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,e main purpose of this paper is to study fundamental properties of weak Γ-hyperfilters on ordered Γ-semihypergroups that is a
generalization of Γ-hyperfilters. Also, we investigate the relationship between weak Γ-hyperfilters and prime Γ-hyperideals in
ordered Γ-semihypergroups. Finally, we introduce weak (m, n)-Γ-hyperfilters of ordered Γ-semihypergroups and conclude in
paper with arising explicit theorems.

1. Introduction and Preliminaries

,e theory of hypergroups was introduced by Marty [1] in
1934. For details about hyperstructure theory and its ap-
plications in cryptography, codes, etc, we refer to [2]. In the
range of hyperstructures, Heidari and Davvaz have inves-
tigated the ordered semihypergroups [3]. In [4], Davvaz et al.
provided a construction method for an ordered semigroup
by using the pseudoorders. ,e study of ordered regular
equivalence relations is one interesting topic in ordered
semihypergroup theory. Gu and Tang [5] and Tang et al. [6]
started the study of ordered regular equivalence relation in
detail and achieved some results in this respect. ,e concept
of hyperfilter is the most important subject in ordered
semihypergroup. In [7], Mahboob and Khan introduced
(m, n)-hyperfilters on ordered semihypergroups and studied
its various properties and characterizations.

Many researchers have studied (ordered) Γ-semi-
hypergroups and their related notions, for instance, Omidi
et al. [8, 9], Roa et al. [10], and Tang et al. [11], also see
[12, 13]. In [9], Omidi et al. investigated the notion of (intra-
) regular ordered Γ-semihypergroups associated with bi-
Γ-hyperideals, and in [8], Omidi and Davvaz introduced the
notion of convex ordered Γ-semihypergroups. In [14],
Yaqoob and Tang investigated approximations of interior
hyperfilters in partially ordered LA-semihypergroups.

Recently, Rao et al. [15] studied some aspects of
m-k-hyperideals in ordered semihyperrings.

Fuzzy set theory has been developed in many directions.
In 2015, the notion of fuzzy hyperfilters was introduced and
studied by Tang et al. in [16]. In [17], Cheng and Xin in-
vestigated some types of hyperfilters on hyper-BE-algebras.
In 2014, Borzooei et al. [18] studied weak filters in hyper-
residuated lattices. For more results on derivations in or-
dered semihyperrings, one can see [15].

Recently, Rao et al. [10] investigated some properties
of (m, n)-Γ-hyperfilters in ordered Γ-semihypergroups.
In continuity of this paper, we study weak
(m, n)-Γ-hyperfilters of ordered Γ-semihypergroups. In
[19], Bouaziz and Yaqoob studied hyperfilters of ordered
LA-semihypergroups in the framework of rough sets.
Recently, Tang et al. defined and analyzed in [20] the
weak hyperfilters of ordered semihypergroups. We know
that weak hyperfilters are generalizations of hyperfilters
while ordered semihypergroups generalize ordered
semigroups.

In the following, some notions on ordered Γ-semi-
hypergroups are reviewed to facilitate this study (see [10, 12],
for more details and basic definitions). Let S be a nonempty
set and ∗(S) be the family of all nonempty subsets of S.,en,
a mapping c: S × S⟶ ∗(S) is called a hyperoperation on S.
A hypergroupoid is a set S together with a hyperoperation c.
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If ∅≠A, B⊆S and x ∈ S, then AcB � ∪ a∈A
b∈B

acb,
xcA � x{ }cA, and Bcx � Bc x{ }.

We suppose that the hypergroupoid (S, c) is equipped
with the relation, ac(bcc) � (acb)cc, which means that
∪ u∈bccacu � ∪ v∈acbvcc.

For every a, b, c ∈ S, then S is called a semihypergroup.
Consider a nonempty set S and a nonempty set Γwith the

following properties: for all a, b, x, y ∈ S and all α, β ∈ Γ, we
have

(1) acb⊆S
(2) If a, b, x, y ∈ S such that a � x and b � y, then

acb � xcy

(3) xα(aβb) � (xαa)βb

Every c ∈ Γ denotes the hyperoperation. Such a set S is
said to be a Γ-semihypergroup. ,e reader may see [21, 22],
for detailed discussion.

