
Chapter 5
The Fourier–Laplace Transformation
and Material Law Operators

In this chapter we introduce the Fourier–Laplace transformation and use it to
define operator-valued functions of ∂t,ν ; the so-called material law operators. These
operators will play a crucial role when we deal with partial differential equations.
In the equations of classical mathematical physics, like the heat equation, wave
equation or Maxwell’s equation, the involved material parameters, such as heat
conductivity or permeability of the underlying medium, are incorporated within
these operators. Hence, these operators are called “material law operators”. We start
our chapter by defining the Fourier transformation and proving Plancherel’s theorem
in the Hilbert space-valued case, which states that the Fourier transformation defines
a unitary operator on L2(R; H).

Throughout, let H be a complex Hilbert space.

5.1 The Fourier Transformation

We start by defining the Fourier transformation on L1(R; H).

Definition For f ∈ L1(R; H) we define the Fourier transform ̂f of f by

̂f (s) := 1√
2π

∫

R

e−istf (t) dt (s ∈ R).

We also introduce

Cb(R; H) := {f : R → H ; f continuous, bounded}

endowed with the sup-norm, ‖·‖∞.
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Lemma 5.1.1 (Riemann–Lebesgue) Let f ∈ L1(R; H). Then ̂f ∈ Cb(R; H) and
lim|t |→∞

∥

∥ ̂f (t)
∥

∥ = 0. Moreover,

∥

∥ ̂f
∥

∥∞ � 1√
2π

‖f ‖1 .

Proof First, note that ̂f is continuous by dominated convergence and bounded with

∥

∥ ̂f
∥

∥∞ � 1√
2π

‖f ‖1 .

This shows that the mapping

L1(R; H) → Cb(R; H), f �→ ̂f (5.1)

defines a bounded linear operator. Moreover, for ϕ ∈ C1
c (R; H) we compute

ϕ̂(s) = 1√
2π

∫

R

e−istϕ(t) dt = 1√
2π

1

is

∫

R

e−istϕ′(t) dt

for s 	= 0 and thus,

lim sup
|s|→∞

‖ϕ̂(s)‖ � lim sup
|s|→∞

1

|s|
1√
2π

∥

∥ϕ′∥
∥

1 = 0,

which shows that lim|s|→∞ ‖ϕ̂(s)‖ = 0. By the facts that C1
c (R; H) is dense

in L1(R; H) (see Lemma 3.1.8),
{

f ∈ Cb(R; H) ; lim|t |→∞ ‖f (t)‖ = 0
}

is a
closed subspace of Cb(R; H) and the operator in (5.1) is bounded, the assertion
follows. 
�
It is our main goal to extend the definition of the Fourier transformation to functions
in L2(R; H). For doing so, we make use of the Schwartz space of rapidly decreasing
functions.

Definition We define

S(R; H) :=
{

f ∈ C∞(R; H) ; ∀n, k ∈ N0 : (

t �→ tkf (n)(t)
) ∈ Cb(R; H)

}

to be the Schwartz space of rapidly decreasing functions on R with values in H .

As usual we abbreviate S(R) := S(R;K).

Remark 5.1.2 S(R; H) is a Fréchet space with respect to the seminorms

S(R; H) 
 f �→ sup
t∈R

∥

∥

∥tkf (n)(t)

∥

∥

∥ (n, k ∈ N0).
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Moreover, S(R; H) ⊆ ⋂

p∈[1,∞] Lp(R; H). Indeed, S(R; H) ⊆ L∞(R; H) by
definition, and for f ∈ S(R; H) and 1 � p < ∞ we have that

∫

R

‖f (t)‖p dt =
∫

R

1

(1 + |t|)2p

∥

∥

∥(1 + |t|)2f (t)

∥

∥

∥

p

dt

� sup
t∈R

∥

∥

∥(1 + |t|)2f (t)

∥

∥

∥

p
∫

R

1

(1 + |t|)2p
dt < ∞.

