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Abstract. This paper surveys numerical methods for general sparse nonlinear eigenvalue prob-
lems with special emphasis on iterative projection methods like Jacobi–Davidson, Arnoldi or rational
Krylov methods and the automated multi–level substructuring. We do not review the rich literature
on polynomial eigenproblems which take advantage of a linearization of the problem.

1. Introduction. In this paper we consider the nonlinear eigenvalue problem

T (λ)x = 0 (1.1)

where T (λ) ∈ C
n×n is a family of matrices depending on a parameter λ ∈ D, and

D ⊂ C is an open set. As in the linear case, λ ∈ D is called an eigenvalue of problem
(1.1) if equation (1.1) has a nontrivial solution x 6= 0. Then x is called an eigenvector
corresponding to λ.

Nonlinear eigenvalue problems arise in a variety of applications. The most widely
studied class in applications is the quadratic eigenvalue problem with

T (λ) := λ2M + λC + K (1.2)

that arises in the dynamic analysis of structures, see [30, 54, 77, 87] and the references
therein. Here, typically the stiffness matrix K and the mass matrix M are real
symmetric and positive (semi-)definite, and the damping matrix is general. In most
applications one is interested in a small number of eigenvalues with largest real part.
Another source for quadratic problems are vibrations of spinning structures yielding
conservative gyroscopic systems [17, 33, 53, 113], where K = KT and M = MT

are real positive (semi-)definite, and C = −CT is real skew–symmetric. Then the
eigenvalues are purely imaginary, and one is looking for a few eigenvalues which are
closest to the origin.

There are many other applications leading to quadratic eigenvalue problems. A
detailed survey has recently been given in [93].

Quadratic eigenvalue problems are special cases of polynomial eigenvalue prob-
lems

T (λ)x :=

k
∑

j=0

λjAjx = 0 (1.3)

with coefficients Aj in R
n×n or C

n×n. An important application of polynomial eigen-
value problems is the solution of optimal control problems which by the linear version
of Pontryagin’s maximum principle lead to problem (1.3), see e.g. [67]. Other poly-
nomial eigenvalue problems of higher degree than two arise when discretizing a linear
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eigenproblem by dynamic elements [77, 95, 96] or by least squares elements [79, 80], i.e.
if one uses ansatz functions in a Rayleigh–Ritz approach which depend polynomially
on the eigenparameter.

To determine the relevant energy states and corresponding wave functions of
a three dimensional semiconductor quantum dot one has to determine the smallest
eigenvalues and corresponding eigenfunctions of the Schrödinger equation

−∇ ·

(

~
2

2mj(λ)
∇u

)

+ Vju = λu, x ∈ Ωq ∪ Ωm, (1.4)

where Ωq and Ωm denote the domain occupied by the quantum dot and the surround-
ing matrix of a different material, respectively. For j ∈ {m, q}, mj is the electron
effective mass and Vj the confinement potential. Assuming non-parabolicity for the
electron’s dispersion relation the electron effective mass mj(λ) is constant on the
quantum dot and the matrix for every fixed energy level λ, and is a rational function
of λ. Discretizing (1.4) by finite element or finite volume methods yields a rational
matrix eigenvalue problem [57, 58, 62, 106, 107].

Further rational eigenproblems

T (λ)x := −Kx + λMx +

p
∑

j=1

λ

σj − λ
Cjx = 0 (1.5)

where K = KT and M = MT are positive definite, and Cj = CT
j are matrices of small

rank govern free vibration of plates with elastically attached masses [91, 98, 103] and
vibrations of fluid solid structures [12, 13, 76, 100], and a similar problem

T (λ)x := −Kx + λMx + λ2

p
∑

j=1

1

ωj − λ
Cjx = 0 (1.6)

arises when a generalized linear eigenproblem is condensed exactly [75, 94]. These
problems (1.4), (1.5), and (1.6) have real eigenvalues which can be characterized as
minmax values of a Rayleigh functional [98], and in all of these cases one is interested
in a small number of eigenvalues at the lower end of the spectrum.

Another type of rational eigenproblem is obtained if free vibrations of a structure
are modeled using a viscoelastic constitutive relation to describe the behavior of a
material [36, 37]. A finite element model takes the form

T (ω) :=
(

ω2M + K −
k
∑

j=1

1

1 + bjω
∆Kj

)

x = 0 (1.7)

where the stiffness and mass matrices K and M are positive definite, k denotes the
number of regions with different relaxation parameters bj , and ∆Kj is an assemblage
of element stiffness matrices over the region with the distinct relaxation constants.

In principle the rational problems (1.4), (1.5), (1.6), and (1.7) can be turned into
polynomial eigenvalue problems by multiplying with an appropriate scalar polynomial
in λ. Notice, however, that the degree of the polynomial can become very large
and that roots of the denominators produce spurious eigenvalues (with very high
multiplicity for (1.5)) which may hamper the numerical solution.

A genuine nonlinear dependence on the eigenparameter appears in dynamic el-
ement methods when using non–polynomial ansatz functions [77] or in the stability
analysis of vibrating systems under state delay feedback control [18, 42, 43, 92].
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Almost all these examples are finite dimensional approximations (typically finite
element models) of operator eigenvalue problems and hence are large and sparse.
Usually only a small number of eigenvalues in a specific region of the complex plane
and associated eigenvectors are of interest. Numerical methods have to be adapted
to these requirements and should exploit the sparsity of the coefficient matrices to be
efficient in storage and computing time.

For linear sparse eigenproblems T (λ) = λB − A very efficient methods are itera-
tive projection methods (Lanczos method, Arnoldi method, Jacobi–Davidson method,
e.g.), where approximations to the wanted eigenvalues and eigenvectors are obtained
from projections of the eigenproblem to subspaces of small dimension which are ex-
panded in the course of the algorithm. Essentially two types of methods are in use:
methods which project the problem to a sequence of Krylov spaces like the Lanczos
or the Arnoldi method [3], and methods which aim at a specific eigenpair expand-
ing a search space by a direction which has a high approximation potential for the
eigenvector under consideration like the Jacobi–Davidson method [3].

The Krylov subspace approaches take advantage of the linear structure of the
underlying problem and construct an approximate incomplete Schur factorization (or
incomplete spectral decomposition in the Hermitian case) from which they derive
approximations to some of the extreme eigenvalues and corresponding eigenvectors,
whereas the second type aims at the wanted eigenvalues one after the other using the
Schur decomposition only to prevent the method from converging to eigenpairs which
have been obtained already in a previous step.

For general nonlinear eigenproblems a normal form like the Schur factorization
does not exist. Therefore, generalizations of iterative projection methods to gen-
eral nonlinear eigenproblems always have to be of the second type. Krylov subspace
methods can be applied only to nonlinear problems if they are equivalent to a linear
eigenproblem. For instance, it is well known that every polynomial eigenproblem can
be linearized in several ways [30, 54], one of them being the straightforward manner
which results in an eigenproblem for a block Frobenius matrix. However, applying a
Krylov subspace method to a linearization always increases the dimension of the prob-
lem by the factor k (the degree of the polynomial), and secondly symmetry properties
which the original system may have in general are destroyed by linearization.

In this paper we review projection methods for general (i.e. not necessarily polyno-
mial) sparse nonlinear eigenproblems. Although we have in mind sparse eigenproblems
Section 2 summarizes methods for dense nonlinear eigenproblems which are needed
in the projection methods in Sections 3 and 4. Iterative projection methods, which
generalize the Jacobi–Davidson approach for linear problems in the sense that the
search space in every step is expanded by a vector with high approximation potential
for the eigenvector wanted next are presented in Section 3. Section 4 contains the
generalization of the automated multi–level substructuring method to nonlinear eigen-
problems. The paper closes with some numerical examples in Section 4 demonstrating
the efficiency of projection methods.

2. Methods for dense nonlinear eigenproblems. In this section we review
methods for dense nonlinear eigenproblems. The size of the problems that can be
treated with these numerical methods is limited to a few thousand depending on the
available storage capacities. Moreover, they require several factorizations of varying
matrices to approximate one eigenvalue, and therefore, they are not appropriate for
large and sparse problems. However, they are needed to solve the projected eigenprob-
lem in most of the iterative projection methods for sparse problems. These iterative
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projection methods make use of the sparse matrix structure and typically require only
matrix vector multiplication with the coefficient matrices plus possibly sparse approx-
imate factorizations of matrices, when shift-and-invert is used to get eigenvalues in
the interior of the spectrum. Again here the available storage sets the limit for the
system sizes that can be dealt with. Using the sparsity and the symmetry structure
of the coefficient matrices, nowadays problems of size on the order of n = 107 can be
treated.

For general nonlinear eigenvalue problems, the classical approach is to formulate
the eigenvalue problem as a system of nonlinear equations and to use variations of
Newton’s method or the inverse iteration method.

For the characteristic equation

det T (λ) = 0. (2.1)

it was suggested in [50, 51] to use a QR-decomposition with column pivoting T (λ)P (λ) =
Q(λ)R(λ), where P (λ) is a permutation matrix which is chosen such that the diagonal
elements rjj(λ) of R(λ) are decreasing in magnitude, i.e. |r11(λ)| ≥ |r22(λ)| ≥ · · · ≥
|rnn(λ)|. Then λ is an eigenvalue if and only if rnn(λ) = 0.