Let ∅≠A, B⊆S. We define AcB � ∪ acb|a ∈ A, b ∈ B 

and

AΓB � ∪
c∈Γ

AcB. (1)

Definition 1. (see [11]). An ordered Γ-semihypergroup is a
triple (S, Γ, ≤ ) that

(1) (S, Γ) is a Γ-semihypergroup
(2) (S, ≤ ) is a (partially) ordered set
(3) For all u, v, x ∈ S and all c ∈ Γ, u≤ v implies

ucx≺ vcx and xcu≺xcv

If ∅≠A, B⊆S, then A≺B⇔∀a ∈ A,∃b ∈ B; a≤ b.
Let ∅≠ I⊆S. (I] is defined as follows:

(I] ≔ x ∈ S|x≤ z for some z ∈ I{ }.
For convenience, given a ∈ I, we write ( a{ }] � (a].
By a sub-Γ-semihypergroup of an ordered Γ-semi-

hypergroup S, we mean a nonempty subset A of S such that
AΓA⊆A, i.e., acb⊆A, for every a, b ∈ A and c ∈ Γ.

Definition 2. (see [12]). A nonempty subset I of an ordered
Γ-semihypergroup S is called a Γ-hyperideal of S if

(1) SΓI⊆I and IΓS⊆I
(2) (I] � I

For any ∅≠H⊆S, we define [H) by
x ∈ S|h≤ x for some h ∈ H{ }. For H � h{ }, we write [h) in-
stead of [ h{ }).

,e concept of an (m, n)-Γ-hyperfilter is a generalization
of the concept of a Γ-hyperfilter of S. Also, see [10], for an
overview.

Definition 3. (see [10]). If (S, Γ, ≤ ) is an ordered Γ-semi-
hypergroup, then a left m-Γ-hyperfilter F is a sub-Γ-semi-
hypergroup equipped with [F)⊆F and, in addition, for all
a, b ∈ S and c ∈ Γ, acb∩F≠∅ implies am⊆F. Right
n-Γ-hyperfilters can be defined similarly. Here, m and n are
positive integers. If F is both a left m-Γ-hyperfilter and a
right n-Γ-hyperfilter of S, then F is called an

(m, n)-Γ-hyperfilter of S. For m � n � 1, F is a Γ-hyperfilter
of S.

2. Main Results

In this section, we develop several definitions and results on
an ordered Γ-semihypergroup (S, Γ, ≤ ). Some remarkable
properties associated with weak Γ-hyperfilters were inves-
tigated. Also, we examine the relationship between weak
Γ-hyperfilters and prime Γ-hyperideals by mentioning a
theorem.

Definition 4. Let Fw ≠∅ be a subset of an ordered Γ-sem-
ihypergroup (S, Γ, ≤ ). ,en, Fw is called a left (right) weak
Γ-hyperfilter of S if

(1) (xcy)∩Fw ≠∅ for all x, y ∈ Fw and all c ∈ Γ
(2) For all x, y ∈ S and all

c ∈ Γ, (xcy)∩Fw ≠∅⟹x ∈ Fw (y ∈ Fw)

(3) For all x ∈ Fw and z ∈ S, x≤ z⟹ z ∈ Fw, i.e.,
[Fw)⊆Fw

Note that if Fw is both a left weak Γ-hyperfilter and a
right weak Γ-hyperfilter of S, then Fw is called a weak
Γ-hyperfilter of S.

Clearly, every Γ-hyperfilter (see Definition 3) of an or-
dered Γ-semihypergroup S is a weak Γ-hyperfilter of S. ,e
converse is not true, in general, that is, a weak Γ-hyperfilter
may not be a Γ-hyperfilter of S.

Example 1. Let S � a, b, c, d{ } and Γ � c, β . ,e hyper-
operations c and β are given in Table 1 and Table 2. ,en,
(S, Γ) is a Γ-semihypergroup [23].

Now, we consider the (partial) order relation,

≤ ≔ (a, a), (b, b), (c, c), (d, a), (d, c), (d, d){ }, (2)

on S. ,en, (S, Γ, ≤ ) is an ordered Γ-semihypergroup. Cover
relation of S as given below:

≺ � (d, a), (d, c){ }. (3)

,e Hasse diagram of S is shown in Figure 1.
Here, Fw � a, b, c{ } is a weak Γ-hyperfilter of S. Clearly,

Fw is not a Γ-hyperfilter of S. Since FwΓFw � S⊈Fw, i.e.,
aΓb � b, d{ }⊈Fw, it follows that Fw is not a sub-Γ-semi-
hypergroup of S.

