/(2Ln) ≈ 5 GHz.
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7.1.2. Lasing and shutdown thresholds

Simulation parameters

We initially concentrate on lasers with non-coated waveguide end-faces and assume that

all reflectivities are due to the silicon/air interface, Rp,l = Rp,r = Rs,l = Rs,r = 30%.

We base our simulations on the waveguide structure shown on the right-hand side of

Fig. 5.1, for which the various effective areas for SRS and TPA are shown in Fig. 5.3.

At the wavelengths chosen here (pump and Stokes wavelengths of λp = 1427 nm and

λs = 1542 nm, respectively), the effective areas have values of about 1.6µm2 and the

confinement factors are close to unity. We choose conservative values for the bulk-silicon

Raman-gain and TPA constants in order to avoid too optimistic results, see Sect. 5.5.

Numerical calculation of the threshold power

Around threshold, the Stokes powers are much smaller than the pump powers, P±s � P±p ,

and we can simplify the full model of Sect. 5.5 to

± 1

P±p

dP±p
dz

= −αp − βpp
P±p + 2P∓p

A
(TPA)
pp

− ηpϕ̄λ2
pN̄ , (7.3)

± 1

P±s

dP±s
dz

= −αs + g

(
P±p

A
(SRS)
co

+
P∓p

A
(SRS)
cntr

)
− βsp

2P+
p + 2P−p

A
(TPA)
sp

− ηsϕ̄λ2
sN̄ = γ±(z), (7.4)

N̄ =
M

2

βpp

hνpA
(TPA)
pp

(P+2
p + P−2

p + 4P+
p P

−
p ). (7.5)

The laser is at threshold when the Stokes round-trip net gain equals the losses due to

outcoupling at the left-hand and right-hand end faces with reflectivities Rs,l and Rs,r.

From Eqs. (7.4) and (7.1) we can thus obtain the oscillation condition

Rs,lRs,r exp

[
2

∫ L

0

γ̄(z) dz

]
= 1, (7.6)

where we have defined the local Stokes gain γ̄(z) as the average between the gains

experienced by the forward- and backward-propagating Stokes waves,1

γ̄(z) =
1

2

[
γ+(z) + γ−(z)

]
= −αs − ηsϕ̄λ2

sN̄(z) +

(
g

2A
(SRS)
co

+
g

2A
(SRS)
cntr

− 2βsp

A
(TPA)
sp

)
[P+
p (z) + P−p (z)] (7.7)

1If the effective areas for co- and counter-propagating SRS were equal, i. e., A(SRS)
co = A

(SRS)
cntr , then

γ̄(z) = γ+(z) = γ−(z).
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Figure 7.2.: Threshold pump power of
silicon Raman lasers versus waveguide
length L. End-face reflectivities are
30%, and free-carrier absorption is as-
sumed to be negligible (τeff = 0). Solid
curves: No two-photon absorption (β =
0). Dashed curves: With two-photon
absorption, β = 0.7 cm/GW.

In order to find the threshold pump power Pth, we numerically calculate the longitu-

dinal pump-power distribution from Eqs. (7.3) and (7.2) for varying pump powers P0

until P+
p (z) and P−p (z) fulfill Eq. (7.6). The corresponding pump power P0 is then the

threshold pump power Pth.

Lasing threshold

We first look at the imaginary case of a silicon Raman laser in which both TPA and

FCA are absent, i. e., we artifically set βpp = βsp = 0 and τeff = 0. The three solid

curves in Fig. 7.2 show the threshold pump power of such a laser as a function of the

waveguide length L, for three different loss coefficients α = αp = αs. The results suggest

that it should be possible to pump a silicon Raman laser beyond threshold by using a

pump laser with only a few Watts of output power, provided the effects of TPA and

FCA are negligible. In that case, the conversion efficiencies of the silicon Raman laser

are comparable to those obtainable from Raman fiber lasers, see Sect. 3.1.4.

Next we look at the influence that TPA has on the threshold pump power. The dashed

curves in Fig. 7.2 show the threshold power as a function of the waveguide length L,

when the TPA coefficients have realistic non-zero values (see Sect. 5.5), yet FCA is still

assumed to be absent, i. e., all charge carriers are assumed to recombine instantaneously

after generation and thus τeff = 0. TPA evidently increases the required threshold pump

powers, but only relatively weakly.

In contrast to the slight effect of TPA, the effect of FCA (τeff > 0) can be much more

dramatic, which is illustrated in Fig. 7.3. The linear waveguide losses are now fixed at

αp = αs = 1.0 dB/cm. The dashed line again shows the threshold power as a function

of the waveguide length for no TPA (βpp = βsp = 0) for comparison, whereas the solid

lines show the threshold powers in presence of TPA (non-zero βpp and βsp as in Sect. 5.5)

and several different charge-carrier lifetimes τeff. As expected, a larger τeff results in an

increased threshold. Furthermore, there is a limited usable range of waveguide lengths
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Figure 7.3.: Threshold pump power of
silicon Raman lasers versus waveguide
length L for several effective carrier life-
times τeff and αp = αs = 1.0 dB/cm.
The solid and dotted curves show, for
a given τeff, the lasing and shutdown
thresholds, respectively. Dashed curve
(included for comparison): threshold in
the absence of TPA and FCA.

outside of which the laser has no threshold at all. Outside this range, the waveguide

will never start lasing, no matter how large the pump power is (e. g., for L = 80 mm and

τeff larger than approximately 3.0 ns, the device has no lasing threshold). For increasing

τeff, the usable range becomes increasingly smaller, until at τeff ≈ 3.2 ns, it vanishes

completely. In other words, there is a maximum effective carrier lifetime that can be

tolerated for lasing.