Applying Newton’s method to this equation, one obtains the iteration

λk+1 = λk −
1

eH
n Q(λk)HT ′(λk)P (λk)R(λk)−1en

. (2.2)

for approximations to an eigenvalue of problem (2.1), where en denotes the n-th unit
vector. Approximations to left and right eigenvectors can be obtained from

yk = Q(λk)en and xk = P (λk)R(λk)−1en.

An improved version of this method was suggested in [44, 45], and a similar
approach was presented in [114] via a representation of Newton’s method using the
LU factorization of T (λ). However, this relatively simple idea is not efficient, since
it computes eigenvalues one at a time and needs several O(n3) factorizations per
eigenvalue. It is, however, useful in the context of iterative refinement of computed
eigenvalues and eigenvectors.

Another method that also solves the purpose of iterative refinement is the nonlin-
ear version of inverse iteration. For linear eigenproblems Ax = λx it is well known that
inverse iteration is equivalent to Newton’s method applied to the nonlinear system

(

Ax− λx
vHx− 1

)

= 0

where v ∈ C
n is suitably chosen. Correspondingly, for the nonlinear problem

F (x, λ) :=

(

T (λ)x
vHx− 1

)

= 0 (2.3)

one step of Newton’s method yields
(

T (λk) T ′(λk)xk

vH 0

)(

xk+1 − xk

λk+1 − λk

)

= −

(

T (λk)xk

vHxk − 1

)

. (2.4)

The first component gives

xk+1 = −(λk+1 − λk)T (λk)−1T ′(λk)xk, (2.5)
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i.e. the direction of the new approximation to an eigenvector is uk+1 := T (λk)−1T ′(λk)xk.
Assuming that xk is already normalized by vHxk = 1 the second component of (2.4)
reads vHxk+1 = vHxk, and multiplying equation (2.5) by vH yields

λk+1 = λk −
vHxk

vHuk+1
.

Hence, for nonlinear eigenproblems inverse iteration obtains the form given in Algo-
rithm 1.

Algorithm 1 Inverse iteration

1: Start with λ0, x0 such that vHx0 = 1
2: for k = 0, 1, 2, . . . until convergence do

3: solve T (λk)uk+1 = T ′(λk)xk for uk+1

4: λk+1 = λk − (vHxk)/(vHuk+1)
5: normalize xk+1 = uk+1/vHuk+1

6: end for

This algorithm (being a variant of Newton’s method) converges locally and quadrat-
ically to (x, λ) [1, 72].

The normalization condition can be updated in each step of inverse iteration. It
was suggested in [81] to use vk = T (λk)Hyk for the normalization, where yk is an
approximation to a left eigenvector. Then the update for λ becomes

λk+1 = λk −
yH

k T (λk)xk

yH
k T ′(λk)xk

,

which is the Rayleigh functional for general nonlinear eigenproblems proposed in
[54], and which can be interpreted as one Newton step for solving the equation
fk(λ) := yH

k T (λ)xk = 0. For linear Hermitian eigenproblems this gives cubic con-
vergence if λk is updated by the Rayleigh quotient [15, 74]. The same is true [79] for
symmetric nonlinear eigenproblems having a Rayleigh functional if we replace state-
ment 4 in Algorithm 1 by λk+1 = p(uk+1), where p(uk+1) denotes the real root of
uH

k+1T (λ)uk+1 = 0 closest to λk.
In [71] Newton’s method is considered for the complex function β(λ) defined by

T (λ)u = β(λ)x, sHu = κ,

where κ is a given constant, and x and u are given vectors. This approach generalizes
the method (2.2), inverse iteration, and a method proposed in [73]. It was proved
that the rate of convergence is quadratic, and that cubic convergence can be obtained
if not only λ, but also x and/or s are updated appropriately, thus unifying the results
in [1, 50, 51, 54, 72, 73].

The disadvantage of inverse iteration with respect to efficiency is the large num-
ber of factorizations that are needed for each of the eigenvalues. The obvious idea
then is to use a simplified version of inverse iteration, and to solve the linear system
T (σ)uk+1 = T ′(λk)uk for uk+1 in step 3 of Algorithm 1 for some fixed shift σ close
to the wanted eigenvalues. For linear problems T (λ) = A−λI this method converges
(although only linearly) to an eigenpair of Ax = λx. In the nonlinear case it converges
to an eigenpair of the linear problem T (σ)x = γT ′(λ̃)x (γ 6= 0 and λ̃ depending on the
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normalization condition) from which we can not recover an eigenpair of the nonlinear
problem (1.1).

A remedy against this wrong convergence was proposed in [70]. Assuming that
T (λ) is twice continuously differentiable, then Algorithm 1 gives

xk − xk+1 = xk + (λk+1 − λk)T (λk)−1T ′(λk)xk

= T (λk)−1(T (λk) + (λk+1 − λk)T ′(λk))xk

= T (λk)−1T (λk+1)xk +O(|λk+1 − λk|
2).

Neglecting the second order term one gets

xk+1 = xk − T (λk)−1T (λk+1)xk.

The advantage of this approach is that replacing λk by a fixed shift σ does not lead
to misconvergence. The method can be implemented as in Algorithm 2, see [70]

Algorithm 2 Residual inverse iteration

1: Let v be a normalization vector and start with an approximations σ and x1 to an
eigenvalue and corresponding eigenvector of (1.1) such that vHx1 = 1

2: for k = 1, 2, . . . until convergence do

3: solve vHT (σ)−1T (λk+1)xk = 0 for λk+1

or set λk+1 = p(xk) is T (λ) is Hermitian and λk+1 is real
4: compute the residual rk = T (λk+1)xk

5: solve T (σ)dk = rk for dk

6: set zk+1 = xk − dk

7: normalize xk+1 = zk+1/vHzk+1

8: end for

If T (λ) is twice continuously differentiable, if λ̂ is a simple zero of det T (λ) = 0,
and if x̂ is an eigenvector normalized by vH x̂ = 1, then the residual inverse iteration
converges for all σ sufficiently close to λ̂, and one has the estimate

‖xk+1 − x̂‖

‖xk − x̂‖
= O(|σ − λ̂|) and |λk+1 − λ̂| = O(‖xk − x̂‖q),

where q = 2 if T (λ) is Hermitian, λ̂ is real, and λk+1 solves xH
k T (λk+1)xk = 0 in Step

3, and q = 1 otherwise, see [70].
A variant of this approach is the method of successive linear approximations

suggested in [81].

Algorithm 3 Method of successive linear problems

1: Start with an approximation λ1 to an eigenvalue of (1.1)
2: for k = 1, 2, . . . until convergence do

3: solve the linear eigenproblem T (λk)u = θT ′(λk)u
4: choose an eigenvalue θ smallest in modulus
5: λk+1 = λk − θ
6: end for

If T is twice continuously differentiable, and λ̂ is an eigenvalue of problem (1.1)

such that T ′(λ̂) is nonsingular and 0 is an algebraically simple eigenvalue of T ′(λ̂)−1T (λ̂),

then the method in Algorithm 3 converges quadratically to λ̂, see [105].
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The discussed versions of inverse iteration apply to general nonlinear eigenprob-
lems, although for Hermitian problems and real eigenvalues inverse iteration and
residual inverse iteration converge faster if the eigenvalue approximations are up-
dated using the Rayleigh functional. For Hermitian problems that allow a variational
characterization of their eigenvalues [16, 34, 35, 78, 99, 101, 109], an alternative is to
use the safeguarded iteration. The method was introduced in [112] for overdamped
problems, and was studied in [110] for the nonoverdamped case.

Let J ⊂ R be an open interval which may be unbounded, and assume that
T (λ) ∈ C

n×n is a family of Hermitian matrices the elements of which are differentiable.
Suppose that for every x ∈ C

n \ {0} the real equation

f(λ, x) := xHT (λ)x = 0 (2.6)

has at most one solution λ ∈ J . Then equation (2.6) defines a functional p on
some subset D ⊂ C

n which obviously generalizes the Rayleigh quotient for linear
pencils T (λ) = λB − A, and which is called the Rayleigh functional of the nonlinear
eigenvalue problem (1.1). If one assumes further that xHT ′(p(x))x > 0 for every x ∈
D (generalizing the definiteness requirement for linear pencils), then by the implicit
function theorem D is an open set, and differentiating the identity xHT (p(x))x = 0
one obtains, that the eigenvectors of (1.1) are stationary points of p.

Under these conditions in [109] a minmax principle for the nonlinear eigenproblem
(1.1) was proved if the eigenvalues are enumerated appropriately. A value λ ∈ J is
an eigenvalue of (1.1) if and only if µ = 0 is an eigenvalue of the matrix T (λ), and by
Poincaré’s maxmin principle there exists m ∈ N such that

0 = max
dim V =m

min
x∈V, x6=0

xHT (λ)x

‖x‖2
.

Then one assigns this m to λ as its number and calls λ an m-th eigenvalue of problem
(1.1).

