
Measuring and Modeling Energy Consumption of
Embedded Systems for Optimizing Compilers

Mikko Roth, and Arno Luppold, and Heiko Falk
Institute of Embedded Systems

Hamburg University of Technology
Germany

mikko.roth|arno.luppold|heiko.falk@tuhh.de

ABSTRACT
Estimating energy consumption already during development
as precisely as possible is crucial for many embedded system
designs. These energy estimates should be expressed such
that they can be used by subsequent automated optimiza-
tions during the compilation phase in order to minimize the
expected energy consumption. In this paper we present our
current approach on measuring and modeling, and subse-
quently using the derived energy estimates. Our model is
implemented within an optimizing compiler, allowing for fu-
ture energy focused compiler optimizations.

CCS Concepts
•Hardware → Power estimation and optimization;
•General and reference→Measurement; •Software and
its engineering → Compilers;

Keywords
Compiler, Energy, Analysis, Measuring

1. INTRODUCTION
Many embedded systems only operate with a restricted

energy budget. This naturally includes any battery driven
devices, but also ECUs in larger systems like cars, where the
combined power consumption of dozens of computing units
leads to massive issues regarding power distribution.

Energy consumption can be determined very precisely at
a device’s gate level. However, the analysis techniques are
way too fine grained and complex to be used to express the
power consumption of the overall device. Additionally, de-
tailed knowledge on the internal structure of a processing
unit must be known in order to analyze the device’s power
consumption on such a low level. Unfortunately, hardware
producing companies regard this information as strictly con-
fidential intellectual property, and subsequently deny any
access to this data. On the other hand, power consumption
given in the final processing unit’s data sheet are usually just

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SCOPES ’18, May 28–30, 2018, Sankt Goar, Germany
c© 2018 ACM. ISBN 978-1-4503-5780-7/18/05. . . $15.00

DOI: https://doi.org/10.1145/3207719.3207729

highly over-pessimistic upper bounds which are completely
useless when it comes to tight estimates.

As a result, the power consumption of any processing unit
must be measured manually. Depending on the target sys-
tem, power consumption usually consists of several compo-
nents like base costs depending on the executed instruction,
costs of memory accesses, etc. These values form the so-
called energy model. Due to the fact that hardware archi-
tectures differ massively, the relevant key properties of the
energy model may also differ a lot.

In this paper we aim at tackling several of these issues.
The key contributions of this paper are:

• We propose a setup to measure the energy consump-
tion of common microcontroller devices used in the
embedded systems domain.

• We propose an approach to integrate arbitrary energy
models and measured data into an analysis framework.

• We integrated the approach into the WCET-Aware C
Compiler Framework (WCC)

• We outline, how this framework can also be used for
energy focused compiler optimizations.

This paper is organized as follows: Section 2 will first give
a brief introduction into related work. Section 3 explains our
methodology to precisely measure energy consumption of an
embedded system. Section 4 briefly introduces the compiler
framework which is going to be used as a basis for future
energy oriented optimizations. Section 5 describes how the
measured data is represented in the compiler framework as
basis for analyses and future optimizations. Section 6 closes
with a short description of our future plans.

2. RELATED WORK
For over 20 years, there has been considerable effort to

estimate energy consumption on the instruction-level. An
early approach is by profiling a program in terms of so called
base- and inter-instruction costs [7]. The usual method of
measuring is to observe the voltage drop over a shunt resis-
tor using an off the shelf ammeter, when executing loops of
repeated instruction patterns to derive the base and inter-
instructions costs. While the described measurement and
modeling technique is the basis for many research efforts in
this area, including our work, the model and earlier mea-
surement setup lacks precision as it relies on using an off-
the-shelf ammeter.

Figure 1: Measurement setup.

Another research group has also gathered power-data with
the same low-precision ammeter approach, but the model ac-
curacy is increased by extending base- and inter-instruction
costs with consideration of their Hamming weights and dis-
tances [6]. The Hamming weight corresponds to the number
of ’1’ in a bit sequence, and Hamming distance is equal to
the number of bit-flips to transform a bit sequence to an-
other one. Their model includes effects of data transfers
between the processor and bit-toggling on data buses, so
they could examine the effects of different allocation schemes
of memory objects when multiple memories are available.
For this they included another shunt-measurement point at
the power supply pin of the external memory. Additionally
to the low-precision measurement setup, the energy model
seems to have some degree of overlap in their extension of
Hamming weights and distances with the base cost defini-
tions.