The origin of the limited usable waveguide-length range is the increase of the overall

cavity losses with increasing pump power through the nonlinear absorption mechanisms

TPA and FCA. If only linear losses were present, the overall cavity losses would remain

constant with respect to the pump power, and for any given waveguide length L there

would be a pump-power level above which the laser will start lasing [AY79].

7.1.3. Laser characteristics

Even for configurations inside the usable waveguide-length range, there is a continu-

ing growth of the overall cavity losses when increasing the pump-laser power beyond

threshold. This can be seen in Fig. 7.4, where the input-output characteristics of several

lasers with various effective carrier lifetimes τeff are plotted. These characteristics were

calculated from the full model described in Sect. 5.5, and we defined the output power of

the laser as Pout = P+
s (L)(1− Rs,r). Directly above threshold, an increase of the pump

power also increases the output power. However, there clearly exists a rollover point,

i. e., a critical pump power beyond which a further increase of the pump power actually

results in a decrease of the output power and, eventually, in a return to zero at the

“shutdown threshold”. Thus, an increase of the pump power not only increases the Ra-

man gain, but also increases the losses for both the pump and the Stokes waves through

the nonlinear loss mechanisms TPA and FCA. This eventually leads to the breakdown

of lasing operation at the shutdown threshold. Furthermore, Fig. 7.4 shows that for
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Figure 7.4.: (left:) Input-output characteristics of silicon Raman lasers with L = 55 mm and
several values of the effective carrier lifetime τeff. The dashed curve corresponds to absence of
TPA and FCA. (right:) Zoom into the characteristics corresponding to large τeff.

increasing τeff, the maximum conversion efficiency of the lasers dramatically decreases

and the lasing and shutdown thresholds come closer to each other.

The shutdown-threshold power was in fact also obtained during the numerical thresh-

old computations according to Sect. 7.1.2 – for every given waveguide length L, there

is either no threshold at all or there are two threshold pump powers (in the presence

of TPA and FCA). The solid curves in Fig. 7.3 show the lower of the two threshold

powers (i. e., the lasing threshold), while the dotted curves show the upper threshold

(i. e., the shutdown threshold). Lasing of the device can only take place between these

two pump-power levels, with a maximum output power somewhere in between. The two

solution branches merge at two limit points (the ends of the usable waveguide-length

range), forming a closed egg-shaped curve, which narrows as τeff increases and eventually

vanishes completely at the maximum tolerated effective carrier lifetime.

Increased end-face reflectivities

As a last example we consider what happens when we apply coatings to the ends of

the silicon waveguide in order to increase the reflectivities. Specifically, we chose left-

hand and right-hand Stokes reflecitivities of 80% and left-hand and right-hand pump

reflectivities of 0 and 100%, respectively, such that Tp = 100% (a right-hand reflectivity

of 100% for the pump wave is often used in Raman fiber lasers so that the pump power

that is unused after a single pass is recycled and reflected back into the cavity).

Figure 7.5 shows the calculated threshold power versus waveguide length and the

input-output characteristics of the high-reflectivity silicon Raman laser for various effec-

tive carrier lifetimes. The thresholds are much lower than in the first laser (see Fig. 7.3).

We attribute this to the increased Stokes reflectivities which result in lower cavity losses,
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and this together with the efficient pump-backreflection arrangement yields lower thresh-

olds. Furthermore, the maximum tolerable carrier lifetime is now about twice as large

as in Fig. 7.3, and the optimal waveguide length for minimum threshold power varies

more strongly with τeff.

Figure 7.5.: Threshold pump power versus waveguide length L (left) and input-output charac-
teristics at L = 35 mm (right) of silicon Raman lasers for several effective carrier lifetimes τeff.
The only changes in the laser configuration against Figs. 7.3 and 7.4 are Stokes reflectivites of
80%, and left-hand and right-hand pump reflectivities of 0% and 100%, respectively.

7.2. Bidirectionally pumped silicon Raman lasers

In this section we introduce the bidirectionally pumped silicon Raman laser, where pump

power is injected from both ends of the waveguide instead of only one end, see Fig. 7.6.

This pumping scheme significantly increases the tolerance of silicon Raman lasers against

FCA and leads to more efficient lasing [KRB05c].

Figure 7.6.: Schematic of a bidirectionally pumped silicon Raman laser.
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7.2.1. Model

Our model for bidirectionally pumped silicon Raman lasers is essentially that which

we have used in Sect. 7.1 to analyze single-side-pumped lasers. The only change is a

straightforward modification of the boundary conditions: the reflection of the waves at

the two end faces of the silicon waveguide (at z = 0 and z = L) with the reflectivities

R{p,s},{l,r} and the input coupling of the left-hand and right-hand pump powers P0,{l,r}

with efficiencies Tp,{l,r} are taken into account by the new boundary conditions (see also

Fig. 7.6),

P+
p (0) = Tp,lP0,l +Rp,lP

−
p (0), P+

s (0) = Rs,lP
−
s (0), (7.8)

P−p (L) = Tp,rP0,r +Rp,rP
+
p (L), P−s (L) = Rs,rP

+
s (L). (7.9)

The output power of the laser is Pout = P+
s (L)(1 − Rs,r). We will consider only

lasers which have been prepared such that they have a left-hand Stokes reflectivity of

Rs,l = 100% (i. e., we want to have all the laser output power on the right-hand side),

whereas the other reflectivities have the Si–air Fresnel-reflectivity value of Rp,l = Rp,r =

Rs,r = 30%.

In practice, bidirectional pumping of the Raman laser could be achieved by the use

of two separate pump-laser diodes at the left-hand and right-hand ends of the silicon

waveguide, the power of which could be controlled independently. For clarity, however,

we choose to present our results for a situation where we have only one pump laser, the

output power P0 of which is split between the left-hand and right-hand ends according to

the splitting ratio ρ, i. e., the left-hand and right-hand pump powers are P0,l = (1−ρ)P0

and P0,r = ρP0. Thus, the case ρ = 0 corresponds to conventional single-side pumping.