Under the above assumptions it was shown in [109] that for every m ∈ {1, . . . , n}
problem (1.1) has at most one m-th eigenvalue in J , which can be characterized by

λm = min
dim V =m,D∩V 6=∅

sup
v∈D∩V

p(v). (2.7)

Conversely, if

λm := inf
dim V =m,D∩V 6=∅

sup
v∈D∩V

p(v) ∈ J, (2.8)

then λm is an m-th eigenvalue of (1.1), and the characterization (2.7) holds. The
minimum is attained by the invariant subspace of T (λm) corresponding to its m largest
eigenvalues, and the supremum is attained by any eigenvector of T (λm) corresponding
to µ = 0.

The enumeration of eigenvalues and the fact that the eigenvectors of (1.1) are
the stationary vectors of the Rayleigh functional suggests the Algorithm 4 called
safeguarded iteration for computing the m–th eigenvalue.

It was shown in [105, 110] that the safeguarded iteration has the following con-
vergence properties.

(i) If λ1 := infx∈D p(x) ∈ J and x1 ∈ D then the safeguarded iteration converges
globally to λ1.
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Algorithm 4 Safeguarded iteration

1: Start with an approximation σ1 to the m-th eigenvalue of (1.1)
2: for k = 1, 2, . . . until convergence do

3: determine an eigenvector xk corresponding to the m-largest eigenvalue of T (σk)
4: solve xH

k T (σk+1)xk = 0 for σk+1

5: end for

(ii) If λm ∈ J is a m-th eigenvalue of (1.1) which is simple, then the safeguarded
iteration converges locally and quadratically to λm.

(iii) Let T (λ) be twice continuously differentiable, and assume that T ′(λ) is pos-
itive definite for λ ∈ J . If xk in step 3 of Algorithm 4 is chosen to be
an eigenvector corresponding to the m largest eigenvalue of the generalized
eigenproblem T (σk)x = µT ′(σk)x, then the convergence is even cubic.

3. Iterative projection methods. For sparse linear eigenvalue problems

Ax = λx (3.1)

iterative projection methods like the Lanczos, Arnoldi, rational Krylov or Jacobi–
Davidson method are well established. The basic idea of all these methods is the
construction of a search space followed by projection of problem (3.1) onto this sub-
space. This leads to a small dense problem that is then handled by one of the standard
techniques, and the eigenvalues of the projected problem are used as approximations
to the eigenvalues of the large sparse problem. The main feature of all these methods
is that matrix factorizations are avoided as much as possible and the generation of
the search space is usually done via an iterative procedure that is based on matrix
vector products that can be cheaply obtained.

Two basic types of iterative projection methods are in use: The first type consists
of methods that take advantage of the linear structure of the underlying problem and
construct an approximate incomplete Schur factorization. It expands the subspaces
independently of the eigenpair of the projected problem and uses Krylov subspaces
of A or (A− σI)−1 for some shift σ. These methods include the Arnoldi, Lanczos or
rational Krylov method. The other type of methods aim at a particular eigenpair and
choose the expansion such that it has a high approximation potential for a desired
eigenvalue/eigenvector or invariant subspace. An example for this approach is the
Jacobi–Davidson method.

The Arnoldi method together with its variants is a standard solver for sparse
linear eigenproblems. A detailed discussion is contained in [3]. It is implemented in
the package ARPACK [56] and the MATLAB command eigs. The method typically
converges to the extreme eigenvalues first. If one is interested in eigenvalues in the
interior of the spectrum, or eigenvalues close to a given focal point σ, one can apply
the method in a shift-and-invert fashion, i.e. to the matrix (A − σI)−1. In this case
one has to determine a factorization of A − σI which, however, may be prohibitive
for very large problems.

An obvious idea is, to use an inner–outer iteration, and to solve linear systems
(A − σI)x = r only approximately by an iterative method. However, methods like
the Lanczos algorithm and the Arnoldi algorithm are very sensitive to perturbations
in the iterations, and therefore they require highly accurate solutions of these linear
systems. Therefore, the inner–outer iterations may not offer an efficient approach for
these methods (see [31, 32, 52, 55, 66]).
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A way out of this dilemma is the Jacobi–Davidson method. Let (x, θ) be an
approximation to an eigenpair obtained by a projection method with subspace V . We
assume that ‖x‖ = 1, θ = xHAx, and r := Ax − θx ⊥ x. Then a suitable candidate
for expanding the search space is v := (A− θI)−1x which corresponds to one step of
inverse iteration with initial guess (x, θ). Unfortunately, for truly large problems this
vector is unavailable, and one has to employ an iterative method to solve the linear
system (A− θI)v = x approximately.

If x is already close to an eigenvector x̂, and v usually even closer to x̂, than the
plane span{x, v + e} can be far away from span{x, v} even for a small perturbation e
(i.e. the angle between these two planes can be quite large), and then the projection
to the expanded space will not yield an essential progress of accuracy.

Clearly, span{x, x+αv} = span{x, v} for every α 6= 0, and if α is chosen such that
x and x+αv are orthogonal, then the angle between span{x, v} and span{x, x+αv+e}
will be quite small for a small perturbation e of x + αv. Hence, replacing v by x + αv
increases the robustness of the iterative projection method (cf. [108]), and if V is
expanded by an inexact representation of x + αv with small error e, one can still
expect similar convergence properties as for inverse iteration.

If α is chosen such that x and z = x + αv are orthogonal, i.e.

z = x−
xHx

xH(A− θI)−1x
(A− θI)−1x,

then z solves the linear system, called correction equation

(I − xxH)(A− θI)(I − xxH)z = −r, z ⊥ x. (3.2)

The resulting iterative projection method called Jacobi–Davidson method was intro-
duced in [90] in a completely different way, and it is well established for very large
eigenproblems.

Both, the shift-and-invert Arnoldi method and the Jacobi-Davidson method have
to solve a large linear system. However, while in the Arnoldi method this system
in general needs to be solved very accurately to get fast convergence, numerical ex-
periments demonstrate that in the Jacobi–Davidson method it suffices to solve this
system approximately to maintain fast convergence. Typically only a small number
of steps of a preconditioned Krylov subspace method are sufficient to obtain a good
expansion z for the search space V .

Details of the Jacobi–Davidson method for various types of linear eigenvalue prob-
lems can be found in [3]. Implementations in FORTRAN and MATLAB can be
downloaded from http://www.math.ruu.nl/people/sleijpen.

Many, but not all of the ideas in these projection methods can be generalized
also to nonlinear eigenproblems. In the following we discuss generalizations of it-
erative projection methods to nonlinear eigenproblems. There are many papers on
Arnoldi’s method for polynomial and in particular quadratic eigenvalue problems tak-
ing advantage of linearization, i.e. their equivalence to linear eigenproblems of higher
dimension. Recently, several structure preserving methods of this type have been de-
veloped [2, 4, 9, 25, 29, 38, 39, 40, 41, 60, 59, 65, 68, 69, 93, 111]. We will not consider
methods for polynomial eigenvalue problems based on linearization here, but we will
only discuss iterative projection methods which are applied directly to the general
nonlinear eigenproblem (1.1). We already pointed out that in this case the search
spaces have to be expanded by directions that have a high approximation potential
for the next wanted eigenvector.
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Assume that V is an orthonormal basis of the current search space. Let (θ, y)
be a solution of the projected problem V HT (λ)V y = 0, and let x = V y be the
corresponding Ritz vector. Then there are two candidates for expanding V suggested
by the methods in Section 2: ṽ = T (θ)−1T ′(θ)x motivated by inverse iteration, and
v̂ = x− T−1(σ)T (θ)x corresponding to residual inverse iteration.

The following two subsections will take advantage of these directions. Expanding
a given search space V by ṽ results in the Jacobi–Davidson method considered in
Subsection 3.1, and expanding it by v̂ yields an Arnoldi type methods treated in
Subsection 3.2.

3.1. Jacobi–Davidson method. For the robustness reasons already discussed
for linear eigenproblems in Section 3 we do not expand the current search space V by
the direction of inverse iteration, i.e. ṽ = T (θ)−1T ′(θ)x, but by z := x + αṽ where α
is chosen such that x and z are orthogonal, i.e.

z = x + αṽ, α = −
xHx

xHT (θ)−1T ′(θ)x
.

Then z solves the correction equation

(

I −
T ′(θ)xxH

xHT ′(θ)y

)

T (θ)

(

I −
xxH

xHx

)

z = T (θ)x, z ⊥ x. (3.3)

As in the linear case (3.3) does not have to be solved exactly to maintain fast con-
vergence, but usually a few steps of a Krylov subspace solver with an appropriate
preconditioner suffice to obtain a good expansion direction of the search space. This
natural generalization of the Jacobi–Davidson method was suggested in [88, 89] for
polynomial eigenvalue problems, and was studied in [10, 104] for general nonlinear
eigenproblems.

In the correction equation (3.3) the operator T (θ) is restricted to map the sub-
space x⊥ into itself. Hence, if K ≈ T (θ) is a preconditioner of T (θ) then a precondi-
tioner for an iterative solver of (3.3) should be modified correspondingly to

K̃ := (I −
T ′(θ)xxH

xHT ′(θ)x
)K(I −

xxH

xHx
).