Proposition 5.1.3 For f ∈ S(R; H) we have ̂f ∈ S(R; H) and the mapping

S(R; H) → S(R; H), f �→ ̂f

is bijective. Moreover, for f, g ∈ L1(R; H) we have that

∫

R

〈

̂f (t), g(t)
〉

dt =
∫

R

〈f (t), ĝ(−t)〉 dt . (5.2)

Additionally, if f, ̂f ∈ L1(R; H) then

f (t) = ̂
̂f (−t) (t ∈ R). (5.3)

Proof Let f ∈ S(R; H). By Exercise 5.1 we have

̂f ′(s) = 1√
2π

∫

R

(−it)e−istf (t) dt = −i ̂
(

t �→ tf (t)
)

(s) (s ∈ R) (5.4)

and

s ̂f (s) = i√
2π

∫

R

(−is) e−istf (t) dt = −îf ′(s) (s ∈ R). (5.5)

Using these formulas, one can show that ̂f ∈ S(R; H). Since the bijectivity
of the Fourier transformation on S(R; H) would follow from (5.3), it suffices to
prove the formulas (5.2) and (5.3). Let f, g ∈ L1(R; H). Then we compute using
Proposition 3.1.6 and Fubini’s theorem

∫

R

〈

̂f (t), g(t)
〉

dt =
∫

R

1√
2π

〈∫

R

e−istf (s) ds, g(t)

〉

dt

=
∫

R

∫

R

1√
2π

eist 〈f (s), g(t)〉 ds dt
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=
∫

R

〈

f (s),
1√
2π

∫

R

eistg(t) dt

〉

ds

=
∫

R

〈f (s), ĝ(−s)〉 ds,

which yields (5.2). For proving formula (5.3), we consider the function γ defined

by γ (t) := e− t2
2 for t ∈ R. Clearly, γ ∈ S(R). We claim that γ̂ = γ . Indeed, we

observe that γ solves the initial value problem y ′ + ty = 0 subject to y(0) = 1;
if we can show that γ̂ solves the same initial value problem, then their equality
would follow from the uniqueness of the solution. First, we observe that γ̂ (0) =

1√
2π

∫

R
e− t2

2 dt = 1. Second, we compute using the formulas (5.4) and (5.5) that

γ̂ ′(s) = −i ̂
(

t �→ tγ (t)
)

(s) = îγ ′(s) = −sγ̂ (s) (s ∈ R).

Altogether, we have shown that γ̂ solves the same initial value problem as γ and
hence, γ̂ = γ . Let now f ∈ L1(R; H) with ̂f ∈ L1(R; H), a > 0 and x ∈ H .
Then we compute using (5.2)

〈∫

R

̂f (t)γ (at)eist dt, x

〉

=
∫

R

〈

̂f (t), γ (at)xe−ist
〉

dt =
∫

R

〈

f (t), ̂
(

γ (a·)xe−is(·))(−t)
〉

dt

=
∫

R

〈

f (t),
1√
2π

∫

R

γ (ar)xe−isreit r dr

〉

dt

= 1

a

∫

R

〈

f (t), γ̂

(

s − t

a

)

x

〉

dt = 1

a

∫

R

〈

f (t), γ

(

s − t

a

)

x

〉

dt

=
∫

R

〈f (s − at), γ (t) x〉 dt =
〈∫

R

f (s − at)γ (t) dt, x

〉

for each s ∈ R. Since this holds for all x ∈ H we get

∫

R

̂f (t)γ (at)eist dt =
∫

R

f (s − at)γ (t) dt (s ∈ R).