7.2.2. Lasing and shutdown thresholds

We start by demonstrating the effect of the introduction of bidirectional pumping on

the threshold powers of the laser. Fig. 7.7a shows the lasing and shutdown thresholds

for single-side pumping (ρ = 0) as a function of the laser length for various carrier

lifetimes τeff. For a given τeff, lasing is possible only inside the corresponding closed egg-

shaped curve delimited by the two thresholds as discussed in Sect. 7.1.2. For example,

for τeff = 4.0 ns, lasing is only possible for waveguide lengths between 2.5 and 8.1 cm

(marked with dots in Fig. 7.7a). In particular, the laser with L = 7 cm (marked with a

vertical arrow in Fig. 7.7a) starts lasing at a pump power of 1.8 W, and stops lasing again

at the shutdown threshold of 4.7 W due to excessive FCA, delivering maximum output

power somewhere in between. For increasing τeff, the range where lasing is possible
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Figure 7.7.: Threshold pump-laser pow-
ers for lasing (solid) and shutdown (dot-
ted) versus laser length L for several
effective lifetimes τeff. (a) single-side-
pumped lasers (ρ = 0), (b) lasers are
bidirectionally pumped with a pump-
power splitting ratio of ρ = 50%, i. e.,
the pump-laser power is split equally
between the two waveguide ends.

shrinks, and it closes completely at the maximum tolerable lifetime of about 4.65 ns.

Fig. 7.7b shows the corresponding curves for the case where the pump power is split

equally between the left-hand and right-hand ends, i. e., the pump-power splitting ratio

is ρ = 50%. The maximum tolerable lifetime is now about 5.82 ns, which is higher

by 25% as compared to the single-side-pumped case, an indication of higher tolerance

against FCA. For shorter lifetimes, the laser length can now be chosen more freely.

The reason for the improved tolerance against FCA is easily illustrated. Consider

the laser with τeff = 5 ns and L = 10 cm at a pump-laser power of P0 = 1.8 W. When

bidirectionally pumped with ρ = 50%, the laser is exactly at threshold (marked with

a thick dot in Fig. 7.7b). The corresponding pump-power distribution is plotted as

the thick solid and dashed lines in Fig. 7.8a, and the thick line in Fig. 7.8b shows the

distribution of the resulting net Stokes gain (defined in Eq. (7.7)). Its integral along

the waveguide amounts to 2.6 dB. In contrast, the thin curves in Figs. 7.8a and 7.8b

correspond to the case of single-side-pumping. It can be seen that here the pump power

drops more rapidly at the left-hand side of the waveguide due to higher FCA than in the

bidirectionally pumped case. As a consequence, the net Stokes gain is lower: its integral

is only −0.077 dB, meaning net loss. Thus, bidirectional pumping is more efficient in

providing Stokes gain for the same pump-laser power.
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7. Analysis and design of silicon Raman lasers

Figure 7.8.: Comparison between
single-side-pumped (thin) and bidirec-
tionally pumped (thick) waveguides at
the same total pump power P0. (a) lon-
gitudinal distribution of pump powers
(solid: forward, dashed: backward), (b)
local Stokes gain γ̄.
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Figure 7.9.: Input-output characteristics of the laser marked with a vertical arrow in Fig. 7.7a
for several values of the pump-power splitting ratio ρ.

Input-output characteristics

Now we look at the influence of bidirectional pumping on the laser characteristics. Con-

sider the laser configuration marked with a vertical arrow in Fig. 7.7a, i. e., the laser

with L = 7 cm, τeff = 4 ns and single-side pumping (ρ = 0). Its characteristic is shown

as the solid curve in Fig. 7.9. The dashed curves in the same figure show the character-

istics when the same laser is bidirectionally pumped with the same total pump power

but several different splitting ratios. All of these lasers are more efficient than their

single-side-pumped counterpart, the most dramatic efficiency increase by a factor of 2.7

occuring at a pump-power splitting ratio of ρ = 50%.

132



7. Analysis and design of silicon Raman lasers

Figure 7.10.: (a): Maximum output
powers of single-side-pumped (solid)
and bidirectionally pumped (dashed)
silicon Raman lasers as a function of the
effective carrier lifetime τeff. Length L

and pump-power splitting ratio ρ have
been varied to find the maximum out-
put power for each τeff. The optimiza-
tion results for L and ρ are plotted in
part (b).

Optimization for various lifetimes

In this section we investigate how the laser-efficiency increase provided by bidirectional

pumping depends on the effective carrier lifetime τeff. For each value of τeff, we first

optimize the length L of a single-side-pumped laser such that it produces the maximum

possible output power. Simultaneously, we optimize the length L and the pump-power

splitting ratio ρ of a bidirectionally pumped laser. We assume that the available pump-

laser power is limited to 8 W. The resulting maximum output powers for both laser types

are shown in Fig. 7.10a as a function of τeff. As expected, bidirectionally pumped lasers

are more efficient than single-side-pumped lasers, and the lasing efficiency is improved

the more dramatically the larger τeff is. For example, when the lifetime is τeff = 3 ns,

bidirectional pumping increases the maximum output power by 2.3 dB, whereas at τeff =

4.5 ns, the increase is already 10 dB. It can also be seen, in agreement with Fig. 7.7a,

that single-side-pumped configurations do not lase as τeff exceeds 4.6 ns. Fig. 7.10a also

shows that this maximum tolerable lifetime is larger for bidirectionally pumped lasers.