With left-preconditioning equation (3.3) becomes

K̃−1T̃ (θ)z = −K̃−1r, z ⊥ x. (3.4)

where

T̃ (θ) := (I −
T ′(θ)xxH

xHT ′(θ)x
)T (θ)(I −

xxH

xHx
).

It was already pointed out in [90] for linear eigenproblems that taking into account
the projectors in the preconditioner, i.e. using K̃ instead of K in a preconditioned
Krylov solver , raises the cost only slightly. In every step one has to solve one linear
system Kw = y, and to initialize the solver requires only one additional solve.

A template for the Jacobi–Davidson method for the nonlinear eigenvalue problem
(1.1) is given in Algorithm 5. In the following we comment on some of its steps. A
detailed discussion is contained in [10, 104].
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Algorithm 5 Nonlinear Jacobi–Davidson method

1: Start with an initial basis V , V HV = I; m = 1
2: determine preconditioner K ≈ T (σ)−1, σ close to first wanted eigenvalue
3: while m ≤ number of wanted eigenvalues do

4: compute an approximation to the m-th wanted eigenvalue λm and correspond-
ing eigenvector xm of the projected problem V HT (λ)V x = 0

5: determine the Ritz vector u = V xm and the residual r = T (λm)u
6: if ‖r‖/‖u‖ < ǫ then

7: accept approximate eigenpair (λm, u); increase m← m + 1;
8: reduce search space V if indicated
9: determine new preconditioner K ≈ T (λm)−1 if necessary

10: choose approximation (λm, u) to next eigenpair
11: compute residual r = T (λm)u;
12: end if

13: Find approximate solution of correction equation

(I −
T ′(λm)uuH

uHT ′(λm)u
)T (σ)(I −

uuH

uHu
)z = −r (3.5)

(by preconditioned Krylov solver, e.g.)
14: orthogonalize z = z − V V Hz, v = z/‖z‖, and expand subspace V = [V, v]
15: update projected problem
16: end while

(i) In step 1 of Algorithm 5 any preinformation such as a small number of known
approximate eigenvectors of problem (1.1) corresponding to eigenvalues close
to σ or of eigenvectors of a contiguous problem can and should be used.
If no information on eigenvectors is at hand, and if one is interested in eigen-
values close to the parameter σ ∈ D, one can choose an initial vector at
random, execute a few Arnoldi steps for the linear eigenproblem T (σ)u = θu
or T (σ)u = θT ′(σ)u, and choose the eigenvector corresponding to the small-
est eigenvalue in modulus or a small number of Schur vectors as initial basis
of the search space. Starting with a random vector without this preprocessing
usually will yield a value λm in step 4 which is far away from σ and will avert
convergence.
For certain rational eigenproblems governing free vibrations of fluid–solid
structures, and of plates with elastically attached masses where the rational
term is of small rank we discussed the choice of the initial space V for the
nonlinear Arnoldi method in [64, 98]. These considerations are valid for the
Jacobi–Davidson method, as well.

(ii) Preconditioning is a key to a successful iterative solver. A comprehensive
exposition of many useful preconditioning techniques can be found in [11, 86].

(iii) As the subspaces expand in the course of the algorithm the increasing storage
or the computational cost for solving the projected eigenvalue problems may
make it necessary to restart the algorithm and purge some of the basis vectors.
Since a restart destroys information on the eigenvectors and particularly on
the one the method is just aiming at, we restart only if an eigenvector has
just converged.
An obvious way to restart is to determine a Ritz pair (µ, u) from the projection
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to the current search space span(V ) approximating an eigenpair wanted next,
and to restart the Jacobi–Davidson method with this single vector u. How-
ever, this may discard too much valuable information contained in span(V ),
and may slowdown the speed of convergence too much. Therefore, thick
restarts with subspaces spanned by the Ritz vector u and a small number of
eigenvector approximations obtained in previous steps which correspond to
eigenvalues closest to µ are preferable.

(iv) A crucial point in iterative methods for general nonlinear eigenvalue prob-
lems when approximating more than one eigenvalue is to inhibit the method
to converge to the same eigenvalue repeatedly. For linear eigenvalue prob-
lems this can be easily done. Krylov subspace solvers construct an orthogo-
nal basis of the ansatz space not aiming at a particular eigenvalue, and one
gets approximations to extreme eigenvalues without replication (at least if
reorthogonalization is employed). If several eigenvalues are computed by the
linear Jacobi–Davidson method then one determines an incomplete Schur fac-
torization thus preventing the method from approaching an eigenvalue which
was already obtained previously (cf. [27]). For nonlinear problems a similar
normal form does not exist and this presents one of the most difficult tasks in
achieving good convergence. See [10, 27, 61, 65, 97] for different approaches
in this direction.

(iv) If the projected problem in step 3 is solved by the method of successive linear
problems, by linearization or by one of the symmetry preserving methods
which solve in each iteration step a linear eigenproblem then at the same
time one gets approximations to further eigenpairs of the nonlinear problem
which can be exploited to get a good initial approximation to the next wanted
eigenpair.

(v) Often the family of matrices T (λ) has the form

T (λ) =

p
∑

j=1

fj(λ)Cj

with complex functions fj and fixed matrices Cj ∈ C
n×n. Then the projected

problem has the form

TVk
(λ) =

p
∑

j=1

fj(λ)V H
k CjVk =:

p
∑

j=1

fj(λ)Cj,k (3.6)

and the matrices Cj,k can be updated according to

Cj,k+1 =

(

Cj,k V H
k Cjv

vHCjVk vHCjv

)

. (3.7)

3.2. An Arnoldi type method. Expanding the current search space V by
the direction v̂ = x − T−1(σ)T (θ)x suggested by residual inverse iteration generates
similar robustness problems as for inverse iteration. If v̂ is close to the desired eigen-
vector, then an inexact evaluation of v̂ spoils the favorable approximation properties
of residual inverse iteration.

Similarly as in the Jacobi–Davidson method one could replace v̂ by z := x + αv̂
where α is chosen that xHz = 0, and one could determine an approximation to z solv-
ing a correction equation. However, since the new search direction is orthonormalized
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against the previous search space V and since x is contained in V we may choose
the new direction v = T (σ)−1T (θ)x as well. This direction satisfies the orthogonality

condition xHv = 0 at least in the limit as θ approaches a simple eigenvalue λ̂ (cf.
[108]), i.e.

lim
θ→λ̂

xHT (σ)−1T (θ)x = 0.

For the linear problem T (λ) = A− λB this is exactly the Cayley transform with
pole σ and zero θ. Since

(A− σB)−1(A− θB) = I + (θ − σ)(A− σB)−1B

and Krylov spaces are shift-invariant, the resulting projection method expanding V
by v is nothing else but the shift-and-invert Arnoldi method.

If the linear system T (σ)v = T (θ)x is too expensive to solve for v we may choose as
new direction v = MT (θ)x with M ≈ T (σ)−1, and for the linear problem we obtain an
inexact Cayley transform or a preconditioned Arnoldi method. The resulting iterative
projection method which was introduced in [65] for quadratic eigenvalue problems
and was studied in [97, 102] for general nonlinear eigenproblems is called nonlinear
Arnoldi method in spite the fact that differently from the linear case no Krylov space
is determined in the course of the algorithm and no Arnoldi recursion holds.

Since the speed of convergence depends crucially on |σ − λ| it will be advisable
to change the shift or more generally the preconditioner M in the course of the
algorithm if the convergence to the current eigenvalue becomes too slow. In this case
one actually obtains a method which generalizes the rational Krylov method for linear
problems in [84]. Thus the name nonlinear rational Krylov method would be even
more appropriate. But this notation was already introduced in [84, 85] for a different
method which we will also discuss below.

A template for the preconditioned nonlinear Arnoldi method with restarts and
varying preconditioner is given by Algorithm 6.

Since the residual inverse iteration with fixed pole σ converges linearly, and the
contraction rate satisfies O(|σ − λm|), it is reasonable to update the preconditioner
if the convergence (measured by the quotient of the last two residual norms before
convergence) has become too slow.

For several other recent variations and generalizations of the Arnoldi method for
quadratic or general polynomial eigenvalue problems, see [4, 28, 41, 65, 93].

3.3. Rational Krylov method. A different approach was proposed in [82, 84,
85] generalizing the rational Krylov approach for linear eigenproblems [83] to sparse
nonlinear eigenvalue problems by nesting the linearization of problem (1.1) by Regula
falsi and the solution of the resulting linear eigenproblem by Arnoldi’s method, where
the Regula falsi iteration and the Arnoldi recursion are knit together. Similarly as
in the rational Krylov process for linear eigenproblems a sequence Vk of subspaces
of C

n is constructed, and at the same time Hessenberg matrices Hk are updated
which approximate the projection of T (σ)−1T (λk) to Vk. Here σ denotes a shift and
λk an approximation to the wanted eigenvalue of (1.1). Then a Ritz vector of Hk

corresponding to an eigenvalue of small modulus approximates an eigenvector of the
nonlinear problem from which a (hopefully) improved eigenvalue approximation of
problem (1.1) is obtained. Hence, in this approach the two numerical subtasks reduc-
ing the large dimension to a much smaller one and solving a nonlinear eigenproblem
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Algorithm 6 Nonlinear Arnoldi Method

1: start with an initial shift σ and an initial basis V , V HV = I;
2: determine a preconditioner M ≈ T (σ)−1, σ close to the first wanted eigenvalue
3: while m ≤ number of wanted eigenvalues do

4: compute an appropriate eigenvalue θ and corresponding eigenvector y of the
projected problem TV (θ)y := V HT (θ)V y = 0.