Letting a → 0 in the latter equality, we obtain

∫

R

̂f (t)eist dt = lim
a→0

∫

R

f (s − at)γ (t) dt (s ∈ R), (5.6)

where we have used dominated convergence for the term on the left-hand side. In
order to compute the limit on the right-hand side, we first observe that

∫

R

∥

∥

∥

∥

∫

R

f (s − at)γ (t) dt

∥

∥

∥

∥

ds �
∫

R

∫

R

‖f (s − at)‖ ds γ (t) dt = ‖f ‖1 ‖γ ‖1 ,
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and hence, for each a > 0 the operator

Sa : L1(R; H) → L1(R; H),

f �→
(

s �→
∫

R

f (s − at)γ (t) dt

)

is bounded by ‖γ ‖1. Moreover, since Saψ → ψ(·) ‖γ ‖1 as a → 0 for ψ ∈
Cc(R; H), we infer that

Saf → f (·) ‖γ ‖1 (a → 0)

for each f ∈ L1(R; H). Hence, passing to a suitable sequence (an)n in R>0 tending
to 0, we get

lim
n→∞

(

Sanf
)

(s) → f (s) ‖γ ‖1 (a.e. s ∈ R).

Using this identity for the right-hand side of (5.6), we get

∫

R

̂f (t)eist dt = f (s) ‖γ ‖1 (a.e. s ∈ R),

and since ‖γ ‖1 = √
2π , we derive (5.3). 
�

With these preparations at hand, we are now able to prove the main theorem of this
section.

Theorem 5.1.4 (Plancherel) The mapping

F : S(R; H) ⊆ L2(R; H) → L2(R; H), f �→ ̂f

extends to a unitary operator on L2(R; H), again denoted by F , the Fourier
transformation. Moreover, F∗ = F−1 is given by f �→ ̂f (−·).
Proof Using (5.2) and (5.3) we obtain that

〈

̂f , ĝ
〉

2 =
∫

R

〈

̂f (t), ĝ(t)
〉

dt =
∫

R

〈

f (t),̂ĝ (−t)
〉

dt =
∫

R

〈f (t), g(t)〉 dt = 〈f, g〉2

for all f, g ∈ S(R; H) and thus, in particular,

‖f ‖2 = ‖Ff ‖2 . (5.7)

Moreover, dom(F) = ran(F) = S(R; H) is dense in L2(R; H) and hence, the first
assertion follows by Exercise 5.2. As F is unitary, we haveF∗ = F−1, thus, by (5.2)
applied to f, g ∈ S(R; H), we read off (using Proposition 2.3.8) that F−1 = (f �→
̂f (−·)), which yields all the claims of the theorem at hand. 
�
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Remark 5.1.5 We emphasise that for f ∈ L2(R; H) the Fourier transform Ff is
not given by the integral expression for L1-functions, simply because the integral
does not need to exist. However, by dominated convergence

Ff = lim
R→∞

1√
2π

∫ R

−R

e−it (·)f (t) dt,

where the limit is taken in L2(R; H).

5.2 The Fourier–Laplace Transformation
and Its Relation to the Time Derivative

We now use the Fourier transformation to define an analogous transformation
on our exponentially weighted L2-type spaces; the so-called Fourier–Laplace
transformation. We recall from Corollary 3.2.5 that for ν ∈ R the mapping

exp(−νm) : L2,ν(R; H) → L2(R; H), f �→ (

t �→ e−νtf (t)
)

is unitary. In a similar fashion, we obtain that

exp(−νm) : L1,ν(R; H) → L1(R; H), f �→ (

t �→ e−νtf (t)
)

defines an isometry.

Definition Let ν ∈ R. We define the Fourier–Laplace transformation as

Lν : L2,ν(R; H) → L2(R; H), f �→ F exp(−νm)f.

We can also consider the Fourier–Laplace transformation as a mapping from
L1,ν(R; H) to Cb(R; H); that is,

Lν : L1,ν(R; H) → Cb(R; H), f �→ F exp(−νm)f.

Remark 5.2.1 Note that Lν = F exp(−νm) is unitary as an operator from
L2,ν(R; H) to L2(R; H) since it is the composition of two unitary operators. For
ϕ ∈ C∞

c (R; H), we have the expression

(Lνϕ) (t) = 1√
2π

∫

R

e−(it+ν)sϕ(s) ds (t ∈ R),

which shows that Lν can be interpreted as a shifted variant of the Fourier
transformation, where the real part in the exponent equals ν instead of zero.
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Our next goal is to show that the Fourier–Laplace transformation provides a
spectral representation of our time derivative, ∂t,ν .