Fig. 7.10b shows the laser lengths and splitting ratios ρ corresponding to the optimized

lasers from Fig. 7.10a. For large τeff, the optimized bidirectionally pumped lasers have

a splitting ratio of 50%. The reason for this is as follows: because the Stokes powers

are low, they nearly see the undepleted-pump gain which in turn is maximal when the

left-hand and right-hand pump powers are kept as low as possible, i. e., when the pump

power is equally split between both ends (ρ = 50%, see Fig. 7.8). The optimal device
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Figure 7.11.: Schematic of a tapered silicon Raman laser.

lengths increase with τeff until the maximum tolerable lifetimes of 4.65 and 5.82 ns,

respectively, are reached (see Sect. 7.2.2). The optimal device lengths at those values of

τeff correspond to the points towards which the closed threshold curves in Figs. 7.7a and

7.7b contract for increasing τeff.

7.3. Tapered silicon Raman lasers

It will be shown now that the concept of tapering introduced for silicon Raman amplifiers

in Sect. 6.3 can also be successfully applied to silicon Raman lasers to enhance their

efficiency. The results of this section have been published in [KRB05a]. A tapered

silicon Raman laser is shown schematically in Fig. 7.11.

7.3.1. Modeling

The model we use to describe the longitudinal evolution of the pump and Stokes powers

inside the silicon Raman laser is summarized in Sect. 5.5. The only additional simpli-

fication we make in this section is to approximate all effective areas for SRS and TPA

occurring in Eqs.(5.50)–(5.52) by the same value and simply write Aeff. Also, we assume

all confinement factors are unity. We have already made these simplifications in our anal-

ysis of tapered silicon Raman amplifiers. They are well justified for large waveguides,

such as the rib waveguide whose effective areas have been plotted in Fig. 5.3.

In all simulations of tapered silicon Raman lasers, we will restrict ourselves to wave-

guides without any end-face coatings, i. e., Rp,l = Rp,r = Rs,l = Rs,r = 30% (only

Fresnel reflection), Tp = 1 − Rp,l (ideal input coupling). These reflectivities enter the

model through the boundary conditions which are the same as for a non-tapered laser,

see Sect. 7.1.1. The output power of the laser is defined as Pout = P+
s (L)(1 − Rs,r).
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Figure 7.12.: Maximum output power
for various lasers with non-tapered ef-
fective area Aeff, when pump power is
limited to 5 W.

Throughout this section, we assume that the available pump-laser power is limited to

5 W, and we will look for silicon Raman lasers that yield maximum output power given

these constraints by considering the dependence of the lasing characteristics on the wave-

guide length L and on the longitudinal variation of the effective area Aeff. We will show

how the introduction of tapered effective areas can result in more efficient lasers for a

given τeff, compared with the non-tapered lasers discussed in Sect. 7.1.

7.3.2. Optimal non-tapered laser

To start, we consider lasers in a non-tapered waveguide, i. e., the effective area Aeff is

constant along z. Fig. 7.12 shows the maximum output power obtainable in such non-

tapered lasers as a function of the waveguide length L and the effective area Aeff when a

maximum pump power of 5 W is available. The effective free-carrier lifetime is assumed

to be τeff = 3.0 ns. This is very close to the maximum tolerated effective carrier lifetime

of 3.2 ns, above which no non-tapered laser can be realized.2 Because of the closeness

of the chosen τeff = 3.0 ns to this critical value, the output powers obtainable from the

analyzed silicon lasers are rather low—the best non-tapered laser (Aeff = 2.5µm2 and

L = 53 mm, marked with a cross in Fig. 7.12) produces about 8.6 mW of Stokes output

power.

Note from Fig. 7.12 that a decrease of the effective area does not necessarily result

in more efficient lasers. The reason is that the relative weighting of FCA and Raman

gain depends on the effective area: as can be seen from Eqs. (5.50)–(5.52), halving the

effective area doubles the Raman gain, but at the same time increases the impact of FCA

by a factor of four—loss increases faster than gain when decreasing Aeff, thus reducing

the laser efficiency. On the other hand, an effective area that is too large throughout

the laser is not advisable either – even though FCA is then suppressed much stronger

2The lifetime limit of 3.2 ns is obvious from Fig. 7.3 only for an effective area of 1.6µm2, but is in fact
independent of the effective area, as a scaling of the differential equations shows.
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Figure 7.13.: Comparison of various tapered silicon Raman lasers. (a): longitudinal effective-
area distribution Aeff(z), where the longitudinal coordinate z has been normalized to the laser
length L, (b): corresponding laser characteristics. The thick curves correspond to optimized
tapers, while the thin solid curves correspond to the best non-tapered laser.

than Raman gain, we would also need more pump power at large effective areas, and we

have set a limit of 5 W here. Therefore, there is an optimal (non-tapered) effective area

in Fig. 7.12.

7.3.3. Tapered lasers

We now introduce an additional degree of freedom by allowing different effective areas

at different positions inside the laser, for example by varying the width of the waveguide

as suggested in Fig. 7.11. We have already discussed the principle for silicon Raman

amplifiers in Sect. 6.3 – in regions where the total guided power is large (i. e., towards

the pumped end of the silicon waveguide), FCA dominates over Raman gain. This

dominance can be diminished by choosing a larger effective area Aeff(z) only in that

region: this results in a linear reduction of the local Raman gain, but in a quadratic

reduction of FCA. On the other hand, in regions where relatively low amounts of power

are guided, the effective area Aeff(z) should be chosen smaller to increase the Raman

gain.

The thin solid curve in Fig. 7.13b shows the input-output characteristics of the best

non-tapered laser (marked with a cross in Fig. 7.12) with a constant Aeff = 2.5µm. Now

we consider a tapered-waveguide laser: the other two thin curves in Fig. 7.13b show

the characteristics when the effective area varies linearly along the waveguide with a

fixed Aeff(L) = 2.5µm at the waveguide end according to the thin curves in Fig. 7.13a.

At a pump power of 5 W, both tapered lasers yield a higher output power than the

best laser in a non-tapered waveguide, in accordance with the discussion in the previous
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paragraph. Even by a simple linear tapering of Aeff(z), we have reduced the impact of

FCA, and we have more than doubled the laser efficiency.