5: determine the Ritz vector u = V y and the residual r = T (θ)u
6: if ‖r‖/‖u‖ < ǫ then

7: accept λm = θ, xm = u, increase m← m + 1
8: determine new preconditioner M ≈ T (σ)−1 if indicated
9: restart if necessary

10: choose approximations θ and u to next eigenvalue and eigenvector
11: determine residual r = T (θ)u
12: end if

13: v = Mr
14: v = v − V V Hv ,ṽ = v/‖v‖, V = [V, ṽ]
15: reorthogonalize if necessary
16: update projected problem TV (θ) = V HT (θ)V
17: end while

which are solved separately in the Jacobi–Davidson and the Arnoldi methods in Sec-
tions 3.1 and 3.2 are attacked simultaneously. This method was applied in [36, 37] to
the rational eigenvalue problem (1.7) governing damped vibrations of a structure.

Linearizing the nonlinear family T (λ) by Lagrange interpolation between two
points µ and σ one gets

T (λ) =
λ− µ

σ − µ
T (σ) +

λ− σ

µ− σ
T (µ) + higher order terms. (3.8)

Keeping σ fixed for several steps, iterating on µ, neglecting the remainder in the
Lagrange interpolation, and multiplying by T (σ)−1 from the right one obtains

T (σ)−1T (λj−1)w = θw with θ =
λj − λj−1

λj − σ
(3.9)

predicting a singularity at

λj = λj−1 +
θ

1− θ
(λj−1 − σ). (3.10)

For large and sparse matrices the linearization (3.9) is combined with a linear
Arnoldi process. Assume that the method has performed j steps, yielding approx-
imations λ1, . . . , λj to an eigenvalue, orthonormal vectors v1, . . . , vj , and an upper
Hessenberg matrix Hj,j−1 ∈ C

j×(j−1) such that the Arnoldi recursion

T (σ)−1T (λj−1)Vj−1 = VjHj,j−1, (3.11)

is fulfilled (at least approximately), where Vj = [v1, . . . , vj ].
Updating the matrix Hj,j−1 according to the linear theory yields

H̃j+1,j =

(

Hj,j−1 kj

0 ‖r⊥‖

)

(3.12)
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where kj = V H
j rj , rj = T (λj)vj , and r⊥ = rj−VjV

H
j vj which due to the nonlinearity

of T (·) violates the next Arnoldi relation

T (σ)−1T (λj)Vj = Vj+1H̃j+1,j , vj+1 = v⊥/‖v⊥‖.

To satisfy it at least approximately one takes advantage of Lagrangian interpolation

A(λj) ≈
λj − σ

λj−1 − σ
A(λj−1)−

λj − λj−1

λj−1 − σ
I =

1

1− θ
A(λj−1)−

θ

1− θ
I,

where A(λ) := T (σ)−1T (λ), and updates H according to

Hj+1,j =

(

1
1−θ

Hj,j−1 −
θ

1−θ
Ij,j−1 kj

0 ‖r⊥‖

)

. (3.13)

This yields a first version of the rational Krylov method, which unfortunately is not
very efficient.

In [84] it was suggested to modify λ and H in an inner iteration until the residual
r = T (σ)−1T (λ)Vjs is enforced to be orthogonal to Vj , and to expand the search
space only after the inner iteration has converged which gives Algorithm 7.

Algorithm 7 Rational Krylov method

1: start with initial vector V = [v1] with ‖v1‖ = 1, initial λ and σ ; set j = 1
2: set hj = 0j ; s = ej ; x = vj ;
3: compute r = T (σ)−1T (λ)x and kj = V H

j r
4: while ‖kj‖ >ResTol do

5: orthogonalize r = r − V H
j kj

6: set hj = hj + kjs
−1
j

7: θ = min eig Hj,j with corresponding eigenvector s
8: x = Vjs
9: update λ = λ + θ

1−θ
(λ− σ)

10: update Hj,j = 1
1−θ

Hj,j −
1

1−θ
I

11: compute r = T (σ)−1T (λ)x and kj = V H
j r

12: end while

13: compute hj+1,j = ‖r‖
14: if |hj+1,jsj | >EigTol then

15: vj+1 = r/hj+1,j ; j = j + 1; GOTO 2:
16: end if

17: Accept eigenvalue λi = λ and eigenvector xi = x
18: If more eigenvalues wanted, choose next θ and s, and GOTO 8:

The inner iteration is nothing else but a solver of the projected problem

V H
j T (σ)−1T (λ)Vjs = 0. (3.14)

Hence, although motivated originally in a completely different way, the rational
Krylov method is an iterative projection method, where the nonlinear eigenprob-
lem T (σ)−1T (λ)x = 0 is projected to a search space V , and V is expanded by the
orthogonal complement (with respect to V ) of the residual r = T (σ)−1T (λ)V s of the
Ritz pair, and one ends up with Algorithm 8.
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Algorithm 8 Rational Krylov method, an iterative projection method

1: start with initial vector V = [v1] with ‖v1‖ = 1, initial λ and σ
2: for j = 1, 2, . . . until convergence do

3: solve projected eigenproblem V HT (σ)−1T (λ)V s = 0 for (λ, s)
by inner iteration

4: compute Ritz vector x = V s and residual r = T (σ)−1T (λ)x
5: orthogonalize r = r − V V Hr
6: expand search space V = [V , r/‖r‖]
7: end for

The inner iteration in step 3 of Algorithm 8 can be replaced by any dense solver
of Section 2, and numerical examples in [46] demonstrate that the method can be
accelerated considerably this way.

It is a disadvantage of the rational Krylov method that symmetry properties
which the original problem may have are destroyed if the projected problem (3.14) is
considered instead of V H

j T (λ)Vjs = 0 in the Arnoldi method or the Jacobi–Davidson
algorithm. But on the other hand, the solvers in Section 2 need the explicit form
of the projected problem whereas the inner iteration in Algorithm 7 only needs a
procedure that yields the vector T (σ)−1T (λ)x for a given x.

4. Automated Multi-Level Substructuring. Over the last few years, a new
method for performing frequency response and eigenvalue analysis of complex finite
element (FE) structures known as Automated Multi-Level Substructuring (AMLS for
short) has been developed [5, 6, 7, 8, 47].

In AMLS the large finite element model is recursively divided into many sub-
structures on several levels based on the sparsity structure of the system matrices.
Assuming that the interior degrees of freedom of substructures depend quasistatically
on the interface degrees of freedom, and modeling the deviation from quasistatic de-
pendence in terms of a small number of selected substructure eigenmodes, the size
of the finite element model is reduced substantially yet yielding satisfactory accuracy
over a wide frequency range of interest. Recent studies ([47, 49], e.g.) in vibro-
acoustic analysis of passenger car bodies where very large FE models with more than
one million degrees of freedom appear and several hundreds of eigenfrequencies and
eigenmodes are needed have shown that AMLS is considerably faster than Lanczos
type approaches.

From a mathematical point of view AMLS is a projection method where the ansatz
space is constructed by exploiting Schur complements of submatrices and truncation
of spectral representations of subproblems. Differently from the methods in Section 3
it is a one-shot method, i.e. the search spaces are not expanded in the course of the
algorithm, but depending on certain parameters the ansatz space is constructed, and
if the solution of the projected method at the end turns to be not accurate enough,
one has to repeat the reduction process with improved parameters.

We are concerned with the linear eigenvalue problem

Kx = λMx (4.1)

where K ∈ R
n×n and M ∈ R

n×n are symmetric and positive definite matrices.

We first consider the component mode synthesis method (CMS method) which
is the essential building block of the AMLS method. Assume that the graph of the
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matrix |K|+ |M | is partitioned into r substructures such that the rows and columns
of K can be reordered in the following way:

K =











Kℓℓ1 . . . O Kℓi1

...
. . .

...
...

O . . . Kℓℓr Kℓir

Kiℓ1 . . . Kiℓr Kii











,

and M after reordering has the same block form. Here Kℓℓj , j = 1, . . . , r is the local
stiffness matrix corresponding to the j-th substructure, i denotes the set of interface
vertices, and Kℓij describes the interaction of the interface degrees of freedom and
the j-th substructure.