Definition Let V : R → K be measurable. We define the multiplication-by-V
operator as

V (m) : dom(V (m)) ⊆ L2(R; H) → L2(R; H), f �→ (

t �→ V (t)f (t)
)

with

dom(V (m)) := {

f ∈ L2(R; H) ; (

t �→ V (t)f (t)
) ∈ L2(R; H)

}

.

In particular, if V is the identity on R we will just write m instead of id(m) and call
it the multiplication-by-the-argument operator.

Remark 5.2.2 Note that the multiplication-by-V operator is a vector-valued ana-
logue of the multiplication operator seen in Theorems 2.4.3 and 2.4.7. The
statements in these theorems generalise (easily) to the vector-valued situation at
hand. Thus, as in Theorem 2.4.3, one shows that m is selfadjoint. Moreover, when
H 	= {0}, in a similar fashion to the arguments carried out in Theorem 2.4.7 one
shows that

σ(m) = R.

In order to avoid trivial cases, we shall assume throughout that H 	= {0}.
Theorem 5.2.3 Let ν ∈ R. Then

∂t,ν = L∗
ν(im + ν)Lν .

In particular,

σ(∂t,ν) = {it + ν ; t ∈ R} .

Proof We first prove the assertion for ν 	= 0 and show that

Iν = L∗
ν

(

1

im + ν

)

Lν .

The assertion will then follow by Theorem 2.4.3(d). Note that 1
im+ν

∈ L(L2(R; H))

by Proposition 2.4.6, and hence, both operators Iν and L∗
ν(

1
im+ν

)Lν are bounded
and defined on the whole of L2,ν(R; H). Thus, it suffices to prove the equality on a
dense subset of L2,ν(R; H), like Cc(R; H). We will just do the computation for the
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case when ν > 0. So, let ϕ ∈ Cc(R; H) and compute

(LνIνϕ) (t) = 1√
2π

∫

R

e−(it+ν)s

∫ s

−∞
ϕ(r) dr ds = 1√

2π

∫

R

∫ ∞
r

e−(it+ν)s ds ϕ(r) dr

= 1√
2π

1

it + ν

∫

R

e−(it+ν)rϕ(r) dr = 1

it + ν
(Lνϕ) (t)

for t ∈ R. For ν < 0 the computation is analogous. In the case when ν = 0 we
observe that

∂t,0 = exp(−νm)(∂t,ν − ν) exp(−νm)−1 = exp(−νm)L∗
ν (im + ν − ν)Lν exp(−νm)−1

= L∗
0(im)L0. 
�

5.3 Material Law Operators

Using the multiplication operator representation of ∂t,ν via the Fourier–Laplace
transformation, we can assign a functional calculus to this operator. We will do this
in the following and define operator-valued functions of ∂t,ν . The class of functions
used for this calculus are the so-called material laws. We begin by defining this
function class.

Definition A mapping M : dom(M) ⊆ C → L(H) is called a material law if

(a) dom(M) is open and M is holomorphic (i.e., complex differentiable; see also
Exercise 5.3),

(b) there exists some ν ∈ R such that CRe>ν ⊆ dom(M) and

‖M‖∞,CRe>ν
:= sup

z∈CRe>ν

‖M(z)‖ < ∞.

Moreover, we set

sb (M) := inf
{

ν ∈ R ; CRe>ν ⊆ dom(M) and ‖M‖∞,CRe>ν
< ∞}

to be the abscissa of boundedness of M .

Example 5.3.1 Let us state various examples of material laws.

(a) Polynomials in z−1: Let n ∈ N0, M0, . . . ,Mn ∈ L(H). Then

M(z) :=
n

∑

k=0

z−kMk (z ∈ C \ {0})



5.3 Material Law Operators 75

defines a material law with

sb (M) =
{

−∞ if M1 = . . . = Mn = 0,

0 otherwise.