Various attempts have been made to replace the low-
precision ammeter approach by building custom hardware
for power measurement purposes, that base on the same idea
of measuring the voltage drop over a shunt resistor. We have
experimented with a few of them, such as the platform de-
signed by the MAGEEC project [1], as well as a couple of
commercially available development boards. The MAGEEC
power measurement platform was specifically designed to
measure microcontroller power consumption, but unfortu-
nately we ran into technical issues and were unable to fix
them within our lab. The commercial solutions targeted at
measuring system level or specific feature related consump-
tion, e.g. wireless communication, for application develop-
ers, rather then to specifically profile microcontrollers on the
instruction level.

The measured data then needs to be imported into a de-
veloper’s toolchain for utilization. In a recent study [3],
a technique to make a program’s energy consumption vis-
ible at different abstraction levels in the LLVM compiler
toolchain was presented. The machine-specific instructions

Figure 2: Overall structure of WCC.

are mapped to the LLVM intermediate representation level
as a 1 to m mapping, which is then used to hoist energy
information from an instruction set architecture model to
the intermediate representation level. They also present an
energy profiling technique based on that knowledge at the in-
termediate level they gained using their mapping technique.

There are a variety of ways estimating power consump-
tion as well as models that go along with them. To have
reliable values from power measurements as the basis for
energy models, we designed an integrated power measure-
ment platform for modern low-power microcontrollers. As
we should be able to handle a variety of different models, we
need a method of communicating values for energy models
used within compilers.

3. MEASUREMENT SETUP
To derive good quality models for the energy consumption

of a processor, one has to have knowledge about a device’s
power consumption. Companies treat detailed information
about the processors’ power and energy consumption as con-
fidential. In the best case, there is a global average based
on running a full benchmark suite like CoreMark given in
the data sheets. To get detailed information to base an
instruction-level model on, more fine grained information is
needed.

Our goal was to create a design for a power and energy
measurement platform with high precision and low noise,
while at the same time keeping the design and production
low-cost and relatively simple as a blueprint for new mea-
surement targets. The platform should be easy to configure
for specific measurement purposes by the end user: Keeping
the platform quite small, allows easy modification or switch-
ing of the measuring circuit or target device.

Additionally, it reduces the risk of possible unwanted noise
sources and leakage currents. To reduce the risk of error
noise influencing measurements, the analog signal should not
be transferred over long distances and be converted into dig-
ital values as soon as possible. For this reason, we decided
to integrate a dedicated analog-to-digital converter (ADC)
onto the board design itself. The board design consists in

Listing 1: XML definition of the energy consumption for an
imaginary platform.

< i n s t r u c t i o n s>
<case>

<id>OPCODE</ id>
<opcode>sub32</opcode>
<energy>1</ energy>
<case>

<id>PREDECESSOR</ id>
<opcode>sub32</opcode>
<case>
<id>FALLBACK</ id>
<energy>0 .5</ energy>

</ case>
</ case>
<case>

<id>FALLBACK</ id>
<energy>1</ energy>

</ case>
</ case>

<!−− . . . Further ca s e s . . . −−>

<case>
<id>FALLBACK</ id>
<energy>2</ energy>

</ case>
</ i n s t r u c t i o n s>

essence of the target device, the power supply regulation
circuitry and a measurement point including the ADC.

The ADC outputs the recorded values over SPI to a USB-
SPI bridge device, that repackages the raw measurement
data for transfer to the PC. Using a commercial SPI-to-
USB bridge accompanied by driver and support libraries
that handle the low-level USB communication, we reduce
development efforts, while keeping high flexibility as we can
control the data acquisition by simply modifying applica-
tion code on the PC. This way , we are also able to use
user-friendly libraries and up-to-date driver to handle the
low-level USB communication.

The measurement software on the PC is a console driven
application written in C, and to keep it concise and main-
tainable, we make use of the aforementioned libraries and
drivers. Of course, we also need to be able to reprogram
the target device with benchmark binaries. We use a widely
used commercial debug and flashing device to reprogram the
target device . For running a long series of benchmarks over
an extended period of time and to be able to easily repeat
them, the user can write scripts to orchestrate complex mea-
surement runs of a long series of benchmarks.