We distinguish only between local and interface degrees of freedom. Then K and
M have the following form:

K =

(

Kℓℓ Kℓi

Kiℓ Kii

)

and M =

(

Mℓℓ Mℓi

Miℓ Mii

)

. (4.2)

We transform the matrix K to block diagonal form using block Gaussian elimination,
i.e. we apply the congruence transformation

P =

(

I −K−1
ℓℓ Kℓi

0 I

)

to the pencil (K,M) to obtain the equivalent pencil

(PT KP,PT MP ) =

((

Kℓℓ 0

0 K̃ii

)

,

(

Mℓℓ M̃ℓi

M̃iℓ M̃ii

))

. (4.3)

Here Kℓℓ and Mℓℓ stay unchanged, and

K̃ii = Kii −KT
ℓiK

−1
ℓℓ Kℓi is the Schur complement of Kℓℓ

M̃ℓi = Mℓi −MℓℓK
−1
ℓℓ Kℓi = M̃T

iℓ

M̃ii = Mii −MiℓK
−1
ℓℓ Kℓi −KiℓK

−1
ℓℓ Mℓi + KiℓK

−1
ℓℓ MℓℓK

−1
ℓℓ Kℓi.

We further transform the pencil (4.3) taking advantage of a modal basis for the local
degrees of freedom. To this end we consider the eigenvalue problem

KℓℓΦ = MℓℓΦΩ, ΦT MℓℓΦ = I, (4.4)

where Ω is a diagonal matrix containing the eigenvalues. Then applying the congru-
ence transformation diag{Φ, I} to (4.2) yields the equivalent pencil

((

Ω 0

0 K̃ii

)

,

(

I ΦT M̃ℓi

M̃iℓΦ M̃ii

))

. (4.5)

In structural dynamics (4.5) is called Craig–Bampton form of the eigenvalue problem
(4.1) corresponding to the partitioning (4.2). In terms of linear algebra it results from
block Gaussian elimination to reduce K to block diagonal form, and diagonalization
of the block Kℓℓ using a spectral basis.

Selecting some eigenmodes of problem (4.4), usually the ones associated with
eigenvalues below a cut off threshold, and dropping the rows and columns in (4.5) cor-
responding to the other modes one arrives at the component mode synthesis method
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(CMS) [14]. Hence, if the diagonal matrix Ω1 and the matrix Φ1 contain the eigen-
values and eigenvectors to keep, respectively, then the eigenproblem (4.5) is reduced
to

(

Ω1 0

0 K̃ii

)

y = λ

(

I M̃ℓi

M̃iℓ M̃ii

)

y (4.6)

with

M̃ℓi = ΦT
1 (Mℓi −MℓℓK

−1
ℓℓ Kℓi) = M̃T

iℓ .

AMLS generalizes CMS in the following way. Again the graph of |K| + |M |
is partitioned into a small number of subgraphs, but more generally than in CMS
these subgraphs in turn are substructured on a number p of levels yielding a tree
topology for the substructures. This induces the following partitioning of the index
set I = {1, . . . , n} of degrees of freedom. Let I1 be the set of indices corresponding
to interface degrees of freedom on the coarsest level, and for j = 2, . . . , p define Ij to
be the set of indices of interface degrees of freedom on the j-th level which are not
contained in Ij−1. Finally, let Ip+1 be the set of interior degrees of freedom on the
finest level.

With these notations AMLS works as follows. Its first step is the CMS method
with cut-off frequency τ1 applied to the finest substructuring, i.e. Ip+1 is the set of

local degrees of freedom, and Ĩp+1 := ∪p
j=1Ij is the set of interface degrees of freedom.

After j steps, 1 ≤ j ≤ p− 1, one derives a reduced pencil













Ωf O O

O K
(j)
ℓℓ K

(j)
ℓi

O K
(j)
iℓ K

(j)
ii






,







M
(j)
ff M

(j)
fℓ M

(j)
fi

M
(j)
ℓf M

(j)
ℓℓ M

(j)
ℓi

M
(j)
if M

(j)
iℓ M

(j)
ii












. (4.7)

where f denotes the degrees of freedom obtained in the spectral reduction in the
previous steps, ℓ collects the indices in Ip+1−j , and i corresponds to the index set

∪p−j
k=1Ik of interface degrees of freedom on levels which are not yet treated. Applying

the CMS method to the south–east 2 × 2 blocks of the matrices, i.e. annihilating

the off–diagonal block K
(j)
ℓi by block Gaussian elimination, and reducing the set of

ℓ–indices by spectral truncation with cut-off frequency τj+1 one arrives at the next
level.

After p CMS steps one obtains the reduced problem

(

(

Ωp O

O K
(p)
ℓℓ

)

,

(

M
(p)
ff M

(p)
fℓ

K
(p)
ℓf M

(p)
ℓℓ

))

, (4.8)

and a final spectral truncation of the lower–right blocks with cut-off frequency τp+1

yields the reduction of problem (4.1) by AMLS, which is a projected problem

Ky = λMy. (4.9)

Here the stiffness matrix K has become diagonal, and the mass matrix is projected
to a matrixM the diagonal of which is the identity, and the only off-diagonal blocks
containing non-zero elements are the ones describing the coupling of the substructures
and its interfaces. Fig. 4.1 shows the structure of the resulting mass matrix.



Iterative projection methods 19

Fig. 4.1. Transformed mass matrix

This short description of AMLS neglects the algorithmically important fact that

all matrices K
(j)
ℓℓ and M

(j)
ℓℓ are block diagonal. Hence, the annihilation of the off-

diagonal blocks K
(j)
ℓi and the spectral reduction on each level is quite inexpensive.

Implementation details can be found in [19, 47].
The original eigenproblem (4.1) is equivalent to a rational eigenvalue problem of

the same dimension as the projected problem in AMLS, which can be interpreted as
exact condensation of the original eigenproblem with respect to an appropriate basis.
Its eigenvalues at the lower end of the spectrum can be characterized as minmax
values of a Rayleigh functional of this rational eigenproblem. Comparing the Rayleigh
quotient of the projected problem and the Rayleigh functional of the rational problem
the following a priori bound for the error of the AMLS method was proved in [20].

Theorem 4.1. Let K,M ∈ R
n×n be symmetric and positive definite, and let

λ1 ≤ λ2 ≤ · · · ≤ λn be the eigenvalues of problem (4.1), which we assume to be

ordered by magnitude. Let the graph of |K|+ |M | be substructured with p levels, and

denote by λ̃
(ν)
1 ≤ λ̃

(ν)
2 ≤ . . . the eigenvalues obtained by AMLS with cut-off threshold

ων on level ν.

If m ∈ N such that

λm < min
ν=0,...,p

ων ≤ λm+1

then it holds

λ̃
(p)
j − λj

λj

≤

p
∏

ν=0

(

1 +
λ

(ν)
j

ων − λ
(ν)
j

)

− 1, j = 1, . . . ,m. (4.10)

Since the final problem is a projection of each of the intermediate eigenproblems in

the AMLS reduction, it follows from the minmax characterization that λ
(ν)
j ≤ λ̃

(p)
j for
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ν = 0, . . . , p. Therefore the a priori bound (4.10) can be replaced by the computable
bound

λ̃
(p)
j − λj

λj

≤

p
∏

ν=0

(

1 +
λ̃

(p)
j

ων − λ̃
(p)
j

)

− 1, j = 1, . . . ,m. (4.11)

Numerical examples demonstrate that the error bound in (4.10) overestimates
the true relative error of AMLS by one or two orders of magnitude. However, an
example in [20] demonstrates that the bound can not be improved without further
assumptions.

4.1. AMLS for nonlinear eigenproblems. To generalize the AMLS method
to nonlinear eigenproblems

T (λ)x = 0 (4.12)

we identify an essential linear part of T (·), i.e. we rewrite problem (4.12) as

Kx− λMx−R(λ)x = 0, (4.13)

where K ∈ C
n×n and M ∈ C

n×n are Hermitian and positive definite matrices, and

R(λ) = K − λM − T (λ) (4.14)

is a perturbation of the linear eigenproblem Kx = λMx, which is not necessarily
small but has a small influence on the eigenparameters and eigenvectors of interest.

Once the multi-level substructuring transformation of the linear pencil (K,M)
has been accomplished with a given cut-off frequency we obtain a matrix ΦAMLS of
substructure modes on all levels, and a projected eigenproblem

Ky = λMy (4.15)

of much smaller dimension, where K = ΦH
AMLS

KΦAMLS and M = ΦH
AMLS

MΦAMLS.
This information can be used in two ways to solve the nonlinear eigenvalue prob-

lem approximately: First, we may project the nonlinear eigenproblem (4.12) to the
subspace of C

n spanned by substructure modes which were kept in the AMLS reduc-
tion, i.e.

ΦH
AMLS

T (λ)ΦAMLSy = Ky − λMy − ΦH
AMLS

R(λ)ΦAMLSy = 0. (4.16)

In particular this projection can be performed easily, if the remainder R(λ) has the
form

R(λ) =

p
∑

j=1

fj(λ)Cj

where fj(λ) are given complex functions and Cj ∈ C
n×n are given matrices, which

quite often have the same sparsity structure as the pencil (K,M) or some other
simple structure. In this case the projection ΦH

AMLS
R(λ)ΦAMLS could be determined

simultaneously with the matrices K and M in the course of the AMLS reduction.
Secondly, we may determine Ritz pairs (λj ,ΦAMLSyj), j = 1, . . . ,m of the linear

problem Kx = λMx corresponding to eigenvalues in the wanted region from the
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projected problem (4.15), and project the nonlinear problem to the subspace spanned
by these Ritz vectors. Thus we get

XHT (λ)Xz = Λz − λz −XHR(λ)Xz = 0 (4.17)

where Λ = diag{λ1, . . . , λm} and X = (x1, . . . , xm).
Problem (4.17) is equivalent to the projection of problem (4.16) to the space

spanned by the eigenvectors y1, . . . , ym of (4.15) corresponding to λ1, . . . , λm. Hence,
we can expect, that the first approach will yield better approximations. Examples,
however, demonstrate that the loss of accuracy is often negligible.