The thick solid curve in Fig. 7.13b shows the result of a simple optimization of the

taper. We did not restrict ourselves to a linear taper but considered a more general taper

instead, where we picked four values of Aeff(z) at equidistant points along z (see thick

dots in Fig. 7.13a) and interpolated with a piecewise cubic polynomial in between. Those

four values of Aeff and the waveguide length L have been varied so as to find optimal

values where the output power at P0 = 5 W is maximal. When requiring that Aeff stay

between 1 and 5µm2, the optimized laser has an output power of 51 mW, which is six

times higher than the maximum output power of the best non-tapered laser (8.6 mW).

7.3.4. Lasing and shutdown thresholds

The characteristics in Fig. 7.13b show that the introduction of an effective-area ta-

per strongly influences the threshold powers: while the lasing (lower) threshold is only

slightly influenced, the shutdown (upper) threshold is shifted to significantly larger pump

powers. This is also illustrated in Fig. 7.14, where the two thresholds are plotted for

various waveguide lengths and several linear tapers. The shutdown threshold (dotted

lines) grows with increasing effective area at the pumped side of the waveguide, show-

ing that tapered lasers can be more tolerant against large free-carrier lifetimes τeff. Of

course, the laser with an optimized non-linear taper and waveguide length (thick solid

curve in Fig. 7.13a) is even more tolerant than all linear tapers shown in Fig. 7.14; its

lasing and shutdown thresholds are 2.2 W and 52 W, respectively, the latter being far

beyond the range plotted in Fig. 7.14.

Figure 7.14.: Thresholds for lasing (solid) and shutdown (dotted) versus waveguide length L

for linear effective-area tapers from indicated value at z = 0 to 2.5µm2 at z = L. The thick
curve corresponds to the optimal non-tapered laser marked in Fig. 7.12.
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The longitudinal variation of the effective area Aeff(z) may be achieved practically by

varying the waveguide geometry along the waveguide. However, a variation of the wave-

guide geometry may not only change Aeff, but also other parameters of the waveguide,

for example the waveguide losses α and the effective charge-carrier lifetime τeff. A simple

calculation shows that our principle still works even if τeff increases due to tapering: the

thick dashed curve in Fig. 7.13a shows the characteristics corresponding to an optimized

effective-area taper in a waveguide with an increased τeff of 3.3 ns. Again, the obtained

output power of 39 mW is much higher than that of the best non-tapered laser with

τeff = 3.0 ns. Note that a non-tapered laser with τeff = 3.3 ns would never lase at all for

any L or Aeff, see the discussion in Sect. 7.3.2. This shows that an effective-area taper

increases the tolerance of the lasing characteristics against long charge-carrier lifetimes

and significantly increases the efficiency of the silicon Raman laser.

7.4. Cascaded silicon Raman lasers as mid-infrared

sources

In this final section, we show that the concept of cascading, which is well-known from Ra-

man fiber lasers, can be successfully applied to silicon Raman lasers. We have published

the results of this section in [KDRB06].

It will be shown that cascaded silicon Raman lasers, in which the pump light undergoes

multiple Stokes shifts in a silicon waveguide, can efficiently convert near-infrared to

mid-infrared radiation. The use of silicon waveguides for this purpose is particularly

interesting, since TPA vanishes for wavelengths above 2.2µm, such that FCA becomes

insignificant if all wavelengths are large enough, and very efficient lasing should become

possible. If the pump wavelength lies significantly below 2.2µm, however, the effects

of TPA and FCA becomes increasingly significant, and the question arises what is the

shortest pump wavelength that can be used for a given waveguide.

7.4.1. Applications

Lasers emitting in the mid-infrared spectral region beyond 2µm are of technological

relevance because the fundamental vibrational and rotational absorption lines of many

types of molecules fall into this region. For example, in the wavelength region around

3µm, water exhibits very strong absorption [WWQ89], which suggests applications of

3-µm lasers in spectroscopy and in medicine [SV03]. Much research interest is directed

towards realizing 3-µm sources in the form of solid-state, semiconductor and fiber lasers
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Figure 7.15.: Schematic view of a cascaded silicon Raman laser.

[SV03]. In this section, we investigate the possibility of using cascaded Raman cavities

in a silicon waveguide in order to generate 3-µm radiation. The principle is to use

stimulated Raman scattering (SRS) to shift the light of available near-IR pump sources

to the desired output wavelength in the mid-IR through several intermediate Stokes

shifts. Such a mid-IR source could be compactly realized in the entire transparency

window of silicon (up to nearly 7µm), without requiring the introduction of dopants

with their fixed emission spectra.

Given the high efficiency of fiber-based cascaded Raman lasers, see Sect. 3, the use of

cascaded Raman cavities in a silicon waveguide seems promising. However, the efficien-

cies that can be obtained and their dependence on the various technological and design

parameters have not been analyzed so far. In particular, TPA and FCA must be taken

into account in silicon waveguides but are not significant for Raman fiber lasers.

Fig. 7.15 illustrates the principle of a cascaded silicon Raman laser. The pump power of

an external pump laser at wavelength λp is injected into the silicon waveguide, and Stokes

light whose optical frequency is lower by the Raman shift of 15.6 THz is generated by

Raman scattering. This first-order Stokes light circulates inside an intermediate cavity

formed by highly reflecting elements (HR) such as Bragg gratings or dielectric coatings

and acts itself as the pump source for the second-order Stokes line generated in the same

waveguide. This cascading process is continued until the desired wavelength is reached

(here, we design lasers with 3-µm wavelength output). Part of that light is allowed to

leave the waveguide on the other end through an output reflector with power reflectivity

R < 1.

7.4.2. Model

The parameters used in our simulations are based on the rib-waveguide structure from

[LRJ+06], which is shown on the right-hand side of Fig. 5.1. We assume that the pump

light and all Stokes lines propagate in the fundamental quasi-TE mode of the waveguide.