We have produced a prototype of the measurement board,
on which the current is measured by a precision current-
sense amplifier that amplifies the voltage drop across the
shunt resistor. The output signal of the current-sense am-
plifier is sampled by an 12 Bit analog-to-digital converter.
The ADC is controlled by the PC driver via an USB-to-SPI
interface device controller bridge. Due to technical limita-
tions, the USB-to-SPI interface device controller is only able
to operate the ADC with 3 MHz clock which sets a maxi-
mum sampling rate of 187.5 ksps. Sampling is controlled

Start

sub32
Cost: +1

Pred: sub32
Cost: +0

Fallback
Cost: +0.5

Fallback
Cost: +1

... Fallback
Cost: +2

Figure 3: Exemplary structure of the energy analysis model
for an imaginary platform.

by a measurement driver on the PC, which requests sam-
ples in 65.5 kbyte chunks in bit banging mode. This causes
a small break after every 32 767 samples, but on average
we achieve a sampling rate of 170 ksps, based on our initial
observations.

Drawbacks of this setup are the initial investment in the
design and production effort of the measurement platform.
Another drawback we want to tackle in future, is the intru-
sive nature of the currently used measurement circuit based
on placing a shunt resistor into the power supply rail.

With this measurement setup, we are able to instantiate
the data gathered as an energy model into the WCET-Aware
C Compiler WCC [2] developed in our group. This way,
our compiler will be able to not only analyze and optimize
a program’s worst-case timing behavior, but also return a
good estimate on its energy consumption.

4. WCC FRAMEWORK
The WCET-aware C Compiler (WCC) is an optimizing C

compiler for embedded systems [2]. WCC allows to integrate
and to apply optimizations for worst-case execution time
(WCET) minimization into the compilation process. Cur-
rently, it supports the ARM7TDMI architecture, Infineon
TriCore TC1796 and TC1797 and we have basic support for
the Infineon Aurix microcontroller family. Additionally, we
are currently extending the compiler framework to support
the Leon3 microprocessor.

The overall structure of the WCC is shown in Figure 2:
The first stage is the parser, that accepts C source files
and generates a machine independent high-level Intermedi-
ate representation (High-level IR). It includes source code
analyses and optimizations, for example on loop structures,
and generates an optimized version of the code to be passed
on further down to the next module.

The optimized high-level IR from the previous step is fed
into the code-selector that generates a low-level intermediate
representation (Low-level IR). Various standard assembly-
level analyses and optimizations are performed at this stage.
For timing optimizations, a WCET analysis tool is inte-
grated at this stage to attach timing information to the Low-
level IR of the program and to extract the worst-case exe-
cution path. The timing information is exploited by various
optimizations to reduce the WCET of the input program,
and specialized optimizations can be applied only to these
code portions to minimize WCET aggressively.

After the various analyses and optimizations have been

concluded, the optimized code is passed down to the code
generator to emits assembly code and appropriate linker
scripts to allow producing a valid executable.

Our aim is to add analyses and optimizations that target
the energy consumption of embedded software. The low-
level IR is designed to be flexible for attaching new infor-
mation to be used for specialized optimizations. We have
already implemented the energy analysis module that at-
taches energy consumption information at the low-level IR
according to the model and input specification as described
in the next section.

5. COMPILER MODEL
Our goal is to instantiate the data gathered by the energy

measurements as an energy model into the WCET-Aware
C Compiler WCC [2] developed in our group. This way,
our compiler will be able to not only analyze and optimize
a program’s worst-case timing behavior, but also return a
good estimate on its energy consumption.

One of the key challenges with this is, that the compiler
features different target architectures. Despite the fact that
all target platforms are RISC architectures, they differ sub-
stantially in their internal structure. At the time being, we
do not yet know for sure each and every core component
which has to be accounted for when it comes to tight energy
estimates on these concrete targets.

As a result, we aimed at designing an analysis framework
which is arbitrarily customizable and extensible to allow a
flexible way model different target platforms as easy as pos-
sible. Consequently, we decided to describe the energy be-
havior of the system as structured XML data, which is then
parsed into our compiler as a tree structure. The energy
analyzing framework within the compiler will then use a
depth-first algorithm to match every instruction with an en-
ergy behavior.