In either case we arrive at a projected nonlinear eigenvalue problem of much
smaller dimension which can be solved by an appropriate method, i.e. a dense solver
if the projected problem is small, or by linearization if the underlying problem is a
polynomial eigenproblem, or by an iterative projection method of Arnoldi or Jacobi–
Davidson type.

This approach was applied successfully to gyroscopic eigenproblems [21, 23] and
to rational eigenproblems governing vibrations of fluid–solid structures and damped
vibrations of structures [22, 24].

5. Numerical examples. To test the projection methods we consider two types
of problems, a rational eigenproblem governing damped vibrations of a structure which
has non–real eigenvalues, and a finite element model of free vibrations of a fluid–solid
structure, which is symmetric and has a Rayleigh functional such that the projected
problems can be solved by safeguarded iteration. The discretized problems were
generated using FEMLAB [26], and the nonlinear eigenproblems were solved under
MATLAB 7.1 [63] on an Intel Pentium D processor with 4 GByte RAM and 3.2 GHz.

5.1. Damped vibrations of a structure. We consider a finite element model
of a vibrating structure with nonproportional damping. Using a viscoelastic constitu-
tive relation to describe the behavior of a material in the equations of motions yields
a rational eigenvalue problem for the case of free vibrations [37]. A finite element
model obtains the form

T (ω)x :=
(

ω2M + K −
J
∑

j=1

1

1 + bjω
∆Kj

)

x = 0 (5.1)

where M is the consistent mass matrix, K is the stiffness matrix with the instan-
taneous elastic material parameters used in Hooke’s law, J denotes the number of
regions with different relaxation parameters bj , and ∆Kj is an assemblage of element
stiffness matrices over the regions with distinct relaxation constants. The real part of
an eigenvalue is the exponential rate with which the motion described by the corre-
sponding eigenvector x decays. The imaginary part is the (damped) angular frequency
with which the motion described by x oscillates.

We consider the feeder clamp in Fig. 5.1 from the model library of FEMLAB
[26] which is clamped at its bottom. The instantaneous Young’s modulus is set to
E = 2.06 × 1011 Pa, the instantaneous Poisson’s rate is ν = 0.3, and the density is
set to ρ = 7800 kg/m3. For the nonproportional damping we use in addition the
following parameters, ∆ν = 0.28, and ∆E = 6× 1010 Pa, and the relaxation constant
is set to b = 1× 10−3.

Discretizing this problem by linear Lagrangian elements we obtained the rational
eigenproblem (5.1) of dimension 193617. For symmetry reasons we determined only
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Fig. 5.1. feeder clamp / eigenvalues
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Table 5.1

Iterative projection methods: Feeder clamp problem

Preconditioner Arnoldi Jacobi–Davidson rational Krylov
threshold CPU # iter. CPU # iter. CPU # iter. CPU

10−2 41 601 4137 166 1736 412 9033
10−3 127 226 2004 129 1144 163 3053
10−4 348 109 847 105 1203 78 2268

eigenvalues with negative imaginary part, and we computed 30 of them one after
another with decreasing imaginary part. We solved this problem bei the Jacobi–
Davidson, the nonlinear Arnoldi, and the rational Krylov method, where we pre-
conditioned by an incomplete LU decomposition with different drop tolerances. The
projected eigenproblems were solved by inverse iteration, and we accepted an eigen-
pair if the residual norm was less than 10−4.

Table 5.1 contains the CPU time for determining the eigenpairs (excluding the
time needed to determine the preconditioner which is displayed separately in column
2) and the number of iterations for three different preconditioners. If the precondi-
tioner is very accurate, then the Arnoldi method is faster than the Jacobi–Davidson
method, but if only a coarse preconditioner is available than Jacobi–Davidson out-
performs the Arnoldi method. This was also observed for many other examples of
different kinds. In any case the rational Krylov iteration is inferior to the other two
methods.

Applying the AMLS method to the linear eigenvalue problem

Kx = λMx (5.2)

with cut-off frequency λc = 1.2e7 and λc = 2.4e7, respectively, and applying the
transformations and projections to the matrix ∆K simultaneously, we obtained an



Iterative projection methods 23

Fig. 5.2. Feeder clamp: relative errors of 30 eigenvalues
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eigenvalue problem

(

ω2M+K −
1

1 + bω
∆K

)

y = 0 (5.3)

of dimensions d1 = 1252 and d2 = 2723, which required 364 and 374 seconds,respectively.
Multiplying (5.3) by 1 + bω one gets a polynomial eigenvalue problem of degree

3 which is equivalent to the linearized eigenvalue problem





O I O
O O I

∆K −K −bK −M









y
ωy
ω2y



 = ω





I O O
O I O
O O bM









y
ωy
ω2y



 (5.4)

of dimension 3dj , j ∈ {1, 2}. Approximations to the desired 30 eigenvalues of (5.1) can
be obtained from problem (5.4) by the MATLAB function eigs (i.e. by ARPACK)
requiring 16 and 76 seconds, respectively. The maximum relative error is 2.5e −
3 for the projected problem of dimension 1252, and 1.09e − 3 for the problem of
dimension 2723. Fig. 5.2 shows the relative errors of the AMLS method for the
rational eigenproblem (5.1) where circles correspond to dimension 2723 and plus signs
to 1252.

The solution time for the projected problem can be further reduced to 3.1 sec-
onds, if problem (5.3) is projected to the 72 dimensional subspace spanned by the
eigenvectors of the linear eigenproblem Ky = λMy corresponding to eigenvalues not
exceeding λ̃ = 5 × 105. This approach obviously is equivalent to determining Ritz
vectors of the linear problem Kx = λMx corresponding to eigenvalues not exceed-
ing λ̃ and projecting problem (5.1) to the space spanned by these Ritz vectors. For
the projected problem of dimension 2723 the maximum relative error is raised only
slightly to 1.11e− 3.

5.2. Vibrations of a fluid–solid structure. We consider a mathematical
model which describes the problem governing free vibrations of a tube bundle im-
mersed in a slightly compressible fluid under the following simplifying assumptions:
The tubes are assumed to be rigid, assembled in parallel inside the fluid, and elas-
tically mounted in such a way that they can vibrate transversally, but they can not
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move in the direction perpendicular to their sections. The fluid is assumed to be
contained in a cavity which is infinitely long, and each tube is supported by an inde-
pendent system of springs (which simulates the specific elasticity of each tube). Due
to these assumptions, three-dimensional effects are neglected, and so the problem can
be studied in any transversal section of the cavity. Considering small vibrations of
the fluid (and the tubes) around the state of rest, it can also be assumed that the
fluid is irrotational.

Mathematically this problem can be described in the following way (cf. [12, 13,
76]). Let Ω ⊂ R

2 (the section of the cavity) be an open bounded set with Lipschitz
boundary Γ. We assume that there exists a family Ωj 6= ∅, j = 1, . . . , p, (the sections
of the tubes) of simply connected open sets such that Ω̄j ⊂ Ω for every j, Ω̄j ∩ Ω̄i = ∅
for j 6= i, and each Ωj has a Lipschitz boundary Γj . With these notations we set
Ω0 := Ω \

⋃p

j=1 Ωj .

We denote by H1(Ω0) = {u ∈ L2(Ω0) : ∇u ∈ L2(Ω0)
2} the standard Sobolev

space equipped with the usual scalar product. Then the eigenfrequencies and the
eigenmodes of the fluid-solid structure are governed by the following variational eigen-
value problem (cf. [12, 13])

Find λ ∈ R and u ∈ H1(Ω0) such that for every v ∈ H1(Ω0)

c2

∫

Ω0

∇u · ∇v dx = λ

∫

Ω0

uv dx +

p
∑

j=1

λρ0

kj − λmj

∫

Γj

unds ·

∫

Γj

vn ds. (5.5)

Here u is the potential of the velocity of the fluid, c denotes the speed of sound in
the fluid, ρ0 is the specific density of the fluid, kj represents the stiffness constant of
the spring system supporting tube j, mj is the mass per unit length of the tube j,
and n is the outward unit normal on the boundary of Ω0.

The eigenvalue problem is non–standard in two respects: The eigenparameter λ
appears in a rational way in the boundary conditions, and the boundary conditions are
nonlocal. Let σj := kj/mj denote the poles of problem (5.5) ordered by magnitude,
and let σ0 = 0 and σp+1 = ∞. Then the eigenvalues of (5.5) in each of the intervals
(σj , σj+1), j = 0, . . . , p can be characterized as minmax values of a Rayleigh func-
tional, and therefore (5.5) has a countable set of eigenvalues each of finite multiplicity
[100].