In practice, this can be enforced, e. g., by making use of waveguide birefringence such

that only the quasi-TE-mode reflection spectrum of the Bragg gratings lies inside the
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Raman-gain spectrum.

The longitudinal evolution of the pump line and the various Stokes lines is governed

by differential equations that are a straightforward extension of the model summarized

in Sect. 5.5 to an arbitrary number of Stokes lines. As in that section, we assume that

the waveguide is dispersive enough that four-wave mixing between the various laser lines

plays no significant role. As the wavelengths occuring in the analyzed cascaded lasers

vary in a wide range (1.5 . . . 3.0µm, i. e., by a factor of two), it is essential that we

take into account the wavelength dependence of the mode fields (and thus the effective

areas, see Fig. 5.3, part of which is reproduced in Fig. 7.16) and of the bulk TPA and

Raman-gain coefficients.

Our model for the TPA spectrum has already been summarized in Sect. 5.3 — we use

the model of [Din03], which we calibrate such that the degenerate-TPA coefficient at a

wavelength of 1427 nm has one of the higher values reported, 0.7 cm/GW [CRDJ04], in

order not to underestimate the effects of nonlinear absorption, see Table 5.2. The degen-

erate TPA coefficient is plotted versus wavelength as the thick solid curve in Fig. 7.16.

It vanishes for λ > 2.2µm, where the photon energy is less than half the indirect band

gap of silicon.

As for the spectral dependence of the Raman-gain coefficient, we assume that the

Raman-tensor components [GC80] and the Raman linewidth of silicon are constant in

the wavelength range of interest, so that the Raman-gain constant scales essentially

inversely with the Stokes wavelength [SB65,Boy03]. The thick dotted curve in Fig. 7.16

shows the peak Raman gain as a function of the pump wavelength, assuming that g(λp =

1427 nm) = 20 cm/GW as in [JBD+05], see Table 5.1. As realistic models for the

wavelength dependence of the linear waveguide losses α(λ) in such a wide wavelength

range are not available to the best of the author’s knowledge, we will simply consider

the effect of various different choices of constant loss coefficients. Potentially large losses

caused by OH impurities in the silica cladding beyond 2µm could be circumvented by

undercutting of the silicon waveguide [JBD+05].

For the numerical solution of the boundary-value problem describing the laser, we use

the methods described in section 3.3.3 in the context of widely tunable cascaded RFLs.

7.4.3. Conversion efficiency versus lifetime and pump

wavelength

In order to obtain Raman-laser output at 3.0µm, one must choose a shorter pump wave-

length whose corresponding optical frequency is offset from the desired output frequency
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by an integer multiple of the silicon Raman shift of 15.6 THz. The solid upright arrows

in Fig. 7.16 represent four possible choices that we have analyzed in the following. In-

termediate cavities (dashed upright arrows) are needed in all these four arrangements.

For each of the four pump-wavelength choices, we have optimized the laser length L

in the range 0.5 . . . 30 cm, the output-coupler reflectivity R in the range 1 . . . 90% and

the pump power in the range 0 . . . 4 W so that the output power of the cascaded laser is

maximal. All other reflectivities have been fixed at 99%. This optimization was repeated

for several effective carrier lifetimes τeff. Fig. 7.17 plots the optimized output power at

3.0µm against the effective carrier lifetime.

We first consider the solid curve (a) in Fig. 7.17, which corresponds to a cascaded laser

pumped at λp = 2044 nm, where we have assumed linear waveguide losses of 0.3 dB/cm

[LRJ+06]. Even for the comparatively large effective carrier lifetime of τeff = 10 ns,

the output power of the cascaded silicon laser exceeds 1 W at a pump power of 4 W

and thus has a conversion efficiency comparable to that of fiber-based cascaded Raman

lasers [SV03, HBM+02]. The reason for this is that the TPA coefficient at the pump

wavelength of 2044 nm is so small (see Fig. 7.16) that the rate of carrier generation by

TPA is relatively low, and thus FCA becomes significant only for very long effective

carrier lifetimes τeff > 10 ns. Curve (b) in Fig. 7.17 shows the optimization results for

higher linear losses of 1.0 dB/cm. Even for this value, which is rather high for the type

of waveguide considered here, the achievable output powers still exceed 0.5 W.

Now we use shorter pump wavelengths. The nonlinear absorption effects will be-

come progressively stronger, because the TPA coefficient increases towards shorter wave-

lengths (see thick solid curve in Fig. 7.16), and consequently the efficiency of cascaded
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7. Analysis and design of silicon Raman lasers

lasers will decrease. Curve (c) in Fig. 7.17 shows the maximal output power as a function

of the effective carrier lifetime for a laser pumped at 1847 nm, i. e., one more cascade than

for curve (a) and otherwise unchanged parameters. The output power exceeds 0.25 W

for effective carrier lifetimes τeff < 1 ns. For τeff = 10 ns, however, it is not possible to

obtain lasing at 3µm at all.

For lasers with even shorter pump wavelengths, we found that waveguides with sub-

nanosecond effective carrier lifetimes are necessary. Curves (d) and (e) in Fig. 7.17

correspond to pumping at 1685 nm. We had to assume slightly more favourable sim-

ulation parameters than for curve (c): for (d), we assumed lower linear losses of only

0.1 dB/cm, whereas for (e), we assumed a more optimistic value for the Raman-gain

coefficient of g(λp = 1427 nm) = 30 cm/GW [EDRMO+04]. We obtain output powers

larger than 100 mW for effective carrier lifetimes τeff < 0.3 ns. Finally, curves (f) and (g)

show the maximal output power versus effective carrier lifetime for pumping at 1550 nm.