Note that if Fwi
|i ∈ I  is a family of weak Γ-hyperfilters

of an ordered Γ-semihypergroup S, for all i ∈ I, then ∪ i∈IFwi

is not a weak Γ-hyperfilter of S in general (see Example 3.3 in
[20]). In the following, we show that if Fwi

|i ∈ I  is a chain
of weak Γ-hyperfilters of S, then ∪ i∈IFwi

is a weak
Γ-hyperfilter of S.

Lemma 1. Suppose that Fw1
and Fw2

are weak Γ-hyperfilters
of an ordered Γ-semihypergroup (S, Γ, ≤ ). 3en, Fw1

∪Fw2
is

a weak Γ-hyperfilter of S if and only if Fw1
⊆Fw2

or Fw2
⊆Fw1

.

Proof. If Fw1
⊆Fw2

or Fw2
⊆Fw1

, then it is clear that Fw1
∪Fw2

is a weak Γ-hyperfilter of S.
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Assume that Fw1
∪Fw2

is a weak Γ-hyperfilter of S and
Fw1
⊈Fw2

and Fw2
⊈Fw1

. ,en, there exist x, y ∈ Fw1
∪Fw2

such that x ∈ Fw1
, x ∉ Fw2

, y ∈ Fw2
, and y ∉ Fw1

. Since
Fw1
∪Fw2

is a weak Γ-hyperfilter of S, we obtain
(xcy)∩ (Fw1

∪Fw2
)≠∅, for each c ∈ Γ. □

Case 1. (xcy)∩Fw1
≠∅. Since Fw1

is a weak Γ-hyperfilter of
S, we get y ∈ Fw1

, a contradiction.

Case 2. Next, we consider the case when (xcy)∩Fw2
≠∅.

Since Fw2
is a weak Γ-hyperfilter of S, we have x ∈ Fw2

, a
contradiction.

From Lemma 1, we get the following result.

Theorem 1. Suppose Fwi
|i ∈ I  is a family of weak

Γ-hyperfilters of an ordered Γ-semihypergroup (S, Γ, ≤ ) such
that Fwu

⊆Fwv
or Fwv
⊆Fwu

, for all u, v ∈ I. 3en, ∪ i∈IFwi
is a

weak Γ-hyperfilter of S, where ∣I ∣ ≥ 2.

Proof. Straightforward. □

Theorem 2. Let (S, Γ, ≤ ) be an ordered Γ-semihypergroup
and∅≠Fw⊆S. 3en, the following statements are equivalent:

(1) Fw is a weak Γ-hyperfilter of S

(2) S∖Fw � ∅ or S∖Fw is a prime Γ-hyperideal of S

Proof. (1)⟹ (2): assume that (1) holds and S∖Fw ≠∅. We
first show that S∖Fw is a Γ-hyperideal of S. Let a ∈ S,
b ∈ S∖Fw, and c ∈ Γ. If bca⊈S∖Fw, then there exists x ∈ bca

such that x ∈ Fw. So, (bca)∩Fw ≠∅. Since Fw is a weak
Γ-hyperfilter of S, we get b ∈ Fw, which is a contradiction. So,
bca⊆S∖Fw. It means that (S∖Fw)ΓS⊆S∖Fw.

Similarly, SΓ(S∖Fw)⊆S∖Fw.
Now, let b ∈ S∖Fw, a ∈ S, and a≤ b. Since Fw is a weak
Γ-hyperfilter of S, it follows that [Fw)⊆Fw. If a ∈ Fw, then

b ∈ Fw, which is a contradiction. It implies that a ∈ S∖Fw.
Hence, (S∖Fw]⊆S∖Fw. Hence, by Definition 2, S∖Fw is a
Γ-hyperideal of S.

Next, we show that S∖Fw is prime. Let a, b ∈ S, c ∈ Γ, and
acb⊆S∖Fw. If a ∈ Fw and b ∈ Fw, then, since Fw is a weak
Γ-hyperfilter of S, we get (acb)∩Fw ≠∅, a contradiction. So,
a ∈ S∖Fw or b ∈ S∖Fw. ,erefore, S∖Fw is a prime
Γ-hyperideal of S.