In particular we consider the rational eigenvalue problem (5.5) where Ω is the
ellipse with center (0, 0) and length of semiaxes 8 and 4, and Ωj , j = 1, . . . , 9 are
circles with radius 0.3 and centers (−4,−2), (0,−2), (4,−2), (−5, 0), (0, 0), (5, 0),
(−4, 2), (0, 2) and (4, 2). We assume that c = 1, ρ0 = 1 and mj = 1 for all j. For
the stiffness constants kj we assume k1 = k2 = k3 = 1, k4 = k5 = k6 = 2, and
k7 = k8 = k9 = 3.

Discretizing problem (5.5) by linear Lagrangian elements one gets a rational ma-
trix eigenvalue problem

T (λ)x := −Kx + λMx +
λ

1− λ
C1C

T
1 x +

λ

2− λ
C2C

T
2 x +

λ

3− λ
C3C

T
3 x = 0 (5.6)

where K and M are symmetric and positive (semi-)definite, and Cj ∈ R
n×6, j =

1, 2, 3, collects the contributions of the three groups of tubes in the nonlocal boundary
conditions. In our example the dimension is n = 143064.

Problem (5.6) has 18, 15, and 14 eigenvalues in the interval J1 = (0, 1), J2 = (1, 2),
and J3 = (2, 3), respectively, and a large number of eigenvalues in (3,∞), 18 of which
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Table 5.2

Iterative projection methods: Fluid–solid structure

method J1 J2 J3 J4 Σ
Arnoldi 69 94 103 154 420
Jacobi–Davidson 200 251 235 347 1033

are contained in J4 := (3, 5) (cf. [64]). In each of the intervals Jj the eigenvalues
can be characterized as minmax values of a Rayleigh functional [100]. This property
is preserved by the orthogonal projection methods of Arnoldi and Jacobi–Davidson
type, and therefore the eigenvalues can be determined one after the other solving
the projected problems by safeguarded iteration [97]. The rational Krylov method
destroys the symmetry, and we were not able to determine the eigenvalues by the
rational Krylov method in a systematic way.

Preconditioning by the (complete) LU factorization of T (σ) for fixed σ ∈ Jj

and starting with initial search spaces according to [64, 98] the Arnoldi and the
Jacobi–Davidson method needed the computing times given in Tab. 5.2. Notice, that
the Arnoldi method outperforms the Jacobi–Davidson method due to the accurate
preconditioner.

The reduction of problem (5.6) by AMLS with the base problem Kx = λMx and
a cut-off frequency of 100 generated a rational eigenvalue problem

−Ky + λMy +
λ

1− λ
C1C

T
1 y +

λ

2− λ
C2C

T
2 y +

λ

3− λ
C3C

T
3 y = 0 (5.7)

of dimension 915. In principle this problem could be multiplied by (1−λ)(2−λ)(3−λ)
yielding a polynomial eigenvalue problem of degree 4. Linearization would result in a
linear eigenvalue problem of dimension 3660 which could be solved by a sparse solver
like ARPACK. However, since rank(Cj) = 6, j = 1, 2, 3, the polynomial eigenproblem

and its linearization have eigenvalues λ̃j = j, j = 1, 2, 3 each of multiplicity 909, which
would impede the computation of the eigenvalues in the interval [0, 5].

Since the projected problem (5.7) inherits the symmetry properties of problem
(5.6) we solved it by the nonlinear Arnoldi method, which required 231 seconds for
reducing the base problem Kx = λMx by AMLS and transforming the matrices C1,
C2, and C3 simultaneously, and 35 seconds for solving the projected problem (5.7).
Hence, the total CPU time was 266 seconds.

The relative errors are displayed as plus signs in Fig. 5.3. The maximum error
is 0.076 which is quite large for a cut-off frequency being 20 times larger than the
largest desired eigenvalue. This difficulty is caused by the fact that the rational
eigenproblem (5.6) is not just a small perturbation of the base problem Kx = λMx
used in the AMLS reduction (for instance, (5.6) has 18 eigenvalues in the interval
[0, 1) whereas the linear problem Kx = λMx has only 12). There are eigenvectors of
problem (5.6) which have large amplitudes close to some of the tubes which can not
be approximated well by the AMLS basis consisting of eigenmodes of interfaces and
substructures. Fig. 5.4 shows one of these eigenfunctions.

It is interesting to note that these eigenfunctions do not correspond to eigenvalues
which are close to a pole. Fig. 5.5 shows the eigenfunction corresponding to an
eigenvalue λ18 close to the pole σ1 = 1 which can be easily approximated by the base
vectors.

To improve the approximation properties of AMLS we complemented the 503
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Fig. 5.3. Relative errors for fluid–solid structure
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Fig. 5.4. Eigenvector corresponding to λ13 = 0.7506

Fig. 5.5. Eigenvector corresponding to λ18 = 0.9585
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interface degrees of freedom on the coarsest level which were generated by the auto-
matic graph partitioner METIS [48] for the base problem Kx = λMx by the 1728
unknowns corresponding to nonzero row entries of the matrix [C1, C2, C3]. Applying
AMLS with the cut-off frequency 100 we obtained a reduced problem of the type (5.7)
of dimension 924 which we solved by the nonlinear Arnoldi method. The maximum
relative error was reduced to 0.017. The relative errors are displayed in Fig. 5.3 as
circles. The total CPU time was 376 seconds, 342 seconds for the AMLS reduction,
and 34 seconds for the solution of the reduced problem.

The gain in computing time by the AMLS method for this 2 dimensional problem
is not as pronounced as in our previous example since the matrices are less populated,
and the preconditioner in the nonlinear Arnoldi method requires much less storage
and arithmetic operations.

The alternative way of solving the nonlinear eigenproblem by projecting it to a
subspace spanned by a moderate number of Ritz vectors obtained from the AMLS
method for the linear base problem leads to bad approximations in this problem. For
instance, if problem (5.6) is projected to the space (of dimension 88) spanned by the
Ritz vectors corresponding to the Ritz values not exceeding 10 (twice the maximal
wanted eigenvalue), the maximum relative error for the eigenvalues in the interval
[0, 1) is 0.15.

6. Conclusions. We have discussed projection methods for large scale nonlin-
ear eigenvalue problems. Iterative projection methods of Jacobi–Davidson and of
Arnoldi type are efficient, where the Arnoldi method usually is faster if an accurate
preconditioner is available, whereas the Jacobi–Davidson method is more robust for
only coarse preconditioners. For truly large eigenproblems the automated multi–level
substructuring method outperforms iterative projection methods if an essential lin-
ear part can be identified such that the remainder has only a small influence on the
eigenpairs of interest.
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ing. ECCOMAS 2004, Jyväskylä, Finland, 2004. ISBN 951-39-1869-6, available at
http://www.tu-harburg.de/mat/Schriften/rep/rep72.pdf.

[104] H. Voss. A Jacobi–Davidson method for nonlinear eigenproblems. In M. Buback, G.D. van Al-
bada, P.M.A. Sloot, and J.J. Dongarra, editors, Computational Science – ICCS 2004, 4th
International Conference, Kraków, Poland, June 6–9,2004,Proceedings, Part II, volume
3037 of Lecture Notes in Computer Science, pages 34–41, Berlin, 2004. Springer Verlag.

[105] H. Voss. Numerical methods for sparse nonlinear eigenproblems. In Ivo Marek, editor, Proceed-
ings of the XV-th Summer School on Software and Algorithms of Numerical Mathemat-
ics, Hejnice, 2003, pages 133 – 160, University of West Bohemia, Pilsen, Czech Republic,
2004. Available at http://www.tu-harburg.de/mat/Schriften/rep/rep70.pdf.

[106] H. Voss. Electron energy level calculation for quantum dots. Technical Report 91, Institute of
Numerical Simulation, Hamburg University of Technology, 2005. To appear in Comput.
Phys. Comm.

[107] H. Voss. A rational eigenvalue problem governing relevant energy states of a quantum dots.
Technical Report 92, Institute of Numerical Simulation, Hamburg University of Technol-
ogy, 2005. To appear in J. Comput. Phys.

[108] H. Voss. An alternative motivation of the Jacobi–Davidson method. Technical Report 97,
Institute of Numerical Simulation, Hamburg University of Technology, 2006.



32 HEINRICH VOSS

[109] H. Voss and B. Werner. A minimax principle for nonlinear eigenvalue problems with applica-
tions to nonoverdamped systems. Math.Meth.Appl.Sci., 4:415–424, 1982.

[110] H. Voss and B. Werner. Solving sparse nonlinear eigenvalue problems. Technical Report 82/4,
Inst. f. Angew. Mathematik, Universität Hamburg, 1982.

[111] D.S. Watkins. On Hamiltonian and symplectic Lanczos processes. Linear Algebra Appl.,
385:23–45, 2002.

[112] B. Werner. Das Spektrum von Operatorenscharen mit verallgemeinerten Rayleighquotienten.
PhD thesis, Fachbereich Mathematik, Universität Hamburg, 1970.

[113] W. Wrigley, W.M. Hollister, and W.G. Denhard. Gyroscopic Theory, Design, and Instru-
mentation. M.I.T. Press, Cambridge, 1969.

[114] W.H. Yang. A method for eigenvalues of sparse λ-matrices. Internat. J. Numer. Meth. Engrg.,
19:943 – 948, 1983.