(b) Series in z−1: Let (Mk)k∈N in L(H) such that
∑∞

k=0 ‖Mk‖ r−k < ∞ for some
r > 0. Then

M(z) :=
∞
∑

k=0

z−kMk (z ∈ C \ {0})

defines a material law with sb (M) � r .
(c) Exponentials: Let h ∈ R,M0 ∈ L(H) where M0 	= 0 and set

M(z) := M0ezh (z ∈ C).

Then M is a material law if and only if h � 0. In this case, sb (M) = −∞.

(d) Laplace transforms: Let ν ∈ R and k ∈ L1,ν(R) with spt k ⊆ R≥0. Then

M(z) := √
2π(Lk)(z) :=

∫ ∞

0
e−zt k(t) dt (z ∈ CRe>ν)

defines a material law with sb (M) � ν.
(e) Fractional powers: Let M0 ∈ L(H), M0 	= 0, α ∈ R and set

M(z) := M0z
−α (z ∈ C \ R≤0),

where we set

(

reiθ
)−α := r−αe−iαθ (r > 0, θ ∈ (−π, π)).

Then M is a material law if and only if α � 0 and

sb (M) =
{

−∞ if α = 0,

0 otherwise.

For material laws M we now define the corresponding material law operators in
terms of the functional calculus induced by the spectral representation of ∂t,ν .

Proposition 5.3.2 Let M : dom(M) ⊆ C → L(H) be a material law. Then, for
ν > sb (M), the operator

M(im + ν) : L2(R; H) → L2(R; H), f �→ (

t �→ M(it + ν)f (t)
)
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is bounded. Moreover, we define the material law operator

M(∂t,ν) := L∗
νM(im + ν)Lν ∈ L(L2,ν(R; H))

and obtain

∥

∥M(∂t,ν)
∥

∥ � ‖M‖∞,CRe>ν
.

Proof The proof is clear. 
�
Remark 5.3.3 The set of material laws is an algebra and the mapping of assigning a
material law to its corresponding material law operator is an algebra homomorphism
in the following sense. For j ∈ {1, 2} let Mj : dom(Mj ) ⊆ C → L(H) be
material laws, λ ∈ C. Then M1 +M2 (with domain dom(M1)∩dom(M2)), λM1 and
M1 · M2 (with domain dom(M1) ∩ dom(M2)) are material laws as well. Moreover,
sb (M1 + M2) , sb (M1 · M2) � max{sb (M1) , sb (M2)}. Furthermore, if M2(z) is
a scalar for all z ∈ dom(M2), then for ν > max{sb (M1) , sb (M2)} we have
(M1M2)(∂t,ν) = M1(∂t,ν)M2(∂t,ν) = M2(∂t,ν)M1(∂t,ν) = (M2M1)(∂t,ν).

Example 5.3.4 We now revisit the material laws presented in Example 5.3.1 and
compute their corresponding operators, M(∂t,ν).

(a) Let n ∈ N0, M0, . . . ,Mn ∈ L(H) and

M(z) :=
n

∑

k=0

z−kMk (z ∈ C \ {0}).

Then, for ν > 0, one obviously has

M(∂t,ν) =
n

∑

k=0

∂−k
t,ν Mk,

due to Theorem 5.2.3.
(b) Let (Mk)k∈N in L(H) such that

∑∞
k=0 ‖Mk‖ r−k < ∞ for some r > 0 and

M(z) :=
∞
∑

k=0

z−kMk (z ∈ C \ {0}).

Then, for ν > r , one has

M(∂t,ν) =
∞
∑

k=0

∂−k
t,ν Mk

again on account of Theorem 5.2.3.
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(c) Let h � 0,M0 ∈ L(H) and

M(z) := M0ezh (z ∈ C).

Then, for ν ∈ R, we have

M(∂t,ν) = M0τh,

where

τh : L2,ν(R; H) → L2,ν(R; H), f �→ (

t �→ f (t + h)
)

.