(2)⟹ (1): if S∖Fw � ∅, then Fw � S, and so Fw is a
weak Γ-hyperfilter of S. Now, let S∖Fw is a prime
Γ-hyperideal of S. We assert that Fw is a weak Γ-hyperfilter of
S. Let a, b ∈ Fw and c ∈ Γ. If (acb) ∩Fw � ∅, then
(acb)⊆(S∖Fw). Since S∖Fw is prime, it follows that
a ∈ S∖Fw or b ∈ S∖Fw, which is a contradiction. Hence,
(acb) ∩Fw ≠∅, for all a, b ∈ Fw and c ∈ Γ. So, the first
condition of Definition 4 is verified.

Now, let a, b ∈ S, c ∈ Γ, and (acb)∩Fw ≠∅. If a ∈ S∖Fw,
then acb⊆(S∖Fw)ΓS Since S∖Fw is a Γ-hyperideal, we get
acb⊆S∖Fw. So, acb∩Fw ≠∅, which is a contradiction. It
implies that a ∈ Fw. Similarly, b ∈ Fw. ,us, the second
condition of Definition 4 is verified.

Assume that a ∈ Fw and a≤x, where x ∈ S. If x ∈ S∖Fw,
then, since S∖Fw is a Γ-hyperideal of S, we get a ∈ S∖Fw, a
contradiction. So, x ∈ Fw, and hence, the third condition of
Definition 4 is verified. ,erefore, Fw is a weak Γ-hyperfilter
of S. □

Theorem 3. Suppose that W is a weak Γ-hyperfilter of a
commutative ordered Γ-semihypergroup (S, Γ, ≤ ). If
W≪ acb and a ∈W, then b ∈W for all a, b ∈ S and c ∈ Γ.
Here, U≪V means that there exist u ∈ U and v ∈ V such that
u≤ v, for all nonempty subsets U and V of S.

Proof. Let W be a weak Γ-hyperfilter of S, a ∈W and
W≪ acb, where b ∈ S. As W≪ acb, there exists u ∈W and
v ∈ acb such that u≤ v. Since W is a weak Γ-hyperfilter of S,
we get v ∈W. It implies that (acb)∩W≠∅, for each c ∈ Γ.
By condition (2) of Definition 4, we obtain b ∈W. □

Theorem 4. Let W be a weak Γ-hyperfilter of an ordered
Γ-semihypergroup (S, Γ, ≤ ). If U∩W≠∅ and U≺V, then
V∩W≠∅, where ∅≠U, V⊆S.

Proof. Since U∩W≠∅, then there exists x ∈ S such that
x ∈W and x ∈ U. As U≺V and x ∈ U, there exists y ∈ V

such that x≤y. Since W is a weak Γ-hyperfilter of S and
x ∈W, we have y ∈W, by condition (3) of Definition 4. So,
V∩W≠∅.

A proper weak Γ-hyperfilter Fw of S is said to be maximal
if there does not exist any proper weak Γ-hyperfilter of S

which properly contains Fw. Indeed, let Fw be a proper weak
Γ-hyperfilter of S. ,en, Fw is said to be maximal if Fw⊆W⊆S
implies Fw � W or W � S, for all weak Γ-hyperfilters W of
S. □

Example 2. In Example 1, Fw � a, b, c{ } is a maximal weak
Γ-hyperfilter of S.

Table 1: Table of c for Example 1.
c a b c d
a a {b, d} c d
b {b,d} b {b,d} d
c c {b,d} a d
d d d d d

Table 2: Table of β for Example 1.
β a b c d
a {a, c} {b, d} {a, c} d
b {b, d} b {b, d} d
c {a, c} {b, d} {a, c} d
d d d d d

a c

d b

Figure 1: Figure of S for Example 1.
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Theorem 5. Let (S, Γ, ≤ ) be an ordered Γ-semihypergroup
with zero. If Fw is a proper weak Γ-hyperfilter of S, then there
is a maximal weak Γ-hyperfilter of S containing Fw.

Proof. Set X � W ⊂
≠

S|W as a weak Γ-hyperfilter of S,
Fw ≠ S and Fw⊆W}.