Both curves correspond to an optimistic choice for the linear losses of α = 0.1 dB/cm,

and the Raman-gain coefficients for curves (f) and (g) are 20 and 30 cm/GW, respec-

tively. The laser produces significant output power only for effective carrier lifetimes

well below 1 ns.
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reflectivity R have been optimized.

In conclusion, we have shown that a cascaded silicon Raman laser can be used to

efficiently convert light from near-IR wavelengths to 3µm. For example, when pumped

with 4 W at 2044 nm, one can obtain output powers of more than 0.5 W at 3µm even

for waveguides with a rather large effective carrier lifetime of 10 ns. The advantage of

the cascaded silicon Raman laser for generation of mid-IR radiation is that the output
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wavelength can be designed to lie anywhere in the mid-IR, provided the lasing silicon

waveguide is transparent in the relevant spectral range and suitable pump sources are

available.

7.5. Chapter summary

In this chapter, we have shown by numerical simulations that continuous-wave Raman

lasing is possible in silicon waveguides. However, we have found that silicon Raman lasers

have a roll-over point in their characteristics beyond which the output power decreases

again, and a shutdown threshold at which lasing stops completely due to the increasing

influence of FCA. We have then shown that in a bidirectionally pumped SRL, FCA is

mitigated because the pump power is distributed more equally along the waveguide.

Furthermore, the concept of tapering introduced in section 6.3 was applied to SRLs,

showing that tapered SRLs can be significantly more efficient than non-tapered SRLs.

Finally, we have shown that cascaded SRLs can be used to realize efficient mid-infrared

sources based on near-IR pump lasers.
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The nonlinear effect of stimulated Raman scattering is finding an increasing number of

interesting applications in optical communications. For example, Raman amplifiers in

optical fibers have recently gained in attractiveness as a spectrally flexible, low-noise

alternative or add-on to conventional erbium-doped fiber amplifiers in long-haul optical

communication systems, and they are starting to appear as key elements in modern

commercial fiber-optic communications equipment. Raman fiber lasers, which too are

based on the nonlinear effect of stimulated Raman scattering, are often used to pump

these amplifiers. Finally, a quite novel application of stimulated Raman scattering is

in Raman amplifiers and lasers based on silicon waveguides. These devices have been

researched for a few years only, but they have the potential of being employed in future

telecommunications equipment.

In this thesis, several new concepts for Raman amplifiers and lasers both in optical

fibers and silicon waveguides with a strong potential of increasing the performance of

fiber-optic communication systems have been developed, modeled and optimized. Al-

ternative applications, especially for silicon-based designs operating in the mid-infrared

region beyond 2µm, may be found in spectroscopy and medicine.

In the first part of the thesis, Raman fiber lasers (RFLs) have been designed for the use

as pump sources for Raman fiber amplifiers. Double-cavity RFLs have been proposed, in

which the threshold pump power and the conversion efficiency at large pump powers can

be optimized independently of each other, thereby improving the overall power efficiency

of Raman-amplified transmission spans in which the pump power must be dynamically

switched. Widely tunable RFLs have been analyzed, and a practical design tunable over

the entire optical-communications wavelength range has been developed, which can be

used, e. g., as an adaptive pump source for Raman amplifiers in which the channel load

may change over time.

The stability of RFLs used as pump sources for optical communications is an impor-

tant characteristic, as any fluctuations of the output power of the RFL are subsequently

transferred to the signal inside a Raman amplifier, especially in co-pumped transmission
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spans. A model describing the transfer of relative intensity noise (RIN) from the RFL’s

pump laser to the output of this RFL has been developed, which can qualitatively ex-

plain the measured RIN of an RFL. Based on that model, single-cavity RFLs have been

optimized such that the bit-error-rate degradation of a Raman-amplified transmission

span due to noise on the RFL is minimized. Furthermore, the concept of the double-

cavity RFL introduced at the beginning can be used to realize lasers with characteristics

exhibiting a conversion maximum, at which fluctuations of the pump-laser power are

not transferred to the RFL output, thus stabilizing the RFL. Finally, it has been found

that the power-dependent Stokes line broadening which is known to occur in RFLs can

stabilize multi-wavelength RFLs against pump-power variations, while the conventional

models of RFLs predict a significant instability.

In the second part of the thesis, fundamental properties and limitations of silicon Ra-

man amplifiers and lasers have been analyzed, and novel designs with increased efficiency

have been proposed. Compared to the case of fibers, additional nonlinear effects occur

in silicon, namely Two-Photon Absorption (TPA) and Free-Carrier Absorption (FCA).

These effects compete with the desired Raman amplification, and the design of efficient

amplifiers or lasers consists in suitably balancing the various nonlinear effects. The basis

of all these investigations is formed by a newly developed comprehensive mathematical

model describing the propagation of the pump and Stokes waves inside a silicon wave-

guide under the influence of nonlinear effects. The model takes into account the high

refractive-index contrast of silicon waveguides and the resulting fully vectorial character

of the mode fields. Based on available material data, the nonlinear effects of stimulated

Raman scattering and TPA between co- and counterpropagating waves have been for-

mulated in terms of compact formulas for the effective areas, while FCA is represented

by overlap integrals of the mode fields with the steady-state free-carrier distribution

resulting from a carrier-diffusion process.

The nonlinear absorption effects TPA and FCA lead to a significantly different be-

havior of Raman-active devices based on silicon as compared to their fiber-optic coun-

terparts. In particular, it has been shown that FCA sets an upper limit to the pump

power that can be usefully injected in such devices, thus limiting amplifier gains and

lasing efficiencies. The characteristics of silicon Raman lasers have been shown to have a

roll-over point above which a further increase of the pump power actually decreases the

laser output power. Eventually, at the shutdown threshold, lasing even stops completely.

Explicit design rules for optimal silicon Raman amplifiers have been derived.