Indeed, for ϕ ∈ Cc(R; H) we compute

(LνM0τhϕ) (t) = 1√
2π

∫

R

e−(it+ν)sM0ϕ(s + h) ds

= M0
1√
2π

∫

R

e−(it+ν)(s−h)ϕ(s) ds = M(it + ν) (Lνϕ) (t)

for all t ∈ R, where we have used Proposition 3.1.6 in the second line. Hence,

M0τhϕ = L∗
νM(im + ν)Lνϕ = M(∂t,ν)ϕ

and since Cc(R; H) is dense in L2,ν(R; H) the assertion follows.
(d) Let ν ∈ R and k ∈ L1,ν(R) with spt k ⊆ R≥0 and

M(z) := √
2π(Lk)(z) (z ∈ CRe>ν).

Then, by Exercise 5.4,

M(∂t,μ) = k∗

for each μ > ν.

(e) Let M0 ∈ L(H), α > 0 and

M(z) := M0z
−α (z ∈ C \ R≤0).

Then for ν > 0 we have

(

M(∂t,ν)f
)

(t) = M0

∫ t

−∞
1


(α)
(t − s)α−1f (s) ds (a.e. t ∈ R) (5.8)
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for each f ∈ L2,ν(R; H); see Exercise 5.5. This formula gives rise to the
definition

(

∂−α
t,ν f

)

(t) :=
∫ t

−∞
1


(α)
(t − s)α−1f (s) ds (t ∈ R),

which is known as the (Riemann–Liouville) fractional integral of order α.

Throughout the previous examples, the operator M(∂t,ν) did not depend on the
actual value of ν. Indeed, this is true for all material laws. In order to see this, we
need the following lemma.

Lemma 5.3.5 Let μ, ν ∈ R with μ < ν, and set U := {z ∈ C ; Re z ∈ (μ, ν)}.
Let g : U → H be continuous and holomorphic on U such that g(i·+ν), g(i·+μ) ∈
L2(R; H) and there exists a sequence (Rn)n∈N in R�0 such that Rn → ∞ and

∫ ν

μ

‖g(±iRn + ρ)‖ dρ → 0 (n → ∞). (5.9)

Then

L∗
μg(i · +μ) = L∗

νg(i · +ν).

Proof Let t ∈ R. By Cauchy’s integral theorem, we have that

∫

γRn

g(z)ezt dz = 0,

where γRn is the rectangular closed path with corners ±iRn + μ,±iRn + ν

(see Fig. 5.1). Thus, we have that

μ ν

−Rn

Rn

γRn

Fig. 5.1 Curve γRn
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i
∫ Rn

−Rn

g(is + ν)e(is+ν)t ds − i
∫ Rn

−Rn

g(is + μ)e(is+μ)t ds

= −
∫ ν

μ

g(−iRn + ρ)e(−iRn+ρ)t dρ +
∫ ν

μ

g(iRn + ρ)e(iRn+ρ)t dρ.

(5.10)

Note that with the help of the formula for the inverse Fourier transformation (see
Theorem 5.1.4) and L∗

ν = (F exp(−νm))∗ = exp(−νm)−1F∗ the left-hand side
of (5.10) is nothing but

√
2π i

((L∗
ν1[−Rn,Rn]g(i · +ν)

)

(t) − (L∗
μ1[−Rn,Rn]g(i · +μ)

)

(t)
)

,

and hence, there is a subsequence of (Rn)n (which we do not relabel) such that the
left-hand side of (5.10) tends to

√
2π i

((L∗
νg(i · +ν)

)

(t) − (L∗
μg(i · +μ)

)

(t)
)

for almost every t ∈ R as n → ∞. As such, all we need to show is that the right-
hand side of (5.10) tends to 0 as n → ∞, which obviously follows by (5.9). 
�
Theorem 5.3.6 Let M : dom(M) ⊆ C → L(H) be a material law. Then, for
μ, ν > sb (M) and f ∈ L2,ν(R; H) ∩ L2,μ(R; H), we have

M(∂t,ν)f = M(∂t,μ)f.

Moreover, M(∂t,ν) is causal for all ν > sb (M).