Since Fw ∈ X, we haveX≠∅. Also, (X,⊆) is an ordered
set by inclusion relation ⊆. Let Wi|i ∈ I  be a chain inX. By
,eorem 1, ∪ i∈IWi is a weak Γ-hyperfilter of S. Clearly,
∪ i∈IWi is an upper bound of the chain Wi|i ∈ I . Since
0 ∉Wi for any i ∈ I, we get 0 ∉ ∪ i∈IWi. ,is shows that
∪ i∈IWi ⊂≠ S. So, ∪ i∈IWi ∈ X. By Zorn’s Lemma, there
exists a maximal element Mw in X. We assert that Mw is a
maximal weak Γ-hyperfilter of S. Now, let J be a proper weak
Γ-hyperfilter of S containing Mw. ,en, J contains Fw and so
it belongs to X. Since Mw is maximal in X, we get J � Mw.
,erefore, Mw is a maximal weak Γ-hyperfilter of S.

,e weak (m, n)-Γ-hyperfilter of ordered Γ-semi-
hypergroups is defined as follows. □

Definition 5. Let Fw ≠∅ be a subset of an ordered Γ-sem-
ihypergroup (S, Γ, ≤ ). ,en, Fw is said to be a left weak
m-Γ-hyperfilter (right weak n-Γ-hyperfilter) of S if

(1) For all a, b ∈ Fw and c ∈ Γ, (acb)∩Fw ≠∅
(2) For all a, b ∈ S and c ∈ Γ, (acb)∩Fw ≠∅⟹ am⊆Fw

(bn⊆Fw)

(3) For all a ∈ Fw and z ∈ S, a≤ z⟹ z ∈ Fw

Here, m and n are positive integers. Note that if Fw is
both a left weak m-Γ-hyperfilter and a right weak
n-Γ-hyperfilter of S, then Fw is called a weak
(m, n)-Γ-hyperfilter of S.

Clearly, every (m, n)-Γ-hyperfilter of S is a weak
(m, n)-Γ-hyperfilter. However, the converse is not true, in
general, that is, a weak (m, n)-Γ-hyperfilter may not be an
(m, n)-Γ-hyperfilter of S.

Example 3. Suppose S is Γ-semihypergroup in Example 1
and put

≤ ≔ (a, a), (b, b), (c, c), (d, b), (d, d){ }. (4)

,en, (S, Γ, ≤ ) is an ordered Γ-semihypergroup. ,e
covering relation of S is given by

≺ � (d, b){ }. (5)

,e figure of S is shown in Figure 2.
Clearly, Fw � a, b, c{ } is a weak (m, n)-Γ-hyperfilter on S,

but it is not an (m, n)-Γ-hyperfilter. Indeed,
a, b ∈ Fw and aΓb � b, d{ }⊈Fw.

Lemma 2. Let Fwi
|i ∈ I  be a family of weak

(m, n)-Γ-hyperfilters of an ordered Γ-semihypergroup
(S, Γ, ≤ ). If ∩ i∈IFwi

≠∅, then ∩ i∈IFwi
is a weak

(m, n)-Γ-hyperfilter of S.

Proof. Let x, y ∈ ∩ i∈IFwi
. ,en, x, y ∈ Fwi

, for each i ∈ I.
Since Fwi

is a weak (m, n)-Γ-hyperfilter of S for each i ∈ I, we
get (xcy)∩Fwi

≠∅, for all c ∈ Γ. It implies that
(xcy)∩ (∩ i∈IFwi

)≠∅.
Now, let x, y ∈ S, c ∈ Γ, and (xcy)∩ (∩ i∈IFwi

)≠∅.
,en, there exists u ∈ ∩ i∈IFwi

, for some u ∈ xcy. Since
u ∈ ∩ i∈IFwi

, it follows that u ∈ Fwi
, for each i ∈ I. Since Fwi

is
a weak (m, n)-Γ-hyperfilter of S, for each i ∈ I, we get
xm, yn⊆Fwi

for each i ∈ I. It implies that xm, yn⊆∩ i∈IFwi
.