Aiming at increasing the maximum possible gain of silicon Raman amplifiers, it has

been shown that tapering the modal effective area along the propagation direction keeps
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the local pump intensity optimal at each position along the waveguide and thus increases

the achievable total gain. The same principle has been shown to be useful for significantly

increasing the output power of silicon Raman lasers. On the other hand, bidirectional

pumping, where the pump power is injected from both sides, reduces the pump-power

peaks at the waveguide ends and avoids excessive FCA by distributing the pump power

more equally along the waveguide, leading to more efficient lasing. Furthermore, in

a cladding-pumped silicon waveguide the pump power is partially removed from the

silicon and guided in an additional cladding surrounding the silicon, thus mitigating

the effect of FCA on the pump power. Optimal designs find a trade-off between this

FCA mitigation and the concomitant Raman-gain reduction such that the total gain of

the cladding-pumped amplifier is larger than that possible with core-pumped amplifiers.

For optimal amplifiers or lasers, waveguide lengths on the order of tens of centimeters

can be required. In order to realize these on a silicon chip, the waveguide needs to

be at least partly curved. It was found that the curvature losses of silicon waveguides

can vary in a wide range dependending on the waveguide geometry. Due to the hybrid

leakage in curved silicon rib waveguides, fully vectorial simulation tools such as the finite-

difference mode solver written in this thesis are indispensible for an accurate modeling

of the polarization-dependent curvature loss and the practical design of curved silicon

waveguides.

Finally, it has been shown that the concept of cascaded cavities known from Raman

fiber lasers can be used successfully for spectrally cascading silicon Raman lasers to re-

alize wavelength converters from near-infrared to mid-infrared radiation (such as 3µm).

As TPA becomes increasingly more severe for decreasing wavelengths, the achievable

conversion efficiencies depend on the choice of the pump wavelength. If the latter is

above 2µm, the conversion efficiencies can approach those of RFLs.

In summary, new designs for Raman-based components for use in optical communi-

cations have been presented. In particular the proposed silicon-based Raman amplifiers

and lasers have the potential of increasing the practicability of Raman amplification

in future silicon-based telecommunications, where up to now a continuous-wave gain of

at most 3 dB has been experimentally achieved. Together with ongoing technological

improvements on the materials and processing side, such as a further reduction of the

linear waveguide losses and the free-carrier lifetime of silicon waveguides, the presented

concepts should help bringing silicon-based Raman amplification closer to practical ap-

plicability and commercial maturity.
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Motivation

An accurate, full-vectorial computation of the mode fields of optical waveguides was

useful in various parts of this thesis for obtaining quantitative results. For example,

in section 6.4 where we have discussed the cladding-pumped silicon Raman amplifier,

the pump mode is a higher-order mode of the structure (see Fig. 6.8), which has a

complicated vectorial structure inside the silicon, where it would be a very coarse ap-

proximation to assume that the field is uniformly polarized; none of the cartesian field

components are negligible, and without a numerical tool it would have been difficult to

obtain a realistic estimate for the mode field.

Furthermore, in section 6.5, we show that full-vectorial computations are essential for

the design of silicon rib waveguides with low TM-mode curvature loss. Scalar [YK93],

semi-vectorial [GBM91, DH04] or effective-index models [BG00] can significantly un-

derestimate the curvature losses of the quasi-TM mode, because they do not allow for

coupling of the quasi-TM rib mode to the radiating TE slab modes, which may be the

principal curvature-loss mechanism.

Design of the mode solver

In order to allow for curved waveguides, the Helmholtz equation is written in cylindrical

coordinates, where the angular coordinate corresponds to the propagation direction in

the curved waveguide. The waveguide cross-section is described by regions of piece-

wise constant refractive index n. The eigenvalue problem for the waveguide modes is

formulated in terms of the two transverse H-field components of the modes:

Hx
xx +Hx

yy +
c

1 + cy
Hx
y +

[
γ2

(1 + cy)2
+ k2n2

]
Hx = 0, (A.1)

Hy
xx +Hy

yy +
c

1 + cy
(3Hy

y + 2Hx
x ) +

[
γ2 + c2

(1 + cy)2
+ k2n2

]
Hy = 0, (A.2)

where k = 2π/λ, and x and y are the vertical and lateral coordinates, respectively, as

in Fig. 5.1. The curvature c is the inverse of the radius of curvature R. The center
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of revolution is at y = −R. These equations, together with appropriate boundary

conditions at the interfaces between two regions of different refractive index n, constitute

an eigenvalue problem for the magnetic field Hx,y and the complex field-amplitude gain

constant γ. The modes of a straight waveguide can be obtained from the formulation

simply by assuming zero curvature, c = 0.

Perfectly Matched Layers (PMLs) are introduced through a complex coordinate trans-

form [CM98] in order to allow for outgoing radiation, which always occurs in curved

waveguides but may also occur for the leaky modes of a straight waveguide. At the

interfaces between two regions of different refractive index n, the boundary conditions

for the electromagnetic field have to be incorporated when discretizing the transverse

cross section. To this aim, the method described in [CCC02] was used to derive first-

order (six-point) finite-difference expressions for the differential operators. The formulas

for four different choices of the six grid points are then averaged in order to obtain a

symmetric formulation.

Finally, the resulting matrix eigenvalue problem is solved using the ARPACK package

[LSY98], where we use the shift–invert mode which enables us to selectively calculate

modes in the neighborhood of a given effective index. The loss per 90◦ bend is calculated

from the imaginary part of the complex propagation constant. The remaining field

components (the longitudinal H field, the E-field and the Poynting vector) are calculated

from the two transverse H-field components through Maxwell’s equations.

We have verified that the software yields results that agree with known exact solutions,

for example for the step-index fiber. Also, the results for the curvature losses of rib

waveguides given in [GBM91,YK93,BG00,DH04] are accurately reproduced by our mode

solver; see the discussion in section 6.5.3.
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