A very simple example XML specification for an imagi-
nary system is shown in listing 1. The resulting analysis
tree after being parsed by WCC is shown in Fig. 3. An
instruction is matched from left to right, summing up all
costs until the deepest match. The physical unit does not
play any role here but will, most likely, be something like
nJ. The flexibility of the model comes from the possibility to
include logical expressions in the tree. In the given example,
the cost for a sub32 will be 1+0+0.5 = 1.5 if the previously
executed instruction has also been a sub32. Otherwise, the
energy consumption of that instruction will be 1 + 1 = 2.
The top-level Fallback node finally simply assigns all other
instructions a cost of 2.

Due to a very flexible object-oriented approach, it is very
simple to add new types of logical blocks as needed. This
way, inter-instruction costs (cf. sub32-sub32 in Fig. 3) can
easily be modeled. So far, we also support modeling ac-
cesses to different memories and costs depending on the core
an instruction is executed on in case of a multi-core setup.
We also have a block to match several given instructions at
once. Analysis blocks to model bit-level Hamming distances
between different instructions are currently developed.

One big benefit of this approach is that, due to the XML
syntax, the user may simply plug the base blocks and an-
notate them with costs as needed, without even changing
anything at the compiler’s code base. Another benefit is the
fact, that the tree-like structure does not enforce the user

to annotate each and every energy consumption behavior in
the same detailed level. E.g., many logic instructions might
be “boring” from an energy analysis point of view, requiring
only very coarse-grained analysis, while a few instructions
might require detailed and time-consuming analysis (e.g.,
value analysis, calculating Hamming distances, etc.). Using
our model, the user can decide at run-time, which instruc-
tions should be analyzed in which detail, allowing a trade-off
between a small energy consumption description in XML,
analysis run-time and analysis quality.

6. SUMMARY AND FUTURE WORK
We have produced a functioning prototype of our pro-

posed measurement setup, and work on addressing the iden-
tified drawbacks and plan to produce a revised version of
the measurement platform. For example, placing a shunt
resistor directly into the power supply path is a intrusive
method. We plan investigating into other, less intrusive cur-
rent sensing circuits. We are already looking at building a
version based on a current mirror setup that should offer
higher measurement resolutions [4]. In our blueprint design,
this change requires only replacing the current sensing cir-
cuitry and adjusting some configuration parameters within
our measurement software for decoding the raw data.

In the long run we, we aim at extending the compiler
framework towards multi-criteria optimizations to simulta-
neously optimize both WCET and energy consumption [5].

Acknowledgments
This work is part of a project that has received funding from
the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 779882.

This work received funding from Deutsche Forschungsge-
meinschaft (DFG) under grant FA 1017/3-1.

7. REFERENCES
[1] MAGEEC. http://www.mageec.org/. Referenced

2018-04-12.

[2] H. Falk and P. Lokuciejewski. A Compiler Framework
for the Reduction of Worst-Case Execution Times.
Real-Time Systems, 46(2):251–298, 2010.

[3] K. Georgiou, S. Kerrison, Z. Chamski, and K. Eder.
Energy transparency for deeply embedded programs.
ACM Trans. Archit. Code Optim., 14(1):8:1–8:26, Mar.
2017.

[4] T. Laopoulos, , P. Neofotistos, C. A. Kosmatopoulos,
and S. Nikolaidis. Measurement of current variations
for the estimation of software-related power
consumption. Instrumentation and Measurement, IEEE
Transactions on, 52(4):1206–1212, 2003.

[5] K. Muts, A. Luppold, and H. Falk. Multi-criteria
compiler-based optimizations of hard real-time systems.
In In Proc. of SCOPES. ACM, May 2018.

[6] S. Steinke, M. Knauer, L. Wehmeyer, and P. Marwedel.
An accurate and fine grain instruction-level energy
model supporting software optimizations. In In Proc. of
PATMOS, 2001.

[7] V. Tiwari, S. Malik, and A. Wolfe. Power analysis of
embedded software: a first step towards software power
minimization. In IEEE Transactions on VLSI Systems,
2(4):437–445, Dec. 1994.