Proof Let μ < ν. We prove the assertion for f = 1[a,b] · x with a < b and x ∈ H

first. For ρ ∈ R we compute

(Lρf
)

(t) = 1√
2π

∫ b

a

xe−(it+ρ)s ds = 1√
2π

1

it + ρ

(

e−(it+ρ)a − e−(it+ρ)b
)

x.

for all t ∈ R \ {0}. Moreover, we define

g(z) := 1√
2π

M(z)x
1

z

(

e−za − e−zb
)

(z ∈ CRe�μ \ {0})

and prove that g satisfies the assumptions of Lemma 5.3.5. First, we note that g is
bounded on {z ∈ C ; μ � Re z � ν} \ {0}. Indeed, we only need to prove that it is
bounded near 0 provided that μ � 0. To that end, we observe

1

z
(e−za − e−zb) = e−za 1 − e−z(b−a)

z
→ b − a (z → 0).
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Thus, g is bounded near 0. In particular, z = 0 is a removable singularity and, hence,
g can be extended holomorphically to CRe�μ. Moreover, for ρ � μ we have that

∫

R

‖g(it + ρ)‖2 dt =
∫ 1

−1
‖g(it + ρ)‖2 dt +

∫

|t |>1
‖g(it + ρ)‖2 dt .

The first term on the right-hand side is finite since g is bounded, while the second
term can be estimated by

∫

|t |>1
‖g(it + ρ)‖2 dt � ‖M‖2∞,CRe>μ

‖x‖2 (e−ρa + e−ρb)2

2π

∫

|t |>1

1

t2 + ρ2
dt < ∞.

This proves that g(i · +ρ) ∈ L2(R; H) for each ρ � μ and hence, particularly for
ρ = μ and ρ = ν. Finally, for ρ � μ we have that

‖g(it + ρ)‖ � 1√
2π

‖M‖∞,CRe>μ
‖x‖ 1

√

t2 + ρ2

(

e−ρa + e−ρb
)

→ 0 (|t | → ∞) ,

which together with the boundedness of g yields (5.9) by dominated convergence.
This shows that g satisfies the assumptions of Lemma 5.3.5 and thus

M(∂t,ν)f = L∗
νg(i · +ν) = L∗

μg(i · +μ) = M(∂t,μ)f.

By linearity, this equality extends to Sc(R; H) and so,

F : Sc(R; H) →
⋂

ν�μ

L2,ν(R; H), f �→ M(∂t,ν)f

is well-defined. Moreover, F is uniformly Lipschitz continuous (observe that
supν�μ ‖Fν‖ ≤ ‖M‖∞,CRe>μ

) and hence, the assertions follow from Lemma 4.2.5.

�

5.4 Comments

The Fourier and the Fourier–Laplace transformation introduced in this chapter are
used to define an operator-valued functional calculus for the time derivative, ∂t,ν .
This functional calculus can be defined since the Fourier–Laplace transformation
provides the unitary transformation yielding the spectral representation of the time
derivative as multiplication operator. This fact was already noticed in [83], which
eventually led to evolutionary equations in [82].

We emphasise that we have used the fundamental property that bothF andLν are
unitary. It is noteworthy that the Fourier transformation is an isometric isomorphism
on L2(R; X) if and only if X is a Hilbert space, see [58]. In the Banach space-valued
case one has to further restrict the class of functions used to define a functional
calculus. For the topic of functional calculus we refer to the 21st Internet Seminar
[46] by Markus Haase and to his monograph, [47].
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Material laws and the corresponding material law operators were also considered
in [82, Section 3], including a physical motivation. Note that the definition in [82]
is slightly different compared to the one presented here.

Exercises

Exercise 5.1 Let (�,�,μ) be a σ -finite measure space, X a Banach space and
I ⊆ R an open interval. Let g : I × � → X such that g(t, ·) ∈ L1(μ; X) for each
t ∈ I , and define

h : I → X, t �→
∫

�

g(t, ω) dμ(ω).

(a) Assume that g(·, ω) is continuous for μ-almost every ω ∈ � and let f ∈ L1(μ)

such that

‖g(t, ω)‖ � f (ω) (t ∈ I, ω ∈ �).