Now, let x ∈ ∩ i∈IFwi
and x≤ z ∈ S. ,en, x ∈ Fwi

for
each i ∈ I. Since Fwi

is a weak (m, n)-Γ-hyperfilter of S, for all
i ∈ I, we have z ∈ Fwi

, for all i ∈ I. So, z ∈ ∩ i∈IFwi
. ,ere-

fore, ∩ i∈IFwi
is a weak (m, n)-Γ-hyper filter of S.

Let (Si, Γi, ≤ i) be an ordered Γi-semihypergroup, for all
i ∈ Ω. Define ⊙: (i∈ISi) × (i∈IΓi) × (i∈ISi)⟶
∗(i∈ISi) by (ui)i∈Ω ⊙ (ci)i∈Ω ⊙ (vi)i∈Ω � (ti)i∈Ω|ti ∈ uicivi ,
for all (ui)i∈Ω, (vi)i∈Ω ∈ i∈ΩSi and (ci)i∈Ω ∈ i∈ΩΓi. Set
(ui)i∈Ω ≤ (vi)i∈Ω if and only if, for all i ∈ Ω, ui ≤ ivi.

,en, (i∈ΩSi � (ui)i∈Ω|ui ∈ Si , i∈ΩΓi, ≤ ) is an or-
dered i∈ΩΓi-semihypergroup [8]. In the following, we
study the behavior of weak (m, n)-Γ-hyperfilters on
i∈ΩSi. □

Theorem 6. Let (Si, Γi, ≤ i) be an ordered Γi-semi-
hypergroup, for all i ∈ Ω. If Wi is a weak (m, n)-Γ-hyperfilter
on Si, for all i ∈ Ω, then F � i∈ΩWi is a weak
(m, n)-Γ-hyperfilter on i∈ΩSi.

Proof. Let (ui)i∈Ω, (vi)i∈Ω ∈ F � i∈ΩWi. ,en, ui, vi ∈Wi,
for each i ∈ Ω. As Wi is a weak (m, n)-Γ-hyperfilter of Si, we
have (uicivi)∩Wi ≠∅. So, (ui)i∈Ω ⊙ (ci)i∈Ω ⊙ (vi)i∈Ω �

(uicivi)i∈Ω ∩F≠∅.
Now, let (ui)i∈Ω, (vi)i∈Ω ∈ i∈ΩSi and ((ui)i∈Ω ⊙

(ci)i∈Ω ⊙ (vi)i∈Ω)∩F≠∅. ,en,

ui( i∈Ω ⊙ ci( i∈Ω ⊙ vi( i∈Ω( ∩F≠∅

⟹ uicivi( i∈Ω ∩F≠∅

⟹ uicivi ∩Wi ≠∅,∀i ∈ Ω

⟹ u
m
i ⊆Wi and v

n
i ⊆Wi,∀i ∈ Ω⟹ u

m
i( i∈Ω⊆F and v

n
i( i∈Ω⊆F

⟹ ui( i ∈ Ω( 
m⊆F and vi( i ∈ Ω( 

n⊆F.

(6)

Let (ui)i∈Ω ∈ F and (ai)i∈Ω ∈ i∈ΩSi such that
((ui)i∈Ω, (ai)i∈Ω) ∈≤ . ,en, for all i ∈ Ω, we have
(ui, ai) ∈ ≤ i. Since Wi is a weak (m, n)-Γ-hyperfilter of Si,
for each i ∈ Ω, we have ai ∈Wi, for each i ∈ Ω. It implies
that (ai)i∈Ω ∈ i∈ΩWi � F. ,erefore, F is a weak
(m, n)-Γ-hyperfilter of i∈ΩSi. □

b

d

a c

Figure 2: Figure of S for Example 3.
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3. Conclusions

Generalization of Γ-hyperfilters in ordered Γ-semi-
hypergroups is necessary for further study of ordered
Γ-semihypergroups. In this study, we introduced the notion
of weak (m, n)-Γ-hyperfilter and then obtained some related
basic results. In the future, we plan to study relative weak
Γ-hyperfilters, fuzzy weak Γ-hyperfilters, and rough weak
Γ-hyperfilters in ordered Γ-semihypergroups. We expect
further research efforts in this direction.

Question 1: under what condition a weak
(m, n)-Γ-hyperfilter of S coincides with a weak
Γ-hyperfilter?
Question 2: under what condition arbitrary union of
weak (m, n)-Γ-hyperfilters of S is a weak
(m, n)-Γ-hyperfilter?
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