Prove that h is continuous.
(b) Assume that g(·, ω) is differentiable for μ-almost every ω ∈ � and let f ∈

L1(μ) such that

‖∂tg(t, ω)‖ � f (ω) (t ∈ I, μ − a.a. ω ∈ �).

Prove that h is differentiable with

h′(t) =
∫

�

∂tg(t, ω) dμ(ω).

Exercise 5.2 Let H0,H1 be two Hilbert spaces and U : dom(U) ⊆ H0 → H1
linear such that

• dom(U) is dense in H0 and ran(U) is dense in H1.
• ∀x ∈ dom(U) : ‖Ux‖H1

= ‖x‖H0
.

Show that U can be uniquely extended to a unitary operator between H0 and H1.

Exercise 5.3 Let � ⊆ C be open, X a complex Banach space and f : � → X.
Prove that the following statements are equivalent:

(i) f is holomorphic.
(ii) For all x ′ ∈ X′ the mapping x ′ ◦ f : � → C is holomorphic.

(iii) f is locally bounded and x ′ ◦ f : � → C is holomorphic for all x ′ ∈ D, where
D ⊆ X′ is a norming set1 for X.

1 D ⊆ X′ is called a norming set for X if ‖x‖ = supx′∈D\{0} 1
‖x′‖

∣

∣x′(x)
∣

∣ for each x ∈ X. Note that
X′ is norming for X by the Hahn–Banach theorem.
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(iv) f is analytic, i.e. for each z0 ∈ � there is r > 0 and (an)n in X with B (z0, r) ⊆
� and

f (z) =
∞
∑

n=0

an (z − z0)
n (z ∈ B (z0, r)).

Assume now that X = L(X1,X2) for two complex Banach spaces X1,X2, let D1 ⊆
X1 be dense and D2 ⊆ X′

2 norming for X2. Prove that the statements (i) to (iv) are
equivalent to

(v) f is locally bounded and � 
 z �→ x ′
2(f (z)(x1)) ∈ C is holomorphic for all

x1 ∈ D1 and x ′
2 ∈ D2.

Hint: For the difficult implications one might also consult [6, Appendix A]. In the
same source one can find that in part (iii) it is enough for D to be separating.

Exercise 5.4 Let ν ∈ R and k ∈ L1,ν(R). Prove that

Lν (k ∗ f ) = √
2π (Lνk) · (Lνf )

for f ∈ L2,ν(R; H).

Exercise 5.5 Let α > 0 and define gα(t) := 1[0,∞)(t)t
α−1 for t ∈ R. Show that

gα ∈ L1,ν(R) for each ν > 0 and that

(Lνgα) (t) = 1√
2π


(α)(it + ν)−α.

Use this formula and Exercise 5.4 to derive (5.8).
Hint: To compute the Fourier–Laplace transform of gα, derive that Lνgα solves a
first order ordinary differential equation and use separation of variables to solve this
equation.

Exercise 5.6 Let μ, ν ∈ R with μ < ν and f ∈ L2,ν(R; H) ∩ L2,μ(R; H).
Moreover, set U := {z ∈ C ; μ < Re z < ν}. Show that f ∈ ⋂

μ<ρ<ν L2,ρ(R; H)∩
L1,ρ(R; H) and that

U 
 z �→ (LRe zf ) (Im z)

is holomorphic.

Exercise 5.7 Let H0,H1 be Hilbert spaces and T : L2,ν(R; H0) → L2,ν(R; H1)

linear and bounded. We call T autonomous if T τh = τhT for each h ∈ R (τh denotes
the translation operator defined in Example 5.3.4). Prove that for autonomous T , the
following statements are equivalent:

(i) T is causal.
(ii) For all f ∈ L2,ν(R; H0) with spt f ⊆ [0,∞) one has spt Tf ⊆ [0,∞).

Moreover, prove that for a material law M , the operator M(∂t,ν) is autonomous for
each ν > sb (M).
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